WorldWideScience

Sample records for proglacial fluvial sedimentation

  1. On the hydrology and fluvial sediment transport of the proglacial river Riffler Bach (Weißseeferner, Ötztal Alps, Tyrol)

    Science.gov (United States)

    Morche, David; Baewert, Henning; Weber, Martin; Schmidt, Karl-Heinz

    2013-04-01

    The hydrology of proglacial rivers is strongly affected by glacier melting. With ongoing glacier retreat the proportion of glacier meltwater in proglacial rivers is declining over longer time periods. Snow melt or rain fall events will play a more important role as water source. Due to glacial erosion the glacier system is also an important player in the orchestra of sediment sources/processes contributing to proglacial sediment budgets. The consequence of increasing deglaciation is a growing importance of other sediment sources/processes, mainly known as paraglacial, for sediment budgets in glacier forefields. The sediment export out of proglacial areas is mainly done by solid river load. Knowledge on the quantity of the exported sediments is important for reservoir management and torrent control. In order to measure fluvial sediment transport in the catchment area of the Gepatsch reservoir in the Ötztal Alps (Tyrol/Austria) we have installed a gauging station at the proglacial river Riffler Bach in June 2012. The catchment area of this station is about 20 km² with an altitudinal range from 1929 m to 3518 m. The higher altitudes in the southern part of the area are covered by the glacier Weißseeferner. Our station is equipped with an automatic water sampler (AWS 2002) and probes for water level, turbidity and electrical conductivity. All parameters are recorded in 5-15 minute intervals during the ablation period. Discharge is measured with current meters during wadable stages and salt dilution during higher floods. Bed load is measured concurrent to discharge measurements using a Helley-Smith sampler. In 2012, 189 water samples were taken and will be analyzed for suspended sediment concentration and ion content. Additionally, the grain size distribution will be determined using a Malvern laser diffractometer. Rating-curves will be used to calculate discharge from stage recordings. Solid load of the Riffler Bach will be quantified using the discharge data and

  2. Inter- and intra-annual variability of fluvial sediment transport in the proglacial river Riffler Bach (Weißseeferner, Ötztal Alps, Tyrol)

    Science.gov (United States)

    Baewert, Henning; Weber, Martin; Morche, David

    2015-04-01

    The hydrology of a proglacial river is strongly affected by glacier melting. Due to glacier retreat the effects of snow melt and rain storms will become more important in future decades. Additionally, the development of periglacial landscapes will play a more important role in the hydrology of proglacial rivers. The importance of paraglacial sediment sources in sediment budgets of glacier forefields is increasing, while the role of glacial erosion is declining. In two consecutive ablation seasons the fluvial sediment transport of the river Riffler Bach in the Kaunertal (Tyrol/Austria) was quantified. The catchment area of this station is 20 km² with an altitudinal range from 1929 m to 3518 m above msl. The "Weißseeferner" glacier (2.34 km² in 2012) is the greatest of the remaining glaciers. An automatic water sampler (AWS 2002) and a probe for water level were installed were installed at the outlet of the catchment. In order to calculate annual stage-discharge-relations, discharge (Q) was repeatedly measured with current meters. Concurrent to the discharge measurements bed load was collected using a portable Helley-Smith sampler. Bed load (BL) samples were weighted and sieved in the laboratory to gain annual bed load rating curves and grain size distributions. In 2012, 154 water samples were sampled during 7 periods and subsequently filtered to quantify suspended sediment concentrations (SSC). A Q-SSC-relation was calculated for every period due to the high variability in suspended sediment transport. In addition, the grain size distribution of the filtered material was determined by laser diffraction analysis. In 2013, the same procedure was performed for 232 water samples which were collected during 9 periods. Meteorological data were logged at the climate station "Weißsee", which is located in the centre of the study area. First results show a high variability of discharge and solid sediment transport both at the inter-annual as well as at the intra

  3. The contribution of bank and surface sediments to fluvial sediment ...

    African Journals Online (AJOL)

    The contribution of bank and surface sediments to fluvial sediment transport of the Pra River. ... the relative contribution of surface and bank sediments to the fluvial sediment transport. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  4. Glacier retreat and associated sediment dynamics in proglacial areas: a case study from the Silvretta Alps, Austria

    Science.gov (United States)

    Felbauer, Lucia; Pöppl, Ronald

    2016-04-01

    Global warming results in an ongoing retreat of glaciers in the Alps, leaving behind large amounts of easily erodible sediments. In addition, the debuttressing of rock-walls and the decay of permafrost in the high mountain regions facilitates mass movements of potential disastrous consequences, such as rock falls, landslides and debris flows. Therefore, it is highly important to quantify the amount of sediments that are supplied from the different compartments and to investigate how glacial retreat influences sediment dynamics in proglacial areas. In the presented work glacier retreat and associated sediment dynamics were investigated in the Kromer valley (Silvretta Alps, Austria) by analyzing remote sensing data. Glacial retreat from the period of 1950 to 2012 was documented by interpreting aerial photographs. By digitizing the different stages of the glaciers for six time frames, changes in glacier area and length were mapped and quantified. In order to identify, characterize and quantify sediment dynamics in the proglacial areas a high resolution DEM of difference (DoD) between 2007 and 2012 was created and analyzed, further differentiating between different zones (e.g. valley bottom, hillslope) and types of geomorphic processes (e.g. fluvial, gravitational). First results will be presented at the EGU General Assembly 2016.

  5. A Field Exercise in Fluvial Sediment Transport.

    Science.gov (United States)

    Tharp, Thomas M.

    1983-01-01

    Describes an investigation which introduces the mathematical principles of stream hydraulics and fluvial sediment in a practical context. The investigation has four stages: defining hydrology of the stream; defining channel hydraulics in a study reach; measuring grain size; and calculating transportable grain size and comparing measure stream-bed…

  6. Proglacial lake sediments – a basis for uninterrupted chronicles of the Holocene glacier variations

    Directory of Open Access Journals (Sweden)

    M. Y. Alexandrin

    2015-01-01

    Full Text Available The article covers the origin of paleolimnological method in glaciology, concerns the theoretical background of the approach, and focuses on the principal methods of analysis of the lake sediments and creating the sedimentary age-depth models. Lake sediments can provide a basis for creating uninterrupted reconstructions of the Holocene glacier variations with high resolution. The fundament of paleolimnological method is based on the differences between glacial and non-glacial components of the bottom sediments of proglacial lakes. The glacial signal in the lake sediments was originally distinguished by measuring the organic content of the sediment (normally with loss-on-ignition and the magnetic properties of the sediment. Subsequent methods of analysis could yield more precision and normally include geochemical composition (with the use of high-resolution scanning x-ray fluorescence analysis, use of biogenic indicators (such as pollen and diatoms contained in the sediment and more. Obtaining the most accurate age of the sediment is a crucial question in subsequent application of the sediment parameters for reconstruction of glacier variability. The article covers various methods of dating the lake sediment – radiocarbon, Cs- and Pb-isotope dating, varve counting. Techniques of creating age-depth models are taken into account. A state-of-the-art application of sedimentary properties in paleoglaciology yields a reconstruction of a former equilibrium line altitude – ELA. The article focuses on the basis of the ELA reconstruction approach. Successful examples of reconstructions of glacier variations based on the lake sediments can be found throughout the majority of the glaciated regions of the planet. The article states the most prominent of them and gives an update on the current progress in paleolimnological research in the Caucasus Mountains.

  7. Vision for a worldwide fluvial-sediment information network

    Science.gov (United States)

    Gray, J.R.; Osterkamp, W.R.

    2007-01-01

    The nations of the world suffer both from the deleterious effects of some natural and human-altered fluxes of fluvial sediment and a lack of consistent and reliable information on the temporal and spatial occurrence of fluvial sediments. Decades ago, this difficulty was unavoidable due to a lack of understanding of the magnitude and scope of environmental influences exerted by fluvial sediment coupled with a dearth of tools for monitoring and studying the data. Such is no longer the case.

  8. Fluvial processes on Mars: Erosion and sedimentation

    Science.gov (United States)

    Squyres, Steven W.

    1988-01-01

    One of the most important discoveries of the Mariner 9 and Viking missions to Mars was evidence of change of the Martian surface by the action of liquid water. From the standpoint of a Mars Rover/Sample Return Mission, fluvial activity on Mars is important in two ways: (1) channel formation has deeply eroded the Martian crust, providing access to relatively undisturbed subsurface units; and (2) much of the material eroded from channels may have been deposited in standing bodies of liquid water. The most striking fluvial erosion features on Mars are the outflow channels. A second type of channel apparently caused by flow of liquid water is the valley systems. These are similar to terrestial drainage systems. The sedimentary deposits of outflow channels are often difficult to identfy. No obvious deposits such as deltaic accumulations are visible in Viking images. Another set of deposits that may be water lain and that date approx. from the epoch of outflow channels are the layered deposits in the Valles Marineris. From the standpoint of a Mars Rover/Sample Return mission, the problem with all of these water-lain sediments is their age, or rather the lack of it.

  9. Fluvial sediment transport: Analytical techniques for measuring sediment load

    International Nuclear Information System (INIS)

    2005-07-01

    Sediment transport data are often used for the evaluation of land surface erosion, reservoir sedimentation, ecological habitat quality and coastal sediment budgets. Sediment transport by rivers is usually considered to occur in two major ways: (1) in the flow as a suspended load and (2) along the bed as a bed load. This publication provides guidance on selected techniques for the measurement of particles moving in both modes in the fluvial environment. The relative importance of the transport mode is variable and depends on the hydraulic and sedimentary conditions. The potential user is directed in the selection of an appropriate technique through the presentation of operating principles, application guidelines and estimated costs. Techniques which require laboratory analysis are grab sample, pump sample, depth sample, point integrated and radioactive tracers. Techniques which will continuously record data are optical backscattering, nuclear transmission, single frequency acoustic and laser diffraction

  10. Fluvial sediment transport in a glacier-fed high-mountain river (Riffler Bach, Austrian Alps)

    Science.gov (United States)

    Morche, David; Weber, Martin; Faust, Matthias; Schuchardt, Anne; Baewert, Henning

    2017-04-01

    High-alpine environments are strongly affected by glacier retreat since the Little Ice Age (LIA). Due to ongoing climate change the hydrology of proglacial rivers is also influenced. It is expected that the growing proportions of snow melt and rainfall events will change runoff characteristics of proglacial rivers. Additionally, the importance of paraglacial sediment sources in recently deglaciating glacier forefields is increasing, while the role of glacial erosion is declining. Thus complex environmental conditions leading to a complex pattern of fluvial sediment transport in partly glaciated catchments of the European Alps. Under the umbrella of the joint PROSA-project the fluvial sediment transport of the river Riffler Bach (Kaunertal, Tyrol, Austria) was studied in 3 consecutive ablation seasons in order to quantify sediment yields. In June 2012 a probe for water level and an automatic water sampler (AWS) were installed at the outlet of the catchment (20km2). In order to calculate annual stage-discharge-relations by the rating-curve approach, discharge (Q) was repeatedly measured with current meters and by salt dilution. Concurrent to the discharge measurements bed load was collected using a portable Helley-Smith sampler. Bed load samples were weighted and sieved in the laboratory to gain annual bed load rating curves and grain size distributions. In total 564 (2012: 154, 2013: 209, 2014: 201) water samples were collected and subsequently filtered to quantify suspended sediment concentrations (SSC). Q-SSC-relations were calculated for single flood events due to the high variability of suspended sediment transport. The results show a high inter- and intra-annual variability of solid fluvial sediment transport, which can be explained by the characteristics of suspended sediment transport. Only 13 of 22 event-based Q-SSC-relations show causal dependency. In 2012, during a period with multiple pluvial-induced peak discharges most sediment was transported. On the

  11. U-Th and 10Be constraints on sediment recycling in proglacial settings, Lago Buenos Aires, Patagonia

    Science.gov (United States)

    Cogez, Antoine; Herman, Frédéric; Pelt, Éric; Reuschlé, Thierry; Morvan, Gilles; Darvill, Christopher M.; Norton, Kevin P.; Christl, Marcus; Märki, Lena; Chabaux, François

    2018-03-01

    The estimation of sediment transfer times remains a challenge to our understanding of sediment budgets and the relationships between erosion and climate. Uranium (U) and thorium (Th) isotope disequilibria offer a means of more robustly constraining sediment transfer times. Here, we present new uranium and thorium disequilibrium data for a series of nested moraines around Lago Buenos Aires in Argentine Patagonia. The glacial chronology for the area is constrained using in situ cosmogenic 10Be analysis of glacial outwash. Sediment transfer times within the periglacial domain were estimated by comparing the deposition ages of moraines to the theoretical age of sediment production, i.e., the comminution age inferred from U disequilibrium data and recoil loss factor estimates. Our data show first that the classical comminution age approach must include weathering processes accounted for by measuring Th disequilibrium. Second, our combined data suggest that the pre-deposition history of the moraine sediments is not negligible, as evidenced by the large disequilibrium of the youngest moraines despite the equilibrium of the corresponding glacial flour. Monte Carlo simulations suggest that weathering was more intense before the deposition of the moraines and that the transfer time of the fine sediments to the moraines was on the order of 100-200 kyr. Long transfer times could result from a combination of long sediment residence times in the proglacial lake (recurrence time of a glacial cycle) and the remobilization of sediments from moraines deposited during previous glacial cycles. 10Be data suggest that some glacial cycles are absent from the preserved moraine record (seemingly every second cycle), supporting a model of reworking moraines and/or fluctuations in the extent of glacial advances. The chronological pattern is consistent with the U-Th disequilibrium data and the 100-200 kyr transfer time. This long transfer time raises the question of the proportion of freshly

  12. U–Th and 10Be constraints on sediment recycling in proglacial settings, Lago Buenos Aires, Patagonia

    Directory of Open Access Journals (Sweden)

    A. Cogez

    2018-03-01

    Full Text Available The estimation of sediment transfer times remains a challenge to our understanding of sediment budgets and the relationships between erosion and climate. Uranium (U and thorium (Th isotope disequilibria offer a means of more robustly constraining sediment transfer times. Here, we present new uranium and thorium disequilibrium data for a series of nested moraines around Lago Buenos Aires in Argentine Patagonia. The glacial chronology for the area is constrained using in situ cosmogenic 10Be analysis of glacial outwash. Sediment transfer times within the periglacial domain were estimated by comparing the deposition ages of moraines to the theoretical age of sediment production, i.e., the comminution age inferred from U disequilibrium data and recoil loss factor estimates. Our data show first that the classical comminution age approach must include weathering processes accounted for by measuring Th disequilibrium. Second, our combined data suggest that the pre-deposition history of the moraine sediments is not negligible, as evidenced by the large disequilibrium of the youngest moraines despite the equilibrium of the corresponding glacial flour. Monte Carlo simulations suggest that weathering was more intense before the deposition of the moraines and that the transfer time of the fine sediments to the moraines was on the order of 100–200 kyr. Long transfer times could result from a combination of long sediment residence times in the proglacial lake (recurrence time of a glacial cycle and the remobilization of sediments from moraines deposited during previous glacial cycles. 10Be data suggest that some glacial cycles are absent from the preserved moraine record (seemingly every second cycle, supporting a model of reworking moraines and/or fluctuations in the extent of glacial advances. The chronological pattern is consistent with the U–Th disequilibrium data and the 100–200 kyr transfer time. This long transfer time raises the

  13. Does deposition depth control the OSL bleaching of fluvial sediment?

    NARCIS (Netherlands)

    Cunningham, A. C.; Wallinga, J.; Hobo, N.; Versendaal, A. J.; Makaske, B.; Middelkoop, H.

    2014-01-01

    The Optically Stimulated Luminescence (OSL) signal from fluvial sediment often contains a remnant from the previous deposition cycle, leading to a partially bleached equivalent-dose distribution. Although identification of the burial dose is of primary concern, the degree of bleaching could

  14. Estuarine abandoned channel sedimentation rates record peak fluvial discharge magnitudes

    Science.gov (United States)

    Gray, A. B.; Pasternack, G. B.; Watson, E. B.

    2018-04-01

    Fluvial sediment deposits can provide useful records of integrated watershed expressions including flood event magnitudes. However, floodplain and estuarine sediment deposits evolve through the interaction of watershed/marine sediment supply and transport characteristics with the local depositional environment. Thus extraction of watershed scale signals depends upon accounting for local scale effects on sediment deposition rates and character. This study presents an examination of the balance of fluvial sediment dynamics and local scale hydro-geomorphic controls on alluviation of an abandoned channel in the Salinas River Lagoon, CA. A set of three sediment cores contained discrete flood deposits that corresponded to the largest flood events over the period of accretion from 1969 to 2007. Sedimentation rates scaled with peak flood discharge and event scale sediment flux, but were not influenced by longer scale hydro-meteorological activities such as annual precipitation and water yield. Furthermore, the particle size distributions of flood deposits showed no relationship to event magnitudes. Both the responsiveness of sedimentation and unresponsiveness of particle size distributions to hydro-sedimentological event magnitudes appear to be controlled by aspects of local geomorphology that influence the connectivity of the abandoned channel to the Salinas River mainstem. Well-developed upstream plug bar formation precluded the entrainment of coarser bedload into the abandoned channel, while Salinas River mouth conditions (open/closed) in conjunction with tidal and storm surge conditions may play a role in influencing the delivery of coarser suspended load fractions. Channel adjacent sediment deposition can be valuable records of hydro-meteorological and sedimentological regimes, but local depositional settings may dominate the character of short term (interdecadal) signatures.

  15. A manual to identify sources of fluvial sediment

    Science.gov (United States)

    Gellis, Allen C.; Fitzpatrick, Faith A.; Schubauer-Berigan, Joseph

    2016-01-01

    sediment sources early in the design of the sediment budget will help later in deciding which tools are necessary to monitor erosion and/or deposition at these sources. Tools can range from rapid inventories to estimate the sediment budget or quantifying sediment erosion, deposition, and export through more rigorous field monitoring. In either approach, data are gathered and erosion and deposition calculations are determined and compared to the sediment export with a description of the error uncertainty. Findings are presented to local stakeholders and management officials.Sediment fingerprinting is a technique that apportions the sources of fine-grained sediment in a watershed using tracers or fingerprints. Due to different geologic and anthropogenic histories, the chemical and physical properties of sediment in a watershed may vary and often represent a unique signature (or fingerprint) for each source within the watershed. Fluvial sediment samples (the target sediment) are also collected and exhibit a composite of the source properties that can be apportioned through various statistical techniques. Using an unmixing-model and error analysis, the final apportioned sediment is determined.

  16. Geochemistry of Fluvial Sediments from Geregu, Southwest Nigeria

    Directory of Open Access Journals (Sweden)

    Adiotomre Emmanuel E.

    2017-03-01

    Full Text Available Geochemical analysis of fluvial sediments on the banks of River Ero using inductively coupled plasma mass spectrometry illustrates their maturity, provenance and tectonic setting. The analysed sediment samples show low SiO2/Al2O3 ratios of 2.92-2.99 (units FL_A, FL_B and FL_E and high SiO2/Al2O3 ratios of 4.064-4.852 (units FL_C, FL_D, FL_F and FL_G. Sediments were geochemically classified as shales (units FL_A, FL_B and FL_E and greywackes (units FL_C, FL_D, FL_F and FL_G. Variability in sediment maturity (FL_F > FL_G >FL_C >FL_D >FL_A > FL_B > FL_E parallels a decreasing order in the ratios of SiO2/Al2O3 and K2O/Al2O3, as well as the proportion of quartz grains and matrix components. Evidence from Al2O3/TiO2, K2O, Rb, La/Co, Th/Co, Cr/ Th, Th/Cr, La/Th-Hf, Th-Hf-Co and rare earth element contents of sediment samples suggest felsic protoliths of upper continental crust in a passive margin tectonic setting. An insignificant contribution of mafic components from the source is, however, inferred based on the Ni and Cr contents of the sediment samples. Combined Eu anomalies <0.85 and (Gd/Ybn ratios <2.0 (1.53- 1.82, average 1.65 suggest post-Archean protoliths.

  17. Modeling plan-form deltaic response to changes in fluvial sediment supply

    NARCIS (Netherlands)

    Nienhuis, J.H.; Ashton, A.D.; Roos, Pieter C.; Hulscher, Suzanne J.M.H.; Giosan, L.; Kranenburg, W.M.; Horstman, E.M.; Wijnberg, K.M.

    2012-01-01

    This study focuses on the effects of changes in fluvial sediment supply on the plan-form shape of wave-dominated deltas. We apply a one-line numerical shoreline model to calculate shoreline evolution after (I) elimination and (II) time-periodic variation of fluvial input. Model results suggest four

  18. Fluvial sediment inputs to upland gravel bed rivers draining forested catchments: potential ecological impacts

    Directory of Open Access Journals (Sweden)

    S. D. Marks

    1997-01-01

    Full Text Available As identified by the detailed long-term monitoring networks at Plynlimon, increased sediment supply to upland fluvial systems is often associated with forestry land-use and practice. Literature is reviewed, in the light of recent results from Plynlimon sediment studies, to enable identification of the potential ecological impacts of fluvial particulate inputs to upland gravel bed rivers draining forested catchments similar to the headwaters of the River Severn. Both sediment transport and deposition can have significant impacts upon aquatic vertebrates, invertebrates and plants.

  19. Fluvial-deltaic sedimentation and stratigraphy of the ferron sandstone

    Science.gov (United States)

    Anderson, P.B.; Chidsey, T.C.; Ryer, T.A.

    1997-01-01

    East-central Utah has world-class outcrops of dominantly fluvial-deltaic Turonian to Coniacian aged strata deposited in the Cretaceous foreland basin. The Ferron Sandstone Member of the Mancos Shale records the influences of both tidal and wave energy on fluvial-dominated deltas on the western margin of the Cretaceous western interior seaway. Revisions of the stratigraphy are proposed for the Ferron Sandstone. Facies representing a variety of environments of deposition are well exposed, including delta-front, strandline, marginal marine, and coastal-plain. Some of these facies are described in detail for use in petroleum reservoir characterization and include permeability structure.

  20. Model Projections of Future Fluvial Sediment Delivery to Major Deltas Under Environmental Change

    Science.gov (United States)

    Darby, S. E.; Dunn, F.; Nicholls, R. J.; Cohen, S.; Zarfl, C.

    2017-12-01

    Deltas are important hot spots for climate change impacts on which over half a billion people live worldwide. Most of the world's deltas are sinking as a result of natural and anthropogenic subsidence and due to eustatic sea level rise. The ability to predict rates of delta aggradation is therefore critical to assessments of the extent to which sedimentation can potentially offset sea level rise, but our ability to make such predictions is severely hindered by a lack of insight into future trends of the fluvial sediment load supplied to their deltas by feeder watersheds. To address this gap we investigate fluvial sediment fluxes under future environmental change for a selection (47) of the world's major river deltas. Specifically, we employed the numerical model WBMsed to project future variations in mean annual fluvial sediment loads under a range of environmental change scenarios that account for changes in climate, socio-economics and dam construction. Our projections indicate a clear decrease (by 34 to 41% on average, depending on the specific scenario) in future fluvial sediment supply to most of the 47 deltas. These reductions in sediment delivery are driven primarily by anthropogenic disturbances, with reservoir construction being the most influential factor globally. Our results indicate the importance of developing new management strategies for reservoir construction and operation.

  1. A Manual to Identify Sources of Fluvial Sediment

    Science.gov (United States)

    Sedimentation is one of the main causes of stream/river aquatic life use impairments in R3. Currently states lack standard guidance on appropriate tools available to quantify sediment sources and develop sediment budgets in TMDL Development. Methods for distinguishing sediment t...

  2. Nove interpretacije fluvialnih sedimentov na krasu = New interpretations of fluvial sediments from the Kras

    Directory of Open Access Journals (Sweden)

    Andrej Mihevc

    2007-01-01

    Full Text Available Important unroofed caves with fluvial sediments from Divaški kras, Matarsko podoljePodgorski kras are presented. Extend of the phenomena and relation to the existingand karst surface and geomorphological meaning of them are described. Sedimentsthem were analysed and dated with different methods. The largest age of the sedimentfound in the unroofed cave excavated in Črnotiče quarry. In the cave wall fossil remainsstygobiont Marifugia cavatica were covered by 3.2-4.1 Ma old fluvial sediments.

  3. Fluvial sediment in the environment: a national challenge

    Science.gov (United States)

    Larsen, Matthew C.; Gellis, Allen C.; Glysson, G. Douglas; Gray, John R.; Horowitz, Arthur J.

    2010-01-01

    Sediment and sediment-associated constituents can contribute substantially to water-quality impairment. In the past, sediment was viewed mainly as an engineering problem that affected reservoir storage capacity, shipping channel maintenance, and bridge scour, as well as the loss of agricultural soil. Sediment is now recognized as a major cause of aquatic system degradation in many rivers and streams as a result of light attenuation, loss of spawning substrate due to fine-grained sediment infilling, reduction in primary productivity, decreases in biotic diversity, and effects from sediment-associated chemical constituents. Recent advances in sediment measurement, assessment, source-identification, and analytical protocols provide new capabilities to quantify sediment and solid-phase chemical fluxes in aquatic systems. Developing, maintaining, and augmenting current sediment- and water-quality-monitoring networks is essential for determining the health of U.S. waterways and for evaluating the effectiveness of management actions in reducing sediment-related problems. The application of new scientific capabilities that address the adverse effects of sediment and sediment- associated constituents represents a major step in managing the Nation’s water quality. A robust Federal, national-scale eff rt, in collaboration with vested stakeholders, is needed to address these sediment-related water-quality issues across the United States.

  4. Analysis of Fluvial Sediment Discharges into Kubanni Reservoir ...

    African Journals Online (AJOL)

    User

    The predominant sandy-clay sediment in the reservoir has an estimated total sediment load ... NIGERIAN JOURNAL OF TECHNOLOGY, VOL. 29 NO 2, JUNE ... the upper limit of application is 1-5gl !1 ... Laursen, Modified Einstein Procedure,.

  5. Analysis of Fluvial Sediment Discharges into Kubanni Reservoir ...

    African Journals Online (AJOL)

    The sediment discharges into the Kubanni Reservoir (KR) has been measured and analysed in this study. The predominant sandy-clay sediment in the reservoir has an estimated total sediment load of 20,387,000 kg/year. The depth and area coverage of the reservoir was surveyed using a defined distributed grid line ...

  6. A Manual to Identify Sources of Fluvial Sediment | Science ...

    Science.gov (United States)

    Sedimentation is one of the main causes of stream/river aquatic life use impairments in R3. Currently states lack standard guidance on appropriate tools available to quantify sediment sources and develop sediment budgets in TMDL Development. Methods for distinguishing sediment types for TMDL development will focus stream restoration and soil conservation efforts in strategic locations in a watershed and may better target appropriate BMPs to achieve sediment load reductions. Properly identifying sediment sources in a TMDL will also help focus NPDES permitting, stream restoration activities and other TMDL implementation efforts. This project will focus on developing a framework that will be published as a guidance document that outlines steps and approaches to identify the significant sources of fine-grained sediment in 303D listed watersheds. In this framework, the sediment-fingerprinting and sediment budget approaches will be emphasized. This project will focus on developing a framework that will be published as a guidance document that outlines steps and approaches to identify the significant sources of fine-grained sediment in 303D listed watersheds. In this framework, the sediment-fingerprinting and sediment budget approaches will be emphasized.

  7. Suspended sediment transport trough a large fluvial-tidal channel network

    Science.gov (United States)

    Wright, Scott A.; Morgan-King, Tara L.

    2015-01-01

    The confluence of the Sacramento and San Joaquin Rivers, CA, forms a large network of interconnected channels, referred to as the Sacramento-San Joaquin Delta (the Delta). The Delta comprises the transition zone from the fluvial influences of the upstream rivers and tidal influences of San Francisco Bay downstream. Formerly an extensive tidal marsh, the hydrodynamics and geomorphology of Delta have been substantially modified by humans to support agriculture, navigation, and water supply. These modifications, including construction of new channels, diking and draining of tidal wetlands, dredging of navigation channels, and the operation of large pumping facilities for distribution of freshwater from the Delta to other parts of the state, have had a dramatic impact on the physical and ecological processes within the Delta. To better understand the current physical processes, and their linkages to ecological processes, the USGS maintains an extensive network of flow, sediment, and water quality gages in the Delta. Flow gaging is accomplished through use of the index-velocity method, and sediment monitoring uses turbidity as a surrogate for suspended-sediment concentration. Herein, we present analyses of the transport and dispersal of suspended sediment through the complex network of channels in the Delta. The primary source of sediment to the Delta is the Sacramento River, which delivers pulses of sediment primarily during winter and spring runoff events. Upon reaching the Delta, the sediment pulses move through the fluvial-tidal transition while also encountering numerous channel junctions as the Sacramento River branches into several distributary channels. The monitoring network allows us to track these pulses through the network and document the dominant transport pathways for suspended sediment. Further, the flow gaging allows for an assessment of the relative effects of advection (the fluvial signal) and dispersion (from the tides) on the sediment pulses as they

  8. Effects of Wildfire on Fluvial Sediment Regime through Perturbations in Dry-Ravel

    Science.gov (United States)

    Florsheim, J. L.; Chin, A.; Kinoshita, A. M.; Nourbakhshbeidokhti, S.; Storesund, R.; Keller, E. A.

    2015-12-01

    In steep chaparral ecosystems with Mediterranean climate, dry ravel is a natural process resulting from wildfire disturbance that supplies sediment to fluvial systems. When dense chaparral vegetation burns, sediment accumulated on steep hillslopes is released for dry-season transport (dry ravel) down steep hillslopes during or soon after the wildfire. Results of a field study in southern California's Transverse Ranges illustrate the effect of wildfire on fluvial sediment regime in an unregulated chaparral system. Big Sycamore Canyon in the steep Santa Monica Mountains burned during the May 2013 Springs Fire and experienced one small sediment-transporting stormflow during the following winter. We conducted pre- and post-storm field campaigns during the fall and winter following the fire to quantify the effect of wildfire on the fluvial sediment regime. We utilized a sediment mass balance approach in which: 1) sediment supply, consisting primarily of dry ravel-derived deposits composed of relatively fine grained-sediment, was measured in the upstream basin and in the hillslope-channel margin adjacent to the study reach; 2) changes in storage in the study reach were quantified by analyzing the difference between pre- and post-storm channel topography derived from Terrestrial LiDAR Scanning (TLS) and field surveys; and 3) transport from the study reach was estimated as the difference between supply and change in storage where uncertainty is estimated using calculated sediment transport as a comparison. Results demonstrate channel deposition caused by changes in the short-term post-wildfire sediment regime. The increased sediment supply and storage are associated with significant changes in morphology, channel bed-material characteristics, and ecology. These results suggest that dry-ravel processes are an important factor to consider in post-wildfire sediment management.

  9. Results of radiocarbon dating of Holocene fluvial sediments from Northeastern Bohemia

    International Nuclear Information System (INIS)

    Silar, J.; Zeman, A.

    1989-01-01

    Samples of wood and charcoal from the latest Holocene fluvial sediments under the lowest surface of alluvial plains were dated by radiocarbon in order to check paleomagnetic data at four sites in northeastern Bohemia. The results are presented as funcorrected 14 C ages and dendrochronologically corrected ages. Two samples were recent. 4 figs., 1 tab., 3 refs

  10. Phosphorus and nitrogen loading depths in fluvial sediments following manure spill simulations

    Science.gov (United States)

    Manure spills that enter streams can devastate the aquatic ecosystem. The depth of nitrogen (N) and phosphorus (P) loading in fluvial sediments following a manure spill have not been documented. Thus, the objectives of this study were (i) to determine the depth of N and P contamination as a result o...

  11. Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments

    Czech Academy of Sciences Publication Activity Database

    Matys Grygar, Tomáš; Popelka, J.

    2016-01-01

    Roč. 170, NOV (2016), s. 39-57 ISSN 0375-6742 R&D Projects: GA ČR(CZ) GA15-00340S Institutional support: RVO:61388980 Keywords : Enrichment * Fluvial sediments * Heavy metals Subject RIV: DD - Geochemistry Impact factor: 2.464, year: 2016

  12. The legacy of lead (Pb) in fluvial bed sediments of an urban drainage basin, Oahu, Hawaii.

    Science.gov (United States)

    Hotton, Veronica K; Sutherland, Ross A

    2016-03-01

    The study of fluvial bed sediments is essential for deciphering the impact of anthropogenic activities on water quality and drainage basin integrity. In this study, a systematic sampling design was employed to characterize the spatial variation of lead (Pb) concentrations in bed sediment of urban streams in the Palolo drainage basin, southeastern Oahu, Hawaii. Potentially bioavailable Pb was assessed with a dilute 0.5 N HCl extraction of the  Pukele (19) > Waiomao (8). Comparisons to sediment quality guidelines and potential toxicity estimates using a logistic regression model (LRM) indicated a significant potential risk of Palolo Stream bed sediments to bottom-dwelling organisms.

  13. High temporal resolution in situ measurement of the effective particle size characteristics of fluvial suspended sediment.

    Science.gov (United States)

    Williams, N D; Walling, D E; Leeks, G J L

    2007-03-01

    This paper reports the use of a LISST-100 device to monitor the effective particle size characteristics of suspended sediment in situ, and at a quasi-continuous temporal resolution. The study site was located on the River Exe at Thorverton, Devon, UK. This device has not previously been utilized in studies of fluvial suspended sediment at the storm event scale, and existing studies of suspended sediment dynamics have not involved such a high temporal resolution for extended periods. An evaluation of the field performance of the instrument is presented, with respect to innovative data collection and analysis techniques. It was found that trends in the effective particle size distribution (EPSD) and degree of flocculation of suspended sediment at the study site were highly complex, and showed significant short-term variability that has not previously been documented in the fluvial environment. The collection of detailed records of EPSD facilitated interpretation of the dynamic evolution of the size characteristics of suspended sediment, in relation to its likely source and delivery and flocculation mechanisms. The influence of measurement frequency is considered in terms of its implications for future studies of the particle size of fluvial suspended sediment employing in situ data acquisition.

  14. Transport and deposition of plutonium-contaminated sediments by fluvial processes, Los Alamos Canyon, New Mexico

    International Nuclear Information System (INIS)

    Graf, W.L.

    1996-01-01

    Between 1945 and 1952 the development of nuclear weapons at Los Alamos National Laboratory, New Mexico, resulted in the disposal of plutonium into the alluvium of nearby Acid and (to a lesser degree) DP Canyons. The purpose of this paper is to explore the connection between the disposal sites and the main river, a 20 km link formed by the fluvial system of Acid, Pueblo, DP, and Los Alamos Canyons. Empirical data from 15 yr of annual sediment sampling throughout the canyon system has produced 458 observations of plutonium concentration in fluvial sediments. These data show that, overall, mean plutonium concentrations in fluvial sediment decline from 10,000 fCi/g near the disposal area to 100 fCi/g at the confluence of the canyon system and the Rio Grande. Simulations using a computer model for water, sediment, and plutonium routing in the canyon system show that discharges as large as the 25 yr event would fail to develop enough transport capacity to completely remove the contaminated sediments from Pueblo Canyon. Lesser flows would move some materials to the Rio Grande by remobilization of stored sediments. The simulations also show that the deposits and their contaminants have a predictable geography because they occur where stream power is low, hydraulic resistance is high, and the geologic and/or geomorphic conditions provide enough space for storage. 38 refs., 13 figs., 1 tab

  15. Quality-Assurance Plan for the Analysis of Fluvial Sediment by the U. S. Geological Survey Kentucky Water Science Center Sediment Laboratory

    National Research Council Canada - National Science Library

    Shreve, Elizabeth A; Downs, Aimee C

    2005-01-01

    This report describes laboratory procedures used by the U. S. Geological Survey Kentucky Water Science Center Sediment Laboratory for the processing and analysis of fluvial sediment samples for concentration of sand and finer material...

  16. Sediment budgets as an organizing framework in fluvial geomorphology

    Science.gov (United States)

    Leslie Reid; Thomas Dunne

    2016-01-01

    Sediment budgets describe the input, transport, storage, and export of sediment in a geomorphic system. Such budgets can be used to address questions regarding how changes in catchment conditions affect channels, how long the effects will last, and what the sequence of responses will be. This chapter defines and describes budget components, outlines strategies...

  17. The phosphorus content of fluvial sediment in rural and industrialized river basins.

    Science.gov (United States)

    Owens, Philip N; Walling, Desmond E

    2002-02-01

    The phosphorus content of fluvial sediment (suspended sediment and the sediment) has been examined in contrasting rural (moorland and agricultural) and industrialized catchments in Yorkshire, UK. The River Swale drains a rural catchment with no major urban and industrial areas, and the total phosphorus (TP) content of fluvial sediment is generally within the range 500-1,500 microg g(-1). There is little evidence of any major downstream increase in TP content. In contrast, fluvial sediment from the industrialized catchments of the Rivers Aire and Calder exhibits both higher levels of TP content and marked downstream increases, with values of TP content ranging from 7,000 microg g(-1) at downstream sites. These elevated levels reflect P inputs from point sources, such as sewage treatment works (STWs) and combined sewer overflows. The influence of STWs is further demonstrated by the downstream increase in the inorganic P/organic P ratio from 4 in the lower reaches. Comparison of the P content of suspended sediment with that of the sediment and both discharge and suspended sediment concentration, reflecting changes in sediment and P sources during high flow events. Spatial variations in the P contents of the sediment evidence a similar pattern as those for suspended sediment, with relatively low levels of TP in the River Swale and elevated levels in the middle and downstream reaches of the Rivers Aire and Calder. The PP concentrations associated with floodplain and channel bed sediment are, however, lower than equivalent values for suspended sediment, and this primarily reflects the differences in the particle size composition between the three types of sediments. Rates of floodplain deposition and the amounts of fine-grained sediment stored in the river channels are relatively high, and suggest that such environments may represent important sinks for PP. Based on the sediment samples collected from the study basins, a simple four-fold classification which relates the

  18. Characterizing Feedbacks Between Environmental Forcing and Sediment Characteristics in Fluvial and Coastal Systems

    Science.gov (United States)

    Feehan, S.; Ruggiero, P.; Hempel, L. A.; Anderson, D. L.; Cohn, N.

    2016-12-01

    Characterizing Feedbacks Between Environmental Forcing and Sediment Characteristics in Fluvial and Coastal Systems American Geophysical Union, 2016 Fall Meeting: San Francisco, CA Authors: Scott Feehan, Peter Ruggiero, Laura Hempel, and Dylan Anderson Linking transport processes and sediment characteristics within different environments along the source to sink continuum provides critical insight into the dominant feedbacks between grain size distributions and morphological evolution. This research is focused on evaluating differences in sediment size distributions across both fluvial and coastal environments in the U.S. Pacific Northwest. The Cascades' high relief is characterized by diverse flow regimes with high peak/flashy flows and sub-threshold flows occurring in relative proximity and one of the most energetic wave climates in the world. Combining analyses of both fluvial and coastal environments provides a broader understanding of the dominant forces driving differences between each system's grain size distributions, sediment transport processes, and resultant evolution. We consider sediment samples taken during a large-scale flume experiment that simulated floods representative of both high/flashy peak flows analogous to runoff dominated rivers and sub-threshold flows, analogous to spring-fed rivers. High discharge flows resulted in narrower grain size distributions while low flows where less skewed. Relative sediment size showed clear dependence on distance from source and the environments' dominant fluid motion. Grain size distributions and sediment transport rates were also quantified in both wave dominated nearshore and aeolian dominated backshore portions of Long Beach Peninsula, Washington during SEDEX2, the Sandbar-aEolian-Dune EXchange Experiment of summer 2016. The distributions showed spatial patterns in mean grain size, skewness, and kurtosis dependent on the dominant sediment transport process. The feedback between these grain size

  19. Analysis of Fluvial Bed Sediments Along the Apalachicola River, Florida through Field Reconnaissance Studies

    Science.gov (United States)

    Passeri, D.; Hagen, S. C.; Daranpob, A.; Smar, D. E.

    2011-12-01

    River competence is an important parameter in understanding sediment transport in fluvial systems. Competence is defined as the measure of a stream's ability to transport a certain maximum grain size of sediment. Studies have shown that bed sediment particle size in rivers and streams tends to vary spatially along the direction of stream flow. Over a river section several reaches long, variability of sediment particle sizes can be seen, often becoming finer downstream. This phenomenon is attributed to mechanisms such as local control of stream gradient, coarse tributary sediment supply or particle breakdown. Average particle size may also be smaller in tributary sections of rivers due to river morphology. The relationship between river mean velocity and particle size that can be transported has also been explored. The Hjulstrom curve classifies this relationship by relating particle size to velocity, dividing the regions of sedimentation, transportation, and erosion. The curve can also be used to find values such as the critical erosion velocity (the velocity required to transport particles of various sizes in suspension) and settling velocity (the velocity at which particles of a given size become too heavy to be transported and fall out of suspension, consequently causing deposition). The purpose of this research is to explore the principles of river competence through field reconnaissance collection and laboratory analysis of fluvial sediment core samples along the Apalachicola River, FL and its distributaries. Sediment core samples were collected in the wetlands and estuarine regions of the Apalachicola River. Sieve and hydrometer analyses were performed to determine the spatial distribution of particle sizes along the river. An existing high resolution hydrodynamic model of the study domain was used to simulate tides and generate river velocities. The Hjulstrom curve and the generated river velocities were used to define whether sediment was being transported

  20. Downstream mixing of sediment and tracers in agricultural catchments: Evidence of changing sediment sources and fluvial processes?

    Science.gov (United States)

    Ralph, Timothy; Wethered, Adam; Smith, Hugh; Heijnis, Henk

    2014-05-01

    Land clearance, soil tillage and grazing in agricultural catchments have liberated sediment and altered hydrological connectivity between hillslopes and channels, leading to increased sediment availability, mobilisation and delivery to rivers. The type and amount of sediment supplied to rivers is critical for fluvial geomorphology and aquatic ecosystem health. Contemporary sediment dynamics are routinely investigated using environmental radionuclides such as caesium-137 (Cs-137) and excess lead-210 (Pb-210ex), which can provide information regarding sediment source types and fluvial processes if sediment sources can be distinguished from one another and mixing models applied to representative samples. However, downstream transport, mixing and dilution of radionuclide-labelled sediment (especially from sources with low initial concentrations) can obliterate the tracer signal; sometimes before anything of geomorphological importance happens in the catchment. Can these findings be used as evidence of sediment source variations and fluvial processes when the limits of detection (of Cs-137 in particular) are being exceeded so rapidly downstream? Sediment sources and downstream sediment dynamics were investigated in Coolbaggie Creek, a major supplier of sediment to the Macquarie River in an agricultural catchment with temperate to semi-arid climate in Australia. Radionuclides were used to discriminate between the banks and gullies (Cs-137 1.45 +/- 0.47 Bq/kg; Pb-210ex 4.67 +/- 1.93 Bq/kg). Within the trunk stream, suspended sediment, organic matter and Cs-137 and Pb-210ex concentrations declined downstream. Results from a mixing model suggest that agricultural topsoils account for 95% of fine sediment entering the channel in the upper reach (200 m2) downstream, with channel expansion and gullies contributing fine sediment to the system. A lack of topsoil being supplied to the channel suggests minimal lateral connectivity between the catchment and the trunk stream in all

  1. Radiocarbon constraints on the coupled growth of sediment and organic carbon reservoirs in fluvial systems

    Science.gov (United States)

    Torres, M. A.; Kemeny, P. C.; Fischer, W. W.; Lamb, M. P.

    2017-12-01

    Vast amounts of sediments are stored transiently in fluvial deposits as they move in rivers from source to sink. The timescale(s) of transient storage have the potential to set the cadence for biogeochemical reactions to occur in river sediments. However, the extent to which storage modulates the chemical composition of river sediments remains unclear. In case of the organic carbon (OC) cycle, transient sediment storage may leave an imprint in the radiocarbon (14C) content of riverine particulate OC (POC), offering a potential tool to trace the coupling of sediment storage and biogeochemical cycling in river systems. We investigated the modern and ancient budgets of sediments and POC in the Efi Haukadalsá River catchment in West Iceland to provide new empirical constraints on the role of sediment storage in the terrestrial OC cycle. This field site is attractive because the basaltic bedrock is free of rock-derived (i.e. "petrogenic") POC such that bulk 14C measurements can be interpreted more directly as constraints on catchment OC storage timescales. Additionally, Lake Haukadalsvatn at the outlet of the river catchment has captured sediment for nearly 13 ka, which offers a complementary record of the evolution of climate-sediment-OC linkages since deglaciation. New 14C measurements show that bulk POC in fine grained fluvial deposits within the Haukadalsá catchment is remarkably old (model ages between 1 and 10 ka). This evidence for "aged" POC in floodplain storage is consistent with previous measurements from Lake Haukadalsvatn, which show that POC is aged in the river system by thousands of years prior to deposition in the lake. Additionally, our estimate of the mean transit time of sediments through the river system matches the millennial-scale reservoir age of riverine POC derived from 14C, which implies a tight coupling between sediment storage and the OC cycle. We interpret the long-term increase in the 14C reservoir age of riverine POC over the last 10 ka

  2. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity.

    Science.gov (United States)

    Darby, Stephen E; Hackney, Christopher R; Leyland, Julian; Kummu, Matti; Lauri, Hannu; Parsons, Daniel R; Best, James L; Nicholas, Andrew P; Aalto, Rolf

    2016-11-10

    The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually, with a considerable fraction being sequestered in large deltas, home to over 500 million people. Most (more than 70 per cent) large deltas are under threat from a combination of rising sea levels, ground surface subsidence and anthropogenic sediment trapping, and a sustainable supply of fluvial sediment is therefore critical to prevent deltas being 'drowned' by rising relative sea levels. Here we combine suspended sediment load data from the Mekong River with hydrological model simulations to isolate the role of tropical cyclones in transmitting suspended sediment to one of the world's great deltas. We demonstrate that spatial variations in the Mekong's suspended sediment load are correlated (r = 0.765, P sediment load reaching the delta is delivered by runoff generated by rainfall associated with tropical cyclones. Furthermore, we estimate that the suspended load to the delta has declined by 52.6 ± 10.2 megatonnes over recent years (1981-2005), of which 33.0 ± 7.1 megatonnes is due to a shift in tropical-cyclone climatology. Consequently, tropical cyclones have a key role in controlling the magnitude of, and variability in, transmission of suspended sediment to the coast. It is likely that anthropogenic sediment trapping in upstream reservoirs is a dominant factor in explaining past, and anticipating future, declines in suspended sediment loads reaching the world's major deltas. However, our study shows that changes in tropical-cyclone climatology affect trends in fluvial suspended sediment loads and thus are also key to fully assessing the risk posed to vulnerable coastal systems.

  3. Sediment Transport Dynamic in a Meandering Fluvial System: Case Study of Chini River

    Science.gov (United States)

    Nazir, M. H. M.; Awang, S.; Shaaban, A. J.; Yahaya, N. K. E. M.; Jusoh, A. M.; Arumugam, M. A. R. M. A.; Ghani, A. A.

    2016-07-01

    Sedimentation in river reduces the flood carrying capacity which lead to the increasing of inundation area in the river basin. Basic sediment transport can predict the fluvial processes in natural rivers and stream through modeling approaches. However, the sediment transport dynamic in a small meandering and low-lying fluvial system is considered scarce in Malaysia. The aim of this study was to analyze the current riverbed erosion and sedimentation scenarios along the Chini River, Pekan, Pahang. The present study revealed that silt and clay has potentially been eroded several parts of the river. Sinuosity index (1.98) indicates that Chini River is very unstable and continuous erosion process in waterways has increase the riverbank instability due to the meandering factors. The riverbed erosional and depositional process in the Chini River is a sluggish process since the lake reduces the flow velocity and causes the deposited particles into the silt and clay soil at the bed of the lake. Besides, the bed layer of the lake comprised of cohesive silt and clayey composition that tend to attach the larger grain size of sediment. The present study estimated the total sediment accumulated along the Chini River is 1.72 ton. The HEC-RAS was employed in the simulations and in general the model performed well, once all parameters were set within their effective ranges.

  4. Contribution of radioactive tracers to sediment transport study in fluvial flows

    International Nuclear Information System (INIS)

    Wilson Junior, G.

    1995-01-01

    The uses of radioactive tracers in sediment transport studies are presented in this report to evidence the importance of: Open channel researches, to describe field applications in waterways; Simultaneous utilization of classical methods and radiotracer techniques, in fluvial and estuarine environments; Development of radiotracers techniques applied in dynamic sedimentology. The report illustrated with some experiments carried out in Brazil and France, in open channel and natural flows. (author). 5 refs, 4 figs

  5. Sediment Budget in the Taiwan Strait with High Fluvial Sediment Inputs from Mountainous Rivers: New Observations and Synthesis

    Directory of Open Access Journals (Sweden)

    Shuh-Ji Kao

    2008-01-01

    Full Text Available The shallow Taiwan Strait at the southern opening of the East China Sea (ECS receives abundant sediments from turbid mountainous rivers in Taiwan. The volume of sediment is among the highest sediment yields on the global surface. This large amount of sediment discharged from modern Taiwan (range: 175 - 380 Mt y-1 based on 50-yr data is comparable to that discharged from Changjaing (500 Mt y-1-decreasing in recent decades, underscoring the importance of sediment budget in the Taiwan Strait and sediment flux from Taiwan into the ECS.We documented fluvial mud and sand concentrations during flash flooding with our observations indicating that fluvial materials in Taiwan¡¦s rivers are chiefly composed of mud (> 70 and up to 98 . By contrast, sand fraction dominates (> 85 for most stations surface sediments in the Taiwan Strait. Super typhoon Herb alone delivered 130 Mt of sediments from Choshui, the largest river in Taiwan, yet only insignificant amounts of mud were found at the river mouth six months later. The actions of waves, tides, and currents apparently prevent the deposition of fine grained sediments. Assuming sand occupied 30 (the maximum of the 60 Mt y-1 total sediment input from major western Taiwanese rivers, our annual budget estimate shows that the amount of sand input (18 5 Mt y-1 is comparable to the burial output of sand (12 10 Mt y-1. However, mud burial (6 5 Mt y-1 in the strait is far below the estimated mud input (42 11 Mt y-1, resulting in a significant shortfall. Hydrodynamic conditions were synthesized to explain the distribution pattern of limited mud patches in the strait and to reveal potential pathways by which fine-grain sediment transportation takes place in the seas surrounding Taiwan. A significant shortfall in the mud budget in the Taiwan Strait suggests that ~85 of the fluvial mud left the strait. Alternatively, the 50-year modern sediment flux data used in this study reflects exacerbated sediment flux due to human

  6. Fluvial-aeolian interactions in sediment routing and sedimentary signal buffering: an example from the Indus Basin and Thar Desert

    Science.gov (United States)

    East, Amy E.; Clift, Peter D.; Carter, Andrew; Alizai, Anwar; VanLaningham, Sam

    2015-01-01

    Sediment production and its subsequent preservation in the marine stratigraphic record offshore of large rivers are linked by complex sediment-transfer systems. To interpret the stratigraphic record it is critical to understand how environmental signals transfer from sedimentary source regions to depositional sinks, and in particular to understand the role of buffering in obscuring climatic or tectonic signals. In dryland regions, signal buffering can include sediment cycling through linked fluvial and eolian systems. We investigate sediment-routing connectivity between the Indus River and the Thar Desert, where fluvial and eolian systems exchanged sediment over large spatial scales (hundreds of kilometers). Summer monsoon winds recycle sediment from the lower Indus River and delta northeastward, i.e., downwind and upstream, into the desert. Far-field eolian recycling of Indus sediment is important enough to control sediment provenance at the downwind end of the desert substantially, although the proportion of Indus sediment of various ages varies regionally within the desert; dune sands in the northwestern Thar Desert resemble the Late Holocene–Recent Indus delta, requiring short transport and reworking times. On smaller spatial scales (1–10 m) along fluvial channels in the northern Thar Desert, there is also stratigraphic evidence of fluvial and eolian sediment reworking from local rivers. In terms of sediment volume, we estimate that the Thar Desert could be a more substantial sedimentary store than all other known buffer regions in the Indus basin combined. Thus, since the mid-Holocene, when the desert expanded as the summer monsoon rainfall decreased, fluvial-eolian recycling has been an important but little recognized process buffering sediment flux to the ocean. Similar fluvial-eolian connectivity likely also affects sediment routing and signal transfer in other dryland regions globally.

  7. Fluvial sediments characterization of Hornád river in its chosen parts (preliminary study

    Directory of Open Access Journals (Sweden)

    Stela Hanigovská

    2008-12-01

    Full Text Available Knowledge of main river sedimentary characteristics is very important source of information for next study or potentialcommercial usage of fluvial sediments. In paper is shown characterization of sediment distribution in chosen part of the river Hornád.Three main facial types were studied and described – gravel, sand and clay. Model created in this study shows that Hornád is a riverwith predominant gravel transport. This model also shows a sufficient amount of gravel for commercial use in some parts of the river.

  8. Arctic deltaic lake sediments as recorders of fluvial organic matter deposition

    Directory of Open Access Journals (Sweden)

    Jorien E Vonk

    2016-08-01

    Full Text Available Arctic deltas are dynamic and vulnerable regions that play a key role in land-ocean interactions and the global carbon cycle. Delta lakes may provide valuable historical records of the quality and quantity of fluvial fluxes, parameters that are challenging to investigate in these remote regions. Here we study lakes from across the Mackenzie Delta, Arctic Canada, that receive fluvial sediments from the Mackenzie River when spring flood water levels rise above natural levees. We compare downcore lake sediments with suspended sediments collected during the spring flood, using bulk (% organic carbon, % total nitrogen, 13C, 14C and molecular organic geochemistry (lignin, leaf waxes. High-resolution age models (137Cs, 210Pb of downcore lake sediment records (n=11 along with lamina counting on high-resolution radiographs show sediment deposition frequencies ranging between annually to every 15 years. Down-core geochemical variability in a representative delta lake sediment core is consistent with historical variability in spring flood hydrology (variability in peak discharge, ice jamming, peak water levels. Comparison with earlier published Mackenzie River depth profiles shows that (i lake sediments reflect the riverine surface suspended load, and (ii hydrodynamic sorting patterns related to spring flood characteristics are reflected in the lake sediments. Bulk and molecular geochemistry of suspended particulate matter from the spring flood peak and lake sediments are relatively similar showing a mixture of modern higher-plant derived material, older terrestrial permafrost material, and old rock-derived material. This suggests that deltaic lake sedimentary records hold great promise as recorders of past (century-scale riverine fluxes and may prove instrumental in shedding light on past behaviour of arctic rivers, as well as how they respond to a changing climate.

  9. Quantifying bleaching for zero-age fluvial sediment: A Bayesian approach

    International Nuclear Information System (INIS)

    Cunningham, Alastair C.; Evans, Mary; Knight, Jasper

    2015-01-01

    Luminescence dating of sediment requires the sand grains to have been exposed to sunlight prior to their most recent burial. Under fluvial transport, the amount of sunlight exposure may not always be sufficient to reset the luminescence signal, a phenomenon known as ‘partial bleaching'. The extent of bleaching is dependent on a combination of geomorphic, sedimentological and fluvial processes. If bleaching can be quantified, and the relationship with these processes understood, it could potentially be used as a new environmental proxy for changes in the dynamics of river systems. Here, we use a recently developed statistical model to evaluate the extent of bleaching, by inferring the proportion of well-bleached grains in the small-aliquot population. We sampled low-flow and flood deposits at a single site on the River Sabie, South Africa. We show that the low-flow sediment is almost perfectly bleached (>80% of grains well bleached), while sediment at flood elevations is partially bleached (20–70 % of grains well bleached). The degree of bleaching may show a relationship with flood magnitude as defined by elevation above normal river level, and we speculate on the causes of variability in bleaching between flood samples. - Highlights: • We sampled modern river sediment from low-flow and flood elevations. • The unbleached OSL dose was measured. • Bayesian methods can estimate the proportion of well-bleached grains. • Low-flow sediments are well bleached; flood deposits are poorly bleached.

  10. Zeroing of the TL signal of sediment undergoing fluvial transportation: a laboratory experiment

    International Nuclear Information System (INIS)

    Gemmell, A.M.D.

    1985-01-01

    Rates of bleaching of suspended sediment undergoing fluvial transportation in a closed laboratory flume beneath a u.v. lamp were measured. It was found that the speed of zeroing is inversely related to the speed of flow. This is attributed to the effects of flow turbulence in keeping sediment in suspension, thereby reducing the penetration of u.v. radiation, and to the re-entrainment of partially bleached or unbleached sediment into the flow. The time required to reduce TL to the residual levels indicated by sunlamp bleaching experiments are such as to suggest that at faster flows sediments in a heavily-laden stream may never attain a complete bleaching. (author)

  11. An inventory of published and unpublished fluvial-sediment data for California, 1956-70

    Science.gov (United States)

    Porterfield, George

    1972-01-01

    This inventory was prepared to provide a convenient reference to published and unpublished fluvial-sediment data for water years 1956-70, and updates substantially previous inventories. Sediment stations are listed in downstream order, and an alphabetical list of stations is also included. Figure 1 shows the approximate location of sediment stations in California. Most of the fluvial-sediment data in California were collected by the U.S. Geological Survey, under cooperative agreements with the following Federal, State, and local agencies: California Department of Water Resources, California Department of Navigation and Ocean Development, California Department of Fish and Game, Bolinas Harbor District, Monterey County Flood Control and Water Conservation District, Orange County Flood Control District, Riverside County Flood Control and Water Conservation District, San Diego County Department of Sanitation and Flood Control, San Luis Obispo County, San Mateo County, Santa Clara County Flood Control and Water District, Santa Cruz County Flood Control and Water Conservation District, Santa Cruz, city of, University of California, Ventura County Flood Control District, Forest Service, U.S. Department of Agriculture, Soil Conservation Service, U.S. Department of Agriculture, Corps of Engineers, U.S. Army, Bureau of Reclamation, U.S. Department of the Interior, National Park Service, U.S. Department of the Interior. This report was prepared by the Geological Survey under the general supervision of R. Stanley Lord, district chief in charge of water-resources investigations in California.

  12. Stable carbon isotope analysis of fluvial sediment fluxes over two contrasting C(4) -C(3) semi-arid vegetation transitions.

    Science.gov (United States)

    Puttock, Alan; Dungait, Jennifer A J; Bol, Roland; Dixon, Elizabeth R; Macleod, Christopher J A; Brazier, Richard E

    2012-10-30

    Globally, many drylands are experiencing the encroachment of woody vegetation into grasslands. These changes in ecosystem structure and processes can result in increased sediment and nutrient fluxes due to fluvial erosion. As these changes are often accompanied by a shift from C(4) to C(3) vegetation with characteristic δ(13) C values, stable isotope analysis provides a promising mechanism for tracing these fluxes. Input vegetation, surface sediment and fluvially eroded sediment samples were collected across two contrasting C(4) -C(3) dryland vegetation transitions in New Mexico, USA. Isotope ratio mass spectrometric analyses were performed using a Carlo Erba NA2000 analyser interfaced to a SerCon 20-22 isotope ratio mass spectrometer to determine bulk δ(13) C values. Stable isotope analyses of contemporary input vegetation and surface sediments over the monitored transitions showed significant differences (p fluvially eroded sediment from each of the sites, with no significant variation between surface sediment and eroded sediment values. The significant differences in bulk δ(13) C values between sites were dependent on vegetation input. Importantly, these values were robustly expressed in fluvially eroded sediments, suggesting that stable isotope analysis is suitable for tracing sediment fluxes. Due to the prevalent nature of these dryland vegetation transitions in the USA and globally, further development of stable isotope ratio mass spectrometry has provided a valuable tool for enhanced understanding of functional changes in these ecosystems. Copyright © 2012 John Wiley & Sons, Ltd.

  13. When do plants modify fluvial processes? Plant-hydraulic interactions under variable flow and sediment supply rates

    Science.gov (United States)

    Manners, Rebecca B.; Wilcox, Andrew C.; Kui, Li; Lightbody, Anne F.; Stella, John C.; Sklar, Leonard S.

    2015-02-01

    Flow and sediment regimes shape alluvial river channels; yet the influence of these abiotic drivers can be strongly mediated by biotic factors such as the size and density of riparian vegetation. We present results from an experiment designed to identify when plants control fluvial processes and to investigate the sensitivity of fluvial processes to changes in plant characteristics versus changes in flow rate or sediment supply. Live seedlings of two species with distinct morphologies, tamarisk (Tamarix spp.) and cottonwood (Populus fremontii), were placed in different configurations in a mobile sand-bed flume. We measured the hydraulic and sediment flux responses of the channel at different flow rates and sediment supply conditions representing equilibrium (sediment supply = transport rate) and deficit (sediment supply plant species and configuration. Species-specific traits controlled the hydraulic response: compared to cottonwood, which has a more tree-like morphology, the shrubby morphology of tamarisk resulted in less pronation and greater reductions in near-bed velocities, Reynolds stress, and sediment flux rates. Under sediment-deficit conditions, on the other hand, abiotic factors dampened the effect of variations in plant characteristics on the hydraulic response. We identified scenarios for which the highest stem-density patch, independent of abiotic factors, dominated the fluvial response. These results provide insight into how and when plants influence fluvial processes in natural systems.

  14. A method of fingerprinting the sources of fluvial sediment using environmental radionuclides. A case study of Tsuzura river watershed

    International Nuclear Information System (INIS)

    Mizugaki, Shigeru; Onda, Yuichi; Fukuyama, Taijiro; Koga, Satoko; Hiramatsu, Shinya

    2006-01-01

    To study the fluvial sediment sources in forested watershed in Shikoku Island, Japan, the concentration of Cs-137 and Pb-210 ex and U decay series radionuclides were analyzed. The study area in the midstream of Shimanto River basin, located 700 km southwest of Tokyo. The 0.33 km 2 area watershed ranges in elevation from 170 m to 560 m above sea level. The soil sampling was conducted in hillslopes in various locations such as landslide scar, soil surface in unmanaged Hinoki (Chamacecyparis obtusa) plantation and unsealed forest road, and detailed sampling in the stream bed and bank was also conducted in several tributaries. Time-integrated suspended sediment sampler was adopted to obtain enough volume of sample to determine the radionuclides. The activities of Cs-137, Pb-210, Pb-214 and Bi-214 of soils and fluvial sediments were determined by gamma-ray spectrometry. Correction for the effect of particle size distribution and organic matter content on the radionuclides were conducted to compare the radionuclides concentration between the soils of potential suspended sediment sources and fluvial sediments. It was found that there were significant differences of Cs-137 and Pb-210 ex concentration between forest floor or runoff sediment and forest road or stream bank. The Cs-137 and Pb-210 ex concentration of suspended sediment varied among them, suggesting the possibility of fingerprinting the sources of fluvial sediment by Cs-137 and Pb-210 ex . (author)

  15. Distribution of uranium and thorium in sediments and plants from a granitic fluvial area

    International Nuclear Information System (INIS)

    Vargas, M.J.; Tome, F.V.; Sanchez, A.M.; Vazquez, M.T.C.; Murillo, J.L.G.

    1997-01-01

    A study of the presence of natural uranium and thorium isotopes in sediments and plants belonging to a granitic fluvial region of the Ortigas river (west of Spain) has been carried out. The existence of two uranium mines in the neighbourhood of the sampled sites and the granitic characteristics of the zone produce significant concentrations of natural radionuclides. Temporal and spatial variations of uranium and thorium concentrations and the activity ratios 234 U/ 238 U, 228 Th/ 232 Th and Th/U were studied to better understand the mobilization mechanisms such as leaching and transport at play in the studied system. These determinations were made using alpha-particle spectrometry with silicon detectors. The measurements were also compared with the results previously found for waters of this fluvial area. Uranium in sediments showed variations due to changes in rainfall, but thorium content was nearly constant. Uranium and thorium concentrations in plants were lower after rainfall. Incorporation of uranium into the plants seemed to be mainly from water, whereas incorporation of thorium seemed to be from both sediments and water. (Author)

  16. Fluvial Connectivity and Sediment Dispersal within Continental Extensional Basins; Assessment of Controlling Factors using Numerical Modelling

    Science.gov (United States)

    Geurts, A., Jr.; Cowie, P. A.; Gawthorpe, R.; Huismans, R. S.; Pedersen, V. K.

    2017-12-01

    Progressive integration of drainage networks has been documented in many regional-scale studies of extensional continental systems. While endorheic drainage and lake sedimentation are common features observed in basin stratigraphy, they often disappear from the record due to the development of a through-going river network. Because changes in the fluvial connectivity of extensional basins have profound impact on erosion and sediment dispersal, and thus the feedback between surface processes and tectonics, it is of great importance to understand what controls them. Headward erosion (also called headward capture or river piracy) is often suggested to be the main mechanism causing basins to become interconnected over time with one another and with the regional/coastal drainage network. We show that overspill mechanisms (basin over-filling or lake over-spilling) play a key role in the actively extending central Italian Apennines, even though this area is theoretically favorable for headward erosion (short distances to the coast in combination with rapid surface uplift). In other tectonic settings (e.g. contractional basins and high plateaux) the role of headward erosion in transverse drainage development and integrating endorheic basins has also been increasingly questioned. These two mechanisms predict very different spatio-temporal patterns of sediment dispersal and thus timing of sediment loading (or erosional unloading) along active normal faults, which in turn may influence the locus of subsequent extensional deformation. By means of surface process modelling we develop a process-based understanding of the controls on fluvial connectivity between extensional basins in the central Italian Apennines. We focus on which conditions (tectonic and erosional) favour headward erosion versus overspill and compare our model results with published field evidence for drainage integration and the timing of basin sedimentation/incision.

  17. Bank-derived material dominates fluvial sediment in a suburban Chesapeake Bay watershed

    Science.gov (United States)

    Cashman, M. J.; Gellis, A.; Gorman-Sanisaca, L.; Noe, G. B.; Cogliandro, V.; Baker, A.

    2017-12-01

    Excess fine sediment is a leading cause of ecological degradation within the Chesapeake Bay watershed. The Piedmont physiographic province, which includes parts of the Washington, D.C. metro area, has the highest sediment yields in the Chesapeake Bay. In order to effectively employ sediment mitigation measures, it is necessary to identify and quantify the contributions of sediments sources within rapidly urbanizing areas in the Piedmont. This sediment fingerprinting study examines the inputs of various sediment sources to Upper Difficult Run (14.2 km2; 22.6% impervious surface), an urbanized watershed in Fairfax County, Virginia. A source sediment library was constructed from collections of stream bank material, forest soils, and road dust from across the watershed. Target fluvial sediments were collected from fine channel margin deposits and from suspended sediment using an autosampler during 16 storm events from 2008 - 2012. Apportionment of the target samples to the source sediments was performed using Sed_SAT, a publically available toolkit for sediment fingerprinting. Bed sediment was found to be dominated by stream bank sources (mean: 96%), with minor contributions from forest (4%) and no detectable contribution from roads (0%). Suspended fine sediments were also found to predominantly originate from stream bank sources (SSC-weighted mean: 91%), with minor contributions from roads (8%), and negligible contributions from forests (1%). Stream bank sources dominated at all discharges, with the greatest contributions from overland sources found only at low discharges. On the rising limb of the hydrograph and at peak flow, sediment concentrations increased due to increasing contributions of bank material rather than surface erosion caused by overland flow. Results demonstrate that stream bank erosion is responsible for the vast majority of fine sediment occurring in this suburban basin of the Chesapeake Bay watershed. This is likely a consequence of storm

  18. Gold-bearing fluvial and associated tidal marine sediments of Proterozoic age in the Mporokoso Basin, northern Zambia

    Science.gov (United States)

    Andrews-Speed, C. P.

    1986-07-01

    The structurally defined Mporokoso Basin contains up to 5000 m of continental and marine clastic sediments and minor silicic volcanics which together form the Mporokoso Group. These rocks overlie unconformably a basement of silicic-intermediate igneous rocks and accumulated within the interval 1830-1130 Ma. This sedimentological study was restricted to the eastern end of the basin and was part of an assessment of the potential for palaeoplacer gold in the Mporokoso Group. At the base of the Mporokoso Group, the Mbala Formation consists of 1000-1500 m of purple sandstones and conglomerates deposited in a braided-stream system overlain by 500-1000 m of mature quartz arenites deposited in a tidal marine setting. A general coarsening-upward trend exists within the fluvial sediments. Sandy, distal braided-stream facies passes upwards into more proximal conglomeratic facies. In proximal sections, poorly sorted conglomerates form the top of the coarsening-up sequence which is 500-700 m thick. The overlying fluvial sediments fine upwards. The tidal marine sandstones at the top of the Mbala Formation resulted from reworking of fluvial sediments during a marine transgression. Well-exposed sections with fluvial conglomerates were studied in detail. Individual conglomerate bodies form sheets extending for hundreds of metres downstream and at least one hundred metres across stream, with little sign of deep scouring or channelling. They are generally matrix-supported. The whole fluvial sequence is characterised by a paucity of mud or silt. These conglomerates were deposited by large velocity, sheet flows of water which transported a bed-load of pebbles and sand. Most fine material settling out from suspension was eroded by the next flow. The great lateral and vertical extent and the uniformity of the fluvial sediments suggest that the sediments accumulated over an unconfined alluvial plain and that the tectonic evolution of the source area was relatively continuous and not

  19. On The Ubiquity of Nonstationary Fluvial Suspended Sediment Dynamics: A Call for Long Term Monitoring and Dynamical Sediment Management Strategies

    Science.gov (United States)

    Gray, A. B.

    2017-12-01

    Watersheds with sufficient monitoring data have been predominantly found to display nonstationary suspended sediment dynamics, whereby the relationship between suspended sediment concentration and discharge changes over time. Despite the importance of suspended sediment as a keystone of geophysical and biochemical processes, and as a primary mediator of water quality, stationary behavior remains largely assumed in the context of these applications. This study presents an investigation into the time dependent behavior of small mountainous rivers draining the coastal ranges of the western continental US over interannual to interdecadal time scales. Of the 250+ small coastal (drainage area systems. Temporal patterns of non-stationary behavior provided some evidence for spatial coherence, which may be related to synoptic hydro-metrological patterns and regional scale changes in land use patterns. However, the results also highlight the complex, integrative nature of watershed scale fluvial suspended sediment dynamics. This underscores the need for in-depth, forensic approaches for initial processes identification, which require long term, high resolution monitoring efforts in order to adequately inform management. The societal implications of nonstationary sediment dynamics and their controls were further explored through the case of California, USA, where over 150 impairment listings have resulted in more than 50 sediment TMDLs, only 3 of which are flux based - none of which account for non-stationary behavior.

  20. Climate-sensitive feedbacks between hillslope processes and fluvial erosion in sediment-driven incision models

    Science.gov (United States)

    Skov, Daniel S.; Egholm, David L.

    2016-04-01

    Surface erosion and sediment production seem to have accelerated globally as climate cooled in the Late Cenozoic, [Molnar, P. 2004, Herman et al 2013]. Glaciers emerged in many high mountain ranges during the Quaternary, and glaciation therefore represents a likely explanation for faster erosion in such places. Still, observations and measurements point to increases in erosion rates also in landscapes where erosion is driven mainly by fluvial processes [Lease and Ehlers (2013), Reusser (2004)]. Flume experiments and fieldwork have shown that rates of incision are to a large degree controlled by the sediment load of streams [e.g. Sklar and Dietrich (2001), Beer and Turowski (2015)]. This realization led to the formulation of sediment-flux dependent incision models [Sklar and Dietrich (2004)]. The sediment-flux dependence links incision in the channels to hillslope processes that supply sediment to the channels. The rates of weathering and soil transport on the hillslopes are processes that are likely to respond to changing temperatures, e.g. because of vegetation changes or the occurrence of frost. In this study, we perform computational landscape evolution experiments, where the coupling between fluvial incision and hillslope processes is accounted for by coupling a sediment-flux-dependent model for fluvial incision to a climate-dependent model for weathering and hillslope sediment transport. The computational experiments first of all demonstrate a strong positive feedback between channel and hillslope processes. In general, faster weathering leads to higher rates of channel incision, which further increases the weathering rates, mainly because of hillslope steepening. Slower weathering leads to the opposite result. The experiments also demonstrate, however, that the feedbacks vary significantly between different parts of a drainage network. For example, increasing hillslope sediment production may accelerate incision in the upper parts of the catchment, while at

  1. Inverse modelling of fluvial sediment connectivity identifies characteristics and spatial distribution of sediment sources in a large river network.

    Science.gov (United States)

    Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.; Rubin, Z.; Castelletti, A.

    2016-12-01

    of hillslope production and fluvial transport processes, which is particularly useful to identify sediment provenance in poorly monitored river basins.

  2. Sensitivity of fluvial sediment source apportionment to mixing model assumptions: A Bayesian model comparison.

    Science.gov (United States)

    Cooper, Richard J; Krueger, Tobias; Hiscock, Kevin M; Rawlins, Barry G

    2014-11-01

    Mixing models have become increasingly common tools for apportioning fluvial sediment load to various sediment sources across catchments using a wide variety of Bayesian and frequentist modeling approaches. In this study, we demonstrate how different model setups can impact upon resulting source apportionment estimates in a Bayesian framework via a one-factor-at-a-time (OFAT) sensitivity analysis. We formulate 13 versions of a mixing model, each with different error assumptions and model structural choices, and apply them to sediment geochemistry data from the River Blackwater, Norfolk, UK, to apportion suspended particulate matter (SPM) contributions from three sources (arable topsoils, road verges, and subsurface material) under base flow conditions between August 2012 and August 2013. Whilst all 13 models estimate subsurface sources to be the largest contributor of SPM (median ∼76%), comparison of apportionment estimates reveal varying degrees of sensitivity to changing priors, inclusion of covariance terms, incorporation of time-variant distributions, and methods of proportion characterization. We also demonstrate differences in apportionment results between a full and an empirical Bayesian setup, and between a Bayesian and a frequentist optimization approach. This OFAT sensitivity analysis reveals that mixing model structural choices and error assumptions can significantly impact upon sediment source apportionment results, with estimated median contributions in this study varying by up to 21% between model versions. Users of mixing models are therefore strongly advised to carefully consider and justify their choice of model structure prior to conducting sediment source apportionment investigations. An OFAT sensitivity analysis of sediment fingerprinting mixing models is conductedBayesian models display high sensitivity to error assumptions and structural choicesSource apportionment results differ between Bayesian and frequentist approaches.

  3. Regional Contamination of Moravia (South-Eastern Czech Republic): Temporal Shift of Pb and Zn Loading in Fluvial Sediments

    Czech Academy of Sciences Publication Activity Database

    Matys Grygar, Tomáš; Sedláček, J.; Bábek, O.; Nováková, Tereza; Strnad, L.; Mihaljevič, M.

    2012-01-01

    Roč. 223, č. 2 (2012), s. 739-753 ISSN 0049-6979 R&D Projects: GA AV ČR IAAX00130801 Institutional research plan: CEZ:AV0Z40320502 Keywords : fluvial sediments * Pb * Zn * regional contamination Subject RIV: DD - Geochemistry Impact factor: 1.748, year: 2012

  4. Characterization of organic matter in dusts and fluvial sediments from exposed areas of dowtown Prague, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Sýkorová, Ivana; Havelcová, Martina; Trejtnarová, Hana; Matysová, Petra; Vašíček, Michal; Suchý, V.; Kříbek, B.

    2009-01-01

    Roč. 80, č. 2 (2009), s. 69-86 ISSN 0166-5162 R&D Projects: GA AV ČR IAA300460804 Institutional research plan: CEZ:AV0Z30460519 Keywords : dust * fluvial sediment * carbonaceous particles Subject RIV: DD - Geochemistry Impact factor: 1.924, year: 2009

  5. Distribution of nutrients in fluvial sediment of the Itajai-Açu river, Blumenau, SC, Brazil

    Directory of Open Access Journals (Sweden)

    Joseane Susin

    2010-04-01

    Full Text Available This study verified the occurrence of nitrogen (Ntotal, NH4+, NO3- e NO2- and phosphorus (Ptotal in fluvial sediments of the Itajaí-Açu River, on the river's course in the urban area of Blumenau city. At the eight sites where the samples were collected, the total nitrogen presented values below those recommended in the CONAMA nº 344/2004 Resolution for sediments which is 4,800.00 µg g-1, with values of 350.00 µg g-1 to 2,100.00 µg g-1. The total phosphorus also presented values below the one recommended by the CONAMA nº 344/2004 Resolution for sediments which is 2,000.00 µg g-1. The values found for total phosphorus varied from 61.50 µg g-1 to 378.00 µg g-1, and were determined as the addition of the organic and the inorganic phosphorus. As for the summation of the NH4+, NO3- and NO2- ions at the eight sites where the sample were collected, it can be observed a greater quantity of these ions in any collecting site and in the other sites the values were low. The content values for the NO2- ions for the studied eight sites were low when compared to the values observed for the NH4+ ion.

  6. Investigations of contaminated fluvial sediment deposits: merging of statistical and geomorphic approaches.

    Science.gov (United States)

    Ryti, Randall T; Reneau, Steven L; Katzman, Danny

    2005-05-01

    Concentrations of contaminants in sediment deposits can have large spatial variability resulting from geomorphic processes acting over long time periods. Thus, systematic (e.g., regularly spaced sample locations) or random sampling approaches might be inefficient and/or lead to highly biased results. We demonstrate the bias associated with systematic sampling and compare these results to those achieved by methods that merge a geomorphic approach to evaluating the physical system and stratified random sampling concepts. By combining these approaches, we achieve a more efficient and less biased characterization of sediment contamination in fluvial systems. These methods are applied using a phased sampling approach to characterize radiological contamination in sediment deposits in two semiarid canyons that have received historical releases from the Los Alamos National Laboratory. Uncertainty in contaminant inventory was used as a metric to evaluate the adequacy of sampling during these phased investigations. Simple, one-dimensional Monte Carlo simulations were used to estimate uncertainty in contaminant inventory. We also show how one can use stratified random sampling theory to help estimate uncertainty in mean contaminant concentrations.

  7. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence

    International Nuclear Information System (INIS)

    Olley, J.M.; Caitcheon, G.G.; Roberts, R.G.

    1999-01-01

    We examine the causes of the asymmetric distributions of dose observed from measurements of the optically stimulated luminescence emitted by small aliquots of fluvial quartz, and deduce that the asymmetry arises as a result of samples being composed of a mix of mainly well bleached grains with grains that were effectively unbleached at the time of deposition. We demonstrate that the shapes of the dose distributions can be used to assess the likelihood that aliquots consist only of grains that were well-bleached at the time of deposition. The more asymmetric the distribution, the greater the probability that the aliquots with the lowest dose most closely represent the true burial dose. Single grains with differing doses are present in each of the samples examined, and the population with the lowest dose gives an optical age consistent with the expected burial age. This result implies that the beta-dose heterogeneity in these deposits is small, and that the effects of micro-dosimetric variations on optical dating of individual grains are not significant for these samples. We demonstrate that single-grain dating of fluvial material is possible and practicable using standard Risoe optical dating equipment, and we conclude that application of a new regenerative-dose protocol to single grains of quartz, using the lowest dose population to estimate the burial dose, is the best available means of obtaining reliable luminescence ages for heterogeneously bleached fluvial sediments

  8. A consistent magnetic polarity stratigraphy of Plio-Pleistocene fluvial sediments from the Heidelberg Basin (Germany)

    Science.gov (United States)

    Scheidt, Stephanie; Hambach, Ulrich; Rolf, Christian

    2014-05-01

    Deep drillings in the Heidelberg Basins provide access to one of the thickest and most complete successions of Quaternary and Upper Pliocene continental sediments in Central-Europe [1]. In absence of any comprehensive chronostratigraphic model, these sediments are so far classified by lithological and hydrogeological criteria. Therefore the age of this sequence is still controversially discussed ([1], [2]). In spite of the fact that fluvial sediments are a fundamental challenge for the application of magnetic polarity stratigraphy we performed a thorough study on four drilling cores (from Heidelberg, Ludwigshafen and nearby Viernheim). Here, we present the results from the analyses of these cores, which yield to a consistent chronostratigraphic framework. The components of natural remanent magnetisation (NRM) were separated by alternating field and thermal demagnetisation techniques and the characteristic remanent magnetisations (ChRM) were isolated by principle component analysis [3]. Due to the coring technique solely inclination data of the ChRM is used for the determination of the magnetic polarity stratigraphy. Rock magnetic proxies were applied to identify the carriers of the remanent magnetisation. The investigations prove the NRM as a stable, largely primary magnetisation acquired shortly after deposition (PDRM). The Matuyama-Gauss boundary is clearly defined by a polarity change in each core, as suggested in previous work [4]. These findings are in good agreement with the biostratigraphic definition of the base of the Quaternary ([5], [6], [7]). The Brunhes-Matuyama boundary could be identified in core Heidelberg UniNord 1 and 2 only. Consequently, the position of the Jaramillo and Olduvai subchron can be inferred from the lithostratigraphy and the development of fluvial facies architecture in the Rhine system. The continuation of the magnetic polarity stratigraphy into the Gilbert chron (Upper Pliocene) allows alternative correlation schemes for the cores

  9. Sediment dynamics in the Rhine catchment : Quantification of fluvial response to climate change and human impact

    NARCIS (Netherlands)

    Erkens, G.

    2009-01-01

    Fluvial systems are strongly responsive to changes in climate and land use — but take their time to show it. Accurate prediction of the timing and degree of future fluvial response requires comprehensive understanding of fluvial response in the past. This PhD-thesis studied the response of the river

  10. A regional sediment transport modeling for fluvial influx and redistribution of suspended radionuclide in the Fukushima coast

    International Nuclear Information System (INIS)

    Uchiyama, Yusuke; Yamanishi, Takafumi; Tsumune, Daisuke; Miyazawa, Yasumasa

    2014-01-01

    Fluvial discharge from the rivers is viewed as a missing piece for the inventory of the radionuclides in the ocean during the accident at the Fukushima Daiichi Nuclear Power Plant. The land-derived input introduces a time lag behind the direct release through hydrological process because these radionuclides mostly attach to suspended particles (sediments) that are transported quite differently to the dissolved matter in the ocean. We therefore develop a regional sediment transport model consisting of a multi-class non-cohesive sediment transport module, a wave-enhanced bed boundary layer model and a stratigraphy model proposed by Blaas et al. (2007) based on ROMS. (author)

  11. Recent changes in sediment redistribution in the upper parts of the fluvial system of European Russia: regional aspects

    Directory of Open Access Journals (Sweden)

    O. P. Yermolaev

    2015-03-01

    Full Text Available Quantitative assessments of soil loss from cultivated land and sediment redistribution along pathways from cultivated fields to river channels have been undertaken using a range of different methods and techniques, including erosion models, detailed studies of sediment redistribution in representative catchments, monitoring of gully head retreat and evaluation of sediment deposition in ponds and small reservoirs. Most of the sediment eroded from arable land is deposited between the lower portions of the cultivated slopes and the river channels. Less than 15% of the eroded sediment is delivered to the river channels. Sediment redistribution rates in the upper parts of the fluvial system have declined during the last 25 years in both the western and eastern parts of the Russian Plain, because of a major reduction of surface runoff during snowmelt and a reduction of the area of arable land in some parts of the study area.

  12. Non-Fluvial Controls of Erosion, Sediment Transport and Fluvial Morphology in a mid-Atlantic Piedmont Watershed, White Clay Creek, Pennsylvania, U.S.A.

    Science.gov (United States)

    McCarthy, K.; Affinito, R. A.; Pizzuto, J. E.; Stotts, S.; Henry, T.; Krauthauser, M.; O'Neal, M. A.

    2017-12-01

    Quantifying contemporary sediment budgets is essential for restoration and ecosystem management of mid-Atlantic watersheds, but relevant processes and controls are poorly understood. In the 153 km2 White Clay Creek watershed in southeastern Pennsylvania, longitudinal profiles reflect migration of knickpoints though bedrock over Quaternary timescales. In bank exposures along stream valleys, saprolite, bedrock, and matrix-supported cobbly and bouldery diamicton (likely colluvial) commonly underlie finer-grained clay, silt, sand, and gravel deposits of valley floor depositional environments. Overbank sedimentation rates were quantified by measuring the thickness of sediment deposited over the roots of floodplain trees. The sampled trees range in age from 25-270 years with median sediment accumulation rates of approximately 2 mm/yr (range 0-10 mm/yr). Rates of bank retreat (measured from historical aerial imagery or root-exposure dendrochronology) vary from 6-36 cm/yr, with median rates of 10 cm/yr. While bank erosion rates are subject to a variety of controls, including channel curvature, the density of riparian trees, and freeze-thaw processes, the strongest influence appears to be the grain size and thickness of bouldery diamicton exposed along the toes of retreating banks. Cobbles and boulders supplied by eroding diamicton also mantle the bed of the channel, such that 33- 80% of the bed material remains immobile at bankfull stage. A conceptual model of fluvial processes and sediment budgets for these channels must account for the watershed's history of changing climate, tectonics, and land use, requiring mapping of bedrock, colluvium, former mill dam sediments, and other non-alluvial deposits and controls. Efforts to apply hydraulic geometry principles (requiring a precise adjustment to contemporary hydraulic and sediment regime) or to treat these channels as traditional "threshold" rivers are unlikely to be successful.

  13. Human impact on fluvial sediments: distinguishing regional and local sources of heavy metals contamination

    Science.gov (United States)

    Novakova, T.; Matys Grygar, T.; Bábek, O.; Faměra, M.; Mihaljevič, M.; Strnad, L.

    2012-04-01

    Industrial pollution can provide a useful tool to study spatiotemporal distribution of modern floodplain sediments, trace their provenance, and allow their dating. Regional contamination of southern Moravia (the south-eastern part of the Czech Republic) by heavy metals during the 20th century was determined in fluvial sediments of the Morava River by means of enrichment factors. The influence of local sources and sampling sites heterogeneity were studied in overbank fines with different lithology and facies. For this purpose, samples were obtained from hand-drilled cores from regulated channel banks, with well-defined local sources of contamination (factories in Zlín and Otrokovice) and also from near naturally inundated floodplains in two nature protected areas (at 30 km distance). The analyses were performed by X-ray fluorescence spectroscopy (ED XRF), ICP MS (EDXRF samples calibration, 206Pb/207Pb ratio), magnetic susceptibility, cation exchange capacity (CEC), and 137Cs and 210Pb activities. Enrichment factors (EF) of heavy metals (Pb, Zn, Cu and Cr) and magnetic susceptibility of overbank fines in near-naturally (near annually) inundated areas allowed us to reconstruct historical contamination by heavy metals in the entire study area independently on lithofacies. Measured lithological background values were then used for calculation of EFs in the channel sediments and in floodplain sediments deposited within narrow part of a former floodplain which is now reduced to about one quarter of its original width by flood defences. Sediments from regulated channel banks were found stratigraphically and lithologically "erratic", unreliable for quantification of regional contamination due to a high variability of sedimentary environment. On the other hand, these sediments are very sensitive to the nearby local sources of heavy metals. For a practical work one must first choose whether large scale, i.e. a really averaged regional contamination should be reconstructed

  14. Dominant mechanisms for the delivery of fine sediment and phosphorus to fluvial networks draining grassland dominated headwater catchments.

    Science.gov (United States)

    Perks, M T; Owen, G J; Benskin, C McW H; Jonczyk, J; Deasy, C; Burke, S; Reaney, S M; Haygarth, P M

    2015-08-01

    Recent advances in monitoring technology have enabled high frequency, in-situ measurements of total phosphorus and total reactive phosphorus to be undertaken with high precision, whilst turbidity can provide an excellent surrogate for suspended sediment. Despite these measurements being fundamental to understanding the mechanisms and flow paths that deliver these constituents to river networks, there is a paucity of such data for headwater agricultural catchments. The aim of this paper is to deduce the dominant mechanisms for the delivery of fine sediment and phosphorus to an upland river network in the UK through characterisation of the temporal variability of hydrological fluxes, and associated soluble and particulate concentrations for the period spanning March 2012-February 2013. An assessment of the factors producing constituent hysteresis is undertaken following factor analysis (FA) on a suite of measured environmental variables representing the fluvial and wider catchment conditions prior to, and during catchment-wide hydrological events. Analysis indicates that suspended sediment is delivered to the fluvial system predominantly via rapidly responding pathways driven by event hydrology. However, evidence of complex, figure-of-eight hysteresis is observed following periods of hydrological quiescence, highlighting the importance of preparatory processes. Sediment delivery via a slow moving, probably sub-surface pathway does occur, albeit infrequently and during low magnitude events at the catchment outlet. Phosphorus is revealed to have a distinct hysteretic response to that of suspended sediment, with sub-surface pathways dominating. However, high magnitude events were observed to exhibit threshold-like behaviour, whereby activation and connection of usually disconnected depositional zones to the fluvial networks results in the movement of vast phosphorus fluxes. Multiple pathways are observed for particulate and soluble constituents, highlighting the

  15. Open-water and under-ice seasonal variations in trace element content and physicochemical associations in fluvial bed sediment.

    Science.gov (United States)

    Doig, Lorne E; Carr, Meghan K; Meissner, Anna G N; Jardine, Tim D; Jones, Paul D; Bharadwaj, Lalita; Lindenschmidt, Karl-Erich

    2017-11-01

    Across the circumpolar world, intensive anthropogenic activities in the southern reaches of many large, northward-flowing rivers can cause sediment contamination in the downstream depositional environment. The influence of ice cover on concentrations of inorganic contaminants in bed sediment (i.e., sediment quality) is unknown in these rivers, where winter is the dominant season. A geomorphic response unit approach was used to select hydraulically diverse sampling sites across a northern test-case system, the Slave River and delta (Northwest Territories, Canada). Surface sediment samples (top 1 cm) were collected from 6 predefined geomorphic response units (12 sites) to assess the relationships between bed sediment physicochemistry (particle size distribution and total organic carbon content) and trace element content (mercury and 18 other trace elements) during open-water conditions. A subset of sites was resampled under-ice to assess the influence of season on these relationships and on total trace element content. Concentrations of the majority of trace elements were strongly correlated with percent fines and proxies for grain size (aluminum and iron), with similar trace element grain size/grain size proxy relationships between seasons. However, finer materials were deposited under ice with associated increases in sediment total organic carbon content and the concentrations of most trace elements investigated. The geomorphic response unit approach was effective at identifying diverse hydrological environments for sampling prior to field operations. Our data demonstrate the need for under-ice sampling to confirm year-round consistency in trace element-geochemical relationships in fluvial systems and to define the upper extremes of these relationships. Whether contaminated or not, under-ice bed sediment can represent a "worst-case" scenario in terms of trace element concentrations and exposure for sediment-associated organisms in northern fluvial systems

  16. Valley-scale morphology drives differences in fluvial sediment budgets and incision rates during contrasting flow regimes

    Science.gov (United States)

    Weber, M. D.; Pasternack, G. B.

    2017-07-01

    High-resolution topographic surveys using LiDAR and multibeam sonar can be used to characterize and quantify fluvial change. This study used repeat surveys to explore how topographic change, fluvial processes, sediment budgets, and aggradation and incision rates vary across spatial scales and across two contrasting decadal flow regimes in a regulated gravel/cobble river. A novel method for quantifying digital elevation model uncertainty was developed and applied to a topographic change detection analysis from 2006/2008 to 2014. During this period, which had four modest 3-5 year floods, most sediment was laterally redistributed through bank erosion and channel migration. Erosion primarily occurred in the floodplain (97,000 m3), terraces (80,000 m3), and lateral bars (58,000 m3); while deposition occurred in the adjacent pools (73,000 m3), fast glides (48,000 m3), and runs (36,000 m3). In contrast, significantly higher magnitude and longer duration floods from 1999 to 2006/2008 caused sediment to be displaced longitudinally, with the upstream reaches exporting sediment and the downstream reaches aggrading. The river maintained floodplain connectivity during both periods, despite different processes dominating the type of connectivity. Larger floods promoted overbank scour and avulsion, while smaller floods promoted bank erosion and lateral migration. This study explores and illustrates how the geomorphic response to contrasting flood regimes in a nonuniform river is highly dependent on which landforms are controlling hydraulics.

  17. Relationship between particle size and radiocesium in fluvial suspended sediment related to the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Kazuya Tanaka

    2014-01-01

    We collected fluvial suspended sediments in Fukushima after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident and analyzed the 137 Cs concentration in bulk and size-fractioned samples to investigate the particle-size-dependent distribution of radiocesium. The 137 Cs concentration in bulk suspended sediments decreased from August to December 2011, possibly reflecting a decrease of radiocesium concentration in its source materials. Smaller particles had higher radiocesium concentrations, reflecting larger specific surface areas. Silt- and sand-size fractions occupied more than 95 % of the total 137 Cs in the suspended sediments. The contribution of clay-size fractions, which had the highest 137 Cs concentration, was quite small because of their low frequency. A line of the data showed that the particle size distribution of radiocesium was essential to evaluate the migration and distribution of radiocesium in river systems where radiocesium is mainly present as particulate form after the FDNPP accident. (author)

  18. Multi-residues analysis of pre-emergence herbicides in fluvial sediments: application to the mid-Garonne River.

    Science.gov (United States)

    Devault, Damien A; Merlina, Georges; Lim, Puy; Probst, Jean-Luc; Pinelli, Eric

    2007-09-01

    Contamination of man and ecosystems by pesticides has become a major environmental concern. Whereas many studies exist on contamination from agriculture, the effects of urban sources are usually omitted. Fluvial sediment is a complex matrix of pollutants but little is known of its recent herbicide content. This study proposes a method for a fast and reliable analysis of herbicides by employing the accelerated solvent extractor (ASE). The aim of the study is to show the impact of a major town (Toulouse) on the herbicide content in the river. In this study, three herbicide families (i.e.s-triazine, substituted ureas and anilides) were analysed in fluvial sediment fractions at 11 sampling sites along the mid-Garonne River and its tributaries. River water contamination by herbicides is minor, except for at three sites located in urban areas. Among the herbicidal families studied, urban and suburban areas are distinguished from rural areas and were found to be the most contaminated sites during the study period, a winter low-water event. The herbicide content of the coarse sediment fractions is about one third of that found in the fine fractions and usually ignored. The distribution of pesticide concentrations across the whole range of particle sizes was investigated to clarify the role of plant remains on the significant accumulation in the coarse fractions.

  19. The Spatial Distribution of Bed Sediment on Fluvial System: A Mini Review of the Aceh Meandering River

    Directory of Open Access Journals (Sweden)

    Muhammad Irham

    2016-08-01

    Full Text Available Dynamic interactions of hydrological and geomorphological processes in the fluvial system result in accumulated deposit on the bed because the capacity to carry sediment has been exceeded. The bed load of the Aceh fluvial system is primarily generated by mechanical weathering resulting in boulders, pebbles, and sand, which roll or bounce along the river bed forming temporary deposits as bars on the insides of meander bends, as a result of a loss of transport energy in the system. This dynamic controls the style and range of deposits in the Aceh River. This study focuses on the spatial distribution of bed-load transport of the Aceh River. Understanding the spatial distribution of deposits facilitates the reconstruction of the changes in controlling factors during accumulation of deposits. One of the methods can be done by sieve analysis of sediment, where the method illuminates the distribution of sediment changes associated with channel morphology under different flow regimes. Hence, the purpose of this mini review is to investigate how the sediment along the river meander spatially dispersed. The results demonstrate that channel deposits in the Aceh River are formed from four different type of materials: pebble deposited along upstream left bank; sand located on the upstream, downstream, and along meander belts; and silt and clay located along the cut bank of meander bends. Because of different depositional pattern, the distribution of the sediment along the river can be used as a surrogate to identify bank stability, as well as to predict critical geometry for meander bend initiation

  20. Human impact on fluvial regimes and sediment flux during the Holocene: review and future research agenda

    NARCIS (Netherlands)

    Hoffmann, T.; Thorndycraft, V.R.; Brown, A.G.; Coulthard, T.J.; Damnati, B.; Kale, V.S.; Middelkoop, H.; Notebaert, B.; Walling, D.E.

    2010-01-01

    There is a long history of human–riverine interactions throughout the period of agriculture that in some regions of the world started several thousand years ago. These interactions have altered rivers to human dominated systems with often negative impacts on fluvial environments. To achieve a good

  1. Phytolith analysis in fluvial quaternary sediment (San Salvador and Palmar formation) Uruguay river and Argentina eastern

    International Nuclear Information System (INIS)

    Patterer, N.; Passeggi, E.; Zucol, A.; Brea, M.; Krohling, D.

    2012-01-01

    This work is about two microfossils fluvial units deposited by the Uruguay river during the Quaternary. These are San Salvador and Palmar formation (Plio-Pleistocene - Upper Pleistocene).The Palmar formation is a band of 4-15 km along the right bank of the Uruguay river outcropping from the eastern provinces of Corrientes and Entre Rios, to Concepcion del Uruguay

  2. Persistence, variance and toxic levels of organochlorine pesticides in fluvial sediments and the role of black carbon in their retention.

    Science.gov (United States)

    Parween, Musarrat; Ramanathan, Al; Khillare, P S; Raju, N J

    2014-05-01

    The present study assesses the persistence and variation of organochlorine pesticides (OCPs) and their regulation by total organic carbon (TOC) and black carbon (BC) in freshwater sediment. Sediment samples from the Yamuna River, a major tributary of the Ganges (one of the most populated and intensively used rivers in Asia), had high levels of Σ20OCPs (21.41 to 139.95 ng g(-1)). β-Hexachlorocyclohexane (β-HCH) was the most predominant component. ΣHCH and Σdichloro-diphenyl-trichloroethane (DDT) constituted ~86% of Σ20OCPs. Isomer ratios indicated fresh usage of lindane, DDT and technical-grade HCH. Toxicological comparison with freshwater sediment quality guidelines showed γ-HCH and DDT at high levels of concern. β-HCH, α-HCH, endrin, heptachlor epoxide, dichloro-diphenyl-dichloroethane (DDD), dichloro-diphenyl-dichloroethylene and chlordane were above some of the guideline levels. TOC and BC had mean concentrations of 1.37 ± 0.51% and 0.46 ± 0.23 mg g(-1), respectively. BC constituted 1.25 to 10.56% of TOC. We observed low to moderate correlations of BC with isomers of HCH, p,p'-DDT and methoxychlor while of TOC with Σ20OCPs, γ-HCH, endosulfan sulfate and methoxychlor. Principal component analysis enabled correlating and clustering of various OCPs, BC and TOC. OCP distribution was related with pH, electrical conductivity, soil moisture and finer fractions of sediment. OCPs with similarity in properties that determine their interactions with carbonaceous components of sediment clustered together. A number of factors may, thus, be involved in the regulation of interactive forces between BC and OCPs. BC in this study may be more important than TOC in the retention of some OCPs into fluvial sediments, thereby reducing their bioavailability. The finding is probably the first of its kind to report and emphasises the role of BC in the persistence of OCPs in fluvial sediments.

  3. Dose response of artificial irradiation of fluvial sediment sample for ESR dating

    International Nuclear Information System (INIS)

    Liu Chunru; Yin Gongming; Gao Lu; Li Jianping; Han Fei; Lin Min

    2011-01-01

    ESR dating samples need be irradiated to obtain dose response curve and the equivalent dose. The artificial dose rate is about 1 x 10 -1 -1 x 10 2 Gy/min, whereas the natural dose rate is about 3 Gy/ka. Therefore, one must be sure whether the much higher artificial dose rate is suitable for the ESR dating study. In this paper, we use different artificial dose rate to irradiate the same fluvial sample and measure the quartz Al centre ESR signal under the same conditions. The dose response curves are compared, in an attempt to gain a preliminary knowledge on that problem and build a good foundation for our ESR dating studies on fluvial samples. (authors)

  4. Ephemeral-fluvial sediments as potential hydrocarbon reservoirs. Vol. 1: Sedimentology

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, K.S.

    1994-12-31

    Although reservoirs formed from ephemeral-fluvial sandstones have previously been considered relatively simple, unresolved problems of sandbody correlation and production anomalies demonstrate the need for improved understanding of their internal complexity. Outcropping ephemeral-fluvial systems have been studied in order to determine the main features and processes occurring in sand-rich ephemeral systems and to identify which features will be of importance in a hydrocarbon reservoir. The Lower Jurassic Upper Moenave and Kayenta Formations of south-eastern Utah and northern Arizona comprise series of stacked, sand-dominated sheet-like palaeochannels suggestive of low sinuosity, braided systems. Low subsidence rates and rapid lateral migration rates enabled channels to significantly modify their widths during high discharge. (author)

  5. Fluvial export of radionuclides: impact on sediment storages of the Rhone River and fluxes towards the Mediterranean Sea

    International Nuclear Information System (INIS)

    Rolland, B.

    2006-02-01

    This study deals with the behaviour of trace contaminants originating from chronic liquid releases within fluvial aquatic systems. It focuses on some particle reactive artificial radionuclides that were released by the Marcoule nuclear fuel reprocessing plant during several years mainly prior the end of the nineties and that are still detected in the lower Rhone river. It underlines the decrease of 137 Cs, 238 Pu and 239+240 Pu fluxes to the Mediterranean Sea in relation with the variations in the chronic liquid releases from Marcoule. The role of flood events on radionuclides exports processes is particularly considered. Over the years 2002 to 2004, floods contributed for 67%, 55%, 68%, 49% and 56% of the mean annual fluxes of 137 Cs, 238 Pu and 239+240 Pu and natural 7 Be et 210 Pbxs, although these events only represented 5% of time. The removal, during floods, of sediments contaminated by the Marcoule releases contributes on the average for 19%, 44% and 22% of the annual exports of 137 Cs, 238 Pu and 239+240 Pu towards the Sea. Thus, such sedimentary stocks act as a delayed source term of artificial radioactivity that is currently significant. Determination of the sediments residence times before removal allows to evaluate the Rhone capacity to clear its contaminated stocks. Residence times of 200 years, 100 years and 900 years are estimated to be necessary to totally remove the accumulated 137 Cs, 238 Pu and 239+240 Pu, respectively. The location typologies of sediment storages within fluvial systems are also specified. These location are represented on one hand by dams, and on the other hand by river banks and oxbow lakes. Stocks accumulated in dams seem to be removed more easily than those trapped in banks. (author)

  6. Geomorphic Approach to Regional Sediment Management in Engineered and Restored Fluvial Systems

    National Research Council Canada - National Science Library

    Thorne, Colin

    2001-01-01

    This document reviews contemporary practice in regional sediment management. It examines whether catchment wide sediment issues have been considered in the design of engineering and restoration/rehabilitation projects...

  7. Jökulhlaup deposits in proglacial areas

    Science.gov (United States)

    Maizels, Judith

    This paper discusses the main causes and characteristics of jökulhlaup ('glacier burst') floods, and explores the extent to which they generate depositional landform and sediment assemblages that are distinct from those of 'normal', braided river outwash ('Type I' outwash). Two main jökulhlaup outwash environments are identified: Type II outwash, produced by sudden drainage of ice-dammed lakes; and Type III, associated with drainage during subglacial geothermal activity, and distinguished by deposits resulting from high sediment concentrations and hyperconcentrated flows. In fluid flows, especially ones yielding Type II outwash, the most common deposits are large-scale expansion bars (and locally, eddy and pendant bars), and 'mega-ripples' or dunes, both forms normally composed of large-scale gravel-cobble cross-bedding, often capped by an imbricated boulder lag (a 'Type B2' lithofacies sequence). The armour is absent only where runoff decreased too rapidly to allow surface winnowing. Other jökulhlaup facies include extensive boulder beds (Type C), inverse-normally graded cobble beds (Type DS), ice-proximal debris flow deposits and deformed bedding containing diamicton clasts (Types G and H), and slack-water sediments (Type A). Type III outwash is dominated by massive, homogeneous, flood surge granules, underlain by pre-surge gravels, and capped by post-surge fluid bedforms, reflecting deposition during both the rising and falling limbs of the flood hydrograph (Type E4). The paper demonstrates that jökulhlaups do generate distinctive assemblages of depositional landforms and sediments, and concludes with a model of the dominant lithofacies sequences and associated landforms in proglacial environments subject to jökulhlaup drainage.

  8. The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK

    Science.gov (United States)

    Walling; Owens; Waterfall; Leeks; Wass

    2000-05-05

    This paper presents information on the absolute (chemically-dispersed) particle size characteristics of the suspended sediment transported by rivers in the Humber and Tweed basins during the period 1994-1998. For most of the rivers, > 95% of the suspended sediment load at the time of sampling was 63 microm (i.e. sand-sized material). The sediment transported in the two basins were similar. There were, however, noticeable spatial variations in the particle size composition of suspended sediment within the study basins, which reflected the particle size of the sediment sources and their spatial variation, and the selectivity of the sediment mobilization and delivery processes. When particle size parameters were plotted against discharge, there were no significant relationships, although there was some evidence of trends varying between sites. The lack of significant relationships with discharge reflects the fact that sediment particle size is largely supply-controlled, rather than a function of flow and hydraulics. When particle size variations were examined during individual storm events, there was evidence of a pulse of coarse sediment on the rising limb of the hydrograph. This may reflect the remobilization of coarse channel bed sediment as flow velocity and shear stress increase. Finer sediment was transported subsequently during the hydrograph peak and on the falling limb. The findings reported have important implications for understanding and modelling suspended sediment, and associated contaminant, dynamics in river basins.

  9. Distinguishing regional and local sources of pollution by trace metals and magnetic particles in fluvial sediments of the Morava River, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Nováková, Tereza; Matys Grygar, Tomáš; Bábek, O.; Famera, M.; Mihaljevič, M.; Strnad, L.

    2013-01-01

    Roč. 13, č. 2 (2013), s. 460-473 ISSN 1439-0108 Institutional support: RVO:61388980 Keywords : Enrichment factors * Fluvial sediments * Heavy metals * Local sources * Normalisation * Regional contamination Subject RIV: DD - Geochemistry Impact factor: 2.107, year: 2013

  10. Cross-stratified Wood: Enigmatic Woody Debris Deposits in Warm-Polar Fluvial Sediments (Pliocene Beaufort Formation, Nunavut)

    Science.gov (United States)

    Davies, N. S.; Gosse, J. C.; Rybczynski, N.

    2012-04-01

    Woody debris has been an important sediment component and a significant geomorphic agent in pristine fluvial systems since the Devonian. In recent years a large volume of research has focussed on various aspects of the importance of woody debris within the fluvial realm; from the evolutionary significance of fossil wood accumulations in the rock record to studies of the biogeomorphological and ecological importance of woody debris in modern rivers. In this presentation we describe cross-stratified woody debris deposits comprising organic detritus from a boreal-type treeline forest that included species of pine, birch, poplar, alder, spruce, eastern cedar, and larch, in both shrub and tree form. The cross-stratified wood is an enigmatic subset of fine woody debris which, to our knowledge, has never before been described from either the global stratigraphic record or modern fluvial environments. The deposits we describe are located within the Pliocene Beaufort Formation on Meighen Island, Nunavut, Canada, at a latitude of 80°N, and are compared with other cross-stratified woody debris deposits that have been noted elsewhere in the Pliocene of the Canadian Arctic. We make the robust observation that these deposits appear to be geographically and stratigraphically restricted to polar latitudes from a period of warm climatic conditions during the Pliocene (15-20 °C warmer mean annual temperature than the present day). In this regard it is possible to speculate that the transport of large amounts of woody debris as bedload is potentially a unique feature of forested high latitude rivers. Such bedload deposition requires a large amount of woody debris with a greater density than the fluid transporting it. The softwood composition of the debris suggests that this was most likely attained by saturation and subsequent entrainment of extensive accumulations of deadwood, promoted by unusually high rates of tree mortality and low rates of bacterial decomposition arising from

  11. Magnetic susceptibility as a simple tracer for fluvial sediment source ascription during storm events.

    Science.gov (United States)

    Rowntree, Kate M; van der Waal, Bennie W; Pulley, Simon

    2017-06-01

    Sediment tracing using a single tracer, low frequency magnetic susceptibility (X lf ), was used to apportion suspended sediment to geologically defined source areas and to interpret sediment source changes during flood events in the degraded catchment of the Vuvu River, a headwater tributary of the Mzimbubu River, South Africa. The method was tested as a simple tool for use by catchment managers concerned with controlling erosion. The geology of the 58 km 2 catchment comprises two distinct formations: basalt in the upper catchment with a characteristically high magnetic susceptibility and shales with a low magnetic susceptibility in the lower catchment. Application of an unmixing model incorporating a Monte Carlo uncertainty analysis showed that X lf provided a means to assign the proportion of each geological province contributing to the river's sediment load. Grab water samples were collected at ten-minute intervals during flood events for subsequent analysis of suspended sediment concentration and the magnetic susceptibility of the filtered sediment. Two floods are presented in detail, the first represents a significant event at the start of the wet season (max. discharge 32 m 3  s -1 ); the second was a smaller flood (max discharge 14 m 3  s -1 ) that occurred a month later. Suspended sediment concentrations during the twelve monitored events showed a characteristic decline over the wet season. The main source of suspended sediment was shown to be from the mudstones in the lower catchment, which contributed 86% of the total measured load. The sediment dynamics during the two floods monitored in detail were quite different from each other. In the first the sediment concentration was high (11 g L -1 ), peaking after the flood peak. The X lf value increased during the event, indicating that contribution to the sediment load from basalt in the upper catchment increased during the recession limb. In the second, smaller flood the sediment peak (6 g L -1

  12. Microbial reductive transformation of phyllosilicate Fe(III) and U(VI) in fluvial subsurface sediments.

    Science.gov (United States)

    Lee, Ji-Hoon; Fredrickson, James K; Kukkadapu, Ravi K; Boyanov, Maxim I; Kemner, Kenneth M; Lin, Xueju; Kennedy, David W; Bjornstad, Bruce N; Konopka, Allan E; Moore, Dean A; Resch, Charles T; Phillips, Jerry L

    2012-04-03

    The microbial reduction of Fe(III) and U(VI) was investigated in shallow aquifer sediments collected from subsurface flood deposits near the Hanford Reach of the Columbia River in Washington State. Increases in 0.5 N HCl-extractable Fe(II) were observed in incubated sediments and (57)Fe Mössbauer spectroscopy revealed that Fe(III) associated with phyllosilicates and pyroxene was reduced to Fe(II). Aqueous uranium(VI) concentrations decreased in subsurface sediments incubated in sulfate-containing synthetic groundwater with the rate and extent being greater in sediment amended with organic carbon. X-ray absorption spectroscopy of bioreduced sediments indicated that 67-77% of the U signal was U(VI), probably as an adsorbed species associated with a new or modified reactive mineral phase. Phylotypes within the Deltaproteobacteria were more common in Hanford sediments incubated with U(VI) than without, and in U(VI)-free incubations, members of the Clostridiales were dominant with sulfate-reducing phylotypes more common in the sulfate-amended sediments. These results demonstrate the potential for anaerobic reduction of phyllosilicate Fe(III) and sulfate in Hanford unconfined aquifer sediments and biotransformations involving reduction and adsorption leading to decreased aqueous U concentrations.

  13. Sediment processes and mercury transport in a frozen freshwater fluvial lake (Lake St. Louis, QC, Canada).

    Science.gov (United States)

    Canário, João; Poissant, Laurier; O'Driscoll, Nelson; Vale, Carlos; Pilote, Martin; Lean, David

    2009-04-01

    An open-bottom and a closed-bottom mesocosm were developed to investigate the release of mercury from sediments to the water column in a frozen freshwater lake. The mesoscosms were deployed in a hole in the ice and particulate mercury (Hg(P)) and total dissolved mercury (TDHg) were measured in sediments and in water column vertical profiles. In addition, dissolved gaseous mercury (DGM) in water and mercury water/airflux were quantified. Concentrations of TDHg, DGM, and mercury flux were all higher in the open-bottom mesocosm than in the closed-bottom mesocosm. In this paper we focus on the molecular diffusion of mercury from the sediment in comparison with the TDHg accumulation in the water column. We conclude that the molecular diffusion and sediment resuspension play a minor role in mercury release from sediments suggesting that solute release during ebullition is an important transport process for mercury in the lake.

  14. Potential effects of runoff, fluvial sediment, and nutrient discharges on the coral reefs of Puerto Rico

    Science.gov (United States)

    Larsen, M.C.; Webb, R.M.T.

    2009-01-01

    Coral reefs, the foundation and primary structure of many highly productive and diverse tropical marine ecosystems, have been degraded by human activity in much of the earth's tropical oceans. To contribute to improved understanding of this problem, the potential relation between river sediment and nutrient discharges and degradation of coral reefs surrounding Puerto Rico was studied using streamflow, suspended-sediment, and water-quality data. Mean annual runoff for the 8711 km2 island is 911 mm, about 57% of mean annual precipitation (1600 mm). Mean annual suspended-sediment discharge from Puerto Rico to coastal waters is estimated at 2.7-9.0 million metric tonnes. Storm runoff transports a substantial part of sediment: the highest recorded daily sediment discharge is 1-3.6 times the mean annual sediment discharge. Hurricane Georges (1998) distributed an average of 300 mm of rain across the island, equivalent to a volume of about 2.6 billion m3. Runoff of more than 1.0 billion m3 of water and as much as 5 to 10 million metric tonnes of sediment were discharged to the coast and shelf. Nitrogen and phosphorous concentrations in river waters are as much as 10 times the estimated presettlement levels. Fecal coliform and fecal streptococcus concentrations in many Puerto Rico rivers are near or above regulatory limits. Unlike sediment discharges, which are predominantly episodic and intense, river-borne nutrient and fecal discharge is a less-intense but chronic stressor to coral reefs found near the mouths of rivers. Negative effects of riverderived sediment and nutrient discharge on coral reefs are especially pronounced on the north, southwest, and west coasts.

  15. Large-scale dam removal on the Elwha River, Washington, USA: fluvial sediment load

    Science.gov (United States)

    Magirl, Christopher S.; Hilldale, Robert C.; Curran, Christopher A.; Duda, Jeffrey J.; Straub, Timothy D.; Domanski, Marian M.; Foreman, James R.

    2015-01-01

    The Elwha River restoration project, in Washington State, includes the largest dam-removal project in United States history to date. Starting September 2011, two nearly century-old dams that collectively contained 21 ± 3 million m3 of sediment were removed over the course of three years with a top-down deconstruction strategy designed to meter the release of a portion of the dam-trapped sediment. Gauging with sediment-surrogate technologies during the first two years downstream from the project measured 8,200,000 ± 3,400,000 tonnes of transported sediment, with 1,100,000 and 7,100,000 t moving in years 1 and 2, respectively, representing 3 and 20 times the Elwha River annual sediment load of 340,000 ± 80,000 t/y. During the study period, the discharge in the Elwha River was greater than normal (107% in year 1 and 108% in year 2); however, the magnitudes of the peak-flow events during the study period were relatively benign with the largest discharge of 292 m3/s (73% of the 2-year annual peak-flow event) early in the project when both extant reservoirs still retained sediment. Despite the muted peak flows, sediment transport was large, with measured suspended-sediment concentrations during the study period ranging from 44 to 16,300 mg/L and gauged bedload transport as large as 24,700 t/d. Five distinct sediment-release periods were identified when sediment loads were notably increased (when lateral erosion in the former reservoirs was active) or reduced (when reservoir retention or seasonal low flows and cessation of lateral erosion reduced sediment transport). Total suspended-sediment load was 930,000 t in year 1 and 5,400,000 t in year 2. Of the total 6,300,000 ± 3,200,000 t of suspended-sediment load, 3,400,000 t consisted of silt and clay and 2,900,000 t was sand. Gauged bedload on the lower Elwha River in year 2 of the project was 450,000 ± 360,000 t. Bedload was not quantified in year 1, but qualitative observations using bedload

  16. Simulating Spatial Variability of Fluvial Sediment Fluxes Within the Magdalena Drainage Basin, Colombia.

    Science.gov (United States)

    Kettner, A. J.; Syvitski, J. P.; Restrepo, J. D.

    2008-12-01

    This study explores the application of an empirical sediment flux model BQART, to simulate long-term sediment fluxes of major tributaries of a river system based on a limited number of input parameters. We validate model results against data of the 1612 km long Magdalena River, Colombia, South America, which is well monitored. The Magdalena River, draining a hinterland area of 257,438 km2, of which the majority lies in the Andes before reaching the Atlantic coast, is known for its high sediment yield, 560 t kg- 2 yr-1; higher than nearby South American rivers like the Amazon or the Orinoco River. Sediment fluxes of 32 tributary basins of the Magdalena River were simulated based on the following controlling factors: geomorphic influences (tributary-basin area and relief) derived from high-resolution Shuttle Radar Topography Mission data, tributary basin-integrated lithology based on GIS analysis of lithology data, 30year temperature data, and observed monthly mean discharge data records (varying in record length of 15 to 60 years). Preliminary results indicate that the simulated sediment flux of all 32 tributaries matches the observational record, given the observational error and the annual variability. These simulations did not take human influences into account yet, which often increases sediment fluxes by accelerating erosion, especially in steep mountainous area similar to the Magdalena. Simulations indicate that, with relatively few input parameters, mostly derived from remotely-sensed data or existing compiled GIS datasets, it is possible to predict: which tributaries in an arbitrary river drainage produce relatively high contributions to sediment yields, and where in the drainage basin you might expect conveyance loss.

  17. Effect of Sediment Availability in Bedload-Dominated Rivers on Fluvial Geomorphic Equilibrium

    Science.gov (United States)

    Marti, M.

    2016-12-01

    Channels are known to compensate for changes in sediment supply via covariate changes in channel properties, yet the timescale for adjustment remains poorly constrained. We propose that reductions in sediment flux inhibit equilibrium re-establishment and thus impact the timescale of system adjustment. Using run-of-river dams as natural experiments, this study quantifies the geomorphic response of channels to sediment supply reduction. Channel traits that facilitate increased sediment trapping behind the dam, such as large reservoir storage capacity relative to annual inflow and low slope, were expected to inhibit a channel's ability to re-establish equilibrium following impoundment, lengthening the equilibrium establishment timescale to tens or hundreds of years. Reaches associated with increased trapping were therefore anticipated to exhibit non-equilibrium forms. Channel equilibrium was evaluated downstream of 8 ROR dams in New England with varying degrees of sediment trapping. Sites cover a range of watershed sizes (3-155 km2), channel slopes (.05-5%), 2-year discharges (1.5-60 m3/s) and storage capacity volumes. Because equilibrium channel form is just sufficient to mobilize grains under bankfull conditions in bedload-dominated rivers, the Shields parameter was used to assess equilibrium form. Unregulated, upstream Shields values and regulated, downstream values were calculated at 14 total cross-sections extending 300-450 m upstream and downstream of each dam. Sediment trapping was estimated using Brune's curve (1953). On the Charles Brown Brook (VT), a marginally significant (p=0.08) increase in Shields values from a mean of 0.14 upstream to 0.41 downstream of a 100+ year old dam was observed. In contrast, reaches downstream of the 100+ year old Pelham dam (MA) exhibit significantly lower Shields values. This suggests that trapping behind the dam inhibits the downstream channel from reaching an equilibrium state, but not always in the same way. Better

  18. Fluvial sediment study of Fishtrap and Dewey Lakes drainage basins, Kentucky - Virginia

    Science.gov (United States)

    Curtis, William F.; Flint, Russell F.; George, Frederick H.; Santos, John F.

    1978-01-01

    Fourteen drainage basins above Fishtrap and Dewey Lakes in the Levisa Fork and Johns Creek drainage basins of eastern Kentucky and southwestern Virginia were studied to determine sedimentation rates and origin of sediment entering the two lakes. The basins ranged in size from 1.68 to 297 square miles. Sediment yields ranged from 2,890 to 21,000 tons per square mile where surface-mining techniques predominated, and from 732 to 3 ,470 tons per square mile where underground mining methods predominated. Yields, in terms of tons per acre-foot of runoff, ranged from 2.2 to 15 for surface-mined areas, and from 0.5 to 2.7 for underground-mined areas. Water and sediment discharges from direct runoff during storms were compared for selected surface-mined and underground-mined areas. Data points of two extensively surface-mined areas, one from the current project and one from a previous project in Beaver Creek basin, McCreary County, Kentucky, grouped similarly in magnitude and by season. Disturbed areas from mining activities determined from aerial photographs reached 17 percent in one study area where extensive surface mining was being practiced. For most areas where underground mining was practiced, percentage disturbed area was almost negligible. Trap efficiency of Fishtrap Lake was 89 percent, and was 62 percent for Dewey Lake. Average annual deposition rates were 464 and 146 acre-feet for Fishtrap and Dewey Lakes, respectively. The chemical quality of water in the Levisa Fork basin has been altered by man 's activities. (Woodard-USGS)

  19. Braided fluvial sedimentation in the lower paleozoic cape basin, South Africa

    Science.gov (United States)

    Vos, Richard G.; Tankard, Anthony J.

    1981-07-01

    Lower Paleozoic braided stream deposits from the Piekenier Formation in the Cape Province, South Africa, provide information on lateral and vertical facies variability in an alluvial plain complex influenced by a moderate to high runoff. Four braided stream facies are recognized on the basis of distinct lithologies and assemblages of sedimentary structures. A lower facies, dominated by upward-fining conglomerate to sandstone and mudstone channel fill sequences, is interpreted as a middle to lower alluvial plain deposit with significant suspended load sedimentation in areas of moderate to low gradients. These deposits are succeeded by longitudinal conglomerate bars which are attributed to middle to upper alluvial plain sedimentation with steeper gradients. This facies is in turn overlain by braid bar complexes of large-scale transverse to linguoid dunes consisting of coarse-grained pebbly sandstones with conglomerate lenses. These bar complexes are compared with environments of the Recent Platte River. They represent a middle to lower alluvial plain facies with moderate gradients and no significant suspended load sedimentation or vegetation to stabilize channels. These bar complexes interfinger basinward with plane bedded medium to coarse-grained sandstones interpreted as sheet flood deposits over the distal portions of an alluvial plain with low gradients and lacking fine-grained detritus or vegetation.

  20. Microcosms for evaluating microbial indicator persistence and mobilization in fluvial sediments during rainfall events.

    Science.gov (United States)

    Martín-Díaz, Julia; García-Aljaro, Cristina; Pascual-Benito, Míriam; Galofré, Belén; Blanch, Anicet R; Lucena, Francisco

    2017-10-15

    Mediterranean rivers, which are subject to long, dry periods and heavy rainfall events, could be particularly useful for understanding future climate scenarios. This study generated microcosms that mimicked riverbank sediment resuspension into the water of a typical Mediterranean river as a consequence of heavy rainfall. The mobilization and inactivation of six fecal pollution indicators and microbial source tracking markers were evaluated. The T 90 values in the sediments were: 4 days for sorbitol-fermenting Bifidobacterium, 11 days for culturable E. coli, 36 days for bacteriophages infecting Bacteroides thetaiotaomicron strain GA17 and more than 42 days for qPCR-detected E. coli, somatic coliphages and sulfite-reducing clostridia spores. Bacteriophages and bacteria showed different resuspension and sedimentation patterns. The data obtained could be used in predictive models to assess the effects of climate change on surface water quality. Pathogen mobilization into the water column poses a risk for humans, animals and the natural environment, and breaches the One Health approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Fluvial fingerprints in northeast Pacific sediments: Unravelling terrestrial-ocean climate linkages

    Science.gov (United States)

    Vanlaningham, S. J.; Duncan, R.; Pisias, N.

    2004-12-01

    As the earth's climate history becomes better understood, it becomes clear that the terrestrial and oceanic systems interact in complex ways. This is seen in core sites offshore the Pacific Northwest (PNW) of North America. A correlation can be seen in oceanic biostratigraphic assemblages and down-core changes in terrestrial pollen types. However, it is difficult to determine whether this relationship is the result of a coupled migration of terrestrial vegetation and oceanic fauna on millennial timescales or the result of changes in ocean circulation patterns that create more complex pollen pathways to the core sites. This research begins to unravel the answers to this problem by examining down-core changes in sediment provenance on millennial timescales. Preliminary data characterize sediment of 24 rivers from ten geologic provinces between latitudes 36° N - 47° N. Through clay mineralogy, major and trace element geochemistry and Ar-Ar "province" ages, ten of the 24 rivers can be uniquely identified, while six of the ten geologic provinces can be uniquely constrained geochemically. With further Nd, Sr and Pb isotopic analyses, we hope to constrain the non-unique sediment sources. We will also be presenting initial down-core geochemical results from cores EW 9504-17PC and EW9504-13PC, offshore southern Oregon and central California, respectively.

  2. Estimation of Streamflow and Fluvial Sediment Loads in the White Volta Basin under Future Climate Change

    Science.gov (United States)

    Lumor, M.; Amisigo, B. A.

    2015-12-01

    The White Volta Basin is one of the major sub-catchments of the Volta Basin of West Africa, covers an estimated 106,000 km2 and is shared between Burkina Faso and Ghana. The basin currently faces many challenges such as flooding, drought, high temporal and spatial variation of rainfall, deforestation, land degradation, climate change and high population growth rate. These challenges put pressure on the quantity and quality of the water resources in the basin. Current infrastructure developments in the basin have already impacted on the hydrological cycle, and future development plans potentially pose a threat to the sustainability of the resources if not appropriately managed. Information on runoff and sediment loads is a very important requirement for sustainable management of the water resources in the basin. This study therefore seeks to assess runoff and sediment loads in the White Volta Basin using the Soil Water Assessment Tool (SWAT) and provide understanding of how climate change impacts on future runoff and sediment loads in the basin.The model was calibrated for the period 1991 to 2003 and validated for the period 2004 to 2013.The model was also validated at one gauging station on the main river and another on a tributary. Analysis of the water balance of the basin shows that 4.90% of the simulated mean annual precipitation is converted to surface runoff while 84.37% evapotranspires. The results also show that the White Volta Basin contributes approximately 5.68x106tonnes/yr of sediment load into the Volta Lake. The calibrated model was used to simulate the water balance for the present time slice (1975-2005) as the basis for comparing with the future (2025-2055) water balance in the WhiteVolta Basin. The results show that annual surface runoff and sediment loads could increase by 56% and 70% respectively. A projected reduction by 0.54% in actual evapotranspiration is however estimated for the selected time period in the basin.

  3. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA

    International Nuclear Information System (INIS)

    Coxon, T.M.; Odhiambo, B.K.; Giancarlo, L.C.

    2016-01-01

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight "2"1"0Pb and "1"3"7Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments. - Highlights:

  4. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Coxon, T.M. [Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Avenue Fredericksburg, Virginia 22401 (United States); Odhiambo, B.K., E-mail: bkisila@umw.edu [Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Avenue Fredericksburg, Virginia 22401 (United States); Giancarlo, L.C. [Department of Chemistry, University of Mary Washington, Fredericksburg, VA 22401 (United States)

    2016-10-15

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight {sup 210}Pb and {sup 137}Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments

  5. The first polluted river? Repeated copper contamination of fluvial sediments associated with Late Neolithic human activity in southern Jordan.

    Science.gov (United States)

    Grattan, J P; Adams, R B; Friedman, H; Gilbertson, D D; Haylock, K I; Hunt, C O; Kent, M

    2016-12-15

    The roots of pyrometallurgy are obscure. This paper explores one possible precursor, in the Faynan Orefield in southern Jordan. There, at approximately 7000cal. BP, banks of a near-perennial meandering stream (today represented by complex overbank wetland and anthropogenic deposits) were contaminated repeatedly by copper emitted by human activities. Variations in the distribution of copper in this sequence are not readily explained in other ways, although the precise mechanism of contamination remains unclear. The degree of copper enhancement was up to an order of magnitude greater than that measured in Pleistocene fluvial and paludal sediments, in contemporary or slightly older Holocene stream and pond deposits, and in the adjacent modern wadi braidplain. Lead is less enhanced, more variable, and appears to have been less influenced by contemporaneous human activities at this location. Pyrometallurgy in this region may have appeared as a byproduct of the activity practised on the stream-bank in the Wadi Faynan ~7000years ago. Copyright © 2016. Published by Elsevier B.V.

  6. Active biomonitoring for assessing effects of metal polluted sediment resuspension on gammarid amphipods during fluvial traffic.

    Science.gov (United States)

    Prygiel, E; Billon, G; François, A; Dumoulin, D; Chaumot, A; Geffard, O; Criquet, J; Prygiel, J

    2016-11-01

    The resuspension of polluted sediments by boat traffic could release substantial amounts of metals to the water column, affecting at the same time their bioavailability. In order to characterize the impact of sediment resuspensions on biota, caged amphipods have been deployed on three different channelized watercourses in Northern France. Firstly, the biological responses of transplanted freshwater gammarid amphipods, Gammarus fossarum, described by trace metal accumulation, feeding and reproduction activities were quite similar for the three water courses despite the differences of metal contamination and navigability. Secondly, the concentrations of metals accumulated in gammarids never exceeded the contamination thresholds previously defined for Co, Cu, Cr and Zn. Values were in the same order of magnitude whatever the studied site despite: (i) large differences noticed in the sediment quality and (ii) some concentrations in the overlying waters exceeding the Environmental Quality Standards (EQS) defined by the Water Framework Directive. Conversely, Pb was highly bioaccumulated with values systematically exceeding the threshold value whatever the site. Therefore, the impact of navigation cannot be proved and the difference between the 3 monitoring periods is rather attributed to environmental variability, probably linked to the seasonality. Moreover, this study also confirms that organisms sampled from a local population in the vicinity of the three studied watercourses could be used as test organisms, leading to similar results than the ones obtained with reference gammarids initially used for developing all the biological responses. This would simplify and then promote the development of studies based on gammarid amphipod, G. fossarum, as bioindicators. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Influence of fluvial environments on sediment archiving processes and temporal pollutant dynamics (Upper Loire River, France).

    Science.gov (United States)

    Dhivert, E; Grosbois, C; Rodrigues, S; Desmet, M

    2015-02-01

    Floodplains are often cored to build long-term pollutant trends at the basin scale. To highlight the influences of depositional environments on archiving processes, aggradation rates, archived trace element signals and vertical redistribution processes, two floodplain cores were sampled near in two different environments of the Upper Loire River (France): (i) a river bank ridge and (ii) a paleochannel connected by its downstream end. The base of the river bank core is composed of sandy sediments from the end of the Little Ice Age (late 18th century). This composition corresponds to a proximal floodplain aggradation (sediments that settled in the distal floodplain. In this distal floodplain environment, the aggradation rate depends on the topography and connection degree to the river channel. The temporal dynamics of anthropogenic trace element enrichments recorded in the distal floodplain are initially synchronous and present similar levels. Although the river bank core shows general temporal trends, the paleochannel core has a better resolution for short-time variations of trace element signals. After local water depth regulation began in the early 1930s, differences of connection degree were enhanced between the two cores. Therefore, large trace element signal divergences are recorded across the floodplain. The paleochannel core shows important temporal variations of enrichment levels from the 1930s to the coring date. However, the river bank core has no significant temporal variations of trace element enrichments and lower contamination levels because of a lower deposition of contaminated sediments and a pedogenetic trace elements redistribution. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Incision of the Jezero Crater Outflow Channel by Fluvial Sediment Transport

    Science.gov (United States)

    Holo, S.; Kite, E. S.

    2017-12-01

    Jezero crater, the top candidate landing site for the Mars 2020 rover, once possessed a lake that over-spilled and eroded a large outflow channel into the Eastern rim. The Western deltaic sediments that would be the primary science target of the rover record a history of lake level, which is modulated by the inflow and outflow channels. While formative discharges for the Western delta exist ( 500 m3/s), little work has been done to see if these flows are the same responsible for outflow channel incision. Other models of the Jezero outflow channel incision assume that a single rapid flood (incision timescales of weeks), with unknown initial hydraulic head and no discharge into the lake (e.g. from the inflow channels or the subsurface), incised an open channel with discharge modulated by flow over a weir. We present an alternate model where, due to an instability at the threshold of sediment motion, the incision of the outflow channel occurs in concert with lake filling. In particular, we assume a simplified lake-channel-valley system geometry and that the channel is hydraulically connected to the filling/draining crater lake. Bed load sediment transport and water discharge through the channel are quantified using the Meyer-Peter and Mueller relation and Manning's law respectively. Mass is conserved for both water and sediment as the lake level rises/falls and the channel incises. This model does not resolve backwater effects or concavity in the alluvial system, but it does capture the non-linear feedbacks between lake draining, erosion rate, channel flow rate, and slope relaxation. We identify controls on incision of the outflow channel and estimate the time scale of outflow channel formation through a simple dynamical model. We find that the observed 300m of channel erosion can be reproduced in decades to centuries of progressive bed load as the delta forming flows fill the lake. This corresponds to time scales on the order of or smaller than the time scale

  9. PCBs and OCPs in sediment cores from the Lower St. Lawrence Estuary, Canada: evidence of fluvial inputs and time lag in delivery to coring sites.

    Science.gov (United States)

    Lebeuf, Michel; Nunes, Teresa

    2005-03-15

    Three sediment cores were collected along the longitudinal axis of the Laurentian Trough in the Lower St. Lawrence Estuary (LSLE) and an additional one at the junction of the Estuary and the Gulf of St. Lawrence. After core-slicing, each sediment layer was analyzed for polychlorinated biphenyls (PCBs) and some organochlorine pesticides (OCPs) including p,p'-dichlorodiphenyltrichloroethane (DDT) and its metabolites, hexachlorobenzene (HCB) and Mirex. 210Pb activity was also measured in these sediments, which allowed us to confirm that these cores were too much affected by the overall impact of surface mixing to be dated. Nevertheless, POP sedimentary profiles in cores from the LSLE upstream stations showed well-defined subsurface peak concentrations. Apparently, the peak inputs of POPs to these sediment cores had occurred after the years of maximum sales and production of these chemicals in North America, suggesting a time lag in the delivery of POPs to the LSLE sediments. Concentrations of POPs in the LSLE surface sediments as well as POP inventories in sediment cores decreased in the seaward direction, confirming that the head of the LSLE acts as a sink for sediments and associated constituents. Surface concentrations of sigmaPCBs, sigmaDDTs, and HCB in the most upstream core were on average similar to those reported in two fluvial lakes of the St. Lawrence River but were between 12 and 39 times lower than those from Lake Ontario. For Mirex, the surface concentration in that core was 5 and 130 times lower than the average values found in the fluvial lakes and Lake Ontario, respectively. Differences between Lake Ontario sediment cores and the most upstream core from the LSLE were much smaller on the basis of POP inventories than surface concentrations of POPs, but were still important. The total burdens of POPs in LSLE sediments below the 200 m isobath were 8704 kg for sigmaPCBs, 1825 kg for sigmaDDTs, 319 kg for HCB, and 27.5 kg for Mirex. These values represent

  10. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA.

    Science.gov (United States)

    Coxon, T M; Odhiambo, B K; Giancarlo, L C

    2016-10-15

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight (210)Pb and (137)Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments. Copyright © 2016

  11. Numerical analysis of palynological data from Neogene fluvial sediments as evidence for rainforest dynamics in western Amazonia

    Science.gov (United States)

    Salamanca, Sonia; van Manen, Milan; Hoorn, Carina

    2014-05-01

    Deep-time records that give an insight into the composition and dynamics of the ancestral Amazon rain forest are rare. Yet to understand the modern biodiversity patterns it is important to untangle the long-term evolution of this forest. Sampling Neogene strata requires drilling operations or complex fieldwork along the rivers where outcrops generally are small. In the nineties an exceptionally good exposure of fluvial sediments of early Miocene age (17.7-16.1 Ma) was documented near the island of Mariñame (Caquetá River, Colombian Amazonia) (Hoorn, 1994). This 60 m sediment succession consists of quartz-rich sands with a circa 10 m black, sandy clay intercalation. Palynomorphs are well preserved in these organic-rich clays and palynological analysis indicated high pollen diversity and changes in composition following changes in the sedimentary environment and water composition (see van Soelen et al., this session). A numerical analysis in R (2013) of the existing data, using a number of multivariate and other statistical techniques now shows a gradient of change in the composition of the Miocene palynological assemblages. Non-metric-multidimensional scaling using distance matrixes (Oksanen, 2012) and their visualizations in correlograms (Friendly, 2002) indicate that the regional (palm) swamp forests of Mauritiides franciscoi (Mauritia), frequently found together with other palms such as Psilamonocolpites amazonicus (Euterpe?) and Psilamonocolpites rinconii, were affected by a marine incursion. The latter is suggested by the change of composition and the presence of estuarine elements such as Zonocostites ramonae (Rhizophora), foraminifer linings and dinoflagellate cysts, which became common during the marine event. In the older part of the section, and at the top, Rhoipites guianensis (Sterculiaceae/Tiliaceae) is quite abundant, in contrast with the relatively low abundance of M. franciscoi. The numerical analysis allowed us to: a) group the pollen data into 3

  12. Fluvial export of radionuclides: impact on sediment storages of the Rhone River and fluxes towards the Mediterranean Sea; Transfert des radionucleides artificiels par voie fluviale: consequences sur les stocks sedimentaires rhodaniens et les exports vers la Mediterranee

    Energy Technology Data Exchange (ETDEWEB)

    Rolland, B

    2006-02-15

    This study deals with the behaviour of trace contaminants originating from chronic liquid releases within fluvial aquatic systems. It focuses on some particle reactive artificial radionuclides that were released by the Marcoule nuclear fuel reprocessing plant during several years mainly prior the end of the nineties and that are still detected in the lower Rhone river. It underlines the decrease of {sup 137}Cs, {sup 238}Pu and {sup 239+240}Pu fluxes to the Mediterranean Sea in relation with the variations in the chronic liquid releases from Marcoule. The role of flood events on radionuclides exports processes is particularly considered. Over the years 2002 to 2004, floods contributed for 67%, 55%, 68%, 49% and 56% of the mean annual fluxes of {sup 137}Cs, {sup 238}Pu and {sup 239+240}Pu and natural {sup 7}Be et {sup 210}Pbxs, although these events only represented 5% of time. The removal, during floods, of sediments contaminated by the Marcoule releases contributes on the average for 19%, 44% and 22% of the annual exports of {sup 137}Cs, {sup 238}Pu and {sup 239+240}Pu towards the Sea. Thus, such sedimentary stocks act as a delayed source term of artificial radioactivity that is currently significant. Determination of the sediments residence times before removal allows to evaluate the Rhone capacity to clear its contaminated stocks. Residence times of 200 years, 100 years and 900 years are estimated to be necessary to totally remove the accumulated {sup 137}Cs, {sup 238}Pu and {sup 239+240}Pu, respectively. The location typologies of sediment storages within fluvial systems are also specified. These location are represented on one hand by dams, and on the other hand by river banks and oxbow lakes. Stocks accumulated in dams seem to be removed more easily than those trapped in banks. (author)

  13. A first look at the influence of anthropogenic climate change on the future delivery of fluvial sediment to the Ganges-Brahmaputra-Meghna delta.

    Science.gov (United States)

    Darby, Stephen E; Dunn, Frances E; Nicholls, Robert J; Rahman, Munsur; Riddy, Liam

    2015-09-01

    We employ a climate-driven hydrological water balance and sediment transport model (HydroTrend) to simulate future climate-driven sediment loads flowing into the Ganges-Brahmaputra-Meghna (GBM) mega-delta. The model was parameterised using high-quality topographic data and forced with daily temperature and precipitation data obtained from downscaled Regional Climate Model (RCM) simulations for the period 1971-2100. Three perturbed RCM model runs were selected to quantify the potential range of future climate conditions associated with the SRES A1B scenario. Fluvial sediment delivery rates to the GBM delta associated with these climate data sets are projected to increase under the influence of anthropogenic climate change, albeit with the magnitude of the increase varying across the two catchments. Of the two study basins, the Brahmaputra's fluvial sediment load is predicted to be more sensitive to future climate change. Specifically, by the middle part of the 21(st) century, our model results suggest that sediment loads increase (relative to the 1981-2000 baseline period) over a range of between 16% and 18% (depending on climate model run) for the Ganges, but by between 25% and 28% for the Brahmaputra. The simulated increase in sediment flux emanating from the two catchments further increases towards the end of the 21(st) century, reaching between 34% and 37% for the Ganges and between 52% and 60% for the Brahmaputra by the 2090s. The variability in these changes across the three climate change simulations is small compared to the changes, suggesting they represent a significant increase. The new data obtained in this study offer the first estimate of whether and how anthropogenic climate change may affect the delivery of fluvial sediment to the GBM delta, informing assessments of the future sustainability and resilience of one of the world's most vulnerable mega-deltas. Specifically, such significant increases in future sediment loads could increase the resilience

  14. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence

    CERN Document Server

    Olley, J M; Roberts, R G

    1999-01-01

    We examine the causes of the asymmetric distributions of dose observed from measurements of the optically stimulated luminescence emitted by small aliquots of fluvial quartz, and deduce that the asymmetry arises as a result of samples being composed of a mix of mainly well bleached grains with grains that were effectively unbleached at the time of deposition. We demonstrate that the shapes of the dose distributions can be used to assess the likelihood that aliquots consist only of grains that were well-bleached at the time of deposition. The more asymmetric the distribution, the greater the probability that the aliquots with the lowest dose most closely represent the true burial dose. Single grains with differing doses are present in each of the samples examined, and the population with the lowest dose gives an optical age consistent with the expected burial age. This result implies that the beta-dose heterogeneity in these deposits is small, and that the effects of micro-dosimetric variations on optical dati...

  15. Obtaining isochrones from pollution signals in a fluvial sediment record: A case study in a uranium-polluted floodplain of the Ploučnice River, Czech Republic

    International Nuclear Information System (INIS)

    Matys Grygar, T.; Elznicová, J.; Bábek, O.; Hošek, M.; Engel, Z.; Kiss, T.

    2014-01-01

    Highlights: • Integrated approach to assess pollutant distribution in floodplain. • Natural background concentration is a function and not a value. • Concept of local enrichment factors based on local background functions. • Secondary pollution from transient fluvial deposits. - Abstract: Uranium mining and processing in the watershed of the Ploučnice River in the Czech Republic during a well-defined time interval (1969–1989) allowed for a study of pollutant fates in sediments of a meandering river that is otherwise in a nearly natural state. A considerable part of the primary pollution is present in hotspots in the floodplain 10–15 km downstream from the mining district. One of the hotspots was characterised using geoinformatic, geophysical and geochemical means. The floodplain geomorphology and architecture and river channel dynamics were studied to develop an understanding of the formation of the hotspot and evaluate further movement of pollutants in the river system. Local background functions (with Rb or Ti as a predictor) and local enrichment factors (LEFs) were obtained for Ba, Ni, Pb, U and Zn concentrations in unpolluted sediments from the deeper strata of the active floodplain, an abandoned floodplain and an ancient terrace. The most recent (2013) overbank fines in the study area are still considerably enriched in Ni, U and Zn (LEF 3, 6 and 8, respectively), and thus pollution by heavy metals several km downstream of the hotspots continuously increases even though the primary source of pollution was terminated more than 20 years ago. The onset of the primary pollution (the base of the polluted strata) is hence clearly identified in the distal floodplain sediments as persistent and a potentially isochronous pollution signal in the fluvial record, whereas a secondary pollution signal overwrites the expected “primary pollution climax” and “pollution improvement” signals. That inertia of the fluvial system can also be expected in other

  16. A History of Pebbles and Silt – Fluvial Sediment Transport, Hydropower and Technical Expertise at the Austrian Danube and its Tributaries

    Directory of Open Access Journals (Sweden)

    Schoder Angelika

    2016-08-01

    Full Text Available The paper investigates experts’ perceptions of hydropower, sediment regime, and their interaction in the 20th century with an environmental historical approach, based on various case studies at both the Danube River and one of its tributaries, and on a review of contemporary literature authored by engineers. Results show that questions of sediment continuity have engaged planners of hydropower plants since the advent of this technology, and decisions were at any time influenced by multiple interests (navigation, electricity demand, nature conservation. In such an intricate fluvial landscape, phenomena like reservoir sedimentation and riverbed incision can be approached as “legacies” of past technical interventions, which limit the options of current and future river management.

  17. S, Zn, Cr, Cu and Fe changes during fluvial sediments oxidation Transformaciones del S, Zn, Cr, Cu y Fe en sedimentos fluviales durante el proceso de secado

    Directory of Open Access Journals (Sweden)

    María Pía Di Nanno

    2009-12-01

    Full Text Available Acidification of dredged sediments which have been disposed on land is highly dependent on redox shifts. The aim of the present work was to assess changes in sulphur, metal speciation (Zn, Fe, Cr y Cu and acidity caused by a polluted sediment oxidation event. Sediments were dessicated under controlled conditions and sulphide compounds (acid volatile sulphides-AVS- and sulphate, pH and neutralization potential were measured through time during 36 days. Zinc, Cu, Cr and Fe speciation (BCR metal sequential extraction procedure were measured at the beginning of the experiment and at day 22. An acid-base equilibrium method based on the BCR procedure was employed to assess the sediment acidification risk. Some of the re-suspension experiments were inoculated with an Acidithiobacillus ferrooxidans strain to assess biological catalysis on sulphide oxidation. Acid-base equilibrium results indicated the sediment sample had a significant acidification potential. Oxidation increased sulphate levels (56 to 2300 mg S kg-¹ in the desiccation experiment with a temporal evolution adjusted by a logistic model, and a 2100 to 3000 mg SO4 -² L-¹ increase for the resuspension experiments. Sulphide oxidation rates varied between 0 to 3.1.10-9 mg O2 kg-¹ s-¹ for the drying sediment. Zinc changes could be explained partially by ZnS conversion to ZnSO4 during oxidation. Iron reduction could be attributed to an increase in Fe oxides crystallinity. Acid-base equilibrium for the sample indicated it was a potentially acid-generating material. Zinc increased its bioavailability during drying and was the only metal that appeared in significant amounts in solution during re-suspension. Land-filling with dredged sediments could present increased metals bioavailability problems despite having an important and effective neutralization potential.La evaluación de los riesgos de acidificación por deposición de sedimentos dragados en superficie es muy dependiente de los

  18. River delta shoreline reworking and erosion in the Mediterranean and Black Seas: the potential roles of fluvial sediment starvation and other factors

    Directory of Open Access Journals (Sweden)

    Manon Besset

    2017-09-01

    Full Text Available The Mediterranean basin (including the Black Sea is characterized by a plethora of deltas that have developed in a wave-influenced setting. Many of these deltas are sourced in sediments by river catchments that have been variably dammed. The vulnerability status of a selection of ten deltas subject to different levels of reduction in fluvial sediment supply following damming was analysed by quantifying changes in delta protrusion area and protrusion angle over the last 30 years. The rationale for choosing these two metrics, which do not require tricky calculations of longshore bedload transport volumes and river ‘influence’, is that as sediment supply wanes, increasing relative efficiency of waves leads to longshore redistribution of reworked sediments and progressive ‘flattening’ of the delta protrusion. The results show that eight of the ten deltas (Nile, Rhône, Ebro, Ceyhan, Arno, Ombrone, Moulouya, Medjerda are in erosion, whereas two (Danube, Po show stability, but the statistical relationship between change in delta protrusion area and sediment flux reduction is poor, thus suggesting that the role of dams in causing delta shoreline erosion may have been over-estimated. But this poor relationship could also be due to a long temporal lag between dam construction and bedload removal and transport to the coast downstream of dams, and, where the delta protrusion is being eroded, to bedload trapping by shoreline engineering structures and by elongating delta-flank spits. Other potential influential factors in shoreline change include subsidence, sea-level rise, storminess, exceptional river floods, and managed sediment releases downstream of dams. A longer observation period and high-resolution sediment-budget studies will be necessary to determine more definitively to which extent continued trapping of sediment behind dams will impact overall delta stability in the Mediterranean and Black Seas. Mitigation of delta erosion is likely to

  19. A Paleogeographic and Depositional Model for the Neogene Fluvial Succession, Pishin Belt, Northwest Pakistan: Effect of Post Collisional Tectonics on Sedimentation in a Peripheral Foreland Setting

    DEFF Research Database (Denmark)

    Kasi, Aimal Khan; Kassi, Akhtar Muhammad; Umar, Muhammad

    2018-01-01

    . During the Early Miocene, subaerial sedimentation started after the final closure of the Katawaz Remnant Ocean. Based on detailed field data, twelve facies were recognized in Neogene successions exposed in the Pishin Belt. These facies were further organized into four facies associations i.e. channels......‐story sandstone and/or conglomerate channels, lateral accretion surfaces (point bars) and alluvial fans. Neogene sedimentation in the Pishin Belt was mainly controlled by active tectonism and thrusting in response to the oblique collision of the Indian Plate with the Afghan Block of the Eurasian Plate along......, crevasse splay, natural levee and floodplain facies associations. Facies associations and variations provided ample evidence to recognize a number of fluvial architectural components in the succession e.g., low‐sinuosity sandy braided river, mixed‐load meandering, high‐sinuosity meandering channels, single...

  20. Modelling sediment dynamics due to hillslope-river interactions : incorporating fluvial behaviour in landscape evolution model LAPSUS

    NARCIS (Netherlands)

    Baartman, Jantiene E. M.; van Gorp, Wouter; Temme, Arnaud J. A. M.; Schoorl, Jeroen M.

    Landscape evolution models (LEMs) simulate the three-dimensional development of landscapes over time. Different LEMs have different foci, e.g. erosional behaviour, river dynamics, the fluvial domain, hillslopes or a combination. LEM LAPSUS is a relatively simple cellular model operating on

  1. Late Noachian fluvial erosion on Mars: Cumulative water volumes required to carve the valley networks and grain size of bed-sediment

    Science.gov (United States)

    Rosenberg, Eliott N.; Head, James W., III

    2015-11-01

    Our goal is to quantify the cumulative water volume that was required to carve the Late Noachian valley networks on Mars. We employ an improved methodology in which fluid/sediment flux ratios are based on empirical data, not assumed. We use a large quantity of data from terrestrial rivers to assess the variability of actual fluid/sediment flux sediment ratios. We find the flow depth by using an empirical relationship to estimate the fluid flux from the estimated channel width, and then using estimated grain sizes (theoretical sediment grain size predictions and comparison with observations by the Curiosity rover) to find the flow depth to which the resulting fluid flux corresponds. Assuming that the valley networks contained alluvial bed rivers, we find, from their current slopes and widths, that the onset of suspended transport occurs near the sand-gravel boundary. Thus, any bed sediment must have been fine gravel or coarser, whereas fine sediment would be carried downstream. Subsequent to the cessation of fluvial activity, aeolian processes have partially redistributed fine-grain particles in the valleys, often forming dunes. It seems likely that the dominant bed sediment size was near the threshold for suspension, and assuming that this was the case could make our final results underestimates, which is the same tendency that our other assumptions have. Making this assumption, we find a global equivalent layer (GEL) of 3-100 m of water to be the most probable cumulative volume that passed through the valley networks. This value is similar to the ∼34 m water GEL currently on the surface and in the near-surface in the form of ice. Note that the amount of water required to carve the valley networks could represent the same water recycled through a surface valley network hydrological system many times in separate or continuous precipitation/runoff/collection/evaporation/precipitation cycles.

  2. Pleistocene-Holocene sedimentation of Solimões-Amazon fluvial system between the tributaries Negro and Madeira, Central Amazon

    Directory of Open Access Journals (Sweden)

    Eliezer Senna Gonçalves Júnior

    Full Text Available ABSTRACT: In the scope of Solimões-Amazon fluvial system between the Negro and Madeira tributaries, three levels of Quaternary fluvial terraces overlie the Alter do Chão and Novo Remanso formations further than 100 km southward its current main channel. Smooth undulated topography presenting low drainages density formed by sparse secondary plain channels and rounded lakes characterizes these deposits. Internally, they show point bars morphology constituted by intercalated layers of mud (silt and clay and sand forming an inclined heterolithic stratification. The asymmetric distribution of fluvial terraces allied to the records of old scroll-bars features and paleochannels in many extensions of the Solimões River suggests the predominance of a meander pattern between 240 to 6 kyears. On the other hand, the development of the current anabranching pattern took place in the last six kyears due to the Holocene sea-level rise, besides the action of neotectonics and rainforest establishment related to the increase of humidity in Amazonia.

  3. Gully annealing by aeolian sediment: field and remote-sensing investigation of aeolian-hillslope-fluvial interactions, Colorado River corridor, Arizona, USA

    Science.gov (United States)

    Sankey, Joel B.; Draut, Amy E.

    2014-01-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This study of gully annealing by aeolian sediment, spanning 95 km along the Colorado River corridor in Glen, Marble, and Grand Canyon, Arizona, USA, employed field and remote sensing observations, including digital topographic modelling. Results indicate that aeolian sediment activity can be locally effective at counteracting gully erosion. Gullies are less prevalent in areas where surficial sediment undergoes active aeolian transport, and have a greater tendency to terminate in active aeolian sand. Although not common, examples exist in the record of historical imagery of gullies that underwent infilling by aeolian sediment in past decades and evidently were effectively annealed. We thus provide new evidence for a potentially important interaction of aeolian–hillslope–fluvial processes, which could affect dryland regions substantially in ways not widely recognized. Moreover, because the biologic soil crust plays an important role in determining aeolian sand activity, and so in turn the extent of gully development, this study highlights a critical role of geomorphic–ecologic interactions in determining arid-landscape evolution.

  4. Occurrence, compositional distribution, and toxicity assessment of pyrethroid insecticides in sediments from the fluvial systems of Chaohu Lake, Eastern China.

    Science.gov (United States)

    Wang, Ji-Zhong; Bai, Ya-Shu; Wu, Yakton; Zhang, Shuo; Chen, Tian-Hu; Peng, Shu-Chuan; Xie, Yu-Wei; Zhang, Xiao-Wei

    2016-06-01

    Surface sediment-associated synthetic pyrethroid insecticides (SPs) are known to pose high risks to the benthic organisms in Chaohu Lake, a shallow lake of Eastern China. However, the pollution status of the lake's tributaries and estuaries is still unknown. The present study was conducted to investigate the occurrence, compositional distribution, and toxicity of 12 currently used SPs in the surface sediments from four important tributaries, as well as in the sediment cores at their estuaries, using GC-MS for quantification. All SPs selected were detectable, with cypermethrin, es/fenvalerate, and permethrin dominant in both surface and core sediments, suggesting that these compounds were extensively applied. Urban samples contained the highest summed concentrations of the 12 SPs analyzed (Σ12SP) in both surface and core sediments compared with rural samples, suggesting that urban areas near aquatic environments posed high risks for SPs. The mean concentration of Σ12SP in surface sediments of each river was generally higher than that found in core sediments from its corresponding estuary, perhaps implying recent increases in SP usage. Surface sediments were significantly dominated by cypermethrin and permethrin, whereas core sediments were dominated by permethrin and es/fenvalerate. The compositional distributions demonstrated a spatial variation for surface sediments because urban sediments generally contained greater percentages of permethrin and cypermethrin, but rural sediments had significant levels of es/fenvalerate and cypermethrin. In all sediment cores, the percentage of permethrin gradually increased, whereas es/fenvalerate tended to decrease, from the bottom sediments to the top, indicating that the former represented fresh input, whereas the latter represented historical residue. Most urban samples would be expected to be highly toxic to benthic organisms due to the residue of SPs based on a calculation of toxic units (TUs) using toxicity data of the

  5. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries.

    Science.gov (United States)

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-09-29

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments.

  6. Comparison of fluvial suspended-sediment concentrations and particle-size distributions measured with in-stream laser diffraction and in physical samples

    Science.gov (United States)

    Czuba, Jonathan A.; Straub, Timothy D.; Curran, Christopher A.; Landers, Mark N.; Domanski, Marian M.

    2015-01-01

    Laser-diffraction technology, recently adapted for in-stream measurement of fluvial suspended-sediment concentrations (SSCs) and particle-size distributions (PSDs), was tested with a streamlined (SL), isokinetic version of the Laser In-Situ Scattering and Transmissometry (LISST) for measuring volumetric SSCs and PSDs ranging from 1.8-415 µm in 32 log-spaced size classes. Measured SSCs and PSDs from the LISST-SL were compared to a suite of 22 datasets (262 samples in all) of concurrent suspended-sediment and streamflow measurements using a physical sampler and acoustic Doppler current profiler collected during 2010-12 at 16 U.S. Geological Survey streamflow-gaging stations in Illinois and Washington (basin areas: 38 – 69,264 km2). An unrealistically low computed effective density (mass SSC / volumetric SSC) of 1.24 g/ml (95% confidence interval: 1.05-1.45 g/ml) provided the best-fit value (R2 = 0.95; RMSE = 143 mg/L) for converting volumetric SSC to mass SSC for over 2 orders of magnitude of SSC (12-2,170 mg/L; covering a substantial range of SSC that can be measured by the LISST-SL) despite being substantially lower than the sediment particle density of 2.67 g/ml (range: 2.56-2.87 g/ml, 23 samples). The PSDs measured by the LISST-SL were in good agreement with those derived from physical samples over the LISST-SL's measureable size range. Technical and operational limitations of the LISST-SL are provided to facilitate the collection of more accurate data in the future. Additionally, the spatial and temporal variability of SSC and PSD measured by the LISST-SL is briefly described to motivate its potential for advancing our understanding of suspended-sediment transport by rivers.

  7. Stratigraphy of fluvial sediment sequences and their palaeoenvironmental information in the foreland of the Serra dos Órgãos, southeastern Brazil

    Science.gov (United States)

    Kirchner, André; Nehren, Udo; Heinrich, Jürgen

    2013-04-01

    In the hinterland of Rio de Janeiro city the rivers Guapiaçu, Macacu and Iconha originate in the Serra dos Órgãos mountain range and drain into the Atlantic Ocean. Since their channelization in the 1950s, higher flow velocities caused an incision of the rivers into the valley fills. These circumstances provide the possibility to study the alluvial deposits along the streams during low water level and allow conclusions on palaeoenvironmental change and landscape history. Sedimentological investigations of 13 exposures as well as AMS 14C measurements were carried out to investigate sediment properties and reconstruct the sedimentation history within the floodplains. These results enable to distinguish three different facies units. A late Pleistocene Unit I can be detected at the base of the observed exposures and consists of clast-supported fine to coarse gravels. It can be assumed that the gravel bodies were formed by a climatically induced erosional-depositional cycle within a braided river system. The gravels are overlaid by Unit II, a grayish to bluish loam mainly of mid-Holocene age. During generally drier climates these loams have been deposited during high water stages or flooding events as a splay facies proximal to the rivers. A reduced flow competence and relatively stable morphodynamic conditions are assumed for that period. Unit III accumulated in the late Holocene typically consists of several meters of planar or cross bedded sands to fine gravels, interfingered by loamy inclusions, buried peat bogs and organic debris. Fining-upward sequences can be frequently studied within Unit III which were completed by loamy sediments in the uppermost parts of the exposures. The increased flow competence from Unit II to Unit III seems to be a fluvial response to the increased humidity of the late Holocene as well as the enhancement of El Niño-Southern Oscillation (ENSO). Heavy rainfall likely caused higher sediment supply from the steep slopes as well as a

  8. Proglacial vs postglacial depostional environments, the opposing processes that filled the southern North Sea tunnel valleys

    DEFF Research Database (Denmark)

    Moreau, Julien; Huuse, Mads

    ­belt fashion. The formation of the 'backsets' would have been enhanced by supercooling due to the pressure drop during the upward flow of the water from the deepest part of the valleys towards the ice margin, freezing and thus capturing the sediments on the adverse slope. Recently this model has been...... river of Europe facing ice sheets and their proglacial depositional system generates a very intricate stratigraphy with multiple cross­cutting 'basins' in the form of valleys (c. 7 generations) which themselves contain up to 8 complete seismic sequences. Although the task to uild up a complete...

  9. Fluvial Apophenia

    Science.gov (United States)

    Coulthard, Tom; Armitage, John

    2017-04-01

    Apophenia describes the experience of seeing meaningful patterns or connections in random or meaningless data. Francis Bacon was one of the first to identify its role as a "human understanding is of its own nature prone to suppose the existence of more order and regularity in the world than it finds". Examples include pareidolia (seeing shapes in random patterns), gamblers fallacy (feeling past events alter probability), confirmation bias (bias to supporting a hypothesis rather than disproving), and he clustering illusion (an inability to recognise actual random data, instead believing there are patterns). Increasingly, researchers use records of past floods stored in sedimentary archives to make inferences about past environments, and to describe how climate and flooding may have changed. However, it is a seductive conclusion, to infer that drivers of landscape change can lead to changes in fluvial behaviour. Using past studies and computer simulations of river morphodynamics we explore how meaningful the link between drivers and fluvial changes is. Simple linear numerical models would suggest a direct relation between cause and effect, despite the potential for thresholds, phase changes, time-lags and damping. However, a comparatively small increase in model complexity (e.g. the Stream Power law) introducing non-linear behaviour and Increasing the complexity further can lead to the generation of time-dependent outputs despite constant forcing. We will use this range of findings to explore how apophenia may manifest itself in studies of fluvial systems, what this can mean and how we can try to account for it. Whilst discussed in the context of fluvial systems the concepts and inferences from this presentation are highly relevant to many other studies/disciplines.

  10. Delivery and fate of fluvial water and sediment to the sea: a marine geologist's view of European rivers

    Directory of Open Access Journals (Sweden)

    John D. Milliman

    2001-12-01

    Full Text Available Despite their relatively small drainage areas, European rivers reflect a wide variety of hydrologic regimes, although with very few exceptions they have been strongly affected by human activity. Scandinavian rivers (particularly those draining Iceland and western Norway can have high runoff, and, except for those draining Iceland, all have very low suspended and dissolved sediment loads. Northern and western European rivers have somewhat lower runoff, among the lowest suspended sediment yields in the world, and anthropogenically enhanced dissolved solid loads. Annual discharge of many of these rivers appears to vary inversely with the North Atlantic Oscillation index. Rivers discharging from the southern Alps into the Mediterranean Sea have relatively high runoff, high suspended sediment yields (reflecting younger, more easily erodable rocks as well as generally smaller drainage basins, and high dissolved yields, although presumably with somewhat less human influence. European rivers and their estuaries tend to reflect the terrestrial environments of their drainage basins (i.e. climate, landscape geomorphology, geology, but they also display strong anthropogenic signatures. Sediment erosion increased dramatically in the last several millenia in response to deforestation, farming and mining. In the past 50 years, however, increased soil conservation and local reversion of agricultural land to forest, as well as river diversion and dam construction, have decreased the suspended sediment loads of many European rivers. Improved mining and manufacturing techniques, as well as more effective use of fertilizers and improved waste treatment, almost surely will result in lower dissolved solids and nutrient fluxes to the coastal environments, which presently are the highest in the world. The long-range effects of changed land use on estuarine and coastal environments remain to be seen, although decreased sediment loads in the past 20-40 years have already

  11. Relationship between fluvial clastic sediment and source rock abundance in Rapti river basin of central Nepal Himalayas

    International Nuclear Information System (INIS)

    Tamrakar Naresh Kazi; Shresth Madhusudan Bhakta

    2008-01-01

    Many tributaries from carbonate sedimentary, metamorphic and igneous rocks of the Lesser Himalayan and clastic sedimentary rocks of the Sub-Himalayan Ranges carry gravelly sediments to the Rapti River. River bar sediments were analyzed for composition and texture to evaluate downstream changes in properties, and to establish relationship between proportion of clasts and the abundance of rock types in the source areas. Percent quartzite clast or granite clast increases whereas that of carbonate, schist or slate decreases along downstream. The largest grain size decreases downstream, whereas fatness index and sphericity tend to increase. Despite of little diminish in relative abundance of rock types in source areas along the river, the relative proportion of corresponding clast type shows rapid reduction (e.g. slate or phyllite or carbonate clasts) or rapid enhancement (e.g. granite clast). The relationships of quartzite clast and schist clasts with their corresponding source rocks are statistically significant suggesting that these clasts can provide clue to source rock abundance. About 85 to 94% of the gravel clasts represent rock types of the Lesser Himalayan Range suggesting that this range has been contributing enormous amount of sediments.

  12. Temperature signal in suspended sediment export from an Alpine catchment

    Science.gov (United States)

    Costa, Anna; Molnar, Peter; Stutenbecker, Laura; Bakker, Maarten; Silva, Tiago A.; Schlunegger, Fritz; Lane, Stuart N.; Loizeau, Jean-Luc; Girardclos, Stéphanie

    2018-01-01

    Suspended sediment export from large Alpine catchments ( > 1000 km2) over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation-deactivation of different sediment sources (proglacial areas, hillslopes, etc.), transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation). Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity), and the activation of different potential sources of fine sediment (sediment supply) in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment concentration through

  13. Investigations of the post-IR IRSL protocol applied to single K-feldspar grains from fluvial sediment samples

    International Nuclear Information System (INIS)

    Nian, Xiaomei; Bailey, Richard M.; Zhou, Liping

    2012-01-01

    The post-IR IRSL protocol with single K-feldspar grains was applied to three samples taken from a fluvial sedimentary sequence at the archaeological site of the Dali Man, Shaanxi Province, China. K-feldspar coarse grains were extracted for measurement. Approximately 30–40% of the grains were sufficiently bright to measure, and after application of rejection criteria based on signal strength, recuperation, recycling ratio and saturation dose, ∼10–15% of the grains were used for D e calculation. The relationship of signal decay rate and form of D e (t) with the recovery dose were investigated. The dose recovery ratios of the samples after initial bleaching with the four different light sources were within uncertainties of unity. No anomalous fading was observed. The over-dispersion of the recovered dose and D e values were similar, suggesting neither incomplete resetting of the post-IR IRSL signals nor spatially heterogeneous dose rates significantly affected the natural dose estimates. The values of D e obtained with the single K-feldspar grain post-IR IRSL protocol were in the range ∼400–490 Gy. Combining all of the measured single-grain signals for each of the individual samples (into a ‘synthetic single aliquot’) increased the D e estimates to the range ∼700–900 Gy, suggesting that the grains screened-out by the rejection criteria may have the potential to cause palaeodose over-estimation, although this finding requires a more extensive investigation. Thermally transferred signals were found in the single K-feldspar grains post-IR IRSL protocol, and the proportion of thermally transferred signal to test-dose OSL signal (stimulation at 290 °C) from the natural dose was higher than from regenerative doses, and the proportion was grain- and dose-dependent. As such, TT-post-IR IRSL signals at 290 °C have the potential to cause dose underestimation, although this may be reduced by using larger test-dose irradiations. Our study demonstrates

  14. Long-term records of cadmium and silver contamination in sediments and oysters from the Gironde fluvial-estuarine continuum - evidence of changing silver sources.

    Science.gov (United States)

    Lanceleur, Laurent; Schäfer, Jörg; Chiffoleau, Jean-François; Blanc, Gérard; Auger, Dominique; Renault, Sophie; Baudrimont, Magalie; Audry, Stéphane

    2011-11-01

    The Gironde fluvial estuarine system is impacted by historic metal pollution (e.g. Cd, Zn, Hg) and oysters (Crassostrea gigas) from the estuary mouth have shown extremely high Cd concentrations for decades. Based on recent work (Chiffoleau et al., 2005) revealing anomalously high Ag concentrations (up to 65 mg kg(-1); dry weight) in Gironde oysters, we compared long-term (~1955-2001) records of Ag and Cd concentrations in reservoir sediment with the respective concentrations in oysters collected between 1979 and 2010 to identify the origin and historical trend of the recently discovered Ag anomaly. Sediment cores from two reservoirs upstream and downstream from the main metal pollution source provided information on (i) geochemical background (upstream; Ag: ~0.3 mg kg(-1); Cd: ~0.8 mg kg(-1)) and (ii) historical trends in Ag and Cd pollution. The results showed parallel concentration-depth profiles of Ag and Cd supporting a common source and transport. Decreasing concentrations since 1986 (Cd: from 300 to 11 mg kg(-1); Ag: from 6.7 to 0.43 mg kg(-1)) reflected the termination of Zn ore treatment in the Decazeville basin followed by remediation actions. Accordingly, Cd concentrations in oysters decreased after 1988 (from 109 to 26 mg kg(-1), dry weight (dw)), while Ag bioaccumulation increased from 38 up to 116 mg kg(-1), dw after 1993. Based on the Cd/Ag ratio (Cd/Ag~2) in oysters sampled before the termination of zinc ore treatment (1981-1985) and assuming that nearly all Cd in oysters originated from the metal point source, we estimated the respective contribution of Ag from this source to Ag concentrations in oysters. The evolution over the past 30 years clearly suggested that the recent, unexplained Ag concentrations in oysters are due to increasing contributions (>70% after 1999) by other sources, such as photography, electronics and emerging Ag applications/materials. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Contemporary suspended sediment yield of a partly glaciated catchment, Riffler Bach (Tyrol, Austria)

    Science.gov (United States)

    Weber, Martin; Baewert, Henning; Morche, David

    2015-04-01

    Due to glacier retreat since the LIA (Little Ice Age) proglacial areas in high mountain landscapes are growing. These systems are characterized by a high geomorphological activity, especially in the fluvial subsystem. Despite the long tradition of geomorphological research in the European Alps there is a still a lack of understanding in the interactions between hydrology, sediment sources, sediments sinks and suspended sediment transport. As emphasized by ORWIN ET AL. (2010) those problems can be solved by gathering data in a higher frequency and/or in a higher spatial resolution or density - both leading to a big amount of data. In 2012 a gauging station was installed at the outlet of the partly glaciated catchment of the Riffler Bach (Kaunertal valley, Tyrol). During the ablation seasons in 2012 and 2013 water stage was logged automatically every 15 minutes. In both seasons discharge was measured at different water levels to calculate a stage-discharge relation. Additionally, water samples were taken by an automatic water sampler. Within 16 sampling cycles with sampling frequencies ranging from 1 to 24 hours 389 water samples have been collected. The samples were filtered to calculate the suspended sediment concentration (SSC) of each sample. Furthermore, the climate station Weißsee provided meteorological data at a 15 minute interval. Due to the high variability in suspended sediment transport in proglacial rivers it is impossible to compute a robust annual Q-SSC-relation. Hence, two other approaches were used to calculate the suspended sediment load (SSL) and the suspended sediment yield (SSY): A) Q-SSC-relations for every single sampling cycle (e.g. GEILHAUSEN ET AL. 2013) B) Q-SSC-relations based on classification of dominant runoff-generating processes (e.g. ORWIN AND SMART 2004). The first approach uses commonly operated analysis methods that are well understood. While the hydro-climatic approach is more feasible to explain discharge generation and to

  16. Petrology and provenance of the Neogene fluvial succession in Pishin Belt (Katawaz Basin) western Pakistan: Implications for sedimentation in peripheral forelands basins

    DEFF Research Database (Denmark)

    Kasi, Aimal Khan; Kassi, Aktar Muhammad; Friis, Henrik

    2017-01-01

    Sandstones and conglomerates of the Neogene fluvial succession in Pishin Belt (Katawaz Basin), Pakistan were studied for the first time to understand the composition, provenance and tectonic settings of the source areas. Sandstones of the Miocene Dasht Murgha Group and Pliocene Malthanai Formatio...

  17. Late quaternary evolution of the Meuse fluvial system and its sediment composition : a reconstruction based on bulk sample geochemistry and forward modelling

    NARCIS (Netherlands)

    Tebbens, L.A.

    1999-01-01

    All fluvial systems ultimately drain into alluvial basins, where the weathering products of their upstream drainage areas accumulate over a time-span varying from 10 0to 10 6years. Most silted-up alluvial basins are low-gradient deltas that are

  18. Use of mineral magnetic concentration data as a particle size proxy: a case study using marine, estuarine and fluvial sediments in the Carmarthen Bay area, South Wales, U.K.

    Science.gov (United States)

    Booth, C A; Walden, J; Neal, A; Smith, J P

    2005-07-15

    Compositional (non-magnetic) data can correlate strongly with particle size, which deems it appropriate as a particle size proxy and, therefore, a reliable means of normalising analytical data for particle size effects. Previous studies suggest magnetic concentration parameters represent an alternative means of normalising for these effects and, given the speed, low-cost and sensitivity of the measurements may, therefore, offer some advantages over other compositional signals. In this work, contemporary sediments from a range of depositional environments have been analysed with regard to their mineral magnetic concentration and textural characteristics, to observe if the strength and nature of the relationship identified in previous studies is universal. Our data shows magnetic parameters (chi(LF), chi(ARM) and SIRM) possess contrasting relationships with standard textural parameters for sediment samples collected from marine (Carmarthen Bay), estuarine (Gwendraeth Estuary) and fluvial (Rivers Gwendraeth Fach and Gwendraeth Fawr) settings. Magnetic concentrations of sediments from both the marine and estuarine environments are highly influenced by the magnetic contribution of finer particle sizes; Gwendraeth Fawr River sediments are influenced by the magnetic contribution of coarser particle sizes, while sediments from the Gwendraeth Fach River are not influenced significantly by any variations in textural properties. These results indicate mineral magnetic measurements have considerable potential as a particle size proxy for particular sedimentary environments, which in certain instances could be useful for geochemical, sediment transport, and sediment provenance studies. However, the data also highlight the importance of fully determining the nature of the relationship between sediment particle size and magnetic properties before applying mineral magnetic data as a particle size proxy.

  19. Natural radionuclide behaviour in the fluvial environment

    International Nuclear Information System (INIS)

    Murray, A.S.; Olley, J.M.; Wallbrink, P.J.

    1992-01-01

    Variable concentrations of uranium and thorium series nuclides and 7 Be have been measured in soils and sediments. Strong correlations between 226 Ra and thorium series nuclides were found in sediments but not in soils. Laboratory measurements suggest the correlations arise from particle size and density dependent transport, and transport-related abrasion of iron oxide coatings. These correlations are characteristic of the sampled location, and provide a method for identifying the source areas which dominate the fluvial nuclide flux, and by implication, the associated sediment flux. Cosmogenic 7 Be (half-life 53 d) also contributes to nuclide fluxes. Over an 18 month period, individual rainstorms increased the 7 Be soil inventory by 10% on average. Dry precipitation contributed less than 10% to the total. Most 7 Be was retained within the top few millimetres of soil. It is deduced that 7 Be presence in fluvial sediments indicates a significant surface source contribution to the overall nuclide and sediment flux. (author)

  20. Volcanogenic Fluvial-Lacustrine Environments in Iceland and Their Utility for Identifying Past Habitability on Mars

    Directory of Open Access Journals (Sweden)

    Claire Cousins

    2015-02-01

    Full Text Available The search for once-habitable locations on Mars is increasingly focused on environments dominated by fluvial and lacustrine processes, such as those investigated by the Mars Science Laboratory Curiosity rover. The availability of liquid water coupled with the potential longevity of such systems renders these localities prime targets for the future exploration of Martian biosignatures. Fluvial-lacustrine environments associated with basaltic volcanism are highly relevant to Mars, but their terrestrial counterparts have been largely overlooked as a field analogue. Such environments are common in Iceland, where basaltic volcanism interacts with glacial ice and surface snow to produce large volumes of meltwater within an otherwise cold and dry environment. This meltwater can be stored to create subglacial, englacial, and proglacial lakes, or be released as catastrophic floods and proglacial fluvial systems. Sedimentary deposits produced by the resulting fluvial-lacustrine activity are extensive, with lithologies dominated by basaltic minerals, low-temperature alteration assemblages (e.g., smectite clays, calcite, and amorphous, poorly crystalline phases (basaltic glass, palagonite, nanophase iron oxides. This paper reviews examples of these environments, including their sedimentary deposits and microbiology, within the context of utilising these localities for future Mars analogue studies and instrument testing.

  1. Volcanogenic fluvial-lacustrine environments in iceland and their utility for identifying past habitability on Mars.

    Science.gov (United States)

    Cousins, Claire

    2015-02-16

    The search for once-habitable locations on Mars is increasingly focused on environments dominated by fluvial and lacustrine processes, such as those investigated by the Mars Science Laboratory Curiosity rover. The availability of liquid water coupled with the potential longevity of such systems renders these localities prime targets for the future exploration of Martian biosignatures. Fluvial-lacustrine environments associated with basaltic volcanism are highly relevant to Mars, but their terrestrial counterparts have been largely overlooked as a field analogue. Such environments are common in Iceland, where basaltic volcanism interacts with glacial ice and surface snow to produce large volumes of meltwater within an otherwise cold and dry environment. This meltwater can be stored to create subglacial, englacial, and proglacial lakes, or be released as catastrophic floods and proglacial fluvial systems. Sedimentary deposits produced by the resulting fluvial-lacustrine activity are extensive, with lithologies dominated by basaltic minerals, low-temperature alteration assemblages (e.g., smectite clays, calcite), and amorphous, poorly crystalline phases (basaltic glass, palagonite, nanophase iron oxides). This paper reviews examples of these environments, including their sedimentary deposits and microbiology, within the context of utilising these localities for future Mars analogue studies and instrument testing.

  2. Implications from Sedimentary records in Fluvial Terraces for Geomorphological Evolution in the Puli Basin, Taiwan

    NARCIS (Netherlands)

    Tseng, C.H.; Wenske, D.; Böse, M.; Reimann, T.; Lüthgens, C.; Frechen, Manfred

    2013-01-01

    Fluvial terraces play an important role for research on previous geomorphic processes as their sediments can record various sedimentation stages. In the mountains of central Taiwan, however, the formation time of sediments in the Puli Basin is still unclear. In this study, we investigate the fluvial

  3. Proglacial Groundwater Flux and Storage in the Cordillera Blanca, Peru

    Science.gov (United States)

    Chavez, D.; McKenzie, J. M.; Baraer, M.; Mark, B. G.

    2012-12-01

    As tropical glaciers continue to rapidly retreat in the Cordillera Blanca, Peru, dry-season water resources are becoming more dependent on groundwater baseflow. Therefore, understanding the flux and storage of proglacial groundwater is necessary to forecast how groundwater storage can offset decreasing water resources. Recent studies of the Rio Santa Watershed, which drains the western slopes of the Cordillera Blanca, have identified that groundwater is the largest contributor to outflow from many watersheds during the dry season and that the flux of groundwater is temporarily available (clay to silt sized glaciolacustrine material at each drill site. This layer was typically less than 5 m in thickness and had a low hydraulic conductivity (clay layer were water bearing units of course material (either well-sorted sand/gravel or talus deposits) with an average hydraulic conductivity of 10-5 m/s. Additionally numerous discontinuous sand lenses and localized glaciofluvial gravel deposits were observed within the clay layer. The glaciolacustrine deposits behave as confining units that were capable of generating localized artesian conditions in the coarse grain units. The occurrence of the clay units adjacent to the main stream channels suggests that the flatness of the valley floors is not the result of river meander. The coarse grained units have the potential to act as important aquifers with significant groundwater storage and flow. Our preliminary findings indicate that the course grained units are important hydrogeological conduits with the ability to buffer low flow conditions in proglacial streams during the dry season. We present a new schematic model of how groundwater moves through these important proglacial environments, providing temporal storage of glacial meltwater and precipitation.

  4. Effect of Meteorological Patterns on the Intensity of Streambank Erosion in a Proglacial Gravel-Bed River (Spitsbergen

    Directory of Open Access Journals (Sweden)

    Waldemar Kociuba

    2018-03-01

    Full Text Available Lower parts of proglacial rivers are commonly assumed to be characterised by a multiannual aggradation trend, and streambank erosion is considered to occur rarely and locally. In the years 2009–2013, detailed measurements of channel processes were performed in the Scott River (SW Spitsbergen. More than 60% of its surface area (10 km2 occupies non-glaciated valleys. Since the end of the Little Ice Age, the Scott Glacier has been subject to intensive retreat, resulting in the expansion of the terminoglacial and paraglacial zones. In this area, the Scott River develops an alluvial valley with a proglacial river, which has led to a comparatively low rate of fluvial transport, dominance of suspension over bedload, and the occurrence of various channel patterns. Measurements, performed in the lower course of the valley in two fixed cross-sections of the Scott River channel, document variable annual tendencies with a prevalence of scour over deposition processes in the channel bottom. The balance of scour and fill also differs in particular measurement cross-sections and during the summer season. The maximum erosion indices (1.7 m2 were related to single periods of floods with snow-glacier melt and rainfall origin. The contribution of streambank erosion was usually lower than that of deep erosion both in the annual cycle and during extreme events. The channel-widening index also suggests variable annual (from −1 m to +1 m and inter-annual tendencies. During a three-day flood from August 2013, in a measurement profile at the mouth of the river, the NNW bank was laterally shifted by as much as 3 m. Annual and inter-seasonal indices of total channel erosion, however, show that changes in the channel-bottom morphology are equalised relatively fast, and in terms of balance the changes usually do not exceed 0.5% of a cross section’s area.

  5. Sudden disintegration of ice in the glacial-proglacial transition zone of the largest glacier in Austria

    Science.gov (United States)

    Kellerer-Pirklbauer, Andreas; Avian, Michael; Hirschmann, Simon; Lieb, Gerhard Karl; Seier, Gernot; Sulzer, Wolfgang; Wakonigg, Herwig

    2017-04-01

    Rapid deglaciation does not only reveal a landscape which is prone to rapid geomorphic changes and sediment reworking but also the glacier ice itself might be in a state of disintegration by ice melting, pressure relief, crevasse formation, ice collapse or changes in the glacier's hydrology. In this study we considered the sudden disintegration of glacier ice in the glacial-proglacial transition zone of Pasterze Glacier. Pasterze Glacier is a typical alpine valley glacier and covers currently some 16.5 km2 making it to the largest glacier in Austria. This glacier is an important site for alpine mass tourism in Austria related to a public high alpine road and a cable car which enable access to the glacier rather easily also for unexperienced mountaineers. Spatial focus in our research is given on two particular study areas where several ice-mass movement events occurred during the 2015- and 2016-melting seasons. The first study area is a crevasse field at the lower third of the glacier tongue. This lateral crevasse field has been substantially modified during the last two melting seasons particularly because of thermo-erosional effects of a glacial stream which changed at this site from subglacial (until 2015) to glacier-lateral revealing a several tens of meters high unstable ice cliff prone to ice falls of different magnitudes. The second study area is located at the proglacial area. At Pasterze Glacier the proglacial area is widely influenced by dead-ice bodies of various dimensions making this area prone to slow to sudden geomorphic changes caused by ice mass changes. A particular ice-mass movement event took place on 20.09.2016. Within less than one hour the surface of the proglacial area changed substantially by tilting, lateral shifting, and subsidence of the ground accompanied by complete ice disintegration of once-debris covered ice. To understand acting processes at both areas of interest and to quantify mass changes we used field observations, terrain

  6. Assessing the continuity of the upland sediment cascade, fluvial geomorphic response of an upland river to an extreme flood event: Storm Desmond, Cumbria, UK.

    Science.gov (United States)

    Joyce, Hannah; Hardy, Richard; Warburton, Jeff

    2017-04-01

    Hillslope erosion and accelerated lake sedimentation are often viewed as the source and main storage elements in the upland sediment cascade. However, the continuity of sediment transfer through intervening valley systems has rarely been evaluated during extreme events. Storm Desmond (4th - 6th December, 2015) produced record-breaking rainfall maximums in the UK: 341.4 mm rainfall was recorded in a 24 hour period at Honister Pass, Western Lake District, and 405 mm of rainfall was recorded in a 38 hour period at Thirlmere, central Lake District. The storm was the largest in a 150 year local rainfall series, and exceeded previous new records set in the 2005 and 2009 floods. During this exceptional event, rivers over topped flood defences, and caused damage to over 257 bridges, flooded over 5000 homes and businesses, and caused substantial geomorphic change along upland rivers. This research quantifies the geomorphic and sedimentary response to Storm Desmond along a regulated gravel-bed river: St John's Beck. St John's Beck (length 7.8 km) is a channelised low gradient river (0.005) downstream of Thirlmere Reservoir, which joins the River Greta, and flows through Keswick, where major flooding has occurred, before discharging into Bassenthwaite Lake. St John's Beck has a history of chronic sediment aggradation, erosion and reports of historic flooding date back to 1750. During Storm Desmond, riverbanks were eroded, coarse sediment was deposited across valuable farmland and access routes were destroyed, including a bridge and footpaths, disrupting local business. A sediment budget framework has been used to quantify geomorphic change and sedimentary characteristics of the event along St John's Beck. The volume and sediment size distribution of flood deposits, channel bars, tributary deposits, floodplain scour, riverbank erosion and in-channel bars were measured directly in the field and converted to mass using local estimates of coarse and fine sediment bulk densities

  7. Martian Fluvial Conglomerates at Gale Crater

    Science.gov (United States)

    Williams, R. M. E.; Grotzinger, J. P.; Dietrich, W. E.; Gupta, S.; Sumner, D. Y.; Wiens, R. C.; Mangold, N.; Malin, M. C.; Edgett, K. S.; Maurice, S.; Forni, O.; Gasnault, O.; Ollila, A.; Newsom, H. E.; Dromart, G.; Palucis, M. C.; Yingst, R. A.; Anderson, R. B.; Herkenhoff, K. E.; Le Mouélic, S.; Goetz, W.; Madsen, M. B.; Koefoed, A.; Jensen, J. K.; Bridges, J. C.; Schwenzer, S. P.; Lewis, K. W.; Stack, K. M.; Rubin, D.; Kah, L. C.; Bell, J. F.; Farmer, J. D.; Sullivan, R.; Van Beek, T.; Blaney, D. L.; Pariser, O.; Deen, R. G.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Edgar, Lauren; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sobrón Sánchez, Pablo; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Aparicio, Carlos Armiens; Caride Rodríguez, Javier; Carrasco Blázquez, Isaías; Gómez Gómez, Felipe; Elvira, Javier Gómez; Hettrich, Sebastian; Lepinette Malvitte, Alain; Marín Jiménez, Mercedes; Frías, Jesús Martínez; Soler, Javier Martín; Torres, F. Javier Martín; Molina Jurado, Antonio; Sotomayor, Luis Mora; Muñoz Caro, Guillermo; Navarro López, Sara; González, Verónica Peinado; García, Jorge Pla; Rodriguez Manfredi, José Antonio; Planelló, Julio José Romeral; Alejandra Sans Fuentes, Sara; Sebastian Martinez, Eduardo; Torres Redondo, Josefina; O'Callaghan, Roser Urqui; Zorzano Mier, María-Paz; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; Uston, Claude d.; Lasue, Jérémie; Lee, Qiu-Mei; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Szopa, Cyril; Robert, François; Sautter, Violaine; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; de la Torre Juarez, Manuel; Vasavada, Ashwin R.; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Blanco Ávalos, Juan José; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; González, Rafael Navarro; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Kortmann, Onno; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Jakosky, Bruce; Zunic, Tonci Balic; Frydenvang, Jens; Kinch, Kjartan; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mellin, Reinhold Mueller; Schweingruber, Robert Wimmer; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2013-05-01

    Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.

  8. Dynamics of metallic contaminants at a basin scale--Spatial and temporal reconstruction from four sediment cores (Loire fluvial system, France).

    Science.gov (United States)

    Dhivert, E; Grosbois, C; Courtin-Nomade, A; Bourrain, X; Desmet, M

    2016-01-15

    From the 19th century, the Loire basin (France) presents potentially pollutant activities such as mining and heavy industries. This paper shows spatio-temporal distribution of trace elements in sediments at a basin-scale, based on a comparison of archived temporal signals recorded in four sedimentary cores. Anthropogenic sources contributing to sediment contamination are also characterized, using geochemical signatures recorded in river bank sediments of the most industrialized tributaries. This study highlights upstream-downstream differences concerning recorded contamination phases in terms of spatial influence and temporality of archiving processes. Such differences were related to (i) various spatial influences of contamination sources and (ii) polluted sediments dispersion controlled by transport capacity of metal-carrier phases and hydrosedimentary dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Fluvial geomorphology and suspended-sediment transport during construction of the Roanoke River Flood Reduction Project in Roanoke, Virginia, 2005–2012

    Science.gov (United States)

    Jastram, John D.; Krstolic, Jennifer L.; Moyer, Douglas; Hyer, Kenneth

    2015-09-30

    Beginning in 2005, after decades of planning, the U.S. Army Corps of Engineers (USACE) undertook a major construction effort to reduce the effects of flooding on the city of Roanoke, Virginia—the Roanoke River Flood Reduction Project (RRFRP). Prompted by concerns about the potential for RRFRP construction-induced geomorphological instability and sediment liberation and the detrimental effects these responses could have on the endangered Roanoke logperch (Percina rex), the U.S. Geological Survey (USGS) partnered with the USACE to provide a real-time warning network and a long-term monitoring program to evaluate geomorphological change and sediment transport in the affected river reach. Geomorphological change and suspended-sediment transport are highly interdependent and cumulatively provide a detailed understanding of the sedimentary response, or lack thereof, of the Roanoke River to construction of the RRFRP.

  10. Effect-directed analysis for estrogenic compounds in a fluvial sediment sample using transgenic cyp19a1b-GFP zebrafish embryos.

    Science.gov (United States)

    Fetter, Eva; Krauss, Martin; Brion, François; Kah, Olivier; Scholz, Stefan; Brack, Werner

    2014-09-01

    Xenoestrogens may persist in the environment by binding to sediments or suspended particulate matter serving as long-term reservoir and source of exposure, particularly for organisms living in or in contact with sediments. In this study, we present for the first time an effect-directed analysis (EDA) for identifying estrogenic compounds in a sediment sample using embryos of a transgenic reporter fish strain. In the tg(cyp19a1b-GFP) transgenic zebrafish strain, the expression of GFP (green fluorescent protein) in the brain is driven by an oestrogen responsive element in the promoter of the cyp19a1b (aromatase) gene. The selected sediment sample of the Czech river Bilina had already been analysed in a previous EDA using the yeast oestrogen screening assay and had revealed fractions containing estrogenic compounds. When normal phase HPLC (high performance liquid chromatography) fractionation was used for the separation of the sediment sample, the biotest with transgenic fish embryos revealed two estrogenic fractions. Chemical analysis of candidate compounds in these sediment fractions suggested alkylphenols and estrone as candidate compounds responsible for the observed estrogenic effect. Alkylphenol concentrations could partially explain the estrogenicity of the fractions. However, xenoestrogens below the analytical detection limit or non-targeted estrogenic compounds have probably also contributed to the sample's estrogenic potency. The results indicated the suitability of the tg(cyp19a1b-GFP) fish embryo for an integrated chemical-biological analysis of estrogenic effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Signatures and significance of aeolian, fluvial, bacterial and diagenetic magnetic mineral fractions in Late Quaternary marine sediments off Gambia, NW Africa

    NARCIS (Netherlands)

    Just, A.; Dekkers, M.J.; Dobeneck, T. von; Hoesel, A. van; Bickert, T.

    Two gravity cores retrieved off NW Africa at the border of arid and subtropical environments (GeoB 13602–1 and GeoB 13601–4) were analyzed to extract records of Late Quaternary climate change and sediment export. We apply end-member (EM) unmixing to 350 acquisition curves of isothermal remanent

  12. Temperature signal in suspended sediment export from an Alpine catchment

    Directory of Open Access Journals (Sweden)

    A. Costa

    2018-01-01

    Full Text Available Suspended sediment export from large Alpine catchments ( >  1000 km2 over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation–deactivation of different sediment sources (proglacial areas, hillslopes, etc., transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation. Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity, and the activation of different potential sources of fine sediment (sediment supply in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment

  13. Evaluation of the distribution of rare earths elements in fluvial sediments, rocks and wastes correlated to the Caldas Ore Treatment Unit (UTM-Caldas), Minas Gerais State, Brazil

    International Nuclear Information System (INIS)

    Possas, Clara R.; Moura, Rodrigo R. de; Carvalho Filho, Carlos A. de; Menezes, Maria Ângela de B.C.

    2017-01-01

    The Caldas Ore Treatment Unit (UTM-Caldas), located at the municipality of Caldas (Minas Gerais-Brazil), was a site for the exploration and treatment of uranium between 1982 and 1995. The area is located in the Alcalino Complex of Poços de Caldas, a geologically peculiar region, composed of alkaline igneous rocks with exotic minerals, some rich in rare earth elements (REE). The UTM-Caldas uranium deposit was defined as a U, Th, Zr, Mo and REE mineralization. The objective of the present study was to evaluate the distribution of REEs in river sediments adjacent to UTM-Caldas and to verify if effluents from the mine are interfering in the concentration of REEs in these sediments. To develop the research, five samples were collected in 2011, including sediments from the Soberbo river, the waste dam and the tank of radio precipitation. The samples were prepared in the Sedimentology Laboratory of the Center for the Development of Nuclear Technology (CDTN), where the rocks and tailings were crushed, ground and pulverized while the sediments were sieved and an aliquot of the silt-clay fraction was separated for analysis at the CDTN. The analytical method employed was Neutron Activation Analysis (ANA), method k 0 . The samples were irradiated in the TRIGA MARK I IPR-R1 research reactor, and the REEs identified by gamma-spectrometry in the Neutron Activation Laboratory (LAN-CDTN). The results showed a distribution model of the REEs in the study area, which may be useful in evaluating of the environmental impacts of effluents from UTM-Caldas, now in the process of decommissioning

  14. 3D Reconstruction of a Fluvial Sediment Slug from Source to Sink: reach-scale modeling of the Dart River, NZ

    Science.gov (United States)

    Brasington, J.; Cook, S.; Cox, S.; James, J.; Lehane, N.; McColl, S. T.; Quincey, D. J.; Williams, R. D.

    2014-12-01

    Following heavy rainfall on 4/1/14, a debris flow at Slip Stream (44.59 S 168.34 E) introduced >106 m3 of sediment to the Dart River valley floor in NZ Southern Alps. Runout over an existing fan dammed the Dart River causing a sudden drop in discharge downstream. This broad dam was breached quickly; however the temporary loss of conveyance impounded a 3 km lake with a volume of 6 x 106 m3 and depths that exceed 10 m. Quantifying the impact of this large sediment pulse on the Dart River is urgently needed to assess potential sedimentation downstream and will also provide an ideal vehicle to test theories of bed wave migration in large, extensively braided rivers. Recent advances in geomatics offer the opportunity to study these impacts directly through the production of high-resolution DEMs. These 3D snapshots can then be compared through time to quantify the morphodynamic response of the channel as it adjusts to the change in sediment supply. In this study we describe the methods and results of a novel survey strategy designed to capture of the complex morphology of the Dart River along a remote 40 km reach, from the upstream landslide source to its distal sediment sink in Lake Wakatipu. The scale of this system presents major logistical and methodological challenges, and hitherto would have conventionally be addressed with airborne laser scanning, bringing with it significant deployment constraints and costs. By contrast, we present sub-metre 3D reconstructions of the system (Figure 1), derived from highly redundant aerial photography shot with a non-metric camera from a helicopter survey that extended over an 80 km2 area. Structure-from-Motion photogrammetry was used to solve simultaneously camera position, pose and derive a 3D point cloud based on over 4000 images. Reconstructions were found to exhibit significant systematic error resulting from the implicit estimation of the internal camera orientation parameters, and we show how these effects can be minimized

  15. Fluvial geomorphology on Earth-like planetary surfaces: A review.

    Science.gov (United States)

    Baker, Victor R; Hamilton, Christopher W; Burr, Devon M; Gulick, Virginia C; Komatsu, Goro; Luo, Wei; Rice, James W; Rodriguez, J A P

    2015-09-15

    Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.

  16. Preface to anthropogenic fluvial sedimentation: Centennial celebration of G.K. Gilbert's Hydraulic-Mining Débris in the Sierra Nevada

    Science.gov (United States)

    James, L. Allan; Phillips, Jonathan D.; Lecce, Scott A.

    2017-10-01

    This special issue celebrates the centennial of the publication of G.K. Gilbert's (1917) monograph, Hydraulic-Mining Débris in the Sierra Nevada, U.S. Geological Survey Professional Paper 105 (PP105). Reasons to celebrate PP105 are manifold. It was the last of four classic monographs that Gilbert wrote in a career that spanned five decades. The monograph, PP105, introduced several important concepts and provided an integrated view of watersheds that was uncommon in its day. It also provided an extreme, lucid example of anthropogenic changes and legacy sediment and how to approach such large-scale phenomena from an objective, quantitative basis.

  17. Diurnal, semidiurnal, and fortnightly tidal components in orthotidal proglacial rivers.

    Science.gov (United States)

    Briciu, Andrei-Emil

    2018-02-22

    The orthotidal rivers are a new concept referring to inland rivers influenced by gravitational tides through the groundwater tides. "Orthotidal signals" is intended to describe tidal signals found in inland streamwaters (with no oceanic input); these tidal signals were locally generated and then exported into streamwaters. Here, we show that orthotidal signals can be found in proglacial rivers due to the gravitational tides affecting the glaciers and their surrounding areas. The gravitational tides act on glacier through earth and atmospheric tides, while the subglacial water is affected in a manner similar to the groundwater tides. We used the wavelet analysis in order to find tidally affected streamwaters. T_TIDE analyses were performed for discovering the tidal constituents. Tidal components with 0.95 confidence level are as follows: O1, PI1, P1, S1, K1, PSI1, M2, T2, S2, K2, and MSf. The amplitude of the diurnal tidal constituents is strongly influenced by the daily thermal cycle. The average amplitude of the semidiurnal tidal constituents is less altered and ranges from 0.0007 to 0.0969 m. The lunisolar synodic fortnightly oscillation, found in the time series of the studied river gauges, is a useful signal for detecting orthotidal rivers when using noisier data. The knowledge of the orthotidal oscillations is useful for modeling fine resolution changes in rivers.

  18. Mineralogic variations in fluvial sediments contaminated by mine tailings as determined from AVIRIS data, Coeur D'Alene River Valley, Idaho

    Science.gov (United States)

    Farrand, W. H.; Harsanyi, Joseph C.

    1995-01-01

    The success of imaging spectrometry in mineralogic mapping of natural terrains indicates that the technology can also be used to assess the environmental impact of human activities in certain instances. Specifically, this paper describes an investigation into the use of data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) for mapping the spread of, and assessing changes in, the mineralogic character of tailings from a major silver and base metal mining district. The area under investigation is the Coeur d'Alene River Valley in northern Idaho. Mining has been going on in and around the towns of Kellogg and Wallace, Idaho since the 1880's. In the Kellogg-Smelterville Flats area, west of Kellogg, mine tailings were piled alongside the South Fork of the Coeur d'Alene River. Until the construction of tailings ponds in 1968 much of these waste materials were washed directly into the South Fork. The Kellogg-Smelterville area was declared an Environmental Protection Agency (EPA) Superfund site in 1983 and remediation efforts are currently underway. Recent studies have demonstrated that sediments in the Coeur d'Alene River and in the northern part of Lake Coeur d'Alene, into which the river flows, are highly enriched in Ag, Cu, Pb, Zn, Cd, Hg, As, and Sb. These trace metals have become aggregated in iron oxide and oxyhydroxide minerals and/or mineraloids. Reflectance spectra of iron-rich tailing materials are shown. Also shown are spectra of hematite and goethite. The broad bandwidth and long band center (near 1 micron) of the Fe(3+) crystal-field band of the iron-rich sediment samples combined with the lack of features on the Fe(3+) -O(2-) charge transfer absorption edge indicates that the ferric oxide and/or oxyhydroxide in these sediments is poorly crystalline to amorphous in character. Similar features are seen in poorly crystalline basaltic weathering products (e.g., palagonites). The problem of mapping and analyzing the downriver occurrences of iron

  19. A fluvial mercury budget for Lake Ontario.

    Science.gov (United States)

    Denkenberger, Joseph S; Driscoll, Charles T; Mason, Edward; Branfireun, Brian; Warnock, Ashley

    2014-06-03

    Watershed mercury (Hg) flux was calculated for ten inflowing rivers and the outlet for Lake Ontario using empirical measurements from two independent field-sampling programs. Total Hg (THg) flux for nine study watersheds that directly drain into the lake ranged from 0.2 kg/yr to 13 kg/yr, with the dominant fluvial THg load from the Niagara River at 154 kg/yr. THg loss at the outlet (St. Lawrence River) was 68 kg/yr and has declined approximately 40% over the past decade. Fluvial Hg inputs largely (62%) occur in the dissolved fraction and are similar to estimates of atmospheric Hg inputs. Fluvial mass balances suggest strong in-lake retention of particulate Hg inputs (99%), compared to dissolved total Hg (45%) and methyl Hg (22%) fractions. Wetland land cover is a good predictor of methyl Hg yield for Lake Ontario watersheds. Sediment deposition studies, coupled atmospheric and fluvial Hg fluxes, and a comparison of this work with previous measurements indicate that Lake Ontario is a net sink of Hg inputs and not at steady state likely because of recent decreases in point source inputs and atmospheric Hg deposition.

  20. Origin and Distribution of Methane Entrapped in Calcareous Alpine Proglacial Soil

    Science.gov (United States)

    Zhu, Biqing; Schroth, Martin H.; Henneberger, Ruth; Kübler, Manuel; Zeyer, Josef

    2017-04-01

    Methane (CH4) is an important greenhouse gas. The atmospheric methane concentration has been increasing in recent years, which is caused by imbalance between sources and sinks. Methane has been recently discovered to be entrapped in calcareous Swiss Alpine proglacial soil. This CH4 can be released upon mechanical impact and acidification. However, the amount, distribution and environmental fate of this entrapped CH4 in proglacial environment remain unknown. The entrapped CH4 in proglacial soil may be of modern or ancient origin. Modern origin includes ongoing or recent microbial CH4 production (methanogenesis) in subglacial or proglacial environments. An ancient origin mainly refers to CH4 produced thermogenically. This soil entrapped CH4 might be a common phenomenon along the entire glacial forefield, or it might only be present at few locations and depth. We present results of studies from two Swiss Alpine Glacier catchments, Wildstrubel Glacier (Canton Valais) and the Griessfirn Glacier (Canton Uri). Our main goals were 1) to assess the origin of CH4 entrapped in various glacial environments (subglacial, proglacial and supraglacial, soil and bedrocks) using geochemical and microbiological evidence; 2) to assess the spatial distribution of entrapped CH4. We performed geochemical analysis (CH4 content, gas wetness ([C1]/[C2-C3] alkane ratio), CH4 stable 13C- and 2H-isotopes, TOC) on subglacial, proglacial, and supraglacial soil samples collected from well-aerated and water-logged locations. Geochemical analysis was also selectively conducted on pore-water samples and on rock samples collected from different geological formations along the catchments. We also performed batch incubations on soil samples collected from subglacial, proglacial water-logged and supraglacial zones. In addition, for the aforementioned three types of samples, we also performed molecular analyses targeting the mcrA gene, which encodes the α-subunit of the enzyme methyl-coenzyme M reductase

  1. Understanding Sediment Sources, Pathways, and Sinks in Regional Sediment Management: Application of Wash Load and Bed-Material Load Concept

    National Research Council Canada - National Science Library

    Biedenham, David S; Hubbard, Lisa C; Thome, Colin R; Watson, Chester C

    2006-01-01

    ... through the fluvial system for sediments derived from various bed, bank, gully, and catchment sources thereby providing a reliable analytical foundation for effective regional sediment management...

  2. Holocene glacier activity reconstructed from proglacial lake Gjøavatnet on Amsterdamøya, NW Svalbard

    Science.gov (United States)

    de Wet, Gregory A.; Balascio, Nicholas L.; D'Andrea, William J.; Bakke, Jostein; Bradley, Raymond S.; Perren, Bianca

    2018-03-01

    Well-dated and highly resolved paleoclimate records from high latitudes allow for a better understanding of past climate change. Lake sediments are excellent archives of environmental change, and can record processes occurring within the catchment, such as the growth or demise of an upstream glacier. Here we present a Holocene-length, multi-proxy lake sediment record from proglacial lake Gjøavatnet on the island of Amsterdamøya, northwest Svalbard. Today, Gjøavatnet receives meltwater from the Annabreen glacier and contains a record of changes in glacier activity linked to regional climate conditions. We measured changes in organic matter content, dry bulk density, bulk carbon isotopes, elemental concentrations via Itrax core-scanning, and diatom community composition to reconstruct variability in glacier extent back through time. Our reconstruction indicates that glacially derived sedimentation in the lake decreased markedly at ∼11.1 cal kyr BP, although a glacier likely persisted in the catchment until ∼8.4 cal kyr BP. During the mid-Holocene (∼8.4-1.0 cal kyr BP) there was significantly limited glacial influence in the catchment and enhanced deposition of organic-rich sediment in the lake. The deposition of organic rich sediments during this time was interrupted by at least three multi-centennial intervals of reduced organic matter accumulation (∼5.9-5.0, 2.7-2.0, and 1.7-1.5 cal kyr BP). Considering our chronological information and a sedimentological comparison with intervals of enhanced glacier input, we interpret these intervals not as glacial advances, but rather as cold/dry episodes that inhibited organic matter production in the lake and surrounding catchment. At ∼1.0 cal kyr BP, input of glacially derived sediment to Gjøavatnet abruptly increased, representing the rapid expansion of the Annabreen glacier.

  3. Evaluating the use of in-situ turbidity measurements to quantify fluvial sediment and phosphorus concentrations and fluxes in agricultural streams.

    Science.gov (United States)

    Stutter, Marc; Dawson, Julian J C; Glendell, Miriam; Napier, Fiona; Potts, Jacqueline M; Sample, James; Vinten, Andrew; Watson, Helen

    2017-12-31

    Accurate quantification of suspended sediments (SS) and particulate phosphorus (PP) concentrations and loads is complex due to episodic delivery associated with storms and management activities often missed by infrequent sampling. Surrogate measurements such as turbidity can improve understanding of pollutant behaviour, providing calibrations can be made cost-effectively and with quantified uncertainties. Here, we compared fortnightly and storm intensive water quality sampling with semi-continuous turbidity monitoring calibrated against spot samples as three potential methods for determining SS and PP concentrations and loads in an agricultural catchment over two-years. In the second year of sampling we evaluated the transferability of turbidity calibration relationships to an adjacent catchment with similar soils and land cover. When data from nine storm events were pooled, both SS and PP concentrations (all in log space) were better related to turbidity than they were to discharge. Developing separate calibration relationship for the rising and falling limbs of the hydrograph provided further improvement. However, the ability to transfer calibrations between adjacent catchments was not evident as the relationships of both SS and PP with turbidity differed both in gradient and intercept on the rising limb of the hydrograph between the two catchments. We conclude that the reduced uncertainty in load estimation derived from the use of turbidity as a proxy for specific water quality parameters in long-term regulatory monitoring programmes, must be considered alongside the increased capital and maintenance costs of turbidity equipment, potentially noisy turbidity data and the need for site-specific prolonged storm calibration periods. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mud aprons in front of Svalbard surge moraines: Evidence of subglacial deforming layers or proglacial glaciotectonics?

    Science.gov (United States)

    Kristensen, Lene; Benn, Douglas I.; Hormes, Anne; Ottesen, Dag

    2009-10-01

    Large debris-flow units commonly occur on the distal sides of subaqueous end moraines deposited by surges of Svalbard tidewater glaciers, but have rarely been described in terrestrial settings. Some researchers have argued that these kinds of debris flows reflect processes unique to the subaqueous environment, such as the extrusion of subglacial deforming layers or extensive failure of oversteepened moraine fronts. In this paper, we describe terrestrial and subaqueous parts of a single late Holocene moraine system deposited by a major surge of the tidewater glacier Paulabreen in west Spitsbergen. The ice-marginal landforms on land closely resemble the corresponding landforms on the seabed as evidenced by geomorphic mapping and geophysical profiles from both environments. Both onland and offshore, extensive areas of hummocky moraine occur on the proximal side of the maximum glacier position, and large mud aprons (interpreted as debris flows) occur on the distal side. We show that the debris-flow sediments were pushed in front of the advancing glacier as a continuously failing, mobile push moraine. We propose that the mud aprons are end members of a proglacial landforms continuum that has thrust-block moraines as the opposite end member. Two clusters of dates (~ 8000 YBP and ~ 700 YBP) have previously been interpreted to indicate two separate surges responsible for the moraine formation. New dates suggest that the early cluster indicates a local extinction of the abounded species Chlamys islandica. Other changes corresponding to the widespread 8.2 ka event within the fjord, may suggest that the extinction of the C. islandica corresponds to that time.

  5. A late Holocene pollen record from proglacial Oblong Tarn, Mount Kenya.

    Directory of Open Access Journals (Sweden)

    Colin J Courtney Mustaphi

    -elevation temperature reconstruction, which supported the strong influence of uphill pollen transport from montane forest vegetation and association between temperatures and montane vegetation dynamics. Pollen accumulation rates showed some variability related to minerogenic sediment input to the lake. The Oblong Tarn pollen record provides an indication of long term vegetation change atop Mount Kenya showing some decreases in local alpine and ericaceous taxa from 5300-3100 cal yr BP and minor centennial-scale variability of montane taxa from mid elevation forests. The record highlights potentials, challenges and opportunities for the use of proglacial lacustrine sediment to examine vegetation change on prominent mountain massifs.

  6. A geologic approach to field methods in fluvial geomorphology

    Science.gov (United States)

    Fitzpatrick, Faith A.; Thornbush, Mary J; Allen, Casey D; Fitzpatrick, Faith A.

    2014-01-01

    A geologic approach to field methods in fluvial geomorphology is useful for understanding causes and consequences of past, present, and possible future perturbations in river behavior and floodplain dynamics. Field methods include characterizing river planform and morphology changes and floodplain sedimentary sequences over long periods of time along a longitudinal river continuum. Techniques include topographic and bathymetric surveying of fluvial landforms in valley bottoms and describing floodplain sedimentary sequences through coring, trenching, and examining pits and exposures. Historical sediment budgets that include floodplain sedimentary records can characterize past and present sources and sinks of sediment along a longitudinal river continuum. Describing paleochannels and floodplain vertical accretion deposits, estimating long-term sedimentation rates, and constructing historical sediment budgets can assist in management of aquatic resources, habitat, sedimentation, and flooding issues.

  7. Proglacial Hydrogeology of the Cordillera Blanca (Peru): Integrating Field Observations with Hydrogeophysical Inversions to Inform Groundwater Flow Simulations and Conceptual Models

    Science.gov (United States)

    Glas, R. L.; Lautz, L.; McKenzie, J. M.; Moucha, R.; Mark, B. G.

    2017-12-01

    Geological and depositional conditions of the glaciated Cordillera Blanca in Peru have given way to proglacial aquifer systems that contribute substantially to regional streams and rivers, particularly during the dry season. As glacial retreat accelerates, the dry season water budget will be increasingly dominated by groundwater inputs, although predictions of future groundwater quantities require estimations of groundwater storage capacity, aquifer extents, and groundwater residence time. We present a characterization of the sediment structure in a prototypical proglacial valley in the central portion of the range, the Quilcayhuanca Valley. Northern and Central valleys of the Cordillera Blanca feature ubiquitous talus deposits that line the steep granite walls, and have become partially buried beneath lacustrine sediments deposited in proglacial lake beds. The portion of the talus still exposed near the valley walls provides recharge to deeper portions of the valley aquifers that underlie lacustrine clay, resulting in a confined aquifer system that is connected to the surface via perennial springs. Seismic refraction surveys reveal an interface separating relatively slow ( 400-800 m/s) and fast ( 2500 m/s) p-wave velocities. The depth of this refractor coincides with the depth to buried talus observed in drilling records. Electrical resistivity tomography profiles of the same transect show depths near the buried talus to be relatively conductive (10-100 Ωm). At these depths, we hypothesize that electrical conductance is elevated by saturated clay particles in the sediment matrix of the talus deposit. The resistivity models all show a more resistive ( 700 Ω m) region at depth, likely corresponding to a more hydraulically conductive material. The resistive zone is interpreted to be a deeper portion of a buried talus deposit that did not accumulate clay in the matrix. Other possibilities include a thick deposit of gravelly glacial outwash, or a relatively clay

  8. Heavy mineral analyses as a powerful tool in fluvial geomorphology

    Science.gov (United States)

    von Suchodoletz, Hans; Gärtner, Andreas; Faust, Dominik

    2014-05-01

    The Marneuli depression is a tectonic sub-basin of the Transcaucasian depression in eastern Georgia, filled with several decametres of fluvial, lacustrine and aeolian Quaternary sediments. In order to reconstruct past landscape evolution of the region we studied Late Quaternary fluvial sediments found along several rivers that flow through that depression. Whereas Holocene river sediments could generally easily be assigned to corresponding rivers, this was not always the case for older fluvial sediments. For this reason, we studied the heavy mineral contents of five recent rivers and of four sedimentary deposits of potential precursors. A total of 4088 analysed heavy mineral grains enabled us to set up the characteristic heavy mineral distribution pattern for each sample. Using these data, we were able to reconstruct the most likely source areas of the Late Pleistocene fluvial sediments and to link them with the catchment areas of recent rivers. This allowed us to identify and to substantiate significant Late Quaternary river diversions that could at least partly be assigned to ongoing tectonic processes.

  9. Unsteady Landscapes: Climatic and Tectonic Controls on Fluvial Terrace Formation

    Science.gov (United States)

    Clubb, F. J.; Mudd, S. M.

    2017-12-01

    Fluvial terraces are common landforms throughout mountainous regions which represent abandoned remnants of active river systems and their floodplains. The formation of these landforms points to a fundamental unsteadiness in the incision rate of the fluvial network, providing important information on channel response to climatic, tectonic, and base-level forcing, sediment storage and dynamics within mountainous systems, and the relative importance of lateral and vertical incision rates. In his 1877 Report on the Geology of the Henry Mountains, G.K. Gilbert suggested that strath terraces may form due to climatically-driven increase in sediment supply, causing armouring of the channel bed and hindering vertical incision. An alternative hypothesis suggests that strath terraces may be preserved through progressive tectonic uplift or base-level fall. These different formation mechanisms should result in varying distribution of terrace elevations along channels: if terraces are formed through climate-driven variations in sediment supply, we might expect that terrace elevations would be random, whereas progressive fluvial incision should result in a series of terraces with a systematic elevation pattern. Here we test alternative hypotheses for strath terrace formation using a new method for objectively and rapidly identifying terrace surfaces from digital elevation models (DEMs) over large spatial scales. Our new method identifies fluvial terraces using their gradient and elevation compared to the modern channel, thresholds of which are statistically calculated from the DEM and do not need to be set manually by the user. We use this method to extract fluvial terraces for every major river along the coast of California, and quantify their distribution and elevation along the fluvial long profile. Our results show that there is no systematic pattern in terrace elevations despite a well-constrained spatial variation in uplift rates, suggesting that terraces in this region do

  10. Variability in fluvial geomorphic response to anthropogenic disturbance

    Science.gov (United States)

    Verstraeten, Gert; Broothaerts, Nils; Van Loo, Maarten; Notebaert, Bastiaan; D'Haen, Koen; Dusar, Bert; De Brue, Hanne

    2017-10-01

    Humans have greatly impacted the processes and intensities of erosion, sediment transport and storage since the introduction of agriculture. In many regions around the world, accelerated floodplain sedimentation can be related to increases in human pressure on the environment. However, the relation between the intensity of anthropogenic disturbance and the magnitude of change in fluvial sediment dynamics is not straightforward and often non-linear. Here, we review a number of case studies from contrasting environmental settings in the European loess belt, the Eastern Mediterranean mountain ranges and the eastern USA. Detailed field-based sediment archive studies and sediment budgets covering time periods ranging from 200 to over 5000 year, as well as the use of pollen and sediment provenance techniques, show that no overarching concept of changes in floodplain sedimentation following anthropogenic disturbance can be established. Slope-channel (dis)connectivity controls the existence of thresholds or tipping points that need to be crossed before significant changes in downstream sediment dynamics are recorded following human impact. This coupling can be related to characteristics of human pressure such as its duration, intensity and spatial patterns, but also to the geomorphic and tectonic setting. Furthermore, internal feedback mechanisms, such as those between erosion and soil thickness, further complicate the story. All these factors controlling the propagation of sediment from eroding hillslopes to river channels vary between regions. Hence, only unique patterns of fluvial geomorphic response can be identified. As a result, unravelling the human impact from current-day sediment archives and predicting the impact of future human disturbances on fluvial sediment dynamics remain a major challenge. This has important implications for interpreting contemporary sediment yields as well as downstream sediment records in large floodplains, deltas and the marine

  11. Sources of solutes to the proglacial Watson River (Akuliarusiarsuup Kuua) near Kangerlussuaq, West Greenland

    Science.gov (United States)

    Deuerling, K. M.; Martin, J. B.; Martin, E. E.; Scribner, C. A.

    2013-12-01

    Chemical weathering of silicate rocks in glacial forelands is a potential sink for atmospheric CO2 and therefore may impact long-term climate variability. Physical weathering in glacial environments enhances the rate of chemical weathering, particularly through subglacial production of rock flour with a high surface area to volume ratio. This reactive material is transported to and chemically weathered within the proglacial system, increasing concentrations of solutes as water flows downstream. Water from proglacial rivers may also acquire solutes and draw down atmospheric CO2 through reactions driven by hyporheic zone (HZ) exchange in the broad, braided reaches of the river channel. However, few studies have addressed this process and none to date have directly examined porewater contributions. We address these questions in the Watson River/Akuliarusiarsuup Kuua (WR), which flows approximately 40 km from its headwaters, through the town of Kangerlussuaq, and into Søndre Strømfjord. We have collected river water samples five times from six sites over the 2012 and 2013 summer melt seasons and three transects of PW from sand flats located along the river. Specific conductivity (SpC), pH, and dissolved ion concentrations increase downstream, consistent with ongoing chemical weathering reactions along the flow path. Relative abundances of Na+, K+, and SiO2 increase downstream relative to Ca2+ and Mg2+ concentrations. These signals indicate preferential dissolution of biotite and/or alkali feldspar. Additionally, 206Pb/204Pb ratios become more nonradiogenic downstream, lending further evidence to dissolution of readily weathered minerals. Over the course of the melt season, SpC, pH, and dissolved ion concentrations decrease, consistent with the increase in discharge due to supraglacial melting. The greatest downstream SpC increase (~2x) occurs where the river exits largely bedrock channeled flow and enters the braided portion at the Sandflugtdalen. In general, PW

  12. Evidence of anthropogenic tipping points in fluvial dynamics in Europe

    Science.gov (United States)

    Notebaert, Bastiaan; Broothaerts, Nils; Verstraeten, Gert

    2018-05-01

    In this study the occurrence of thresholds in fluvial style changes during the Holocene are discussed for three different catchments: the Dijle and Amblève catchments (Belgium) and the Valdaine Region (France). We consider tipping points to be a specific type of threshold, defined as relatively rapid and irreversible changes in the system. Field data demonstrate that fluvial style has varied in all three catchments over time, and that different tipping points can be identified. An increase in sediment load as a result of human induced soil erosion lead to a permanent change in the Dijle floodplains from a forested peaty marsh towards open landscape with clastic deposition and a well-defined river channel. In the Valdaine catchment, an increase in coarse sediment load, caused by increased erosion in the mountainous upper catchment, altered the floodplains from a meandering pattern to a braided pattern. Other changes in fluvial style appeared to be reversible. Rivers in the Valdaine were prone to different aggradation and incision phases due to changes in peak water discharge and sediment delivery, but the impact was too low for these changes to be irreversible. Likewise the Dijle River has recently be prone to an incision phase due to a clear water effect, and also this change is expected to be reversible. Finally, the Amblève River did not undergo major changes in style during the last 2000 to 5000 years, even though floodplain sedimentation rates increased tenfold during the last 600 years. Overall, these examples demonstrate how changes in fluvial style depend on the crossing of thresholds in sediment supply and water discharge. Although changes in these controlling parameters are caused by anthropogenic land use changes, the link between those land use changes and changes in fluvial style is not linear. This is due to the temporal variability in landscape connectivity and sediment transport and the non-linear relationship between land use intensity and soil

  13. Pro-glacial soil variability and geomorphic activity - the case of three Swiss valleys

    NARCIS (Netherlands)

    Temme, A.J.A.M.; Lange, de K.

    2014-01-01

    Soils in pro-glacial areas are often approached from a chronosequence viewpoint. In the chronosequence approach, the objective is to derive rates of soil formation from differences in properties between soils of different age. For this reason, in chronosequence studies, soils are sampled in

  14. Evaluating process origins of sand-dominated fluvial stratigraphy

    Science.gov (United States)

    Chamberlin, E.; Hajek, E. A.

    2015-12-01

    Sand-dominated fluvial stratigraphy is often interpreted as indicating times of relatively slow subsidence because of the assumption that fine sediment (silt and clay) is reworked or bypassed during periods of low accommodation. However, sand-dominated successions may instead represent proximal, coarse-grained reaches of paleo-river basins and/or fluvial systems with a sandy sediment supply. Differentiating between these cases is critical for accurately interpreting mass-extraction profiles, basin-subsidence rates, and paleo-river avulsion and migration behavior from ancient fluvial deposits. We explore the degree to which sand-rich accumulations reflect supply-driven progradation or accommodation-limited reworking, by re-evaluating the Castlegate Sandstone (Utah, USA) and the upper Williams Fork Formation (Colorado, USA) - two Upper Cretaceous sandy fluvial deposits previously interpreted as having formed during periods of relatively low accommodation. Both units comprise amalgamated channel and bar deposits with minor intra-channel and overbank mudstones. To constrain relative reworking, we quantify the preservation of bar deposits in each unit using detailed facies and channel-deposit mapping, and compare bar-deposit preservation to expected preservation statistics generated with object-based models spanning a range of boundary conditions. To estimate the grain-size distribution of paleo-sediment input, we leverage results of experimental work that shows both bed-material deposits and accumulations on the downstream side of bars ("interbar fines") sample suspended and wash loads of active flows. We measure grain-size distributions of bar deposits and interbar fines to reconstruct the relative sandiness of paleo-sediment supplies for both systems. By using these novel approaches to test whether sand-rich fluvial deposits reflect river systems with accommodation-limited reworking and/or particularly sand-rich sediment loads, we can gain insight into large

  15. The Gediz River fluvial archive

    NARCIS (Netherlands)

    Maddy, D.; Veldkamp, A.; Demir, T.; Gorp, van W.; Wijbrans, J.R.; Hinsbergen, van D.J.J.; Dekkers, M.J.; Schreve, D.; Schoorl, J.M.; Scaife, R.

    2017-01-01

    The Gediz River, one of the principal rivers of Western Anatolia, has an extensive Pleistocene fluvial archive that potentially offers a unique window into fluvial system behaviour on the western margins of Asia during the Quaternary. In this paper we review our work on the Quaternary Gediz River

  16. Hydrologic exchange and chemical weathering in a proglacial watershed near Kangerlussuaq, west Greenland

    Science.gov (United States)

    Deuerling, Kelly M.; Martin, Jonathan B.; Martin, Ellen E.; Scribner, Cecilia A.

    2018-01-01

    The exchange of proglacial river water with active layer pore water could alter water chemical compositions in glacial outwash plains and oceanic solute fluxes. To evaluate effects of this exchange, we sampled Watson River and adjacent pore water during the 2013 melt season at two sandurs in western Greenland; one in Sandflugtdalen and the other near the confluence with Søndre Strømfjord. We measured temperature, specific conductivity, and head gradients between the river and bank over a week-long period at Sandflugtdalen, as well as sediment hydraulic conductivity and chemical compositions of waters from both sites. Specific conductivity of pore water is four to ten times greater than river water as solutes are concentrated from weathering reactions, cryoconcentration, and evaporation. Pore water compositions are predominantly altered by carbonate dissolution and sulfide mineral oxidation. High concentrations of HCO3 and SO4 result from solute recycling and dissolution of secondary Ca-Mg carbonate/sulfate salts initially formed by near-surface evaporation in the summer and at depth by freeze-in of the active layer and cryoconcentration in the winter. High hydraulic conductivity (10-5 to 10-4 m/s) and diurnal fluctuations of river stage during our study caused exchange of river and pore water immediately adjacent to the river channel, with a net loss of river water to the bank. Pore water >6 m from the river continuously flowed away from the river. Approximately 1-8% of the river discharge through the Sandflugtdalen was lost to the river bank during our 6.75 day study based on calculations using Darcy's Law. Although not sampled, some of this water should discharge to the river during low river stage early and late in the melt season. Elevated pore water solute concentrations in sandurs and water exchange at diurnal and seasonal frequency should impact fluxes of solutes to the ocean, although understanding the magnitude of this effect will require long

  17. Sedimentation

    Science.gov (United States)

    Cliff R. Hupp; Michael R. Schening

    2000-01-01

    Sedimentation is arguably the most important water-quality concern in the United States. Sediment trapping is cited frequently as a major function of riverine-forested wetlands, yet little is known about sedimcntation rates at the landscape scale in relation to site parameters, including woody vegetation type, elevation, velocity, and hydraulic connection to the river...

  18. Unravelling mixed sediment signals in the floodplains of the Rhine catchment using end member modelling of grain size distributions

    NARCIS (Netherlands)

    Erkens, G.; Toonen, W.H.J.; Cohen, K.M.; Prins, M.A.

    2013-01-01

    During sediment transport downstream, river systems mix sediments from different parts of their catchments. During deposition, sediments are often unmixed again in different depositional environments (facies). During fluvial transport, between erosion and deposition of sediment, the sediment is

  19. Unconsolidated sediment distribution patterns in the KwaZulu-Natal ...

    African Journals Online (AJOL)

    Seasonal changes in sediment distribution patterns are small, being restricted to seaward fining on the inner shelf off the fluvial sources. Sediment distribution reflects a partitioning between sediment populations that are currentinfluenced and relict (palimpsest) populations associated with submerged shorelines.

  20. Airborne radionuclides in the proglacial environment as indicators of sources and transfers of soil material.

    Science.gov (United States)

    Łokas, Edyta; Wachniew, Przemysław; Jodłowski, Paweł; Gąsiorek, Michał

    2017-11-01

    A survey of artificial ( 137 Cs, 238 Pu, 239+240 Pu, 241 Am) and natural ( 226 Ra, 232 Th, 40 K, 210 Pb) radioactive isotopes in proglacial soils of an Arctic glacier have revealed high spatial variability of activity concentrations and inventories of the airborne radionuclides. Soil column 137 Cs inventories range from below the detection limit to nearly 120 kBq m -2 , this value significantly exceeding direct atmospheric deposition. This variability may result from the mixing of materials characterised by different contents of airborne radionuclides. The highest activity concentrations observed in the proglacial soils may result from the deposition of cryoconites, which have been shown to accumulate airborne radionuclides on the surface of glaciers. The role of cryoconites in radionuclide accumulation is supported by the concordant enrichment of the naturally occurring airborne 210 Pb in proglacial soil cores showing elevated levels of artificial radionuclides. The lithogenic radionuclides show less variability than the airborne radionuclides because their activity concentrations are controlled only by the mixing of material derived from the weathering of different parent rocks. Soil properties vary little within and between the profiles and there is no unequivocal relationship between them and the radionuclide contents. The inventories reflect the pathways and time variable inputs of soil material to particular sites of the proglacial zone. Lack of the airborne radionuclides reflects no deposition of material exposed to the atmosphere after the 1950s or its removal by erosion. Inventories above the direct atmospheric deposition indicate secondary deposition of radionuclide-bearing material. Very high inventories indicate sites where transport pathways of cryoconite material terminated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Fluvial hydrology and geomorphology of Monsoon-dominated Indian rivers

    Directory of Open Access Journals (Sweden)

    Vishwas S. Kale

    2005-11-01

    Full Text Available The Indian rivers are dominantly monsoon rainfed. As a result, their regime characteristics are dictated by the spatio-temporal variations in the monsoon rainfall. Although the rivers carry out most of the geomorphic work during 4-5 months of the monsoon season, the nature and magnitude of response to variations in the discharge and sediment load varies with the basin size and relief characteristics. Large monsoon floods play a role of great importance on all the rivers. This paper describes the hydrological and geomorphological characteristics of the two major fluvial systems of the Indian region, namely the Himalayan fluvial system and the Peninsular fluvial system. Large number of studies published so far indicate that there are noteworthy differences between the two river systems, with respect to river hydrology, channel morphology, sediment load and behaviour. The nature of alterations in the fluvial system due to increased human interference is also briefly mentioned. This short review demonstrates that there is immense variety of rivers in India. This makes India one of the best places to study rivers and their forms and processes.

  2. Aeolian sedimentation in the middle buntsandstein in the eifel north-south depression zone: Summary of the variability of sedimentary processes in a buntsandstein erg as a base for evaluation of the mutual relationships between aeolian sand seas and fluvial river systems in the mid-european buntsandstein

    Science.gov (United States)

    Mader, Detlef

    The spectrum of aeolian depositional subenvironments in the upper Middle Buntsandstein Karlstal-Schichten sequence in the Eifel North-South-zone at the western margin of the Mid-European Triassic Basin comprises trains of larger and higher narrowly-spaced dunes in sand seas, isolated smaller and lower widely-spaced dunes in floodplains and interdune playas, dry interdune sheet sands, damp interdune adhesive sandflats, wet interdune playa lakes, rainfall runoff watercourses and ephemeral channels cutting through the dune belt, and deflation gravel lag veneers. Distinction of aeolian and fluvial sediments within the succession of closely intertonguing wind- and water-laid deposits is possible by independent analysis of the conventional criteria and the more modern stratification styles. Thick cross-bedded aeolian sand sequences originate as barchanoid-type dunes which accumulate and migrate in the regime of narrow to wide unimodal southeasterly to southwesterly trade winds in low northern palaeolatitude in summer when the intertropical convergence zone is shifted to the north. The predominantly transverse-ridge dunes accrete mainly by grainfall and subcritical climbing of wind ripples, subordinately also by grainflow interfingering with grainfall. Horizontal-laminated aeolian sands form as sand sheets in dry interdune playas by subcritical migration of wind ripple trains, rarely also by plane bed accretion. Thin cross-bedded dune sands or horizontal-laminated aeolian sands capping fluvial cyclothems originate by deflation of emerged alluvial bar sands during low-water stages and subsequent accumulation of the winnowed sand as widely-spaced dunelets or chains of wind ripples in desiccated parts of the adjoining floodplain. The aeolian sand layers at the base of lacustrine cyclothems record migration of isolated little dunes across the dry playa floor at the beginning of a wetting-upwards cyclothem, with the sand deriving from deflation of fluvial incursions or

  3. A ∼180,000 years sedimentation history of a perialpine overdeepened glacial trough (Wehntal, N-Switzerland)

    International Nuclear Information System (INIS)

    Anselmetti, F. S.; Drescher-Schneider, R.; Furrer, H.; Graf, H. R.; Lowick, S. E.; Preusser, F.; Riedi, M. A.

    2010-01-01

    A 30 m-deep drill core from a glacially overdeepened trough in Northern Switzerland recovered a ∼ 180 ka old sedimentary succession that provides new insights into the timing and nature of erosion-sedimentation processes in the Swiss lowlands. The luminescence-dated stratigraphic succession starts at the bottom of the core with laminated carbonate-rich lake sediments reflecting deposition in a proglacial lake between ∼ 180 and 130 ka ago (Marine Isotope Stage MIS 6). Anomalies in geotechnical properties and the occurrence of deformation structures suggest temporary ice contact around 140 ka. Up-core, organic content increases in the lake deposits indicating a warming of climate. These sediments are overlain by a peat deposit characterised by pollen assemblages typical of the late Eemian (MIS 5e). An abrupt transition following this interglacial encompasses a likely hiatus and probably marks a sudden lowering of the water level. The peat unit is overlain by deposits of a cold unproductive lake dated to late MIS 5 and MIS 4, which do not show any direct influence from glaciers. An upper peat unit, the so-called M ammoth peat , previously encountered in construction pits, interrupts this cold lacustrine phase and marks more temperate climatic conditions between 60 and 45 ka (MIS 3). In the upper part of the core, a succession of fluvial and alluvial deposits documents the Late Glacial and Holocene sedimentation in the basin. The sedimentary succession at Wehntal confirms that the glaciation during MIS 6 did not apparently cause the overdeepening of the valley, as the lacustrine basin fill covering most of MIS 6 is still preserved. Consequently, erosion of the basin is most likely linked to an older glaciation. This study shows that new dating techniques combined with paleoenvironmental interpretations of sediments from such overdeepened troughs provide valuable insights into the past glacial history. (authors)

  4. A {approx}180,000 years sedimentation history of a perialpine overdeepened glacial trough (Wehntal, N-Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Anselmetti, F. S. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf (Switzerland); Drescher-Schneider, R. [Institut fuer Pflanzenwissenschaften, Karl-Fanzen-Universitaet Graz, Graz (Austria); Furrer, H. [Palaeontologisches Institut und Museum, Universitaet Zuerich, Zuerich (Switzerland); Graf, H. R. [Matousek, Baumann und Niggli AG, Baden (Switzerland); Lowick, S. E.; Preusser, F. [Institut fuer Geologie, Universitaet Bern, Bern (Switzerland); Riedi, M. A. [Marc A. Riedi, Susenbuehlstrasse 41, Chur (Switzerland)

    2010-11-15

    A 30 m-deep drill core from a glacially overdeepened trough in Northern Switzerland recovered a {approx} 180 ka old sedimentary succession that provides new insights into the timing and nature of erosion-sedimentation processes in the Swiss lowlands. The luminescence-dated stratigraphic succession starts at the bottom of the core with laminated carbonate-rich lake sediments reflecting deposition in a proglacial lake between {approx} 180 and 130 ka ago (Marine Isotope Stage MIS 6). Anomalies in geotechnical properties and the occurrence of deformation structures suggest temporary ice contact around 140 ka. Up-core, organic content increases in the lake deposits indicating a warming of climate. These sediments are overlain by a peat deposit characterised by pollen assemblages typical of the late Eemian (MIS 5e). An abrupt transition following this interglacial encompasses a likely hiatus and probably marks a sudden lowering of the water level. The peat unit is overlain by deposits of a cold unproductive lake dated to late MIS 5 and MIS 4, which do not show any direct influence from glaciers. An upper peat unit, the so-called {sup M}ammoth peat{sup ,} previously encountered in construction pits, interrupts this cold lacustrine phase and marks more temperate climatic conditions between 60 and 45 ka (MIS 3). In the upper part of the core, a succession of fluvial and alluvial deposits documents the Late Glacial and Holocene sedimentation in the basin. The sedimentary succession at Wehntal confirms that the glaciation during MIS 6 did not apparently cause the overdeepening of the valley, as the lacustrine basin fill covering most of MIS 6 is still preserved. Consequently, erosion of the basin is most likely linked to an older glaciation. This study shows that new dating techniques combined with paleoenvironmental interpretations of sediments from such overdeepened troughs provide valuable insights into the past glacial history. (authors)

  5. Protracted fluvial recovery from medieval earthquakes, Pokhara, Nepal

    Science.gov (United States)

    Stolle, Amelie; Bernhardt, Anne; Schwanghart, Wolfgang; Andermann, Christoff; Schönfeldt, Elisabeth; Seidemann, Jan; Adhikari, Basanta R.; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-04-01

    River response to strong earthquake shaking in mountainous terrain often entails the flushing of sediments delivered by widespread co-seismic landsliding. Detailed mass-balance studies following major earthquakes in China, Taiwan, and New Zealand suggest fluvial recovery times ranging from several years to decades. We report a detailed chronology of earthquake-induced valley fills in the Pokhara region of western-central Nepal, and demonstrate that rivers continue to adjust to several large medieval earthquakes to the present day, thus challenging the notion of transient fluvial response to seismic disturbance. The Pokhara valley features one of the largest and most extensively dated sedimentary records of earthquake-triggered sedimentation in the Himalayas, and independently augments paleo-seismological archives obtained mainly from fault trenches and historic documents. New radiocarbon dates from the catastrophically deposited Pokhara Formation document multiple phases of extremely high geomorphic activity between ˜700 and ˜1700 AD, preserved in thick sequences of alternating fluvial conglomerates, massive mud and silt beds, and cohesive debris-flow deposits. These dated fan-marginal slackwater sediments indicate pronounced sediment pulses in the wake of at least three large medieval earthquakes in ˜1100, 1255, and 1344 AD. We combine these dates with digital elevation models, geological maps, differential GPS data, and sediment logs to estimate the extent of these three pulses that are characterized by sedimentation rates of ˜200 mm yr-1 and peak rates as high as 1,000 mm yr-1. Some 5.5 to 9 km3 of material infilled the pre-existing topography, and is now prone to ongoing fluvial dissection along major canyons. Contemporary river incision into the Pokhara Formation is rapid (120-170 mm yr-1), triggering widespread bank erosion, channel changes, and very high sediment yields of the order of 103 to 105 t km-2 yr-1, that by far outweigh bedrock denudation rates

  6. Landform Evolution Modeling of Specific Fluvially Eroded Physiographic Units on Titan

    Science.gov (United States)

    Moore, J. M.; Howard, A. D.; Schenk, P. M.

    2015-01-01

    Several recent studies have proposed certain terrain types (i.e., physiographic units) on Titan thought to be formed by fluvial processes acting on local uplands of bedrock or in some cases sediment. We have earlier used our landform evolution models to make general comparisons between Titan and other ice world landscapes (principally those of the Galilean satellites) that we have modeled the action of fluvial processes. Here we give examples of specific landscapes that, subsequent to modeled fluvial work acting on the surfaces, produce landscapes which resemble mapped terrain types on Titan.

  7. Fluvial systems and their sedimentary models

    Directory of Open Access Journals (Sweden)

    Dragomir Skabeme

    1995-12-01

    Full Text Available The Slovenian géomorphologie and sedimentologie terminology for fluvial depositional environments is not established yet. Therefore a classification and the proposal for Slovenian names of fluvial sedimentary and erosional forms and influences controlling them are discussed. Attention is given to the problems of recognition of sedimentary environments in sedimentary rocks, and to fluvial sedimentary models.

  8. Variables and potential models for the bleaching of luminescence signals in fluvial environments

    Science.gov (United States)

    Gray, Harrison J.; Mahan, Shannon

    2015-01-01

    Luminescence dating of fluvial sediments rests on the assumption that sufficient sunlight is available to remove a previously obtained signal in a process deemed bleaching. However, luminescence signals obtained from sediment in the active channels of rivers often contain residual signals. This paper explores and attempts to build theoretical models for the bleaching of luminescence signals in fluvial settings. We present two models, one for sediment transported in an episodic manner, such as flood-driven washes in arid environments, and one for sediment transported in a continuous manner, such as in large continental scale rivers. The episodic flow model assumes that the majority of sediment is bleached while exposed to sunlight at the near surface between flood events and predicts a power-law decay in luminescence signal with downstream transport distance. The continuous flow model is developed by combining the Beer–Lambert law for the attenuation of light through a water column with a general-order kinetics equation to produce an equation with the form of a double negative exponential. The inflection point of this equation is compared with the sediment concentration from a Rouse profile to derive a non-dimensional number capable of assessing the likely extent of bleaching for a given set of luminescence and fluvial parameters. Although these models are theoretically based and not yet necessarily applicable to real-world fluvial systems, we introduce these ideas to stimulate discussion and encourage the development of comprehensive bleaching models with predictive power.

  9. The role of fluvial sediment supply and river-mouth hydrology in the dynamics of the muddy, Amazon-dominated Amapa-Guianas coast, South America: A three-point research agenda

    OpenAIRE

    Anthony, Edward J.; Gardel, Antoine; Proisy, Christophe; Fromard, François; Gensac, Erwan; Peron, Christina; Walcker, Romain; Lesourd, Sandric

    2013-01-01

    The morphology and sediment dynamics of the 1500 km-long coast of South America between the mouths of the Amazon and the Orinoco Rivers are largely dependent on the massive suspended-sediment discharge of the Amazon, part of which is transported alongshore as mud banks. These mud banks have an overwhelming impact on the geology, the geomorphology, the ecology and the economy of this coast. Although numerous field investigations and remote sensing studies have considerably enhanced our underst...

  10. The effects of land use on fluvial sediment chemistry for the conterminous U.S. - results from the first cycle of the NAWQA Program: trace and major elements, phosphorus, carbon, and sulfur.

    Science.gov (United States)

    Horowitz, Arthur J; Stephens, Verlin C

    2008-08-01

    In 1991, the U.S. Geological Survey (USGS) began the first cycle of its National Water Quality Assessment (NAWQA) Program. The Program encompassed 51 river basins that collectively accounted for more than 70% of the total water use (excluding power generation), and 50% of the drinking water supply in the U.S. The basins represented a variety of hydrologic settings, rock types (geology), land-use categories, and population densities. One aspect of the first cycle included bed sediment sampling; sites were chosen to represent baseline and important land-use categories (e.g., agriculture, urban) in each basin. In total, over 1200 bed sediment samples were collected. All samples were size-limited (or=95% of the concentrations present), rather than total-recoverable chemical data. Land-use percentages, upstream underlying geology, and population density were determined for each site and evaluated to asses their relative influence on sediment chemistry. Baseline concentrations for the entire U.S. also were generated from a subset of all the samples, and are based on material collected from low population (sediment chemistry. The only land-use category that appears to substantially affect sediment chemistry is percent urban, and this result is mirrored by population density; in fact, the latter appears more consistent than the former.

  11. Individual and cumulative effects of agriculture, forestry and metal mining activities on the metal and phosphorus content of fluvial fine-grained sediment; Quesnel River Basin, British Columbia, Canada.

    Science.gov (United States)

    Smith, Tyler B; Owens, Philip N

    2014-10-15

    The impact of agriculture, forestry and metal mining on the quality of fine-grained sediment (sediment were collected monthly during the snow-free season in 2008 using time-integrated samplers at replicate sites representative of agriculture, forestry and mining activities in the basin (i.e. "impacted" sites). Samples were also collected from replicate reference sites and also from the main stem of the Quesnel River at the downstream confluence with the Fraser River. Generally, metal(loid) and phosphorus (P) concentrations for "impacted" sites were greater than for reference sites. Furthermore, concentrations of copper (forestry and mining sites), manganese (agriculture and forestry sites) and selenium (agriculture, forestry and mining sites) exceeded upper sediment quality guideline (SQG) thresholds. These results suggest that agriculture, forestry and metal mining activities are having an influence on the concentrations of sediment-associated metal(loid)s and P in the Quesnel basin. Metal(loid) and P concentrations of sediment collected from the downstream site were not significantly greater than values for the reference sites, and were typically lower than the values for the impacted sites. This suggests that the cumulative effects of agriculture, forestry and mining activities in the QRB are presently not having a measureable effect at the river basin-scale. The lack of a cumulative effect at the basin-scale is thought to reflect: (i) the relatively recent occurrence of land use disturbances in this basin; (ii) the dominance of sediment contributions from natural forest and agriculture; and (iii) the potential for storage of contaminants on floodplains and other storage elements between the locations of disturbance activities and the downstream sampling site, which may be attenuating the disturbance signal. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Lacustrine-fluvial interactions in Australia's Riverine Plains

    Science.gov (United States)

    Kemp, Justine; Pietsch, Timothy; Gontz, Allen; Olley, Jon

    2017-06-01

    Climatic forcing of fluvial systems has been a pre-occupation of geomorphological studies in Australia since the 1940s. In the Riverine Plain, southeastern Australia, the stable tectonic setting and absence of glaciation have combined to produce sediment loads that are amongst the lowest in the world. Surficial sediments and landforms exceed 140,000 yr in age, and geomorphological change recorded in the fluvial, fluvio-lacustrine and aeolian features have provided a well-studied record of Quaternary environmental change over the last glacial cycle. The region includes the Willandra Lakes, whose distinctive lunette lakes preserve a history of water-level variations and ecological change that is the cornerstone of Australian Quaternary chronostratigraphy. The lunette sediments also contain an ancient record of human occupation that includes the earliest human fossils yet found on the Australian continent. To date, the lake-level and palaeochannel records in the Lachlan-Willandra system have not been fully integrated, making it difficult to establish the regional significance of hydrological change. Here, we compare the Willandra Lakes environmental record with the morphology and location of fluvial systems in the lower Lachlan. An ancient channel belt of the Lachlan, Willandra Creek, acted as the main feeder channel to Willandra Lakes before channel avulsion caused the lakes to dry out in the late Pleistocene. Electromagnetic surveys, geomorphological and sedimentary evidence are used to reconstruct the evolution of the first new channel belt following the avulsion. Single grain optical dating of floodplain sediments indicates that sedimentation in the new Middle Billabong Palaeochannel had commenced before 18.4 ± 1.1 ka. A second avulsion shifted its upper reaches to the location of the present Lachlan River by 16.2 ± 0.9 ka. The timing of these events is consistent with palaeohydrological records reconstructed from Willandra Lakes and with the record of

  13. Fluvial response to the last Holocene rapid climate change in the Northwestern Mediterranean coastlands

    Science.gov (United States)

    Degeai, Jean-Philippe; Devillers, Benoît; Blanchemanche, Philippe; Dezileau, Laurent; Oueslati, Hamza; Tillier, Margaux; Bohbot, Hervé

    2017-05-01

    The variability of fluvial activity in the Northwestern Mediterranean coastal lowlands and its relationship with modes of climate change were analysed from the late 9th to the 18th centuries CE. Geochemical analyses were undertaken from a lagoonal sequence and surrounding sediments in order to track the fluvial inputs into the lagoon. An index based on the K/S and Rb/S ratios was used to evidence the main periods of fluvial activity. This index reveals that the Medieval Climate Anomaly (MCA) was a drier period characterized by a lower fluvial activity, while the Little Ice Age (LIA) was a wetter period with an increase of the river dynamics. Three periods of higher than average fluvial activity were evidenced at the end of the first millennium CE (ca. 900-950 cal yr CE), in the first half of the second millennium CE (ca. 1150-1550 cal yr CE), and during the 1600s-1700s CE (ca. 1650-1800 cal yr CE). The comparison of these fluvial periods with other records of riverine or lacustrine floods in Spain, Italy, and South of France seems to indicate a general increase in fluvial and flood patterns in the Northwestern Mediterranean in response to the climate change from the MCA to the LIA, although some episodes of flooding are not found in all records. Besides, the phases of higher than average fluvial dynamics are in good agreement with the North Atlantic cold events evidenced from records of ice-rafted debris. The evolution of fluvial activity in the Northwestern Mediterranean coastlands during the last millennium could have been driven by atmospheric and oceanic circulation patterns.

  14. Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web

    Science.gov (United States)

    Fellman, Jason; Hood, Eran; Raymond, Peter A.; Hudson, J.H.; Bozeman, Maura; Arimitsu, Mayumi L.

    2015-01-01

    We used natural abundance δ13C, δ15N, and Δ14C to compare trophic linkages between potential carbon sources (leaf litter, epilithic biofilm, and particulate organic matter) and consumers (aquatic macroinvertebrates and fish) in a nonglacial stream and two reaches of the heavily glaciated Herbert River. We tested the hypothesis that proglacial stream food webs are sustained by organic carbon released from glacial ecosystems. Carbon sources and consumers in the nonglacial stream had carbon isotope values that ranged from -30‰ to -25‰ for δ13C and from -14‰ to 53‰ for Δ14C reflecting a food web sustained mainly on contemporary primary production. In contrast, biofilm in the two glacial stream sites was highly Δ14C-depleted (-215‰ to 175‰) relative to the nonglacial stream consistent with the assimilation of ancient glacier organic carbon. IsoSource modeling showed that in upper Herbert River, macroinvertebrates (Δ14C = -171‰ to 22‰) and juvenile salmonids (Δ14C = −102‰ to 17‰) reflected a feeding history of both biofilm (~ 56%) and leaf litter (~ 40%). We estimate that in upper Herbert River on average 36% of the carbon incorporated into consumer biomass is derived from the glacier ecosystem. Thus, 14C-depleted glacial organic carbon was likely transferred to higher trophic levels through a feeding history of bacterial uptake of dissolved organic carbon and subsequent consumption of 14C-depleted biofilm by invertebrates and ultimately fish. Our findings show that the metazoan food web is sustained in part by glacial organic carbon such that future changes in glacial runoff could influence the stability and trophic structure of proglacial aquatic ecosystems.

  15. Avulsion and its implications for fluvial-deltaic architecture: insights from the Holocene Rhine-Meuse delta

    NARCIS (Netherlands)

    Stouthamer, E.; Cohen, K.M.; Gouw, M.J.P.

    2010-01-01

    Avulsion is a key process in the formation of fluvial-deltaic successions and a primary control on deltaic architecture. It determines the distribution of sediment and water and hence which location in the delta receives clastic sedimentation for what time. This makes the avulsion process an

  16. Avulsion and its implications for fluvial-deltaic architecture: insights from the Holocene Rhine-Meuse delta

    NARCIS (Netherlands)

    Stouthamer, E.; Cohen, K.M.; Gouw, M.J.P.

    2010-01-01

    Avulsion is a principal process in the formation of fluvial-deltaic successions and a primary control on deltaic architecture. It determines the distribution of sediment and water and hence influences which location in the delta receives clastic sedimentation in what amounts for what time. It also

  17. Study on detailed geological modelling for fluvial sandstone reservoir in Daqing oil field

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Hanqing; Fu Zhiguo; Lu Xiaoguang [Institute of Petroleum Exploration and Development, Daqing (China)

    1997-08-01

    Guided by the sedimentation theory and knowledge of modern and ancient fluvial deposition and utilizing the abundant information of sedimentary series, microfacies type and petrophysical parameters from well logging curves of close spaced thousands of wells located in a large area. A new method for establishing detailed sedimentation and permeability distribution models for fluvial reservoirs have been developed successfully. This study aimed at the geometry and internal architecture of sandbodies, in accordance to their hierarchical levels of heterogeneity and building up sedimentation and permeability distribution models of fluvial reservoirs, describing the reservoir heterogeneity on the light of the river sedimentary rules. The results and methods obtained in outcrop and modem sedimentation studies have successfully supported the study. Taking advantage of this method, the major producing layers (PI{sub 1-2}), which have been considered as heterogeneous and thick fluvial reservoirs extending widely in lateral are researched in detail. These layers are subdivided into single sedimentary units vertically and the microfacies are identified horizontally. Furthermore, a complex system is recognized according to their hierarchical levels from large to small, meander belt, single channel sandbody, meander scroll, point bar, and lateral accretion bodies of point bar. The achieved results improved the description of areal distribution of point bar sandbodies, provide an accurate and detailed framework model for establishing high resolution predicting model. By using geostatistic technique, it also plays an important role in searching for enriched zone of residual oil distribution.

  18. Transport and redistribution of Chernobyl fallout radionuclides by fluvial processes: some preliminary evidence

    International Nuclear Information System (INIS)

    Walling, D.E.; Bradley, S.B.

    1988-01-01

    Several measurements of 137 Cs concentrations in suspended sediment transported by the River Severn during the post-Chernobyl period and in recent channel and floodplain deposits along the river emphasise the potential significance of fluvial processes in the transport and concentration of fallout radionuclides. (author)

  19. Re-evaluating luminescence burial doses and bleaching of fluvial deposits using Bayesian computational statistics.

    NARCIS (Netherlands)

    Cunningham, A.C.; Wallinga, J.; Versendaal, Alice; Makaske, A.; Middelkoop, H.; Hobo, N.

    2015-01-01

    The optically stimulated luminescence (OSL) signal from fluvial sediment often contains a remnant from the previous deposition cycle, leading to a partially bleached equivalent-dose distribution. Although identification of the burial dose is of primary concern, the degree of bleaching could

  20. Re-evaluating luminescence burial doses and bleaching of fluvial deposits using Bayesian computational statistics

    NARCIS (Netherlands)

    Cunningham, A. C.; Wallinga, J.; Hobo, N.; Versendaal, A. J.; Makaske, B.; Middelkoop, H.

    2015-01-01

    The optically stimulated luminescence (OSL) signal from fluvial sediment often contains a remnant from the previous deposition cycle, leading to a partially bleached equivalent-dose distribution. Although identification of the burial dose is of primary concern, the degree of bleaching could

  1. Buried late Pleistocene fluvial channels on the inner continental shelf off Vengurla, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    SubbaRaju, L.V.; Krishna, K.S.; Chaubey, A.K.

    with sediments. Cross sectional dimensions between 15 to 100 m width and 2 to 6 m depth suggest a fluvial origin of the channels. These buried channels appear to mark former positions of rivers flowing from the nearby coast and debouching into the Arabian Sea...

  2. Large Fluvial Fans: Aspects of the Attribute Array

    Science.gov (United States)

    Wilkinson, Justin M.

    2015-01-01

    In arguing for a strict definition of the alluvial fan (coarse-grained with radii less than10 km, in mountain-front settings), Blair and McPherson (1994) proposed that there is no meaningful difference between large fluvial fans (LFF) and floodplains, because the building blocks of both are channel-levee-overbank deposits. Sediment bodies at the LFF scale (greater than 100 km long, fan-shaped in planform), are relatively unstudied although greater than 160 are now identified globally. The following perspectives suggest that the significance of LFF needs to be reconsidered.

  3. New Mesoscale Fluvial Landscapes - Seismic Geomorphology and Exploration

    Science.gov (United States)

    Wilkinson, M. J.

    2013-01-01

    Megafans (100-600 km radius) are very large alluvial fans that cover significant areas on most continents, the surprising finding of recent global surveys. The number of such fans and patterns of sedimentation on them provides new mesoscale architectures that can now be applied on continental fluvial depositional systems, and therefore on. Megafan-scale reconstructions underground as yet have not been attempted. Seismic surveys offer new possibilities in identifying the following prospective situations at potentially unsuspected locations: (i) sand concentrations points, (ii) sand-mud continuums at the mesoscale, (iii) paleo-valley forms in these generally unvalleyed landscapes, (iv) stratigraphic traps, and (v) structural traps.

  4. Tipping points in Anthropocene fluvial dynamics

    Science.gov (United States)

    Notebaert, Bastiaan; Broothaerts, Nils; Verstraeten, Gert; Berger, Jean-François; Houbrechts, Geoffrey

    2016-04-01

    the river partially maintains its braided pattern. The Amblève River in the Belgian Ardennes uplands underwent less dramatic changes. Large parts of the catchment are deforested during the last 700 years, leading to an increase in floodplain sedimentation. Despite this major sediment pulse, change in floodplain morphology remained limited to an increase in bank height. We argue that a combination of floodplain and channel morphology, the fine texture of supplied sediment and the high stream power of channel forming events result is a system that is less sensitive to change. Also the relative short time of impact may play a role. These three examples demonstrate the varying impact of human deforestation on floodplain geomorphology. For the Dijle and Valdaine region this lead to dramatic changes once a certain tipping point is reached. In contrast the Amblève river is more resilient to human impact due to its specific morphological setting. The morphology of the catchments and the nature of supplied sediments plays a major role in the sensitivity of fluvial systems to environmental impact. Once the tipping points are reached, it is difficult for the river to revert to its original state and floodplains remain highly impacted.

  5. The role of fluvial sediment supply and river-mouth hydrology in the dynamics of the muddy, Amazon-dominated Amapá-Guianas coast, South America: A three-point research agenda

    Science.gov (United States)

    Anthony, Edward J.; Gardel, Antoine; Proisy, Christophe; Fromard, François; Gensac, Erwan; Peron, Christina; Walcker, Romain; Lesourd, Sandric

    2013-07-01

    The morphology and sediment dynamics of the 1500 km-long coast of South America between the mouths of the Amazon and the Orinoco Rivers are largely dependent on the massive suspended-sediment discharge of the Amazon, part of which is transported alongshore as mud banks. These mud banks have an overwhelming impact on the geology, the geomorphology, the ecology and the economy of this coast. Although numerous field investigations and remote sensing studies have considerably enhanced our understanding of the dynamics of this coast over the last three decades, much still remains to be understood of the unique functional mechanisms and processes driving its evolution. Among the themes that we deem as requiring further attention three come out as fundamental. The first concerns the mechanisms of formation of individual mud banks from mud streaming on the shelf off the mouth of the Amazon. An unknown quantity of the fluid mud generated by offshore estuarine front activity is transported shoreward and progressively forms mud banks on the Amapá coast, Brazil. The volume of each mud bank can contain from the equivalent of the annual mud supply of the Amazon to several times this annual sediment discharge. The mechanisms by which individual banks are generated from the Amazon turbidity maximum are still to be elucidated. Areas of research include regional mesoscale oceanographic conditions and mud supply from the Amazon. The second theme is that of variations in rates of migration of mud banks, which influence patterns of coastal accretion. Research emphasis needs to be placed on the analysis of both regional meteorological-hydrodynamic forcing and distant Atlantic forcing, as well as on the hydrology of the large rivers draining the Guyana Shield. The rivers appear to generate significant offshore deflection of mud banks in transit alongshore, through a hydraulic-groyne effect. This may favour both muddy accretion on the updrift coast and downdrift mud liquefaction with

  6. Assessing the Effects of Climate on Global Fluvial Discharge Variability

    Science.gov (United States)

    Hansford, M. R.; Plink-Bjorklund, P.

    2017-12-01

    Plink-Bjorklund (2015) established the link between precipitation seasonality and river discharge variability in the monsoon domain and subtropical rivers (see also Leier et al, 2005; Fielding et al., 2009), resulting in distinct morphodynamic processes and a sedimentary record distinct from perennial precipitation zone in tropical rainforest zone and mid latitudes. This study further develops our understanding of discharge variability using a modern global river database created with data from the Global Runoff Data Centre (GRDC). The database consists of daily discharge for 595 river stations and examines them using a series of discharge variability indexes (DVI) on different temporal scales to examine how discharge variability occurs in river systems around the globe. These indexes examine discharge of individual days and monthly averages that allows for comparison of river systems against each other, regardless of size of the river. Comparing river discharge patterns in seven climate zones (arid, cold, humid subtropics, monsoonal, polar, rainforest, and temperate) based off the Koppen-Geiger climate classifications reveals a first order climatic control on discharge patterns and correspondingly sediment transport. Four groupings of discharge patterns emerge when coming climate zones and DVI: persistent, moderate, seasonal, and erratic. This dataset has incredible predictive power about the nature of discharge in fluvial systems around the world. These seasonal effects on surface water supply affects river morphodynamics and sedimentation on a wide timeframe, ranging from large single events to an inter-annual or even decadal timeframe. The resulting sedimentary deposits lead to differences in fluvial architecture on a range of depositional scales from sedimentary structures and bedforms to channel complex systems. These differences are important to accurately model for several reasons, ranging from stratigraphic and paleoenviromental reconstructions to more

  7. Hydrodynamic and sedimentological controls governing formation of fluvial levees

    Science.gov (United States)

    Johnston, G. H.; Edmonds, D. A.; David, S. R.; Czuba, J. A.

    2017-12-01

    Fluvial levees are familiar features found on the margins of river channels, yet we know little about what controls their presence, height, and shape. These attributes of levees are important because they control sediment transfer from channel to floodplain and flooding patterns along a river system. Despite the familiarity and importance of levees, there is a surprising lack of basic geomorphic data on fluvial levees. Because of this we seek to understand: 1) where along rivers do levees tend to occur?; 2) what geomorphic and hydrodynamic variables control cross-sectional shape of levees? We address these questions by extracting levee shape from LiDAR data and by collecting hydrodynamic and sedimentological data from reaches of the Tippecanoe River, the White River, and the Muscatatuck River, Indiana, USA. Fluvial levees are extracted from a 1.5-m resolution LiDAR bare surface model and compared to hydrological, sedimentological, and geomorphological data from USGS stream gages. We digitized banklines and extracted levee cross-sections to calculate levee slope, taper, height, e-folding length, and e-folding width. To answer the research questions, we performed a multivariable regression between the independent variables—channel geometry, sediment grain size and concentration, flooding conditions, and slope—and the dependent levee variables. We find considerable variation in levee presence and shape in our field data. On the Muscatatuck River levees occur on 30% of the banks compared to 10% on the White River. Moreover, levees on the Muscatatuck are on average 3 times wider than the White River. This is consistent with the observation that the Muscatatuck is finer-grained compared to the White River and points to sedimentology being an important control on levee geomorphology. Future work includes building a morphodynamic model to understand how different hydrodynamic and geomorphic conditions control levee geometry.

  8. Introduction to the special issue on discontinuity of fluvial systems

    Science.gov (United States)

    Burchsted, Denise; Daniels, Melinda; Wohl, Ellen E.

    2014-01-01

    Fluvial systems include natural and human-created barriers that modify local base level; as such, these discontinuities alter the longitudinal flux of water and sediment by storing, releasing, or changing the flow path of those materials. Even in the absence of distinct barriers, fluvial systems are typically discontinuous and patchy. The size of fluvial discontinuities ranges across scales from 100 m, such as riffles, to 104 m, such as lava dams or major landslides. The frequency of occurrence appears to be inversely related to size, with creation and failure of the small features, such as beaver dams, occurring on a time scale of 100 to 101 years and a frequency of occurrence at scales as low as 101 m. In contrast, larger scale discontinuities, such as lava dams, can last for time scales up to 105 years and have a frequency of occurrence of approximately 104 m. The heterogeneity generated by features is an essential part of river networks and should be considered as part of river management. Therefore, we suggest that "natural" dams are a useful analog for human dams when evaluating options for river restoration. This collection of papers on the studies of natural dams includes bedrock barriers, log jams and beaver dams. The collection also addresses the discontinuity generated by a floodplain — in the absence of an obvious barrier in the channel — and tools for evaluation of riverbed heterogeneity. It is completed with a study of impact of human dams on floodplain sedimentation. These papers will help geomorphologists and river managers understand the factors that control river heterogeneity across scales and around the world.

  9. A hydro-geochemical study of Nahr-Ibrahim catchment area: Fluvial metal transport

    International Nuclear Information System (INIS)

    Korfali, Samira

    2004-01-01

    Author.Metals enter water bodies geological weathering, soil erosion, industrial and domestic waste discharges, as well as atmospheric deposition. The metal content in sediments is a reflection of the nature of their background whether of geologic and/or anthropogenic origin. The depositional process of metals in sediment are controlled by river discharge, turbulence of river, morphology and river geometry, as well as the geochemical phases of sediment and soils. Thus a study of metal content in river and /or metal transport with a water body should include a hydrological study of the river, types of minerals in sediment and soil, sediment and soil textures, and metal speciation in the different geochemical phases of sediment, bank and soils. A contaminated flood plain is a temporary storage system for pollutants and an understanding of soil-sediment-interactions is important prerequisite for modeling fluvial pollutant transport. The determination of metal speciation in sediment and soil chemical fraction can provide information on the way in which these metals are bound to sediment and soil, their mobilization potential, bioavailability and possible mechanism of fluvial pollutant transport. Sequential extraction techniques yielding operationally defined chemical pools have been used by many workers to examine the partitioning of metals among the various geochemical phases of sediment or soil. The sequential extraction method specifies metals in sediment fractions as: exchangeable, specifically sorbed, easily reducible, moderately reducible, organic, residual. Previously, I have conducted a study on speciation of metals (Fe, Mn, Zn, Cu, Pb and Cd) in the dry season bed-load sediments only at five sites 13 km stretch upstream from the mouth of Nahr Ibrahim. The reported data revealed that the specifically sorbed sediment fraction was the prime fraction for deposition of Mn, Z, CU, Pb and Cd metals in sediments. X-ray diffraction analysis of bed sediments showed

  10. "The Waters of Meridiani" - Further Support for a Fluvial Interpretation of the Ridged, Layered Units

    Science.gov (United States)

    Wilkinson, Justin; Kreslavsky, Misha

    2009-01-01

    A relatively unknown terrestrial fluvial environment, the mesoscale megafan, provides analogs for various Martian landscapes, including the etched unit (etched unit, Unite E of Arvidson et al., 2003; ridge-forming unit R of Edgett, 2005) of the Sinus Meridiani region on Mars. A global survey of Earth shows that megafans are very large partial cones of dominantly fluvial sediment with radii on the order of hundreds of km, and very low slopes. Responsible fluvial processes are sufficiently different from those of classical arid alluvial fans and deltas that it is useful to class megafans as separate features. The megafan model calls into question two commonly held ideas. 1. Earth examples prove that topographic basins per se are unnecessary for the accumulation of large sedimentary bodies. 2. River channels are by no means restricted to valleys (Meridiani sediments are termed a "valley-ed volume" of Edgett). These perspectives reveal unexpected parallels with features at Meridiani-several channel-like features that are widespread, mostly as ridges inverted by eolian erosion; channel networks covering thousands of sq km, especially on intercrater plains; and regional relationships of sediment bodies situated immediately downstream of highland masses. These all suggest that fluvial explanations are at least part of the Meridiani story.

  11. Modeling Long-Term Fluvial Incision : Shall we Care for the Details of Short-Term Fluvial Dynamics?

    Science.gov (United States)

    Lague, D.; Davy, P.

    2008-12-01

    Fluvial incision laws used in numerical models of coupled climate, erosion and tectonics systems are mainly based on the family of stream power laws for which the rate of local erosion E is a power function of the topographic slope S and the local mean discharge Q : E = K Qm Sn. The exponents m and n are generally taken as (0.35, 0.7) or (0.5, 1), and K is chosen such that the predicted topographic elevation given the prevailing rates of precipitation and tectonics stay within realistic values. The resulting topographies are reasonably realistic, and the coupled system dynamics behaves somehow as expected : more precipitation induces increased erosion and localization of the deformation. Yet, if we now focus on smaller scale fluvial dynamics (the reach scale), recent advances have suggested that discharge variability, channel width dynamics or sediment flux effects may play a significant role in controlling incision rates. These are not factored in the simple stream power law model. In this work, we study how these short- term details propagate into long-term incision dynamics within the framework of surface/tectonics coupled numerical models. To upscale the short term dynamics to geological timescales, we use a numerical model of a trapezoidal river in which vertical and lateral incision processes are computed from fluid shear stress at a daily timescale, sediment transport and protection effects are factored in, as well as a variable discharge. We show that the stream power law model might still be a valid model but that as soon as realistic effects are included such as a threshold for sediment transport, variable discharge and dynamic width the resulting exponents m and n can be as high as 2 and 4. This high non-linearity has a profound consequence on the sensitivity of fluvial relief to incision rate. We also show that additional complexity does not systematically translates into more non-linear behaviour. For instance, considering only a dynamical width

  12. Fluvial fluxes from the Magdalena River into Cartagena Bay, Caribbean Colombia: Trends, future scenarios, and connections with upstream human impacts

    Science.gov (United States)

    Restrepo, Juan D.; Escobar, Rogger; Tosic, Marko

    2018-02-01

    Fluxes of continental runoff and sediments as well as downstream deposition of eroded soils have severely altered the structure and function of fluvial and deltaic-estuarine ecosystems. The Magdalena River, the main contributor of continental fluxes into the Caribbean Sea, delivers important amounts of water and sediments into Cartagena Bay, a major estuarine system in northern Colombia. Until now, trends in fluvial fluxes into the bay, as well as the relationship between these tendencies in fluvial inputs and associated upstream changes in the Magdalena catchment, have not been studied. Here we explore the interannual trends of water discharge and sediment load flowing from the Magdalena River-Canal del Dique system into Cartagena Bay during the last three decades, forecast future scenarios of fluxes into the bay, and discuss possible connections between observed trends in fluvial inputs and trends in human intervention in the Magdalena River basin. Significant upward trends in annual runoff and sediment load during the mid-1980s, 1990s, and post-2000 are observed in the Magdalena and in the Canal del Dique flowing into Cartagena Bay. During the last decade, Magdalena streamflow and sediment load experienced increases of 24% and 33%, respectively, compared to the pre-2000 year period. Meanwhile, the Canal del Dique witnessed increases in water discharge and sediment load of 28% and 48%, respectively. During 26 y of monitoring, the Canal del Dique has discharged 177 Mt of sediment to the coastal zone, of which 52 Mt was discharged into Cartagena Bay. Currently, the Canal drains 6.5% and transports 5.1% of the Magdalena water discharge and sediment load. By 2020, water discharge and sediment flux from the Canal del Dique flowing to the coastal zone will witness increments of 164% and 260%, respectively. Consequently, sediment fluxes into Cartagena Bay will witness increments as high as 8.2 Mt y- 1 or 317%. Further analyses of upstream sediment load series for 21

  13. Radiocarbon dating of sediment cores from Hachinohe, the Kamikita Plain

    International Nuclear Information System (INIS)

    Hitoki, Eri; Nakamura, Toshio; Matsumoto, Yui; Tsuji, Sei-ichiro; Fujine, Hisashi

    2013-01-01

    We investigated stratigraphy and chronology by analyses of Holocene sediments and radiocarbon dating of sediment cores from the Kamikita Plain. On the Kamikita Plain, which faces the Pacific coast of Northeast Japan, marine and fluvial terraces covered with tephras derived from Towada and Hakkoda volcanoes are well developed. We clarified that Towada Chuseri tephra and fluvial deposits consisted of volcanic sediments influenced an alluvial depositional system in the Kamikita Plain after a maximum of the Jomon Transgression. (author)

  14. Stratigraphy, sedimentology and petrology of neogene rocks in the Deschutes Basin, Central Oregon: a record of continental-margin volcanism and its influence on fluvial sedimentation in an arc-adjacent basin

    International Nuclear Information System (INIS)

    Smith, G.A.

    1986-07-01

    Neogene rocks of the Deschutes basin include the middle Miocene Columbia River Basalt Group and Simtustus Formation, and late Miocene to early Pliocene Deschutes Formation. Assignment of Prineville chemical-type flows to the Grande Ronde Basalt of the Columbia River Basalt Group is based on correlation of these lavas from their type area through the Deschutes basin and onto the Columbia Plateau, where they have been previously mapped as Grande Ronde Basalt. Simtustus Formation is a newly defined unit intercalated with and conformable upon these basalts, and is unconformably overlain by Deschutes Formation. Burial of mature topography by middle Miocene basalts raised local base levels and initiated aggradation by low-gradient streams within the basin represented by the tuffaceous sandstones and mudstones of the Simtustus Formation. These sediments are enriched in pyroclastic constituents relative to contemporaneous Western Cascades volcanics, reflecting preferential incorporation of easily eroded and more widespread pyroclastic debris in distal sedimentary sequences compared to epiclastic contributions from lavas. The abundance of basalts, combined with the paucity of hydrous minerals and FeO and TiO 2 enrichment in intermediate lavas, characterizes early High Cascade volcanics as atypical for convergent-margin arcs. These petrologic characteristics are consistent with high-level fractionation in an extensional regime. Extension culminated in the development of an intra-arc graben, which ended Deschutes Formation deposition by structurally isolating the basin from the High Cascade source area

  15. Stability of Fluvial and Gravity-flow Antidunes

    Science.gov (United States)

    Fedele, J. J.; Hoyal, D. C. J. D.; Demko, T. M.

    2017-12-01

    Antidunes develop as a consequence of interface (free surface) deformation and sediment transport feedback in supercritical flows. Fluvial (open-channel flow) antidunes have been studied extensively in the laboratory and the field, and recognized in ancient sedimentary deposits. Experiments on gravity flow (turbidity and density currents) antidunes indicate that they are more stable and long-lived than their fluvial counterpart but the mechanism controlling this stability is poorly understood. Sea floor bathymetric and subsurface data suggest that large-scale, antidune-like sediment waves are extremely common in deep-water, found in a wide range of settings and sediment characteristics. While most of these large features have been interpreted as cyclic steps, the term has been most likely overused due to the lack of recognition criteria and basic understanding on the differences between antidunes and cyclic steps formed under gravity flows. In principle, cyclic steps should be more common in confined or channel-lobe transition settings where flows tend to be more energetic or focused, while antidunes should prevail in regions of less confinement, under sheet-like or expanding flows. Using published, fluvial stable-antidune data, we show that the simplified 1D, mechanical-energy based analysis of flow over a localized fixed obstacle (Long, 1954; Baines, 1995; Kubo and Yokokawa, 2001) is inaccurate for representing flow over antidunes and their stability. Instead, a more detailed analysis of a flow along a long-wavelength (in relation to flow thickness) wavy bed that also considers the interactions between flow and sediment transport is used to infer conditions of antidune stability and the breaking of surface waves. In particular, the position of the surface wave crest in relation to the bedform crest, along with the role of average flow velocity, surface velocity, and surface wave celerity appear relevant in determining antidune instability. The analysis is

  16. Ridge Orientations of the Ridge-Forming Unit, Sinus Meridiani, Mars-A Fluvial Explanation

    Science.gov (United States)

    Wilkinson, M. Justin; Herridge, A.

    2013-01-01

    Imagery and MOLA data were used in an analysis of the ridge-forming rock unit (RFU) exposed in Sinus Meridiani (SM). This unit shows parallels at different scales with fluvial sedimentary bodies. We propose the terrestrial megafan as the prime analog for the RFU, and likely for other members of the layered units. Megafans are partial cones of fluvial sediment, with radii up to hundreds of km. Although recent reviews of hypotheses for the RFU units exclude fluvial hypotheses [1], inverted ridges in the deserts of Oman have been suggested as putative analogs for some ridges [2], apparently without appreciating The wider context in which these ridges have formed is a series of megafans [3], a relatively unappreciated geomorphic feature. It has been argued that these units conform to the megafan model at the regional, subregional and local scales [4]. At the regional scale suites of terrestrial megafans are known to cover large areas at the foot of uplands on all continents - a close parallel with the setting of the Meridiani sediments at the foot of the southern uplands of Mars, with its incised fluvial systems leading down the regional NW slope [2, 3] towards the sedimentary units. At the subregional scale the layering and internal discontinuities of the Meridiani rocks are consistent, inter alia, with stacked fluvial units [4]. Although poorly recognized as such, the prime geomorphic environment in which stream channel networks cover large areas, without intervening hillslopes, is the megafan [see e.g. 4]. Single megafans can reach 200,000 km2 [5]. Megafans thus supply an analog for areas where channel-like ridges (as a palimpsest of a prior landscape) cover the intercrater plains of Meridiani [6]. At the local, or river-reach scale, the numerous sinuous features of the RFU are suggestive of fluvial channels. Cross-cutting relationships, a common feature of channels on terrestrial megafans, are ubiquitous. Desert megafans show cemented paleo-channels as inverted

  17. Aeolian and fluvial processes in dryland regions: the need for integrated studies

    Science.gov (United States)

    Belnap, Jayne; Munson, Seth M.; Field, Jason P.

    2011-01-01

    Aeolian and fluvial processes play a fundamental role in dryland regions of the world and have important environmental and ecological consequences from local to global scales. Although both processes operate over similar spatial and temporal scales and are likely strongly coupled in many dryland systems, aeolian and fluvial processes have traditionally been studied separately, making it difficult to assess their relative importance in drylands, as well as their potential for synergistic interaction. Land degradation by accelerated wind and water erosion is a major problem throughout the world's drylands, and although recent studies suggest that these processes likely interact across broad spatial and temporal scales to amplify the transport of soil resources from and within drylands, many researchers and land managers continue to view them as separate and unrelated processes. Here, we illustrate how aeolian and fluvial sediment transport is coupled at multiple spatial and temporal scales and highlight the need for these interrelated processes to be studied from a more integrated perspective that crosses traditional disciplinary boundaries. Special attention is given to how the growing threat of climate change and land-use disturbance will influence linkages between aeolian and fluvial processes in the future. We also present emerging directions for interdisciplinary needs within the aeolian and fluvial research communities that call for better integration across a broad range of traditional disciplines such as ecology, biogeochemistry, agronomy, and soil conservation.

  18. Mapping Glacier Dynamics and Proglacial Wetlands with a Multispectral UAV at 5000m in the Cordillera Blanca, Peru

    Science.gov (United States)

    Wigmore, O.; Mark, B. G.

    2015-12-01

    The glaciers of the Cordillera Blanca, Peru are rapidly retreating as a result of rising temperatures, transforming the hydrology and impacting the socio-economic and environmental systems of the Rio Santa basin. Documenting the heterogeneous spatial patterns of these changes to understand processes of water storage and flow is hindered by technologic and logistic challenges. Highly complex topography, cloud cover and coarse spatial resolution limit the application of satellite data while airborne data collection remains costly and potentially dangerous. However, recent developments have made Unmanned Aerial Vehicle (UAV) technology a viable and potentially transformative method for studying glacier dynamics and proglacial hydrology. The extreme altitudes (4000-6700m) of the Cordillera Blanca limit the use of 'off the shelf' UAVs. Therefore we developed a low cost multispectral (visible, near-infrared and thermal infrared) multirotor UAV capable of conducting fully autonomous aerial surveys at elevations over 5000m within the glacial valleys of the Cordillera Blanca. Using this platform we have completed repeat aerial surveys (in 2014 and 2015) of the debris covered Llaca Glacier, generating highly accurate 10-20cm DEM's and 5cm orthomosaics using a structure from motion workflow. Analysis of these data reveals a highly dynamic system with some areas of the glacier losing as much as 16m of vertical elevation, while other areas have gained up to 5m of elevation over one year. The magnitude and direction of these changes appears to be associated with the presence of debris free ice faces and meltwater ponds. Additionally, we have mapped proglacial meadow and wetland systems. Thermal mosaics at 10-20cm resolution are providing novel insights into the hydrologic pathways of glacier meltwater including mapping the distribution of artesian springs that feed these wetland systems. The high spatial resolution of these UAV datasets facilitates a better understanding of the

  19. Environmental changes in the central Po Plain (northern Italy) due to fluvial modifications and anthropogenic activities

    Science.gov (United States)

    Marchetti, Mauro

    2002-05-01

    The fluvial environment of the central Po Plain, the largest plain in Italy, is discussed in this paper. Bounded by the mountain chains of the Alps and the Apennines, this plain is a link between the Mediterranean environment and the cultural and continental influences of both western and eastern Europe. In the past decades, economic development has been responsible for many changes in the fluvial environment of the area. This paper discusses the changes in fluvial dynamics that started from Late Pleistocene and Early Holocene due to distinct climatic changes. The discussion is based on geomorphological, pedological, and archaeological evidences and radiocarbon dating. In the northern foothills, Late Pleistocene palaeochannels indicate several cases of underfit streams among the northern tributaries of the River Po. On the other hand, on the southern side of the Po Plain, no geomorphological evidence of similar discharge reduction has been found. Here, stratigraphic sections, together with archaeological remains buried under the fluvial deposits, show a reduction in the size of fluvial sediments after the 10th millennium BC. During the Holocene, fluvial sedimentation became finer, and was characterised by minor fluctuations in the rate of deposition, probably related to short and less intense climatic fluctuations. Given the high rate of population growth and the development of human activities since the Neolithic Age, human influence on fluvial dynamics, especially since the Roman Age, prevailed over other factors (i.e., climate, tectonics, vegetation, etc.). During the Holocene, the most important changes in the Po Plain were not modifications in water discharge but in sediment. From the 1st to 3rd Century AD, land grants to war veterans caused almost complete deforestation, generalised soil erosion, and maximum progradation of the River Po delta. At present, land abandonment in the mountainous region has led to reafforestation. Artificial channel control in the

  20. Rapid fluvial incision of a late Holocene lava flow: Insights from LiDAR, alluvial stratigraphy, and numerical modeling

    Science.gov (United States)

    Sweeney, Kristin; Roering, Joshua J.

    2016-01-01

    Volcanic eruptions fundamentally alter landscapes, paving over channels, decimating biota, and emplacing fresh, unweathered material. The fluvial incision of blocky lava flows is a geomorphic puzzle. First, high surface permeability and lack of sediment should preclude geomorphically effective surface runoff and dissection. Furthermore, past work has demonstrated the importance of extreme floods in driving incision via column toppling and plucking in columnar basalt, but it is unclear how incision occurs in systems where surface blocks are readily mobile. We examine rapid fluvial incision of the Collier lava flow, an andesitic Holocene lava flow in the High Cascades of Oregon. Since lava flow emplacement ∼1600 yr ago, White Branch Creek has incised bedrock gorges up to 8 m deep into the coherent core of the lava flow and deposited >0.2 km3 of sediment on the lava flow surface. Field observation points to a bimodal discharge regime in the channel, with evidence for both annual snowmelt runoff and outburst floods from Collier glacier, as well as historical evidence of vigorous glacial meltwater. To determine the range of discharge events capable of incision in White Branch Creek, we used a mechanistic model of fluvial abrasion. We show that the observed incision implies that moderate flows are capable of both initiating channel formation and sustaining incision. Our results have implications for the evolution of volcanic systems worldwide, where glaciation and/or mass wasting may accelerate fluvial processes by providing large amounts of sediment to otherwise porous, sediment-starved landscapes.

  1. Is proglacial field an important contributor to runoff in glacierized watershed? Lesson learned from a case study in Duke River watershed, Yukon, Canada.

    Science.gov (United States)

    Chesnokova, A.; Baraer, M.

    2017-12-01

    Sub-Arctic glacierized catchments are complex hydrological systems of paramount importance not only for water resources management but also for various ecosystem services. Those areas are environmentally fragile and host many climate-sensitive components of hydrological cycle. In a context of shifting from glacial to non-glacial regimes in Sub-Arctic, this study focuses on understanding hydrological role of proglacial field in runoff generation in headwaters of Duke River watershed, Canada, by comparing to that of alpine meadow (area that is not recently reworked by glacier). Duke Glacier, as many glaciers in St. Elias Mountains, is a surging glacier, and produced debris-charged dead-ice masses once the last surge has seized. In addition, such features as ice-cored moraines and taluses are found in proglacial field. Those features are hypothesised to cause high storage capacity and complex groundwater distribution systems which might affect significantly watershed hydrology. In order to estimate the contribution of different components of the alpine meadow and the proglacial field to runoff, HBCM, a multi-component distributed hydrochemical mixing model (Baraer et al., 2015) was applied. During field campaign in June 2016, 157 samples were taken from possible hydrological sources (end-members) and from main stream, and analysed for major ions, dissolved organic compounds and heavy stable water isotopes. End-members contribution was quantified based on tracer concentration at mixing points. Discharge was measured 6 km downstream from the glacier snout so that both proglacial field and alpine meadow occupy comparable areas of the catchment. Results show the difference between main water sources for the two hydrological systems: buried ice, ice-cored moraines and groundwater sources within proglacial field, and groundwater and supra-permafrost water within alpine meadow. Overall contribution of glaciers during June 2016 exceeded the contribution of the rest of the

  2. Optimizing sampling strategy for radiocarbon dating of Holocene fluvial systems in a vertically aggrading setting

    International Nuclear Information System (INIS)

    Toernqvist, T.E.; Dijk, G.J. Van

    1993-01-01

    The authors address the question of how to determine the period of activity (sedimentation) of fossil (Holocene) fluvial systems in vertically aggrading environments. The available data base consists of almost 100 14 C ages from the Rhine-Meuse delta. Radiocarbon samples from the tops of lithostratigraphically correlative organic beds underneath overbank deposits (sample type 1) yield consistent ages, indicating a synchronous onset of overbank deposition over distances of at least up to 20 km along channel belts. Similarly, 14 C ages from the base of organic residual channel fills (sample type 3) generally indicate a clear termination of within-channel sedimentation. In contrast, 14 C ages from the base of organic beds overlying overbank deposits (sample type 2), commonly assumed to represent the end of fluvial sedimentation, show a large scatter reaching up to 1000 14 C years. It is concluded that a combination of sample types 1 and 3 generally yields a satisfactory delimitation of the period of activity of a fossil fluvial system. 30 refs., 11 figs., 4 tabs

  3. Geochemical background in polluted river sediments: How to separate the effects of sediment provenance and grain size with statistical rigour?

    Czech Academy of Sciences Publication Activity Database

    Bábek, O.; Matys Grygar, Tomáš; Faměra, M.; Hron, K.; Nováková, Tereza; Sedláček, J.

    2015-01-01

    Roč. 135, DEC (2015), s. 240-253 ISSN 0341-8162 Institutional support: RVO:61388980 Keywords : Anthropogenic contamination * Geochemical background * Fluvial sediments Subject RIV: DD - Geochemistry Impact factor: 2.612, year: 2015

  4. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars

    Science.gov (United States)

    Edgar, Lauren; Gupta, Sanjeev; Rubin, David M.; Lewis, Kevin W.; Kocurek, Gary A.; Anderson, Ryan; Bell, James F.; Dromart, Gilles; Edgett, Kenneth S.; Grotzinger, John P.; Hardgrove, Craig; Kah, Linda C.; LeVeille, Richard A.; Malin, Michael C.; Mangold, Nicholas; Milliken, Ralph E.; Minitti, Michelle; Palucis, Marisa C.; Rice, Melissa; Rowland, Scott K.; Schieber, Juergen; Stack, Kathryn M.; Sumner, Dawn Y.; Wiens, Roger C.; Williams, Rebecca M.E.; Williams, Amy J.

    2018-01-01

    This paper characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time, and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture, and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification to determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution, and bedform migration direction, this study concludes that the Shaler outcrop likely records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the northeast, across the surface of a bar that migrated southeast. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggests that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry, and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.

  5. A suspended sediment yield predictive equation for river basins in ...

    African Journals Online (AJOL)

    The fit was found to be better than those relating mean annual specific suspended sediment yield to basin area or runoff only. Since many stream gauging stations in the country have no records on fluvial sediment, the empirical equation can be used to obtain preliminary estimates of expected sediment load of streams for ...

  6. Metal concentrations in urban riparian sediments along an urbanization gradient

    Science.gov (United States)

    Daniel J. Bain; Ian D. Yesilonis; Richard V. Pouyat

    2012-01-01

    Urbanization impacts fluvial systems via a combination of changes in sediment chemistry and basin hydrology. While chemical changes in urban soils have been well characterized, similar surveys of riparian sediments in urbanized areas are rare. Metal concentrations were measured in sediments collected from riparian areas across the urbanization gradient in Baltimore, MD...

  7. Observations of runoff and sediment and dissolved loads from the Greenland Ice Sheet at Kangerlussuaq, West Greenland, 2007 to 2010

    DEFF Research Database (Denmark)

    Hasholt, Bent; Mikkelsen, Andreas Peter Bech; Nielsen, Morten Holtegaard

    2012-01-01

    Observations from 2007 to 2010 of runoff, sediment and solute delivery from a segment of the Greenland Ice Sheet (GrIS) and the proglacial landscape draining into the fjord at Kangerlussuaq are presented. The observations include at least three jökulhlaups and extreme recordings from 2010...... previously published for 2007 and 2008. The average effective erosion from the catchment was 0.28 mm (min. 0.18 and max. 0.45 mm). The erosion is larger than indicated from most other locations along the GrIS, but in the same order of magnitude as erosion in other glaciated areas at the same latitude, e.......g. Norway. The sandur in the proglacial area acts as a sediment sink for a lot of the sediments from the GrIS....

  8. Integration of multi-temporal airborne and terrestrial laser scanning data for the analysis and modelling of proglacial geomorphodynamic processes

    Science.gov (United States)

    Briese, Christian; Glira, Philipp; Pfeifer, Norbert

    2013-04-01

    The actual on-going and predicted climate change leads in sensitive areas like in high-mountain proglacial regions to significant geomorphodynamic processes (e.g. landslides). Within a short time period (even less than a year) these processes lead to a substantial change of the landscape. In order to study and analyse the recent changes in a proglacial environment the multi-disciplinary research project PROSA (high-resolution measurements of morphodynamics in rapidly changing PROglacial Systems of the Alps) selected the study area of the Gepatschferner (Tyrol), the second largest glacier in Austria. One of the challenges within the project is the geometric integration (i.e. georeferencing) of multi-temporal topographic data sets in a continuously changing environment. Furthermore, one has to deal with data sets of multiple scales (large area data sets vs. highly detailed local area observations) that are on one hand necessary to cover the complete proglacial area with the whole catchment and on the other hand guaranty a highly dense and accurate sampling of individual areas of interest (e.g. a certain highly affected slope). This contribution suggests a comprehensive method for the georeferencing of multi-temporal airborne and terrestrial laser scanning (ALS resp. TLS). It is studied by application to the data that was acquired within the project PROSA. In a first step a stable coordinate frame that allows the analysis of the changing environment has to be defined. Subsequently procedures for the transformation of the individual ALS and TLS data sets into this coordinate frame were developed. This includes the selection of appropriate reference areas as well as the development of special targets for the local TLS acquisition that can be used for the absolute georeferencing in the common coordinate frame. Due to the fact that different TLS instruments can be used (some larger distance sensors that allow covering larger areas vs. closer operating sensors that allow a

  9. Experimental insights into organic carbon oxidation potential during fluvial transport without floodplain storage

    Science.gov (United States)

    Scheingross, J. S.; Hovius, N.; Sachse, D.; Vieth-Hillebrand, A.; Turowski, J. M.; Hilton, R. G.

    2016-12-01

    Over geologic timescales, the exchange of organic carbon (OC) between the atmosphere, rock, and biosphere is thought to be a major control on global climate. CO2 flux estimates from oxidation of rock-derived OC and sequestration of biospheric OC during fluvial transit from source to sink are approximately the same order of magnitude or larger than those from silicate weathering. Despite field data showing loss of OC moving downstream in lowland rivers, it is unclear if losses occur primarily during active fluvial transport within the river, where OC is in continual motion within an aerated environment, or during longer periods when OC is temporarily stored in river floodplains which may be anoxic. This represents a major knowledge gap, as the unknown location of OC oxidation (i.e., river vs. floodplain) limits our ability to develop process-based models that can be employed to predict OC losses, constrain carbon budgets, and unravel links between climate, tectonics, and erosion. To fill this gap, we investigated the potential for OC oxidation in laboratory experiments simulating fluvial transport without floodplain storage. Mixtures of OC-rich and siliciclastic sediment were transported for distances of 2000 km in annular flumes while making time-series measurements of sediment TOC and water DOC concentrations. Initial results for transport of OC-rich soil show increasing DOC with transport distance to levels that represent a transfer of 2% of the total OC from the solid to the dissolved phase; however, we observed no detectable change in the solid-phase TOC. Similar results were obtained in a control experiment with identical sediment in still water. These preliminary results suggest minimal OC oxidation within our experiment, and, to the extent that such experiments represent natural transport through river systems, are consistent with the hypothesis that OC losses may occur primarily during floodplain storage rather than fluvial transport.

  10. Fluvial system response to Late Devensian (Weichselian) aridity, Baston, Lincolnshire, England

    Science.gov (United States)

    Briant, Rebecca M.; Coope, G. Russell; Preece, Richard C.; Keen, David H.; Boreham, Steve; Griffiths, Huw I.; Seddon, Mary B.; Gibbard, Philip L.

    2004-07-01

    Little is known about the impact of Late Devensian (Weichselian) aridity on lowland British landscapes, largely because they lack the widespread coversand deposits of the adjacent continent. The concentration of large interformational ice-wedge casts in the upper part of many Devensian fluvial sequences suggests that fluvial activity may have decreased considerably during this time. The development of optically stimulated luminescence (OSL) dating enables this period of ice-wedge cast formation to be constrained for the first time in eastern England, where a marked horizon of ice-wedge casts is found between two distinctive dateable facies associations. Contrasts between this horizon and adjacent sediments show clear changes in environment and fluvial system behaviour in response to changing water supply, in line with palaeontological evidence. In addition to providing chronological control on the period of ice-wedge formation, the study shows good agreement of the radiocarbon and OSL dating techniques during the Middle and Late Devensian, with direct comparison of these techniques beyond 15 000 yr for the first time in Britain. It is suggested that aridity during the Late Devensian forced a significant decrease in fluvial activity compared with preceding and following periods, initiating a system with low peak flows and widespread permafrost development. Copyright

  11. Utilization of alternatives fuels in a fluvial convoy; Utilizacao de combustiveis alternativos em um comboio fluvial

    Energy Technology Data Exchange (ETDEWEB)

    Padovezi, Carlos D; Giraldo, Arnaldo

    1987-12-31

    This work presents the results of tests performed with ethanol and methanol in a fluvial convoy in Tiete river, Sao Paulo State - Southeast Brazil. It also outlines a comparison and evaluation methodology. 9 figs., 3 tabs.

  12. Utilization of alternatives fuels in a fluvial convoy; Utilizacao de combustiveis alternativos em um comboio fluvial

    Energy Technology Data Exchange (ETDEWEB)

    Padovezi, Carlos D.; Giraldo, Arnaldo

    1986-12-31

    This work presents the results of tests performed with ethanol and methanol in a fluvial convoy in Tiete river, Sao Paulo State - Southeast Brazil. It also outlines a comparison and evaluation methodology. 9 figs., 3 tabs.

  13. Fluvial geomorphology and aquatic-to-terrestrial Hg export are weakly coupled in small urban streams of Columbus, Ohio

    Science.gov (United States)

    Sullivan, S. Mažeika P.; Boaz, Lindsey E.; Hossler, Katie

    2016-04-01

    Although mercury (Hg) contamination is common in stream ecosystems, mechanisms governing bioavailability and bioaccumulation in fluvial systems remain poorly resolved as compared to lentic systems. In particular, streams in urbanized catchments are subject to fluvial geomorphic alterations that may contribute to Hg distribution, bioaccumulation, and export across the aquatic-to-terrestrial boundary. In 12 streams of urban Columbus, Ohio, we investigated the influence of fluvial geomorphic characteristics related to channel geometry, streamflow, and sediment size and distribution on (1) Hg concentrations in sediment and body burdens in benthic larval and adult emergent aquatic insects and (2) aquatic-to-terrestrial contaminant transfer to common riparian spiders of the families Pisauridae and Tetragnathidae via changes in aquatic insect Hg body burdens as well as in aquatic insect density and community composition. Hydrogeomorphic characteristics were weakly related to Hg body burdens in emergent insects (channel geometry) and tetragnathid spiders (streamflow), but not to Hg concentrations in sediment or benthic insects. Streamflow characteristics were also related to emergent insect density, while wider channels were associated with benthic insect community shifts toward smaller-bodied and more tolerant taxa (e.g., Chironomidae). Thus, our results provide initial evidence that fluvial geomorphology may influence aquatic-to-terrestrial contaminant Hg transfer through the collective effects on emergent insect body burdens as well as on aquatic insect community composition and abundance.

  14. Fluvial dispersion of radioactive mill tailings in the seasonally-wet tropics, northern Australia

    International Nuclear Information System (INIS)

    East, T.J.; Cull, R.F.; Murray, A.S.; Duggan, K.

    1988-01-01

    Erosion of tailings at the Northern Herculaes mine at Moline, abandoned in 1972 has resulted in large present-day input (up to 90g L -1 ) of radioactive sediments into local watercourses after the failure of containment bunds. This has been used as an analogue for predicting the possible fluvial dispersion of mine sediments at existing and future uranium mines in this region, e.g. it is helping to formulate rehabilitation policies at Ranger. The downstream dispersal patterns of radioactive tailings is controlled by the nature of sedimentary environments, the properties of tailing sediments which affect transport and the dilution of flow and sediment from incoming tributaries. A generally consistent relationship exist between the type of sedimentary floodplain environment and the surface gamma dose rates. While dose rates are shown to decrease with distance downstream from the source, there is a tendency for fine particles to be more radioactive. 28 refs., 2 tabs., 9 figs

  15. Proglacial hydrology in the tropical Andes: lessons from the Cordillera Blanca, Peru (Invited)

    Science.gov (United States)

    McKenzie, J. M.; Mark, B. G.; Baraer, M.

    2009-12-01

    contributor (median value = 59%) to basin outflow during the dry season and also that it is subject to large flux variations. The groundwater system appears to have two flow components with 3- and 18-to-36- month residence times. The pro-glacial area in the Callejon de Huaylas has extensive long, relatively low-relief valleys that connect to the main Rio Santa Valley. We have assessed groundwater contributions to river outflow using HBCM from four of these valleys with differing geomorphic features (e.g., lakes, wetlands, glacial cover) and bedrock lithology, and find that there is a connection between increasing glacial cover and decreasing relative groundwater contributions. The groundwater is stored and flows through the heterogeneous unconsolidated valley fill materials (e.g., glacial-lacustrine and landslide deposits) deposited since the local last glacial maximum. The results from this study have important implications for interpreting high resolution paleohydrologic records from Andean glacial valleys. Groundwater is a critical component of the hydrologic system, in particular for high elevation watersheds, and the resulting outflow from these basins is already partially time-integrated due to groundwater mixing and storage.

  16. Interactions between fluvial forces and vegetation size, density and morphology influence plant mortality during experimental floods

    Science.gov (United States)

    Stella, J. C.; Kui, L.; Manners, R.; Wilcox, A. C.; Lightbody, A.; Sklar, L. S.

    2015-12-01

    Introduction and methods Fluvial disturbance is a key driver of riparian vegetation dynamics in river corridors. Despite an increasing understanding of ecohydraulic interactions between plants and fluvial forces, the interactive influences of plant morphology and sediment supply on plant mortality, a key demographic factor, are largely unknown. To better understand these processes, we designed and conducted a series of flume experiments to: (1) quantify effects of plant traits that interact with flow and sediment transport on plant loss to scour during floods; and (2) predict plant dislodgement for different species across a range of plant sizes, patch densities, and sediment condition (equilibrium transport versus sediment deficit). We ran ten experimental floods in a 28 m long × 0.6 m wide × 0.71 m tall flume, using live, 1-3 year-old tamarisk and cottonwood seedlings with contrasting morphologies with varied combinations of size and density. Results and discussion Both sediment supply and plant traits (morphology and composition) have significant impacts on plant vulnerability during floods. Sediment deficit resulted in bed degradation and a 35% greater risk of plant loss compared to equilibrium sediment conditions. The probability of plant dislodgement in sparse patches was 4.5 times greater than in dense patches. Tamarisk plants and patches had greater frontal area, basal diameter and longer roots compared to cottonwood across all seedling heights. These traits, as well as its lower crown position reduced tamarisk's vulnerability to scour by 75%. Compared with cottonwood, tamarisk exhibits better resistance to floods, due to its greater root biomass and longer roots that stabilize soil, and its greater frontal area and lower crown that effectively trap sediment. These traits likely contribute to riverscape-scale changes in channel morphology that are evident where tamarisk has invaded native riparian communities, and explain the persistence of tamarisk

  17. Two depositional models for Pliocene coastal plain fluvial systems, Goliad Formation, south Texas Gulf Coastal plain

    International Nuclear Information System (INIS)

    Hoel, H.D.; Galloway, W.E.

    1983-01-01

    The Goliad Formation consists of four depositional systems-the Realitos and Mathis bed-load fluvial systems in the southwest and the Cuero and Eagle Lake mixed-load fluvial systems in the northeast. Five facies are recognized in the Realitos and Mathis bed-load fluvial systems: (1) primary channel-fill facies, (2) chaotic flood channel-fill facies, (3) complex splay facies, (4) flood plain facies, and (5) playa facies. A model for Realitos-Mathis depositional environments shows arid-climate braided stream complexes with extremely coarse sediment load, highly variable discharge, and marked channel instability. Broad, shallow, straight to slightly sinuous primary channels were flanked by wide flood channels. Flood channels passed laterally into broad, low-relief flood plains. Small playas occupied topographic lows near large channel axes. Three facies are recognized in the Cuero and Eagle Lake mixed-load fluvial systems: (1) channel-fill facies, (2) crevasse splay facies, and (3) flood plain facies. A model for Cuero-Eagle Lake depositional environments shows coarse-grained meander belts in a semi-arid climate. Slightly to moderately sinuous meandering streams were flanked by low, poorly developed natural levees. Crevasse splays were common, but tended to be broad and ill-defined. Extensive, low-relief flood plains occupied interaxial areas. The model proposed for the Realitos and Mathis fluvial systems may aid in recognition of analogous ancient depositional systems. In addition, since facies characteristics exercise broad controls on Goliad uranium mineralization, the proposed depositional models aid in defining target zones for Goliad uranium exploration

  18. Large-scale coastal and fluvial models constrain the late Holocene evolution of the Ebro Delta

    Directory of Open Access Journals (Sweden)

    J. H. Nienhuis

    2017-09-01

    Full Text Available The distinctive plan-view shape of the Ebro Delta coast reveals a rich morphologic history. The degree to which the form and depositional history of the Ebro and other deltas represent autogenic (internal dynamics or allogenic (external forcing remains a prominent challenge for paleo-environmental reconstructions. Here we use simple coastal and fluvial morphodynamic models to quantify paleo-environmental changes affecting the Ebro Delta over the late Holocene. Our findings show that these models are able to broadly reproduce the Ebro Delta morphology, with simple fluvial and wave climate histories. Based on numerical model experiments and the preserved and modern shape of the Ebro Delta plain, we estimate that a phase of rapid shoreline progradation began approximately 2100 years BP, requiring approximately a doubling in coarse-grained fluvial sediment supply to the delta. River profile simulations suggest that an instantaneous and sustained increase in coarse-grained sediment supply to the delta requires a combined increase in both flood discharge and sediment supply from the drainage basin. The persistence of rapid delta progradation throughout the last 2100 years suggests an anthropogenic control on sediment supply and flood intensity. Using proxy records of the North Atlantic Oscillation, we do not find evidence that changes in wave climate aided this delta expansion. Our findings highlight how scenario-based investigations of deltaic systems using simple models can assist first-order quantitative paleo-environmental reconstructions, elucidating the effects of past human influence and climate change, and allowing a better understanding of the future of deltaic landforms.

  19. Contemporary Conceptual Approaches in Fluvial Geomorphology

    Directory of Open Access Journals (Sweden)

    Mônica dos Santos Marçal

    2016-06-01

    Full Text Available Contemporary fluvial geomorphology faces challenging questions, especially as it goes by understanding the Late Holocene/Anthropocene period, which has repercussions today and are intrinsically important to understand the human river disturbance. Given the scale that physical rates operate in complex river systems, two conceptual paths were developed to analyze the spatial and temporal organization. The network view emphasizes controls on catchment-scale and a reach approach focuses on discontinuity and local controls. Fluvial geomorphology has seek to understand the organization of complex river systems from the integrated view of the continuity and discontinuity paradigm. This integrated approach has stimulated within the geomorphology, the emergence of new theoretical-methodological instruments. It is recognized that rivers management is an ongoing process, part of the socio-cultural development, which refers to both a social movement and scientific exercise.

  20. Development of Rating Curve Estimators for Suspended-Sediment Concentration and Transport in the C-51 Canal Based on Surrogate Technology, Palm Beach County, Florida, 2004-05

    National Research Council Canada - National Science Library

    Lietz, A. C; Debiak, Elizabeth A

    2005-01-01

    .... The major cause of these sediment deposits most likely is due to stormwater heavily laden with fluvial sediment, discharging through the S-155 control structure on the West Palm Beach (C-51) Canal...

  1. Climate evolution during the Pleniglacial and Late Glacial as recorded in quartz grain morphoscopy of fluvial to aeolian successions of the European Sand Belt

    Directory of Open Access Journals (Sweden)

    Woronko Barbara

    2015-06-01

    Full Text Available We present results of research into fluvial to aeolian successions at four sites in the foreland of the Last Glacial Maximum, i.e., the central part of the “European Sand Belt”. These sites include dune fields on higher-lying river terraces and alluvial fans. Sediments were subjected to detailed lithofacies analyses and sampling for morphoscopic assessment of quartz grains. Based on these results, three units were identified in the sedimentary succession: fluvial, fluvio-aeolian and aeolian. Material with traces of aeolian origin predominate in these sediments and this enabled conclusions on the activity of aeolian processes during the Pleniglacial and Late Glacial, and the source of sediment supply to be drawn. Aeolian processes played a major role in the deposition of the lower portions of the fluvial and fluvio-aeolian units. Aeolian material in the fluvial unit stems from aeolian accumulation of fluvial sediments within the valley as well as particles transported by wind from beyond the valley. The fluvio-aeolian unit is composed mainly of fluvial sediments that were subject to multiple redeposition, and long-term, intensive processing in an aeolian environment. In spite of the asynchronous onset of deposition of the fluvio-aeolian unit, it is characterised by the greatest homogeneity of structural and textural characteristics. Although the aeolian unit was laid down simultaneously, it is typified by the widest range of variation in quartz morphoscopic traits. It reflects local factors, mainly the origin of the source material, rather than climate. The duration of dune-formation processes was too short to be reflected in the morphoscopy of quartz grains.

  2. Insights into organic carbon oxidation potential during fluvial transport from laboratory and field experiments

    Science.gov (United States)

    Scheingross, J. S.; Dellinger, M.; Eglinton, T. I.; Fuchs, M. C.; Golombek, N.; Hilton, R. G.; Hovius, N.; Lupker, M.; Repasch, M. N.; Sachse, D.; Turowski, J. M.; Vieth-Hillebrand, A.; Wittmann, H.

    2017-12-01

    Over geologic timescales, the exchange of organic carbon (OC) between the atmosphere, hydropshere, biosphere and geosphere can be a major control on atmospheric carbon dioxide concentrations. The carbon fluxes from the oxidation of rock-derived OC (a CO2 source) and erosion, transport, and burial of biospheric OC (a potential CO2 sink) during fluvial transit are approximately the same order of magnitude or larger than those from silicate weathering. Despite field data showing increasing oxidation of OC moving downstream in lowland rivers, it is unclear if losses occur primarily during active fluvial transport, where OC is in continual motion within an aerated river, or during periods of temporary storage in river floodplains which may be anoxic. The unknown location of OC oxidation (i.e., river vs. floodplain) limits our ability to mechanistically link geochemical and geomorphic processes which are required to develop models capable of predicting OC losses, constrain carbon budgets, and unravel links between climate, tectonics, and erosion. To fill this knowledge gap, we investigated OC oxidation in controlled laboratory experiments and a simplified field setting. We performed experiments in annular flumes that simulate fluvial transport without floodplain storage, allowing mixtures of OC-rich and siliciclastic sediment to be transported for distances of 1000 km. Preliminary experiments exploring both rock-derived and biospheric OC sources show minimal OC oxidation during active river transport, consistent with the idea that the majority of OC loss occurs during transient floodplain storage. These results are also consistent with new field data collected in the Rio Bermejo, Argentina, a lowland river traversing 800 km with no tributary inputs, where aged floodplain deposits have 3 to 10 times lower OC concentrations compared to modern river sediments. Together our field data and experiments support the hypothesis that oxidation of OC occurs primarily during

  3. Deciphering Fluvial-Capture-Induced Erosional Patterns at the Continental Scale on the Iberian Peninsula

    Science.gov (United States)

    Anton, L.; Munoz Martin, A.; De Vicente, G.; Finnegan, N. J.

    2017-12-01

    The process of river incision into bedrock dictates the landscape response to changes in climate and bedrock uplift in most unglaciated settings. Hence, understanding processes of river incision into bedrock and their topographic signatures are a basic goal of geomorphology. Formerly closed drainage basins provide an exceptional setting for the quantification of long term fluvial dissection and landscape change, making them valuable natural laboratories. Internally drained basins are peculiar because they trap all the sediment eroded within the watershed; as closed systems they do not respond to the base level of the global ocean and deposition is the dominant process. In that context, the opening of an outward drainage involves a sudden lowering of the base level, which is transmitted upstream along fluvial channels in the form of erosional waves, leading to high incision and denudation rates within the intrabasinal areas. Through digital topographic analysis and paleolandscape reconstruction based on relict deposits and landscapes on the Iberian Peninsula, we quantify the volume of sediments eroded from formerly internally drained basins since capture. Mapping of fluvial dissection patterns reveals how, and how far, regional waves of incision have propagated upstream. In our analysis, erosional patterns are consistent with the progressive establishment of an outward drainage system, providing a relative capture chronology for the different studied basins. Divide migration inferred from chi maps supports the interpretations based on fluvial dissection patterns and volumes, providing clues on how landscaped changed and how drainage integration occurred within the studied watersheds. [Funded by S2013/MAE-2739 and CGL2014-59516].

  4. Late Cenozoic fluvial successions in northern and western India: an overview and synthesis

    Science.gov (United States)

    Sinha, R.; Kumar, R.; Sinha, S.; Tandon, S. K.; Gibling, M. R.

    2007-11-01

    Late Cenozoic fluvial successions are widespread in India. They include the deposits of the Siwalik basin which represent the accumulations of the ancient river systems of the Himalayan foreland basin. Palaeomagnetic studies reveal that fluvial architecture and styles of deposition were controlled by Himalayan tectonics as well as by major climatic fluctuations during the long (∼13 Ma) span of formation. The Indo-Gangetic plains form the world's most extensive Quaternary alluvial plains, and display spatially variable controls on sedimentation: Himalayan tectonics in the frontal parts, climate in the middle reaches, and eustasy in the lower reaches close to the Ganga-Brahmaputra delta. Climatic effects were mediated by strong fluctuations in the SW Indian Monsoon, and Himalayan rivers occupy deep valleys in the western Ganga plains where stream power is high, cut in part during early Holocene monsoon intensification; the broad interfluves record the simultaneous aggradation of plains-fed rivers since ∼100 ka. The eastward increase in precipitation across the Ganga Plains results in rivers with low stream power and a very high sediment flux, resulting in an aggradational mode and little incision. The river deposits of semi-arid to arid western India form important archives of Quaternary climate change through their intercalation with the eolian deposits of the Thar Desert. Although the synthesis documents strong variability-both spatial and temporal-in fluvial stratigraphy, climatic events such as the decline in precipitation during the Last Glacial Maximum and monsoon intensification in the early Holocene have influenced fluvial dynamics throughout the region.

  5. Evolution of Subaerial Coastal Fluvial Delta Island Topography into Multiple Stable States Under Influence of Vegetation and Stochastic Hydrology

    Science.gov (United States)

    Moffett, K. B.; Smith, B. C.; O'Connor, M.; Mohrig, D. C.

    2014-12-01

    Coastal fluvial delta morphodynamics are prominently controlled by external fluvial sediment and water supplies; however, internal sediment-water-vegetation feedbacks are now being proposed as potentially equally significant in organizing and maintaining the progradation and aggradation of such systems. The time scales of fluvial and climate influences on these feedbacks, and of their responses, are also open questions. Historical remote sensing study of the Wax Lake Delta model system (Louisiana, USA) revealed trends in the evolution of the subaerial island surfaces from a non-systematic arrangement of elevations to a discrete set of levees and intra-island platforms with distinct vegetation types, designated as high marsh, low marsh, and mudflat habitat. We propose that this elevation zonation is consistent with multiple stable state theory, e.g. as applied to tidal salt marsh systems but not previously to deltas. According to zonally-distributed sediment core analyses, differentiation of island elevations was not due to organic matter accumulation as in salt marshes, but rather by differential mineral sediment accumulation with some organic contributions. Mineral sediment accumulation rates suggested that elevation growth was accelerating or holding steady over time, at least to date in this young delta, in contrast to theory suggesting rates should slow as elevation increases above mean water level. Hydrological analysis of island flooding suggested a prominent role of stochastic local storm events in raising island water levels and supplying mineral sediment to the subaerial island surfaces at short time scales; over longer time scales, the relative influences of local storms and inland/regional floods on the coupled sediment-water-vegetation system of the subaerial delta island surfaces remain the subject of ongoing study. These results help provide an empirical foundation for the next generation of coupled sediment-water-vegetation modeling and theory.

  6. Modelling centennial sediment waves in an eroding landscape – catchment complexity

    NARCIS (Netherlands)

    Schoorl, J.M.; Temme, A.J.A.M.; Veldkamp, A.

    2014-01-01

    Sediment flux dynamics in fluvial systems have often been related to changes in external drivers of topography, climate or land cover. It is well known that these dynamics are non-linear. Recently, model simulations of fluvial activity and landscape evolution have suggested that self-organization in

  7. Gully annealing by fluvially-sourced Aeolian sand: remote sensing investigations of connectivity along the Fluvial-Aeolian-hillslope continuum on the Colorado River

    Science.gov (United States)

    Sankey, Joel B.; East, Amy E.; Collins, Brian D.; Caster, Joshua J.

    2015-01-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term, land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This work investigates gully annealing by aeolian sediment, along the Colorado River downstream of Glen Canyon Dam in Glen, Marble, and Grand Canyons, Arizona, USA (Figure 1). In this segment of the Colorado River, gully erosion potentially affects the stability and preservation of archaeological sites that are located within valley margins. Gully erosion occurs as a function of ephemeral, rainfall-induced overland flow associated with intense episodes of seasonal precipitation. Measurements of sediment transport and topographic change have demonstrated that fluvial sand in some locations is transported inland and upslope by aeolian processes to areas affected by gully erosion, and aeolian sediment activity can be locally effective at counteracting gully erosion (Draut, 2012; Collins and others, 2009, 2012; Sankey and Draut, 2014). The degree to which specific locations are affected by upslope wind redistribution of sand from active channel sandbars to higher elevation valley margins is termed “connectivity”. Connectivity is controlled spatially throughout the river by (1) the presence of upwind sources of fluvial sand within the contemporary active river channel (e.g., sandbars), and (2) bio-physical barriers that include vegetation and topography that might impede aeolian sediment transport. The primary hypothesis of this work is that high degrees of connectivity lead to less gullying potential.

  8. Evidence for Subglacial Deformation and Deposition during a Complete Advance-Stagnation Cycle of Kötlujökull, Iceland – A Case Study

    DEFF Research Database (Denmark)

    Klint, K E S; Richardt, N; Krüger, Johannes

    2010-01-01

    A geological section, 70 m long and 3–4 m high, cut into dead-ice moraine in front of Kötlujökull, has been described. Five-sediment associations were recognized representing (1) proglacial glacio-fluvial sedimentation, (2) deposition and deformation in ice-marginal environment, (3) subglacial...

  9. Analysis of Sedimentation Rates in the Densu River Channel: The ...

    African Journals Online (AJOL)

    Sediment is important in determining the morphology of river systems. The Densu basin has come under intense anthropogenic activities such as farming, sand winning, bushfires, among others, which are impacting on the fluvial processes, forms and channel morphology of the river. The study investigated sedimentation of ...

  10. Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine-Meuse deposits – fluvial response to climate change, sea-level fluctuation and glaciation

    NARCIS (Netherlands)

    Busschers, F.S.; Weerts, H.J.T.; Wallinga, J.; Cleveringa, P.; Kasse, C.; Wolf, H. de; Cohen, K.M.

    2005-01-01

    Eight continuous corings in the west-central Netherlands show a 15 to 25 m thick stacked sequence of sandy to gravelly channel-belt deposits of the Rhine-Meuse system. This succession of fluvial sediments was deposited under net subsiding conditions in the southern part of the North Sea Basin and

  11. Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine-Meuse deposits - Fluvial response to climate change, sea-level fluctuation and glaciation

    NARCIS (Netherlands)

    Busschers, F.S.; Weerts, H.J.T.; Wallinga, J.; Cleveringa, P.; Kasse, C.; Wolf, H.de; Cohen, K.M.

    2005-01-01

    Eight continuous corings in the west-central Netherlands show a 15 to 25 m thick stacked sequence of sandy to gravelly channel-belt deposits of the Rhine-Meuse system. This succession of fluvial sediments was deposited under net subsiding conditions in the southern part of the North Sea Basin and

  12. Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine-Meuse deposits fluvial response to climate change, sea-level fluctuation and glaciation

    NARCIS (Netherlands)

    Busschers, F.S.; Weerts, H.J.T.; Wallinga, J.; Kasse, C.; Cleveringa, P.; de Wolf, H.; Cohen, K.M.

    2005-01-01

    Eight continuous corings in the west-central Netherlands show a 15 to 25 m thick stacked sequence of sandy to gravelly channel-belt deposits of the Rhine-Meuse system. This succession of fluvial sediments was deposited under net subsiding conditions in the southern part of the North Sea Basin and

  13. Fluvial terrace formation in the northern Upper Rhine Graben during the last 20 000 years as a result of allogenic controls and autogenic evolution

    NARCIS (Netherlands)

    Erkens, G.; Dambeck, R.; Volleberg, K.P.; Bouman, M.I.T.J.; Bos, J.A.A.; Cohen, K.M.; Hoek, W.Z.

    2009-01-01

    The northern Upper Rhine Graben hosts a well-preserved Late Weichselian and Holocene fluvial terrace sequence. Terraces differ in elevation, morphology, and overbank sediment characteristics. The purpose of this study was to determine the relative importance of allogenic controlling factors versus

  14. Fluvial geomorphology and river engineering: future roles utilizing a fluvial hydrosystems framework

    Science.gov (United States)

    Gilvear, David J.

    1999-12-01

    River engineering is coming under increasing public scrutiny given failures to prevent flood hazards and economic and environmental concerns. This paper reviews the contribution that fluvial geomorphology can make in the future to river engineering. In particular, it highlights the need for fluvial geomorphology to be an integral part in engineering projects, that is, to be integral to the planning, implementation, and post-project appraisal stages of engineering projects. It should be proactive rather than reactive. Areas in which geomorphologists will increasingly be able to complement engineers in river management include risk and environmental impact assessment, floodplain planning, river audits, determination of instream flow needs, river restoration, and design of ecologically acceptable channels and structures. There are four key contributions that fluvial geomorphology can make to the engineering profession with regard to river and floodplain management: to promote recognition of lateral, vertical, and downstream connectivity in the fluvial system and the inter-relationships between river planform, profile, and cross-section; to stress the importance of understanding fluvial history and chronology over a range of time scales, and recognizing the significance of both palaeo and active landforms and deposits as indicators of levels of landscape stability; to highlight the sensitivity of geomorphic systems to environmental disturbances and change, especially when close to geomorphic thresholds, and the dynamics of the natural systems; and to demonstrate the importance of landforms and processes in controlling and defining fluvial biotopes and to thus promote ecologically acceptable engineering. Challenges facing fluvial geomorphology include: gaining full acceptance by the engineering profession; widespread utilization of new technologies including GPS, GIS, image analysis of satellite and airborne remote sensing data, computer-based hydraulic modeling and

  15. Sedimentation in a river dominated estuary

    CSIR Research Space (South Africa)

    Cooper, JAG

    1993-10-01

    Full Text Available The Mgeni Estuary on the wave dominated cast coast of South Africa occupies a narrow, bedrock confined, alluvial valley and is partially blocked at the coast by an elongate sandy barrier. Fluvial sediment extends to the barrier and marine depositon...

  16. The Rhine-Meuse delta: a record of intra-Holocene variable sediment delivery

    NARCIS (Netherlands)

    Erkens, G.; Cohen, K.M.

    2013-01-01

    Human impact is shown to be of impressive scale and magnitude, and has to be regarded a forcing factor that acts drainage-basin wide already millennia ago. The quantified sedimentation rates and reconstructed sediment delivery highlight the importance of variation in received fluvial sediment

  17. Proglacial river stage, discharge, and temperature datasets from the Akuliarusiarsuup Kuua River northern tributary, Southwest Greenland, 2008–2011

    Directory of Open Access Journals (Sweden)

    A. K. Rennermalm

    2012-05-01

    Full Text Available Pressing scientific questions concerning the Greenland ice sheet's climatic sensitivity, hydrology, and contributions to current and future sea level rise require hydrological datasets to resolve. While direct observations of ice sheet meltwater losses can be obtained in terrestrial rivers draining the ice sheet and from lake levels, few such datasets exist. We present a new hydrologic dataset from previously unmonitored sites in the vicinity of Kangerlussuaq, Southwest Greenland. This dataset contains measurements of river stage and discharge for three sites along the Akuliarusiarsuup Kuua (Watson River's northern tributary, with 30 min temporal resolution between June 2008 and July 2011. Additional data of water temperature, air pressure, and lake stage are also provided. Flow velocity and depth measurements were collected at sites with incised bedrock or structurally reinforced channels to maximize data quality. However, like most proglacial rivers, high turbulence and bedload transport introduce considerable uncertainty to the derived discharge estimates. Eleven propagating error sources were quantified, and reveal that largest uncertainties are associated with flow depth observations. Mean discharge uncertainties (approximately the 68% confidence interval are two to four times larger (±19% to ±43% than previously published estimates for Greenland rivers. Despite these uncertainties, this dataset offers a rare collection of direct measurements of ice sheet runoff to the global ocean and is freely available for scientific use at http://dx.doi.org/10.1594/PANGAEA.762818.

  18. Examining fluvial fish range loss with SDMs

    Science.gov (United States)

    Taylor, Andrew T.; Papeş, Monica; Long, James M.

    2018-01-01

    Fluvial fishes face increased imperilment from anthropogenic activities, but the specific factors contributing most to range declines are often poorly understood. For example, the range of the fluvial‐specialist shoal bass (Micropterus cataractae) continues to decrease, yet how perceived threats have contributed to range loss is largely unknown. We used species distribution models to determine which factors contributed most to shoal bass range loss. We estimated a potential distribution based on natural abiotic factors and a series of currently occupied distributions that incorporated variables characterizing land cover, non‐native species, and river fragmentation intensity (no fragmentation, dams only, and dams and large impoundments). We allowed interspecific relationships between non‐native congeners and shoal bass to vary across fragmentation intensities. Results from the potential distribution model estimated shoal bass presence throughout much of their native basin, whereas models of currently occupied distribution showed that range loss increased as fragmentation intensified. Response curves from models of currently occupied distribution indicated a potential interaction between fragmentation intensity and the relationship between shoal bass and non‐native congeners, wherein non‐natives may be favored at the highest fragmentation intensity. Response curves also suggested that >100 km of interconnected, free‐flowing stream fragments were necessary to support shoal bass presence. Model evaluation, including an independent validation, suggested that models had favorable predictive and discriminative abilities. Similar approaches that use readily available, diverse, geospatial data sets may deliver insights into the biology and conservation needs of other fluvial species facing similar threats.

  19. Cyclic Sediment Trading Between Channel and River Bed Sediments

    Science.gov (United States)

    Haddadchi, A.

    2015-12-01

    Much of the previous work on sediment tracing has focused on determining either the initial sources of the sediment (soils derive from a particular rock type) or the erosion processes generating the sediment. However, alluvial stores can be both a source and sink for sediment transported by streams. Here geochemical and fallout radionuclide tracing of river-bed and alluvial sediments are used to determine the role of secondary sources, sediment stores, as potential sources of sediment leaving Emu Creek catchment, southeastern Queensland, Australia. Activity concentrations of 137Cs on the river sediments are consistent with channel erosion being the dominant source at all sites sampled along the river. To characterise the deposition and remobilisation cycles in the catchment, a novel geochemical tracing approach was used. Successive pockets of alluvium were treated as discrete sink terms within geochemical mixing models and their source contributions compared with those of river bed sediments collected adjacent to each alluvial pocket. Three different size fractions were examined; silts and clays (banks indicates a high degree of 'trading' between the fluvial space and the alluvial space. Hence, management works aimed at primarily reducing the supply of sediments to the outlet of Emu Creek should focus on rehabilitation of channel banks in the lower catchment.

  20. What can we learn from fluvial incision in high mountains?

    Science.gov (United States)

    Fuchs, Margret; Gloaguen, Richard; Krbetschek, Matthias

    2013-04-01

    High and actively deforming mountain ranges attract the attention of geoscientists as they provide natural laboratories of fast evolving process-response systems. Tectonic compressional settings, often linked to perpendicular extension, control the topographic growth and hence, erosion, transport pathways and sedimentation. High altitude differences within short horizontal distances promote material re-organisation and high rates of surface processes. Furthermore, high mountains constitute orographic barriers that affect atmospheric circulations as well as host different climate regimes similar to those of widely separated latitudinal belts. Both cause a high sensitivity of surface processes to changes in climatic conditions. However, feedbacks between climatic and tectonic forcing are complex. Additionally, the dominance of one or the other varies in space and also over time, inheriting various traces of the paleo-morphodynamic conditions to the subsequent process regimes. To unravel the forces driving the evolution of relief in active mountains, numerous studies employ the drainage network of the corresponding mountains as a proxy of landscape evolution. Especially the rates of river incision provide a powerful tool to characterize the surface response and infer causes behind it. Several parameters of river incision are available to describe the fluvial incision at individual sites (e.g. terrace incision rates), along the river course (e.g. longitudinal river profiles, Hack index) and in its perpendicular dimension (e.g. valley cross sections, valley shape ratios). But they require careful interpretation. They are sensitive to both, climatic and tectonic forcing. Therefore, the synopsis of such indices for fluvial incision is essential to evaluate the role of climatic versus tectonic forcing. Here, we use the Panj river system, the major river draining the Pamir mountains of Central Asia, as an example. The Panj experiences high altitude changes of more than 4000

  1. Glacial vs. Interglacial Period Contrasts in Midlatitude Fluvial Systems, with Examples from Western Europe and the Texas Coastal Plain

    Science.gov (United States)

    Blum, M.

    2001-12-01

    Mixed bedrock-alluvial valleys are the conveyor belts for sediment delivery to passive continental margins. Mapping, stratigraphic and sedimentologic investigations, and development of geochronological frameworks for large midlatitude rivers of this type, in Western Europe and the Texas Coastal Plain, provide for evaluation of fluvial responses to climate change over the last glacial-interglacial period, and the foundations for future quantitative evaluation of long profile evolution, changes through time in flood magnitude, and changes in storage and flux of sediments. This paper focuses on two issues. First, glacial vs. interglacial period fluvial systems are fundamentally different in terms of channel geometry, depositional style, and patterns of sediment storage. Glacial-period systems were dominated by coarse-grained channel belts (braided channels in Europe, large-wavelength meandering in Texas), and lacked fine-grained flood-plain deposits, whereas Holocene units, especially those of late Holocene age, contain appreciable thicknesses of flood-plain facies. Hence, extreme overbank flooding was not significant during the long glacial period, most flood events were contained within bankfull channel perimeters, and fine sediments were bypassed through the system to marine basins. By contrast, extreme overbank floods have been increasingly important during the relatively short Holocene, and a significant volume of fine sediment is sequestered in flood-plain settings. Second, glacial vs. interglacial systems exhibit different amplitudes and frequencies of fluvial adjustment to climate change. High-amplitude but low-frequency adjustments characterized the long glacial period, with 2-3 extended periods of lateral migration and sediment storage puncuated by episodes of valley incision. Low-amplitude but high-frequency adjustments have been more typical of the short Holocene, when there has been little net valley incision or net changes in sediment storage, but

  2. Origin and transport of sediments in an alpine glaciated catchment (Bossons glacier, France): a quantification combining hydro-sedimentary data, radio-frequency identification of pebbles, cosmogenic nuclides content and probabilistic methods

    International Nuclear Information System (INIS)

    Guillon, Herve

    2016-01-01

    Among the most efficient agents of erosion, glaciers react dynamically to climate change, leading to a significant adjustment of downstream sediment flux. Present-day global warming raises the question regarding the evolution of the sediment load originating from partially glaciated catchment. The detrital export from such environment results from erosion processes operating within distinct geomorphologic domains: supra-glacial rock-walls, ice-covered substratum and the pro-glacial area, downstream from the glacier. The general intent of this doctoral research is therefore to characterize the origin and transport of sediments in the watersheds of two streams draining Bossons glacier (Mont-Blanc massif, France).For this purpose, the components of the sediment flux coming from supra-glacial, sub-glacial and pro-glacial domains are separated and quantified by innovating methods: i. Using the terrestrial cosmogenic nuclides concentrations as evidence of a supra-glacial transport; ii. Combining meteorological data and hydro-sedimentary data acquired at a high time resolution (2 min) and completed by multi-linear models; iii. Estimating sediment flux by source for 7 years and with a probabilistic method; iv. Associating radio-frequency identification of pebbles in the pro-glacial area with a stochastic transport analysis.Through numerical tools, applying the presented methodologies provides erosion rates of the supra-glacial, sub-glacial and pro-glacial domains, and determines the sediment transfer mechanisms within the catchment.Thus in the terminal part of the glacier, 52±14 to 9±4% of the supra-glacial load is transferred to the sub-glacial drainage network. Moreover, its evolution throughout the melt season leads to the export of the winter sediment production during a limited period. Furthermore, the drainage configuration beneath the glacier and its retreat control the remobilization of a long-term sediment stock. These processes explain the contrast between the

  3. A Late Pleistocene linear dune dam record of aeolian-fluvial dynamics at the fringes of the northwestern Negev dunefield

    Science.gov (United States)

    Roskin, Joel; Bookman, Revital; Friesem, David; Vardi, Jacob

    2017-04-01

    The paper presents a late Pleistocene aeolian-fluvial record within a linear dune-like structure that partway served as a dune dam. Situated along the southern fringe of the northwestern Negev desert dunefield (Israel) the structure's morphology, orientation, and some of its stratigraphic units partly resemble adjacent west-east extending vegetated linear dunes. Uneven levels of light-colored, fine-grained fluvial deposits (LFFDs) extend to the north and south from the flanks of the studied structure. Abundant Epipalaeolithic sites line the fringes of the LFFDs. The LFFD microstructures of fine graded bedding and clay blocky peds indicate sorting and shrinking of saturated clays in transitional environments between low energy flows to shallow standing water formed by dunes damming a mid-sized drainage system. The structure's architecture of interchanging units of sand with LFFDs indicates interchanging dominances between aeolian sand incursion and winter floods. Sand mobilization associated with powerful winds during the Heinrich 1 event led to dune damming downstream of the structure and within the structure to in-situ sand deposition, partial fluvial erosion, reworking of the sand, and LFFD deposition. Increased sand deposition led to structure growth and blockage of its drainage system that in turn accumulated LFFD units up stream of the structure. Extrapolation of current local fluvial sediment yields indicate that LFFD accretion up to the structure's brim occurred over a short period of several decades. Thin layers of Geometric Kebaran (c. 17.5-14.5 ka cal BP) to Harifian (12-11 ka BP) artifacts within the structure's surface indicates intermittent, repetitive, and short term camping utilizing adjacent water along a timespan of 4-6 kyr. The finds directly imply that the NW Negev LFFDs formed in dune-dammed water bodies which themselves were formed following events of vegetated linear dune elongation. LFFD accumulation persisted as a result of dune dam

  4. On the Application of an Enthalpy Method to the Evolution of Fluvial Deltas Under Sea-Level Changes

    Science.gov (United States)

    Anderson, W.; Lorenzo-Trueba, J.; Voller, V. R.

    2017-12-01

    Fluvial deltas are composites of two primary sedimentary environments: a depositional fluvial region and an offshore region. The fluvial region is defined by two geomorphic moving boundaries: an alluvial-bedrock transition (ABT), which separates the sediment prism from the non-erodible bedrock basement, and the shoreline (SH), where the delta meets the ocean. The trajectories of these boundaries in time and space define the evolution of the shape of the sedimentary prism, and are often used as stratigraphic indicators, particularly in seismic studies, of changes in relative sea level and the identification of stratigraphic sequences. In order to better understand the relative role of sea-level variations, tectonics, and sediment supply on the evolution of these boundaries, we develop a forward stratigraphic model that captures the dynamic behavior of the fluvial surface and treats the SH and ABT as moving boundaries (i.e., internal boundaries whose location must be determined as part of the solution to the overall morphological evolution problem). This forward model extends a numerical technique from heat transfer (i.e., enthalpy method), previously applied to the evolution of sedimentary basins, to account for sea-level changes. The mathematics of the approach are verified by comparing predictions from the numerical model with both existing and newly developed closed form analytical solutions. Model results support previous work, which suggests that the migration of the ABT can respond very differently to the sea-level signal. This response depends on factors such as sediment supply and delta length, which can vary greatly between basins. These results can have important implications for the reconstruction of past sea-level changes from the stratigraphic record of sedimentary basins.

  5. Precambrian fluvial deposits: Enigmatic palaeohydrological data from the c. 2 1.9 Ga Waterberg Group, South Africa

    Science.gov (United States)

    Eriksson, Patrick G.; Bumby, Adam J.; Brümer, Jacobus J.; van der Neut, Markus

    2006-08-01

    Precambrian fluvial systems, lacking the influence of rooted vegetation, probably were characterised by flashy surface runoff, low bank stability, broad channels with abundant bedload, and faster rates of channel migration; consequently, a braided fluvial style is generally accepted. Pre-vegetational braided river systems, active under highly variable palaeoclimatic conditions, may have been more widespread than are modern, ephemeral dry-land braided systems. Aeolian deflation of fine fluvial detritus does not appear to have been prevalent. With the onset of large cratons by the Neoarchaean-Palaeoproterozoic, very large, perennial braided river systems became typical. The c. 2.06-1.88 Ga Waterberg Group, preserved within a Main and a smaller Middelburg basin on the Kaapvaal craton, was deposited largely by alluvial/braided-fluvial and subordinate palaeo-desert environments, within fault-bounded, possibly pull-apart type depositories. Palaeohydrological data obtained from earlier work in the Middelburg basin (Wilgerivier Formation) are compared to such data derived from the correlated Blouberg Formation, situated along the NE margin of the Main basin. Within the preserved Blouberg depository, palaeohydrological parameters estimated from clast size and cross-bed set thickness data, exhibit rational changes in their values, either in a down-palaeocurrent direction, or from inferred basin margin to palaeo-basin centre. In both the Wilgerivier and Blouberg Formations, calculated palaeoslope values (derived from two separate formulae) plot within the gap separating typical alluvial fan gradients from those which characterise rivers (cf. [Blair, T.C., McPherson, J.G., 1994. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J. Sediment. Res. A64, 450-489.]). Although it may be argued that such data support possibly unique fluvial styles within the Precambrian, perhaps related to

  6. Paleogeographic and Depositional Model for the Neogene fluvial succession, Pishin Belt Northwest Pakistan

    DEFF Research Database (Denmark)

    Kasi, Aimal Khan; Kassi, Akhtar Muhammad; Umar, Muhammad

    2017-01-01

    Miocene subaerial sedimentation started after the final closure of Katawaz Remnant Ocean. Based on detailed field data twelve facies were recognized in Neogene successions exposed in Pishin Belt. These facies were further organized into four facies associations i.e. channels, crevasse splay, natural levee...... and floodplain facies associations. Facies associations and variations provided ample evidences to recognize number of fluvial architectural components in the succession e.g., low-sinuosity sandy braided river, mixed-load meandering, high-sinuosity meandering channels, single-story sandstone and/or conglomerate...... channels, lateral accretion surfaces (point bars) and alluvial fans. Neogene sedimentation in the Pishin Belt was mainly controlled by active tectonism and thrusting in response to oblique collision of the Indian Plate with Afghan Block of the Eurasian Plate along the Chaman-Nushki Fault. Post Miocene...

  7. Tamarix, hydrology and fluvial geomorphology: Chapter 7

    Science.gov (United States)

    Auerbach, Daniel A.; Merritt, David M.; Shafroth, Patrick B.; Sher, Anna A; Quigley, Martin F.

    2013-01-01

    This chapter explores the impact of hydrology and fluvial geomorphology on the distribution and abundance of Tamarix as well as the reciprocal effects of Tamarix on hydrologic and geomorphic conditions. It examines whether flow-regime alteration favors Tamarix establishment over native species, and how Tamarix stands modify processes involved in the narrowing of river channels and the formation of floodplains. It begins with an overview of the basic geomorphic and hydrologic character of rivers in the western United States before analyzing how this setting has contributed to the regional success of Tamarix. It then considers the influence of Tamarix on the hydrogeomorphic form and function of rivers and concludes by discussing how a changing climate, vegetation management, and continued water-resource development affect the future role of Tamarix in these ecosystems.

  8. Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary.

    Science.gov (United States)

    Foreman, Brady Z; Heller, Paul L; Clementz, Mark T

    2012-11-01

    Climate strongly affects the production of sediment from mountain catchments as well as its transport and deposition within adjacent sedimentary basins. However, identifying climatic influences on basin stratigraphy is complicated by nonlinearities, feedback loops, lag times, buffering and convergence among processes within the sediment routeing system. The Palaeocene/Eocene thermal maximum (PETM) arguably represents the most abrupt and dramatic instance of global warming in the Cenozoic era and has been proposed to be a geologic analogue for anthropogenic climate change. Here we evaluate the fluvial response in western Colorado to the PETM. Concomitant with the carbon isotope excursion marking the PETM we document a basin-wide shift to thick, multistoried, sheets of sandstone characterized by variable channel dimensions, dominance of upper flow regime sedimentary structures, and prevalent crevasse splay deposits. This progradation of coarse-grained lithofacies matches model predictions for rapid increases in sediment flux and discharge, instigated by regional vegetation overturn and enhanced monsoon precipitation. Yet the change in fluvial deposition persisted long after the approximately 200,000-year-long PETM with its increased carbon dioxide levels in the atmosphere, emphasizing the strong role the protracted transmission of catchment responses to distant depositional systems has in constructing large-scale basin stratigraphy. Our results, combined with evidence for increased dissolved loads and terrestrial clay export to world oceans, indicate that the transient hyper-greenhouse climate of the PETM may represent a major geomorphic 'system-clearing event', involving a global mobilization of dissolved and solid sediment loads on Earth's surface.

  9. An optical age chronology of late Quaternary extreme fluvial events recorded in Ugandan dambo soils

    Science.gov (United States)

    Mahan, S.A.; Brown, D.J.

    2007-01-01

    There is little geochonological data on sedimentation in dambos (seasonally saturated, channel-less valley floors) found throughout Central and Southern Africa. Radiocarbon dating is problematic for dambos due to (i) oxidation of organic materials during dry seasons; and (ii) the potential for contemporary biological contamination of near-surface sediments. However, for luminescence dating the equatorial site and semi-arid climate facilitate grain bleaching, while the gentle terrain ensures shallow water columns, low turbidity, and relatively long surface exposures for transported grains prior to deposition and burial. For this study, we focused on dating sandy strata (indicative of high-energy fluvial events) at various positions and depths within a second-order dambo in central Uganda. Blue-light quartz optically stimulated luminescences (OSL) ages were compared with infrared stimulated luminescence (IRSL) and thermoluminescence (TL) ages from finer grains in the same sample. A total of 8 samples were dated, with 6 intervals obtained at ???35, 33, 16, 10.4, 8.4, and 5.9 ka. In general, luminescence ages were stratigraphically, geomorphically and ordinally consistent and most blue-light OSL ages could be correlated with well-dated climatic events registered either in Greenland ice cores or Lake Victoria sediments. Based upon OSL age correlations, we theorize that extreme fluvial dambo events occur primarily during relatively wet periods, often preceding humid-to-arid transitions. The optical ages reported in this study provide the first detailed chronology of dambo sedimentation, and we anticipate that further dambo work could provide a wealth of information on the paleohydrology of Central and Southern Africa. ?? 2006 Elsevier Ltd. All rights reserved.

  10. Tropical Andean and African glacier extent through the Holocene assessed with proglacial in situ 14C and 10Be measurements

    Science.gov (United States)

    Vickers, A. C.; Shakun, J. D.; Goehring, B. M.; Kelly, M. A.; Jackson, M. S.; Jomelli, V.

    2017-12-01

    We present measurements of the in situ cosmogenic radionuclides 14C and 10Be from recently exposed proglacial bedrock samples at the margin of the Quelccaya Ice Cap in Peru (n=5) and the Rwenzori mountains in Africa (n=3) to calculate cumulative exposure, burial, and erosion histories at these sites over the Holocene. The Holocene history (11 ka - present) of tropical glaciers gives important context to their observed retreat over the last century, insight into their sensitivity to climate forcing, and constraints on past climate change. Paired in situ 14C/10Be methods are used to exploit the multiple controls on nuclide concentrations and their differing half-lives (5730 years vs 1.38 Myr). In particular, the concentrations of both 14C and 10Be increase with exposure and decrease with glacial erosion; however,14C decreases not only due to glacial erosion, but also in appreciable amounts due to radio-decay during periods of burial as short as 800 years. Our results show similarities at both sites, with moderately high 10Be concentrations but 14C/10Be ratios approximately one-third of the production value, suggesting that both sites experienced several thousand years of exposure followed by burial during the mid-to-late Holocene. Our results are consistent with recently exposed subfossil plant remains at the Quelccaya margin that imply ice extended beyond its current position since 5.2 ka We will also present 10Be ages of several boulders from probable Little Ice Age moraines of the Charquini Sur Glacier in Bolivia (n=2) and Ritacuba Negro Glacier in Colombia (n=4) to better understand the timing of Little Ice Age advances in the tropical Andes.

  11. Marine intervals in Neogene fluvial deposits of western Amazonia

    Science.gov (United States)

    Boonstra, Melanie; Troelstra, Simon; Lammertsma, Emmy; Hoorn, Carina

    2014-05-01

    Amazonia is one of the most species rich areas on Earth, but this high diversity is not homogeneous over the entire region. Highest mammal and tree-alpha diversity is found in the fluvio-lacustrine Pebas system, a Neogene wetland associated with rapid radiation of species. The estuarine to marine origin of various modern Amazonian fish, plants, and invertebrates has been associated with past marine ingressions into this freshwater Pebas system. The exact nature and age of these invasions is, however, debated. Here we present new evidence from fluvial and fluvio-lacustrine deposits of Neogene age in southeast Colombia, that point to periods of widespread marine conditions in western Amazonia. Our evidence is based on an analysis of marine palynomorphs, such as organic linings of foraminifera and dinoflagellate cysts, present in dark sandy clay sediments that outcrop along the Caqueta and Amazon rivers. Characteristically, the foraminiferal linings can be assigned to three benthic morphotypes only, e.g. Ammonia, Elphidium and Trochammina. This low diversity assemblage is associated with estuarine/marginal marine conditions. No distinct marine elements such as shelf or planktonic species were encountered. The observed foraminiferal linings and dinocyst assemblages are typical for a (eutrophic) shallow marine environment, suggesting that the Pebas freshwater wetland system occasionally changed to (marginal) marine. Although some reworked elements are found, a typical Neogene dinocyst taxon is commonly found supporting in situ deposition. Sedimentological features typical for tidal conditions that are reported for sites in Peru and northeastern Brazil likely relate to these marine ingressions. Sea level changes as well as foreland basin development related to Andes formation may have facilitated the entry of marine water during the Neogene.

  12. The Brahmaputra River: a stratigraphic analysis of Holocene avulsion and fluvial valley reoccupation history

    Science.gov (United States)

    Hartzog, T. R.; Goodbred, S. L.

    2011-12-01

    The Brahmaputra River, one of the world's largest braided streams, is a major component of commerce, agriculture, and transportation in India and Bangladesh. Hence any significant change in course, morphology, or behavior would be likely to influence the regional culture and economy that relies on this major river system. The history of such changes is recorded in the stratigraphy deposited by the Brahmaputra River during the Holocene. Here we present stratigraphic analysis of sediment samples from the boring of 41 tube wells over a 120 km transect in the upper Bengal Basin of northern Bangladesh. The transect crosses both the modern fluvial valley and an abandoned fluvial valley about 60 km downstream of a major avulsion node. Although the modern Brahmaputra does not transport gravel, gravel strata are common below 20 m with fluvial sand deposits dominating most of the stratigraphy. Furthermore, the stratigraphy preserves very few floodplain mud strata below the modern floodplain mud cap. These preliminary findings will be assessed to determine their importance in defining past channel migration, avulsion frequency, and the reoccupation of abandoned fluvial valleys. Understanding the avulsion and valley reoccupation history of the Brahmaputra River is important to assess the risk involved with developing agriculture, business, and infrastructure on the banks of modern and abandoned channels. Based on the correlation of stratigraphy and digital surface elevation data, we hypothesize that the towns of Jamalpur and Sherpur in northern Bangladesh were once major ports on the Brahmaputra River even though they now lie on the banks of small underfit stream channels. If Jamalpur and Sherpur represent the outer extent of the Brahmaputra River braid-belt before the last major avulsion, these cities and any communities developed in the abandoned braid-belt assume a high risk of devastation if the next major avulsion reoccupies this fluvial valley. It is important to

  13. Robust assessment of moderate heavy metal contamination levels in floodplain sediments: A case study on the Jizera River, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Matys Grygar, Tomáš; Nováková, Tereza; Bábek, O.; Elznicová, J.; Vadinová, N.

    2013-01-01

    Roč. 452, May (2013), s. 233-245 ISSN 0048-9697 Institutional support: RVO:61388980 Keywords : Background * Enrichment factor * Fluvial sediments * Heavy metals * Pollution Subject RIV: DD - Geochemistry Impact factor: 3.163, year: 2013

  14. Recent flow regime and sedimentological evolution of a fluvial system as the main factors controlling spatial distribution of arsenic in groundwater (Red River, Vietnam)

    DEFF Research Database (Denmark)

    Kazmierczak, J.; Larsen, F.; Jakobsen, R.

    2016-01-01

    sediments was partially eroded during the Holocene and covered by sand and clay deposited in fluvial environments. Sedimentary processes lead to the development of two flow systems. Shallow groundwater discharges either to the local surface water bodies or, in the areas where low permeable sediments...... isolating Pleistocene and Holocene aquifers were eroded, to the deep groundwater flow system discharging to Red River. Previously reported pattern of arsenic groundwater concentrations decreasing with an increasing sediment age is modified by the observed flow regime. Connection of the younger and older...... river channels resulted in a transport of high arsenic concentrations towards the Pleistocene aquifer, where low arsenic concentrations were expected....

  15. Beaver ponds' impact on fluvial processes (Beskid Niski Mts., SE Poland).

    Science.gov (United States)

    Giriat, Dorota; Gorczyca, Elżbieta; Sobucki, Mateusz

    2016-02-15

    Beaver (Castor sp.) can change the riverine environment through dam-building and other activities. The European beaver (Castor fiber) was extirpated in Poland by the nineteenth century, but populations are again present as a result of reintroductions that began in 1974. The goal of this paper is to assess the impact of beaver activity on montane fluvial system development by identifying and analysing changes in channel and valley morphology following expansion of beaver into a 7.5 km-long headwater reach of the upper Wisłoka River in southeast Poland. We document the distribution of beaver in the reach, the change in river profile, sedimentation type and storage in beaver ponds, and assess how beaver dams and ponds have altered channel and valley bottom morphology. The upper Wisłoka River fluvial system underwent a series of anthropogenic disturbances during the last few centuries. The rapid spread of C. fiber in the upper Wisłoka River valley was promoted by the valley's morphology, including a low-gradient channel and silty-sand deposits in the valley bottom. At the time of our survey (2011), beaver ponds occupied 17% of the length of the study reach channel. Two types of beaver dams were noted: in-channel dams and valley-wide dams. The primary effect of dams, investigated in an intensively studied 300-m long subreach (Radocyna Pond), was a change in the longitudinal profile from smooth to stepped, a local reduction of the water surface slope, and an increase in the variability of both the thalweg profile and surface water depths. We estimate the current rate of sedimentation in beaver ponds to be about 14 cm per year. A three-stage scheme of fluvial processes in the longitudinal and transverse profile of the river channel is proposed. C. fiber reintroduction may be considered as another important stage of the upper Wisłoka fluvial system development. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Excursions in fluvial (dis)continuity

    Science.gov (United States)

    Grant, Gordon E.; O'Connor, James E.; Safran, Elizabeth

    2017-01-01

    Lurking below the twin concepts of connectivity and disconnectivity are their first, and in some ways, richer cousins: continuity and discontinuity. In this paper we explore how continuity and discontinuity represent fundamental and complementary perspectives in fluvial geomorphology, and how these perspectives inform and underlie our conceptions of connectivity in landscapes and rivers. We examine the historical roots of continuum and discontinuum thinking, and how much of our understanding of geomorphology rests on contrasting views of continuity and discontinuity. By continuum thinking we refer to a conception of geomorphic processes as well as geomorphic features that are expressed along continuous gradients without abrupt changes, transitions, or thresholds. Balance of forces, graded streams, and hydraulic geometry are all examples of this perspective. The continuum view has played a prominent role in diverse disciplinary fields, including ecology, paleontology, and evolutionary biology, in large part because it allows us to treat complex phenomena as orderly progressions and invoke or assume equilibrium processes that introduce order and prediction into our sciences.In contrast the discontinuous view is a distinct though complementary conceptual framework that incorporates non-uniform, non-progressive, and non-equilibrium thinking into understanding geomorphic processes and landscapes. We distinguish and discuss examples of three different ways in which discontinuous thinking can be expressed: 1) discontinuous spatial arrangements or singular events; 2) specific process domains generally associated with thresholds, either intrinsic or extrinsic; and 3) physical dynamics or changes in state, again often threshold-linked. In moving beyond the continuous perspective, a fertile set of ideas comes into focus: thresholds, non-equilibrium states, heterogeneity, catastrophe. The range of phenomena that is thereby opened up to scientific exploration similarly expands

  17. Climatic implications of correlated upper Pleistocene glacial and fluvial deposits on the Cinca and Gallego rivers, NE Spain

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Claudia J [Los Alamos National Laboratory; Mcdonald, Eric [NON LANL; Sancho, Carlos [NON LANL; Pena, Jose- Luis [NON LANL

    2008-01-01

    We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gallego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 {+-} 5 ka, 64 {+-} 11 ka, and 36 {+-} 3 ka (from glacial till) and 20 {+-} 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 {+-} 21 ka, 97 {+-} 16 ka, 61 {+-} 4 ka, 47 {+-} 4 ka, and 11 {+-} 1 ka, and in the Gallego River valley at 151 {+-} 11 ka, 68 {+-} 7 ka, and 45 {+-} 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 {+-} 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 {+-} 4 ka) and Gallego (68 {+-} 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to (1) global climate changes controlled by insolation, (2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and (3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian peninsula. The model of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.

  18. Floodplains: the forgotten and abused component of the fluvial system

    Directory of Open Access Journals (Sweden)

    Heritage George

    2016-01-01

    Full Text Available River restoration is strongly focussed on in-channel initiatives driven by fisheries interests and a continued desire for river stability. This contrasts greatly with the inherently mobile nature of watercourses. What is often overlooked is the fact that many rivers have developed floodplain units that would naturally operate as integrated functional systems, moderating the effects of extreme floods by distributing flow energy and sediment transport capacity through out of bank flooding. Floodplain utilisation for farming activities and landowner intransigence when it comes to acknowledging that the floodplain is part of the river system, has resulted in floodplains being the most degraded fluvial morphologic unit, both in terms of loss of form and function and sheer levels of spatial impact. The degradation has been facilitated by the failure of regulatory mechanisms to adequately acknowledge floodplain form and function. This is testament to the ‘inward looking’ thinking behind national assessment strategies. This paper reviews the state of floodplain systems drawing on quantitative data from England and Wales to argue for greater consideration of the floodplain in relation to river management. The database is poor and must be improved, however it does reveal significant loss of watercourse-floodplain connectivity linked to direct flood alleviation measures and also to altered flood frequency as a result of river downcutting following river engineering. These latter effects have persisted along many watercourses despite the historic nature of the engineering interventions and will continue to exacerbate the risk of flooding to downstream communities. We also present several examples of the local and wider values of reinstating floodplain form and function, demonstrating major ecological gains, improvement to downstream flood reduction, elevation of water quality status and reductions in overall fine sediment loss from farmland. A re

  19. Modeling transport and deposition of the Mekong River sediment

    Science.gov (United States)

    Xue, Zuo; He, Ruoying; Liu, J. Paul; Warner, John C.

    2012-01-01

    A Coupled Wave–Ocean–SedimentTransport Model was used to hindcast coastal circulation and fine sedimenttransport on the Mekong shelf in southeastern Asian in 2005. Comparisons with limited observations showed that the model simulation captured the regional patterns and temporal variability of surface wave, sea level, and suspended sediment concentration reasonably well. Significant seasonality in sedimenttransport was revealed. In summer, a large amount of fluvial sediments was delivered and deposited near the MekongRiver mouth. In the following winter, strong ocean mixing, and coastal current lead to resuspension and southwestward dispersal of a small fraction of previously deposited sediments. Model sensitivity experiments (with reduced physics) were performed to investigate the impact of tides, waves, and remotely forced ambient currents on the transport and dispersal of the fluvial sediment. Strong wave mixing and downwelling-favorable coastal current associated with the more energetic northeast monsoon in the winter season are the main factors controlling the southwestward along-shelf transport.

  20. Quantitative reconstruction of cross-sectional dimensions and hydrological parameters of gravelly fluvial channels developed in a forearc basin setting under a temperate climatic condition, central Japan

    Science.gov (United States)

    Shibata, Kenichiro; Adhiperdana, Billy G.; Ito, Makoto

    2018-01-01

    Reconstructions of the dimensions and hydrological features of ancient fluvial channels, such as bankfull depth, bankfull width, and water discharges, have used empirical equations developed from compiled data-sets, mainly from modern meandering rivers, in various tectonic and climatic settings. However, the application of the proposed empirical equations to an ancient fluvial succession should be carefully examined with respect to the tectonic and climatic settings of the objective deposits. In this study, we developed empirical relationships among the mean bankfull channel depth, bankfull channel depth, drainage area, bankfull channel width, mean discharge, and bankfull discharge using data from 24 observation sites of modern gravelly rivers in the Kanto region, central Japan. Some of the equations among these parameters are different from those proposed by previous studies. The discrepancies are considered to reflect tectonic and climatic settings of the present river systems, which are characterized by relatively steeper valley slope, active supply of volcaniclastic sediments, and seasonal precipitation in the Kanto region. The empirical relationships derived from the present study can be applied to modern and ancient gravelly fluvial channels with multiple and alternate bars, developed in convergent margin settings under a temperate climatic condition. The developed empirical equations were applied to a transgressive gravelly fluvial succession of the Paleogene Iwaki Formation, Northeast Japan as a case study. Stratigraphic thicknesses of bar deposits were used for estimation of the bankfull channel depth. In addition, some other geomorphological and hydrological parameters were calculated using the empirical equations developed by the present study. The results indicate that the Iwaki Formation fluvial deposits were formed by a fluvial system that was represented by the dimensions and discharges of channels similar to those of the middle to lower reaches of

  1. Facies architecture and high resolution sequence stratigraphy of an aeolian, fluvial and shallow marine system in the Pennsylvanian Piauí Formation, Parnaíba Basin, Brazil

    Science.gov (United States)

    Vieira, Lucas Valadares; Scherer, Claiton Marlon dos Santos

    2017-07-01

    The Pennsylvanian Piauí Formation records the deposition of aeolian, fluvial and shallow marine systems accumulated in the cratonic sag Parnaíba basin. Characterization of the facies associations and sequence stratigraphic framework was done by detailed description and logging of outcrops. Six facies associations were recognized: aeolian dunes and interdunes, aeolian sandsheets, fluvial channels, tidally-influenced fluvial channels, shoreface and shoreface-shelf transition. Through correlation of stratigraphic surfaces, the facies associations were organized in system tracts, which formed eight high frequency depositional sequences, bounded by subaerial unconformities. These sequences are composed of a lowstand system tract (LST), that is aeolian-dominated or fluvial-dominated, a transgressive system tract (TST) that is formed by tidally-influenced fluvial channels and/or shoreface and shoreface-shelf transition deposits with retrogradational stacking, and a highstand system tract (HST), which is formed by shoreface-shelf transition and shoreface deposits with progradational stacking. Two low frequency cycles were determined by observing the stacking of the high frequency cycles. The Lower Sequence is characterized by aeolian deposits of the LST and an aggradational base followed by a progressive transgression, defining a general TST. The Upper Sequence is characterized by fluvial deposits and interfluve pedogenesis concurring with the aeolian deposits of the LST and records a subtle regression followed by transgression. The main control on sedimentation in the Piauí Formation was glacioeustasy, which was responsible for the changes in relative sea level. Even though, climate changes were associated with glacioeustatic phases and influenced the aeolian and fluvial deposition.

  2. Global effects of agriculture on fluvial dissolved organic matter

    DEFF Research Database (Denmark)

    Graeber, Daniel; Boëchat, Iola; Encina, Francisco

    2015-01-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter...

  3. Fluvial processes and channel morphometry of the upper Orashi ...

    African Journals Online (AJOL)

    Fluvial processes and channel morphometry of the upper Orashi basin in ... of channel equilibrium between morphology and hydrology, the Orashi channel is not well ... Drainage basins, watershed morphology, morphometric analysis, Nigeria ...

  4. Dinâmica Glacial e Características Sedimentares Resultantes na Zona Proglacial da Geleira Ecology-Baía do Almirantado, Ilha Rei George Antártica.

    OpenAIRE

    Kátia Kellem Rosa; Rosemary Vieira; Jefferson Cardia Simões

    2006-01-01

    A geleira Ecology, localizada na ilha Rei George, ilhas Shetlands do Sul, está sofrendo um processo de rápida retração ao longo das últimas décadas, sendo que no período de 1956 a 1992/95 a geleira retrocedeu 0,37 Km2. Isto gerou um ambiente de deglaciação, com a exposição de várias geoformas na zona proglacial. Este trabalho objetiva estudar o ambiente de deglaciação da zona proglacial da geleir...

  5. Comparison of modelled runoff with observed proglacial discharge across the western margin of the Greenland ice sheet

    Science.gov (United States)

    Moustafa, S.; Rennermalm, A.; van As, D.; Overeem, I.; Tedesco, M.; Mote, T. L.; Koenig, L.; Smith, L. C.; Hagedorn, B.; Sletten, R. S.; Mikkelsen, A. B.; Hasholt, B.; Hall, D. K.; Fettweis, X.; Pitcher, L. H.; Hubbard, A.

    2017-12-01

    Greenland ice sheet surface ablation now dominates its total mass loss contributions to sea-level rise. Despite the increasing importance of Greenland's sea-level contribution, a quantitative inter-comparison between modeled and measured melt, runoff and discharge across multiple drainage basins is conspicuously lacking. Here we investigate the accuracy of model discharge estimates from the Modèle Atmosphérique Régionale (MAR v3.5.2) regional climate model by comparison with in situ proglacial river discharge measurements at three West Greenland drainage basins - North River (Thule), Watson River (Kangerlussuaq), and Naujat Kuat River (Nuuk). At each target catchment, we: 1) determine optimal drainage basin delineations; 2) assess primary drivers of melt; 3) evaluate MAR at daily, 5-, 10- and 20-day time scales; and 4) identify potential sources for model-observation discrepancies. Our results reveal that MAR resolves daily discharge variability poorly in the Nuuk and Thule basins (r2 = 0.4-0.5), but does capture variability over 5-, 10-, and 20-day means (r2 > 0.7). Model agreement with river flow data, though, is reduced during periods of peak discharge, particularly for the exceptional melt and discharge events of July 2012. Daily discharge is best captured by MAR across the Watson River basin, whilst there is lower correspondence between modeled and observed discharge at the Thule and Naujat Kuat River basins. We link the main source of model error to an underestimation of cloud cover, overestimation of surface albedo, and apparent warm bias in near-surface air temperatures. For future inter-comparison, we recommend using observations from catchments that have a self-contained and well-defined drainage area and an accurate discharge record over variable years coincident with a reliable automatic weather station record. Our study highlights the importance of improving MAR modeled surface albedo, cloud cover representation, and delay functions to reduce model

  6. Impact evaluation of the liquid effluent disposal of the Duque de Caxias Refinery (REDUC) in fluvial waters and sediments, RJ, Brazil; Avaliacao do impacto do descarte de efluentes liquidos da Refinaria Duque de Caxias (REDUC) sobre aguas e sedimentos fluviais, RJ, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Bidone, Edison Dausacker; Santelli, Ricardo Erthal; Cordeiro, Renato Campello [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Gamboa, Carla Maria; Camaz, Fernando Ribeiro; Jorge, Fabricio Goncalves [PETROBRAS/REDUC, Rio de Janeiro, RJ, RJ (Brazil). Refinaria de Duque de Caxias; Carvalho, Maria de Fatima B. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The purpose of this work is to assess the contribution of the liquid effluents of the Duque de Caxias Refinery (REDUC) in the water and sediment contamination in the estuarine Iguacu-Sarapui system, a tributary of the Guanabara Bay, Rio de Janeiro, Brazil. Since 2002 is being conducted a quarterly monitoring of some parameters in water, river sediments and treated liquid effluent, such as: pH, suspended solids, total sedimented solids, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, total organic carbon, oil and grease (O and G), phenols, sulfide, ammonia, metals and metalloids (V, Cr, Pb, Ni, Cu, Cd, Zn, Hg, As, Se , Co, Fe, Mn), polycyclic aromatic hydrocarbons, coprostanol and cholesterol (indicators of domestic wastes). The obtained results show that the effluents meet the legal standards and the treated liquid effluents from REDUC in the estuarine system have little or no impact on river water quality. The higher levels of contaminants detected in water and sediments samples are directly related to untreated domestic sewage from urban areas. (author)

  7. Insights into organic carbon oxidation potential during fluvial transport from controlled laboratory and natural field experiments

    Science.gov (United States)

    Scheingross, Joel S.; Dellinger, Mathieu; Golombek, Nina; Hilton, Robert G.; Hovius, Niels; Sachse, Dirk; Turowski, Jens M.; Vieth-Hillebrand, Andrea; Wittmann, Hella

    2017-04-01

    Over geologic timescales, the exchange of organic carbon (OC) between the atmosphere, biosphere and geosphere is thought to be a major control on atmospheric carbon dioxide (CO2) concentrations, and hence global climate. The carbon fluxes from the oxidation of rock-derived OC (a CO2 source) and erosion and transport of biospheric OC (a potential CO2 sink) during fluvial transit are approximately the same order of magnitude or larger than those from silicate weathering (France-Lanord and Derry, 1997; Bouchez et al., 2010). Despite field data showing oxidation of OC moving downstream in lowland rivers, it is unclear if losses occur primarily during active fluvial transport within the river, where OC is in continual motion within an aerated environment, or during longer periods when OC is temporarily stored in river floodplains which may be anoxic. This represents a major knowledge gap, as the unknown location of OC oxidation (i.e., river vs. floodplain) limits our ability to develop process-based models that can be employed to predict OC losses, constrain carbon budgets, and unravel links between climate, tectonics, and erosion. To fill this gap, we investigated the potential for OC oxidation in both controlled laboratory experiments and a simplified field setting. We consider both rock-derived and biospheric OC. Our experiments simulated fluvial transport without floodplain storage, allowing mixtures of OC-rich and siliciclastic sediment to be transported for distances of 1000 km in annular flumes while making time-series measurements of OC concentration in both the solid (POC) and dissolved (DOC) loads, as well as measurements of rhenium concentration, which serves as a proxy for the oxidation of rock-derived OC. These transport experiments were compared to static, control experiments where water and sediment in the same proportion were placed in still water. Initial results for transport of OC-rich soil show similar behavior between the transport and static

  8. Fluvial response to climate variations and anthropogenic perturbations for the Ebro River, Spain in the last 4,000 years.

    Science.gov (United States)

    Xing, Fei; Kettner, Albert J; Ashton, Andrew; Giosan, Liviu; Ibáñez, Carles; Kaplan, Jed O

    2014-03-01

    Fluvial sediment discharge can vary in response to climate changes and human activities, which in return influences human settlements and ecosystems through coastline progradation and retreat. To understand the mechanisms controlling the variations of fluvial water and sediment discharge for the Ebro drainage basin, Spain, we apply a hydrological model HydroTrend. Comparison of model results with a 47-year observational record (AD 1953-1999) suggests that the model adequately captures annual average water discharge (simulated 408 m(3)s(-1) versus observed 425 m(3)s(-1)) and sediment load (simulated 0.3 Mt yr(-1) versus observed 0.28 ± 0.04 Mt yr(-1)) for the Ebro basin. A long-term (4000-year) simulation, driven by paleoclimate and anthropogenic land cover change scenarios, indicates that water discharge is controlled by the changes in precipitation, which has a high annual variability but no long-term trend. Modeled suspended sediment load, however, has an increasing trend over time, which is closely related to anthropogenic land cover variations with no significant correlation to climatic changes. The simulation suggests that 4,000 years ago the annual sediment load to the ocean was 30.5 Mt yr(-1), which increased over time to 47.2 Mt yr(-1) (AD 1860-1960). In the second half of the 20th century, the emplacement of large dams resulted in a dramatic decrease in suspended sediment discharge, eventually reducing the flux to the ocean by more than 99% (mean value changes from 38.1 Mt yr(-1) to 0.3 Mt yr(-1)). Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Global Soil and Sediment transfer during the Anthropocene

    Science.gov (United States)

    Hoffmann, Thomas; Vanacker, Veerle; Stinchcombe, Gary; Penny, Dan; Xixi, Lu

    2016-04-01

    The vulnerability of soils to human-induced erosion and its downstream effects on fluvial and deltaic ecosystems is highly variable in space and time; dependent on climate, geology, the nature and duration of land use, and topography. Despite our knowledge of the mechanistic relationships between erosion, sediment storage, land-use and climate change, the global patterns of soil erosion, fluvial sediment flux and storage throughout the Holocene remain poorly understood. The newly launched PAGES working group GloSS aims to determine the sensitivity of soil resources and sediment routing systems to varying land use types during the period of agriculture, under contrasting climate regimes and socio-ecological settings. Successfully addressing these questions in relation to the sustainable use of soils, sediments and river systems requires an understanding of past human-landscape interactions. GloSS, therefore, aims to: Develop proxies for, or indices of, human impact on rates of soil erosion and fluvial sediment transfer that are applicable on a global scale and throughout the Holocene; Create a global database of long-term (102-104 years) human-accelerated soil erosion and sediment flux records; Identify hot spots of soil erosion and sediment deposition during the Anthropocene, and Locate data-poor regions where particular socio-ecological systems are not well understood, as strategic foci for future work. This paper will present the latest progress of the PAGES GloSS working group.

  10. Effects of discharge, wind, and tide on sedimentation in a recently restored tidal freshwater wetland

    NARCIS (Netherlands)

    Verschelling, Eelco; van der Deijl, Eveline; van der Perk, Marcel; Sloff, C.J.; Middelkoop, Hans

    2017-01-01

    Sediment deposition is one of the key mechanisms to counteract the impact of sea level rise in tidal freshwater wetlands (TFWs). However, information about sediment deposition rates in TFWs is limited, especially for those located in the transition zone between the fluvially dominated and tidally

  11. Effects of discharge, wind, and tide on sedimentation in a recently restored tidal freshwater wetland

    NARCIS (Netherlands)

    Verschelling, Eelco; van der Deijl, Eveline; van der Perk, Marcel; Sloff, Kees; Middelkoop, Hans

    2017-01-01

    Sediment deposition is one of the key mechanisms to counteract the impact of sea level rise in tidal freshwater wetlands (TFWs). However, information about sediment deposition rates in TFWs is limited, especially for those located in the transition zone between the fluvially dominated and tidally

  12. Estimating the Sediment Yield Due to Bend Migration in Meandering Rivers

    National Research Council Canada - National Science Library

    Thorne, Colin; Sikder, Salam

    2007-01-01

    .... In the United States this is addressed through Regional Sediment Management (RSM). To be effective, RSM needs data on sediment inputs to the fluvial system, including that from bank erosion, which may account for as much as 75% of the load...

  13. Suspended sediment behavior in a coastal dry-summer subtropical catchment: Effects of hydrologic preconditions

    Science.gov (United States)

    Variation in fluvial suspended sediment–discharge behavior is generally thought to be the product of changes in processes governing the delivery of sediment and water to the channel. The objective of this study was to infer sediment supply dynamics from the response of suspended ...

  14. Human impacts on fluvial systems - A small-catchment case study

    Science.gov (United States)

    Pöppl, Ronald E.; Glade, Thomas; Keiler, Margreth

    2010-05-01

    Regulations of nearly two-thirds of the rivers worldwide have considerable influences on fluvial systems. In Austria, nearly any river (or) catchment is affected by humans, e.g. due to changing land-use conditions and river engineering structures. Recent studies of human impacts on rivers show that morphologic channel changes play a major role regarding channelization and leveeing, land-use conversions, dams, mining, urbanization and alterations of natural habitats (ecomorphology). Thus 'natural (fluvial) systems' are scarce and humans are almost always inseparably interwoven with them playing a major role in altering them coincidentally. The main objective of this study is to identify human effects (i.e. different land use conditions and river engineering structures) on river bed sediment composition and to delineate its possible implications for limnic habitats. The study area watersheds of the 'Fugnitz' River (~ 140km²) and the 'Kaja' River (~ 20km²) are located in the Eastern part of the Bohemian Massif in Austria (Europe) and drain into the 'Thaya' River which is the border river to the Czech Republic in the north of Lower Austria. Furthermore the 'Thaya' River is eponymous for the local National Park 'Nationalpark Thayatal'. In order to survey river bed sediment composition and river engineering structures facies mapping techniques, i.e. river bed surface mapping and ecomorphological mapping have been applied. Additionally aerial photograph and airborne laserscan interpretation has been used to create land use maps. These maps have been integrated to a numerical DEM-based spatial model in order to get an impression of the variability of sediment input rates to the river system. It is hypothesized that this variability is primarily caused by different land use conditions. Finally river bed sites affected by river engineering structures have been probed and grain size distributions have been analyzed. With these data sedimentological and ecological

  15. Dinâmica Glacial e Características Sedimentares Resultantes na Zona Proglacial da Geleira Ecology-Baía do Almirantado, Ilha Rei George Antártica.

    Directory of Open Access Journals (Sweden)

    Kátia Kellem Rosa

    2006-12-01

    Full Text Available A geleira Ecology, localizada na ilha Rei George, ilhas Shetlands do Sul, está sofrendo um processo de rápida retração ao longo das últimas décadas, sendo que no período de 1956 a 1992/95 a geleira retrocedeu 0,37 Km2. Isto gerou um ambiente de deglaciação, com a exposição de várias geoformas na zona proglacial. Este trabalho objetiva estudar o ambiente de deglaciação da zona proglacial da geleira Ecology e seus respectivos depósitos na zona proglacial, além de inferir o regime termo-basal desta geleira. O produto resultante deste trabalho é a criação de um modelo geomorfológico para a zona proglacial da geleira, o qual pode ser usado para comparar com zonas proglaciais de outras geleiras.

  16. Spatial and temporal modelling of fluvial aggradation in the Hasli Valley (Swiss Alps) during the last 1300 years

    Science.gov (United States)

    Llorca, Jaime; Schulte, Lothar; Carvalho, Filipe

    2016-04-01

    The Haslital delta (upper Aare River catchment, Bernese Alps) progradated into the Lake Brienz after the retreat of the Aare Glacier (post-LGM). Present delta plain geomorphology and spatial distribution of sedimentary facies result from historical fluvial dynamics and aggradation. Over centuries, local communities have struggled to control the Aare floods and to mitigate their effects on the floodplain (by means of raising artificial levees, channelizing the course, creating an underground drainage network, constructing dams at the basin headwaters). This study focuses on the spatial and temporal evolution of sediment dynamics of the floodplain by analyzing fluvial sedimentary records . The internal variability of lithostratigraphic sequences is a key issue to understand hydrological processes in the basin under the effect of environmental and anthropogenic changes of the past. The floodplain lithostratigraphy was reconstructed by coring alongside four cross-sections; each one is composed of more than 25 shallow boreholes (2 m deep) and two long drillings (variable depth, up to 9 m). The chronostratigraphical models were obtained by AMS 14C dating, and information of paleofloods and channel migration were reconstructed from historical sources (Schulte et al., 2015). The identification of different sedimentary facies, associated with the fluvial architecture structures, provides information on variations of vertical and lateral accretion processes (Houben, 2007). The location and geometry of buried channel-levee facies (gravel and coarse sand layers) indicate a significant mobility of the riverbed of the Hasli-Aare river, following an oscillatory pattern during the last millennia. Furthermore, fine sedimentary deposits and peat layers represent the existence of stable areas where floods have a low incidence. Once the different types of deposits were identified, aggradation rates were estimated in order to determine the spatial variability of the accumulation

  17. Changing fluvial styles in volcaniclastic successions: A cretaceous example from the Cerro Barcino Formation, Patagonia

    Science.gov (United States)

    Umazano, A. Martín; Krause, J. Marcelo; Bellosi, Eduardo S.; Perez, Mariano; Visconti, Graciela; Melchor, Ricardo N.

    2017-08-01

    The Cretaceous Puesto La Paloma (PLPM) and Cerro Castaño (CCM) members (Cerro Barcino Formation, Chubut Group) are pyroclastic-rich, alluvial successions deposited in the Somuncurá-Cañadón Asfalto Basin during sag and endorheic conditions. The PLPM comprises sheet-like tuffaceous sandstone strata, whereas the overlying CCM includes sheet-to ribbon-channel sandstone bodies intercalated within tuffaceous and fine-grained sediments. In this context, the goals of this contribution were: i) to make a detailed documentation of the contrasting sedimentary palaeonvironments; and ii) to infer the allocyclic controls that governed the sedimentation of both units. The study area is located in the western sector of the basin, where six localities, which were studied. Six facies associations were defined including ash-falls, sheet-floods, shallow lakes, aeolian, fluvial channel-belts, and reworked debris-flows. We defined four stratigraphic intervals for the studied sections, denominated 1 to 4 in chronological order of deposition, which increase their thicknesses toward the Puesto Mesa-Cerro León site. The interval 1 (18-42 m thick) corresponds to the PLPM and includes numerous pedogenized sheet-flood deposits, carbonate-rich lacustrine, aeolian sandy facies, and ash-fall beds. The interval 1 is interpreted as an ephemeral and unconfined alluvial system that interacted with aeolian dunes and dry interdune zones. The interval 2 (20-47 m thick) represents the lower part of the CCM. It shows an alternation of fluvial channel-belt deposits and vegetated floodplain facies with sediments originated from sheet-floods, lakes, and few ash-falls and debris-flows. The mean palaeoflow was toward E-SE, except in the northernmost locality where the drainage was towards SW. Proportion of channel-belt bodies ranges from 10 to 36%, reaching higher values in the northern part of the study area, where they are also thicker. The interval 2 represents a permanent, meandering or locally low

  18. Stáří fluviálních sedimentů v jeskyni Výpustek (Moravský kras)

    Czech Academy of Sciences Publication Activity Database

    Kadlec, Jaroslav; Šlechta, Stanislav

    2007-01-01

    Roč. 47, - (2007), s. 13-16 ISSN 1213-4724 Institutional research plan: CEZ:AV0Z30130516 Keywords : magnetic properties - - * fluvial sediment dating * cave (Moravian Carst) Subject RIV: DB - Geology ; Mineralogy

  19. The microfauna assemblages as indicators of paleoenvironmental changes in the Miocene fluvial- lacustrine cycles (NE Duero Basin, Spain

    Directory of Open Access Journals (Sweden)

    A. Herrero-Hernández

    2016-11-01

    Full Text Available The siliclastic and carbonate deposits are interbedded in the Villadiego area (Miocene, NE Duero Basin. They have been subdivided into two high-rank depositional sequences: DDS and CDS. The sedimentary analysis of these units and the study of the microfauna content, mainly ostracods, led to the identification of lacustrine-fluvial interaction systems. The sedimentary characteristics reveal the existence of fluvial systems of gravel, flood plains and lacustrine systems that were interconnected and intimately related in north-south direction. In the sedimentological analysis, thirteen types of fluvial and lacustrine lithofacies and six genetic facies associations were recognized. The top of DDS is the result of lake level risings. The CDS shows a deepening-shallowing cycle. The ostracod micropaleontological analysis of the sediments have been studied, with the aim of reconstructing the palaeoenvironmental evolution of this area. These microfauna assemblages integrated with the analysis of the sedimentary facies allowed to conclude the existence of lakes with a water-bearing level of few tens of meters. A change in the chemical conditions of the waters, which evolved from oligohaline and carbonated to mesohaline and sulphated is concluded.

  20. Implications of sedimentological studies for environmental pollution assessment and management: Examples from fluvial systems in North Queensland and Western Australia

    Science.gov (United States)

    Eyre, Bradley; McConchie, David

    1993-05-01

    Sedimentology is of increasing importance in environmental research, particularly environmental pollution studies, where past trends in environmental processes need to be combined with data on present conditions to predict likely future changes—the past and present as a key to the future. Two examples are used to illustrate the role of sedimentology in assessing the influence of major processes on the transport, accumulation, deposition and modification of contaminants in fluvial/estuarine systems and in developing environmental management plans. Example 1 shows that when assessing nutrient behaviour in fluvial/estuarine depositional settings, it is important to examine the partitioning of phosphorus between grain size fractions to evaluate the sedimentological processes which control the dispersion and trapping of these contaminants. Example 2 shows that in studies of anthropogenic metal inputs to modern depositional settings, lateral and stratigraphic trends in sediment texture and mineralogy should be examined, in addition to trends in metal loads and evaluation of the prevailing physical, chemical and biological processes that may influence metal mobility and dispersion. Clearly, basic sedimentological data should form part of any assessment of potentially contaminated sites and part of investigations into the dispersion and trapping of contaminants in fluvial systems. These data are also required for rational environmental management to ensure that planning decisions are compatible with natural environmental constraints.

  1. Sediment yield assessment in the Upper Wadi Kebir catchment ...

    African Journals Online (AJOL)

    Soil erosion that occurs within fluvial basins has a significant impact on ... Regarding the sediment rating models, Walling and Webb [27], Ludwig and ... The climate over the study area is Mediterranean with dry summers and .... collected data set and therefore a high scatter of the cloud around the regression line (Fig. 3).

  2. Geomorphology of the Ganges fluvial system in the Himalayan foreland: an update

    Directory of Open Access Journals (Sweden)

    Rajiv Sinha

    2004-12-01

    Full Text Available The Ganges is one of the largest fluvial systems in the world rising from the loftiest Himalaya and draining into the Bay of Bengal. Together with the Brahmaputra, it also constitutes the largest delta in the world before finally meeting the sea. The Ganges system passes through a variety of terrain from the rugged mountains through the flat alluvial plains and the sea margin, and also transects variable climatic zones. As a result, the processes, landforms and stratigraphy are strikingly different in different zones of the system. This paper attempts to provide an update on our understanding of this very large and diverse system. A global effort has been made in the last few decades, and the research has focused on a variety of themes. The mountainous catchments have attracted attention in view of the extent of glaciation and extensive erosional processes. The alluvial plains of the Ganges symbolizes the life line of one of the world's largest population. Consequently, a number of studies have been carried out on the morphology, hydrology including flooding history and sediment transport behaviour of the river system. The alluvial stratigraphy of the large valleys and the interfluves in the plains has provided insight about the sedimentation pattern and response to climate change. The deltaic plain is the final destination of this huge sediment dispersal system before it drains into the sea, and it also records the influence of sea level changes apart from the upstream catchment controls over a period of time.

  3. Fluvial-Deltaic Strata as a High-Resolution Recorder of Fold Growth and Fault Slip

    Science.gov (United States)

    Anastasio, D. J.; Kodama, K. P.; Pazzaglia, F. P.

    2008-12-01

    Fluvial-deltaic systems characterize the depositional record of most wedge-top and foreland basins, where the synorogenic stratigraphy responds to interactions between sediment supply driven by tectonic uplift, climate modulated sea level change and erosion rate variability, and fold growth patterns driven by unsteady fault slip. We integrate kinematic models of fault-related folds with growth strata and fluvial terrace records to determine incremental rates of shortening, rock uplift, limb tilting, and fault slip with 104-105 year temporal resolution in the Pyrenees and Apennines. At Pico del Aguila anticline, a transverse dècollement fold along the south Pyrenean mountain front, formation-scale synorogenic deposition and clastic facies patterns in prodeltaic and slope facies reflect tectonic forcing of sediment supply, sea level variability controlling delta front position, and climate modulated changes in terrestrial runoff. Growth geometries record a pinned anticline and migrating syncline hinges during folding above the emerging Guarga thrust sheet. Lithologic and anhysteretic remanent magnetization (ARM) data series from the Eocene Arguis Fm. show cyclicity at Milankovitch frequencies allowing detailed reconstruction of unsteady fold growth. Multiple variations in limb tilting rates from roof ramp and basal dècollement. Along the northern Apennine mountain front, the age and geometry of strath terraces preserved across the Salsomaggiore anticline records the Pleistocene-Recent kinematics of the underlying fault-propagation fold as occurring with a fixed anticline hinge, a rolling syncline hinge, and along-strike variations in uplift and forelimb tilting. The uplifted intersection of terrace deposits documents syncline axial surface migration and underlying fault-tip propagation at a rate of ~1.4 cm/yr since the Middle Pleistocene. Because this record of fault slip coincides with the well-known large amplitude oscillations in global climate that contribute

  4. Evidences of Paleoearthquakes in Palaeolithic settlements within fluvial sequences of the Tagus Basin (Madrid, Central Spain).

    Science.gov (United States)

    Silva, Pablo G.; Rodríguez Pascua, M. A.; Pérez López, R.; Giner Robles, J. L.; Roquero, E.; Tapias, F.; López Recio, M.; Rus, I.; Morin, J.

    2010-05-01

    Multiple evidences of soft-sediment to brittle deformation within the Pleistocene fluvial terraces of the Tagus, Jarama, Tajuña and Manzanares river valleys have been described since the middle 20th Century. Cryoturbation, hydroplastic deformations due to underlying karstic collapses or halokinesis on the substratum of neogene gypsums, and seismic shaking have been proposed to interpret these structures. These deformations are typically concentrated in the +18-20 m terrace levels, and closely linked to well-known Palaeolithic sites, in some cases overlaying and/or affecting true prehistoric settlements (i.e. Arganda, Arriaga and Tafesa sites) within the Jarama and Manzanares valleys. The affected settlements typically display acheulian lithic industry linked to the scavenging of large Pleistocene mammals (i.e. Elephas antiquus). Commonly, deformational structures are concentrated in relatively thin horizons (10-50 cm thick) bracketed by undeformed fluvial sands and gravels. The soft-sediment deformations usually consist on medium to fine sized sands injected and protruded in overlaying flood-plain clayey silts, showing a wide variety of convolutes, injections, sand-dikes, dish and pillar structures, mud volcanoes, faults and folds, some times it is possible to undertake their 3D geometrical analysis due to the exceptional conservation of the structures (Tafesa). Recent geo-archaeological prospecting on the for the Palaeolithic Site of Arriaga (South Madrid City) conducted during the year 2009, let to find out an exceptional horizon of deformation of about 1.20 m thick. It consisted on highly disturbed and pervasively liquefacted sands, which hardly can be attributed to no-seismic processes. The acheulian lithic industry of the Madrid Region have been classically attributed the Late Middle Pleistocene (Comunidad de Madrid, AUDEMA S.A. (Proyecto Arriaga-2009). This is a contribution of GQM-AEQUA.

  5. Thermoluminescence dating of pleistocene sediments

    International Nuclear Information System (INIS)

    Poupeau, G.; Souza, J.H.; Rivera, A.

    1984-01-01

    After a short introduction on recent trends in quaternary geochronology, this article focuses on the thermoluminescence dating of sediments, whose principles and present limits and prospects are discussed. Results are presented for the TL behaviour of sands from various geological contexts in Brazil. They show that the coarse (approx. 100-200μm) quartz fraction of coastal and intra continental, eolian and fluvial-type deposits, might be datable by TL from the upper Holocene to at least the basis of the upper Pleistocene, with a precision of + - 10-15%. (Author) [pt

  6. Thermoluminescence dating of pleistocene sediments

    International Nuclear Information System (INIS)

    Poupeau, G.; Souza, J.H.

    1984-01-01

    After a short introduction on recent trends in quaternary geochronology, this article focuses on the thermoluminescence (TL) dating of sediments, whose principles, present limits and prospects are discussed. Results are presented for TL behavior of sands from various geological contexts in Brazil. They show that the coarse (approx. 100-200 μm) quartz fraction of coastal and intracontinental, eolian and fluvial - type deposits, might be datable by TL from the upper Holocene to at least the base of the upper Pleistocene, with a precision of +- 10-15%. (Author) [pt

  7. Luminescence dating of Late Quaternary sediments from East Greenland

    DEFF Research Database (Denmark)

    Mejdahl, V.; Funder, Svend Visby

    1994-01-01

    Luminescence dating based on K-feldspars and using both TL and OSL methods have been performed on 94 sediment samples from East Greenland. The ages go back more than 380 ka, but are mainly from the last interglaciation and the subsequent period and include both shallow-marine/coastal-fluvial and ...... owing to incomplete bleaching. OSL may give better results than TL in these sediments...

  8. Chromite Enrichment in the Recent Fluviatile Sediments, North Iraq

    OpenAIRE

    Al Juboury, Ali I. [علي اسماعيل الجبوري; Ismail, Sabah A.; Ghazal, Mohsin M.

    1999-01-01

    The Recent sediments from North Iraq are characterized by a higher content of chromite. This paper deals with the mineralogy and geochemistry of chromite in the heavy mineral assemblages from Recent fluvial sediments in an attempt to elucidate its distribution and source rock. The heavy fraction is composed of iron oxides and chromite forming about 50% of the total heavies. Chromite forms up to 80% of the opaque minerals at some areas in North Iraq. The non-opaque heavy minerals are composed ...

  9. Fluvial to Lacustrine Facies Transitions in Gale Crater, Mars

    Science.gov (United States)

    Sumner, Dawn Y.; Williams, Rebecca M. E.; Schieber, Juergen; Palucis, Marisa C.; Oehler, Dorothy Z.; Mangold, Nicolas; Kah, Linda C.; Gupta, Sanjeev; Grotzinger, John P.; Grant, John A., III; hide

    2015-01-01

    NASA's Curiosity rover has documented predominantly fluvial sedimentary rocks along its path from the landing site to the toe of the Peace Vallis alluvial fan (0.5 km to the east) and then along its 8 km traverse across Aeolis Palus to the base of Aeolis Mons (Mount Sharp). Lacustrine facies have been identified at the toe of the Peace Vallis fan and in the lowermost geological unit exposed on Aeolis Mons. These two depositional systems provide end members for martian fluvial/alluvial-lacustrine facies models. The Peace Vallis system consisted of an 80 square kilometers alluvial fan with decimeter-thick, laterally continuous fluvial sandstones with few sedimentary structures. The thin lacustrine unit associated with the fan is interpreted as deposited in a small lake associated with fan runoff. In contrast, fluvial facies exposed over most of Curiosity's traverse to Aeolis Mons consist of sandstones with common dune-scale cross stratification (including trough cross stratification), interbedded conglomerates, and rare paleochannels. Along the southwest portion of the traverse, sandstone facies include south-dipping meter-scale clinoforms that are interbedded with finer-grained mudstone facies, interpreted as lacustrine. Sedimentary structures in these deposits are consistent with deltaic deposits. Deltaic deposition is also suggested by the scale of fluvial to lacustrine facies transitions, which occur over greater than 100 m laterally and greater than 10 m vertically. The large scale of the transitions and the predicted thickness of lacustrine deposits based on orbital mapping require deposition in a substantial river-lake system over an extended interval of time. Thus, the lowermost, and oldest, sedimentary rocks in Gale Crater suggest the presence of substantial fluvial flow into a long-lived lake. In contrast, the Peace Vallis alluvial fan onlaps these older deposits and overlies a major unconformity. It is one of the youngest deposits in the crater, and

  10. Fluvial wood function downstream of beaver versus man-made dams in headwater streams in Massachusetts, USA

    Science.gov (United States)

    David, G. C.; DeVito, L. F.; Munz, K. T.; Lisius, G.

    2014-12-01

    Fluvial wood is an essential component of stream ecosystems by providing habitat, increasing accumulation of organic matter, and increasing the processing of nutrients and other materials. However, years of channel alterations in Massachusetts have resulted in low wood loads despite the afforestation that has occurred since the early 1900s. Streams have also been impacted by a large density of dams, built during industrialization, and reduction of the beaver population. Beavers were reintroduced to Massachusetts in the 1940s and they have since migrated throughout the state. Beaver dams impound water, which traps sediment and results in the development of complex channel patterns and more ecologically productive and diverse habitats than those found adjacent to man-made dams. To develop better management practices for dam removal it is essential that we understand the geomorphic and ecologic function of wood in these channels and the interconnections with floodplain dynamics and stream water chemistry. We investigate the connections among fluvial wood, channel morphology, floodplain soil moisture dynamics, and stream water chemistry in six watersheds in Massachusetts that have been impacted by either beaver or man-made dams. We hypothesize that wood load will be significantly higher below beaver dams, subsequently altering channel morphology, water chemistry, and floodplain soil moisture. Reaches are surveyed up- and downstream of each type of dam to better understand the impact dams have on the fluvial system. Surveys include a longitudinal profile, paired with dissolved oxygen and ammonium measurements, cross-section and fluvial wood surveys, hydraulic measurements, and floodplain soil moisture mapping. We found that dissolved oxygen mirrored the channel morphology, but did not vary significantly between reaches. Wood loads were significantly larger downstream of beaver dams, which resulted in significant changes to the ammonium levels. Floodplain soil moisture

  11. Fluvial diffluence episodes reflected in the Pleistocene tufa deposits of the River Piedra (Iberian Range, NE Spain)

    Science.gov (United States)

    Vázquez-Urbez, M.; Pardo, G.; Arenas, C.; Sancho, C.

    2011-01-01

    The Pleistocene deposits of the valley of the River Piedra (NE Spain) are represented by thick tufas with small amounts of detrital material; the development of these deposits correlates with marine isotopic stages 9, 7, 6, and 5. The sedimentary scenario in which they formed mostly corresponded to stepped fluvial systems with barrage-cascade and associated dammed areas separated by low gradient fluvial stretches. Mapping and determining the sedimentology and chronology of these deposits distinguished two main episodes of fluvial diffluence that originated as a result of the temporary blockage of the river — a consequence of the vertical growth of tufa barrages in the main channel. In both episodes, water spilt out toward a secondary course from areas upstream of barrages where the water level surpassed the height of the divide between the main and secondary course. As a consequence, extensive and distinct tufa deposits with very varied facies formed over a gently inclined area toward and, indeed, within the secondary course. The hydrology of this secondary course was episodic, fed only by surface water. The two diffluence episodes detected occurred during MIS 7 and 7-6 and were interrupted by incision events, reflected by detrital deposits at the base of each tufa sedimentation stage in the main channel. Incision, which caused the breakage of the barrages, allowed water to again flow through the main channel. No evidence of diffluence was seen in any younger (MIS 5 to present-day) tufa deposits. The proposed diffluence model might help explain other carbonate fluvial systems in which (1) tufas appear in areas with no permanent water supply, and (2) tufas are absent over extensive areas despite conditions favourable to their formation.

  12. New age constraints for the Saalian glaciation in northern central Europe: Implications for the extent of ice sheets and related proglacial lake systems

    Science.gov (United States)

    Lang, Jörg; Lauer, Tobias; Winsemann, Jutta

    2018-01-01

    A comprehensive palaeogeographic reconstruction of ice sheets and related proglacial lake systems for the older Saalian glaciation in northern central Europe is presented, which is based on the integration of palaeo-ice flow data, till provenance, facies analysis, geomorphology and new luminescence ages of ice-marginal deposits. Three major ice advances with different ice-advance directions and source areas are indicated by palaeo-ice flow directions and till provenance. The first ice advance was characterised by a southwards directed ice flow and a dominance of clasts derived from southern Sweden. The second ice advance was initially characterised by an ice flow towards the southwest. Clasts are mainly derived from southern and central Sweden. The latest stage in the study area (third ice advance) was characterised by ice streaming (Hondsrug ice stream) in the west and a re-advance in the east. Clasts of this stage are mainly derived from eastern Fennoscandia. Numerical ages for the first ice advance are sparse, but may indicate a correlation with MIS 8 or early MIS 6. New pIRIR290 luminescence ages of ice-marginal deposits attributed to the second ice advance range from 175 ± 10 to 156 ± 24 ka and correlate with MIS 6. The ice sheets repeatedly blocked the main river-drainage pathways and led to the formation of extensive ice-dammed lakes. The formation of proglacial lakes was mainly controlled by ice-damming of river valleys and major bedrock spillways; therefore the lake levels and extends were very similar throughout the repeated ice advances. During deglaciation the lakes commonly increased in size and eventually drained successively towards the west and northwest into the Lower Rhine Embayment and the North Sea. Catastrophic lake-drainage events occurred when large overspill channels were suddenly opened. Ice-streaming at the end of the older Saalian glaciation was probably triggered by major lake-drainage events.

  13. A Pleistocene coastal alluvial fan complex produced by Middle Pleistocene glacio-fluvial processes

    Science.gov (United States)

    Adamson, Kathryn; Woodward, Jamie; Hughes, Philip; Giglio, Federico; Del Bianco, Fabrizio

    2014-05-01

    A coarse-grained alluvial fan sequence at Lipci, Kotor Bay, in western Montenegro, provides a sedimentary record of meltwater streams draining from the Orjen Massif (1,894 m a.s.l.) to the coastal zone. At Lipci sedimentary evidence and U-series ages have been used alongside offshore bathymetric imagery and seismic profiles to establish the size of the fan and constrain the nature and timing of its formation. Establishing the depositional history of such coastal fans is important for our understanding of cold stage sediment flux from glaciated uplands to the offshore zone, and for exploring the impact of sea level change on fan reworking. There is evidence of at least four phases of Pleistocene glaciation on the Orjen massif, which have been U-series dated and correlated to MIS 12, MIS 6, MIS 5d-2 and the Younger Dryas. A series of meltwater channels delivered large volumes of coarse- and fine-grained limestone sediment from the glaciated uplands into the Bay of Kotor. At the southern margin of the Orjen massif, a series of large (>700 m long) alluvial fans has developed. Some of these extend offshore for up to 600 m. Lipci fan lies downstream of end moraines in the valley immediately above, which were formed by an extensive outlet glacier of the Orjen ice cap during MIS 12. The terrestrial deposits are part of the fan apex (50 m a.s.l.) that lies at the foot of a steep bedrock channel, but the majority of the fan is now more than 25 m below sea level. The terrestrial fan sediments are strongly cemented by multiple generations of calcite precipitates: the oldest U-series ages are infinite indicating that the fan is >350 ka in age. These ages are in agreement with alluvial sedimentary evidence and U-series ages from other fluvial units on Mount Orjen. The terrestrial portion of the Lipci fan surface contains several channels. These are well preserved due to cementation with calcium carbonate. Submarine imagery indicates that the now submerged portion of the fan also

  14. Depositional environment of a fan delta in a Vistulian proglacial lake (Skaliska Basin, north-eastern Poland

    Directory of Open Access Journals (Sweden)

    Woronko Barbara

    2013-06-01

    Full Text Available The study reconstructed the environment of a fan delta filling the vast end depression of the Skaliska Basin, and its overlying aeolian deposits. The formation of the large fan delta is associated with the presence of an ice-dammed lake functioning during the retreat of the Vistulian Glaciation (MIS 2. The examined material was collected from five boreholes. Sediments were analysed for their granulometric composition and subjected to analyses of frosting and rounding of quartz grains. Grain size analysis showed that the fan delta deposits are built of sand sediments of very low lateral and vertical variability. The fan delta was supplied with fluvioglacial sediments. Accumulation of sediments occurred in shallow water with a very low-gradient slope. The exposed fan delta became a site conducive to aeolian processes after the lake waters fell and the Skaliska Basin depression dried. Dune deposits overlying the fan were affected by short-distance transport so they did not acquire features typical for aeolian deposits.

  15. Titan's fluvial valleys: Morphology, distribution, and spectral properties

    Science.gov (United States)

    Langhans, M.H.; Jaumann, R.; Stephan, K.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Baines, K.H.; Nicholson, P.D.; Lorenz, R.D.; Soderblom, L.A.; Soderblom, J.M.; Sotin, Christophe; Barnes, J.W.; Nelson, R.

    2012-01-01

    Titan's fluvial channels have been investigated based on data obtained by the Synthetic Aperture Radar (SAR) instrument and the Visible and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. In this paper, a database of fluvial features is created based on radar-SAR data aiming to unveil the distribution and the morphologic and spectral characteristics of valleys on Titan on a global scale. It will also study the spatial relations between fluvial valleys and Titan's geologic units and spectral surface units which have become accessible thanks to Cassini-VIMS data. Several distinct morphologic types of fluvial valleys can be discerned by SAR-images. Dendritic valley networks appear to have much in common with terrestrial dendritic systems owing to a hierarchical and tree-shaped arrangement of the tributaries which is indicative of an origin from precipitation. Dry valleys constitute another class of valleys resembling terrestrial wadis, an indication of episodic and strong flow events. Other valley types, such as putative canyons, cannot be correlated with rainfall based on their morphology alone, since it cannot be ruled out that they may have originated from volcanic/tectonic action or groundwater sapping. Highly developed and complex fluvial networks with channel lengths of up to 1200 km and widths of up to 10 km are concentrated only at a few locations whereas single valleys are scattered over all latitudes. Fluvial valleys are frequently found in mountainous areas. Some terrains, such as equatorial dune fields and undifferentiated plains at mid-latitudes, are almost entirely free of valleys. Spectrally, fluvial terrains are often characterized by a high reflectance in each of Titan's atmospheric windows, as most of them are located on Titan's bright 'continents'. Nevertheless, valleys are spatially associated with a surface unit appearing blue due to its higher reflection at 1.3??m in a VIMS false color RGB composite with R: 1.59/1.27??m, G: 2

  16. Determination of volatile, toxic hydrogen phosphides in the sediments of the Elbe river, the Elbe estuaries and the Heligoland Bay

    International Nuclear Information System (INIS)

    Gassmann, G.

    1992-01-01

    The distribution and concentraion of phosphines in the sediments of the Elbe river were determined by selective preparation and analysis. The concentration of phosphines in one kilogram wet sediment was in the range of 0.1 to 57 n g with the bulking, anaerobic mud from harbors having the highest and the sandy, aerobic sediments having the lowest concentrations. Phosphines in fluvial sediments were detected successfully for the first time applying the method described. (orig.) [de

  17. Fluvial depositional environment evolving into deltaic setting with marine influences in the buntsandstein of northern vosges (France)

    Science.gov (United States)

    Gall, Jean-Claude

    The Buntsandstein in the Northern Vosges (France) originates mainly in an inland braidplain fluvial environment which passes in the upper part of the sequence into deltaic milieu in the coastal plain along the border of the sea, with the continental environment finally being drowned with the transgression of the shallow sea. The fluvial sedimentation is characterized by the presence of two facies throughout the Buntsandstein : channel facies and overbank plain facies. The channel facies comprises sandy and conglomeratic deposits forming within active streams by strong currents, whereas the overbank plain facies is built up of silty-clayey sandstones or silt/clay originating in stagnant water in abandoned watercourses, ponds, pools and puddles. The significance of particularly the floodplain sediments is subjected to considerable changes throughout the Buntsandstein sequence. There are all stages of transition between overbank plain deposits being only preserved in ghost-like facies as reworked clasts due to effective secondary removal of primarily occasionally formed suspension fines, and an abundance of autochthonous floodplain sediments in the depositional record resulting from favourable conditions of primary origin and secondary preservation. Reworked ventifacts within fluvial channel sediments testify to subordinate aeolian influences in the alluvial plain, with reasonable reworking, however, having removed all in situ traces of wind activity. Declining aridity of palaeoclimate towards the top is indicated by the appearance of violet horizon palaeosols in the Zone-Limite-Violette and the Couches intermédiaires being accompanied by Bröckelbank carbonate breccias originating from concentration of reworked fragments of pedogenic carbonate nodules. Biogenic traces are in the lower part of the sequence mainly present as Planolites burrows in the finer-grained sediments. Palaeosalinities as revealed from boron contents indicate progressively increasing

  18. Identifying the source of fluvial terrace deposits using XRF scanning and Canonical Discriminant Analysis: A case study of the Chihshang terraces, eastern Taiwan

    Science.gov (United States)

    Chang, Queenie; Lee, Jian-Cheng; Hunag, Jyh-Jaan; Wei, Kuo-Yen; Chen, Yue-Gau; Byrne, Timothy B.

    2018-05-01

    The source of fluvial deposits in terraces provides important information about the catchment fluvial processes and landform evolution. In this study, we propose a novel approach that combines high-resolution Itrax-XRF scanning and Canonical Discriminant Analysis (CDA) to identify the source of fine-grained fluvial terrace deposits. We apply this approach to a group of terraces that are located on the hanging wall of the Chihshang Fault in eastern Taiwan with two possible sources, the Coastal Range on the east and the Central Range on the west. Our results of standard samples from the two potential sources show distinct ranges of canonical variables, which provided a better separation ability than individual chemical elements. We then tested the possibility of using this approach by applying it to several samples with known sediment sources and obtain positive results. Applying this same approach to the fine-grained sediments in Chihshang terraces indicates that they are mostly composed of Coastal Range material but also contain some inputs from the Central Range. In two lowest terraces T1 and T2, the fine-grained deposits show significant Central Range component. For terrace T4, the results show less Central Range input and a trend of decreasing Central Range influences up section. The Coastal Range material becomes dominant in the two highest terraces T7 and T10. Sediments in terrace T5 appear to have been potentially altered by post-deposition chemical alteration processes and are not included in the analysis. Our results show that the change in source material in the terraces deposits was relatively gradual rather than the sharp changes suggested by the composition of the gravels and conglomerates. We suggest that this change in sources is related to the change in dominant fluvial processes that controlled by the tectonic activity.

  19. Fluvial sedimentology of a major uranium-bearing sandstone - A study of the Westwater Canyon member of the Morrison Formation, San Juan Basin, New Mexico

    International Nuclear Information System (INIS)

    Turner-Peterson, C.E.

    1986-01-01

    The Westwater Canyon Member of the Morrison Formation, the main ore-bearing sandstone in the San Juan basin, consists of a sequence of vertically stacked braided stream deposits. Three fluvial units within the sequence can be delineated in the basin. Volcanic pebbles are abundant in the middle fluvial unit, in a zone that forms a crude time line. A pronounced thickening of sandstone in the Westwater Canyon Member north of Gallup, once believed to be the apex of a large alluvial fan, is now thought to merely reflect a greater accumulation of sediment in response to downwarping of the basin in that area. Provenance studies suggest that highlands that contributed detritus to Westwater Canyon streams were located several hundred kilometers to the west and southwest of the San Juan basin, and thus fan apices would also have been several hundred kilometers upstream. The fluvial units recognized in the basin may well be coalesced distal fan deposits, but are probably best interpreted as vertically stacked braided steam sequences. Facies changes in fine-grained interbeds of the Westwater Canyon probably have greater significance in terms of localizing ore than any special attribute of the fluvial sandstones themselves. Uranium ore generally occurs in sandstones that are interbedded with greenish-gray lacustrine mudstones. Pore waters that were expelled from these mudstones are thought to have been the source of the pore-filling organic matter (humate) associated with primary uranium ore in nearby sandstones

  20. Field migration rates of tidal meanders recapitulate fluvial morphodynamics

    Science.gov (United States)

    Finotello, Alvise; Lanzoni, Stefano; Ghinassi, Massimiliano; Marani, Marco; Rinaldo, Andrea; D'Alpaos, Andrea

    2018-02-01

    The majority of tidal channels display marked meandering features. Despite their importance in oil-reservoir formation and tidal landscape morphology, questions remain on whether tidal-meander dynamics could be understood in terms of fluvial processes and theory. Key differences suggest otherwise, like the periodic reversal of landscape-forming tidal flows and the widely accepted empirical notion that tidal meanders are stable landscape features, in stark contrast with their migrating fluvial counterparts. On the contrary, here we show that, once properly normalized, observed migration rates of tidal and fluvial meanders are remarkably similar. Key to normalization is the role of tidal channel width that responds to the strong spatial gradients of landscape-forming flow rates and tidal prisms. We find that migration dynamics of tidal meanders agree with nonlinear theories for river meander evolution. Our results challenge the conventional view of tidal channels as stable landscape features and suggest that meandering tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across meander wavelengths.

  1. Field migration rates of tidal meanders recapitulate fluvial morphodynamics.

    Science.gov (United States)

    Finotello, Alvise; Lanzoni, Stefano; Ghinassi, Massimiliano; Marani, Marco; Rinaldo, Andrea; D'Alpaos, Andrea

    2018-02-13

    The majority of tidal channels display marked meandering features. Despite their importance in oil-reservoir formation and tidal landscape morphology, questions remain on whether tidal-meander dynamics could be understood in terms of fluvial processes and theory. Key differences suggest otherwise, like the periodic reversal of landscape-forming tidal flows and the widely accepted empirical notion that tidal meanders are stable landscape features, in stark contrast with their migrating fluvial counterparts. On the contrary, here we show that, once properly normalized, observed migration rates of tidal and fluvial meanders are remarkably similar. Key to normalization is the role of tidal channel width that responds to the strong spatial gradients of landscape-forming flow rates and tidal prisms. We find that migration dynamics of tidal meanders agree with nonlinear theories for river meander evolution. Our results challenge the conventional view of tidal channels as stable landscape features and suggest that meandering tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across meander wavelengths. Copyright © 2018 the Author(s). Published by PNAS.

  2. Influence of fluvial sandstone architecture on geothermal energy production

    NARCIS (Netherlands)

    Willems, C.J.L.; Maghami Nick, Hamidreza M.; Weltje, G.J.; Donselaar, M.E.; Bruhn, D.F.

    2015-01-01

    Fluvial sandstone reservoirs composed of stacked meander belts are considered as potential geothermal resources in the Netherlands. Net-to-gross, orientation and stacking pattern of the channel belts is of major importance for the connectivity between the injection and production well in such

  3. A model of plant strategies in fluvial hydrosystems

    NARCIS (Netherlands)

    Bornette, G.; Tabacchi, E.; Hupp, C.; Puijalon, S.; Rostan, J.C.

    2008-01-01

    1. We propose a model of plant strategies in temperate fluvial hydrosystems that considers the hydraulic and geomorphic features that control plant recruitment, establishment and growth in river floodplains. 2. The model describes first how the disturbance gradient and the grain-size of the river

  4. Signatures of Late Pleistocene fluvial incision in an Alpine landscape

    Science.gov (United States)

    Leith, Kerry; Fox, Matthew; Moore, Jeffrey R.

    2018-02-01

    Uncertainty regarding the relative efficacy of fluvial and glacial erosion has hindered attempts to quantitatively analyse the Pleistocene evolution of alpine landscapes. Here we show that the morphology of major tributaries of the Rhone River, Switzerland, is consistent with that predicted for a landscape shaped primarily by multiple phases of fluvial incision following a period of intense glacial erosion after the mid-Pleistocene transition (∼0.7 Ma). This is despite major ice sheets reoccupying the region during cold intervals since the mid-Pleistocene. We use high-resolution LiDAR data to identify a series of convex reaches within the long-profiles of 18 tributary channels. We propose these reaches represent knickpoints, which developed as regional uplift raised tributary bedrock channels above the local fluvial baselevel during glacial intervals, and migrated upstream as the fluvial system was re-established during interglacial periods. Using a combination of integral long-profile analysis and stream-power modelling, we find that the locations of ∼80% of knickpoints in our study region are consistent with that predicted for a fluvial origin, while the mean residual error over ∼100 km of modelled channels is just 26.3 m. Breaks in cross-valley profiles project toward the elevation of former end-of-interglacial channel elevations, supporting our model results. Calculated long-term uplift rates are within ∼15% of present-day measurements, while modelled rates of bedrock incision range from ∼1 mm/yr for low gradient reaches between knickpoints to ∼6-10 mm/yr close to retreating knickpoints, typical of observed rates in alpine settings. Together, our results reveal approximately 800 m of regional uplift, river incision, and hillslope erosion in the lower half of each tributary catchment since 0.7 Ma.

  5. Modeled post-glacial landscape evolution at the southern margin of the Laurentide Ice Sheet: hydrological connection of uplands controls the pace and style of fluvial network expansion

    Science.gov (United States)

    Lai, J.; Anders, A. M.

    2017-12-01

    Landscapes of the US Midwest were repeatedly affected by the southern margin of the Laurentide Ice Sheet during the Quaternary. Glacial processes removed pre-glacial relief and left constructional landforms including low-relief till plains and high-relief moraines. As the ice retreated, meltwater was collected in subglacial or proglacial lakes and outburst floods of glacial lakes episodically carved deep valleys. These valleys provided the majority of post-glacial landscape relief. However, a significant fraction of the area of low-relief till plains was occupied by closed depressions and remained unconnected to these meltwater valleys. This area is referred to as non-contributing area (NCA) because it does not typically contribute surface runoff to stream networks. Decreasing fractions of NCA on older glacial landscape surfaces suggests that NCA becomes integrated into external drainage networks over time. We propose that this integration could occur via two different paths: 1) through capture of NCA as channel heads propagate into the upland or, 2) through erosion of a channel along a flow path that, perhaps intermittently, connects NCA to the external drainage network. We refer the two cases as "disconnected" and "connected" cases since the crucial difference between them is the hydrological connectivity on the upland. We investigate the differences in the evolution of channel networks and morphology in low relief landscapes under disconnected and connected drainage regimes through numerical simulations of fluvial and hillslope processes. We observe a substantially faster evolution of the channel network in the connected case than in the disconnected case. Modeled landscapes show that channel network in the connected case has longer, more sinuous channels. We also find that the connected case removes lower amounts of total mass than the disconnected case when the same degree of channel integration is achieved. Observed landscapes in US Midwest are more

  6. Effect of surface texture and structure on the development of stable fluvial armors

    Science.gov (United States)

    Bertin, Stephane; Friedrich, Heide

    2018-04-01

    Stable fluvial armors are found in river systems under conditions of partial sediment transport and limited sediment supply, a common occurrence in nature. Stable armoring is also readily recreated in experimental flumes. Initially, this bed stabilizing phenomenon was examined for different flow discharges and solely related to surface coarsening and bedload transport reduction. The models developed suggest a specific armor composition (i.e., texture) dependent on the parent bed material and formative discharge. Following developments in topographic remote sensing, recent research suggests that armor structure is an important control on bed stability and roughness. In this paper, replicated flume runs during which digital elevation models (DEMs) were collected from both exposed and flooded gravel beds are used to interpret armoring manifestations and to assess their replicability. A range of methodologies was used for the analysis, providing information on (i) surface grain size and orientation, (ii) bed-elevation distributions, (iii) the spatial coherence of the elevations at the grain-scale, (iv) surface slope and aspect, (v) grain imbrication and (vi) the spatial variability in DEM properties. The bed-surface topography was found to be more responsive than bed-material size to changes in flow strength. Our experimental results also provide convincing evidence that gravel-beds' response to water-work during parallel degradation is unique (i.e., replicable) given the formative parameters. Based on this finding, relationships between the armors' properties and formative parameters are proposed, and are supported by adding extensive data from previous research.

  7. FLUVIAL PROCESSES IN ATTACHMENT BARS IN THE UPPER PARANÁ RIVER, BRAZIL

    Directory of Open Access Journals (Sweden)

    Vanessa Cristina Dos Santos

    2017-08-01

    Full Text Available Bars are semi-submerged fluvial forms associated with the availability of sediments and a temporal dynamic, whose dimensions are controlled by the flow and depth of the channel.  Attachment bars are very common in large anabranching river systems and play an important role in island formation and ecology. The Upper Paraná River exhibits an anabranching pattern characterized by channels of different sizes, separated by islands and bars. The objective of this work is to present the processes involved in the formation and development of attachment bars in Santa Rosa Island, situated in Porto Rico, State of Parana, Southern Brazil. Acquisition campaigns were performed to obtain data on channel hydraulics (ADCP equipment, morphometry (Echo-sound profiles and textural parameters (grain-size analyses at high and medium water levels. Santa Rosa Island divides the flow into two channels of distinct hydraulic and sedimentary dynamics. Flow diversion produces a decrease in flow velocity and consequent sediment deposition near the upstream end of Santa Rosa Island. The formation and maintenance of attachment bars in Santa Rosa Island is related to flow competence reduction and the occurrence of divergent currents. Vegetation cover and flow regime control its permanence. 

  8. Geoarchaeology, the four dimensional (4D) fluvial matrix and climatic causality

    Science.gov (United States)

    Brown, A. G.

    2008-10-01

    Geoarchaeology is the application of geological and geomorphological techniques to archaeology and the study of the interactions of hominins with the natural environment at a variety of temporal and spatial scales. Geoarchaeology in the UK over the last twenty years has flourished largely because it has gone beyond technological and scientific applications. Over the same period our ability to reconstruct the 3-dimensional stratigraphy of fluvial deposits and the matrix of fluvial sites has increased dramatically because of a number of technological advances. These have included the use of LiDAR (laser imaging) and radar to produce high-resolution digital surface models, the use of geophysics, particularly ground penetrating radar and electrical resistivity, to produce sediment depth models, and the use of GIS and data visualisation techniques to manipulate and display the data. These techniques along with more systematic and detailed sedimentological recording of exposed sections have allowed the construction of more precise 3-dimensional (volumetric) models of the matrix of artefacts within fluvial deposits. Additionally a revolution in dating techniques, particularly direct sediment dating by luminescence methods, has enabled the creation of 4-dimensional models of the creation and preservation of these sites. These 4-dimensional models have the ability to provide far more information about the processes of site creation, preservation and even destruction, and also allow the integration of these processes with independent data sources concerning cultural evolution and climatic change. All improvements in the precision of dating fluvial deposits have archaeological importance in our need to translate events from a sequential or geological timeframe to human timescales. This allows geoarchaeology to make a more direct contribution to cultural history through the recognition of agency at the individual or group level. This data can then form a component of

  9. Paleogene Sediment Character of Mountain Front Central Sumatra Basin

    Directory of Open Access Journals (Sweden)

    P. A. Suandhi

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i3.164The SE-NW trending Mountain Front of Central Sumatra Basin is located in the southern part of the basin. The Mountain Front is elongated parallel to the Bukit Barisan Mountain, extending from the Regencies of North Padang Lawas (Gunung Tua in the northwest, Rokan Hulu, Kampar, Kuantan Singingi, and Inderagiri Hulu Regency in the southeast. The Palaeogene sediments also represent potential exploration objectives in Central Sumatra Basin, especially in the mountain front area. Limited detailed Palaeogene sedimentology information cause difficulties in hydrocarbon exploration in this area. Latest age information and attractive sediment characters based on recent geological fieldwork (by chaining method infer Palaeogene sediment potential of the area. The Palaeogene sedimentary rock of the mountain front is elongated from northwest to southeast. Thickness of the sedimentary unit varies between 240 - 900 m. Palynology samples collected recently indicate that the oldest sedimentary unit is Middle Eocene and the youngest one is Late Oligocene. This latest age information will certainly cause significant changes to the existing surface geological map of the mountain front area. Generally, the Palaeogene sediments of the mountain front area are syn-rift sediments. The lower part of the Palaeogene deposit consists of fluvial facies of alluvial fan and braided river facies sediments. The middle part consists of fluvial meandering facies, lacustrine delta facies, and turbidity lacustrine facies sediments. The upper part consists of fluvial braided facies and transitional marine facies sediments. Volcanism in the area is detected from the occurrence of volcanic material as lithic material and spotted bentonite layers in the middle part of the mountain front area. Late rifting phase is indicated by the presence of transitional marine facies in the upper part of the Palaeogene sediments.

  10. Tidal Simulations of an Incised-Valley Fluvial System with a Physics-Based Geologic Model

    Science.gov (United States)

    Ghayour, K.; Sun, T.

    2012-12-01

    Physics-based geologic modeling approaches use fluid flow in conjunction with sediment transport and deposition models to devise evolutionary geologic models that focus on underlying physical processes and attempt to resolve them at pertinent spatial and temporal scales. Physics-based models are particularly useful when the evolution of a depositional system is driven by the interplay of autogenic processes and their response to allogenic controls. This interplay can potentially create complex reservoir architectures with high permeability sedimentary bodies bounded by a hierarchy of shales that can effectively impede flow in the subsurface. The complex stratigraphy of tide-influenced fluvial systems is an example of such co-existing and interacting environments of deposition. The focus of this talk is a novel formulation of boundary conditions for hydrodynamics-driven models of sedimentary systems. In tidal simulations, a time-accurate boundary treatment is essential for proper imposition of tidal forcing and fluvial inlet conditions where the flow may be reversed at times within a tidal cycle. As such, the boundary treatment at the inlet has to accommodate for a smooth transition from inflow to outflow and vice-versa without creating numerical artifacts. Our numerical experimentations showed that boundary condition treatments based on a local (frozen) one-dimensional approach along the boundary normal which does not account for the variation of flow quantities in the tangential direction often lead to unsatisfactory results corrupted by numerical artifacts. In this talk, we propose a new boundary treatment that retains all spatial and temporal terms in the model and as such is capable to account for nonlinearities and sharp variations of model variables near boundaries. The proposed approach borrows heavily from the idea set forth by J. Sesterhenn1 for compressible Navier-Stokes equations. The methodology is successfully applied to a tide-influenced incised

  11. Sediment Trapping in Estuaries

    Science.gov (United States)

    Burchard, Hans; Schuttelaars, Henk M.; Ralston, David K.

    2018-01-01

    Estuarine turbidity maxima (ETMs) are generated by a large suite of hydrodynamic and sediment dynamic processes, leading to longitudinal convergence of cross-sectionally integrated and tidally averaged transport of cohesive and noncohesive suspended particulate matter (SPM). The relative importance of these processes for SPM trapping varies substantially among estuaries depending on topography, fluvial and tidal forcing, and SPM composition. The high-frequency dynamics of ETMs are constrained by interactions with the low-frequency dynamics of the bottom pool of easily erodible sediments. Here, we use a transport decomposition to present processes that lead to convergent SPM transport, and review trapping mechanisms that lead to ETMs at the landward limit of the salt intrusion, in the freshwater zone, at topographic transitions, and by lateral processes within the cross section. We use model simulations of example estuaries to demonstrate the complex concurrence of ETM formation mechanisms. We also discuss how changes in SPM trapping mechanisms, often caused by direct human interference, can lead to the generation of hyperturbid estuaries.

  12. Fluvial sedimentary styles and associated depositional environments in the buntsandstein west of river rhine in saar area and pfalz (F.R. Germany) and vosges (France)

    Science.gov (United States)

    Dachroth, Wolfgang

    The Buntsandstein west of river Rhine in Saar area, Pfalz and Vosges consists of three fluvial magnacycles which are characterized by different associated non-alluvial environments. The stratigraphic sequence is divided by several unconformities reflecting tectonic movements which were connected with periods of extension of the depositional area. Two major phases and two minor events are recognized by the evaluation of the Pfalz unconformity and the Lothringen unconformity, and the Leuter unconformity and the Saar unconformity, respectively. The Lower Buntsandstein (including Zechstein) compries the first magnacycle and is built up of alluvial-fan deposits, fluvial braidplain sediments and marine to lagoonal deposits. Some aeolian sands as well as several palaeosols are also present. The palaeolandscape consists of alluvial fans seaming the margin of the basin and fluvial braidplains reaching from the toes of the fan belt to the centre of the depositional area which is occupied by a lagoonal sea that partially evolves into a playa-lake with progressive refreshment. The Middle Buntsandstein comprises the second magnacycle and is composed of an alternation of aeolian Dünnschichten and fluvial Felsbänke. The third facies are alluvial-fan deposits of palaeogeographically restricted distribution along the margins of the basin. The aeolian Dünnschichten originate in the marginal parts of chott-type depressions (in comparison with the recent Chott Djerid in Tunesia) where rising ground water moistens the dry sediments that are laid down on the playa floor and thus allows their enhanced preservation. In dry periods, wind-blown sand is spread out as plane sheets or as migrating wind ripple trains, or accumulates to barchanoid-type dunes that advance across the flat. Depending on supply of sand, all stages of transition between dune fields with only narrow interdune corridors between the ridges and interdune playas with isolated widely-spaced dunes are developed. The

  13. Experimental investigation of fluvial dike breaching due to flow overtopping

    Science.gov (United States)

    El Kadi Abderrezzak, K.; Rifai, I.; Erpicum, S.; Archambeau, P.; Violeau, D.; Pirotton, M.; Dewals, B.

    2017-12-01

    The failure of fluvial dikes (levees) often leads to devastating floods that cause loss of life and damages to public infrastructure. Overtopping flows have been recognized as one of the most frequent cause of dike erosion and breaching. Fluvial dike breaching is different from frontal dike (embankments) breaching, because of specific geometry and boundary conditions. The current knowledge on the physical processes underpinning fluvial dike failure due to overtopping remains limited. In addition, there is a lack of a continuous monitoring of the 3D breach formation, limiting the analysis of the key mechanisms governing the breach development and the validation of conceptual or physically-based models. Laboratory tests on breach growth in homogeneous, non-cohesive sandy fluvial dikes due to flow overtopping have been performed. Two experimental setups have been constructed, permitting the investigation of various hydraulic and geometric parameters. Each experimental setup includes a main channel, separated from a floodplain by a dike. A rectangular initial notch is cut in the crest to initiate dike breaching. The breach development is monitored continuously using a specific developed laser profilometry technique. The observations have shown that the breach develops in two stages: first the breach deepens and widens with the breach centerline being gradually shifted toward the downstream side of the main channel. This behavior underlines the influence of the flow momentum component parallel to the dike crest. Second, the dike geometry upstream of the breach stops evolving and the breach widening continues only toward the downstream side of the main channel. The breach evolution has been found strongly affected by the flow conditions (i.e. inflow discharge in the main channel, downstream boundary condition) and floodplain confinement. The findings of this work shed light on key mechanisms of fluvial dike breaching, which differ substantially from those of dam

  14. The influence of basin slope and fluvial flow on deltaic built-up processes off mountainous, seasonal rivers

    Science.gov (United States)

    Bárcenas, Patricia; Macías, Jorge; Fernández-Salas, Luis Miguel; López-González, Nieves; José Lobo, Francisco

    2016-04-01

    The construction and evolution of submarine deltaic deposits are influenced by a combination of allogenic factors, such as fluvial flow (Q), and autogenic factors, such as basin slope (BS). Numerical simulations of turbidity currents are used to propose a morphodynamic model that quantifies the effect of both the slope and river input variations on the development of small deltaic environments in the northern shelf of the Alborán Sea, western Mediterranean Basin, that are linked to short and mountainous fluvial systems controlled by a seasonal Mediterranean climate. Traditionally, this type of model has been used for simulating hyperpycnal flows (Parker et al. (1986), Kubo (2004), Khan et al. (2005) & Morales et al. (2009)). In this study, the turbidity-HySEA model has been used taken into account the parameter settings and the numerical resolution specified in Bárcenas (2013) and Morales et al. (2009), respectively. These simulations were performed along a time period of eight days under two different fluvial flow conditions (constant and variable flow during the simulation period). Two different types of bathymetric profiles have been considered: a) piecewise linear profile and b) real bathymetric profiles from EM3000D multibeam echosounder data obtained off the present-day and artificial mouths of the Adra River. Five morphometric parameters were measured for each simulation (time and slope necessary for the formation of the topset, offlap break distance to the coastline, distal boundary depth and submarine delta length). The numerical experiments performed demonstrate the nonlinear relationship between the input variables (Q and BS) and the measured morphometric parameters. The morphodynamic of the sedimentary wedges considering the sediment dispersion and the offlap-break distance to the coastline can be represented by two extreme cases with many intermediate cases in between. The first case would be conditioned by proximal sedimentation while in the second

  15. A laser profilometry technique for monitoring fluvial dike breaching in laboratory experiments

    Science.gov (United States)

    Dewals, Benjamin; Rifai, Ismail; Erpicum, Sébastien; Archambeau, Pierre; Violeau, Damien; Pirotton, Michel; El kadi Abderrezzak, Kamal

    2017-04-01

    laser are merged to generate a cloud of points. The DLT-based image processing method uses control points and reference axes, so that no prior knowledge is needed on the position, orientation and intrinsic characteristics of the camera, nor on the laser position. Refraction of the light and laser rays across the water surface needs to be taken into account, because the dike is partially submerged during the experiments. An ad hoc correction is therefore applied using the Snell-Descartes law. For this purpose, planar approximations are used to describe the shape of the water surface. In the presentation, we will discuss the resulting uncertainty and will detail the validation of the developed method based on configurations of known geometry with various complexity. The presented laser profilometry technique allows for a rapid non-intrusive measurement of the dike geometry evolution. It is readily available for laboratory experiments and has proven its performance (Rifai et al. 2017). Further adjustments are needed for its application to cohesive dike material due to the reduced visibility resulting from the higher turbidity of water. References Frank, P.-J., Hager, W.H. (2014). Spatial dike breach: Accuracy of photogrammetric measurement system. Proc. of the International Conference on Fluvial Hydraulics, River Flow 2014, 1647-1654. Pickert, G., Weitbrecht, V., Bieberstein A. (2011). Beaching of overtopped river embankments controlled by apparent cohesion. Journal of Hydraulic Research 49:143-156. Rifai, I., Erpicum, S., Archambeau, P., Violeau, D., Pirotton, M., El kadi Abderrezzak, K., Dewals, B. (2016). Monitoring topography of laboratory fluvial dike models subjected to breaching based on a laser profilometry technique. Proc. of the International Symposium on River Sedimentation (ISRS): Stuttgart, 19-22 September 2016. Rifai, I., Erpicum, S., Archambeau, P., Violeau, D., Pirotton, M., El kadi Abderrezzak, K., Dewals, B. (2017). Overtopping induced failure of non

  16. Distribution and Potential Mobility of Selected Heavy Metals in a Fluvial Environment Under the Influence of Tanneries

    Directory of Open Access Journals (Sweden)

    Rodrigues M. L. K.

    2013-04-01

    Full Text Available In this study we evaluated the occurrence of heavy metals in a fluvial environment under the influence of tanneries – the Cadeia and Feitoria rivers basin (RS, south Brazil, highlighting the distribution and potential mobility of the selected elements. Every three months, over one year-period, selected heavy metals and ancillary parameters were analyzed in water and sediment samples taken at ten sites along the rivers. Water analyses followed APHA recommendations, and sediment analyses were based on methods from USEPA (SW846 and European Community (BCR sequential extraction. The determinations were performed by ICP/OES, except for Hg (CV/ETA. Statistical factor analysis was applied to water and sediment data sets, in order to obtain a synthesis of the environmental diagnosis. The results revealed that water quality decreased along the rivers, and mainly on the dry period (January, showing the influence of tannery plants vicinity and flow variations. Except for Fe, Al, and eventually Mn, heavy metal contents in water were in agreement with Brazilian standards. Concerning sediments, Al, Cu, Fe, Ni, Mn, Ti, and Zn concentrations appeared to reflect the base levels, while Cr and Hg were enriched in the deposits from the lower part of the basin. The partition of heavy metals among the sediment geochemical phases showed higher mobility of Mn along the sampling sites, followed by Cr in the lower reach of the basin, most affected by tanneries. Since Cr was predominantly associated to the oxidizable fraction, its potential mobilization from contaminated sediments would be associated to redox conditions. The detection of Hg in the tissue of a bottom-fish species indicated that the environmental conditions are apparently favoring the remobilization of this metal from contaminated sediments.

  17. Surficial geological tools in fluvial geomorphology: Chapter 2

    Science.gov (United States)

    Jacobson, Robert B.; O'Connor, James E.; Oguchi, Takashi

    2016-01-01

    Increasingly, environmental scientists are being asked to develop an understanding of how rivers and streams have been altered by environmental stresses, whether rivers are subject to physical or chemical hazards, how they can be restored, and how they will respond to future environmental change. These questions present substantive challenges to the discipline of fluvial geomorphology, especially since decades of geomorphologic research have demonstrated the general complexity of fluvial systems. It follows from the concept of complex response that synoptic and short-term historical views of rivers will often give misleading understanding of future behavior. Nevertheless, broadly trained geomorphologists can address questions involving complex natural systems by drawing from a tool box that commonly includes the principles and methods of geology, hydrology, hydraulics, engineering, and ecology.

  18. Dynamics of river sediments in forested headwater streams: Plynlimon

    Directory of Open Access Journals (Sweden)

    G. J. L. Leeks

    1997-01-01

    Full Text Available Long term studies of fluvial sediment processes in the Plynlimon catchments have contributed to the assessment and quantification of plantation forestry impacts in British upland catchments, at all stages of the forest cycle. The results from the Plynlimon studies are placed in the context of the observed impacts of particular forest practices and studies of forestry effects on sediment transport elsewhere in the world. The effects associated with drain excavation, ploughing, track construction, ground and channel disruption are outlined for both bedload and, particularly, for suspended load. Finally, recent data on sediment yields from 1995 to 1997 at Plynlimon are reported and discussed in the light of longer-term sediment yield estimates. This paper also provides background information relevant to other sediment process studies which use data from the main Plynlimon sediment monitoring network.

  19. Contemporary sediment-transport processes in submarine canyons.

    Science.gov (United States)

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures.

  20. Assessment of spatiotemporal variations in the fluvial wash-load component in the 21st century with regard to GCM climate change scenarios

    International Nuclear Information System (INIS)

    Mouri, Goro

    2015-01-01

    For stream water, in which a relationship exists between wash-load concentration and discharge, an estimate of fine-sediment delivery may be obtained from a traditional fluvial wash-load rating curve. Here, we demonstrate that the remaining wash-load material load can be estimated from a traditional empirical principle on a nationwide scale. The traditional technique was applied to stream water for the whole of Japan. Four typical GCMs were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields for the following regional climate models to assess the wash-load component based on rating curves: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM) and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble, including multiple physics configurations and different Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5), which was used to produce monthly datasets for the whole country of Japan. The impacts of future climate changes on fluvial wash load in Japanese stream water were based on the balance of changes in hydrological factors. The annual and seasonal variations of the fluvial wash load were assessed from the result of the ensemble analysis in consideration of the Greenhouse Gas (GHG) emission scenarios. The determined results for the amount of wash load increase range from approximately 20 to 110% in the 2040s, especially along part of the Pacific Ocean and the Sea of Japan regions. In the 2090s, the amount of wash load is projected to increase by more than 50% over the whole of Japan. The assessment indicates that seasonal variation is particularly important because the rainy and typhoon seasons, which include extreme events, are the dominant seasons. Because fluvial wash-load-component turbidity

  1. Assessment of spatiotemporal variations in the fluvial wash-load component in the 21st century with regard to GCM climate change scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Mouri, Goro, E-mail: mouri@rainbow.iis.u-tokyo.ac.jp

    2015-11-15

    For stream water, in which a relationship exists between wash-load concentration and discharge, an estimate of fine-sediment delivery may be obtained from a traditional fluvial wash-load rating curve. Here, we demonstrate that the remaining wash-load material load can be estimated from a traditional empirical principle on a nationwide scale. The traditional technique was applied to stream water for the whole of Japan. Four typical GCMs were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields for the following regional climate models to assess the wash-load component based on rating curves: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM) and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble, including multiple physics configurations and different Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5), which was used to produce monthly datasets for the whole country of Japan. The impacts of future climate changes on fluvial wash load in Japanese stream water were based on the balance of changes in hydrological factors. The annual and seasonal variations of the fluvial wash load were assessed from the result of the ensemble analysis in consideration of the Greenhouse Gas (GHG) emission scenarios. The determined results for the amount of wash load increase range from approximately 20 to 110% in the 2040s, especially along part of the Pacific Ocean and the Sea of Japan regions. In the 2090s, the amount of wash load is projected to increase by more than 50% over the whole of Japan. The assessment indicates that seasonal variation is particularly important because the rainy and typhoon seasons, which include extreme events, are the dominant seasons. Because fluvial wash-load-component turbidity

  2. Quaternary Morphodynamics of Fluvial Dispersal Systems Revealed: The Fly River, PNG, and the Sunda Shelf, SE Asia, simulated with the Massively Parallel GPU-based Model 'GULLEM'

    Science.gov (United States)

    Aalto, R. E.; Lauer, J. W.; Darby, S. E.; Best, J.; Dietrich, W. E.

    2015-12-01

    During glacial-marine transgressions vast volumes of sediment are deposited due to the infilling of lowland fluvial systems and shallow shelves, material that is removed during ensuing regressions. Modelling these processes would illuminate system morphodynamics, fluxes, and 'complexity' in response to base level change, yet such problems are computationally formidable. Environmental systems are characterized by strong interconnectivity, yet traditional supercomputers have slow inter-node communication -- whereas rapidly advancing Graphics Processing Unit (GPU) technology offers vastly higher (>100x) bandwidths. GULLEM (GpU-accelerated Lowland Landscape Evolution Model) employs massively parallel code to simulate coupled fluvial-landscape evolution for complex lowland river systems over large temporal and spatial scales. GULLEM models the accommodation space carved/infilled by representing a range of geomorphic processes, including: river & tributary incision within a multi-directional flow regime, non-linear diffusion, glacial-isostatic flexure, hydraulic geometry, tectonic deformation, sediment production, transport & deposition, and full 3D tracking of all resulting stratigraphy. Model results concur with the Holocene dynamics of the Fly River, PNG -- as documented with dated cores, sonar imaging of floodbasin stratigraphy, and the observations of topographic remnants from LGM conditions. Other supporting research was conducted along the Mekong River, the largest fluvial system of the Sunda Shelf. These and other field data provide tantalizing empirical glimpses into the lowland landscapes of large rivers during glacial-interglacial transitions, observations that can be explored with this powerful numerical model. GULLEM affords estimates for the timing and flux budgets within the Fly and Sunda Systems, illustrating complex internal system responses to the external forcing of sea level and climate. Furthermore, GULLEM can be applied to most ANY fluvial system to

  3. Arquitectura fluvial de las «Areniscas del río Arandilla». Triásico de Molina de Aragón (Guadalajara

    Directory of Open Access Journals (Sweden)

    Sánchez-Moya, Y.

    1989-08-01

    Full Text Available The outstanding outcrops of Upper Buntsandstein sediments (Middle Triassic in Molina de Aragón (Guadalajara area, allow a detailed study of their characteristics and their associations which are described here. The fluvial architecture of the section indicates four main depositional episodes. The two lowest episodes were laid down by a fluvial system characterized by frequent channel shifting, low sinuosity and wide shallow channels. The drainage basin was controlled by highly seasonal discharge. The middle episode evolved into a more distal systems, with smaller higher sinuosity channels and fine overbank deposits. The uppermost episode is related to an increase of slope in the basin. That increase is probably related to tectonic movements recorded in this area. An attempt has been made to correlate the above events to the global sea level fluctuations (Haq et al., 1987. So, the low stage that have been stated occurred during Early Anisian can be tentatively correlated with the uppermost episode in Areniscas del río Arandilla.Los excelentes afloramientos de la parte superior del Buntsandstein (Triásico medio en Molina de Aragón (Guadalajara, han permitido llevar a cabo un análisis sedimentológico detallado de las facies fluviales y de su arquitectura. Se han distinguido doce diferentes facies cuyas características y asociaciones se describen en este trabajo. La evolución fluvial indica la existencia de cuatro episodios deposicionales. Los dos episodios inferiores son característicos de un sistema fluvial con canales de baja sinuosidad, inestables, de gran amplitud y poca profundidad. El drenaje de la cuenca estaba controlado por importantes descargas estacionales. El episodio intermedio es el resultado de la evolución del sistema hacia facies más distales. En esta etapa los canales son de menor tamaño, la sinuosidad es mayor y existe un mayor porcentaje de depósitos de granulometría fina relacionados con la llanura de inundaci

  4. Geomorphic Unit Tool (GUT): Applications of Fluvial Mapping

    Science.gov (United States)

    Kramer, N.; Bangen, S. G.; Wheaton, J. M.; Bouwes, N.; Wall, E.; Saunders, C.; Bennett, S.; Fortney, S.

    2017-12-01

    Geomorphic units are the building blocks of rivers and represent distinct habitat patches for many fluvial organisms. We present the Geomorphic Unit Toolkit (GUT), a flexible GIS geomorphic unit mapping tool, to generate maps of fluvial landforms from topography. GUT applies attributes to landforms based on flow stage (Tier 1), topographic signatures (Tier 2), geomorphic characteristics (Tier 3) and patch characteristics (Tier 4) to derive attributed maps at the level of detail required by analysts. We hypothesize that if more rigorous and consistent geomorphic mapping is conducted, better correlations between physical habitat units and ecohydraulic model results will be obtained compared to past work. Using output from GUT for coarse bed tributary streams in the Columbia River Basin, we explore relationships between salmonid habitat and geomorphic spatial metrics. We also highlight case studies of how GUT can be used to showcase geomorphic impact from large wood restoration efforts. Provided high resolution topography exists, this tool can be used to quickly assess changes in fluvial geomorphology in watersheds impacted by human activities.

  5. Reservoirs as hotspots of fluvial carbon cycling in peatland catchments.

    Science.gov (United States)

    Stimson, A G; Allott, T E H; Boult, S; Evans, M G

    2017-02-15

    Inland water bodies are recognised as dynamic sites of carbon processing, and lakes and reservoirs draining peatland soils are particularly important, due to the potential for high carbon inputs combined with long water residence times. A carbon budget is presented here for a water supply reservoir (catchment area~9km 2 ) draining an area of heavily eroded upland peat in the South Pennines, UK. It encompasses a two year dataset and quantifies reservoir dissolved organic carbon (DOC), particulate organic carbon (POC) and aqueous carbon dioxide (CO 2 (aq)) inputs and outputs. The budget shows the reservoir to be a hotspot of fluvial carbon cycling, as with high levels of POC influx it acts as a net sink of fluvial carbon and has the potential for significant gaseous carbon export. The reservoir alternates between acting as a producer and consumer of DOC (a pattern linked to rainfall and temperature) which provides evidence for transformations between different carbon species. In particular, the budget data accompanied by 14 C (radiocarbon) analyses provide evidence that POC-DOC transformations are a key process, occurring at rates which could represent at least ~10% of the fluvial carbon sink. To enable informed catchment management further research is needed to produce carbon cycle models more applicable to these environments, and on the implications of high POC levels for DOC composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Regional and long-term patterns of lead concentrations in fluvial, marine and terrestrial systems and humans in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Hagner, C. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    2000-07-01

    Lead contamination of abiotic and biotic systems has been studied closely since the early 1970s, when lead was firstly perceived as an environmental problem. Lead emission reduction policies were implemented throughout Europe during that time. Nonetheless, analyses of lead loads in aquatic systems, such as the river Elbe, showed no decline over time in either suspended matter or surface sediments. Regional differences in lead concentrations of fluvial systems were found, due to tidal influence, runoff and local emissions. Lead contamination of sediments from the North Sea was highest in estuaries. Concentrations in sediment cores were quite stable down to the depth of background values, due to bioturbation, flow, waves and meandering channels. Terrestrial soils in Europe were highly polluted in industrial and ore mining areas and large cities. No decline in lead concentrations was evident in foraminifers, bladder wrack or fish. It was found that contamination in sediments, mammals and fish was higher in coastal zones than in the open sea. In contrast to in aquatic organisms, positive impacts of lead reduction regulations were detected in terrestrial plants, which adsorbed or took up lead mainly through atmospheric lead deposition. European lead concentrations in plants decreased coincidently with lead emissions. That trend could also be identified in the blood lead levels of the human population in Europe: since 1979 they have declined in every group of the population. Mainly influenced by age, sex and the living environment, overall, the lead loads of humans had never been high enough to cause health danger. (orig.)

  7. Evolution of ice-dammed proglacial lakes in Última Esperanza, Chile: implications from the late-glacial R1 eruption of Reclús volcano, Andean Austral Volcanic Zone Evolución de lagos proglaciales embalsados por hielo en Última Esperanza, Chile: Implicancias de la explosión volcánica tardiglacial R1 del volcán Reclús, Zona Volcánica Austral Andina

    Directory of Open Access Journals (Sweden)

    Charles R Stern

    2011-01-01

    Full Text Available Newly described outerops, excavations and sediment cores from the region of Última Esperanza, Magallanes, contain tephra derived from the large late-glacial explosive Rl eruption of the Reclús volcano in the Andean Austral Volcanic Zone. New radiocarbon dates associated to these deposits refine previous estimates of the age, to 14.9 cal kyrs BP (12,670±240 14C yrs BP, and volume, to >5 km³, of this tephra. The geographic and stratigraphic distribution of Rl also place constraints on the evolution of the ice-dammed proglacial lake that existed east of the cordillera in this area between the termination of the Last Glacial Maximum (LGM and the Holocene. This proglacial lake generated wave-cut terraces, and also caves, such as the Cueva de Milodón, along the highest prominent terrace. The current elevation of these terraces depends on the total amount of post-glacial isostatic rebound, which is unknown. Due to differential rebound, the highest prominent lake terraces decrease in height from west-to-east, from -170 m a.s.l. on Península Antonio Varas west of Seno Ultima Esperanza, to-150 m a.s.l. aroundLago Sofía, anddownto-125 m a.s.l. along their easternmost margin. The presence of thick deposits of Rl tephra in some of the caves around Lago Sofía implies that the proglacial lake had already dropped below its highest level prior to the time of this eruption, and, in fact, even earlier, prior to 16.1 cal kyrs BP (13,560±180 14C yrs BP, when land mammals first oceupied these caves. The depositional environment of Rl in a core from Dumestre bog suggests that the lake level was in fact 70 m a.s.l. until 12.8 cal kyrs BP (10,695±40 14C yrs BP. However, a 14.2 cal kyrs BP (12,125±85 14C yrs BF Mylodon pelvis from a nearby site, located at only -7 m a.s.l., suggests that the lake could have emptied, for at least a brief period, to this low level at this time. This latter datum, combined with the lack of any prominent terraces between the

  8. Earth's portfolio of extreme sediment transport events

    Science.gov (United States)

    Korup, Oliver

    2012-05-01

    Quantitative estimates of sediment flux and the global cycling of sediments from hillslopes to rivers, estuaries, deltas, continental shelves, and deep-sea basins have a long research tradition. In this context, extremely large and commensurately rare sediment transport events have so far eluded a systematic analysis. To start filling this knowledge gap I review some of the highest reported sediment yields in mountain rivers impacted by volcanic eruptions, earthquake- and storm-triggered landslide episodes, and catastrophic dam breaks. Extreme specific yields, defined here as those exceeding the 95th percentile of compiled data, are ~ 104 t km- 2 yr- 1 if averaged over 1 yr. These extreme yields vary by eight orders of magnitude, but systematically decay with reference intervals from minutes to millennia such that yields vary by three orders of magnitude for a given reference interval. Sediment delivery from natural dam breaks and pyroclastic eruptions dominate these yields for a given reference interval. Even if averaged over 102-103 yr, the contribution of individual disturbances may remain elevated above corresponding catchment denudation rates. I further estimate rates of sediment (re-)mobilisation by individual giant terrestrial and submarine mass movements. Less than 50 postglacial submarine mass movements have involved an equivalent of ~ 10% of the contemporary annual global flux of fluvial sediment to Earth's oceans, while mobilisation rates by individual events rival the decadal-scale sediment discharge from tectonically active orogens such as Taiwan or New Zealand. Sediment flushing associated with catastrophic natural dam breaks is non-stationary and shows a distinct kink at the last glacial-interglacial transition, owing to the drainage of very large late Pleistocene ice-marginal lakes. Besides emphasising the contribution of high-magnitude and low-frequency events to the global sediment cascade, these findings stress the importance of sediment storage

  9. Fluvial responses to land-use changes and climatic variations within the Drury Creek watershed, southern Illinois

    Science.gov (United States)

    Miller, Suzanne Orbock; Ritter, Dale F.; Kochel, R. Craig; Miller, Jerry R.

    1993-04-01

    Fluvial responses to climatic variation and Anglo-American settlement were documented for the Drury Creek watershed, southern Illinois by examining stratigraphic, geomorphic, climatic, and historical data. Regional analyses of long-term precipitation records document a period of decreasing mean annual precipitation from 1904 to about 1945, and an increasing trend in annual precipitation from 1952 to the present. The period between 1945 and 1951 experienced a large number of intense storms that resulted in high annual precipitation totals. Statistical relationships illustrate that changes in precipitation totals are transferred to the hydrologic system as fluctuations in stream discharge. Historical records of southern Illinois show that a maximum period of settlement and deforestation occurred between the 1860s and 1920s. This era ended in the 1940s when large tracts of land were revegetated in an attempt to curtail erosion which had caused extensive upland degradation. In response to hillslope erosion at least two meters of fine-grained sediments were deposited on valley floors. Average sedimentation rates, determined using decdrochronologic techniques, are estimated to be 2.11 cm/yr for the period between 1890 and 1988; rates that are 1 to 2 orders of magnitude greater than pre-settlement values calculated for other areas of the midwest. However, botanical data suggest that aggradation was episodic, possibly occurring during three periods characterized by greater annual precipitation. Since the 1940s, sedimentation rates have declined. Reduced rates of sedimentation are related to an episode of channel entrenchment that reduced overbank flooding. Entrenchment coincided with a period of: (1) reduced sediment yields associated with watershed revegetation and the introduction of soil conservation practices, and (2) intense storm activity that resulted in long periods of high discharge. As a result of channel incision and hillslope erosion, newly exposed bedrock in

  10. Fluvial landscape development in the southwestern Kalahari during the Holocene - Chronology and provenance of fluvial deposits in the Molopo Canyon

    DEFF Research Database (Denmark)

    Ramisch, Arne; Bens, Oliver; Buylaert, Jan-Pieter

    2017-01-01

    are sparse and often discontinuous. Hence, little is known about Holocene environmental change in this region. This study focuses on reconstructing paleoenvironmental change from the timing and provenance of fluvial deposits located within the Molopo Canyon, which connects the southern Kalahari drainage...... to the deposition of alluvial fills. These results suggest that the southern Kalahari Drainage remained endorheic and therefore disconnected from the Orange River throughout the Holocene....

  11. Fluvial deposits as an archive of early human activity: Progress during the 20 years of the Fluvial Archives Group

    Science.gov (United States)

    Chauhan, Parth R.; Bridgland, David R.; Moncel, Marie-Hélène; Antoine, Pierre; Bahain, Jean-Jacques; Briant, Rebecca; Cunha, Pedro P.; Despriée, Jackie; Limondin-Lozouet, Nicole; Locht, Jean-Luc; Martins, Antonio A.; Schreve, Danielle C.; Shaw, Andrew D.; Voinchet, Pierre; Westaway, Rob; White, Mark J.; White, Tom S.

    2017-06-01

    Fluvial sedimentary archives are important repositories for Lower and Middle Palaeolithic artefacts throughout the 'Old World', especially in Europe, where the beginning of their study coincided with the realisation that early humans were of great antiquity. Now that many river terrace sequences can be reliably dated and correlated with the globally valid marine isotope record, potentially useful patterns can be recognized in the distribution of the find-spots of the artefacts that constitute the large collections that were assembled during the years of manual gravel extraction. This paper reviews the advances during the past two decades in knowledge of hominin occupation based on artefact occurrences in fluvial contexts, in Europe, Asia and Africa. As such it is an update of a comparable review in 2007, at the end of IGCP Project no. 449, which had instigated the compilation of fluvial records from around the world during 2000-2004, under the auspices of the Fluvial Archives Group. An overarching finding is the confirmation of the well-established view that in Europe there is a demarcation between handaxe making in the west and flake-core industries in the east, although on a wider scale that pattern is undermined by the increased numbers of Lower Palaeolithic bifaces now recognized in East Asia. It is also apparent that, although it seems to have appeared at different places and at different times in the later Lower Palaeolithic, the arrival of Levallois technology as a global phenomenon was similarly timed across the area occupied by Middle Pleistocene hominins, at around 0.3 Ma.

  12. Do river channels decrease in width downstream on Distributive Fluvial Systems? An evaluation of modern mega-fans

    Science.gov (United States)

    Espinoza, T. N.; Scuderi, L. A.; Weissmann, G. S.; Hartley, A. J.

    2014-12-01

    Recent studies on aggradational continental sedimentary basins globally show that fluvial deposits in most modern sedimentary basins are dominated Distributive Fluvial Systems (DFS). DFS's are identified by: (1) pattern of channels and floodplain deposits that radiate outward from an apex located where the river enters the sedimentary basin, (2) deposition where an alluvial system becomes unconfined upon entering the sedimentary basin, (3) broadly fan shaped deposit that is convex upward across the DFS and concave upward down-fan, and (4) if the DFS is incised, an intersection point above which the alluvial system is held in an incised valley and below which it distributes sediment across an active depositional lobe. Several papers about DFS hypothesized that rivers on DFS decrease in size down-fan. We are testing this hypothesis through evaluation of LANDSAT and STRM data from large DFS described by Hartley et al (2010). We use ArcGIS to: (1) open the images and merge them together if there are more than one image corresponding to the DFS being studied, (2) use a Maximum Likelihood Analysis in six classes to segment different features on the DFS (e.g. exposed sands, water, vegetation, and other fan environments), (3) isolate the classes that correspond to the active channel belt (e.g., exposed sand bars and water), (4) divide the active channel belt into 1000 m long sections, (5) determine the area of active channel belt in each section, and (6) calculate the average width of the river in each section (e.g., W = area/1000m). We present our result for each DFS river on a graph that shows the change in width downstream. Our final product will be a dataset that contains width versus distance down-fan from the apex for as many of the large DFS from Hartley et al (2010) as possible. If the hypothesis is supported, the decrease in width could have a substantial predictive significance on sandstone geometry in fluvial successions.

  13. Toward the Validation of Depth-Averaged Three Dimensional, Rans Steady-State Simulations of Fluvial Flows at Natural Scale

    Science.gov (United States)

    Mateo Villanueva, P. A.; Hradisky, M.

    2010-12-01

    Simulations of fluvial flows are strongly influenced by geometric complexity and overall uncertainty on measured flow variables, including those assumed to be well known boundary conditions. Often, 2D steady-state models are used for computational simulations of flows at the scale of natural rivers. Such models have been successfully incorporated in iRIC (formerly MD_SWMS), one of the widely used quasi-3D CFD solvers to perform studies of environmental flows. iRIC aids in estimating such quantities as surface roughness and shear stress, which, in turn, can be used to estimate sediment transport. However, the computational results are inherently limited in accuracy because of restricting the computations to 2D, or quasi-3D, space, which can affect the values of these predictions. In the present work we perform computer-based simulations of fluvial flows using OpenFOAM, a free, open source fully 3D CFD software package, and compare our results to predictions obtained from iRIC. First, we study the suitability of OpenFOAM as the main CFD solver to analyze fluvial flows and validate our results for two well documented rectangular channel configurations: the first case consists of a large aspect-ratio channel (ratio of depth over width 0.017, ratio of depth over length 0.0019) with a rectangular obstacle mounted at the bottom wall; the second case involves a large aspect-ratio channel (ratio of depth over width 0.1, ratio of depth over length 0.0025) with cubic obstacles mounted at the lower wall (one obstacle) and upper wall (two obstacles). Secondly, we apply our model to simulation or river at natural scale and compare our results to the output obtained from iRIC to quantify the differences in velocity profiles and other flow parameters when comparable solution techniques are used. Steady-state, RANS k-epsilon models are employed for all simulations.

  14. How to find the sedimentary archive of fluvial pollution in a bedrock-confined river reach

    Science.gov (United States)

    Elznicova, Jitka; Matys Grygar, Tomas; Kiss, Timea; Lelkova, Tereza; Balogh, Marton; Sikora, Martin

    2016-04-01

    , dated the sediments by dendrology and OSL dating, and performed in situ XRF analysis of sediment cores. The data show that the downstream head of the bar is the oldest and most of fine sediments (mostly sand, minor silt) of the bar material have been historically polluted by Pb mining. The sedimentary sequences, most valuable for reconstruction of recent pollution, were found in the side channel where the fill the representing the last ca 150 years pollution history (Hg and U). The body of the bar has been formed earlier. According to our hypothesis the bar originated as a direct consequence of historical mining in the nearby Jachymov Ore Region. The use of lateral fluvial deposits as a sedimentary archive definitely requires intensive application of fluvial geomorphology. Vice versa, pollution patterns will allow delineating areas, in particular the bar bank and inlet to the side channel, where intensive reworking (erosion/redeposition) occurred as documented by the microtopography and woody debris.

  15. Glacial lake outburst floods and fluvial erosion in the Himalaya - insights from the 2016 Bhote Koshi GLOF

    Science.gov (United States)

    Cook, K. L.; Gimbert, F.; Andermann, C.; Hovius, N.; Adhikari, B. R.

    2017-12-01

    The Himalaya is a region of rapid erosion where fluvial processes are assumed to be driven by precipitation delivered during the annual Indian Summer Monsoon. However, the rivers in this region are also subject to catastrophic floods caused by the failure of glacial lake and landslide dams. Because these floods are rarely observed, it has been difficult to isolate their impact on the rivers and adjacent hillslopes, and their importance for the long-term evolution of Himalayan valleys is largely unknown. In July 2016, the Bhotekoshi/Sunkoshi River in central Nepal was hit by a glacial lake outburst flood (GLOF) that caused substantial changes to the channel bed, banks, and adjacent hillslopes, causing at least 26 landslides and an average of 11 m of channel widening. The flood passed through a seismic and hydrological observatory installed along the river in June 2015, and we have used the resulting data to constrain the timing, duration, and bedload transport properties of the outburst flood. The impact of the flood on the river can be further observed with hourly time-lapse photographs, daily measurements of suspended sediment load, repeat lidar surveys, and satellite imagery. The outburst flood affected the river on several timescales. In the short term, it transported large amounts of coarse sediment and restructured the river bed during the hours of the flood pulse itself. Over intermediate timescales it resulted in elevated bedload and suspended load transport for several weeks following the flood. Over longer timescales the flood undercut and destabilized the river banks and hillslopes in a number of locations, leading to bank collapses, slumps, and landslides. Our data indicate that impacts of the GLOF far exceed those driven by the annual summer monsoon, likely due to extremely coarse sediment that armors much of the channel. The relatively frequent occurrence of GLOFs and the extremely high discharges relative to monsoon floods suggest that GLOFs may

  16. Fluvial fluxes of natural radium isotopes and dissolved barium for Ubatuba embayments, Sao Paulo

    International Nuclear Information System (INIS)

    Sousa, Keila Cristina Pinheiro Marchini de

    2008-01-01

    ranged from 100 mBq 100L -1 to 1090 mBq 100L -1 and for 228 Ra from 1123 mBq 100L -1 to 7009 mBq 100L -1 . The highest value of 228 Ra/ 226 Ra activity ratio of 59.3 was observed in Picinguaba River (at salinity 34.5). In groundwater, the 228 Ra/ 226 Ra activity ratios varied from 2.5 to 14.6. The 228 Ra/ 226 Ra activity ratios determined both in surface and in groundwater samples reflect the presence of a higher 232 Th content in relation to the 238 U in sediments and crystalline rocks of the continental shelf off Sao Paulo. Barium dissolved concentrations varied from -1 to 8.2 μg g -1 , with the highest value also being observed in Picinguaba River (at salinity 34.5). Considering the average concentrations of 226 Ra, 228 Ra and dissolved Ba determined in surface waters and using a steady-state model based on conservation of volume, salinity and concentration of these elements the fluvial fluxes to Ubatuba embayments was estimated. These results yield average fluvial fluxes of 553 Bq m -3 for 226 Ra, 1646 Bq m -3 for 228 Ra and 1240 g m -3 for dissolved barium. (author)

  17. Remediation of internal phosphorus loads with modified clays, influence of fluvial suspended particulate matter and response of the benthic macroinvertebrate community.

    Science.gov (United States)

    Yin, Hongbin; Douglas, Grant B; Cai, Yongjiu; Liu, Cheng; Copetti, Diego

    2018-01-01

    Clay-based phosphorus (P) sorbents have been increasingly used as geoengineering materials for the management sediment-derived internal P loading in eutrophic lakes. However, the long-term behavior of these sorbents has remained elusive along with their response to burial under suspended particulate matter (SPM), and their effect on macroinvertebrate communities occupying dynamic regions at the sediment-water interface of shallow and turbid lakes. In this study, field mesocosm experiments were undertaken in Lake Chaohu, China, to study the effects of the application of lanthanum-modified bentonite (LMB) and thermally-modified calcium-rich attapulgite (TCAP) on sediment internal P loading and to assess their influence on macroinvertebrate community structure. A complementary laboratory core incubation study was also undertaken to investigate the effects of SPM deposition on LMB and TCAP performance. In the field, both LMB and TCAP effectively intercepted P released from sediment for up to five months. A P fractionation analysis indicated that LMB and TCAP application results in a substantial increase in inert P fractions in sediment. Laboratory studies indicated that deposition of SPM may increase in mobile P both in the upper sediment and across the new post-SPM deposition sediment-water interface. Importantly, a comparison of sediment chemical extractions and estimated P fluxes suggests that chemically-defined forms of P in the sediment may be used as a proxy to estimate the net sediment P flux. Significantly, the surficial application of either LMB or TCAP did not cause negative effects on macroinvertebrate communities. This study indicates that to sustain a low P flux across the sediment-water interface in shallow, turbid lakes, repeat dosing of geoengineering materials, temporally aligned to the deposition of fluvial SPM, may be required. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. a Review of Late Holocene Fluvial Systems in the Karst Maya Lowlands with Focus on the Rio Bravo, Belize

    Science.gov (United States)

    Beach, T.; Luzzadder-Beach, S.; Krause, S.; Doyle, C.

    2015-12-01

    The Maya Lowlands is mostly an internally draining karst region with about 400 m of regional relief. Fluvial and fluviokarst systems drain the edges of this landscape either from low limestone uplands or igneous and metamorphic complexes. Thus far most fluvial research has focused around archaeology projects, and here we review the extant research conducted across the region and new research on the transboundary Rio Bravo watershed of Belize and Guatemala. The Rio Bravo drains a largely old growth tropical forest today, but was partly deforested around ancient Maya cities and farms from 3,000 to 1000 BP. Several studies estimate that 30 to 40 percent of forest survived through the Maya period. Work here has focused on soils and sediment movement along slope catenas, in floodplain sites, and on contributions from groundwater with high dissolved loads of sulfate and calcium. We review radiocarbon dates and present new dates and soil stratigraphy from these sequences to date slope and floodplain movement, and we estimate ancient land use from carbon isotopic and pollen evidence. Aggradation in this watershed occurred by flooding, gypsum precipitation, upland erosion, and ancient Maya canal building and filling for wetland farming. Soil erosion and aggradation started at least by 3,000 BP and continued through the ancient Maya period, though reduced locally by soil conservation, post urban construction, and source reduction, especially in Maya Classic period from 1700 to 1000 BP.

  19. Correlation of fluvial sequences in the Mediterranean basin over the last 200 ka and their relationship to climate change

    Science.gov (United States)

    Macklin, M. G.; Fuller, I. C.; Lewin, J.; Maas, G. S.; Passmore, D. G.; Rose, J.; Woodward, J. C.; Black, S.; Hamlin, R. H. B.; Rowan, J. S.

    2002-08-01

    This paper presents a new correlation of Late and Middle Pleistocene fluvial sedimentary sequences in Greek, Libyan and Spanish river basins and evaluates river response to climate change over the Last Interglacial-Glacial Cycle. Over the past 200,000 years there have been at least 13 major alluviation episodes in the Mediterranean, although the amplitude, frequency and possibly, duration of these events varied significantly across the region. Parts of Oxygen Isotope Stage (OIS) 5 appears to have been periods of pronounced landscape change in many Mediterranean catchments with major river aggradation occurring at ˜109-111 ka (during OIS 5d) and most notably at ˜88 ka (OIS 5b/5a boundary). Other parts of OIS 5 appear to have been periods of relative fluvial inactivity. OIS 2 and 3 were both characterised by an apparent increase in the number of alluviation events, and this record of river behaviour parallels many other palaeoenvironmental records in the region which also show more frequent climate fluctuations between ˜12 and 65 ka. There is evidence for a high degree of synchrony in major river aggradation events across the Mediterranean in catchments with very different sizes, tectonic regimes and histories. Climate-related changes in catchment hydrology and vegetation cover over the last 200 ka would appear to be the primary control of large-scale (catchment wide) sedimentation over time periods of between 10 3 and 10 4 years.

  20. Fluvial geomorphology: where do we go from here?

    Science.gov (United States)

    Smith, Derald G.

    1993-07-01

    The evolution of geomorphology and in particular, fluvial geomorphology, is at a crossroads. Currently, the discipline is dismally organized, without focus or direction, and is practised by individualists who rarely collaborate in numbers significant enough to generate major research initiatives. If the discipline is to mature and to prosper, we must make some very difficult decisions that will require major changes in our ways of thinking and operating. Either the field stays in its current operational mode and becomes a backwater science, or it moves forward and adopts the ways of the more competitive sectors of the earth and biosciences. For the discipline to evolve, fluvial geomorphologists must first organize an association within North America or at the international level. The 3rd International Geomorphology Conference may be a start, but within that organization we must develop our own divisional and/or regional organizations. Within the Quaternary geology/geomorphology divisions of the Geological Socieity of America (GSA), Association of American Geographers (AAG), American Geophysical Union (AGU) and British Geomorphology Research Group (BGRG) the voice of fluvial geomorphology is lost in a sea of diverse and competitive interests, though there is reason for hope resulting from some recent initiatives. In Canada, we have no national geomorphology organization per se; our closest organization is Canqua (Canadian Quaternary Association). Next, fluvial researchers must collaborate, by whatever means, to develop "scientific critical mass" in order to generate ideas and long-range goals of modest and major scientific importance. These projects will help secure major research funding without which, research opportunities will diminish and initiating major new research will become nearly impossible. Currently, we are being surpassed by the glaciologists, remote sensors, ecologists, oceanographers, climatologists-atmospheric researchers and some Quaternary

  1. La géoarchéologie fluviale

    Directory of Open Access Journals (Sweden)

    Gilles Arnaud-Fassetta

    2008-03-01

    Full Text Available Les recherches des hydrogéomorphologues ont des applications nombreuses dans le vaste champ des sciences géoarchéologiques. Elles fournissent des réponses précises sur la façon dont l’environnement des anciens lieux de passage et de vie humaine a évolué. Le propos n’est pas seulement de définir les causes des grands changements environnementaux, mais aussi de juger de la vulnérabilité sociétale face aux contraintes hydroclimatiques. Pour cela, les méthodes d’étude doivent nécessairement prendre en compte les trois facettes de la géomorphologie fluviale : la paléohydrographie, la paléohydrologie et la paléohydraulique. La pertinence de cette approche est montrée en milieu rural et urbain dans les plaines deltaïques du Rhône (France du Sud et de l’Isonzo (Italie du Nord.Current research led by hydrogeomorphologists has numerous applications in the vast field of geoarchaeological sciences. It brings precise answers on environmental characteristics around the ancient places of passage and human life. The goal is not only to define the causes of global environmental changes, but also to precise the links between river dynamics and human societies in terms of fluvial risk. Therefore, the studied methods should simultaneously take into account the three facets of the fluvial geomorphology, i.e., the palaeohydrography, the palaeohydrology, and the palaeohydraulics. The pertinence of this combinatorial approach is deduced from the work of the author led both in rural and urban areas of the deltaic plains of the Rhône (South of France and Isonzo (northern Italy rivers.

  2. Relevance of the Paraná River hydrology on the fluvial water quality of the Delta Biosphere Reserve.

    Science.gov (United States)

    Puig, Alba; Olguín Salinas, Héctor F; Borús, Juan A

    2016-06-01

    The increasing frequency of extreme events in large rivers may affect not only their flow, but also their water quality. In the present study, spatial and temporal changes in fluvial physico-chemical variables were analyzed in a mega-river delta during two extreme hydrological years (La Niña-El Niño) and related to potential explanatory factors. Basic water variables were evaluated in situ at 13 points (distant 2-35 km from each other) in watercourses of the Delta Biosphere Reserve (890 km(2)) in the Lower Paraná River (Argentina) in nine surveys (October 2008-July 2010) without meteorological tides. Samples for laboratory analyses were collected from each main river. Multivariate tests by permutations were applied. The period studied was influenced by a drought, within a long period dominated by low flows combined with dry weather and wildfires, and a large (10 years of recurrence) and prolonged (7 months) flood. The hydrological phase, followed by the season and the hydrological year (according to the ENSO event) were the principal explanatory factors of the main water quality changes, whereas the drainage sub-basin and the fluvial environment (river or stream) were secondary explanatory factors. During the drought period, conductivity, turbidity, and associated variables (e.g., major ions, silicon, and iron concentrations) were maximal, whereas real color was minimal. In the overbanking flood phase, pH and dissolved oxygen concentration were minimal, whereas real color was maximal. Dissolved oxygen saturation was also low in the receding flood phase and total major ion load doubled after the arrival of the overbanking stage. The water quality of these watercourses may be affected by the combination of several influences, such as the Paraná River flow, the pulses with sediments and solutes from the Bermejo River, the export of the Delta floodplain properties mainly by the flood, the season, and the saline tributaries to the Lower Paraná River. The high

  3. Fluvial archives, a valuable record of vertical crustal deformation

    Science.gov (United States)

    Demoulin, A.; Mather, A.; Whittaker, A.

    2017-06-01

    The study of drainage network response to uplift is important not only for understanding river system dynamics and associated channel properties and fluvial landforms, but also for identifying the nature of crustal deformation and its history. In recent decades, geomorphic analysis of rivers has proved powerful in elucidating the tectonic evolution of actively uplifting and eroding orogens. Here, we review the main recent developments that have improved and expanded qualitative and quantitative information about vertical tectonic motions (the effects of horizontal deformation are not addressed). Channel long profiles have received considerable attention in the literature, and we briefly introduce basic aspects of the behaviour of bedrock rivers from field and numerical modelling perspectives, before describing the various metrics that have been proposed to identify the information on crustal deformation contained within their steady-state characteristics. Then, we review the literature dealing with the transient response of rivers to tectonic perturbation, through the production of knickpoints propagating through the drainage network. Inverse modelling of river profiles for uplift in time and space is also shown to be very effective in reconstructing regional tectonic histories. Finally, we present a synthetic morphometric approach for deducing the tectonic record of fluvial landscapes. As well as the erosional imprint of tectonic forcing, sedimentary deposits, such as fluvial terrace staircases, are also considered as a classical component of tectonic geomorphology. We show that these studies have recently benefited from rapid advances in dating techniques, allowing more reliable reconstruction of incision histories and estimation of incision rates. The combination of progress in the understanding of transient river profiles and larger, more rigorous data sets of terrace ages has led to improved understanding of river erosion and the implications for terrace

  4. Sedimentology of the upper Karoo fluvial strata in the Tuli Basin, South Africa

    Science.gov (United States)

    Bordy, Emese M.; Catuneanu, Octavian

    2001-08-01

    The sedimentary rocks of the Karoo Supergroup in the Tuli Basin (South Africa) may be grouped in four stratigraphic units: the basal, middle and upper units, and the Clarens Formation. This paper presents the findings of the sedimentological investigation of the fluvial terrigenous clastic and chemical deposits of the upper unit. Evidence provided by primary sedimentary structures, palaeontological record, borehole data, palaeo-flow measurements and stratigraphic relations resulted in the palaeo-environmental reconstruction of the upper unit. The dominant facies assemblages are represented by sandstones and finer-grained sediments, which both can be interbedded with subordinate intraformational coarser facies. The facies assemblages of the upper unit are interpreted as deposits of a low-sinuosity, ephemeral stream system with calcretes and silcretes in the dinosaur-inhabited overbank area. During the deposition of the upper unit, the climate was semi-arid with sparse precipitation resulting in high-magnitude, low-frequency devastating flash floods. The current indicators of the palaeo-drainage system suggest flow direction from northwest to southeast, in a dominantly extensional tectonic setting. Based on sedimentologic and biostratigraphic evidence, the upper unit of the Tuli Basin correlates to the Elliot Formation in the main Karoo Basin to the south.

  5. Determination of Distribution and Properties of Soil Formed on Different Fluvial Deposit

    Directory of Open Access Journals (Sweden)

    Orhan DENGİZ

    2014-03-01

    Full Text Available Alluvial land, formed on accumulated sediment depositions by time, show large variety in their properties at short distances. Therefore, different soils can be form on these lands. The objective of this research was to determine, mapping and classify different soils formed on fluvial land used for intensive cultivation in Örencik village of Samsun Bafra district. Total study area is approximately 407.9 ha. Average annual temperature and precipitation are 13.6 oC and 764.3 mm, respectively. After examination of topographic, land use, geologic and geomorphologic maps and land observation, 9 profile places were excavated in study area. Detailed land observations were done with grid method and auger examinations. The soil samples were taken from each profile and their analyses were done in the laboratory. By assessing the results of analyses and field studies, 7 different soil series were determined and described. Three of them were classified as Entisol due to their young age, three of them were classified as Inceptisol and one is as Vertisol. Whereas Cevizlik series has the largest area (24.7%, Elmacıdede series has the smallest area in the study area (7.8%.

  6. Enhancing the natural removal of As in a reactive fluvial confluence receiving acid drainage

    Science.gov (United States)

    Abarca, M. I.; Arce, G.; Montecinos, M.; Guerra, P. A.; Pasten, P.

    2014-12-01

    Fluvial confluences are natural reactors that can determine the fate of contaminants in watersheds receiving acid drainage. Hydrological, hydrodynamic and chemical factors determine distinct conditions for the formation of suspended particles of iron and aluminum oxyhydroxides. The chemical and physical properties of these particle assemblages (e.g. particle size, chemical composition) can vary according to inflow mixing ratios, hydrodynamic velocity profiles, and chemical composition of the flows mixing at the confluence. Due to their capacity to sorb metals, it is important to identify the optimal conditions for removing metals from the aqueous phase, particularly arsenic, a contaminant frequently found in acid drainage. We studied a river confluence in the Lluta watershed, located in the arid Chilean Altiplano. We performed field measurements and laboratory studies to find optimal mixing ratio for arsenic sorption onto oxyhydroxide particles at the confluence between the Azufre (pH=2, As=2 mg/L) and the Caracarani river (pH=8, Ascontaminants. An analogy between confluences and coagulation-flocculation-sedimentation drinking water plants could be used to engineer such intervention.Acknowledgements: Proyecto Fondecyt 1130936 and Proyecto CONICYT FONDAP 15110020

  7. Microbial biomass and activity in subsurface sediments from Vejen, Denmark

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Winding, Anne

    1992-01-01

    Subsurface sediment samples were collected from 4 to 31 m below landsurface in glacio-fluvial sediments from the Quaternary period. The samples were described in terms of pH, electrical conductivity, chloride concentration, organic matter content, and grain size distribution. Viable counts...... for mineralization of 14C-labelled compounds varied from 0.2 to 2.3 × 10−3 ml/(dpm · day) for acetate, and from 0 to 2.0 × 10−3 ml/(dpm · day) for phenol. Sediment texture influenced the total number of bacteria and potential for mineralization; with increasing content of clay and silt and decreasing content of sand...... a single abiotic parameter that could explain the variation of size and activity of the microbial population. The microbial data obtained in these geologically young sediments were compared to literature data from older sediments, and this comparison showed that age and type of geological formation might...

  8. Investigating fluvial pattern and delta-planform geometry based on varying intervals of flood and interflood

    Science.gov (United States)

    Rambo, J. E.; Kim, W.; Miller, K.

    2017-12-01

    Physical modeling of a delta's evolution can represent how changing the intervals of flood and interflood can alter a delta's fluvial pattern and geometry. Here we present a set of six experimental runs in which sediment and water were discharged at constant rates over each experiment. During the "flood" period, both sediment and water were discharged at rates of 0.25 cm3/s and 15 ml/s respectively, and during the "interflood" period, only water was discharged at 7.5 ml/s. The flood periods were only run for 30 minutes to keep the total volume of sediment constant. Run 0 did not have an interflood period and therefore ran with constant sediment and water discharge for the duration of the experiment.The other five runs had either 5, 10, or 15-min intervals of flood with 5, 10, or 15-min intervals of interflood. The experimental results show that Run 0 had the smallest topset area. This is due to a lack of surface reworking that takes place during interflood periods. Run 1 had 15-minute intervals of flood and 15-minute intervals of interflood, and it had the largest topset area. Additionally, the experiments that had longer intervals of interflood than flood had more elongated delta geometries. Wetted fraction color maps were also created to plot channel locations during each run. The maps show that the runs with longer interflood durations had channels occurring predominantly down the middle with stronger incisions; these runs produced deltas with more elongated geometries. When the interflood duration was even longer, however, strong channels started to occur at multiple locations. This increased interflood period allowed for the entire area over the delta's surface to be reworked, thus reducing the downstream slope and allowing channels to be more mobile laterally. Physical modeling of a delta allows us to predict a delta's resulting geometry given a set of conditions. This insight is needed especially with delta's being the home to many populations of people and

  9. Using sedimentary archives to reconstruct pollution history and sediment provenance: The Ohre River, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Matys Grygar, Tomáš; Elznicová, J.; Kiss, T.; Smith, H. G.

    2016-01-01

    Roč. 144, SEP (2016), s. 109-129 ISSN 0341-8162 R&D Projects: GA ČR GA15-00340S Institutional support: RVO:61388980 Keywords : Polluted floodplains * Pollution history * Fluvial archives * Sediment provenance * Environmental geochemistry Subject RIV: DD - Geochemistry Impact factor: 3.191, year: 2016

  10. Tidal Creek Morphology and Sediment Type Influence Spatial Trends in Salt Marsh Vegetation

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairns, David M.; Bartholdy, Jesper

    2013-01-01

    that by shaping major geomorphic features and providing sediments to the adjacent sites, fluvial-geomorphic processes of tidal creeks exert fundamental controls on the cross-channel distribution of abiotic and biotic factors. These results point to a need for biogeomorphic and landscape ecological perspectives...

  11. The evolution of a colluvial hollow to a fluvial channel with periodic steps following two transformational disturbances: A wildfire and a historic flood

    Science.gov (United States)

    Rengers, Francis K.; McGuire, Luke; Ebel, Brian A.; Tucker, G. E.

    2018-01-01

    The transition of a colluvial hollow to a fluvial channel with discrete steps was observed after two landscape-scale disturbances. The first disturbance, a high-severity wildfire, changed the catchment hydrology to favor overland flow, which incised a colluvial hollow, creating a channel in the same location. This incised channel became armored with cobbles and boulders following repeated post-wildfire overland flow events. Three years after the fire, a record rainstorm produced regional flooding and generated sufficient fluvial erosion and sorting to produce a fluvial channel with periodically spaced steps. An analysis of the step spacing shows that after the flood, newly formed steps retained a similar spacing to the topographic roughness spacing in the original colluvial hollow (prior to channelization). This suggests that despite a distinct change in channel form roughness and bedform morphology, the endogenous roughness periodicity was conserved. Variations in sediment erodibility helped to create the emergent steps as the largest particles ( >D84) remained immobile, becoming step features, and downstream soil was easily winnowed away.

  12. The evolution of a colluvial hollow to a fluvial channel with periodic steps following two transformational disturbances: A wildfire and a historic flood

    Science.gov (United States)

    Rengers, F. K.; McGuire, L. A.; Ebel, B. A.; Tucker, G. E.

    2018-05-01

    The transition of a colluvial hollow to a fluvial channel with discrete steps was observed after two landscape-scale disturbances. The first disturbance, a high-severity wildfire, changed the catchment hydrology to favor overland flow, which incised a colluvial hollow, creating a channel in the same location. This incised channel became armored with cobbles and boulders following repeated post-wildfire overland flow events. Three years after the fire, a record rainstorm produced regional flooding and generated sufficient fluvial erosion and sorting to produce a fluvial channel with periodically spaced steps. An analysis of the step spacing shows that after the flood, newly formed steps retained a similar spacing to the topographic roughness spacing in the original colluvial hollow (prior to channelization). This suggests that despite a distinct change in channel form roughness and bedform morphology, the endogenous roughness periodicity was conserved. Variations in sediment erodibility helped to create the emergent steps as the largest particles (>D84) remained immobile, becoming step features, and downstream soil was easily winnowed away.

  13. Paleoenvironmental reconstruction and evolution of an Upper Cretaceous lacustrine-fluvial-deltaic sequence in the Parecis Basin, Brazil

    Science.gov (United States)

    Rubert, Rogerio R.; Mizusaki, Ana Maria Pimentel; Martinelli, Agustín G.; Urban, Camile

    2017-12-01

    The Cretaceous in the Brazilian Platform records events of magmatism, tectonism and sedimentation coupled to the Gondwana breakup. Some of these events are registered as sedimentary sequences in interior basins, such as in the Cretaceous sequence of the Alto Xingu Sub-basin, Parecis Basin, Central Brazil. This article proposes the faciologic characterization and paleoenvironmental reconstruction of the Cretaceous sequence of the eastern portion of the Parecis Basin and its relation with some reactivated structures as, for instance, the Serra Formosa Arch. Based on both data from outcrops and core drillings a paleoenvironmental and evolutionary reconstruction of the sequence is herein presented. The base of the studied section is characterized by chemical and low energy clastic sedimentation of Lake Bottom and Shoreline, in a context of fast initial subsidence and low sedimentation rate. As the subsidence process decreased, a deltaic progradation became dominant with deposition in a prodelta environment, followed by a deltaic front and deltaic plain interbedded with fluvial plain, and aeolian deposition completing the sequence. The inferred Coniacian-Santonian age is based on vertebrate (fishes and notosuchians) and ostracod fossils with regional chrono-correlates in the Adamantina (Bauru Group), Capacete (Sanfranciscana Basin), and Bajo de la Carpa (Neuquén Group, in Argentina) formations. The formation of a Coniacian depocenter in the Alto Xingu Sub-basin is associated to the Turonian-Coniacian reactivation event in the Peruvian Orogenic Phase of the Andean Orogeny, with the transference of stresses to interplate setting, reactivating Proterozoic structures of the basement.

  14. Accessing Martian Fluvial and Lacustrine Sediments by Landing in Holden Crater, Margaritifer Sinus

    Science.gov (United States)

    Parker, T. J.; Grant, J. A.

    2001-01-01

    Rover missions to the surface of Mars after MER 2003, are likely to be centered around focused geologic field mapping. One objective with high priority in selecting landing sites for these missions will be to characterize the nature, spatial distribution, internal structure, composition, and depositional history of exposed sedimentary layered deposits by visiting a number of distributed outcrops identified previously (and with a high degree of certainty) from orbit. These deposits may contain prebiotic material, even fossil organisms, but their primary value will be to enable an assessment of the planet's climate at the time they were emplaced. High resolution imaging from a mobile rover will enable the detailed study of these deposits over a wide area, their internal structure and mineralogy at distributed localities, and could resolve biologically-derived structures (such as stromatolite-like textures) if they are present. With the addition of a spectrometer, it should be possible to ascertain the presence of carbonates, sulfates, organics, water (liquid, frost, and bound water), as well as a variety of silicate minerals in the context of the collected imagery. Such a mission approach is directly relevant to future exploration of Mars, because it provides the geologic context comparable to what a field geologist visiting a site for the first time would acquire. Rover missions after MER will likely have much better targeting and hazard avoidance landing systems, enabling access to planimetrically-challenged sites of high scientific interest. These vehicles will also likely have greater mobility than MER, capable of driving greater distances in a shorter amount of time. Many scientists and mission planners have realized the need to design a rover whose mobility can be comparable to the dimensions of its 3-sigma landing error ellipse.

  15. Regional deformation of late Quaternary fluvial sediments in the Apennines foreland basin (Emilia, Italy)

    Science.gov (United States)

    Stefani, Marco; Minarelli, Luca; Fontana, Alessandro; Hajdas, Irka

    2018-04-01

    Our research is aimed at estimating the vertical deformation affecting late Quaternary units accumulated into the foreland basin of the Northern Apennines chain. Beneath the study alluvial plain, compressive fault-fold structures are seismically active. We reconstructed the stratigraphic architecture and the depositional evolution of the alluvial deposits, which accumulated in the first 40 m of subsurface, through the last 45,000 years, from before the Last Glacial Maximum to the present. A 58 km-long stratigraphic profile was correlated from the foothill belt near Bologna to the vicinity of the Po River. The analysis of the profile documents subsidence movements through the last 12,000 years, exceeding - 18 m in syncline areas, with subsidence rates of at least 1.5 m/ka. Anticlines areas experienced a much lower subsidence than the syncline ones.

  16. Assessment of spatiotemporal variations in the fluvial wash-load component in the 21st century with regard to GCM climate change scenarios.

    Science.gov (United States)

    Mouri, Goro

    2015-11-15

    For stream water, in which a relationship exists between wash-load concentration and discharge, an estimate of fine-sediment delivery may be obtained from a traditional fluvial wash-load rating curve. Here, we demonstrate that the remaining wash-load material load can be estimated from a traditional empirical principle on a nationwide scale. The traditional technique was applied to stream water for the whole of Japan. Four typical GCMs were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields for the following regional climate models to assess the wash-load component based on rating curves: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM) and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble, including multiple physics configurations and different Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5), which was used to produce monthly datasets for the whole country of Japan. The impacts of future climate changes on fluvial wash load in Japanese stream water were based on the balance of changes in hydrological factors. The annual and seasonal variations of the fluvial wash load were assessed from the result of the ensemble analysis in consideration of the Greenhouse Gas (GHG) emission scenarios. The determined results for the amount of wash load increase range from approximately 20 to 110% in the 2040s, especially along part of the Pacific Ocean and the Sea of Japan regions. In the 2090s, the amount of wash load is projected to increase by more than 50% over the whole of Japan. The assessment indicates that seasonal variation is particularly important because the rainy and typhoon seasons, which include extreme events, are the dominant seasons. Because fluvial wash-load-component turbidity

  17. Fluvial biogeomorphology in the Anthropocene: Managing rivers and managing landscapes.

    Science.gov (United States)

    Viles, Heather

    2015-04-01

    Biogeomorphology considers the many, and often complex, interactions between ecological and geomorphological processes. The concept of the Anthropocene deserves greater attention by scientists working on biogeomorphology, as will be demonstrated in this talk though a focus on fluvial environments. Rivers and river systems have been the subject of long-term human interference and management across the world, often in the form of direct manipulation of biogeomorphic interactions. Up to the present three broadly-defined phases of the Anthropocene can be identified - the Palaeoanthropocene, the Industrial Revolution and the Great Acceleration. Each of these broad phases of the Anthropocene has different implications for fluvial biogeomorphology and river management. The nature and dynamics of tufa-depositing systems provide good examples of the differing Anthropocene situations and will be focused on in this talk. We may now be entering a fourth phase of the Anthropocene called 'Earth system stewardship'. In terms of better understanding and managing the biogeomorphic interactions within rivers in such a phase, an improved conceptualisation of the Anthropocene and the complex web of interactions between human, ecological and geomorphological processes is needed.

  18. Probing the Gaps: A Synthesis of Well-known and Lesser-known Hydrological Feedbacks Influencing Vegetation Patterning and Long-term Geomorphic Change in Low-gradient Fluvial Landscapes

    Science.gov (United States)

    Larsen, L.; Christensen, A.; Harvey, J. W.; Ma, H.; Newman, S.; Saunders, C.; Twilley, R.

    2017-12-01

    Emergence of vegetation patterning in fluvial landscapes is a classic example of how autogenic processes can drive long term fluvial and geomorphic adjustments in aquatic ecosystems. Studies elucidating the physics of flow through vegetation patches have produced understanding of how patterning in topography and vegetation commonly emerges and what effect it has on long term geomorphic change. However, with regard to mechanisms underlying pattern existence and resilience, several knowledge gaps remain, including the role of landscape-scale flow-vegetation feedbacks, feedbacks that invoke additional biogeochemical or biological agents, and determination of the relative importance of autogenic processes relative to external drivers. Here we provide a synthesis of the processes over a range of scales known to drive vegetation patterning and sedimentation in low gradient fluvial landscapes, emphasizing recent field and modeling studies in the Everglades, FL and Wax Lake Delta, LA that address these gaps. In the Everglades, while flow routing and sediment redistribution at the patch scale is known to be a primary driver of vegetation pattern emergence, landscape-scale routing of flow, as driven by the landscape's connectivity, can set up positive feedbacks that influence the rate of pattern degradation. Recent flow release experiments reveal that an additional feedback, involving phosphorus concentrations, flow, and floating vegetation communities that are abundant under low phosphorus, low flow conditions further stabilizes the alternative landscape states established through local scale sediment redistribution. Biogeochemistry-vegetation-sediment feedbacks may also be important for geomorphic development of newly emerging landscapes such as the Wax Lake Delta. There, fine sediment deposition shapes hydrogeomorphic zones with vegetation patterns that stimulate the growth of biofilm, while biofilm characteristics override the physical characteristics of vegetation

  19. Preservation potential of subtle glacial landforms based on detailed mapping of recently exposed proglacial areas: application of unmanned aerial vehicle (UAV) and structure-from-motion (SfM)

    Science.gov (United States)

    Ewertowski, Marek; Evans, David; Roberts, David; Tomczyk, Aleksandra; Ewertowski, Wojciech

    2016-04-01

    Ongoing glacier retreat results in the continuous exposure of proglacial areas. Such areas contain invaluable information about glacial process-form relationships manifest in specific landform assemblages. However, preservation potential of freshly exposed glacial landforms is very low, as proglacial terrains are one of the most dynamic parts of the landscape. Therefore, rapid mapping and geomorphological characterisation of such areas is important from a glaciological and geomorphological point of view for proper understanding and reconstruction of glacier-landform dynamics and chronology of glacial events. Annual patterns of recession and relatively small areas exposed every year, mean that the performing of regular aerial or satellite survey is expensive and therefore impractical. Recent advances in technology enables the development of low-cost alternatives for traditional aerial surveys. Small unmanned aerial vehicles (UAV) can be used to acquire high-resolution (several cm) low-altitude photographs. The UAV-based photographs can be subsequently processed through the structure-from-motion process to generate detailed orthophotomaps and digital elevation models. In this study we present case studies from the forelands of various glaciers on Iceland and Svalbard representing different types of proglacial landscapes: Fláajökull (annual push moraines); Hofellsjökul (bedrock bedforms and push moraines); Fjallsjökull (marginal drainage network); Rieperbreen (crevasse squeeze ridges and longitudinal debris stripes); Ayerbreen (transverse debris ridges); Foxfonna (longitudinal debris stripes);Hørbyebreen (geometric ridge network); Nordenskiöldbreen (fluted till surface); Ebbabreen (controlled moraine complex). UAV campaigns were conducted using a low-cost quadcopter platform. Resultant orthophotos and DEMs enabled mapping and assessment of recent glacial landscape development in different types of glacial landsystems. Results of our study indicate that

  20. A Conceptual Framework and Classification for the Fluvial-Backwater-Marine Transition in Coastal Rivers Globally

    Science.gov (United States)

    Howes, N. C.; Georgiou, I. Y.; Hughes, Z. J.; Wolinsky, M. A.

    2012-12-01

    Channels in fluvio-deltaic and coastal plain settings undergo a progressive series of downstream transitions in hydrodynamics and sediment transport, which is consequently reflected in their morphology and stratigraphic architecture. Conditions progress from uniform fluvial flow to backwater conditions with non-uniform flow, and finally to bi-directional tidal flow or estuarine circulation at the ocean boundary. While significant attention has been given to geomorphic scaling relationships in purely fluvial settings, there have been far fewer studies on the backwater and tidal reaches, and no systematic comparisons. Our study addresses these gaps by analyzing geometric scaling relationships independently in each of the above hydrodynamic regimes and establishes a comparison. To accomplish this goal we have constructed a database of planform geometries including more than 150 channels. In terms of hydrodynamics studies, much of the work on backwater dynamics has concentrated on the Mississippi River, which has very limited tidal influence. We will extend this analysis to include systems with appreciable offshore tidal range, using a numerical hydrodynamic model to study the interaction between backwater dynamics and tides. The database is comprised of systems with a wide range of tectonic, climatic, and oceanic forcings. The scale of these systems, as measured by bankfull width, ranges over three orders of magnitude from the Amazon River in Brazil to the Palix River in Washington. Channel centerlines are extracted from processed imagery, enabling continuous planform measurements of bankfull width, meander wavelength, and sinuosity. Digital terrain and surface models are used to estimate floodplain slopes. Downstream tidal boundary conditions are obtained from the TOPEX 7.1 global tidal model, while upstream boundary conditions such as basin area, relief, and discharge are obtained by linking the databases of Milliman and Meade (2011) and Syvitski (2005). Backwater

  1. Coupling climate conditions, sediment sources and sediment transport in an alpine basin

    Science.gov (United States)

    Rainato, Riccardo; Picco, Lorenzo; Cavalli, Marco; Mao, Luca; Neverman, Andrew J.; Tarolli, Paolo

    2017-04-01

    In a fluvial system, mountain basins control sediment export to the lowland rivers. Hence, the analysis of the erosion processes and sediment delivery patterns that act in mountain basins is important. Several studies have investigated the alterations triggered by recent climatic change on the hydrological regime, whilst only a few works have explored the consequences on the sediment dynamics. Here we combined and analyzed the quasi-unique dataset of climatic conditions, landscape response, and sediment export produced, since 1986 in the Rio Cordon basin (5 km2, Eastern Italian Alps) to examine the sediment delivery processes occurring in the last three decades. The temperature, precipitation, and fluvial sediment fluxes in the basin were analyzed using continuous measurement executed by a permanent monitoring station, while the landscape evolution was investigated by three sediment source inventories established in 1994, 2006, and 2016. Thus, the analysis focused on the trends exhibited during the periods 1986-1993, 1994-2006, and 2007-2015. In terms of climatic conditions, three distinct climate forcing stages can be observed in the periods analyzed: a relatively stable phase (1986-1993), a period characterized by temperature and rainfall fluctuations (1994-2006), and a more recent warmer and wetter phase (2007-2015). In the 1986-1993 period, the fluvial sediment fluxes reflected the stable trend exhibited by the climatic conditions. In the subsequent 1994-2006 period, the average temperature and precipitation were in line with that previously observed, although with higher interannual variability. Notwithstanding the climate forcing and the occurrence of high magnitude/low frequency floods that strongly influenced the source areas, between 1994 and 2006 the Rio Cordon basin showed relatively limited erosion activity. Hence, the climatic conditions and the landscape response can only partially explain the strong increase of sediment export recorded in the 1994

  2. Riparian shrub metal concentrations and growth in amended fluvial mine tailings

    Science.gov (United States)

    Fluvial mine tailing deposition has caused extensive riparian damage throughout the western United States. Willows are often used for fluvial mine tailing revegetation, but some species accumulate excessive metal concentrations which could be detrimental to browsers. In a greenhouse experiment, gr...

  3. The influence of fluvial reservoir architecture on geothermal energy production in Hot Sedimentary Aquifers

    NARCIS (Netherlands)

    Willems, C.J.L.

    2014-01-01

    Currently six geothermal doublets are realized in the WNB. Five of these doublets target the same Lower Cretaceous fluvial sandstone interval, the Nieuwerkerk Formation. About 40 exploration licences are granted. Many of them also have sandstones in the same fluvial interval, the Nieuwerkerk

  4. The Gediz River fluvial archive : A benchmark for Quaternary research in Western Anatolia

    NARCIS (Netherlands)

    Maddy, D.; Veldkamp, A.; Demir, T.; van Gorp, W.; Wijbrans, J.R.; van Hinsbergen, D.J.J.; Dekkers, M.J.; Schreve, D.; Schoorl, J.M.; Scaife, R.; Stemerdink, C.; van der Schriek, T.; Bridgland, D.R.; Aytaç, A.S.

    2017-01-01

    The Gediz River, one of the principal rivers of Western Anatolia, has an extensive Pleistocene fluvial archive that potentially offers a unique window into fluvial system behaviour on the western margins of Asia during the Quaternary. In this paper we review our work on the Quaternary Gediz River

  5. Fluvial Responses to Holocene sea Level Variations Along the Macdonald River, New South Wales, Australia

    Science.gov (United States)

    Rustomji, P.; Chappell, J.; Olley, J.

    2003-12-01

    The Macdonald River drains the rugged eastern flanks of Australia's Great Dividing Range. It has a catchment area of 2000km2, restricted alluvial lowlands confined by bedrock interfluves and flows into the Hawkesbury River, a larger estuarine valley. The Macdonald valley is presently tidal for 14km from the Hawkesbury. At about 8000 year before present (BP), rising sea level invaded the Macdonald Valley for at least 35km upstream of the Hawkesbury River. Rapid aggradation occurred between 8000 and 6000 years BP and a sand bed river was established in the Macdonald Valley, its mouth prograding rapidly towards the Hawkesbury. Little is known about the character of the sand bed river during the +2 meter sea level highstand occurring between 5000 and 4000 BP. However, from 3000 to 1500 BP when sea level was consistently at +1 to +1.5m, major floodplain and levee-like structures, now virtually inactive, were established. The bed is inferred to have been elevated above its present day level and consequently intersected mean sea level (MSL) downstream of its present location. This is consistent with reported sea levels at +1 to +2m above present levels for the New South Wales coast at this time. From 1500 years BP, local sea level fell rapidly to its present level. Aggradation of the levee crests ceased and sedimentation along the valley became restricted to aggradation of an inset floodplain, within the pre-1500 BP deposits. The channel contracted and the sandy river bed incised. An equivalent and synchronous change in sedimentation style is observed along the Tuross River 400km south of the Macdonald, lending support to sea level variations being the factor driving this change. By 1850 AD, the bed dipped below MSL about 10km upstream of its inferred position prior to 1500 years BP. A series of large floods between 1949 and 1955 eroded significant volumes of sandy sediment from the Holocene deposits. The channel bed widened from between 25 and 50m width to ˜100m along

  6. Varves in lake sediments - a review

    Science.gov (United States)

    Zolitschka, Bernd; Francus, Pierre; Ojala, Antti E. K.; Schimmelmann, Arndt

    2015-06-01

    Downcore counting of laminations in varved sediments offers a direct and incremental dating technique for high-resolution climatic and environmental archives with at least annual and sometimes even seasonal resolution. The pioneering definition of varves by De Geer (1912) had been restricted to rhythmically deposited proglacial clays. One century later the meaning of 'varve' has been expanded to include all annually deposited laminae in terrestrial and marine settings. Under favourable basin configurations and environmental conditions, limnic varves are formed due to seasonality of depositional processes from the lake's water column and/or transport from the catchment area. Subsequent to deposition of topmost laminae, the physical preservation of the accumulating varved sequence requires the sustained absence of sediment mixing, for example via wave action or macrobenthic bioturbation. Individual (sub)laminae in varved lake sediments typically express contrasting colours, always differ in terms of their organic, chemical and/or mineralogical compositions, and often also differ with regard to grain-size. Various predominating climatic and depositional conditions may result in clastic, biogenic or endogenic (incl. evaporitic) varved sediments and their mixtures. To reliably establish a varve chronology, the annual character of laminations needs to be determined and verified in a multidisciplinary fashion. Sources and influences of possible errors in varve chronologies are best determined and constrained by repeated varve counts, and by including radioisotopes and correlation with historically documented events. A well-established varve chronology greatly enhances the scientific value of laminated limnic archives by securely anchoring the wealth of multi-proxy palaeoenvironmental information in the form of time-series for multidisciplinary investigations. Applications of varved records are discussed with special reference to advances since the 1980s. These span fields

  7. SISTEMA FLUVIAL E PLANEJAMENTO LOCAL NO SEMIÁRIDO

    Directory of Open Access Journals (Sweden)

    Jonas Otaviano Praça de Souza

    2012-01-01

    Full Text Available El presente estudio analiza un sistema fluvial semiárido y sus características físicas, centrándose en los procesos geomorfológicos y las formas resultantes, sino también en las relaciones con las actividades humanas, con el fin de utilizar dichos datos en la planificación local. La encuesta se llevó a cabo en el municipio de Belém do São Francisco, en Pernambuco, mesorregión del São Francisco en la cuenca del arroyo Mulungu, lugar expuesto a un clima semi-árido con lluvias de verano, y la cobertura del suelo con un predominio de la caatinga arbustiva abierta. Se tomó como procedimiento metodológico la cartografía geomorfológica a diferentes escalas y con diferentes énfasis, para evaluar la relación jerárquica entre los distintos compartimentos, sustratos geológicos y formas de uso de la tierra. De la información espacial obtenida en los distintos niveles de la cartografía detallada del sistema fluvial, se realizó una evaluación ambiental de la zona, teniendo como base la dinámica erosiva/deposicional a lo largo del canal y su relación con sus bancos. Se concluyó que las formas de acumulación en la llanura aluvial exhiben controles de origen antropogénico, vinculados a los tipos tradicionales de uso del suelo en la cuenca. Estos controles, como la construcción de represas a lo largo del canal, actúan cambiando a los procesos de creación de nuevas morfologías de depósito en el sistema fluvial, que a su vez comienzan a redefinir los tipos usos de la zona.

  8. Sediment Transport

    DEFF Research Database (Denmark)

    Liu, Zhou

    Flow and sediment transport are important in relation to several engineering topics, e.g. erosion around structures, backfilling of dredged channels and nearshore morphological change. The purpose of the present book is to describe both the basic hydrodynamics and the basic sediment transport...... mechanics. Chapter 1 deals with fundamentals in fluid mechanics with emphasis on bed shear stress by currents, while chapter 3 discusses wave boundary layer theory. They are both written with a view to sediment transport. Sediment transport in rivers, cross-shore and longshore are dealt with in chapters 2......, 4 and 5, respectively. It is not the intention of the book to give a broad review of the literature on this very wide topic. The book tries to pick up information which is of engineering importance. An obstacle to the study of sedimentation is the scale effect in model tests. Whenever small...

  9. Assessing the role of detrital zircon sorting on provenance interpretations in an ancient fluvial system using paleohydraulics - Permian Cutler Group, Paradox Basin, Utah and Colorado

    Science.gov (United States)

    Findlay, C. P., III; Ewing, R. C.; Perez, N. D.

    2017-12-01

    Detrital zircon age signatures used in provenance studies are assumed to be representative of entire catchments from which the sediment was derived, but the extent to which hydraulic sorting can bias provenance interpretations is poorly constrained. Sediment and mineral sorting occurs with changes in hydraulic conditions driven by both allogenic and autogenic processes. Zircon is sorted from less dense minerals due to the difference in density, and any age dependence on zircon size could potentially bias provenance interpretations. In this study, a coupled paleohydraulic and geochemical provenance approach is used to identify changes in paleohydraulic conditions and relate them to spatial variations in provenance signatures from samples collected along an approximately time-correlative source-to-sink pathway in the Permian Cutler Group of the Paradox Basin. Samples proximal to the uplift have a paleoflow direction to the southwest. In the medial basin, paleocurrent direction indicates salt movement caused fluvial pathways divert to the north and northwest on the flanks of anticlines. Channel depth, flow velocity, and discharge calculations were derived from field measurements of grain size and dune and bar cross-stratification indicate that competency of the fluvial system decreased from proximal to the medial basin by up to a factor of 12. Based upon the paleohydraulic calculations, zircon size fractionation would occur along the transect such that the larger zircons are removed from the system prior to reaching the medial basin. Analysis of the size and age distribution of zircons from the proximal and distal fluvial system of the Cutler Group tests if this hydraulic sorting affects the expected Uncompahgre Uplift age distribution.

  10. Short Term Sediment Exchange Between Marshes and Bays Using Beryllium-7 as a Tracer, Fourleague Bay, Louisiana.

    Science.gov (United States)

    Restreppo, G. A.; Bentley, S. J.; Xu, K.; Wang, J.

    2016-12-01

    Modern delta models focus on the availability and exchange of coarse sediment as one of the major factors of deltaic growth or decay. Fine-grained sediment exchange within a river's delta is relatively poorly understood, as is the impact that this exchange has on land building and land loss. To better understand the dynamics of fine grain sediment exchange between river mouth, adjacent bays, and marshland, sediment cores from Fourleague Bay, LA, were collected and analyzed for 7Be, a naturally occurring radioisotope that serves as a marker for recently deposited sediment. Time-series push cores were collected every two months at ten sites, five located across a longitudinal transect in the middle bay and five located along adjacent marshes, from May 2015 to May 2016. All sites fall within 11 to 28 km of the Atchafalaya Delta, along a gradient extending towards the open ocean. Cores were extruded in 2 cm intervals, dried, ground, and analyzed via gamma spectrometry for the presence of 7Be. Inventories of 7Be were then calculated and used to determine bimonthly sedimentation rates over the course twelve months. Sediment deposition on the bay floor and marsh surface were then compared to Atchafalaya River discharge, wind speed and direction, and wave action. Preliminary results indicate patterns of initial fluvial sediment transfer from river to bay floor, then bay floor to marsh surface, with decreasing fluvial influence towards the open ocean. Sediment transport from bay to marsh appears to be coupled with meteorological forcing that induces bay-floor sediment resuspension and the flooding of marsh surfaces. This indirect mechanism of fluvial sediment supply to wetland surfaces may extend the region of influence for sediment delivery from man-made river-sediment diversions.

  11. Rapid fluvial aggradation in response to climate change in northwestern Argentina

    Science.gov (United States)

    Wickert, Andrew; Schildgen, Taylor; Strecker, Manfred

    2015-04-01

    River channels near the edge of the northwestern Argentine Andes are rapidly aggrading at present, with preliminary estimates suggesting rates of ~20 cm yr-1. This mirrors cycles of extensive aggradation over the past 100,000 years that formed pronounced fill terraces along regional valley networks and record periods in which in which climate-driven sediment supply overcame uplift-driven river incision (Robinson et al, 2005). Here we use the new SedFlow model (Heimann et al., 2014) to help us understand the causes and spread of aggradation across these basins in the modern system, with the additional eventual goal to better interpret the geologic record. We provide field-derived grain-size distributions, field-measured and remotely-sensed channel widths and valley slopes, and a variety of possible sediment source locations and amounts as inputs to SedFlow, which routes sediment through the fluvial channel network to produce time-evolving predictions of aggradation and incision. We compare these predictions against changes in topography measured by IceSAT (Zwally et al., 2014) and field surveys. We initially test the system response to a series of isolated sediment inputs to observe interactions between tributary systems and the mainstem river. Recent observations indicate that debris-flow induced landslides are important contributors to aggradation in these rivers (Cencetti and Rivelli, 2011). These and other sediment production and transport processes are likely driven by variations in the El Niño Southern Oscillation (ENSO) (Bookhagen and Strecker, 2009). Therefore, we then run SedFlow with sediment inputs distributed across the landscape based on locations where ENSO influences may trigger enhanced landsliding. These model experiments help us towards our end goal of providing a more quantitative basis to interpret field observations of landscape response to changing patterns of precipitation. References: Bookhagen, B. and Strecker, M.: Amazonia: Landscape and

  12. Microbial weathering processes after release of heavy metals and arsenic from fluvial tailing deposits; Mikrobielle Verwitterungsprozesse bei der Freisetzung von Schwermetallen und Arsen aus fluvialen Tailingablagerungen

    Energy Technology Data Exchange (ETDEWEB)

    Willscher, S. [Technische Univ. Dresden (Germany). Fak. fuer Forst, Geo und Hydrowissenschaften, Inst. fuer Abfallwirtschaft und Altlasten

    2006-07-01

    Microbial processes play an important role in global metal cycles. The microbial weathering of mineral surfaces, including deposited anthropogenic mineral remainders, is a natural occurring process, taking place on uncovered dump surfaces as well as in deeper zones of dumps. Such weathering processes also occur in metal contaminated soils and sediments. In this work, a sulfidic fluvial tailing sediment was investigated for its acidity and salinity generating potential and the subsequent mobilisation of heavy metals, generated by biogeochemical processes. The long-term risks of such a deposit were evaluated. Unstabilised deposits of such materials can generate a considerable contamination of the surrounding ground and surface water. It could be shown in the experiments that in acid generating dumps and tailing materials besides the well known acidophilic autotrophs also acidotolerant heterotrophic microorganisms play a role in the mobilisation of metals. (orig.)

  13. Provenance of the Lower Triassic Bunter Sandstone Formation: implications for distribution and architecture of aeolian vs. fluvial reservoirs in the North German Basin

    DEFF Research Database (Denmark)

    Olivarius, Mette; Weibel, Rikke; Friis, Henrik

    2017-01-01

    Zircon U–Pb geochronometry, heavy mineral analyses and conventional seismic reflection data were used to interpret the provenance of the Lower Triassic Bunter Sandstone Formation. The succession was sampled in five Danish wells in the northern part of the North German Basin. The results show...... Shield did not supply much sediment to the basin as opposed to what was previously believed. Sediment from the Variscan belt was transported by wind activity across the North German Basin when it was dried out during deposition of the aeolian part of the Volpriehausen Member (lower Bunter Sandstone......). Fluvial sand was supplied from the Ringkøbing-Fyn High to the basin during precipitation events which occurred most frequently when the Solling Member was deposited (upper Bunter Sandstone). Late Neoproterozoic to Carboniferous zircon ages predominate in the Volpriehausen Member where the dominant age...

  14. Sediment carbon fate in phreatic karst (Part 1): Conceptual model development

    Science.gov (United States)

    Husic, A.; Fox, J.; Agouridis, C.; Currens, J.; Ford, W.; Taylor, C.

    2017-06-01

    Recent research has paid increased attention to quantifying the fate of carbon pools within fluvial networks, but few, if any, studies consider the fate of sediment organic carbon in fluviokarst systems despite that karst landscapes cover 12% of the earth's land surface. The authors develop a conceptual model of sediment carbon fate in karst terrain with specific emphasis upon phreatic karst conduits, i.e., those located below the groundwater table that have the potential to trap surface-derived sediment and turnover carbon. To assist with their conceptual model development, the authors study a phreatic system and apply a mixture of methods traditional and novel to karst studies, including electrical resistivity imaging, well drilling, instantaneous velocimetry, dye tracing, stage recording, discrete and continuous sediment and water quality sampling, and elemental and stable carbon isotope fingerprinting. Results show that the sediment transport carrying capacity of the phreatic karst water is orders of magnitude less than surface streams during storm-activated periods promoting deposition of fine sediments in the phreatic karst. However, the sediment transport carrying capacity is sustained long after the hydrologic event has ended leading to sediment resuspension and prolonged transport. The surficial fine grained laminae occurs in the subsurface karst system; but unlike surface streams, the light-limited conditions of the subsurface karst promotes constant heterotrophy leading to carbon turnover. The coupling of the hydrological processes leads to a conceptual model that frames phreatic karst as a biologically active conveyor of sediment carbon that recharges degraded organic carbon back to surface streams. For example, fluvial sediment is estimated to lose 30% of its organic carbon by mass during a one year temporary residence within the phreatic karst. It is recommended that scientists consider karst pathways when attempting to estimate organic matter stocks

  15. Arsenic and fluvial biofilms: biogeochemistry, toxicity and biotic interactions

    OpenAIRE

    Barral Fraga, Laura

    2017-01-01

    Basándonos en los conocimientos actuales sobre la ecotoxicología del biofilm y la biogeoquímica del arsénico en ecosistemas dulceacuícolas, esta tesis estudió, bajo concentraciones ambientales realistas, i) el papel de los biofilms bentónicos en la biodisponibilidad y destoxificación del arsénico, ii) los efectos tóxicos del arsénico sobre la estructura y función de los biofilms bentónicos fluviales, prestando especial atención a las respuestas de las diatomeas, y iii) la interacción entre es...

  16. Formation of topographically inverted fluvial deposits on Earth and Mars

    Science.gov (United States)

    Hayden, A.; Lamb, M. P.; Fischer, W. W.; Ewing, R. C.; McElroy, B. J.

    2016-12-01

    Sinuous ridges interpreted as exhumed river deposits (so-called "inverted channels") are common features on Mars that show promise for quantifying ancient martian surface hydrology. Morphological similarity of these inverted channels to river channels led to a "landscape inversion hypothesis" in which the geometries of ridges and ridge networks accurately reflect the geometries of the paleo-river channels and networks. An alternative "deposit inversion hypothesis" proposes that ridges represent eroded fluvial channel-belt deposits with channel-body geometries that may differ significantly from those of the rivers that built the deposit. To investigate these hypotheses we studied the sedimentology and morphology of inverted channels in Jurassic and Cretaceous outcrops in Utah and the Aeolis Dorsa region of Mars. Ridges in Utah extend for hundreds of meters, are tens of meters wide, and stand up to 30 meters above the surrounding plain. A thick ribbon-geometry sandstone or conglomerate body caps overbank mudstone, paleosols, and thin crevasse-splay sandstone beds. Caprock beds consist of stacked dune- to bar-scale trough cross sets, mud intraclasts, and in cases scroll bars indicating meandering. In plan view, ridge networks bifurcate; however, crosscutting relationships show that distinct sandstone channel bodies at distinct stratigraphic levels intersect at these junctions. Ridge-forming sandstone bodies have been narrowed from their original dimensions by cliff retreat and bisected by modern fluvial erosion and mass wasting. We therefore interpret the sinuous ridges in Utah as eroded remnants of channel-belt sandstone bodies formed by laterally migrating and avulsing rivers rather than channel fills - consistent with deposit inversion. If the sinuous ridges in Aeolis Dorsa also formed by deposit inversion, river widths previously interpreted under the landscape inversion hypothesis are overestimated by up to a factor of 10 and discharges by up to a factor of 100.

  17. Tracer and hydrometric techniques to determine the contribution of glacier melt to a proglacial stream in the Ötztal Alps (Tyrol, Austria)

    Science.gov (United States)

    Schmieder, Jan; Marke, Thomas; Strasser, Ulrich

    2016-04-01

    Glaciers are important seasonal water contributors in many mountainous landscapes. For water resources management it is important to know about the timing and amount of released glacier melt water, especially in downstream regions where the water is needed (hydropower, drinking water) or where it represents a potential risk (drought, flood). Seasonal availability of melt water is strongly dependent on boundary layer atmospheric processes and becomes even more relevant in a changing climate. Environmental tracers are a useful tool in the assessment of snow and ice water resources, because they provide information about the sources, flow paths and traveling times of water contributing to streamflow at the catchment scale. Previously, high-elevation tracer studies throughout the Alps have been scarce as they require intense field work in remote areas. However, hydrometric and meteorological measurements combined with tracer analyses help to unravel streamflow composition and improve the understanding of hydroclimatological processes. On top of that, empirical studies are necessary to parameterize and validate hydrological models in more process-oriented ways, rather than comparing total measured and simulated runoff only. In the present study three approaches are applied to derive glacier melt contributions to a proglacial stream at the seasonal scale and to identify their individual advances and limitations. Tracers used for each approach are (1) electrical conductivity, (2) stable isotopes of water and (3) heavy metals. The field work was conducted during the summer of 2015 in the glaciated (35%) high-elevation catchment of the Hochjochbach, a small sub-basin (17 km²) of the Ötztaler Ache river in the Austrian Alps, ranging from 2400 to 3500 m.a.s.l. in elevation. Hydroclimatological data was provided by an automatic weather station and a gauging station equipped with a pressure transducer. Water samples from shallow groundwater, streamflow, glacier and snow melt

  18. Physical Drivers Vs. Effects of the Wolf-Elk Trophic Cascade on Fluvial Channel Planform, Olympic National Park, Washington

    Science.gov (United States)

    East, A. E.; Jenkins, K. J.; Happe, P. J.; Bountry, J.; Beechie, T. J.; Mastin, M. C.; Sankey, J. B.; Randle, T. J.

    2016-12-01

    Identifying the relative contributions of physical and ecological processes to channel evolution remains a substantial challenge in fluvial geomorphology. We use a 74-year aerial photographic record of the Hoh, Queets, Quinault, and Elwha Rivers, Olympic National Park, Washington, U.S.A., to investigate whether physical or trophic-cascade-driven ecological factors—excessive elk impacts after wolves were extirpated a century ago—are the dominant controls on channel planform of these gravel-bed rivers. We find that channel width and braiding show strong relationships with recent flood history; all four rivers have widened significantly in recent decades, consistent with increased flood activity since the 1970s. Channel planform also reflects sediment-supply changes, shown, for example, by the response of the Elwha River to a landslide. We surmise that the Hoh River, which shows a multi-decadal trend toward greater braiding, is adjusting to increased sediment supply associated with rapid glacial retreat. These rivers demonstrate rapid transmission of climatic signals through relatively short sediment-routing systems that lack substantial buffering by sediment storage. We infer no correspondence between channel evolution and elk abundance, suggesting that in this system effects of the wolf-driven trophic cascade are subsidiary to physical controls on channel morphology. Our examinations of stage-discharge history, historical maps, photographs, and descriptions, and empirical geomorphic thresholds do not support a previous conceptual model that these rivers underwent a fundamental geomorphic transition (widening, and a shift from single-thread to braided) resulting from large elk populations in the early 20th century. These findings differ from previous interpretations of Olympic National Park river dynamics, and also contrast with previous findings in Yellowstone National Park, where legacy effects of abundant elk nearly a century ago apparently still affect

  19. Landform evolution modeling of fine-grained sedimentation on alluvial fans on Mars and Earth

    Science.gov (United States)

    Morgan, A. M.; Howard, A. D.; Moore, J. M.; Swander, Z. J.; Fink, D.; Korup, O.; Hesse, P. P.; Singh, T.; Srivastava, P.

    2017-12-01

    Reconstructing how rivers respond to changes in runoff or sediment supply by incising or aggrading has been pivotal in gauging the role of the Indian Summer Monsoon (ISM) as a geomorphic driver in the Himalayas. Here we present new data on how the fluvial systems of the Lesser Himalaya of India has responded to late Quaternary climate change. Our study is based on new chronological data for fluvial aggradation and incision from the Donga alluvial fan and several reaches of the upper Alaknanda River, as well as a meta-analysis of previous work. Fluvial sediments in the Himalayas in general, and quartz from the region in particular, have been previously noted for a number of unsuitable OSL properties including large recuperation and the existence of unremovable feldspar signals, leading to controversial discussions with regard to the reliability of existing OSL chronologies in this region. In order to improve the applicability and validity of OSL in the Lesser Himalaya, we have tested and applied pulsed OSL signals (POSL) to quartz grains from alluvial terrace and fan sediments, and propose a new chronology of regional fluvial aggradation. For previously dated terraces and alluvial fan sections, our POSL ages are systematically older than previously reported OSL ages. These results suggest periods of aggradation in the Alaknanda and Dehradun Valleys mainly between 20 and 50 ka. This most likely reflects decreased stream power during periods of weakened monsoon. The concentration of in-situ cosmogenic beryllium-10 from fluvial bedrock surfaces was also used to infer bedrock surface exposure ages, which should inform about episodes of active fluvial erosion. Resulting exposure ages span between 1.3 and 9.0 ka, suggesting that strath terraces were exposed relatively recently, and incision was dominant through most of the Holocene. In combination, our results support a precipitation-driven climatic control on fluvial dynamics, which regulates the balance between stream

  20. Evaluation of the distribution of rare earths elements in fluvial sediments, rocks and wastes correlated to the Caldas Ore Treatment Unit (UTM-Caldas), Minas Gerais State, Brazil; Avaliação da distribuição de elementos terras raras em sedimentos fluviais, rochas e rejeitos correlacionáveis à Unidade De Tratamento de Minério de Caldas (UTM-Caldas), Estado de Minas Gerais, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Possas, Clara R.; Moura, Rodrigo R. de; Carvalho Filho, Carlos A. de; Menezes, Maria Ângela de B.C., E-mail: claramossas@gmail.com, E-mail: rodrigoreismoura@gmail.com, E-mail: calbertocf@gmail.com, E-mail: menezes@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The Caldas Ore Treatment Unit (UTM-Caldas), located at the municipality of Caldas (Minas Gerais-Brazil), was a site for the exploration and treatment of uranium between 1982 and 1995. The area is located in the Alcalino Complex of Poços de Caldas, a geologically peculiar region, composed of alkaline igneous rocks with exotic minerals, some rich in rare earth elements (REE). The UTM-Caldas uranium deposit was defined as a U, Th, Zr, Mo and REE mineralization. The objective of the present study was to evaluate the distribution of REEs in river sediments adjacent to UTM-Caldas and to verify if effluents from the mine are interfering in the concentration of REEs in these sediments. To develop the research, five samples were collected in 2011, including sediments from the Soberbo river, the waste dam and the tank of radio precipitation. The samples were prepared in the Sedimentology Laboratory of the Center for the Development of Nuclear Technology (CDTN), where the rocks and tailings were crushed, ground and pulverized while the sediments were sieved and an aliquot of the silt-clay fraction was separated for analysis at the CDTN. The analytical method employed was Neutron Activation Analysis (ANA), method k{sup 0}. The samples were irradiated in the TRIGA MARK I IPR-R1 research reactor, and the REEs identified by gamma-spectrometry in the Neutron Activation Laboratory (LAN-CDTN). The results showed a distribution model of the REEs in the study area, which may be useful in evaluating of the environmental impacts of effluents from UTM-Caldas, now in the process of decommissioning.

  1. Sediment-associated transport and redistribution of Chernobyl fallout radionuclides

    International Nuclear Information System (INIS)

    Walling, D.E.; Rowan, J.S.; Bradley, S.B.

    1989-01-01

    Fallout of Chernobyl-derived radionuclides over the United Kingdom evidenced marked spatial variation. Relatively high levels were recorded in central Wales, but they declined rapidly to the east. As a result the headwaters of the River Severn received significant inputs of fallout, whereas only low levels were recorded over the middle and lower reaches. Measurements of the caesium-137 content of suspended sediment transported by the River Severn and of channel and floodplain sediments collected from various locations within the basin have been used to assess the importance of fluvial transport and redistribution of Chernobyl-derived radionuclides. High concentrations of caesium-137 (up to 1450 mBqg -1 ) were recorded in suspended sediment collected from the lower reaches of the river shortly after the Chernobyl incident and substantial accumulations of Chernobyl-derived radionuclides have been detected in floodplain and channel sediments collected from areas which received only low levels of fallout directly. (author)

  2. Sediment transport in two mediterranean regulated rivers.

    Science.gov (United States)

    Lobera, G; Batalla, R J; Vericat, D; López-Tarazón, J A; Tena, A

    2016-01-01

    Mediterranean climate is characterized by highly irregular rainfall patterns with marked differences between wet and dry seasons which lead to highly variable hydrological fluvial regimes. As a result, and in order to ensure water availability and reduce its temporal variability, a high number of large dams were built during the 20th century (more than 3500 located in Mediterranean rivers). Dams modify the flow regime but also interrupt the continuity of sediment transfer along the river network, thereby changing its functioning as an ecosystem. Within this context, the present paper aims to assess the suspended sediment loads and dynamics of two climatically contrasting Mediterranean regulated rivers (i.e. the Ésera and Siurana) during a 2-yr period. Key findings indicate that floods were responsible for 92% of the total suspended sediment load in the River Siurana, while this percentage falls to 70% for the Ésera, indicating the importance of baseflows on sediment transport in this river. This fact is related to the high sediment availability, with the Ésera acting as a non-supply-limited catchment due to the high productivity of the sources (i.e. badlands). In contrast, the Siurana can be considered a supply-limited system due to its low geomorphic activity and reduced sediment availability, with suspended sediment concentration remaining low even for high magnitude flood events. Reservoirs in both rivers reduce sediment load up to 90%, although total runoff is only reduced in the case of the River Ésera. A remarkable fact is the change of the hydrological character of the River Ésera downstream for the dam, shifting from a humid mountainous river regime to a quasi-invariable pattern, whereas the Siurana experiences the opposite effect, changing from a flashy Mediterranean river to a more constant flow regime below the dam. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Modeling flow, sediment transport and morphodynamics in rivers

    Science.gov (United States)

    Nelson, Jonathan M.; McDonald, Richard R.; Shimizu, Yasuyuki; Kimura, Ichiro; Nabi, Mohamed; Asahi, Kazutake

    2016-01-01

    Predicting the response of natural or man-made channels to imposed supplies of water and sediment is one of the difficult practical problems commonly addressed by fluvial geomorphologists. This problem typically arises in three situations. In the first situation, geomorphologists are attempting to understand why a channel or class of channels has a certain general form; in a sense, this is the central goal of fluvial geomorphology. In the second situation, geomorphologists are trying to understand and explain how and why a specific channel will evolve or has evolved in response to altered or unusual sediment and water supplies to that channel. For example, this would include explaining the short-term response of a channel to an unusually large flood or predicting the response of a channel to long-term changes in flow or sediment supply due to various human activities such as damming or diversions. Finally, geomorphologists may be called upon to design or assess the design of proposed man-made channels that must carry a certain range of flows and sediment loads in a stable or at least quasi-stable manner. In each of these three situations, the problem is really the same: geomorphologists must understand and predict the interaction of the flow field in the channel, the sediment movement in the channel and the geometry of the channel bed and banks. In general, the flow field, the movement of sediment making up the bed and the morphology of the bed are intricately linked; the flow moves the sediment, the bed is altered by erosion and deposition of sediment and the shape of the bed is critically important for predicting the flow. This complex linkage is precisely what makes understanding channel form and process such a difficult and interesting challenge.

  4. Holocene Evolution and Sediment Provenance of Horn Island, Mississippi, USA

    Science.gov (United States)

    Schulze, N.; Wallace, D. J.; Miner, M. D.

    2017-12-01

    As one of the most stable islands in the Mississippi-Alabama barrier island chain, Horn Island provides critical habitat, plays an important role in regulating estuarine conditions in the Mississippi Sound, and helps to attenuate wave energy and storm surge for the mainland. The provenance of sediments comprising Horn Island is largely unknown and has implications for mode of island genesis and evolution. The existing literature proposes that island chain formation was initiated by bar emergence from a subaqueous spit that grew laterally westward from Dauphin Island in the east. Decelerating sea level rise 4,000 to 5,000 years ago facilitated island formation. This proposed mode of formation is supported by a lone radiocarbon date from lagoonal sediments below Horn Island, suggesting the system formed after 4,615 ± 215 years BP. Rivers supplying suspended sediment include the Mississippi, Pascagoula, Mobile and Apalachicola, but the variable nature of their paths and sediment supply means that Horn Island has received differing amounts of sediment from these proximal rivers throughout the Holocene. To analyze the stratigraphy and sediment characteristics of Horn Island, we will utilize 24 vibracores (up to 6 meters in length) from offshore Horn Island that were obtained by the United States Geological Survey (USGS) and 9 onshore drill cores (up to 28 meters in length) from the Mississippi Department of Environmental Quality. High-resolution LiDAR data collected by the National Oceanic and Atmospheric Administration in 2010 will be used to describe modern geomorphic barrier environments. We will employ down-core x-ray diffraction and x-ray fluorescence analyses to identify mineralogical and chemical signatures that potentially correspond to unique signatures of the fluvial sources of proximal rivers. New radiocarbon ages will be used to constrain the timing of island formation and alterations in sediment supply. High-resolution shallow geophysical data will provide

  5. Concentrations of selected metals in Quaternary-age fluvial deposits along the lower Cheyenne and middle Belle Fourche Rivers, western South Dakota, 2009-10

    Science.gov (United States)

    Stamm, John F.; Hoogestraat, Galen K.

    2012-01-01

    The headwaters of the Cheyenne and Belle Fourche Rivers drain the Black Hills of South Dakota and Wyoming, an area that has been affected by mining and ore-milling operations since the discovery of gold in 1875. A tributary to the Belle Fourche River is Whitewood Creek, which drains the area of the Homestake Mine, a gold mine that operated from 1876 to 2001. Tailings discharged into Whitewood Creek contained arsenopyrite, an arsenic-rich variety of pyrite associated with gold ore, and mercury used as an amalgam during the gold-extraction process. Approximately 18 percent of the tailings that were discharged remain in fluvial deposits on the flood plain along Whitewood Creek, and approximately 25 percent remain in fluvial deposits on the flood plain along the Belle Fourche River, downstream from Whitewood Creek. In 1983, a 29-kilometer (18-mile) reach of Whitewood Creek and the adjacent flood plain was included in the U.S. Environmental Protection Agency's National Priority List of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, commonly referred to as a "Superfund site." Listing of this reach of Whitewood Creek was primarily in response to arsenic toxicity of fluvial deposits on the flood plain. Lands along the lower Cheyenne River were transferred to adjoining States and Tribes in response to the Water Resources Development Act (WRDA) of 1999. An amendment in 2000 to WRDA required a study of sediment contamination of the Cheyenne River. In response to the WRDA amendment, the U.S. Geological Survey completed field sampling of reference sites (not affected by mine-tailing disposal) along the lower Belle Fourche and lower Cheyenne Rivers. Reference sites were located on stream terraces that were elevated well above historical stream stages to ensure no contamination from historical mining activity. Sampling of potentially contaminated sites was performed on transects of the active flood plain and adjacent terraces that could

  6. Morphology of fluvial levee series along a river under human influence, Maros River, Hungary

    Science.gov (United States)

    Kiss, Tímea; Balogh, Márton; Fiala, Károly; Sipos, György

    2018-02-01

    The development and morphometry of fluvial levees reflect the connection between channel and overbank processes, which can be altered by various human activities. The aims of this study are to investigate the morphology and spatial characteristics of fluvial levees and evaluate the role of some local- and catchment-scale human activities on their medium-term (150 years) development. This study applies LiDAR data along a 53-km-long reach of the Maros River in Hungary. Six fluvial levee types are identified based on the beginning and end of their evolution. These levee types were generated by local nineteenth century channel regulation works (cutoffs) and mid-twentieth century channel narrowing, which was caused by gravel mining and water impoundment in the upstream sections. However, other human activities also influenced the development of active fluvial levees because their horizontal evolution could have been limited by embanked flood-protection levees or the widening of low-lying floodplain benches that were generated by channel narrowing. Additionally, revetment constructions influenced their vertical parameters as higher fluvial levees developed along the fixed banks. Generally, the older active fluvial levees are wider, while the younger active levees are narrower with steeper slopes but not always lower. On the low-lying floodplain levels (benches), the youngest fluvial levees evolved quite rapidly and consist of coarser material. Currently, only 9.8- to 38-year return-period floods could cover the fluvial levees, contributing to their evolution. This fact and the development of fluvial levee series with two-three members reflect a gradual decoupling of the channel from the floodplain.

  7. Geomorphic controls on fluvial carbon exports and emissions from upland swamps in eastern Australia.

    Science.gov (United States)

    Cowley, Kirsten; Looman, Arun; Maher, Damien T; Fryirs, Kirstie

    2018-03-15

    Temperate Highland Peat Swamps on Sandstone (THPSS) are upland wetlands, similar to fens in the Northern Hemisphere and are found at the headwaters of low-order streams on the plateaus of Eastern Australia. They are classified as endangered ecological communities under State and National legislation. Previous works have identified particular geomorphic characteristics that are important to carbon storage in these low energy sediment accumulation zones. Changes in the geomorphic structure of THPSS, such as channelisation, may have profound implications for carbon storage. To assess the effect of channelisation on carbon budgets in these ecosystems it is essential to identify and quantify differences in carbon export, emissions and stocks of carbon of intact swamps and those that have become channelised. We undertook seasonal sampling of the perched swamp aquifers and surface waters of two intact swamps and two channelised fills in the Blue Mountains of New South Wales, Australia, to investigate differences in carbon exports and emissions between the two swamp types. We found that channelised fills' mean CO 2 emissions were almost four times higher than intact swamps with mean CH 4 emissions up to five times higher. Annual fluvial carbon exports for channelised fills were up to 18 times that of intact swamps. Channelised fill exports and emissions can represent up to 2% of the total swamp carbon stocks per annum which is 40 times higher than the intact swamps. This work clearly demonstrates that changes in geomorphic structure brought about by incision and channelisation results in profound changes to the carbon storage function of THPSS. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Late Pleistocene and Holocene-Age Columbia River Sediments and Bedforms: Hanford Reach Area, Washington - Part 2

    Energy Technology Data Exchange (ETDEWEB)

    K.R. Fecht, T.E. Marceau

    2006-03-28

    This report presents the results of a geologic study conducted on the lower slopes of the Columbia River Valley in south-central Washington. The study was designed to investigate glaciofluvial and fluvial sediments and bedforms that are present in the river valley and formed subsequent to Pleistocene large-scale cataclysmic flooding of the region.

  9. Fault-sourced alluvial fans and their interaction with axial fluvial drainage: An example from the Plio-Pleistocene Upper Valdarno Basin (Tuscany, Italy)

    Science.gov (United States)

    Fidolini, Francesco; Ghinassi, Massimiliano; Aldinucci, Mauro; Billi, Paolo; Boaga, Jacopo; Deiana, Rita; Brivio, Lara

    2013-05-01

    The present study deals with the fault-sourced, alluvial-fan deposits of the Plio-Pleistocene Upper Valdarno Basin (Northern Apennines, Italy). Different phases of alluvial fan aggradation, progradation and backstep are discussed as possible effects of the interaction among fault-generated accommodation space, sediment supply and discharge variations affecting the axial fluvial drainage. The Upper Valdarno Basin, located about 35 km SE of Florence, is filled with 550 m palustrine, lacustrine and alluvial deposits forming four main unconformity-bounded units (i.e. synthems). The study alluvial-fan deposits belong to the two uppermost synthems (Montevarchi and Torrente Ciuffenna synthems) and are Early to Middle Pleistocene in age. These deposits are sourced from the fault-bounded, NE margin of the basin and interfinger with axial fluvial deposits. Alluvial fan deposits of the Montevarchi Synthem consist of three main intervals: i) a lower interval, which lacks any evidence of a depositional trend and testify balance between the subsidence rate (i.e. fault activity) and the amount of sediment provided from the margin; ii) a coarsening-upward middle interval, pointing to a decrease in subsidence rate associated with an augment in sediment supply; iii) a fining-upward, upper interval (locally preserved), documenting a phase of tectonic quiescence associated with a progressive re-equilibration of the tectonically-induced morphological profile. The basin-scale unconformity, which separates the Montevarchi and Torrente Ciuffenna synthems was due to the entrance of the Arno River into the basin as consequence of a piracy. This event caused a dramatic increase in water discharge of the axial fluvial system, and its consequent embanking. Such an erosional surface started to develop in the axial areas, and propagated along the main tributaries, triggering erosion of the alluvial fan deposits. Alluvial-fan deposits of the Torrente Ciuffenna Synthem accumulated above the

  10. Unravelling the stratigraphy and sedimentation history of the uppermost Cretaceous to Eocene sediments of the Kuching Zone in West Sarawak (Malaysia), Borneo

    Science.gov (United States)

    Breitfeld, H. Tim; Hall, Robert; Galin, Thomson; BouDagher-Fadel, Marcelle K.

    2018-07-01

    The Kuching Zone in West Sarawak consists of two different sedimentary basins, the Kayan and Ketungau Basins. The sedimentary successions in the basins are part of the Kuching Supergroup that extends into Kalimantan. The uppermost Cretaceous (Maastrichtian) to Lower Eocene Kayan Group forms the sedimentary deposits directly above a major unconformity, the Pedawan Unconformity, which marks the cessation of subduction-related magmatism beneath SW Borneo and the Schwaner Mountains, due to termination of the Paleo-Pacific subduction. The successions consist of the Kayan and Penrissen Sandstones and are dominated by fluvial channels, alluvial fans and floodplain deposits with some deltaic to tidally-influenced sections in the Kayan Sandstone. In the late Early or early Middle Eocene, sedimentation in this basin ceased and a new basin, the Ketungau Basin, developed to the east. This change is marked by the Kayan Unconformity. Sedimentation resumed in the Middle Eocene (Lutetian) with the marginal marine, tidal to deltaic Ngili Sandstone and Silantek Formation. Upsequence, the Silantek Formation is dominated by floodplain and subsidiary fluvial deposits. The Bako-Mintu Sandstone, a potential lateral equivalent of the Silantek Formation, is formed of major fluvial channels. The top of the Ketungau Group in West Sarawak is formed by the fluvially-dominated Tutoop Sandstone. This shows a transition of the Ketungau Group in time towards terrestrial/fluvially-dominated deposits. Paleocurrent measurements show river systems were complex, but reveal a dominant southern source. This suggests uplift of southern Borneo initiated in the region of the present-day Schwaner Mountains from the latest Cretaceous onwards. Additional sources were local sources in the West Borneo province, Mesozoic melanges to the east and potentially the Malay Peninsula. The Ketungau Group also includes reworked deposits of the Kayan Group. The sediments of the Kuching Supergroup are predominantly

  11. Sediment retention in a bottomland hardwood wetland in Eastern Arkansas

    Science.gov (United States)

    Kleiss, B.A.

    1996-01-01

    One of the often-stated functions of wetlands is their ability to remove sediments and other particulates from water, thus improving water quality in the adjacent aquatic system. However, actual rates of suspended sediment removal have rarely been measured in freshwater wetland systems. To address this issue, suspended sediment dynamics were measured in a 85-km2 bottomland hardwood (BLH) wetland adjacent to the highly turbid Cache River in eastern Arkansas during the 1988-1990 water years. A suspended sediment mass balance was calculated using depth-integrated, flow-weighted daily measurements at wetland inflow and outflow points. Over the three-year period, suspended sediment load decreased an average of 14% between upstream and downstream sampling points. To test the idea that the suspended sediments were retained by the adjacent wetland and to determine what portion of the BLH forest was most responsible for retaining the suspended sediments, concurrent measurements of sediment accretion were made at 30 sites in the wetland using feldspar clay marker horizons, sedimentation disks, the 137cesium method, and dendrogeomorphic techniques. Sedimentation rates exceeding 1 cm/yr were measured in frequently flooded areas dominated by Nyssa aquatica and Taxodium distichum. Maximum sedimentation rates did not occur on the natural levee, as would be predicted by classical fluvial geomorphology, but in the "first bottom," where retention time of the water reached a maximum. Multiple regression was used to relate sedimentation rates with several physical and biological factors. A combination of distance from the river, flood duration, and tree basal area accounted for nearly 90% of the variation in sedimentation rates.

  12. Novel Approaches for Delineating and Studying "Hotspots" and "Hot Moments" in Fluvial Environments

    Science.gov (United States)

    Williams, K. H.; Bücker, M.; Flores Orozco, A.; Hobson, C.; Robbins, M.

    2014-12-01

    Experiments at the Department of Energy's Rifle, CO (USA) field site have long focused on stimulated biogeochemical pathways arising from organic carbon injection. While reductive pathways and their relation to uranium immobilization have been a focus since 2002, ongoing studies are exploring oxidative pathways and their role in mediating fluxes of C, N, S, and aqueous metals. Insights gained from 'stimulation' experiments are providing insight into analogous natural biogeochemical pathways that mediate elemental cycling in the absence of exogenous carbon. Such reactions are instead mediated by endogenous pools of natural organic matter (NOM) deposited during aggradation of aquifer sediments associated with fluvial processes within the Colorado River floodplain. Discrete lenses of fine-grained, organic-rich sediments enriched in reduced species, such as Fe(II) and iron sulfides have been identified along the active margin of the floodplain. Referred to as "naturally reduced zones" (NRZs), these localities constitute a distinct facies type within an otherwise gravel-dominated, largely NOM-deficient matrix. NRZs represent 'hotspots' of seasonally intense C, N, S, and U cycling during excursions in groundwater elevation. Air bubble imbibition within the capillary fringe is inferred to contribute to seasonally oxic groundwater, with its puntuated, 'hot moment' like impact on redox-mediated reactions exhibiting close correspondence to those induced through the intentional introduction of oxidants. Reactions induce sharp gradients in nitrate and sulfate resulting from elevated rates of nitrification and oxidation of reduced sulfur as dissolved oxygen becomes non-limiting. Given their outsized role in constraining the location and timing of critcal element cycling pathways, delineating the distribution of NRZs across scales of relevance to natural field systems is of great importance. Novel mapping approaches borrowed from the field of exploration geophysics provide one

  13. Integration of fluvial erosion factors for predicting landslides along meandering rivers

    Science.gov (United States)

    Chen, Yi-chin; Chang, Kang-tsung; Ho, Jui-yi

    2015-04-01

    River incision and lateral erosion are important geomorphologic processes in mountainous areas of Taiwan. During a typhoon or storm event, the increase of water discharge, flow velocity, and sediment discharge enhances the power of river erosion on channel bank. After the materials on toe of hillslope were removed by river erosion, landslides were triggered at outer meander bends. Although it has been long expected that river erosion can trigger landslide, studies quantifying the effects of river erosion on landslide and the application of river erosion index in landslide prediction are still overlooked. In this study, we investigated the effect of river erosion on landslide in a particular meanders landscape of the Jhoukou River, southern Taiwan. We developed a semi-automatic model to separate meandering lines into several reach segments based on the inflection points and to calculate river erosion indexes, e.g. sinuosity of meander, stream power, and stream order, for each reach segment. This model, then, built the spatial relationship between the reaches and its corresponding hillslopes, of which the toe was eroded by the reach. Based on the spatial relationship, we quantified the correlations between these indexes and landslides triggered by Typhoon Morakot in 2009 to examine the effects of river erosion on landslide. The correlated indexes were then used as landslide predictors in logistic regression model. Results of the study showed that there is no significant correlation between landslide density and meander sinuosity. This may be a result of wider channel dispersing the erosion at a meandering reach. On the other hand, landslide density at concave bank is significantly higher than that at convex bank in the downstream (stream order > 3), but that is almost the same in the upstream (stream order bank. In contrast, river sediment in the downstream is an erosion agent eroding the concave bank laterally, but also depositing on the concave side and protecting

  14. Human and natural impacts on fluvial and karst depressions of the Maya Lowlands

    Science.gov (United States)

    Beach, Timothy; Luzzadder-Beach, Sheryl; Dunning, Nicholas; Cook, Duncan

    2008-10-01

    This paper begins to differentiate the major drivers and chronology of erosion and aggradation in the fluvial and fluviokarst landscapes of the southern and central Maya Lowlands. We synthesize past research on erosion and aggradation and add new data from water, soils, radiocarbon dating, and archaeology to study the quantity, timing, and causes of aggradation in regional landscape depressions. Geomorphic findings come from many excavations across a landscape gradient from upland valleys, karst sinks, and fans into the coastal plain floodplains and depressions. Findings from water chemistry show that sources in the uplands have low quantities of dissolved ions but water in the coastal plains has high amounts of dissolved ions, often nearly saturated in calcium and sulfate. We found significant geomorphic complexity in the general trends in upland karst sinks. In a few instances, sediments preserve Late Pleistocene paleosols, buried 2-3 m, though many more have distinct middle to late Holocene paleosols, buried 1-2 m, after c. 2300 BP (Maya Early to Late Preclassic). From 2300-1100 BP (Late Preclassic to Classic Periods), the landscape aggraded from five main mechanisms: river flooding, climatic instability, accelerated erosion, ancient Maya landscape manipulation, and gypsum precipitation from a rise in a water table nearly saturated in calcium and sulfate ions. Evidence exists for two or three high magnitude floods, possibly driven by hurricanes. Moreover, lake-core and geophysical studies from the Petén Lakes region have shown high rates of deposition of silicate clays ('Maya Clays') starting and peaking during the Maya Preclassic and continuing to be high through the Late Classic. The main driver on upland karst depressions, the Petén lakes, upland valleys, and fans was accelerated soil erosion, but water table rise, probably driven by sea-level rise, was the main driver on the wetlands of the coastal plain because the aggraded sediments here are dominantly

  15. Historical coseismic surface deformation of fluvial gravel deposits, Schafberg fault, Lower Rhine Graben, Germany

    Science.gov (United States)

    Kübler, Simon; Friedrich, Anke M.; Gold, Ryan D.; Strecker, Manfred R.

    2018-03-01

    Intraplate earthquakes pose a significant seismic hazard in densely populated rift systems like the Lower Rhine Graben in Central Europe. While the locations of most faults in this region are well known, constraints on their seismogenic potential and earthquake recurrence are limited. In particular, the Holocene deformation history of active faults remains enigmatic. In an exposure excavated across the Schafberg fault in the southwestern Lower Rhine Graben, south of Untermaubach, in the epicentral region of the 1756 Düren earthquake ( M L 6.2), we mapped a complex deformation zone in Holocene fluvial sediments. We document evidence for at least one paleoearthquake that resulted in vertical surface displacement of 1.2 ± 0.2 m. The most recent earthquake is constrained to have occurred after 815 AD, and we have modeled three possible earthquake scenarios constraining the timing of the latest event. Coseismic deformation is characterized by vertical offset of sedimentary contacts distributed over a 10-m-wide central damage zone. Faults were identified where they fracture and offset pebbles in the vertically displaced gravel layers and fracture orientation is consistent with the orientation of the Schafberg fault. This study provides the first constraint on the most recent surface-rupturing earthquake on the Schafberg fault. We cannot rule out that this fault acted as the source of the 1756 Düren earthquake. Our study emphasizes the importance of, and the need for, paleoseismic studies in this and other intracontinental regions, in particular on faults with subtle geomorphic expression that would not typically be recognized as being potentially seismically active. Our study documents textural features in unconsolidated sediment that formed in response to coseismic rupturing of the underlying bedrock fault. We suggest that these features, e.g., abundant oriented transgranular fractures in their context, should be added to the list of criteria used to identify a fault

  16. Salmon habitat use, tidal-fluvial estuary - Columbia River Estuary Tidal Habitats

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of the tidal-fluvial estuary study is to determine the estuary's contribution to the spatial structure and life history diversity of Columbia River salmon...

  17. Fluvial facies reservoir productivity prediction method based on principal component analysis and artificial neural network

    Directory of Open Access Journals (Sweden)

    Pengyu Gao

    2016-03-01

    Full Text Available It is difficult to forecast the well productivity because of the complexity of vertical and horizontal developments in fluvial facies reservoir. This paper proposes a method based on Principal Component Analysis and Artificial Neural Network to predict well productivity of fluvial facies reservoir. The method summarizes the statistical reservoir factors and engineering factors that affect the well productivity, extracts information by applying the principal component analysis method and approximates arbitrary functions of the neural network to realize an accurate and efficient prediction on the fluvial facies reservoir well productivity. This method provides an effective way for forecasting the productivity of fluvial facies reservoir which is affected by multi-factors and complex mechanism. The study result shows that this method is a practical, effective, accurate and indirect productivity forecast method and is suitable for field application.

  18. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China

    Science.gov (United States)

    Ma, Hongbo; Nittrouer, Jeffrey A.; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J.; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-01-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams. PMID:28508078

  19. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China.

    Science.gov (United States)

    Ma, Hongbo; Nittrouer, Jeffrey A; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-05-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams.

  20. Overview of selected surrogate technologies for high-temporal resolution suspended-sediment monitoring

    Science.gov (United States)

    Gray, John R.; Gartner, Jeffrey W.

    2010-01-01

    Traditional methods for characterizing selected properties of suspended sediments in rivers are being augmented and in some cases replaced by cost-effective surrogate instruments and methods that produce a temporally dense time series of quantifiably accurate data for use primarily in sediment-flux computations. Turbidity is the most common such surrogate technology, and the first to be sanctioned by the U.S. Geological Survey for use in producing data used in concert with water-discharge data to compute sediment concentrations and fluxes for storage in the National Water Information System. Other technologies, including laser-diffraction, digital photo-optic, acoustic-attenuation and backscatter, and pressure-difference techniques are being evaluated for producing reliable sediment concentration and, in some cases, particle-size distribution data. Each technology addresses a niche for sediment monitoring. Their performances range from compelling to disappointing. Some of these technologies have the potential to revolutionize fluvial-sediment data collection, analysis, and availability.

  1. Is similar the distribution of Chironomidae (Diptera and Oligochaeta (Annelida, Clitellata in a river and a lateral fluvial area?

    Directory of Open Access Journals (Sweden)

    Daniela Aparecida Silveira Cesar

    2017-05-01

    Full Text Available Abstract Numerous factors may affect the pattern of distribution of benthic fauna in a river mouth region and, among the macroinvertebrates, Chironomidae and Oligochaeta are the most abundant groups and most tolerant to environmental changes. Aim The aim of this study was to evaluate the controlling factors of and a possible similarity between Chironomidae and Oligochaeta assemblies at two close sites, the mouth of the Guareí River into the Paranapanema River (São Paulo, Brazil and its lateral fluvial area. Methods Fauna samples were collected every three months during one year. Water physical and chemical variables and sediment variables were also determined in the same period. Results Both assemblies presented low density variability over time in the lateral area due to sediment characteristics and environmental factors. Taxa Caladomyia, Parachironomus, Pristina sp., Pristina osborni, Bothrioneurum and Opistocysta funiculus were recorded at this site. The Guareí River presented both greater temporal and spatial variations, attributed mainly to a reduction in the water level. Greater organism abundance, especially of Chironomus and Tubificinae, was observed in the river. Conclusions Dissimilarity in temporal and spatial distributions of Chironomidae and Oligochaeta was attributed to peculiar characteristics of the two study sites, a river channel and a lateral area. Reduction in the water level over the year was the main controlling factor of Chironomidae and Oligochaeta richness and density in the river. In the lateral area, the presence and abundance of certain taxa were determined by the nature of the sediment and water physical and chemical variables.

  2. Geomorphic change in Dingzi Bay, East China since the 1950s: impacts of human activity and fluvial input

    Science.gov (United States)

    Tian, Qing; Wang, Qing; Liu, Yalong

    2017-06-01

    This study examines the geomorphic evolution of Dingzi Bay, East China in response to human activity and variations in fluvial input since the 1950s. The analysis is based on data from multiple mathematical methods, along with information obtained from Remote Sensing, Geographic Information System and Global Position System technology. The results show that the annual runoff and sediment load discharged into Dingzi Bay display significant decreasing trends overall, and marked downward steps were observed in 1966 and 1980. Around 60%-80% of the decline is attributed to decreasing precipitation in the Wulong River Basin. The landform types in Dingzi Bay have changed significantly since the 1950s, especially over the period between 1981 and 1995. Large areas of tidal flats, swamp, salt fields, and paddy fields have been reclaimed, and aquaculture ponds have been constructed. Consequently, the patterns of erosion and deposition in the bay have changed substantially. Despite a reduction in sediment input of 65.68% after 1966, low rates of sediment deposition continued in the bay. However, deposition rates changed significantly after 1981 owing to large-scale development in the bay, with a net depositional area approximately 10 times larger than that during 1961-1981. This geomorphic evolution stabilized following the termination of large-scale human activity in the bay after 1995. Overall, Dingzi Bay has shown a tendency towards silting-up during 1952-2010, with the bay head migrating seaward, the number of channels in the tidal creek system decreasing, and the tidal inlet becoming narrower and shorter. In conclusion, largescale development and human activity in Dingzi Bay have controlled the geomorphic evolution of the bay since the 1950s.

  3. Supercritical strata in Lower Paleozoic fluvial rocks: a super critical link to upper flow regime processes and preservation in nature

    Science.gov (United States)

    Lowe, David; Arnott, Bill

    2015-04-01

    Recent experimental work has much improved our understanding of the lithological attributes of open-channel supercritical flow deposits, namely those formed by antidunes, chutes-and-pools and cyclic steps. However their limited documentation in the ancient sedimentary record brings into question details about their geological preservation. Antidune, chute-and-pool and cyclic step deposits are well developed in sandy ephemeral fluvial deposits of the Upper Cambrian - Lower Ordovician Potsdam Group in the Ottawa Embayment of eastern North America. These high energy fluvial strata form dm- to a few m-thick units intercalated within thick, areally expansive successions of sheet sandstones consisting mostly of wind ripple and adhesion stratification with common deflation lags. Collectively these strata record deposition in a semi-arid environment in which rare, episodic high-energy fluvial events accounted for most of the influx of sediment from upland sources. Following deposition, however, extensive aeolian processes reworked the sediment pile, and hence modified profoundly the preserved stratigraphic record. Antidune deposits occur as 0.2 - 1.6 m thick cosets made up of 2 - 15 cm thick lenticular sets of low angle (≤ 20o) cross-stratified, medium- to coarse-grained sandstone bounded by low-angle (5 - 15o) concave-upward scours and, in many cases, capped by low angle (10 - 15o) convex-upwards symmetrical formsets. Chute-and-pool deposits form single sets, 5 - 55 cm thick and 0.6 - 6 m wide, with scoured bases and low to high angle (5 - 25o) sigmoidal cross-strata consisting of medium- to coarse-grained sandstone. Cyclic step deposits consist of trough cross-stratified sets, 20 cm - 1.6 m thick, 2.5 - 12 m long and 7 - 35 m wide, typically forming trains that laterally are erosively juxtaposed at regularly-spaced intervals. They are composed of medium- to coarse-grained sandstone with concave-up, moderate to high angle (15 - 35o) cross-strata with tangential bases

  4. Geological aspects of paleoseismicity and archaeosismology in the fluvial alluvial Rimac valley

    OpenAIRE

    Jacay, Javier

    2017-01-01

    The sedimentary fill of the Rimac River fluvial-alluvial plain (Upper Miocene-Quaternary) consists of a thick sequence of unconsolidated material that corresponds to fluvial deposits. A record of seismotectonic activity is presentedin the sedimentary levels of fine facie within numerous paleoseismic structures such as contoured layers, pseudonodules, load figures, and material injections. Additionally, wall inclination and collapse, as well as displacement and partialfracturing, and pavement ...

  5. Sediment contributions from floodplains and legacy sediments to Piedmont streams of Baltimore County, Maryland

    Science.gov (United States)

    Donovan, Mitchell; Miller, Andrew; Baker, Matthew; Gellis, Allen

    2015-04-01

    Disparity between watershed erosion rates and downstream sediment delivery has remained an important theme in geomorphology for many decades, with the role of floodplains in sediment storage as a common focus. In the Piedmont Province of the eastern USA, upland deforestation and agricultural land use following European settlement led to accumulation of thick packages of overbank sediment in valley bottoms, commonly referred to as legacy deposits. Previous authors have argued that legacy deposits represent a potentially important source of modern sediment loads following remobilization by lateral migration and progressive channel widening. This paper seeks to quantify (1) rates of sediment remobilization from Baltimore County floodplains by channel migration and bank erosion, (2) proportions of streambank sediment derived from legacy deposits, and (3) potential contribution of net streambank erosion and legacy sediments to downstream sediment yield within the Mid-Atlantic Piedmont. We calculated measurable gross erosion and deposition rates within the fluvial corridor along 40 valley segments from 18 watersheds with drainage areas between 0.18 and 155 km2 in Baltimore County, Maryland. We compared stream channel and floodplain morphology from lidar-based digital elevation data collected in 2005 with channel positions recorded on 1:2400 scale topographic maps from 1959-1961 in order to quantify 44-46 years of channel change. Sediment bulk density and particle size distributions were characterized from streambank and channel deposit samples and used for volume to mass conversions and for comparison with other sediment sources. Average annual lateral migration rates ranged from 0.04 to 0.19 m/y, which represented an annual migration of 2.5% (0.9-4.4%) channel width across all study segments, suggesting that channel dimensions may be used as reasonable predictors of bank erosion rates. Gross bank erosion rates varied from 43 to 310 Mg/km/y (median = 114) and were

  6. Passive acoustic monitoring of bed load for fluvial applications

    Science.gov (United States)

    The sediment transported as bed load in streams and rivers is notoriously difficult to monitor cheaply and accurately. Passive acoustic methods are relatively simple, inexpensive, and provide spatial integration along with high temporal resolution. In 1963 work began on monitoring emissions from par...

  7. Characterizing fluvial heavy metal pollutions under different rainfall conditions: Implication for aquatic environment protection.

    Science.gov (United States)

    Zhang, Lixun; Zhao, Bo; Xu, Gang; Guan, Yuntao

    2018-09-01

    Globally, fluvial heavy metal (HM) pollution has recently become an increasingly severe problem. However, few studies have investigated the variational characteristics of fluvial HMs after rain over long periods (≥1 year). The Dakan River in Xili Reservoir watershed (China) was selected as a case study to investigate pollution levels, influencing factors, and sources of HMs under different rainfall conditions during 2015 and 2016. Fluvial HMs showed evident spatiotemporal variations attributable to the coupled effects of pollution generation and rainfall diffusion. Fluvial HM concentrations were significantly associated with rainfall characteristics (e.g., rainfall intensity, rainfall amount, and antecedent dry period) and river flow, which influenced the generation and the transmission of fluvial HMs in various ways. Moreover, this interrelationship depended considerably on the HM type and particle size distribution. Mn, Pb, Cr, and Ni were major contributors to high values of the comprehensive pollution index; therefore, they should be afforded special attention. Additionally, quantitative source apportionment of fluvial HMs was conducted by combining principal component analysis with multiple linear regression and chemical mass balance models to obtain comprehensive source profiles. Finally, an environment-friendly control strategy coupling "source elimination" and "transport barriers" was proposed for aquatic environment protection. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Advances in Holocene mountain geomorphology inspired by sediment budget methodology

    Science.gov (United States)

    Slaymaker, Olav; Souch, Catherine; Menounos, Brian; Filippelli, Gabriel

    2003-09-01

    The sediment budget, which links sediment sources to sediment sinks with hydroclimatic and weathering processes mediating the response, is applied to the analysis of sediments in three alpine lakes in British Columbia. We provide two ways of using the sediment budget as an integrating device in the interpretation of mountain geomorphology. These approaches differ in their resolution and ability to budget the major components of the fine-sediment cascade in glaciated environments. Taken together, they provide an integrated index of landscape change over the Holocene. The first example compares the hydroclimatic controls of lake sedimentation for the last 600 years (A.D. 1370-1998) preserved in varved sediments from two of the lake basins. This hydroclimatological approach incorporates contemporary monitoring, air photo analysis, and detailed stratigraphy of sedimentation events within a single varve to infer the timing, sources, and preferred pathways of fine-grained sediments reaching the lake basins. The results indicate that glaciers, hillslope, and channel instability within the major subbasins are the principal sediment sources to the lake basins. Transitory sediment storage of glacially derived sediments within the channels is believed to modulate the episodic and more frequent delivery of sediments from adjacent hillslope and fluvial storage sites and direct routing of glacial rock flour during years of prolonged glacial melt. The second example, relying on the phosphorus geochemistry of sediments in an alpine lake basin, considers the evolution of phosphorus forms (from mineral to occluded and organic fractions) as a function of the soil development, inherent slope instability, and repeated cycles of glaciation and neoglaciation over the Holocene. This geochemical approach demonstrates that both neoglaciation and full glaciation have essentially zeroed the system in such a way that a high proportion of mineral phosphorus remains in the present lake sediments

  9. Evolution of sediment plumes in the Chesapeake bay and implications of climate variability.

    Science.gov (United States)

    Zheng, Guangming; DiGiacomo, Paul M; Kaushal, Sujay S; Yuen-Murphy, Marilyn A; Duan, Shuiwang

    2015-06-02

    Fluvial sediment transport impacts fisheries, marine ecosystems, and human health. In the upper Chesapeake Bay, river-induced sediment plumes are generally known as either a monotonic spatial shape or a turbidity maximum. Little is known about plume evolution in response to variation in streamflow and extreme discharge of sediment. Here we propose a typology of sediment plumes in the upper Chesapeake Bay using a 17 year time series of satellite-derived suspended sediment concentration. On the basis of estimated fluvial and wind contributions, we define an intermittent/wind-dominated type and a continuous type, the latter of which is further divided into four subtypes based on spatial features of plumes, which we refer to as Injection, Transport, Temporary Turbidity-Maximum, and Persistent Turbidity-Maximum. The four continuous types exhibit a consistent sequence of evolution within 1 week to 1 month following flood events. We also identify a "shift" in typology with increased frequency of Turbidity-Maximum types before and after Hurricane Ivan (2004), which implies that extreme events have longer-lasting effects upon estuarine suspended sediment than previously considered. These results can serve as a diagnostic tool to better predict distribution and impacts of estuarine suspended sediment in response to changes in climate and land use.

  10. 100 kyr fluvial cut-and-fill terrace cycles since the Middle Pleistocene in the southern Central Andes, NW Argentina

    Science.gov (United States)

    Tofelde, Stefanie; Schildgen, Taylor F.; Savi, Sara; Pingel, Heiko; Wickert, Andrew D.; Bookhagen, Bodo; Wittmann, Hella; Alonso, Ricardo N.; Cottle, John; Strecker, Manfred R.

    2017-09-01

    Fluvial fill terraces in intermontane basins are valuable geomorphic archives that can record tectonically and/or climatically driven changes of the Earth-surface process system. However, often the preservation of fill terrace sequences is incomplete and/or they may form far away from their source areas, complicating the identification of causal links between forcing mechanisms and landscape response, especially over multi-millennial timescales. The intermontane Toro Basin in the southern Central Andes exhibits at least five generations of fluvial terraces that have been sculpted into several-hundred-meter-thick Quaternary valley-fill conglomerates. New surface-exposure dating using nine cosmogenic 10Be depth profiles reveals the successive abandonment of these terraces with a 100 kyr cyclicity between 75 ± 7 and 487 ± 34 ka. Depositional ages of the conglomerates, determined by four 26Al/10Be burial samples and U-Pb zircon ages of three intercalated volcanic ash beds, range from 18 ± 141 to 936 ± 170 ka, indicating that there were multiple cut-and-fill episodes. Although the initial onset of aggradation at ∼1 Ma and the overall net incision since ca. 500 ka can be linked to tectonic processes at the narrow basin outlet, the superimposed 100 kyr cycles of aggradation and incision are best explained by eccentricity-driven climate change. Within these cycles, the onset of river incision can be correlated with global cold periods and enhanced humid phases recorded in paleoclimate archives on the adjacent Bolivian Altiplano, whereas deposition occurred mainly during more arid phases on the Altiplano and global interglacial periods. We suggest that enhanced runoff during global cold phases - due to increased regional precipitation rates, reduced evapotranspiration, or both - resulted in an increased sediment-transport capacity in the Toro Basin, which outweighed any possible increases in upstream sediment supply and thus triggered incision. Compared with two

  11. Sediment pollution of the Elbe River side structures - current research

    Science.gov (United States)

    Chalupova, Dagmar; Janský, Bohumír

    2016-04-01

    The contribution brings the summarized results of a long-term research on sediment pollution of side structures of the Elbe River over the last 14 years. The investigation has been focused on old anthropogenic pollution of sediment cores taken from fluvial lakes and floodplain, as the sampling of deeper sediments outside the riverbed is not a part of systematic monitoring of sediment pollution of the Elbe. The Elbe River floodplain has been influenced by human activities since the Middle Ages, but the main anthropogenic pollution have been produced in the 20th century. The studied localities were chosen with the respect to the distance from the source of industrial pollution, the intensity of hydrological communication with the river and the surrounding landuse to determine the extend and the level of anthropogenic contamination in the Elbe River floodplain ecosystem. Apart from bathymetric measurements, observation of the hydrological regime in several fluvial lakes or water quality sampling at some localities, the research was focused above all on determination of metal concentrations (Ag, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Zn) in all taken sediment cores, specific organic compounds (PCBs, DDT, HCH, HCB, PAHs etc.), total organic carbon at some localities and grain structure analyses. The data were also compared with the results of systematic sediment monitoring from the nearest riverbed sampling stations on the Elbe River. The highest concentrations of metals and specific organic compounds were determined in the sediments taken from fluvial lakes and floodplain (Zimní přístav PARAMO, Rosice fuvial Lake, Libiš pool etc.) situated in the vicinity of the main Elbe River polluters - Synthesia chemical plant and PARAMO refinery in Pardubice or Spolana chemical plant near Neratovice. However, there was also determined a significant role of the hydrological communication with the river proved with lower sediment pollution in separated localities. The realization of the

  12. Legacy Sediments in U.S. River Environments: Atrazine and Aggradation to Zinc and Zoobenthos

    Science.gov (United States)

    Wohl, E.

    2014-12-01

    Legacy sediments are those that are altered by human activities. Alterations include (i) human-caused aggradation (and subsequent erosion), such as sediment accumulating upstream from relict or contemporary dams, (ii) human-caused lack of continuing deposition that results in changing moisture and nutrient levels within existing sediments, such as on floodplains that no longer receive lateral or vertical accretion deposits because of levees, bank stabilization, and other channel engineering, and (iii) human-generated contaminants such as PCBs and pesticides that adsorb to fine sediment. Existing estimates of human alterations of river systems suggest that legacy sediments are ubiquitous. Only an estimated 2% of river miles in the United States are not affected by flow regulation that alters sediment transport, for example, and less than half of major river basins around the world are minimally altered by flow regulation. Combined with extensive but poorly documented reduction in floodplain sedimentation, as well as sediment contamination by diverse synthetic compounds, excess nutrients, and heavy metals, these national and global estimates suggest that legacy sediments now likely constitute a very abundant type of fluvial sediment. Because legacy sediments can alter river form and function for decades to centuries after the cessation of the human activity that created the legacy sediments, river management and restoration must be informed by accurate knowledge of the distribution and characteristics of legacy sediments. Geomorphologists can contribute understanding of sediment dynamics, including: the magnitude, frequency, and duration of flows that mobilize sediments with adsorbed contaminants; sites where erosion and deposition are most likely to occur under specified flow and sediment supply; residence time of sediments; and the influence of surface and subsurface water fluxes on sediment stability and geochemistry.

  13. Historical sediment budget and present-day catchment-shoreline coupling at Twofold Bay, southeastern Australia

    Science.gov (United States)

    Tamura, T.; Oliver, T.; Hudson, J.; Woodroffe, C. D.

    2017-12-01

    Considering projected impacts of sea-level rise in the 21st century on sandy shorelines, an understanding of long-term sediment budget for individual beaches or coastal compartments supports assessments of shoreline stability. We examined a low-lying coastal beach-ridge barrier in Twofold Bay using optically stimulated luminescence (OSL) dating , airborne LiDAR, sedimentological analysis and seismic data to assess changes in rates of sediment supply to this shoreline through time. Calculations of barrier volume, Twofold Bay bay-floor sediment volume and estimates of sediment delivery from a proximal river system provide a broad-scale assessment of past-sediment budget. Between ca. 7500 years ago and 1500 years ago, sources of sediment for shoreline progradation at Boydtown were bay-floor sediments either inherited or moved into the embayment during late-stage transgression. Progradation rate between ca. 7500-1500 years ago was 0.16 m/yr with subaerial barrier volume accumulating at 0.46 m3/m/yr. Between ca. 1500 years and present day, the Towamba River to the south has delivered additional sediment to the Boydtown shoreline more than doubling shoreline progradation rate to 0.65 m/yr and subaerial barrier accumulation has risen to 1.83 m3/m/yr. The delivery of fluvial sediment from the Towamba River was restricted to the past ca. 1500 years as prior to this, estuary infilling prevented floods delivering sediments to the bay. This recent historical coupling of river sand supply and shoreline progradation rate implies that anthropogenic modifications to the Towamba River catchment such as river damming, or climatic changes reducing rainfall or runoff, would negatively impact the Boydtown Beach shoreline. Conversely increased rainfall or deforestation may increase sediment discharge due to upstream erosion. The Boydtown shoreline within Twofold Bay may be able to maintain its current position in the coming century if fluvial sediment delivery continues. The fact that

  14. Rangeland management and fluvial geomorphology in northern Tanzania

    Science.gov (United States)

    Miller, Brian W.; Doyle, Martin W.

    2014-01-01

    Researchers have independently documented the effects of land use on rivers and threats to river management institutions, but the relationship between changes in institutional context and river condition is not well described. This study assesses the connections between resource management institutions, land use, and rivers by integrating social science, geospatial analysis, and geomorphology. In particular, we measured hydraulic geometry, sediment size distributions, and estimated sediment yield for four rivers in northern Tanzania and conducted semistructured interviews that assessed corresponding resource management institutions. Communities managed rivers through both customary (traditional, nonstate) and government institutions, but the differences in the resource management policies and practices of the study rivers themselves were fairly subtle. Clearer differences were found at broader scales; the four watersheds exhibited substantial differences in land cover change and sediment yield associated with the location of settlements, roadways, and cultivation. Unexpectedly, these recent land use changes did not initiate a geomorphic response in rivers. The long history of grazing by domestic and wild ungulates may have influenced water and sediment supplies such that river channel dimensions are more resistant to changes in land use than other systems or have already adjusted to predominant changes in boundary conditions. This would suggest that not all rivers will have the anticipated responses to contemporary land use changes because of antecedent land use patterns; over long time scales (centuries to millennia), the presence of grazers may actually increase the ability of rivers to withstand changes in land use. Our findings point to a need for further interdisciplinary study of dryland rivers and their shifts between system states, especially in areas with a long history of grazing, relatively recent changes in land use, and a dynamic social and

  15. Rangeland management and fluvial geomorphology in northern Tanzania.

    Science.gov (United States)

    Miller, Brian W; Doyle, Martin W

    2014-06-01

    Researchers have independently documented the effects of land use on rivers and threats to river management institutions, but the relationship between changes in institutional context and river condition is not well described. This study assesses the connections between resource management institutions, land use, and rivers by integrating social science, geospatial analysis, and geomorphology. In particular, we measured hydraulic geometry, sediment size distributions, and estimated sediment yield for four rivers in northern Tanzania and conducted semistructured interviews that assessed corresponding resource management institutions. Communities managed rivers through both customary (traditional, nonstate) and government institutions, but the differences in the resource management policies and practices of the study rivers themselves were fairly subtle. Clearer differences were found at broader scales; the four watersheds exhibited substantial differences in land cover change and sediment yield associated with the location of settlements, roadways, and cultivation. Unexpectedly, these recent land use changes did not initiate a geomorphic response in rivers. The long history of grazing by domestic and wild ungulates may have influenced water and sediment supplies such that river channel dimensions are more resistant to changes in land use than other systems or have already adjusted to predominant changes in boundary conditions. This would suggest that not all rivers will have the anticipated responses to contemporary land use changes because of antecedent land use patterns; over long time scales (centuries to millennia), the presence of grazers may actually increase the ability of rivers to withstand changes in land use. Our findings point to a need for further interdisciplinary study of dryland rivers and their shifts between system states, especially in areas with a long history of grazing, relatively recent changes in land use, and a dynamic social and

  16. Sedimentation processes in a coral reef embayment: Hanalei Bay, Kauai

    Science.gov (United States)

    Storlazzi, C.D.; Field, M.E.; Bothner, Michael H.; Presto, M.K.; Draut, A.E.

    2009-01-01

    Oceanographic measurements and sediment samples were collected during the summer of 2006 as part of a multi-year study of coastal circulation and the fate of terrigenous sediment on coral reefs in Hanalei Bay, Kauai. The goal of this study was to better understand sediment dynamics in a coral reef-lined embayment where winds, ocean surface waves, and river floods are important processes. During a summer period that was marked by two wave events and one river flood, we documented significant differences in sediment trap collection rates and the composition, grain size, and magnitude of sediment transported in the bay. Sediment trap collection rates were well correlated with combined wave-current near-bed shear stresses during the non-flood periods but were not correlated during the flood. The flood's delivery of fine-grained sediment to the bay initially caused high turbidity and sediment collection rates off the river mouth but the plume dispersed relatively quickly. Over the next month, the flood deposit was reworked by mild waves and currents and the fine-grained terrestrial sediment was advected around the bay and collected in sediment traps away from the river mouth, long after the turbid surface plume was gone. The reworked flood deposits, due to their longer duration of influence and proximity to the seabed, appear to pose a greater long-term impact to benthic coral reef communities than the flood plumes themselves. The results presented here display how spatial and temporal differences in hydrodynamic processes, which result from variations in reef morphology and orientation, cause substantial variations in the deposition, residence time, resuspension, and advection of both reef-derived and fluvial sediment over relatively short spatial scales in a coral reef embayment.

  17. The volcaniclastic sequence of Aranzazu: Record of the impact of volcanism on Neogene fluvial system in the middle part of the Central Cordillera, Colombia

    International Nuclear Information System (INIS)

    Borrero Pena, Carlos Alberto; Rosero Cespedes, Juan Sebastian; Valencia M, Julian David; Pardo Trujillo, Andres

    2008-01-01

    The volcaniclastic sequence of Aranzazu (VSA, late Pliocene - early Pleistocene?) was sourced from the northernmost sector of the Machin - Cerro Bravo volcanic complex. The volcaniclastic accumulations filled the pre-existing fault-bend depressions in the surroundings of Aranzazu town (Caldas department, Colombia). A new classification of volcaniclastic deposits is proposed, in which the lahars are defined as volcaniclastic resedimented deposits, and differentiated from the primary volcaniclastic and epiclastic deposits. The updating the sedimentology and rheology of the deposits related with the laharic events is aimed. The VSA stratigraphy is based on the lithofacies identification and the definition of the architectural elements for syn- and inter-eruptive periods. The VSA lower member corresponds to the successive aggradation of syneruptive lahars (SV and SB elements) resulted from re-sedimentation of pumice-rich pyroclastic deposits and transported as debris and hyperconcentrated stream/flood flows. The VSA middle and upper members defined by coal contents were formed during the dominion of inter-eruptive (FF element) over the syn-eruptive (SV and SB elements) periods. They were formed during the reestablishment of the fluvial condition after the syn-eruptive laharic activity. Once the fluvial deposition was strengthened, the necessary conditions for the peat formation were propitious and the coal-bearing bed sets were developed.

  18. Climate and lake-level history of the northern Altiplano, Bolivia, as recorded in Holocene sediments of the Rio Desaguadero

    Energy Technology Data Exchange (ETDEWEB)

    Baucom, P.C.; Rigsby, C.A. [East Carolina Univ., Greenville, NC (United States). Dept. of Geology

    1999-05-01

    Strata exposed in terraces and modern cutbanks along the Rio Desaguadero contain a variety of lithofacies that were deposited in four distinct facies associations. These facies associations document a history of aggradation and downcutting that is linked to Holocene climate change on the Altiplano. Braided-stream, meandering-stream, deltaic and shoreline, and lacustrine sediments preserved in multi-level terraces in the northern Rio Desaguadero valley record two high-water intervals: one between 4,500 and 3,900 yr BP and another between 2,000 and 2,200 yr BP. These wet periods were interrupted by three periods of fluvial downcutting, centered at approximately 4,000 yr BP, 3,600 yr BP, and after 2,000 yr BP. Braided-river sediments preserved in a single terrace level in the southern Rio Desaguadero valley record a history of nearly continuous fluvial sedimentation from at least 7,000 yr BP until approximately 3,200 yr BP that was followed by a single episode (post-3,210 yr BP) of down-cutting and lateral migration. The deposition and subsequent fluvial downcutting of the northern strata was controlled by changes in effective moisture that can be correlated to Holocene water-level fluctuations of Lake Titicaca. The deposition and dissection of braided-stream sediments to the south are more likely controlled by a combination of base-level change and sediment input from the Rio Mauri.

  19. Reciprocal interactions between fluvial processes and riparian plants at multiple scales: ecogeomorphic feedbacks drive coevolution of floodplain morphology and vegetation communities

    Science.gov (United States)

    Stella, J. C.; Kui, L.; Diehl, R. M.; Bywater-Reyes, S.; Wilcox, A. C.; Shafroth, P. B.; Lightbody, A.

    2017-12-01

    Fluvial forces interact with woody riparian plants in complex ways to influence the coevolution of river morphology and floodplain plant communities. Here, we report on an integrated suite of multi-disciplinary studies that contrast the responses of plants with different morphologies, tamarisk (Tamarix spp.) and cottonwood (Populus fremontii) in terms of (1) differences in vulnerability to scour and burial during floods; (2) interactions and feedbacks between plants and river morphodynamics; and (3) long-term coevolution of river floodplains and riparian communities following flow regulation from dams. The focus of these studies is sand-bed rivers in arid-land regions where invasion by tamarisk has strongly influenced riverine plant communities and geomorphic processes. We complemented a suite of field-scale flume experiments using live seedlings to quantify the initial stages of plant-river interactions with an analysis of long-term vegetation and geomorphic changes along the dammed Bill Williams River (AZ, USA) using time-series air photographs. Vegetation-fluvial interactions varied with plant characteristics, river hydraulics and sediment conditions, across the wide range of scales we investigated. In the flume studies, tamarisk's denser crowns and stiffer stems induced greater sedimentation compared to cottonwood. This resulted in tamarisk's greater mortality from burial as small seedlings under sediment equilibrium conditions but higher relative survival in larger floods under sediment deficit scenarios, in which more cottonwoods were lost to root scour. Sediment deficit conditions, as occurs downstream of dams, induced both greater scour and greater plant loss. With larger size and at higher densities, plants' vulnerability diminished due to greater root anchoring and canopy effects on hydraulics. At the corridor scale, we observed a pattern of plant encroachment during five decades of flow regulation, in which channel narrowing and simplification was more

  20. Investigating the use of the dual-polarized and large incident angle of SAR data for mapping the fluvial and aeolian deposits

    Directory of Open Access Journals (Sweden)

    Ahmed Gaber

    2017-12-01

    Full Text Available Mapping the spatial distributions of the fluvial deposits in terms of particles size as well as imaging the near-surface features along the non-vegetated aeolian sand-sheets, provides valuable geological information. Thus this work aims at investigating the contribution of the dual-polarization SAR data in classifying and mapping the surface sediments as well as investigating the effect of the radar incident-angle on improving the images of the hidden features under the desert sand cover. For mapping the fluvial deposits, the covariance matrix ([C2] using four dual-polarized ALOS/PALSAR-1 scenes cover the Wadi El Matulla, East Qena, Egypt were generated. This [C2] matrix was used to generate a supervised classification map with three main classes (gravel, gravel/sand and sand. The polarimetric scattering response, spectral reflectance and temperatures brightness of these 3 classes were extracted. However for the aeolian deposits investigation, two Radarsat-1 and three full-polarimetric ALOS/PALSAR-1 images, which cover the northwestern sandy part of Sinai, Egypt were calibrated, filtered, geocoded and ingested in a GIS database to image the near-surface features. The fluvial mapping results show that the values of the radar backscattered coefficient (σ° and the degree of randomness of the obtained three classes are increasing respectively by increasing their grain size. Moreover, the large incident angle (θi = 39.7 of the Radarsat-1 image has revealed a meandering buried stream under the sand sheet of the northwestern part of Sinai. Such buried stream does not appear in the other optical, SRTM and SAR dataset. The main reason is the enhanced contrast between the low backscattered return from the revealed meandering stream and the surroundings as a result of the increased backscattering intensity, which is related to the relatively large incident angle along the undulated surface of the study area. All archaeological