WorldWideScience

Sample records for profiler adcp measurements

  1. Use of an Acoustic Doppler Current Profiler (ADCP) to Measure Hypersaline Bidirectional Discharge

    Science.gov (United States)

    Johnson, K.K.; Loving, B.L.; ,

    2002-01-01

    The U.S. Geological Survey measures the exchange of flow between the north and south parts of Great Salt Lake, Utah, as part of a monitoring program. Turbidity and bidirectional flow through the breach in the causeway that divides the lake into two parts makes it difficult to measure discharge with conventional streamflow techniques. An acoustic Doppler current profiler (ADCP) can be used to more accurately define the angles of flow and the location of the interface between the layers of flow. Because of the high salinity levels measured in Great Salt Lake (60-280 parts per thousand), special methods had to be developed to adjust ADCP-computed discharges for the increased speed of sound in hypersaline waters and for water entrained at the interface between flow layers.

  2. Consistent and efficient processing of ADCP streamflow measurements

    Science.gov (United States)

    Mueller, David S.; Constantinescu, George; Garcia, Marcelo H.; Hanes, Dan

    2016-01-01

    The use of Acoustic Doppler Current Profilers (ADCPs) from a moving boat is a commonly used method for measuring streamflow. Currently, the algorithms used to compute the average depth, compute edge discharge, identify invalid data, and estimate velocity and discharge for invalid data vary among manufacturers. These differences could result in different discharges being computed from identical data. Consistent computational algorithm, automated filtering, and quality assessment of ADCP streamflow measurements that are independent of the ADCP manufacturer are being developed in a software program that can process ADCP moving-boat discharge measurements independent of the ADCP used to collect the data.

  3. Improved flow velocity estimates from moving-boat ADCP measurements

    NARCIS (Netherlands)

    Vermeulen, B.; Hoitink, A.J.F.; Sassi, M.G.

    2014-01-01

    Acoustic Doppler current profilers (ADCPs) are the current standard for flow measurements in large-scale open water systems. Existing techniques to process vessel-mounted ADCP data assume homogeneous or linearly changing flow between the acoustic beams. This assumption is likely to fail but is

  4. Development of Topological Correction Algorithms for ADCP Multibeam Bathymetry Measurements

    Science.gov (United States)

    Yang, Sung-Kee; Kim, Dong-Su; Kim, Soo-Jeong; Jung, Woo-Yul

    2013-04-01

    Acoustic Doppler Current Profilers (ADCPs) are increasingly popular in the river research and management communities being primarily used for estimation of stream flows. ADCPs capabilities, however, entail additional features that are not fully explored, such as morphologic representation of river or reservoir bed based upon multi-beam depth measurements. In addition to flow velocity, ADCP measurements include river bathymetry information through the depth measurements acquired in individual 4 or 5 beams with a given oblique angle. Such sounding capability indicates that multi-beam ADCPs can be utilized as an efficient depth-sounder to be more capable than the conventional single-beam eco-sounders. The paper introduces the post-processing algorithms required to deal with raw ADCP bathymetry measurements including the following aspects: a) correcting the individual beam depths for tilt (pitch and roll); b) filtering outliers using SMART filters; d) transforming the corrected depths into geographical coordinates by UTM conversion; and, e) tag the beam detecting locations with the concurrent GPS information; f) spatial representation in a GIS package. The developed algorithms are applied for the ADCP bathymetric dataset acquired from Han-Cheon in Juju Island to validate their applicability.

  5. Effect of temporal resolution on the accuracy of ADCP measurements

    Science.gov (United States)

    Gonzalez-Castro, J. A.; Oberg, K.; Duncker, J.J.

    2004-01-01

    The application of acoustic Doppler current profilers (ADCP's) in river flow measurements is promoting a great deal of progress in hydrometry. ADCP's not only require shorter times to collect data than traditional current meters, but also allow streamflow measurements at sites where the use of conventional meters is either very expensive, unsafe, or simply not possible. Moreover, ADCP's seem to offer a means for collecting flow data with spatial and temporal resolutions that cannot be achieved with traditional current-meters. High-resolution data is essential to characterize the mean flow and turbulence structure of streams, which can in turn lead to a better understanding of the hydrodynamic and transport processes in rivers. However, to properly characterize the mean flow and turbulence intensities of stationary flows in natural turbulent boundary layers, velocities need to be sampled over a long-enough time span. The question then arises, how long should velocities be sampled in the flow field to achieve an adequate temporal resolution? Theoretically, since velocities cannot be sampled over an infinitely long time interval, the error due to finite integration time must be considered. This error can be estimated using the integral time scale. The integral time scale is not only a measure of the time interval over which a fluctuating function is correlated with itself but also a measure of the time span over which the function is dependent on itself. This time scale, however, is not a constant but varies spatially in the flow field. In this paper we present an analysis of the effect of the temporal resolution (sampling time span) on the accuracy of ADCP measurements based on the integral time scale. Single ping velocity profiles collected with frequencies of 1 Hz in the Chicago River at Columbus Drive using an uplooking 600 kHz ADCP are used in this analysis. The integral time scale at different depths is estimated based on the autocorrelation function of the

  6. Coupled ADCPs can yield complete Reynolds stress tensor profiles in geophysical surface flows

    NARCIS (Netherlands)

    Vermeulen, B.; Hoitink, A.J.F.; Sassi, M.G.

    2011-01-01

    We introduce a new technique to measure profiles of each term in the Reynolds stress tensor using coupled acoustic Doppler current profilers (ADCPs). The technique is based on the variance method which is extended to the case with eight acoustic beams. Methods to analyze turbulence from a single

  7. Single-ping ADCP measurements in the Strait of Gibraltar

    Science.gov (United States)

    Sammartino, Simone; García Lafuente, Jesús; Naranjo, Cristina; Sánchez Garrido, José Carlos; Sánchez Leal, Ricardo

    2016-04-01

    In most Acoustic Doppler Current Profiler (ADCP) user manuals, it is widely recommended to apply ensemble averaging of the single-pings measurements, in order to obtain reliable observations of the current speed. The random error related to the single-ping measurement is typically too high to be used directly, while the averaging operation reduces the ensemble error of a factor of approximately √N, with N the number of averaged pings. A 75 kHz ADCP moored in the western exit of the Strait of Gibraltar, included in the long-term monitoring of the Mediterranean outflow, has recently served as test setup for a different approach to current measurements. The ensemble averaging has been disabled, while maintaining the internal coordinate conversion made by the instrument, and a series of single-ping measurements has been collected every 36 seconds during a period of approximately 5 months. The huge amount of data has been fluently handled by the instrument, and no abnormal battery consumption has been recorded. On the other hand a long and unique series of very high frequency current measurements has been collected. Results of this novel approach have been exploited in a dual way: from a statistical point of view, the availability of single-ping measurements allows a real estimate of the (a posteriori) ensemble average error of both current and ancillary variables. While the theoretical random error for horizontal velocity is estimated a priori as ˜2 cm s-1 for a 50 pings ensemble, the value obtained by the a posteriori averaging is ˜15 cm s-1, with an asymptotical behavior starting from an averaging size of 10 pings per ensemble. This result suggests the presence of external sources of random error (e.g.: turbulence), of higher magnitude than the internal sources (ADCP intrinsic precision), which cannot be reduced by the ensemble averaging. On the other hand, although the instrumental configuration is clearly not suitable for a precise estimation of turbulent

  8. Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Hoekstra, P.

    2005-01-01

    The ability of a 1.2-MHz Acoustic Doppler Current Profiler (ADCP) to measure suspended sediment concentration (SSC) and particle size variation in a mud-dominated environment has been investigated. Experiments were conducted in the Bay of Banten, Indonesia, where clays and silts in the range of 3-55

  9. In Search of Easy-to-Use Methods for Calibrating ADCP's for Velocity and Discharge Measurements

    Science.gov (United States)

    Oberg, K.; ,

    2002-01-01

    A cost-effective procedure for calibrating acoustic Doppler current profilers (ADCP) in the field was presented. The advantages and disadvantages of various methods which are used for calibrating ADCP were discussed. The proposed method requires the use of differential global positioning system (DGPS) with sub-meter accuracy and standard software for collecting ADCP data. The method involves traversing a long (400-800 meter) course at a constant compass heading and speed, while collecting simultaneous DGPS and ADCP data.

  10. Velocity Mapping Toolbox (VMT): a processing and visualization suite for moving-vessel ADCP measurements

    Science.gov (United States)

    Jackson, R.; Parsons, D. R.; Czuba, J. A.; Mueller, D. S.; Rhoads, B. L.; Engel, F.; Oberg, K. A.; Best, J. L.; Johnson, K. K.; Riley, J. D.

    2011-12-01

    In addition to their common application to measurement of discharge in rivers, acoustic Doppler current profilers (ADCP) provide valuable hydrodynamic data required for understanding geomorphic and fluvial processes. The increasing use of ADCPs to explore the characteristics of complex natural flows has led to a need for standardized post-processing methods for managing, analyzing, and displaying three-dimensional velocity data. Thus far, no standard analytical technique exists for averaging velocity data from multiple ADCP transects to produce a composite depiction of three-dimensional velocity fields. A new software tool, the Velocity Mapping Toolbox (VMT), is presented herein to address this important need. VMT is a Matlab-based toolbox for processing, analyzing, and displaying velocity data collected along multiple ADCP transects. The software can be used to explore patterns of three-dimensional fluid motion through several methods for calculation of secondary flows and includes capabilities for analyzing the acoustic backscatter and bathymetric data from the ADCP. A user-friendly graphical user interface (GUI) enhances program functionality and provides ready access to two- and three- dimensional plotting functions, allowing rapid display and interrogation of velocity, backscatter, and bathymetry data. This presentation describes the basic processing methods employed by VMT and highlights the capabilities of the toolbox through some example applications.

  11. Velocity Mapping Toolbox (VMT): a processing and visualization suite for moving-vessel ADCP measurements

    Science.gov (United States)

    Parsons, D.R.; Jackson, P.R.; Czuba, J.A.; Engel, F.L.; Rhoads, B.L.; Oberg, K.A.; Best, J.L.; Mueller, D.S.; Johnson, K.K.; Riley, J.D.

    2013-01-01

    The use of acoustic Doppler current profilers (ADCP) for discharge measurements and three-dimensional flow mapping has increased rapidly in recent years and has been primarily driven by advances in acoustic technology and signal processing. Recent research has developed a variety of methods for processing data obtained from a range of ADCP deployments and this paper builds on this progress by describing new software for processing and visualizing ADCP data collected along transects in rivers or other bodies of water. The new utility, the Velocity Mapping Toolbox (VMT), allows rapid processing (vector rotation, projection, averaging and smoothing), visualization (planform and cross-section vector and contouring), and analysis of a range of ADCP-derived datasets. The paper documents the data processing routines in the toolbox and presents a set of diverse examples that demonstrate its capabilities. The toolbox is applicable to the analysis of ADCP data collected in a wide range of aquatic environments and is made available as open-source code along with this publication.

  12. ADCP measurements of gravity currents in the Chicago River, Illinois

    Science.gov (United States)

    Garcia, C.M.; Oberg, K.; Garcia, M.H.

    2007-01-01

    A unique set of observations of stratified flow phenomena in the Chicago River was made using an upward-looking acoustic Doppler current profiler (ADCP) during the period November 20, 2003 to February 1, 2004. Water density differences between the Chicago River and its North Branch (NB) seem to be responsible for the development of gravity currents. With the objective of characterizing the occurrence, frequency, and evolution of such currents, the ADCP was configured to continuously collect high-resolution water velocity and echo intensity profiles in the Chicago River at Columbus Drive. During the observation period, 28 gravity current events were identified, lasting a total of 77% of the time. Sixteen of these events were generated by underflows from the NB and 12 of these events were generated by overflows from the NB. On average, the duration of the underflow and overflow events was 52.3 and 42.1 h, respectively. A detailed analysis of one underflow event, which started on January 7, 2004, and lasted about 65h, was performed. This is the first time that ADCP technology has been used to continuously monitor gravity currents in a river. ?? 2007 ASCE.

  13. Estimation of suspended sediment concentration from Acoustic Doppler Current Profiler (ADCP) instrument: A case study of Lembeh Strait, North Sulawesi

    Science.gov (United States)

    Dwinovantyo, Angga; Manik, Henry M.; Prartono, Tri; Susilohadi; Ilahude, Delyuzar

    2017-01-01

    Measurement of suspended sediment concentration (SSC) is one of the parameters needed to determine the characteristics of sediment transport. However, the measurement of SSC nowadays still uses conventional technique and it has limitations; especially in temporal resolution. With advanced technology, the measurement can use hydroacoustic technology such as Acoustic Doppler Current Profiler (ADCP). ADCP measures the intensity of backscatter as echo intensity unit from sediment particles. The frequency of ADCP used in this study was 400 kHz. The samples were measured and collected from Lembeh Strait, North Sulawesi. The highest concentration of suspended sediment was 98.89 mg L-1 and the lowest was 45.20 mg L-1. Time series data showed the tidal condition affected the SSC. From the research, we also made correction from sound signal losses effect such as spherical spreading and sound absorption to get more accurate results by eliminating these parameters in echo intensity data. Simple linear regression analysis at echo intensity measured from ADCP to direct measurement of SSC was performed to obtain the estimation of the SSC. The comparison result of estimation of SSC from ADCP measurements and SSC from laboratory analyses was insignificantly different based on t-test statistical analysis with 95% confidence interval percentage.

  14. Acoustic Doppler current profile (ADCP) data from FRD cruises

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is an archive of raw data obtained from the ADCP for cruises conducted by the SWFSC Fisheries Resources Division from 1991 to present.

  15. Quantifying measurement uncertainties in ADCP measurements in non-steady, inhomogeneous flow

    Science.gov (United States)

    Schäfer, Stefan

    2017-04-01

    The author presents a laboratory study of fixed-platform four-beam ADCP and three-beam ADV measurements in the tailrace of a micro hydro power setup with a 35kW Kaplan-turbine and 2.5m head. The datasets discussed quantify measurement uncertainties of the ADCP measurement technique coming from non-steady, inhomogeneous flow. For constant discharge of 1.5m3/s, two different flow scenarios were investigated: one being the regular tailrace flow downstream the draft tube and the second being a straightened, less inhomogeneous flow, which was generated by the use of a flow straightening device: A rack of diameter 40mm pipe sections was mounted right behind the draft tube. ADCP measurements (sampling rate 1.35Hz) were conducted in three distances behind the draft tube and compared bin-wise to measurements of three simultaneously measuring ADV probes (sampling rate 64Hz). The ADV probes were aligned horizontally and the ADV bins were placed in the centers of two facing ADCP bins and in the vertical under the ADCP probe of the corresponding depth. Rotating the ADV probes by 90° allowed for measurements of the other two facing ADCP bins. For reasons of mutual probe interaction, ADCP and ADV measurements were not conducted at the same time. The datasets were evaluated by using mean and fluctuation velocities. Turbulence parameters were calculated and compared as far as applicable. Uncertainties coming from non-steady flow were estimated with the normalized mean square error und evaluated by comparing long-term measurements of 60 minutes to shorter measurement intervals. Uncertainties coming from inhomogeneous flow were evaluated by comparison of ADCP with ADV data along the ADCP beams where ADCP data were effectively measured and in the vertical under the ADCP probe where velocities of the ADCP measurements were displayed. Errors coming from non-steady flow could be compensated through sufficiently long measurement intervals with high enough sampling rates depending on the

  16. Measuring the Bed Load velocity in Laboratory flumes using ADCP and Digital Cameras

    Science.gov (United States)

    Conevski, Slaven; Guerrero, Massimo; Rennie, Colin; Bombardier, Josselin

    2017-04-01

    Measuring the transport rate and apparent velocity of the bedload is notoriously hard and there is not a certain technique that would obtain continues data. There are many empirical models, based on the estimation of the shear stress, but only few involve direct measurement of the bed load velocity. The bottom tracking (BT) mode of an acoustic Doppler current profiler (ADCP) has been used many times to estimate the apparent velocity of the bed load. Herein is the basic idea, to exploit the bias of the BT signal towards the bed load movement and to calibrate this signal with traditional measuring techniques. These measurements are quite scarce and seldom reliable since there are not taken in controlled conditions. So far, no clear confirmation has been conducted in laboratory-controlled conditions that would attest the assumptions made in the estimation of the apparent bed load velocity, nor in the calibration of the empirical equations. Therefore, this study explores several experiments under stationary conditions, where the signal of the ADCP BT mode is recorded and compared to the bed load motion recorded by digital camera videography. The experiments have been performed in the hydraulic laboratories of Ottawa and Bologna, using two different ADCPs and two different high resolution cameras. In total, more then 30 experiments were performed for different sediment mixtures and different hydraulic conditions. In general, a good match is documented between the apparent bed load velocity measured by the ADCP and the videography. The slight deviation in single experiments can be explained by gravel particles inhomogeneity, difficult in reproducing the same hydro-sedimentological conditions and the randomness of the backscattering strength.

  17. Discharge estimation from H-ADCP measurements in a tidal river subject to sidewall effects and a mobile bed

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Vermeulen, B.; Hidayat, H.

    2011-01-01

    Horizontal acoustic Doppler current profilers (H-ADCPs) can be employed to estimate river discharge based on water level measurements and flow velocity array data across a river transect. A new method is presented that accounts for the dip in velocity near the water surface, which is caused by

  18. VM-ADCP measured upper ocean currents in the southeastern Arabian Sea and Equatorial Indian Ocean during December, 2000

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Suryanarayana, A.; Somayajulu, Y.K.; Raikar, V.; Tilvi, V.

    The Vessel-Mounted Acoustic Doppler Current Profiler (VM-ADCP) measured currents in the upper 200 m along the cruise track covering the southeastern Arabian Sea and the Eastern Equatorial Indian Ocean during northern winter monsoon (10-31 December...

  19. Acoustic Doppler Current Profiler Data Processing System manual [ADCP

    Science.gov (United States)

    Cote, Jessica M.; Hotchkiss, Frances S.; Martini, Marinna A.; Denham, Charles R.; revisions by Ramsey, Andree L.; Ruane, Stephen

    2000-01-01

    This open-file report describes the data processing software currently in use by the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), to process time series of acoustic Doppler current data obtained by Teledyne RD Instruments Workhorse model ADCPs. The Sediment Transport Instrumentation Group (STG) at the WHCMSC has a long-standing commitment to providing scientists high quality oceanographic data published in a timely manner. To meet this commitment, STG has created this software to aid personnel in processing and reviewing data as well as evaluating hardware for signs of instrument malfunction. The output data format for the data is network Common Data Form (netCDF), which meets USGS publication standards. Typically, ADCP data are recorded in beam coordinates. This conforms to the USGS philosophy to post-process rather than internally process data. By preserving the original data quality indicators as well as the initial data set, data can be evaluated and reprocessed for different types of analyses. Beam coordinate data are desirable for internal and surface wave experiments, for example. All the code in this software package is intended to run using the MATLAB program available from The Mathworks, Inc. As such, it is platform independent and can be adapted by the USGS and others for specialized experiments with non-standard requirements. The software is continuously being updated and revised as improvements are required. The most recent revision may be downloaded from: http://woodshole.er.usgs.gov/operations/stg/Pubs/ADCPtools/adcp_index.htm The USGS makes this software available at the user?s discretion and responsibility.

  20. extrap: Software to assist the selection of extrapolation methods for moving-boat ADCP streamflow measurements

    Science.gov (United States)

    Mueller, David S.

    2013-04-01

    Selection of the appropriate extrapolation methods for computing the discharge in the unmeasured top and bottom parts of a moving-boat acoustic Doppler current profiler (ADCP) streamflow measurement is critical to the total discharge computation. The software tool, extrap, combines normalized velocity profiles from the entire cross section and multiple transects to determine a mean profile for the measurement. The use of an exponent derived from normalized data from the entire cross section is shown to be valid for application of the power velocity distribution law in the computation of the unmeasured discharge in a cross section. Selected statistics are combined with empirically derived criteria to automatically select the appropriate extrapolation methods. A graphical user interface (GUI) provides the user tools to visually evaluate the automatically selected extrapolation methods and manually change them, as necessary. The sensitivity of the total discharge to available extrapolation methods is presented in the GUI. Use of extrap by field hydrographers has demonstrated that extrap is a more accurate and efficient method of determining the appropriate extrapolation methods compared with tools currently (2012) provided in the ADCP manufacturers' software.

  1. Using a 1200 kHz workhorse ADCP with mode 12 to measure near bottom mean currents

    Science.gov (United States)

    Martini, M.; ,

    2003-01-01

    Using high frequency Acoustic Doppler Current (ADCP) profiling technology, it is possible to make high-resolution measurements of mean current profiles within a few meters of the seabed. In coastal applications, mean current speeds may be 10 cm/s or less, and oscillatory wave currents may exceed 100 cm/s during storm events. To resolve mean flows of 10 cm/s or less under these conditions, accuracies of 1 cm/s or better are desirable.

  2. Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements

    Science.gov (United States)

    Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe

    2017-04-01

    Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.

  3. Estimation of heading gyrocompass error using a GPS 3DF system: Impact on ADCP measurements

    Directory of Open Access Journals (Sweden)

    Simón Ruiz

    2002-12-01

    Full Text Available Traditionally the horizontal orientation in a ship (heading has been obtained from a gyrocompass. This instrument is still used on research vessels but has an estimated error of about 2-3 degrees, inducing a systematic error in the cross-track velocity measured by an Acoustic Doppler Current Profiler (ADCP. The three-dimensional positioning system (GPS 3DF provides an independent heading measurement with accuracy better than 0.1 degree. The Spanish research vessel BIO Hespérides has been operating with this new system since 1996. For the first time on this vessel, the data from this new instrument are used to estimate gyrocompass error. The methodology we use follows the scheme developed by Griffiths (1994, which compares data from the gyrocompass and the GPS system in order to obtain an interpolated error function. In the present work we apply this methodology on mesoscale surveys performed during the observational phase of the OMEGA project, in the Alboran Sea. The heading-dependent gyrocompass error dominated. Errors in gyrocompass heading of 1.4-3.4 degrees have been found, which give a maximum error in measured cross-track ADCP velocity of 24 cm s-1.

  4. 3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River

    Science.gov (United States)

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.

  5. Impact of sound attenuation by suspended sediment on ADCP backscatter calibrations

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Vermeulen, B.

    2012-01-01

    Although designed for velocity measurements, acoustic Doppler current profilers (ADCPs) are widely being used to monitor suspended particulate matter in rivers and in marine environments. To quantify mass concentrations of suspended matter, ADCP backscatter is generally calibrated with in situ

  6. Amplitude calibration of an acoustic backscattered signal from a bottom-moored ADCP based on long-term measurement series

    Science.gov (United States)

    Piotukh, V. B.; Zatsepin, A. G.; Kuklev, S. B.

    2017-05-01

    A possible approach to, and preliminary results of, amplitude calibration of acoustic signals backscattered from an ADCP moored at the bottom of the near-shelf zone of the Black Sea is considered. The aim of this work is to obtain vertical profiles of acoustic scattering signal levels, showing the real characteristics of the volume content of suspended sediments in sea water in units of conventional acoustic turbidity for a given signal frequency. In this case, the assumption about the intervals of maximum acoustic transparency and vertical homogeneity of the marine environment in long-term series of ADCP measurements is used. According to this hypothesis, the intervals of the least values of acoustic backscattered signals are detected, an empirical transfer function of the ADCP reception path is constructed, and it is calibrated. Normalized sets of acoustic backscattered signals relative to a signal from a level of conventionally clear water are obtained. New features in the behavior of vertical profiles of an acoustic echo-signal are revealed due to the calibration. The results of this work will be used in subsequent analysis of the vertical and time variations in suspended sediment content in the near-shelf zone of the Black Sea.

  7. Current measurements from acoustic doppler current profilers (ADCP) in the southwest Atlantic Ocean from the World Ocean Circulation Experiment (WOCE) from 1991-01-03 to 1992-11-26 (NODC Accession 0087597)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data from the ADCP instruments of BE/335 and BW/333 from January 3, 1991 to November 26, 1992 collected as part of the World Ocean Circulation...

  8. Monitoring Tidal Currents with a Towed ADCP System

    Science.gov (United States)

    2015-12-22

    Monitoring tidal currents with a towed ADCP system Alexei Sentchev1 & Max Yaremchuk2 Received: 22 September 2015 /Accepted: 10 December 2015...English Channel) is measured during the var- ious stages of the tidal cycle with a low-cost towed Acoustic Doppler Current Profiler ( ADCP ) system for the...provided by the ADCP observations and their error statistics. Technically, the MARS model run provides the first guess (background) evo- lution of the

  9. Evaluation of ship-based sediment flux measurements by ADCPs in tidal flows

    Science.gov (United States)

    Becker, Marius; Maushake, Christian; Grünler, Steffen; Winter, Christian

    2017-04-01

    In the past decades acoustic backscatter calibration developed into a frequently applied technique to measure fluxes of suspended sediments in rivers and estuaries. Data is mainly acquired using single-frequency profiling devices, such as ADCPs. In this case, variations of acoustic particle properties may have a significant impact on the calibration with respect to suspended sediment concentration, but associated effects are rarely considered. Further challenges regarding flux determination arise from incomplete vertical and lateral coverage of the cross-section, and the small ratio of the residual transport to the tidal transport, depending on the tidal prism. We analyzed four sets of 13h cross-sectional ADCP data, collected at different locations in the range of the turbidity zone of the Weser estuary, North Sea, Germany. Vertical LISST, OBS and CTD measurements were taken very hour. During the calibration sediment absorption was taken into account. First, acoustic properties were estimated using LISST particle size distributions. Due to the tidal excursion and displacement of the turbidity zone, acoustic properties of particles changed during the tidal cycle, at all locations. Applying empirical functions, the lowest backscattering cross-section and highest sediment absorption coefficient were found in the center of the turbidity zone. Outside the tidally averaged location of the turbidity zone, changes of acoustic parameters were caused mainly by advection. In the turbidity zone, these properties were also affected by settling and entrainment, inducing vertical differences and systematic errors in concentration. In general, due to the iterative correction of sediment absorption along the acoustic path, local errors in concentration propagate and amplify exponentially. Based on reference concentration obtained from water samples and OBS data, we quantified these errors and their effect on cross-sectional averaged concentration and sediment flux. We found that

  10. Field verification of ADCP surface gravity wave elevation spectra

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Peters, H.C.; Schroevers, M.

    2007-01-01

    Acoustic Doppler current profilers (ADCPs) can measure orbital velocities induced by surface gravity waves, yet the ADCP estimates of these velocities are subject to a relatively high noise level. The present paper introduces a linear filtration technique to significantly reduce the influence of

  11. Ocean currents and acoustic backscatter data from shipboard ADCP measurements at three North Atlantic seamounts between 2004 and 2015.

    Science.gov (United States)

    Mohn, Christian; Denda, Anneke; Christiansen, Svenja; Kaufmann, Manfred; Peine, Florian; Springer, Barbara; Turnewitsch, Robert; Christiansen, Bernd

    2018-04-01

    Seamounts are amongst the most common physiographic structures of the deep-ocean landscape, but remoteness and geographic complexity have limited the systematic collection of integrated and multidisciplinary data in the past. Consequently, important aspects of seamount ecology and dynamics remain poorly studied. We present a data collection of ocean currents and raw acoustic backscatter from shipboard Acoustic Doppler Current Profiler (ADCP) measurements during six cruises between 2004 and 2015 in the tropical and subtropical Northeast Atlantic to narrow this gap. Measurements were conducted at seamount locations between the island of Madeira and the Portuguese mainland (Ampère, Seine Seamount), as well as east of the Cape Verde archipelago (Senghor Seamount). The dataset includes two-minute ensemble averaged continuous velocity and backscatter profiles, supplemented by spatially gridded maps for each velocity component, error velocity and local bathymetry. The dataset is freely available from the digital data library PANGAEA at https://doi.pangaea.de/10.1594/PANGAEA.883193.

  12. Profiles of current speed, direction and other data from ADCP casts from MULTIPLE SHIPS from 01 January 1996 to 25 May 1999 (NODC Accession 9900096)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Profiles of current speed , direction and other data from ADCP casts from MULTIPLE SHIPS. Data were collected by the University of Hawaii at Manoa (UHM) from 01...

  13. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge

    Science.gov (United States)

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.

    2005-01-01

    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  14. extrap: Software to assist the selection of extrapolation methods for moving-boat ADCP streamflow measurements

    Science.gov (United States)

    Mueller, David S.

    2013-01-01

    Selection of the appropriate extrapolation methods for computing the discharge in the unmeasured top and bottom parts of a moving-boat acoustic Doppler current profiler (ADCP) streamflow measurement is critical to the total discharge computation. The software tool, extrap, combines normalized velocity

  15. Ocean currents measured by Shipboard Acoustic Doppler Current Profiler (SADCP) from global oceans as part of the Joint Archive for Shipboard ADCP holdings from 13 September 1999 to 28 April 2007 (NCEI Accession 0036863)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high frequency sampling (nominally 5 minutes...

  16. Ocean currents measured by Shipboard Acoustic Doppler Current Profiler (SADCP) from global oceans as part of the Joint Archive for Shipboard ADCP holdings from 8 October 1993 to 16 March 2008 (NODC Accession 0049878)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high frequency sampling (nominally 5 minutes...

  17. Ocean currents measured by Shipboard Acoustic Doppler Current Profiler (SADCP) from global oceans as part of the Joint Archive for Shipboard ADCP holdings from 6 November 1993 to 11 October 2005 (NODC Accession 0002679)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high frequency sampling (nominally 5 minutes...

  18. Moored ADCP Current Measurements from Mamala Bay, Oahu, Hawaii during 1997-1998 (NODC Accession 0000624)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A downward-looking moored ADCP instrument was deployed at the surface about a mile south of Honolulu Harbor in waters of about 280 feet. The instrument was in...

  19. Moored ADCP current measurements from Mamala Bay, Oahu, Hawaii during 1997 - 1998 (NODC Accession 0000624)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A downward-looking moored ADCP instrument was deployed at the surface about a mile south of Honolulu Harbor in waters of about 280 feet. The instrument was in...

  20. Velocity bias induced by flow patterns around ADCPs and associated deployment platforms

    Science.gov (United States)

    Mueller, David S.

    2015-01-01

    Velocity measurements near the Acoustic Doppler Current Profiler (ADCP) are important for mapping surface currents, measuring velocity and discharge in shallow streams, and providing accurate estimates of discharge in the top unmeasured portion of the water column. Improvements to ADCP performance permit measurement of velocities much closer (5 cm) to the transducer than has been possible in the past (25 cm). Velocity profiles collected by the U.S. Geological Survey (USGS) with a 1200 kHz Rio Grande Zedhead ADCP in 2002 showed a negative bias in measured velocities near the transducers. On the basis of these results, the USGS initiated a study combining field, laboratory, and numerical modeling data to assess the effect of flow patterns caused by flow around the ADCP and deployment platforms on velocities measured near the transducers. This ongoing study has shown that the negative bias observed in the field is due to the flow pattern around the ADCP. The flow pattern around an ADCP violates the basic assumption of flow homogeneity required for an accurate three-dimensional velocity solution. Results, to date (2014), have indicated velocity biases within the measurable profile, due to flow disturbance, for the TRDI 1200 kHz Rio Grande Zedhead and the SonTek RiverSurveyor M9 ADCPs. The flow speed past the ADCP, the mount and the deployment platform have also been shown to play an important role in the magnitude and extent of the velocity bias.

  1. Continuous measurements of discharge from a horizontal acoustic Doppler current profiler in a tidal river

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Buschman, F.A.; Vermeulen, B.

    2009-01-01

    Acoustic Doppler current profilers (ADCPs) can be mounted horizontally at a river bank, yielding single-depth horizontal array observations of velocity across the river. This paper presents a semideterministic, semistochastic method to obtain continuous measurements of discharge from horizontal ADCP

  2. Water velocities collected using an Acoustic Doppler Current Profiler (ADCP) from the R.V. Weicker in the Eastern Long Island Sound for the Global Ocean Data Archaeology and Rescue Project from 2009-11-29 to 2010-08-25. (NCEI Accession 0145671)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 600 kHz RD Instruments ADCP was installed in the well of the R/V Weicker (Univ of Connecticut) and used to collect measurements of water velocity profiles along...

  3. Ocean current data measured by the Acoustic Doppler Current Profiler (ADCP) aboard the Discoverer Enterprise oil platform from May 23, 2010 to July 04, 2010 in the Gulf of Mexico in response to the Deepwater Horizon oil spill (NODC Accession 0083684)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean current data were collected by ADCP aboard the Discoverer Enterprise in the Gulf of Mexico in response to the Deepwater Horizon oil spill event on April 20,...

  4. Ocean current data measured by the Acoustic Doppler Current Profiler (ADCP) aboard the Development Driller III from 2010-05-31 to 2010-07-04 in the Gulf of Mexico in response to the Deepwater Horizon oil spill (NODC Accession 0083634)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean current data were collected by ADCP aboard the Discoverer Enterprise in the Gulf of Mexico in response to the Deepwater Horizon oil spill event on April 20,...

  5. H-ADCP discharge monitoring of a large tropical river

    NARCIS (Netherlands)

    Hidayat, H.; Sassi, M.G.; Vermeulen, B.

    2012-01-01

    River flow can be continuously monitored through velocity measurements with an acoustic Doppler current profiler, deployed horizontally at a river bank (H-ADCP). This approach was adopted to obtain continuous discharge estimates at two cross-sections in the River Mahakam, i.e. at an upstream station

  6. Measurement of velocities with an acoustic velocity meter, one side-looking and two upward-looking acoustic Doppler current profilers in the Chicago Sanitary and Ship Canal, Romeoville, Illinois

    Science.gov (United States)

    Oberg, Kevin A.; Duncker, James J.

    1999-01-01

    In 1998, a prototype 300 kHz, side-looking Acoustic Doppler Current Profiler (ADCP) was deployed in the Chicago Sanitary and Ship Canal (CSSC) at Romeoville, Illinois. Additionally, two upward-looking ADCP's were deployed in the same acoustic path as the side-looking ADCP and in the reach defined by the upstream and downstream acoustic velocity meter (AVM) paths. All three ADCP's were synchronized to the AVM clock at the gaging station so that data were sampled simultaneously. The three ADCP's were deployed for six weeks measuring flow velocities from 0.0 to 2.5 ft/s. Velocities measured by each ADCP were compared to AVM path velocities and to velocities measured by the other ADCP's.

  7. Ocean currents measured by shipboard ADCP from global oceans from the Joint Archive for Shipboard ADCP holdings from 2000-07 to 2012-02 (NODC Accession 0093159)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high frequency sampling (nominally 5 minutes...

  8. Upper Ocean Meso-Submesoscale Eddy Variability in the Northwestern Pacific from Repeat ADCP Measurements and 1/48-deg MITgcm Simulation

    Science.gov (United States)

    Qiu, B.; Nakano, T.; Chen, S.; Wang, J.; Fu, L. L.; Klein, P.

    2016-12-01

    With the use of Ka-band radar interferometry, the Surface Water and Ocean Topography (SWOT) satellite will improve the measured sea surface height (SSH) resolution down to the spectral wavelength of 15km, allowing us to investigate for the first time the upper oceancirculation variability at the submesoscale range on the global scale. By analyzing repeat shipboardAcoustic Doppler Current Profiler (ADCP) measurements along 137°E, as well as the 1/48-deg MITgcm simulation output, in the northwest Pacific, we demonstrate that the observed/modeled upper ocean velocities are comprised of balanced geostrophic motions and unbalanced ageostrophic wave motions. The length scale, Lc, that separates the dominance between these two types of motions is found to depend sensitively on the energy level of local mesoscale eddy variability. In the eddy-abundant western boundary current region of Kuroshio, Lc can be shorter than 15km, whereas Lc exceeds 200km along the path of relatively stable North Equatorial Current. Judicious separation between the balanced and unbalanced surface ocean signals will both be a challenge and opportunity for the SWOT mission.

  9. Measuring discharge with acoustic Doppler current profilers from a moving boat

    Science.gov (United States)

    Mueller, David S.; Wagner, Chad R.; Rehmel, Michael S.; Oberg, Kevin A.; Rainville, Francois

    2013-01-01

    The use of acoustic Doppler current profilers (ADCPs) from a moving boat is now a commonly used method for measuring streamflow. The technology and methods for making ADCP-based discharge measurements are different from the technology and methods used to make traditional discharge measurements with mechanical meters. Although the ADCP is a valuable tool for measuring streamflow, it is only accurate when used with appropriate techniques. This report presents guidance on the use of ADCPs for measuring streamflow; this guidance is based on the experience of U.S. Geological Survey employees and published reports, papers, and memorandums of the U.S. Geological Survey. The guidance is presented in a logical progression, from predeployment planning, to field data collection, and finally to post processing of the collected data. Acoustic Doppler technology and the instruments currently (2013) available also are discussed to highlight the advantages and limitations of the technology. More in-depth, technical explanations of how an ADCP measures streamflow and what to do when measuring in moving-bed conditions are presented in the appendixes. ADCP users need to know the proper procedures for measuring discharge from a moving boat and why those procedures are required, so that when the user encounters unusual field conditions, the procedures can be adapted without sacrificing the accuracy of the streamflow-measurement data.

  10. Temperature profiles and current measurements from the Nathaniel B. Palmer during the 1997 Dovetail cruise in the Southern Ocean (NODC Accession 9900243)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data collection includes temperature profiles from CTD casts and current measurements from hull-mounted ADCP system aboard the research vessel Nathaniel B....

  11. Acoustic Doppler current profiler raw measurements on the Missouri and Yellowstone rivers, 2000-2016, Columbia Environmental Research Center

    Science.gov (United States)

    Bulliner, Edward A.; Elliott, Caroline M.; Jacobson, Robert B.

    2017-01-01

    Between the years 2000 and 2016, scientists and technicians from the U.S. Geological Survey (USGS) Columbia Environmental Research Center (CERC) have collected over 400 field-days worth of acoustic Doppler current profiler (ADCP) measurements on the Missouri and Yellowstone Rivers, primarily for the purposes of assessing physical aquatic habitat for the pallid sturgeon. Scientists and technicians collected data using boat-mounted Teledyne Rio Grande ADCPs, which were processed using customized scripting tools and archived in standardized formats. To assess longitudinal variability in depth and velocity distributions along the Missouri River, as well as compare the Missouri River to its unaltered analog, the Yellowstone River, we compiled the collected datasets into a single comma-separated value (csv) file using a series of data-processing scripts written in Python. To allow for the comparison of measurements collected only within a specific window of flow exceedance, we conducted geospatial analyses to attribute each ADCP measurement by a discharge from the most relevant USGS gage location (with the most relevant gage location being the gage located between the same major tributaries as the measurement, even if it was not the closest spatially), and assigned each measurement a flow exceedance percentile based on the relevant gage's record between 2000 and 2016. We also conducted general quality control on the data, discarding any ADCP returns where the ADCP measured a depth-averaged velocity greater than 3 meters per second or a depth greater than 16 meters; these values were considered to be an approximate upper bounds for realistic values on the Missouri and Yellowstone Rivers. The presented csv file lists individual ADCP bins for all measurements that have been archived between 2000 and 2016 by CERC scientists along with their three-dimensional velocity components, depth-averaged velocity magnitude for a given ADCP return, average channel depth for a given ADCP

  12. Methods and Systems for Use of an Acoustic Doppler Current Profiler for Measurement of Compact Jets

    National Research Council Canada - National Science Library

    Hendricks, Peter J

    2007-01-01

    ... an Acoustic Doppler Current Profiler (ADCP). The ADCP is a four-beam, Janus-type ADCP having beams aligned so that each of the beams is at an angle of about 200 to 300 to vertical and at 450 to the fore and aft axis of the vessel, such that two...

  13. From mobile ADCP to high-resolution SSC: a cross-section calibration tool

    Science.gov (United States)

    Boldt, Justin A.

    2015-01-01

    Sediment is a major cause of stream impairment, and improved sediment monitoring is a crucial need. Point samples of suspended-sediment concentration (SSC) are often not enough to provide an understanding to answer critical questions in a changing environment. As technology has improved, there now exists the opportunity to obtain discrete measurements of SSC and flux while providing a spatial scale unmatched by any other device. Acoustic instruments are ubiquitous in the U.S. Geological Survey (USGS) for making streamflow measurements but when calibrated with physical sediment samples, they may be used for sediment measurements as well. The acoustic backscatter measured by an acoustic Doppler current profiler (ADCP) has long been known to correlate well with suspended sediment, but until recently, it has mainly been qualitative in nature. This new method using acoustic surrogates has great potential to leverage the routine data collection to provide calibrated, quantitative measures of SSC which hold promise to be more accurate, complete, and cost efficient than other methods. This extended abstract presents a method for the measurement of high spatial and temporal resolution SSC using a down-looking, mobile ADCP from discrete cross-sections. The high-resolution scales of sediment data are a primary advantage and a vast improvement over other discrete methods for measuring SSC. Although acoustic surrogate technology using continuous, fixed-deployment ADCPs (side-looking) is proven, the same methods cannot be used with down-looking ADCPs due to the fact that the SSC and particle-size distribution variation in the vertical profile violates theory and complicates assumptions. A software tool was developed to assist in using acoustic backscatter from a down-looking, mobile ADCP as a surrogate for SSC. This tool has a simple graphical user interface that loads the data, assists in the calibration procedure, and provides data visualization and output options. This tool

  14. Referencing geostrophic velocities using ADCP data Referencing geostrophic velocities using ADCP data

    Directory of Open Access Journals (Sweden)

    Isis Comas-Rodríguez

    2010-06-01

    Full Text Available Acoustic Doppler Current Profilers (ADCPs have proven to be a useful oceanographic tool in the study of ocean dynamics. Data from D279, a transatlantic hydrographic cruise carried out in spring 2004 along 24.5°N, were processed, and lowered ADCP (LADCP bottom track data were used to assess the choice of reference velocity for geostrophic calculations. The reference velocities from different combinations of ADCP data were compared to one another and a reference velocity was chosen based on the LADCP data. The barotropic tidal component was subtracted to provide a final reference velocity estimated by LADCP data. The results of the velocity fields are also shown. Further studies involving inverse solutions will include the reference velocity calculated here.

  15. Current and turbulence measurements at the FINO1 offshore wind energy site: analysis using 5-beam ADCPs

    Science.gov (United States)

    Bakhoday-Paskyabi, Mostafa; Fer, Ilker; Reuder, Joachim

    2018-01-01

    We report concurrent measurements of ocean currents and turbulence at two sites in the North Sea, one site at upwind of the FINO1 platform and the other 200-m downwind of the Alpha Ventus wind farm. At each site, mean currents, Reynolds stresses, turbulence intensity and production of turbulent kinetic energy are obtained from two bottom-mounted 5-beam Nortek Signature1000s, high-frequency Doppler current profiler, at a water depth of approximately 30 m. Measurements from the two sites are compared to statistically identify the effects of wind farm and waves on ocean current variability and the turbulent structure in the water column. Profiles of Reynolds stresses are found to be sensible to both environmental forcing and the wind farm wake-induced distortions in both boundary layers near the surface and the seabed. Production of turbulent kinetic energy and turbulence intensity exhibit approximately similar, but less pronounced, patterns in the presence of farm wake effects.

  16. Current and turbulence measurements at the FINO1 offshore wind energy site: analysis using 5-beam ADCPs

    Science.gov (United States)

    Bakhoday-Paskyabi, Mostafa; Fer, Ilker; Reuder, Joachim

    2017-11-01

    We report concurrent measurements of ocean currents and turbulence at two sites in the North Sea, one site at upwind of the FINO1 platform and the other 200-m downwind of the Alpha Ventus wind farm. At each site, mean currents, Reynolds stresses, turbulence intensity and production of turbulent kinetic energy are obtained from two bottom-mounted 5-beam Nortek Signature1000s, high-frequency Doppler current profiler, at a water depth of approximately 30 m. Measurements from the two sites are compared to statistically identify the effects of wind farm and waves on ocean current variability and the turbulent structure in the water column. Profiles of Reynolds stresses are found to be sensible to both environmental forcing and the wind farm wake-induced distortions in both boundary layers near the surface and the seabed. Production of turbulent kinetic energy and turbulence intensity exhibit approximately similar, but less pronounced, patterns in the presence of farm wake effects.

  17. Use of an ADCP to compute suspended-sediment discharge in the tidal Hudson River, New York

    Science.gov (United States)

    Wall, Gary R.; Nystrom, Elizabeth A.; Litten, Simon

    2006-01-01

    Acoustic Doppler current profilers (ADCPs) can provide data needed for computation of suspended-sediment discharge in complex river systems, such as tidal rivers, in which conventional methods of collecting time-series data on suspended-sediment concentration (SSC) and water discharge are not feasible. Although ADCPs are not designed to measure SSC, ADCP data can be used as a surrogate under certain environmental conditions. However, the software for such computation is limited, and considerable post-processing is needed to correct and normalize ADCP data for this use. This report documents the sampling design and computational procedure used to calibrate ADCP measures of echo intensity to SSC and water velocity to discharge in the computation of suspended-sediment discharge at the study site on the Hudson River near Poughkeepsie, New York. The methods and procedures described may prove useful to others doing similar work in different locations; however, they are specific to this study site and may have limited applicability elsewhere.

  18. Effects of non-homogeneous flow on ADCP data processing in a hydroturbine forebay

    Energy Technology Data Exchange (ETDEWEB)

    Harding, S. F.; Richmond, M. C.; Romero-Gomez, P.; Serkowski, J. A.

    2016-12-01

    Observations of the flow conditions in the forebay of a hydroelectric power station indicate significant regions of non-homogeneous velocities near the intakes and shoreline. The effect of these non-homogeneous regions on the velocity measurement of an acoustic Doppler current profiler (ADCP) is investigated. By using a numerical model of an ADCP operating in a velocity field calculated using computational fluid dynamics (CFD), the errors due to the spatial variation of the flow velocity are identified. The numerical model of the ADCP is referred to herein as a Virtual ADCP (VADCP). Two scenarios are modeled in the numerical analyses presented. Firstly the measurement error of the VADCP is calculated for a single instrument adjacent to the short converging intake of the powerhouse. Secondly, the flow discharge through the forebay is estimated from a transect of VADCP instruments at dif- ferent distances from the powerhouse. The influence of instrument location and orientation are investigated for both cases. A velocity error of over up to 94% of the reference velocity is calculated for a VADCP modeled adjacent to an operating intake. Qualitative agreement is observed between the calculated VADCP velocities and reference velocities by an offset of one intake height upstream of the powerhouse.

  19. The misalignment angle in vessel-mounted ADCP

    Directory of Open Access Journals (Sweden)

    Robert Osinski

    2000-09-01

    Full Text Available A description of the misalignment angle and the consequences if it occurs is given. It is shown that because of gyrocompass errors, the misalignment angle error a has to be computed for each cruise. A simple method of calibrating the acoustic Doppler current profiler (ADCP mounted on a vessel has been devised by fitting the cosinusoidal function. This is a post-processing method, suitable for calibrating previously collected data. Nevertheless, because of ADCP's constructional peculiarities, the procedure must be repeated for each cruise.

  20. Bonneville Second Powerhouse Tailrace and High Flow Outfall: ADCP and drogue release field study

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Christopher B.; Richmond, Marshall C.; Guensch, Gregory R.

    2001-03-20

    The Bonneville Project is one of four US Army Corps of Engineers operated dams along the Lower Columbia River. Each year thousands of smelt pass through this Project on their way to the Pacific Ocean. High flow outfalls, if specifically designed for fish passage, are thought to have as good or better smelt survival rates as spillways. To better understand the hydrodynamic flow field around an operating outfall, the Corps of Engineers commissioned measurement of water velocities in the tailrace of the Second Powerhouse. These data also are necessary for proper calibration and verification of three-dimensional numerical models currently under development at PNNL. Hydrodynamic characterization of the tailrace with and without the outfall operating was accomplished through use of a surface drogue and acoustic Doppler current profiler (ADCP). Both the ADCP and drogue were linked to a GPS (global positioning system); locating the data in both space and time. Measurements focused on the area nearest to the high flow outfall, however several ADCP transects and drogue releases were performed away from the outfall to document ambient flow field conditions when the outfall was not operating.

  1. Hake Survey ADCP (2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shipboard acoustic Doppler current profiler data collected during the Integrated Acoustic and Trawl Surveys of Pacific Hake. Processing by: Stephen Pierce, Oregon...

  2. Hake Survey ADCP (1998)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shipboard acoustic Doppler current profiler data collected during the Integrated Acoustic and Trawl Surveys of Pacific Hake. Processing by: Stephen Pierce, Oregon...

  3. Hake Survey ADCP (2003)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shipboard acoustic Doppler current profiler data collected during the Integrated Acoustic and Trawl Surveys of Pacific Hake. Processing by: Stephen Pierce, Oregon...

  4. Hake Survey ADCP (2001)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shipboard acoustic Doppler current profiler data collected during the Integrated Acoustic and Trawl Surveys of Pacific Hake. Processing by: Stephen Pierce, Oregon...

  5. Hake Survey ADCP (1995)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shipboard acoustic Doppler current profiler data collected during the Integrated Acoustic and Trawl Surveys of Pacific Hake. Processing by: Stephen Pierce, Oregon...

  6. ORNL ADCP POST-PROCESSING GUIDE AND MATLAB ALGORITHMS FOR MHK SITE FLOW AND TURBULENCE ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, Budi [Oak Ridge National Laboratory (ORNL); Neary, Vincent S [ORNL

    2011-09-01

    Standard methods, along with guidance for post-processing the ADCP stationary measurements using MATLAB algorithms that were evaluated and tested by Oak Ridge National Laboratory (ORNL), are presented following an overview of the ADCP operating principles, deployment methods, error sources and recommended protocols for removing and replacing spurious data.

  7. Improved flow velocity estmates from oving-boat ADCO measurements

    NARCIS (Netherlands)

    Vermeulen, B.; Sassi, M.G.; Hoitink, A.J.F.

    2014-01-01

    Acoustic Doppler current profilers (ADCPs) are the current standard for flow measurements in large-scale open water systems. Existing techniques to process vessel-mounted ADCP data assume homogeneous or linearly changing flow between the acoustic beams. This assumption is likely to fail but is

  8. Hull-Mounted (shipboard) Acoustic Doppler Current Profiler (ADCP) data collected during shipboard surveys during 2010 and 2011 in Vieques Sound, Virgin Passage and surrounding regions (NODC Accession 0088063)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Teledyne RD Instruments Ocean Surveyor 150kHz and Workhorse 300kHz ADCPs were utilized during cruises conducted between March 2010 and April 2011 in Vieques Sound,...

  9. Acoustic Doppler current profiler measurements in coastal and estuarine environments: examples from the Tay Estuary, Scotland

    Science.gov (United States)

    Wewetzer, Silke F. K.; Duck, Robert W.; Anderson, James M.

    1999-08-01

    Acoustic Doppler current profilers (ADCPs) provide a means to measure the components of water current velocities in three dimensions. Such instruments have been used widely by the oil industry in deep offshore waters but their application to nearshore coastal and estuarine environments has been principally confined to the USA. Using examples of ADCP datasets acquired from the macrotidal Tay Estuary, eastern Scotland, the principles of field deployment, data acquisition and forms of output are critically summarised. It is shown, for the first time in the Tay Estuary, that vertical current velocities are significant and are particularly so in downwelling zones associated with the development and passage of axially convergent tidal fronts. The improved understanding of three-dimensional water and suspended sediment dynamics in coastal and estuarine waters is crucial to, inter alia, the sustainable management of effluent discharges and, in more general terms, it is predicted on the basis of the Tay case study, that ADCP measurements afford significant opportunities to refine understanding of geomorphological processes in a variety of aquatic environments worldwide.

  10. Evaluation of ADCP apparent bed load velocity in a large sand-bed river: Moving versus stationary boat conditions

    Science.gov (United States)

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and apparent bed load velocity using a boat-mounted acoustic Doppler current profiler (ADCP) was carried out along a 388-m section of the lower Missouri River near Columbia, Missouri. Sampling transects (moving boat) were completed at 5- and 20-m spacing along the study section. Stationary (fixed-boat) measurements were made by maintaining constant boat position over a target point where the position of the boat did not deviate more than 3 m in any direction. For each transect and stationary measurement, apparent bed load velocity (vb) was estimated using ADCP bottom tracking data and high precision real-time kinematic (RTK) global positioning system (GPS). The principal objectives of this research are to (1) determine whether boat motion introduces a bias in apparent bed load velocity measurements; and (2) evaluate the reliability of ADCP bed velocity measurements for a range of sediment transport environments. Results indicate that both high transport (vb>0.6 m/s) and moving-boat conditions (for both high and low transport environments) increase the relative variability in estimates of mean bed velocity. Despite this, the spatially dense single-transect measurements were capable of producing detailed bed velocity maps that correspond closely with the expected pattern of sediment transport over large dunes. ?? 2011 American Society of Civil Engineers.

  11. Comparison of turbulence estimation for four- and five-beam ADCP configurations

    Science.gov (United States)

    Togneri, Michael; Masters, Ian; Jones, Dale

    2017-04-01

    Turbulence is a vital consideration for tidal power generation, as the resulting fluctuating loads greatly impact the fatigue life of tidal turbines and their components. Acoustic Doppler current profilers (ADCPs) are one of the most common tools for measurement of currents in tidal power applications, and although most often used for assessment of mean current properties they are also capable of measuring turbulence parameters. Conventional ADCPs use four diverging beams in a so-called 'Janus' configuration, but more recent models employ an additional vertical beam. In this paper we explore the improvements to turbulence measurements that are made possible by the addition of the fifth beam, with a focus on estimation of turbulent kinetic energy (TKE) density. The standard approach for estimating TKE density from ADCP measurements is the variance method. As each of the diverging beams measures a single velocity component at spatially-separated points, it is not possible to find the TKE density by a straightforward combination of beam measurements. Instead, we must assume that the statistical properties of the turbulence are uniform across the spatial extent of the beams; it is then possible to express the TKE density as a linear combination of the velocity variance as measured by each beam. In the four-beam configuration, an additional assumption regarding the magnitude of the turbulent anisotropy: a parameter ξ is introduced that characterises the proportion of TKE in the vertical fluctuations. With the five-beam configuration, direct measurements of the vertical component are available and this assumption is no longer required. In this paper, turbulence measurements from a five-beam ADCP deployed off the coast of Anglesey in 2014 are analysed. We compare turbulence estimates using all five beams to estimates obtained using only the conventional four-beam setup by discarding the vertical beam data. This allows us to quantify the error in the standard value of

  12. Flow Patterns and Morphological Changes in a Sandy Meander Bend during a Flood—Spatially and Temporally Intensive ADCP Measurement Approach

    Directory of Open Access Journals (Sweden)

    Elina Kasvi

    2017-02-01

    Full Text Available The fluvio-geomorphological processes in meander bends are spatially uneven in distribution. Typically, higher velocities and erosion take place near the outer bank beyond the bend apex, while the inner bend point bar grows laterally towards the outer bank, increasing the bend amplitude. These dynamics maintain the meander evolution. Even though this development is found in meandering rivers independent of soil or environmental characteristics, each river still seems to behave unpredictably. The special mechanisms that determine the rate and occasion of morphological changes remain unclear. The aim of this study is to offer new insights regarding flow-induced morphological changes in meander using a novel study approach. We focused on short-term and small-spatial-scale changes by conducting a spatially and temporally (daily intensive survey during a flood (a period of nine days with an ADCP attached to a remotely controlled mini-boat. Based on our analysis, the flood duration and the rate of discharge increase and decrease seems to play key roles in determining channel changes by controlling the flow velocities and depth and the backwater effect may have notable influence on the morphological processes. We discuss themes such as the interaction of inner and outer bend processes and the longer-term development of meander bends.

  13. NODC Standard Product: Naval Surface Weapons Center (NSWC) moored ADCP data 1994-1995 (Straits of Florida) (NODC Accession 0095602)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database contains Acoustic Doppler Current Profiler (ADCP) data collected during 1994-1995 on the eastern shelf of Florida. The data were collected at...

  14. WHOI MVCO 12m Node ADCP SOS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wave observations from the 12m node ADCP in the Martha's Vineyard Coastal Observatory (MVCO) in the northwest Atlantic in coastal waters of North America. Extensive,...

  15. Quantifying acoustic doppler current profiler discharge uncertainty: A Monte Carlo based tool for moving-boat measurements

    Science.gov (United States)

    Mueller, David S.

    2017-01-01

    This paper presents a method using Monte Carlo simulations for assessing uncertainty of moving-boat acoustic Doppler current profiler (ADCP) discharge measurements using a software tool known as QUant, which was developed for this purpose. Analysis was performed on 10 data sets from four Water Survey of Canada gauging stations in order to evaluate the relative contribution of a range of error sources to the total estimated uncertainty. The factors that differed among data sets included the fraction of unmeasured discharge relative to the total discharge, flow nonuniformity, and operator decisions about instrument programming and measurement cross section. As anticipated, it was found that the estimated uncertainty is dominated by uncertainty of the discharge in the unmeasured areas, highlighting the importance of appropriate selection of the site, the instrument, and the user inputs required to estimate the unmeasured discharge. The main contributor to uncertainty was invalid data, but spatial inhomogeneity in water velocity and bottom-track velocity also contributed, as did variation in the edge velocity, uncertainty in the edge distances, edge coefficients, and the top and bottom extrapolation methods. To a lesser extent, spatial inhomogeneity in the bottom depth also contributed to the total uncertainty, as did uncertainty in the ADCP draft at shallow sites. The estimated uncertainties from QUant can be used to assess the adequacy of standard operating procedures. They also provide quantitative feedback to the ADCP operators about the quality of their measurements, indicating which parameters are contributing most to uncertainty, and perhaps even highlighting ways in which uncertainty can be reduced. Additionally, QUant can be used to account for self-dependent error sources such as heading errors, which are a function of heading. The results demonstrate the importance of a Monte Carlo method tool such as QUant for quantifying random and bias errors when

  16. Role of turbulence fluctuations on uncertainties of acoutic Doppler current profiler discharge measurements

    Science.gov (United States)

    Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin

    2012-01-01

    This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).

  17. Quantification and Analysis of Suspended Sediments Concentration Using Mobile and Static Acoustic Doppler Current Profiler Instruments

    Directory of Open Access Journals (Sweden)

    Angga Dwinovantyo

    2017-01-01

    Full Text Available The application of Acoustic Doppler Current Profiler (ADCP can be used not only for measuring ocean currents, but also for quantifying suspended sediment concentrations (SSC from acoustic backscatter strength based on sonar principle. Suspended sediment has long been recognized as the largest sources of sea contaminant and must be considered as one of the important parameters in water quality of seawater. This research was to determine SSC from measured acoustic backscattered intensity of static and mobile ADCP. In this study, vertically mounted 400 kHz and 750 kHz static ADCP were deployed in Lembeh Strait, North Sulawesi. A mobile ADCP 307.2 kHz was also mounted on the boat and moved to the predefined cross-section, accordingly. The linear regression analysis of echo intensity measured by ADCP and by direct measurement methods showed that ADCP is a reliable method to measure SSC with correlation coefficient (r 0.92. Higher SSC was observed in low water compared to that in high water and near port area compared to those in observed areas. All of this analysis showed that the combination of static and mobile ADCP methods produces reasonably good spatial and temporal data of SSC.

  18. Sediment and Hydraulic Measurements with Computed Bed Load on the Missouri River, Sioux City to Hermann, 2014

    Science.gov (United States)

    2017-05-01

    7 3.1 Acoustic Doppler current profiler ( ADCP ) flow and velocity ......................................... 8 3.2 Water surface...Omaha, Nebraska ................................................................................................................... 34 4.1 ADCP flow...Nebraska ...................................................................................................... 62 5.1 ADCP flow and velocity

  19. High resolution mapping of riffle-pool dynamics based on ADCP and close-range remote sensing data

    Science.gov (United States)

    Salmela, Jouni; Kasvi, Elina; Alho, Petteri

    2017-04-01

    Present development of mobile laser scanning (MLS) and close-range photogrammetry with unmanned aerial vehicle (UAV) enable us to create seamless digital elevation models (DEMs) of the riverine environment. Remote-controlled flow measurement platforms have also improved spatio-temporal resolution of the flow field data. In this study, acoustic Doppler current profiler (ADCP) attached to remote-controlled mini-boat, UAV-based bathymetry and MLS techniques were utilized to create the high-resolution DEMs of the river channel. These high-resolution measurements can be used in many fluvial applications such as computational fluid dynamics, channel change detection, habitat mapping or hydro-electric power plant planning. In this study we aim: 1) to analyze morphological changes of river channel especially riffle and pool formations based on fine-scale DEMs and ADCP measurements, 2) to analyze flow fields and their effect on morphological changes. The interest was mainly focused on reach-scale riffle-pool dynamics within two-year period of 2013 and 2014. The study was performed in sub-arctic meandering Pulmankijoki River located in Northern Finland. The river itself has shallow and clear water and sandy bed sediment. Discharge remains typically below 10 m3s-1 most of the year but during snow melt period in spring the discharge may exceed 70 m3s-1. We compared DEMs and ADCP measurements to understand both magnitude and spatio-temporal change of the river bed. Models were accurate enough to study bed form changes and locations and persistence of riffles and pools. We analyzed their locations with relation to flow during the peak and low discharge. Our demonstrated method has improved significantly spatio-temporal resolution of riverine DEMs compared to other cross-sectional and photogrammetry based models. Together with flow field measurements we gained better understanding of riverbed-water interaction

  20. Empirical Modeling of Spatial 3D Flow Characteristics Using a Remote-Controlled ADCP System: Monitoring a Spring Flood

    Directory of Open Access Journals (Sweden)

    Claude Flener

    2015-01-01

    Full Text Available The use of acoustic Doppler current profilers (ADCP for measuring streamflow and discharge is becoming increasingly widespread. The spatial distribution of flow patterns is useful data in studying riverine habitats and geomorphology. Until now, most flow mapping has focused on measurements along a series of transects in a channel. Here, we set out to measure, model and analyze the 3D flow characteristics of a natural river over a continuous areal extent, quantifying flow velocity, 3D flow directions, volumes, water depth and their changes over time. We achieved multidimensional spatial flow measurements by deploying an ADCP on a remotely-controlled boat, combined with kinematic GNSS positioning and locally-monitored water level data. We processed this data into a 3D point cloud of accurately positioned individual 3D flow measurements that allows the visual analysis of flow velocities, directions and channel morphology in 3D space. We demonstrate how this allows monitoring changes of flow patterns with a time series of flow point clouds measured over the period of a spring flood in Finnish Lapland. Furthermore, interpolating the raw point cloud onto a 3D matrix allows us to quantify volumetric flow while reducing noise in the data. We can now quantify the volumes of water moving at certain velocities in a given reach and their location in 3D space, allowing, for instance, the monitoring of the high-velocity core and its changes over time.

  1. Distribution of adenosine deaminase complexing protein (ADCP) in human tissues.

    Science.gov (United States)

    Dinjens, W N; ten Kate, J; van der Linden, E P; Wijnen, J T; Khan, P M; Bosman, F T

    1989-12-01

    The normal distribution of adenosine deaminase complexing protein (ADCP) in the human body was investigated quantitatively by ADCP-specific radioimmunoassay (RIA) and qualitatively by immunohistochemistry. In these studies we used a specific rabbit anti-human ADCP antiserum. In all 19 investigated tissues, except erythrocytes, ADCP was found by RIA in the soluble and membrane fractions. From all tissues the membrane fractions contained more ADCP (expressed per mg protein) than the soluble fractions. High membrane ADCP concentrations were found in skin, renal cortex, gastrointestinal tract, and prostate. Immunoperoxidase staining confirmed the predominant membrane-associated localization of the protein. In serous sweat glands, convoluted tubules of renal cortex, bile canaliculi, gastrointestinal tract, lung, pancreas, prostate gland, salivary gland, gallbladder, mammary gland, and uterus, ADCP immunoreactivity was found confined to the luminal membranes of the epithelial cells. These data demonstrate that ADCP is present predominantly in exocrine glands and absorptive epithelia. The localization of ADCP at the secretory or absorptive apex of the cells suggests that the function of ADCP is related to the secretory and/or absorptive process.

  2. Comparison of index velocity measurements made with a horizontal acoustic Doppler current profiler

    Science.gov (United States)

    Jackson, P. Ryan; Johnson, Kevin K.; Duncker, James J.

    2012-01-01

    The State of Illinois' annual withdrawal from Lake Michigan is limited by a U.S. Supreme Court decree, and the U.S. Geological Survey (USGS) is responsible for monitoring flows in the Chicago Sanitary and Ship Canal (CSSC) near Lemont, Illinois as a part of the Lake Michigan Diversion Accounting overseen by the U.S. Army Corps of Engineers, Chicago District. Every 5 years, a technical review committee consisting of practicing engineers and academics is convened to review the U.S. Geological Survey's streamgage practices in the CSSC near Lemont, Illinois. The sixth technical review committee raised a number of questions concerning the flows and streamgage practices in the CSSC near Lemont and this report provides answers to many of those questions. In addition, it is the purpose of this report to examine the index velocity meters in use at Lemont and determine whether the acoustic velocity meter (AVM), which is now the primary index velocity meter, can be replaced by the horizontal acoustic Doppler current profiler (H-ADCP), which is currently the backup meter. Application of the AVM and H-ADCP to index velocity measurements in the CSSC near Lemont, Illinois, has produced good ratings to date. The site is well suited to index velocity measurements in spite of the large range of velocities and highly unsteady flows at the site. Flow variability arises from a range of sources: operation of the waterway through control structures, lockage-generated disturbances, commercial and recreational traffic, industrial withdrawals and discharges, natural inflows, seiches, and storm events. The influences of these factors on the index velocity measurements at Lemont is examined in detail in this report. Results of detailed data comparisons and flow analyses show that use of bank-mounted instrumentation such as the AVM and H-ADCP appears to be the best option for index velocity measurement in the CSSC near Lemont. Comparison of the rating curves for the AVM and H-ADCP demonstrates

  3. Adenosine deaminase complexing protein (ADCP) immunoreactivity in colorectal adenocarcinoma.

    Science.gov (United States)

    ten Kate, J; van den Ingh, H F; Khan, P M; Bosman, F T

    1986-04-15

    Immunoreactive adenosine deaminase complexing protein (ADCP) was studied in 91 human colorectal adenocarcinomas. The expression of ADCP was correlated with that of secretory component (SC) and carcinoembryonic antigen (CEA), with the histological grade and the Dukes' stage of the carcinomas. The histological grade was scored semi-quantitatively according to 5 structural and 4 cytological variables. ADCP expression was observed in 3 different staining patterns, namely: (1) diffuse cytoplasmic (77% of the carcinomas); (2) granular cytoplasmic (13%); and (3) membrane-associated (66%). These patterns were observed alone or in combination. Eleven percent of the carcinomas exhibited no ADCP immunoreactivity. Linear regression analysis showed that the expression of ADCP correlates with that of SC and CEA. However, no significant correlation emerged between the histological parameters or the Dukes' stage and any of the immunohistological parameters. Comparison of the histological characteristics of carcinomas exhibiting little or no ADCP immunoreactivity with those showing extensive immunoreactivity, showed that membranous ADCP immunoreactivity occurs more frequently in well-differentiated carcinomas. Structural parameters showed a better correlation with membranous ADCP expression than the cytological variables. It is concluded that membranous expression of ADCP and CEA are indicators of a high level of differentiation as reflected primarily in the structural characteristics of the tumor.

  4. Analysis of ADCP data in a heterogeneous current field

    Science.gov (United States)

    Fuda, J.-L.; Millot, C.; Hoog, S.; Gerber, H.

    2003-04-01

    criteria to account for the homogeneity/heterogeneity of a given current field in the vicinity of any kind of structure. Additionally, the bottom nepheloïd layer, demonstrated to be present during the whole experiment by transmissometer measurements, was expected to be uplifted and inclined above the observatory. In such conditions, Echo Intensities (EI) of beams standing in the observatory's wake were expected to be higher than those outside the wake. This was checked by studying the link between the current direction and a quantity (DEi) that is the difference between the EI on a given beam and the average of the three other EI's on the other beams at a given depth. Results are very convincing and show that the DEi effectively reach their highest values when currents are oriented toward the related beam. In addition, the DEi's analysis shows that the wake can reach the surface. Numerical simulations of the current field around the observatory were also performed using the CFD (Computational Fluid Dynamics) software FLUENT (2000). The effect of turbulence was considered by means of a k-epsilon model and the near-wall layer was approximated by a standard logarithmic function approach. The observatory was modelled as a block of 2.5x2.5x1 m super (3) and the overall volume around it (45x20x40 m super (3)) was discretized in about 380000 elementary volumes. For these simulations, two values of the mean current (10 cm/s and 30 cm/s) and two configurations for the observatory's orientation (current parallel to sides or to a diagonal) were considered. Although the current lines do not appear to be strongly modified by the observatory, vertical velocities are induced over the whole water depth. Maximum values that could be compared to those from the ADCP, ie at 5m asf, reach about 10 mm/s and values of about 1 mm/s are still encountered at about 15 m asf. Although the modelled vertical velocities appear weaker than the data, they convincingly confirm the disturbance

  5. Sound-scattering layers of the Black Sea based on ADCP observations

    Science.gov (United States)

    Morozov, A. N.; Lemeshko, E. M.; Fedorov, S. V.

    2017-09-01

    The paper discusses the results of expeditions to the northwestern part of the Black Sea carried out in 2004-2008. Acoustic Doppler Current Profilers (ADCP) with an operating frequency of 150 and 300 kHz were used as the echo sounders. The characteristic scales of the spatial variability of sound scattering in the Black Sea were determined; the revealed peculiarities are interpreted. The characteristics of a deep soundscattering layer in the Black Sea are given.

  6. Estimating sediment transport from acoustic measurements in the Venice Lagoon inlets

    Science.gov (United States)

    Defendi, V.; Kovačević, V.; Arena, F.; Zaggia, L.

    2010-05-01

    This paper presents the results of a 3-year-long (November 2004-November 2007) study based on the use of acoustic Doppler current profilers (ADCPs) to estimate the solid transport through the three inlets of Venice lagoon. In each of the three inlets instruments were mounted both on survey boats and deployed on the channel bed. The three bottom-mounted ADCPs were positioned in the central part of the inlets, continuously monitoring vertical profiles in the water column. Periodic transects along the investigated sections were collected by the boat-mounted ADCP. Both installations measured current speed and acoustic backscatter intensity. The latter expresses the attenuation of acoustic energy due to material in the water column. The conversion of acoustic backscatter into suspended solids concentration (SSC) was carried out by means of direct measurements of concentration; also an indirect method was used. Boat-mounted ADCP acquisitions were used to calibrate and to validate the bottom-mounted ADCP data. Hourly time series of water discharge and SSC were obtained by calculation from the current speed and acoustic backscatter data recorded by the fixed ADCPs. Hourly solid flux time series were computed. The solid flux and SSC time series at the three inlets were analyzed in relation to the hydrodynamic and atmospheric conditions, highlighting the impact of intense meteorological events on the resuspension process. The lagoon sediment budget is estimated to be about 0.5×10 6 t/yr and shows a tendency for sediment loss.

  7. Tidal currents and Kuroshio transport variations in the Tokara Strait estimated from ferryboat ADCP data

    Science.gov (United States)

    Zhu, Xiao-Hua; Nakamura, Hirohiko; Dong, Menghong; Nishina, Ayako; Yamashiro, Toru

    2017-03-01

    From 2003 to 2011, current surveys, using an acoustic Doppler current profiler (ADCP) mounted on the Ferry Naminoue, were conducted across the Tokara Strait (TkS). Resulting velocity sections (1234) were used to estimate major tidal current constituents in the TkS. The semidiurnal M2 tidal current (maximum amplitude 27 cm s-1) was dominant among all the tidal constituents, and the diurnal K1 tidal current (maximum amplitude 21 cm s-1) was the largest among all the diurnal tidal constituents. Over the section, the ratios, relative to M2, of averaged amplitudes of M2, S2, N2, K2, K1, O1, P1, and Q1 tidal currents were 1.00:0.44:0.21:0.12:0.56:0.33:0.14:0.10. Tidal currents estimated from the ship-mounted ADCP data were in good agreement with those from the mooring ADCP data. Their root-mean-square difference for the M2 tidal current amplitude was 2.0 cm s-1. After removing the tidal currents, the annual-mean of the net volume transport (NVT) through the TkS ± its standard derivation was 23.03 ± 3.31 Sv (Sv = 106 m3 s-1). The maximum (minimum) monthly mean NVT occurred in July (November) with 24.60 (21.47) Sv. NVT values from the ship-mounted ADCP were in good agreement with previous geostrophic volume transports calculated from conductivity temperature depth data, but the former showed much finer temporal structure than those from the geostrophic calculation.

  8. Ocean Current Velocity Moored Time-Series Records, collected from moored Acoustic Doppler Current Profilers (ADCP) during 2010 and 2011 in Vieques Sound and Virgin Passage (NODC Accession 0088063)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nortek 600kHz Aquadopp acoustic current profilers were deployed between March 2010 and April 2011 on shallow water moorings located in Vieques Sound, Puerto Rico,...

  9. Ocean Current Velocity Moored Time-Series Records, collected from moored Acoustic Doppler Current Profilers (ADCP) during 2011 near Grammanik Bank SPAG and Frenchcap Cay, USVI (NODC Accession 0088064)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nortek 600kHz Aquadopp acoustic current profilers were deployed between April 2011 and September 2011 on shallow water moorings located on the coastal shelf south of...

  10. NOTES AND CORRESPONDENCE Evaluation of Tidal Removal Method Using Phase Average Technique from ADCP Surveys along the Peng-Hu Channel in the Taiwan Strait

    Directory of Open Access Journals (Sweden)

    Yu-Chia Chang

    2008-01-01

    Full Text Available Three cruises with shipboard Acoustic Doppler Current Profiler (ADCP were performed along a transect across the Peng-hu Channel (PHC in the Taiwan Strait during 2003 - 2004 in order to investigate the feasibility and accuracy of the phase-averaging method to eliminate tidal components from shipboard ADCP measurement of currents. In each cruise measurement was repeated a number of times along the transect with a specified time lag of either 5, 6.21, or 8 hr, and the repeated data at the same location were averaged to eliminate the tidal currents; this is the so-called ¡§phase-averaging method¡¨. We employed 5-phase-averaging, 4-phase-averaging, 3-phase-averaging, and 2-phase-averaging methods in this study. The residual currents and volume transport of the PHC derived from various phase-averaging methods were intercompared and were also compared with results of the least-square harmonic reduction method proposed by Simpson et al. (1990 and the least-square interpolation method using Gaussian function (Wang et al. 2004. The estimated uncertainty of the residual flow through the PHC derived from the 5-phase-averaging, 4-phase-averaging, 3-phase-averaging, and 2-phase-averaging methods is 0.3, 0.3, 1.3, and 4.6 cm s-1, respectively. Procedures for choosing a best phase average method to remove tidal currents in any particular region are also suggested.

  11. Comparison of bottom-track to global positioning system referenced discharges measured using an acoustic Doppler current profiler

    Science.gov (United States)

    Wagner, Chad R.; Mueller, David S.

    2011-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) can be caused by the movement of sediment on or near the streambed. The integration of a global positioning system (GPS) to track the movement of the ADCP can be used to avoid the systematic negative bias associated with a moving streambed. More than 500 discharge transects from 63 discharge measurements with GPS data were collected at sites throughout the US, Canada, and New Zealand with no moving bed to compare GPS and bottom-track-referenced discharges. Although the data indicated some statistical bias depending on site conditions and type of GPS data used, these biases were typically about 0.5% or less. An assessment of differential correction sources was limited by a lack of data collected in a range of different correction sources and different GPS receivers at the same sites. Despite this limitation, the data indicate that the use of Wide Area Augmentation System (WAAS) corrected positional data is acceptable for discharge measurements using GGA as the boat-velocity reference. The discharge data based on GPS-referenced boat velocities from the VTG data string, which does not require differential correction, were comparable to the discharges based on GPS-referenced boat velocities from the differentially-corrected GGA data string. Spatial variability of measure discharges referenced to GGA, VTG and bottom-tracking is higher near the channel banks. The spatial variability of VTG-referenced discharges is correlated with the spatial distribution of maximum Horizontal Dilution of Precision (HDOP) values and the spatial variability of GGA-referenced discharges is correlated with proximity to channel banks.

  12. Acoustic Doppler current profiling from the JGOFS Arabian Sea cruises aboard the RV T.G. Thompson

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.S.; Flagg, C.N.; Shi, Y. [Brookhaven National Lab., Upton, NY (United States). Oceanographic and Atmospheric Sciences Div.

    1996-12-01

    Acoustic Doppler current profiler (ADCP) data is part of the core data for the US JGOFS Arabian Sea project, along with hydrographic and nutrient data. Seventeen cruises are scheduled to take place between September 1994 and January 1996 on the R/V T.G. Thompson. Seven of the cruises follow a standard cruise track, taking hydrographic, chemical and biological measurements. The rest of the cruises, which take place generally within the standard cruise region defined by a set track, are for the deployment and recovery of moored equipment and towing of a SeaSoar. Detailed description of ADCP hardware, the AutoADCP data acquisition system, and the collection of navigation and compass data on the Thompson is documented in Section 2. Followed by data collection for each cruise together with a cruise track, Section 3 presents the processing and analysis of velocity and acoustic backscatter intensity data. Section 5 shows results of profile quality diagnosis.

  13. Acoustic Doppler current profiler applications used in rivers and estuaries by the U.S. Geological Survey

    Science.gov (United States)

    Gotvald, Anthony J.; Oberg, Kevin A.

    2009-01-01

    The U.S. Geological Survey (USGS) has collected streamflow information for the Nation's streams since 1889. Streamflow information is used to predict floods, manage and allocate water resources, design engineering structures, compute water-quality loads, and operate water-control structures. The current (2007) size of the USGS streamgaging network is over 7,400 streamgages nationwide. The USGS has progressively improved the streamgaging program by incorporating new technologies and techniques that streamline data collection while increasing the quality of the streamflow data that are collected. The single greatest change in streamflow measurement technology during the last 100 years has been the development and application of high frequency acoustic instruments for measuring streamflow. One such instrument, the acoustic Doppler current profiler (ADCP), is rapidly replacing traditional mechanical current meters for streamflow measurement (Muste and others, 2007). For more information on how an ADCP works see Simpson (2001) or visit http://hydroacoustics.usgs.gov/. The USGS has used ADCPs attached to manned or tethered boats since the mid-1990s to measure streamflow in a wide variety of conditions (fig. 1). Recent analyses have shown that ADCP streamflow measurements can be made with similar or greater accuracy, efficiency, and resolution than measurements made using conventional current-meter methods (Oberg and Mueller, 2007). ADCPs also have the ability to measure streamflow in streams where traditional current-meter measurements previously were very difficult or costly to obtain, such as streams affected by backwater or tides. In addition to streamflow measurements, the USGS also uses ADCPs for other hydrologic measurements and applications, such as computing continuous records of streamflow for tidally or backwater affected streams, measuring velocity fields with high spatial and temporal resolution, and estimating suspended-sediment concentrations. An overview

  14. ALOHA Cabled Observatory (ACO): Acoustic Doppler Current Profiler (ADCP): Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of Hawaii's ALOHA ("A Long-term Oligotrophic Habitat Assessment") Cabled Observatory (ACO) is located 100 km north of the island of Oahu, Hawaii (22...

  15. ALOHA Cabled Observatory (ACO): Acoustic Doppler Current Profiler (ADCP): Velocity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of Hawaii's ALOHA ("A Long-term Oligotrophic Habitat Assessment") Cabled Observatory (ACO) is located 100 km north of the island of Oahu, Hawaii (22...

  16. Aquatic Habitat Bottom Classification Using ADCP

    Science.gov (United States)

    Description of physical aquatic habitat often includes data describing distributions of water depth, velocity and bed material type. Water depth and velocity in streams deeper than about 1 m may be continuously mapped using an acoustic Doppler current profiler from a moving boat. Herein we examine...

  17. River Bed Sediment Classification Using ADCP

    Science.gov (United States)

    Description of physical aquatic habitat in rivers often includes data describing distributions of water depth, velocity and bed material type. Water depth and velocity in streams deeper than about 1 m may be continuously mapped using an acoustic Doppler current profiler from a moving boat. Herein ...

  18. Adenosine deaminase complexing protein (ADCP) expression and metastatic potential in prostatic adenocarcinomas.

    Science.gov (United States)

    Dinjens, W N; Ten Kate, J; Kirch, J A; Tanke, H J; Van der Linden, E P; Van den Ingh, H F; Van Steenbrugge, G J; Meera Khan, P; Bosman, F T

    1990-03-01

    The expression of the adenosine deaminase complexing protein (ADCP) was investigated by immunohistochemistry in the normal and hyperplastic human prostate, in 30 prostatic adenocarcinomas, and in seven human prostatic adenocarcinoma cell lines grown as xenografts in athymic nude mice. In the normal and hyperplastic prostate, ADCP was localized exclusively in the apical membrane and the apical cytoplasm of the glandular epithelial cells. In prostatic adenocarcinomas, four distinct ADCP expression patterns were observed: diffuse cytoplasmic, membranous, both cytoplasmic and membranous, and no ADCP expression. The expression patterns were compared with the presence of metastases. We found an inverse correlation between membranous ADCP immunoreactivity and metastatic propensity. Exclusively membranous ADCP immunoreactivity occurred only in non-metastatic tumours. In contrast, the metastatic tumours showed no or diffuse cytoplasmic ADCP immunoreactivity. This suggests that immunohistochemical detection of ADCP might predict the biological behaviour of prostatic cancer. However, the occurrence of membranous ADCP immunoreactivity in the xenograft of a cell line (PC-EW), derived from a prostatic carcinoma metastasis, indicates that not only the tendency to metastasize modulates ADCP expression.

  19. BOREAS RSS-17 Dielectric Constant Profile Measurements

    Science.gov (United States)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); McDonald, Kyle C.; Zimmerman, Reiner; Way, JoBea

    2000-01-01

    The BOREAS RSS-17 team acquired and analyzed imaging radar data from the ESA's ERS-1 over a complete annual cycle at the BOREAS sites in Canada in 1994 to detect shifts in radar backscatter related to varying environmental conditions. This data set consists of dielectric constant profile measurements from selected trees at various BOREAS flux tower sites. The relative dielectric constant was measured at C-band (frequency = 5 GHz) as a function of depth into the trunk of three trees at each site, Measurements were made during April 1994 with an Applied Microwave Corporation field PDP fitted with a 0.358-cm (0.141-inch) diameter coaxial probe tip. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  20. Brief communication "Snow profile associated measurements (SPAM) - a new instrument for quick snow profile measurements"

    Science.gov (United States)

    Lahtinen, P.

    2011-06-01

    A new instrument concept (SPAM) for snow profile associated measurements is presented. The potential of the concept is demonstrated by presenting preliminary results obtained with the prototype instrument. With this concept it is possible to retrieve rapid snow profiles of e.g. light extinction, reflectance, temperature and snow layer structure with high vertical resolution. As a side-product, also snow depth is retrieved.

  1. Vertical profile measurements of lower troposphere ionisation

    OpenAIRE

    Harrison, R. G.; Nicoll, K.A.; Aplin, K. L.

    2014-01-01

    Vertical soundings of the atmospheric ion production rate have been obtained from Geiger counters integrated with conventional meteorological radiosondes. In launches made from Reading (UK) during 2013-2014, the Regener-Pfotzer ionisation maximum was at an altitude equivalent to a pressure of (63.1±2.4) hPa, or, expressed in terms of the local air density, (0.101±0.005) kgm−3. The measured ionisation profiles have been evaluated against the Usoskin-Kovaltsov model and, separately, surface neu...

  2. Amplitude modulation reflectometry for density profile measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, V.; Sanchez, J.; Luna, E. de la; Estrada, T.; Branas, B.; Frances, M. [Association EURATOM/CIEMAT, Madrid (Spain); Hirsch, M.; Geist, T.; Hartfuss, H.J. [Max Plank Institut fuer Plasmaphysik, Euratom-Ass, 85748 Garching (Germany); Hanson, G.R.; Wilgen, J.B. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-8072 (United States); Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    1997-03-01

    Amplitude modulation (AM) reflectometry is a technique for density profile measurements in magnetic fusion plasmas based on the measurement of the phase delay of the modulation in the amplitude of a microwave beam launched and reflected at the plasma. Results from AM experiments in the PBX-M tokamak and the W7-AS stellarator are presented. A general analysis of the capabilities of the technique is performed, particularly centered in the effects of spatial turbulence. Simulations of the effects of two-dimensional turbulence have been performed for medium size (W7-AS) and large devices (LHD stellarator, ITER), showing the capability of the AM technique to operate in turbulent plasmas. Finally, possible solutions to the problem of parasitic reflections in AM systems are presented as development options. (orig.) 4 refs.

  3. Temperature profile, dissolved oxygen, phosphate and other measurements collected using bottle, net, CTD casts from the NEW HORIZON, NOAA Ship DAVID STARR JORDAN, ROGER REVELLE in the North East Pacific Ocean as part of the California Cooperative Fisheries Investigation (CALCOFI) project, from 2000-06-29 to 2004-01-20 (NODC Accession 0002116)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, dissolved oxygen, phosphate and other data were collected using water pumps, SIMBAD radiometer, 150 kHz Acoustic Doppler Current Profiler (ADCP),...

  4. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    2015-09-01

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in such scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.

  5. Transverse Beam Profile Measurements Using Optical Methods

    CERN Document Server

    Peters, A; Weiss, A; Bank, A

    2001-01-01

    Two different systems are currently under development at GSI's heavy ion facility to measure transverse beam profiles using optical emitters. At the GSI-LINAC for energies up to 15 MeV/u residual gas fluorescence is investigated for pulsed high current beams. The fluorescence of N2 is monitored by an image intensified CCD camera. For all ion species with energies above 50 MeV/u slowly extracted from the synchrotron SIS a classical viewing screen system is used. Three different target materials have been investigated and their behavior concerning efficiency, saturation and timing performance is evaluated. Both systems (will) use CCD cameras with a digital read out using the IEEE 1394 standard.

  6. Measurements of Reynolds stress in a wind-driven lagoonal estuary

    Science.gov (United States)

    Whipple, Anthony C.; Luettich, Richard A.; Seim, Harvey E.

    2006-07-01

    Acoustic Doppler current profilers (ADCPs) have been used to measure Reynolds stresses in tidally dominated environments where wave action was minimal. In this paper, we examine observations from a microtidal estuary where the effects of wind stress and surface waves dominate the velocity variance. Reynolds stress measurements in this setting require a technique for addressing surface gravity wave contamination. We present here a method of reducing the effect of wave motion on Reynolds stresses by subtracting coincident observations along the axis of the ADCP beam. Linear wave theory is used to account for the attenuation of wave orbital velocities with depth. Using this method, Reynolds stress values are brought in line with those predicted by drag laws at the surface and bottom. The apparent Reynolds stress that is removed by the along-axis subtraction is shown to be largely due to the interaction of a slight tilt (1°) in the ADCP and the wave orbital velocity. During periods of stronger wind and waves, there is evidence of enhanced near-surface turbulence and momentum flux, presumably due to breaking waves. During these events, our calculated Reynolds stress magnitudes still appear reasonable, although the directions are suspect. We develop a diagnostic technique that clearly demarcates this region when it occurs. Coincident density profile measurements are used with the ADCP data to compute gradient Richardson numbers throughout the water column. Enhanced Reynolds stresses appear to correspond to Richardson numbers less than one.

  7. Antibody dependent cellular phagocytosis (ADCP) and antibody dependent cellular cytotoxicity (ADCC) of breast cancer cells mediated by bispecific antibody, MDX-210.

    Science.gov (United States)

    Watanabe, M; Wallace, P K; Keler, T; Deo, Y M; Akewanlop, C; Hayes, D F

    1999-02-01

    MDX-210 is a bispecific antibody (BsAb) with specificity for both the proto-oncogene product of HER-2/neu (c-erbB-2) and FcgammaRI (CD64). HER-2/neu is overexpressed in malignant tissue of approximately 30% of patients with breast cancer, and FcgammaRI is expressed on human monocytes, macrophages, and IFN-gamma activated granulocytes. We investigated phagocytosis and cytolysis of cultured human breast cancer cells by human monocyte-derived macrophages (MDM) mediated by BsAb MDX-210, its partially humanized derivative (MDX-H210), and its parent MoAb 520C9 (anti-HER-2/neu) under various conditions. Purified monocytes were cultured with GM-CSF, M-CSF, or no cytokine for five or six days. Antibody dependent cellular phagocytosis (ADCP) and cytolysis (ADCC) assays were performed with the MDM and HER-2/neu positive target cells (SK-BR-3). ADCP was measured by two-color fluorescence flow cytometry using PKH2 (green fluorescent dye) and phycoerythrin-conjugated (red) monoclonal antibodies (MoAb) against human CD14 and CD11b. ADCC was measured with a non-radioactive LDH detection kit. Both BsAb MDX-210 (via FcgammaRI) and MoAb 520C9 (mouse IgG1, via FcgammaRII) mediated similar levels of ADCP and ADCC. ADCP mediated by BsAb MDX-H210 was identical to that mediated by BsAb MDX-210. Confocal microscopy demonstrated that dual-labeled cells represented true phagocytosis. Both ADCP and ADCC were higher when MDM were pre-incubated with GM-CSF than when incubated with M-CSF. BsAb MDX-210 is as active in vitro as the parent MoAb 520C9 in inducing both phagocytosis and cytolysis of MDM. MDX-210 and its partially humanized derivative, MDX-H210, mediated similar levels of ADCP. GM-CSF appears to superior to M-CSF in inducing MDM-mediated ADCC and ADCP. These studies support the ongoing clinical investigations of BsAb MDX-210 and its partially humanized derivative.

  8. Calculation of in situ acoustic sediment attenuation using off-the-shelf horizontal ADCPs in low concentration settings

    Science.gov (United States)

    Haught, Dan; Venditti, Jeremy G.; Wright, Scott A.

    2017-01-01

    The use of “off-the-shelf” acoustic Doppler velocity profilers (ADCPs) to estimate suspended sediment concentration and grain-size in rivers requires robust methods to estimate sound attenuation by suspended sediment. Theoretical estimates of sediment attenuation require a priori knowledge of the concentration and grain-size distribution (GSD), making the method impractical to apply in routine monitoring programs. In situ methods use acoustic backscatter profile slope to estimate sediment attenuation, and are a more attractive option. However, the performance of in situ sediment attenuation methods has not been extensively compared to theoretical methods. We used three collocated horizontally mounted ADCPs in the Fraser River at Mission, British Columbia and 298 observations of concentration and GSD along the acoustic beams to calculate theoretical and in situ sediment attenuation. Conversion of acoustic intensity from counts to decibels is influenced by the instrument noise floor, which affects the backscatter profile shape and therefore in situ attenuation. We develop a method that converts counts to decibels to maximize profile length, which is useful in rivers where cross-channel acoustic profile penetration is a fraction of total channel width. Nevertheless, the agreement between theoretical and in situ attenuation is poor at low concentrations because cross-stream gradients in concentration, sediment size or GSD can develop, which affect the backscatter profiles. We establish threshold concentrations below which in situ attenuation is unreliable in Fraser River. Our results call for careful examination of cross-stream changes in suspended sediment characteristics and acoustic profiles across a range of flows before in situ attenuation methods are applied in river monitoring programs.

  9. Calculation of in situ acoustic sediment attenuation using off-the-shelf horizontal ADCPs in low concentration settings

    Science.gov (United States)

    Haught, Dan; Venditti, Jeremy G.; Wright, Scott A.

    2017-06-01

    The use of "off-the-shelf" acoustic Doppler velocity profilers (ADCPs) to estimate suspended sediment concentration and grain-size in rivers requires robust methods to estimate sound attenuation by suspended sediment. Theoretical estimates of sediment attenuation require a priori knowledge of the concentration and grain-size distribution (GSD), making the method impractical to apply in routine monitoring programs. In situ methods use acoustic backscatter profile slope to estimate sediment attenuation, and are a more attractive option. However, the performance of in situ sediment attenuation methods has not been extensively compared to theoretical methods. We used three collocated horizontally mounted ADCPs in the Fraser River at Mission, British Columbia and 298 observations of concentration and GSD along the acoustic beams to calculate theoretical and in situ sediment attenuation. Conversion of acoustic intensity from counts to decibels is influenced by the instrument noise floor, which affects the backscatter profile shape and therefore in situ attenuation. We develop a method that converts counts to decibels to maximize profile length, which is useful in rivers where cross-channel acoustic profile penetration is a fraction of total channel width. Nevertheless, the agreement between theoretical and in situ attenuation is poor at low concentrations because cross-stream gradients in concentration, sediment size or GSD can develop, which affect the backscatter profiles. We establish threshold concentrations below which in situ attenuation is unreliable in Fraser River. Our results call for careful examination of cross-stream changes in suspended sediment characteristics and acoustic profiles across a range of flows before in situ attenuation methods are applied in river monitoring programs.

  10. Examining the plankton acoustic response with a vessel mounted ADCP across oceanic fronts located in the Drake Passage

    Directory of Open Access Journals (Sweden)

    Silvia Blanc

    2008-12-01

    Full Text Available On December 2001 and January 2006, during the LMG01-9 and LMG06-1 cruises to Antarctic Peninsula, at-sea oceanographic and acoustic measurements were conducted onboard the R/V L. M. Gould icebreaker along two transects located between (55.15 °S, 65 ºW and (64.65 °S, 65 ºW and between (55.15 ºS, 64.91 ºW and (62.7 ºS, 62.21 ºW, respectively. The scientific crew consisted of researchers from two US institutes, and a scientific observer from the Argentinean Naval Service of Research & Development under the frame of the US National Science Foundation Antarctic Program. The present work accomplishes an alternative application for a vesselmounted Acoustic Doppler Current Profiler (ADCP with an operating frequency of 153.6 kHz. Volume Acoustic Backscattering Strengths, S V, were computed from the recorded ADCP's voltages. The obtained values fell in a range of -92 dB to -62 dB, for the layer of the water column comprised between 26 m - 300 m on 2001 and in the range of -93 dB to -58 dB for the water column between 22 m - 300 m on 2006. Depth-averaged, S V, for the upper water column (about the first 150 m on experiment transects were computed as well as S V values averaged in depth and latitude. Data processing revealed interesting features about the upper ocean acoustic behaviour. On December 2001, a significant non-uniform scattering response in the ensonified water column with quite high values of S V, associated with the diel vertical migration, was obtained. Additionally, a remarkable increment in the scattering response was observed at the estimated location of the Antarctic Divergence (AD. This feature was also observed on January 2006 in addition to remarkable high values of S V, in coastal waters of the Antarctic Peninsula. Plotting and exhaustive analyses of S V (z profiles enabled the visualisation of three distinct types of qualitative patterns, namely, curves with: (I two observable maxima, (II only one maximum, (III a depth

  11. Adenosine deaminase complexing protein (ADCP): a transformation sensitive protein with potentials of a cancer marker.

    Science.gov (United States)

    Herbschleb-Voogt, E; Ten Kate, J; Meera Khan, P

    1983-01-01

    Several observations by independent investigators in the past have indicated that adenosine deaminase complexing protein (ADCP), present in considerable quantities in certain human tissues, was absent or decreased in the cancers originated from them. During the present study, electrophoretic analysis of adenosine deaminase (ADA) isozymes and radioimmunoassay for ADCP in the primary fibroblasts and the transformed as well as certain tumor derived cell lines have demonstrated that ADCP present in large quantities in the primary cells was absent or nearly absent in the transformed or tumor-derived cell lines. Though the mechanisms involved are not yet clear, the above observations indicate that ADCP has the potentials of a useful marker in the studies on transformed cells and cancer tissues.

  12. Tidal and residual currents across the northern Ryukyu Island chain observed by ferryboat ADCP

    Science.gov (United States)

    Liu, Zhao-Jun; Nakamura, Hirohiko; Zhu, Xiao-Hua; Nishina, Ayako; Dong, Menghong

    2017-09-01

    Ferryboat Acoustic Doppler Current Profiler (ADCP) data from 2003 to 2012 are used to estimate the tidal and residual currents across the northern Ryukyu Island chain (RIC) between the islands of Okinawa and Amamioshima. In this region, the M2 tide current is the strongest tidal component, and the K1 tide current is the strongest diurnal tidal component. The corresponding maximum amplitudes are 40 and 34 cm s-1, respectively. After removal of the tidal currents, the mean volume transport, 1.5 ± 2.7 Sv, flows into the East China Sea (ECS) from the western North Pacific through four channels in this area. In an empirical orthogonal function (EOF) analysis performed to clarify the temporal and spatial variability of currents through the four channels, the first two EOF modes account for 71% and 18% of the total variance, respectively. The EOF1 mode shows a clear bottom-intensified mode through the deep channel, which is likely to be formed by the propagation of bottom-trapped long topographic Rossby wave caused by the impingement of westward-propagating mesoscale eddies upon the eastern slope of the northern RIC. The EOF2 mode has significant seasonal variability and may be driven by the wind stress prevailing over the Kuroshio flow region around the northern RIC in October-November. This study provides observational evidence of the water exchanges across the northern RIC, which is essential for constructing a circulation scheme in the North Pacific subtropical western boundary region.

  13. Lidar measured vertical atmospheric scattering profiles

    NARCIS (Netherlands)

    Kunz, G.J.

    1985-01-01

    The vertical structure of the atmosphere, which is of invaluable interest to meteorologists, geo-physicists and environmental researchers, can be measured with LIDAR. A method has been proposed and applied to invert lidar signals from vertical soundings to height resolved scattering coefficients. In

  14. The Retrieval of Ozone Profiles from Limb Scatter Measurements: Theory

    Science.gov (United States)

    Flittner, D. E.; Herman, B. M.; Bhartia, P. K.; McPeters, R. D.; Hilsenrath, E.

    1999-01-01

    An algorithm is presented for retrieving vertical profiles of O3 concentration using measurements of UV and visible light scattered from the limb of the atmosphere. The UV measurements provide information about the O3 profile in the upper and middle stratosphere, while only visible wavelengths are capable of probing the lower stratospheric O3 profile. Sensitivity to the underlying scene reflectance is greatly reduced by normalizing measurements at a tangent height high in the atmosphere (approximately 55 km), and relating measurements taken at lower altitudes to this normalization point. To decrease the effect of scattering by thin aerosols/clouds that may be present in the field of view, these normalized measurements are then combined by pairing wavelengths with strong and weak O3 absorption. We conclude that limb scatter can be used to measure O3 between 15 km and 50 km with 2-3 km vertical resolution and better than 10% accuracy.

  15. Optimized Estimation of Surface Layer Characteristics from Profiling Measurements

    Directory of Open Access Journals (Sweden)

    Doreene Kang

    2016-01-01

    Full Text Available New sampling techniques such as tethered-balloon-based measurements or small unmanned aerial vehicles are capable of providing multiple profiles of the Marine Atmospheric Surface Layer (MASL in a short time period. It is desirable to obtain surface fluxes from these measurements, especially when direct flux measurements are difficult to obtain. The profiling data is different from the traditional mean profiles obtained at two or more fixed levels in the surface layer from which surface fluxes of momentum, sensible heat, and latent heat are derived based on Monin-Obukhov Similarity Theory (MOST. This research develops an improved method to derive surface fluxes and the corresponding MASL mean profiles of wind, temperature, and humidity with a least-squares optimization method using the profiling measurements. This approach allows the use of all available independent data. We use a weighted cost function based on the framework of MOST with the cost being optimized using a quasi-Newton method. This approach was applied to seven sets of data collected from the Monterey Bay. The derived fluxes and mean profiles show reasonable results. An empirical bias analysis is conducted using 1000 synthetic datasets to evaluate the robustness of the method.

  16. Reflectometry techniques for density profile measurements on fusion plasmas

    NARCIS (Netherlands)

    Laviron, C.; Donne, A. J. H.; Manso, M. E.; Sanchez, J.

    1996-01-01

    Reflectometry applied to the measurement of density profiles on fusion plasmas has been subject to many recent developments. After a brief reminder of the principles of reflectometry, the theoretical accuracy of reflectometry measurements is discussed. The main difficulties limiting the performance,

  17. Absolute beam emittance measurements at RHIC using ionization profile monitors

    Energy Technology Data Exchange (ETDEWEB)

    Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Connolly, R [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Summers, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-15

    In the past, comparisons between emittance measurements obtained using ionization profile monitors, Vernier scans (using as input the measured rates from the zero degree counters, or ZDCs), the polarimeters and the Schottky detectors evidenced significant variations of up to 100%. In this report we present studies of the RHIC ionization profile monitors (IPMs). After identifying and correcting for two systematic instrumental errors in the beam size measurements, we present experimental results showing that the remaining dominant error in beam emittance measurements at RHIC using the IPMs was imprecise knowledge of the local beta functions. After removal of the systematic errors and implementation of measured beta functions, precise emittance measurements result. Also, consistency between the emittances measured by the IPMs and those derived from the ZDCs was demonstrated.

  18. Profile Measurement of Worn Acetabular Cup by Holographic Contouring

    Science.gov (United States)

    Kakunai, Satoshi; Sakamoto, Tohoru; Sakurai, Daisuke; Aota, Yuuki; Shelton, Julia

    Wear in a polyethylene acetabular cup is dependent on the history of the cup, namely on the sterilization treatment, initial mounting situation, the patient's lifestyle and length of time in vivo. Understanding wear patterns is essential in order to prevent inflammation and prosthesis failure. This study describes the profile measurement of a worn acetabular cup by holographic contouring, which can provide non-contact measurement over the entire visual field. Experiments were performed to verify the method, and measurements of cups worn in vivo were carried out. Cup profile was investigated using holograms obtained in three directions and changes in cup profile were evaluated using fringe patterns in which the interval range was adjusted from tens of microns to several millimeters.

  19. Objective measurement of inhaler inhalation flow profile using acoustic methods

    Energy Technology Data Exchange (ETDEWEB)

    Lacalle, H.; Taylor, T.E.; Marco, S.; Reilly, R.B.

    2016-07-01

    Patients with asthma and chronic obstructive pulmonary diseases (COPD) are mostly treated with inhalers that deliver medication directly to their airways. Drug delivery from dry powder inhalers (DPIs) is very much reliant on the inhalation manoeuvre, specifically the peak inspiratory flow rate (PIFR), inspiratory capacity (IC) and inhalation rise time (IRT) of the inhalation. It has been widely reported that patients may not follow correct inhalation technique while using their inhaler. In this study, a novel acoustic method is proposed to accurately estimate inhalation flow profile using only one inhalation recording for calibration. An Ellipta DPI was placed inside an airtight container with a spirometer connected in order to measure inhalation flow parameters. An acoustic recording device (Inhaler Compliance Assessment (INCA)) was also attached to the DPI. Inhalation audio and flow signals were recorded simultaneously. The data were collected from 20 healthy subjects while performing inhaler inhalations at a range of inspiratory flow rates. A power law regression model was computed to obtain the relationship between the acoustic envelope of the inhalation and flow profile of each recording. Each model was tested on the remaining audio signals to estimate flow profile. The average estimation error was found to be 10.5±0.3% for estimating flow profile from audio signals. Inhalation flow profile parameters (PIFR, IC and IRT) could then be measured from the estimated flow profile with high accuracy giving information on user inhalation technique. This method may assist in improving patient inhaler adherence and overall disease control. (Author)

  20. Chloride ingress profiles measured by electron probe micro analysis

    DEFF Research Database (Denmark)

    Jensen, Ole mejlhede; Coats, Alison M.; Glasser, Fred P.

    1996-01-01

    Traditional techniques for measuring chloride ingress profiles do not apply well to high performance cement paste systems; the geometric resolution of the traditional measuring techniques is too low. In this paper measurements by Electron Probe Micro Analysis (EPMA) are presented. EPMA...... is demonstated to determine chloride ingress in cement paste on a micrometer scale. Potential chloride ingress routes such as cracks or the paste-aggregate interface may also be characterized by EPMA. Copyright (C) 1996 Elsevier Science Ltd...

  1. Gamma-ray emission profile measurements during JET ICRH discharges

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Van Belle, P. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Howarth, P.J.A. [Birmingham Univ. (United Kingdom); Adams, J.M.; Bond, D.S. [UKAEA Harwell Lab. (United Kingdom). Energy Technology Div.

    1994-07-01

    Gamma-ray emission from plasma-impurity reactions caused by minority ICRH accelerating fuel ions to MeV energies has been measured using the JET neutron profile monitor. A successful data analysis technique has been used to isolate the RF-induced gamma-ray emission that was detected, enabling profiles of gamma-ray emission to be obtained. The 2-d gamma-ray emission profiles show that virtually all the radiation originates from the low field side of the RF resonance layer, as expected from RF-induced pitch angle diffusion. The emission profiles indicate the presence of a small population of resonant {sup 3}He ions that possess orbits lying near the passing-trapped boundary. 6 refs., 4 figs.

  2. Thirty Stage Annular Centrifugal Contactor Thermal Profile Measurements

    Energy Technology Data Exchange (ETDEWEB)

    David H. Meikrantz; Troy G. Garn; Jack D. Law

    2010-02-01

    A thirty stage 5 cm annular centrifugal contactor cascade has been assembled and tested to obtain thermal profiles during both ambient and heated input conditions of operation. Thermocouples were installed on every stage as well as feed inputs and Real-time data was taken during experiments lasting from two to eight hours at total flow rates of 0.5 to 1.4 liters per minute. Ambient temperature profile results show that only a small amount of heat is generated by the mechanical energy of the contactors. Steady state temperature profiles mimic the ambient temperature of the lab but are higher toward the middle of the cascade. Heated inlet solutions gave temperature profiles with smaller temperature gradients, more driven by the temperature of the inlet solutions than ambient lab temperature. Temperature effects of solution mixing, even at rotor speeds of 4000 rpm, were not measurable.

  3. Measurement of electron density profile by microwave reflectometry on tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, F.

    1985-05-01

    A new method for measuring the electron density spatial profile has been successfully tested on the tokamak of Fontenay aux Roses (TFR). This method is based on the total reflection experienced by a wave of frequency F on the layer where F = F/sub p/e(r). The experimental results show that the maximum electron density in the discharge is also easily measured and that accurate determination of a density profile can be obtained with a time resolution of 5 ms. This diagnostic is well adapted to all fusion devices where access to the total plasma cross section is limited, particularly for large tokamaks.

  4. Soil Moisture Profile Effect on Radar Signal Measurement

    OpenAIRE

    André Chanzy; Nicolas Baghdadi; Mehrez Zribi; Aurélie Le Morvan

    2008-01-01

    The objective of this paper is to analyze the behaviour of a backscattered signal according to soil moisture depth over bare soils. Analysis based on experimental vertical moisture profiles and ASAR/ENVISAT measurements has been carried out. A modified IEM model with three permittivity layers (0-1cm, 1-2cm, 2-5cm) has been developed and used in this study. Results show a small effect of moisture profile on the backscattered signal (less than 0.5dB). However, measurements and simulations have ...

  5. Profile measurements of thin liquid films using reflectometry

    Science.gov (United States)

    Hanchak, M. S.; Vangsness, M. D.; Byrd, L. W.; Ervin, J. S.; Jones, J. G.

    2013-11-01

    Microscope-based reflectometry was used to measure the thickness profile of thin films of n-octane on silicon wafer substrates. Coupled with micro-positioning motorized stages and custom software, two-dimensional profiles of the film thickness from the adsorbed film (˜10 nm) to the intrinsic meniscus (˜1000 nm) were automatically and repeatedly measured. The reflectometer aperture was modified to provide better spatial resolution in areas of high curvature, the transition region, where evaporative flux is at a maximum. This technique will provide data for the validation of both existing and future models of thin film evaporation.

  6. Mixing height measurements from UHF wind profiling radar

    Energy Technology Data Exchange (ETDEWEB)

    Angevine, W.M.; Grimsdell, A.W. [CIRES, Univ. of Colorado, and NOAA Aeronomy Lab., Boulder, Colorado (United States)

    1997-10-01

    Mixing height in convective boundary layers can be detected by wind profiling radars (profilers) operating at or near 915 MHZ. We have made such measurements in a variety of settings including Alabama in 1992; Nova Scotia, Canada, during the North Atlantic Regional Experiment (NARE) 1993; Tennessee during the Southern Oxidant Study (SOS) 1994; near a 450 m tower in Wisconsin in 1995; and extensively in Illinois during the Flatland95, `96, and `97 experiments, as well as continuous operations at the Flatland Atmospheric Observatory. Profiler mixing height measurements, like all measurements, are subject to some limitations. The most important of these are due to rainfall, minimum height, and height resolution. Profilers are very sensitive to rain, which dominates the reflectivity and prevents the mixing height from being detected. Because the best height resolution is currently 60 m and the minimum height is 120-150 m AGL, the profiler is not suited for detecting mixing height in stable or nocturnal boundary layers. Problems may also arise in very dry or cold environments. (au) 12 refs.

  7. Plan View and Profile Relations: Measuring Correlation Between Channel Profile and Network Morphology

    Science.gov (United States)

    Shelef, E.; Hilley, G. E.

    2010-12-01

    In this research, we explore the relationships between channel network attributes and the corresponding channel profile geometries using high-resolution digital topography and model-generated synthetic topographies. This combined analysis addresses one of the long-standing questions in geomorphology relating to the mechanistic significance of various plan-view channel network geometry measures. Statistically based numerical studies suggest that Hortonian measures of channel network architecture (e.g. bifurcation ratio, area ratio, and length ratio) describe virtually all possible network geometries, and so are not diagnostic when evaluating the origins of the geometry of a particular network. We further explore this hypothesis by examining the correlation between Hack exponent, the channel profile characteristics, and process changes (i.e debris flow vs. fluvial flows) within the landscape. Analysis of high resolution DEMs as well as modeled landscapes, suggests that the Hack exponent is likewise insensitive to changes in the channel profile concavity. In contrast, we find that changes in the concavity of channel profiles apparently impacts the spatial distribution of plan-view junction angles of joining stream segments throughout a catchment. In the context of previous work, this angle might be expected to be a function of the ratio between the slopes of the adjoined channels. Channel concavity determines downstream change in this ratio for channel segments throughout the basin, and so such a metric might be used to explicitly link profile channel geometries to plan-view network geometries. Because profile geometries may change with different advective mass transport processes, such a metric may provide a link between the processes that transport material across a landscape, the profile geometry of channels through which these flows traverse, and the overall drainage network geometry. Additional numerical and field data based analysis are required to further

  8. Retrieval of ozone profiles from GOMOS limb scattered measurements

    Directory of Open Access Journals (Sweden)

    S. Tukiainen

    2011-04-01

    Full Text Available The GOMOS (Global Ozone Monitoring by Occultation of Stars instrument on board the Envisat satellite measures the vertical composition of the atmosphere using the stellar occultation technique. While the night-time occultations of GOMOS have been proven to be of good quality, the daytime occultations are more challenging due to weaker signal-to-noise ratio. During daytime GOMOS measures limb scattered solar radiation in addition to stellar radiation. In this paper we introduce a retrieval method that determines ozone profiles between 20–60 km from GOMOS limb scattered solar radiances. GOMOS observations contain a considerable amount of stray light at high altitudes. We introduce a method for removing stray light and demonstrate its feasibility by comparing the corrected radiances against those measured by the OSIRIS (Optical Spectrograph & Infra Red Imaging System instrument. For the retrieval of ozone profiles, a standard onion peeling method is used. The first comparisons with other data sets suggest that the retrieved ozone profiles in 22–50 km are within 10% compared with the GOMOS night-time occultations and within 15% compared with OSIRIS. GOMOS has measured about 350 000 daytime profiles since 2002. The retrieval method presented here makes this large amount of data available for scientific use.

  9. Retrieval of ozone profiles from GOMOS limb scattered measurements

    Science.gov (United States)

    Tukiainen, S.; Kyrölä, E.; Verronen, P. T.; Fussen, D.; Blanot, L.; Barrot, G.; Hauchecorne, A.; Lloyd, N.

    2011-04-01

    The GOMOS (Global Ozone Monitoring by Occultation of Stars) instrument on board the Envisat satellite measures the vertical composition of the atmosphere using the stellar occultation technique. While the night-time occultations of GOMOS have been proven to be of good quality, the daytime occultations are more challenging due to weaker signal-to-noise ratio. During daytime GOMOS measures limb scattered solar radiation in addition to stellar radiation. In this paper we introduce a retrieval method that determines ozone profiles between 20-60 km from GOMOS limb scattered solar radiances. GOMOS observations contain a considerable amount of stray light at high altitudes. We introduce a method for removing stray light and demonstrate its feasibility by comparing the corrected radiances against those measured by the OSIRIS (Optical Spectrograph & Infra Red Imaging System) instrument. For the retrieval of ozone profiles, a standard onion peeling method is used. The first comparisons with other data sets suggest that the retrieved ozone profiles in 22-50 km are within 10% compared with the GOMOS night-time occultations and within 15% compared with OSIRIS. GOMOS has measured about 350 000 daytime profiles since 2002. The retrieval method presented here makes this large amount of data available for scientific use.

  10. Antiproton beam profile measurements using Gas Electron Multipliers

    CERN Document Server

    Duarte Pinto, Serge; Spanggaard, Jens; Tranquille, Gerard

    2011-01-01

    The new beam profile measurement for the Antiproton Decelerator (AD) at CERN is based on a single Gas Electron Multiplier (GEM) with a 2D readout structure. This detector is very light, ~0.4% X_0, as required by the low energy of the antiprotons, 5.3 MeV. This overcomes the problems previously encountered with multi-wire proportional chambers (MWPC) for the same purpose, where beam interactions with the detector severely affect the obtained profiles. A prototype was installed and successfully tested in late 2010, with another five detectors now installed in the ASACUSA and AEgIS beam lines. We will provide a detailed description of the detector and discuss the results obtained. The success of these detectors in the AD makes GEM-based detectors likely candidates for upgrade of the beam profile monitors in all experimental areas at CERN. The various types of MWPC currently in use are aging and becoming increasingly difficult to maintain.

  11. Soil Moisture Profile Effect on Radar Signal Measurement

    Directory of Open Access Journals (Sweden)

    André Chanzy

    2008-01-01

    Full Text Available The objective of this paper is to analyze the behaviour of a backscattered signalaccording to soil moisture depth over bare soils. Analysis based on experimental verticalmoisture profiles and ASAR/ENVISAT measurements has been carried out. A modifiedIEM model with three permittivity layers (0-1cm, 1-2cm, 2-5cm has been developed andused in this study. Results show a small effect of moisture profile on the backscatteredsignal (less than 0.5dB. However, measurements and simulations have provided a moredetailed insight into the behaviour of the radar signal and have shown that it was importantto consistently use the same protocol when performing ground truth measurements of soilmoisture.

  12. Buoyancy package for self-contained acoustic doppler current profiler mooring

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.; Krishnakumar, V.

    A buoyancy package for self-contained Acoustic Doppler Current Profiler(SC-ADCP 1200 RD instruments USA) was designed and fabricated indigenously, for subsurface mooring in coastal waters. The system design is discussed. The design to keep SC...

  13. Acoustic Doppler Current Profiling near Myrtle Bend, June 3, 2013, Kootenai River near Bonners Ferry, ID

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Acoustic doppler current profiling (ADCP) data was collected to describe streamflow characteristics including total streamflow, velocity magnitude and secondary flow...

  14. Acoustic Doppler Current Profiling near Shorty's Island, June 1, 2012, Kootenai River near Bonners Ferry, ID

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An Acoustic Doppler Current Profiler (ADCP) was used to survey streamflow characteristics including total streamflow, velocity magnitude and secondary flow...

  15. 128 slice computed tomography dose profile measurement using thermoluminescent dosimeter

    Science.gov (United States)

    Salehhon, N.; Hashim, S.; Karim, M. K. A.; Ang, W. C.; Musa, Y.; Bahruddin, N. A.

    2017-05-01

    The increasing use of computed tomography (CT) in clinical practice marks the needs to understand the dose descriptor and dose profile. The purposes of the current study were to determine the CT dose index free-in-air (CTDIair) in 128 slice CT scanner and to evaluate the single scan dose profile (SSDP). Thermoluminescent dosimeters (TLD-100) were used to measure the dose profile of the scanner. There were three sets of CT protocols where the tube potential (kV) setting was manipulated for each protocol while the rest of parameters were kept constant. These protocols were based from routine CT abdominal examinations for male adult abdomen. It was found that the increase of kV settings made the values of CTDIair increased as well. When the kV setting was changed from 80 kV to 120 kV and from 120 kV to 140 kV, the CTDIair values were increased as much as 147.9% and 53.9% respectively. The highest kV setting (140 kV) led to the highest CTDIair value (13.585 mGy). The p-value of less than 0.05 indicated that the results were statistically different. The SSDP showed that when the kV settings were varied, the peak sharpness and height of Gaussian function profiles were affected. The full width at half maximum (FWHM) of dose profiles for all protocols were coincided with the nominal beam width set for the measurements. The findings of the study revealed much information on the characterization and performance of 128 slice CT scanner.

  16. NO2 lidar profile measurements for satellite interpretation and validation

    Science.gov (United States)

    Volten, H.; Brinksma, E. J.; Berkhout, A. J. C.; Hains, J.; Bergwerff, J. B.; van der Hoff, G. R.; Apituley, A.; Dirksen, R. J.; Calabretta-Jongen, S.; Swart, D. P. J.

    2009-12-01

    Satellite instruments are efficient detectors of air pollutants such as NO2. However, the interpretation of satellite retrievals is not a trivial matter. We describe a novel instrument, the RIVM NO2 mobile lidar, to measure tropospheric NO2 profiles for the interpretation and validation of satellite data. During the DANDELIONS campaign in 2006 we obtained an extensive collection of lidar NO2 profiles, coinciding with OMI and SCIAMACHY overpasses. On clear days and early mornings a comparison between lidar and in situ measurements showed excellent agreement. At other times the in situ monitors with molybdenum converters suffered from NOy interference. The lidar NO2 profiles indicated a well-mixed boundary layer, with high NO2 concentrations in the boundary layer and concentrations above not differing significantly from zero. The boundary layer concentrations spanned a wide range, which likely depends on the wind directions and on the intensity of local (rush hour) traffic which varies with the day of the week. Large diurnal differences were mainly driven by the height of the boundary layer, although direct photolysis or photochemical processes also contribute. Small-scale temporal and spatial variations in the NO2 concentrations of the order of 20-50% were measured, probably indicative of small-scale eddies. A preliminary comparison between satellite and lidar data shows that the satellite data tend to overestimate the amount of NO2 in the troposphere compared to the lidar data.

  17. Measurement of plasma edge profile on Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Drews, Philipp; Liang, Yunfeng; Neubauer, Olaf; Denner, Peter; Rack, Michael; Liu, Shaocheng; Wang, Nunchao; Nicolai, Dirk; Hollfeld, Klaus; Satheeswaran, Guruparan [Forschungszentrum Juelich, IEK4, Juelich (Germany); Grulke, Olaf [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Collaboration: W7-X Team

    2016-07-01

    Wendelstein 7-X (W7-X), currently under commissioning at the IPP Greifswald, will be the world's largest stellarator with modular superconducting coils, which will enable steady-state-like plasma operation of up to thirty minutes in order to explore the reactor relevance of this concept. The first operation phase of W7-X will employ a limiter configuration. It will be used primarily for setting up the diagnostics and testing the magnetic configuration. In conjunction with the multipurpose manipulator, a fast reciprocating probe is installed. The combined probe head will be used to measure the radial distribution of the magnetic field using magnetic pick-up coils; the plasma temperature and density profiles and the radial electric field using Langmuir pins; and the plasma flows using a Mach setup. As a quasi-isodynamic stellarator, it has been predicted that not only neoclassical but also turbulent transport will be comparable to or possibly even lower than that of tokamaks. Edge plasma profile measurements, especially those of the electron temperature and density, will play a key role in validating this performance in comparison to the tokamak and hence the viability of a stellarator fusion reactor. The edge plasma profile measurements using the combined probe head are presented.

  18. Reflectometry techniques for density profile measurements on fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Laviron, C. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Donne, A.J.H. [Associatie Euratom-FOM, Nieuwegein (Netherlands). FOM-Instituut voor Plasmafysica; Manso, M.E. [Instituto Superior Tecnico, Lisbon (Portugal). Lab. de Quimica Organica; Sanchez, J. [EURATOM-CIEMAT for Fusion Association, Madrid (Spain)

    1996-03-01

    Reflectometry applied to the measurement of density profiles on fusion plasmas has been subject to many recent developments. After a brief reminder of the principles of reflectometry, the theoretical accuracy of reflectometry measurements is discussed. The main difficulties limiting the performance, namely the plasma fluctuations and the quality of the transmission lines, are analysed. The different techniques used for reflectometry are then presented. The present status and achievements of actual implementations of these techniques are shown, with an analysis of their respective limitations and merits, as well as foreseen developments. (author). 70 refs.

  19. MODELLING AND VIBRATION ANALYSIS OF A ROAD PROFILE MEASURING SYSTEM

    Directory of Open Access Journals (Sweden)

    C. B. Patel

    2010-06-01

    Full Text Available During a vehicle development program, load data representing severe customer usage is required. The dilemma faced by a design engineer during the design process is that during the initial stage, only predicted loads estimated from historical targets are available, whereas the actual loads are available only at the fag end of the process. At the same time, changes required, if any, are easier and inexpensive during the initial stages of the design process whereas they are extremely costly in the latter stages of the process. The use of road profiles and vehicle models to predict the load acting on the whole vehicle is currently being researched. This work hinges on the ability to accurately measure road profiles. The objective of the work is to develop an algorithm, using MATLAB Simulink software, to convert the input signals into measured road profile. The algorithm is checked by the MATLAB Simulink 4 degrees of freedom half car model. To make the whole Simulink model more realistic, accelerometer and laser sensor properties are introduced. The present work contains the simulation of the mentioned algorithm with a half car model and studies the results in distance, time, and the frequency domain.

  20. Differential phase reflectometry for edge profile measurements on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, G.R.; Wilgen, J.B.; Bigelow, T.S.; England, A.C.; Murakami, M.; Rasmussen, D.A. [Oak Ridge National Lab., TN (United States); Collazo, I. [Georgia Inst. of Tech., Atlanta, GA (United States); Wilson, J.R. [Princeton Univ., NJ (United States). Plasma Physics Lab.

    1994-06-01

    Edge electron density profile measurements, including the scrape-off layer, have been made during ICRF heating with the two-frequency differential phase reflectometer installed in an ICRF antenna on TFTR. This system probes the plasma using the extraordinary mode with two signals swept from 90 to 118 GHz while maintaining a fixed difference frequency of 125 MHz. The extraordinary mode is used to obtain density profiles in the range of 1 {times} 10{sup 11} to 3 {times} 10{sup 13} cm{sup {minus}3} in high-field (4.5- to 4.9-T) full size (R{sub 0} = 2.62 m, a = .96 m) TFTR plasmas. The reflectometer launcher is located in an ICRF antenna and views the plasma through a small penetration in the center of the Faraday shield. A 26 m long overmoded waveguide run connects the launcher to the reflectometer microwave electronics. Profile measurements made with this reflectometer system will be presented along with a discussion of the characteristics of this differential phase reflectometer and data analysis.

  1. Employing Beam-Gas Interaction Vertices for Transverse Profile Measurements

    CERN Document Server

    Rihl, Mariana; Baglin, Vincent; Barschel, Colin; Bay, Aurelio; Blanc, Frederic; Bravin, Enrico; Bregliozzi, Giuseppe; Chritin, Nicolas; Dehning, Bernd; Ferro-Luzzi, Massimiliano; Gaspar, Clara; Gianì, Sebastiana; Giovannozzi, Massimo; Greim, Roman; Haefeli, Guido; Hopchev, Plamen; Jacobsson, Richard; Jensen, Lars; Jones, Owain Rhodri; Jurado, Nicolas; Kain, Verena; Karpinski, Waclaw; Kirn, Thomas; Kuhn, Maria; Luthi, Berengere; Magagnin, Paolo; Matev, Rosen; Nakada, Tatsuya; Neufeld, Niko; Panman, Jaap; Rakotomiaramanana, Barinjaka; Salustino Guimaraes, Valdir; Salvant, Benoit; Schael, Stefan; Schneider, Olivier; Schwering, Georg; Tobin, Mark; Veness, Raymond; Veyrat, Quentin; Vlachos, Sotiris; Wlochal, Michael; Xu, Zhirui; von Dratzig, Arndt

    2016-01-01

    Interactions of high-energy beam particles with residual gas offer a unique opportunity to measure the beam profile in a non-intrusive fashion. Such a method was successfully pioneered* at the LHCb experiment using a silicon microstrip vertex detector. During the recent Large Hadron Collider shutdown at CERN, a demonstrator Beam-Gas Vertexing system based on eight scintillating-fibre modules was designed**, constructed and installed on Ring 2 to be operated as a pure beam diagnostics device. The detector signals are read out and collected with LHCb-type front-end electronics and a DAQ system consisting of a CPU farm. Tracks and vertices will be reconstructed to obtain a beam profile in real time. Here, first commissioning results are reported. The advantages and potential for future applications of this technique are discussed.

  2. Profiler measurements of turbulence and wind shear in a snowstorm

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.R. [McGill Univ., Montreal, PQ (Canada). Dept. of Atmospheric and Oceanic Sciences; Leblanc, S.G. [McGill Univ., Montreal, PQ (Canada). Dept. of Atmospheric and Oceanic Sciences; Cohn, S.A. [McGill Univ., Montreal, PQ (Canada). Dept. of Atmospheric and Oceanic Sciences; Ecklund, W.L. [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences; Carter, D.A. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; Wilson, J.S. [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences

    1996-02-01

    Observations of a large and vigorous snowstorm with a UHF wind profiler were used to investigate the intensity of atmospheric turbulence and its relation to the vertical wind shear. Turbulence was estimated from the spread of the Doppler spectrum in the vertical beam of the profiler, after correcting for the contribution of the horizontal wind speed to the spread. Wind shear was computed directly from the measured wind profiles. Over the 24 h duration of the storm, shear values exceeding 0.02 s{sup -1} existed nearly continuously in the lowest few hundred meters of the atmosphere and in a broad elevated layer that slowly descended from 4 km to 2 km. The pattern of Doppler spread in time-height coordinates closely resembled the pattern of wind shear, though a detailed, point-by-point comparison of these two quantities by linear regression yielded a correlation coefficient of only 0.4. Focusing on just the observations in the lowest few hundred meters gave a higher correlation coefficient. The Richardson number as a function of height and time was computed by combining the measured wind shear values with temperature profiles generated by a mesoscale numerical model. We found evidence of weak turbulence even in regions with Ri>1, but a value close to the theoretical threshold of Ri=1/4 separates the more intense turbulence from the weaker. Estimates of the turbulent energy dissipation rate, {epsilon}, based on the Doppler spread, range as high as 500 cm{sup 2} s{sup -3}, the largest values being near the ground. (orig.)

  3. Hamiltonian Evolution of Monokinetic Measures with Rough Momentum Profile

    KAUST Repository

    Bardos, Claude W.

    2014-12-27

    Consider a monokinetic probability measure on the phase space (Formula presented.) , i.e. (Formula presented.) where Uin is a vector field on RN and ρin a probability density on RN. Let Φt be a Hamiltonian flow on RN × RN. In this paper, we study the structure of the transported measure (Formula presented.) and of its integral in the ξ variable denoted ρ(t). In particular, we give estimates on the number of folds in (Formula presented.) , on which μ(t) is concentrated. We explain how our results can be applied to investigate the classical limit of the Schrödinger equation by using the formalism of Wigner measures. Our formalism includes initial momentum profiles Uin with much lower regularity than required by the WKB method. Finally, we discuss a few examples showing that our results are sharp.

  4. Development of a new generation of optical slope measuring profiler

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; Takacs, Peter Z.; McKinney, Wayne R.; Assoufid, Lahsen; Siewert, Frank; Zeschke, Thomas

    2010-09-16

    A collaboration, including all DOE synchrotron labs, industrial vendors of x-ray optics, and with active participation of the HBZ-BESSY-II optics group has been established to work together on a new slope measuring profiler -- the optical slope measuring system (OSMS). The slope measurement accuracy of the instrument is expected to be<50 nrad for the current and future metrology of x-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable; and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010).

  5. Measuring nanolayer profiles of various materials by evanescent light technique.

    Science.gov (United States)

    Mirchin, Nina; Apter, Boris; Lapsker, Igor; Fogel, V; Gorodetsky, Uri; Popescu, Simona A; Peled, Aaron; Popescu-Pelin, Gianina; Dorcioman, Gabriela; Duta, Liviu; Popescu, Andrei; Mihailescu, Ion N

    2012-03-01

    The evanescent light photon extraction efficiency of insulator, semiconductor and conductor amorphous nanolayers deposited on glass waveguides was evaluated from Differential Evanescent Light Intensity measurements. The Differential Evanescent Light Intensity technique uses the evanescent field scattered by the deposited nanolayer, enabling nanometer thickness profiling due to the high inherent dark background contrast. The results show that the effective evanescent photon penetration depth increases from metal to semiconductor and then to insulating layers, establishing thus the effective photon-material interaction length for the various materials classes.

  6. High Resolution Shear Profile Measurements in Entangled Polymers

    KAUST Repository

    Hayes, Keesha A.

    2008-11-17

    We use confocal microscopy and particle image velocimetry to visualize motion of 250-300 nm. fluorescent tracer particles in entangled polymers subject to a rectilinear shear flow. Our results show linear velocity profiles in polymer solutions spanning a wide range of molecular weights and number of entanglements (8≤Z≤56), but reveal large differences between the imposed and measured shear rates. These findings disagree with recent reports that shear banding is a characteristic flow response of entangled polymers, and instead point to interfacial slip as an important source of strain loss. © 2008 The American Physical Society.

  7. Measuring the longitudinal bunch profile at CTF3

    CERN Document Server

    Dabrowski, A E; Bettoni, S; Braun†, H H; Corsini, R; Döbert, S; Egger, D; Lefevre, T; Rabiller, A; Shaker, H; Soby, L; Skowronski, P K; Tecker, F; Velasco, M

    2010-01-01

    The CLIC Test Facility 3 (CTF3) is being built and commissioned by an international collaboration in order to test the feasibility of the proposed Compact Linear Collider (CLIC) two-beam acceleration scheme. The monitoring and control of the bunch length throughout the CTF3 complex is important since this affects the efficiency and the stability of the final RF power production process. Bunch length diagnostics therefore form an essential component of the beam instrumentation at CTF3. This paper presents longitudinal profile measurements based on Streak camera and non-destructive RF power and microwave spectrometry techniques.

  8. Interlaboratory comparison of autoradiographic DNA profiling measurements: precision and concordance.

    Science.gov (United States)

    Duewer, D L; Lalonde, S A; Aubin, R A; Fourney, R M; Reeder, D J

    1998-05-01

    Knowledge of the expected uncertainty in restriction fragment length polymorphism (RFLP) measurements is required for confident exchange of such data among different laboratories. The total measurement uncertainty among all Technical Working Group for DNA Analysis Methods laboratories has previously been characterized and found to be acceptably small. Casework cell line control measurements provided by six Royal Canadian Mounted Police (RCMP) and 30 U.S. commercial, local, state, and Federal forensic laboratories enable quantitative determination of the within-laboratory precision and among-laboratory concordance components of measurement uncertainty typical of both sets of laboratories. Measurement precision is the same in the two countries for DNA fragments of size 1000 base pairs (bp) to 10,000 bp. However, the measurement concordance among the RCMP laboratories is clearly superior to that within the U.S. forensic community. This result is attributable to the use of a single analytical protocol in all RCMP laboratories. Concordance among U.S. laboratories cannot be improved through simple mathematical adjustments. Community-wide efforts focused on improved concordance may be the most efficient mechanism for further reduction of among-laboratory RFLP measurement uncertainty, should the resources required to fully evaluate potential cross-jurisdictional matches become burdensome as the number of RFLP profiles on record increases.

  9. Residual Gas Fluorescence for Profile Measurements at the GSI UNILAC

    CERN Document Server

    Forck, P

    2002-01-01

    The high beam currents, delivered at the LINAC at GSI (UNILAC) can destroy intercepting diagnostics within one macro-pulse. As an alternative for a non-destructive profile measurement the methode for residual-gas-fluorescence is investigated. The fluorescence light is emitted by the N2 molecules of the residual gas at the blue wavelength range and can be monitored with a modern CCD-camera. The images are transferred via digital bus (IEEE 1394 'FireWire') and the profiles are generated by analysis of the images with a modern software tool (National Instruments 'LabView'). Due to the short beam pulses (about 0.2 ms) the light intensities emitted by the residual gas are low and require a high amplification (gain >106) which is realized with an image intensifier with double MCP (multi channel plate), connected with a fiber taper to the CCD-chip. The design parameters of the optics and electronics are discussed as well as the advantages of the digital data transmission. Measurements with heavy ion beams of several...

  10. Estimation of road profile variability from measured vehicle responses

    Science.gov (United States)

    Fauriat, W.; Mattrand, C.; Gayton, N.; Beakou, A.; Cembrzynski, T.

    2016-05-01

    When assessing the statistical variability of fatigue loads acting throughout the life of a vehicle, the question of the variability of road roughness naturally arises, as both quantities are strongly related. For car manufacturers, gathering information on the environment in which vehicles evolve is a long and costly but necessary process to adapt their products to durability requirements. In the present paper, a data processing algorithm is proposed in order to estimate the road profiles covered by a given vehicle, from the dynamic responses measured on this vehicle. The algorithm based on Kalman filtering theory aims at solving a so-called inverse problem, in a stochastic framework. It is validated using experimental data obtained from simulations and real measurements. The proposed method is subsequently applied to extract valuable statistical information on road roughness from an existing load characterisation campaign carried out by Renault within one of its markets.

  11. Lidar Aerosol Profiles Measured From Halifax During Summer 2007

    Science.gov (United States)

    Crawford, L.; Duck, T. J.; Doyle, J.; Harris, R.; Beauchamp, S.

    2007-12-01

    Measurements of aerosol profiles in the troposphere and lower stratosphere were obtained with a high-power Raman Lidar from Halifax, Nova Scotia (44.63N, 63.58W) on the East Coast of Canada during Summer 2007. Observations throughout the troposphere at high temporal resolution were made possible by using a new dual-receiver setup. The lidar was operated in clear-sky conditions, and several long duration (> 80 hours) data sets were obtained. The measurements reveal the presence of boundary-layer aerosols during episodes of pollution transport from the Eastern US and Canada, and are compared with surface measurements of ozone and other species. Boundary layer development, entrainment and mixing are evident in the data. Structured plumes at higher altitudes are traced back to biomass burning events throughout North America. Aerosols were also observed on two occasions at 15 km in altitude, and are most likely due to pyroconvection. The measurements are being used to help understand transport and mixing processes, and to form a climatology of aerosol export from North America during the summer months.

  12. Comparison of mixing height parameterizations with profiles measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jaquier, A.; Stuebi, R.; Tercier, P. [Swiss Meteorological Inst., SMI - MeteoSwiss, Payerne (Switzerland)

    1997-10-01

    Different meteorological pre-processors for dispersion studies are available to derive the atmospheric boundary layer mixing height (MH). The analysis of their performances has been reviewed in the framework of the European COST Action 710. In this project, the computed mixing height values have been compared with data derived mostly from aero-logical sounding analysis and Sodar measurements. Since then, a new analysis of a low-tropospheric wind profiler (WP) data has been performed taking advantage of its high data sampling ({delta}t {approx} 30 sec.). The comparison between these recent results and aero-logical sounding, Sodar data, as well as to meteorological pre-processors calculations are reported for three periods of several days corresponding to different meteorological situations. In convective conditions, the pre-processors give reasonable level, the mixing height growing rate is in fair agreement with the measured one. In stable cloudy daytime conditions, the modeled mixing height does not correspond to any measured height. (LN)

  13. Radiation profiles measured through clouds using a return glider radiosonde

    Science.gov (United States)

    Kräuchi, Andreas; Philipona, Rolf; Kivi, Rigel

    2016-04-01

    With new and improved radiation sensors in a small glider aircraft vertical flights through clouds have been conducted. This new Return Glider Radiosonde (RG-R) is lifted up with double balloon technique to keep the radiation instruments as horizontal as possible during ascent. The RG-R is equipped with a routine radiosonde to transmit the data to a ground station and an autopilot to fly the glider radiosonde back to the launch site, where it lands autonomous with a parachute. The RG-R was successfully tested and deployed for tropospheric and stratospheric radiation measurements up to 30 hPa (24 km altitude) at the GRUAN sites Payerne (Switzerland) and Sodankylä (Finland). Radiation profiles and the radiation budget through the atmosphere during different daytimes and under cloud-free and cloudy situations will be shown in relation to temperature and humidity at the surface and in the atmosphere. The RG-R flight characteristics and new measurement possibilities will also be discussed.

  14. How was the deep scattering layers (DSLs) influenced by the Deepwater Horizon Spill? - Evidences from 10-year NTL oil/gas ADCP backscattering data collected at the spill site

    Science.gov (United States)

    Wang, Z.; DiMarco, S. F.; Socolofsky, S. A.

    2016-02-01

    There are suspicions that the 2010 DWH oil spill might have affected the biomass in the deep scattering layers (DSLs), at least during the period in which the spill was active and oil dispersants were used. The acoustic backscattering intensity (ABI) data from acoustic Doppler current profilers (ADCPs) have been shown to detect and monitor the spatial and temporal evolution of DSLs in many oceans. Since 2005 with the issue of a Notice of Lessees and Operators (NTL), namely, NTL No. 2005-G5, large amounts of continuous ADCP data have been collected by oil/gas companies in the Northern Gulf at more than 100 stations and made publically available via the National Data Buoyancy Center (NDBC) website. NTL ADCPs data have also been collected prior to, during and after the DWH spill at the spill site. The ADCP with station # 42872 was mounted on the DWH rig and collected ABI data from 2005 until the rig sank in April 2010. ADCPs with station # 42916 and 42868 were then moved into the spill region and collected ABI data during and after the spill. The deep scattering layers were well resolved by those 38 kHz with vertical range of 1000m. The SSL provides key food for many large sea-animals, including whales, dolphins, billfishes and giant tunas and therefore have important roles in the ecosystem of the deep Gulf. By carefully applying calibrations and corrections, the ABI data can be converted to biologically meaningful mean volume backscattering strength (MVBS) and areal backscattering strength (ABS). This is an effective and powerful way to study the pelagic communality dynamics in the deep scattering layers and to investigate greater details that were previously inaccessible. Utilizing the NTL data collected during the past 10 years around the DWH site, we investigate the spill influence on deep scattering layers by comparing the biomass pre- and post BP spill and comparing biomass variations in areas with and without oil contamination. Preliminary results have shown

  15. Suspended sediment measurements in the Llobregat River Mouth; Compana de medida de concentracion de solidos en suspension en la desembocadura del rio Llobregat

    Energy Technology Data Exchange (ETDEWEB)

    Sotillo Membibre, M.

    2011-07-01

    Sediment concentrations were measured at the Llobregat river mouth near Barcelona, using an ADCP. the ADCP backscatter intensity was corrected fro sound loss in the water column and was calibrated to sediment concentrations on the basis of water samples, that were taken in the water column. This holds for cases where particles are small compared to the acoustic were length so that the Rayleigh scattering law applies, which is true the ADCP. (Author)

  16. Ocean Profile Measurements During the Seasonal Ice Zone Reconnaissance Surveys Ocean Profiles

    Science.gov (United States)

    2017-01-01

    Reconnaissance Surveys Ocean Profiles James Morison Polar Science Center, APL-UW 1013 NE 40th St. Seattle, WA 98105 phone: (206) 543 1394 fax...minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water ...of atmospheric properties (Schweiger et al.), in-flight, and inflight laser profiling for ice thickness using the CU Laser Profiler Instrument

  17. Regional localization of DPP4 (alias CD26 and ADCP2) to chromosome 2q24

    Energy Technology Data Exchange (ETDEWEB)

    Darmoul, D. [INSERM, Paris (France)]|[Galton Lab., London (United Kingdom); Fox, M.; Harvey, C.; Swallow, D.M. [Galton Lab., London (United Kingdom); Jeggo, P. [Univ. of Sussex, Brighton (United Kingdom); Gum, J.R.; Kim, Y.S. [Univ. of California, San Francisco, CA (United States)

    1994-07-01

    A panel of microcell hybrids containing fragments of chromosome 2 was analyzed for the presence of human DPP4, the gene that codes for dipeptidyl peptidase IV (or CD26), by specific PCR amplification of a fragment of the 3{prime} untranslated region of the gene. This analysis placed DPP4 between LCT and GAD in bands q21 to q31. The localization was confirmed by in situ hybridization using two genomic probes that each revealed a hybridization signal in band q24. The authors also use the recent identification of the ADA binding protein as DPPIV to propose that the gene ADCP2 should be renamed DPP4.

  18. Automated grain size measurements from airborne remote sensing for long profile measurements of fluvial grain sizes

    Science.gov (United States)

    Carbonneau, Patrice E.; Bergeron, Normand; Lane, Stuart N.

    2005-11-01

    Recent research has demonstrated that image processing can be applied to derive surficial median grain size data automatically from high-resolution airborne digital imagery in fluvial environments. However, at the present time, automated grain size measurement is limited to the dry exposed bed areas of the channel. This paper shows that the application area of automated grain size mapping can be extended in order to include the shallow wetted areas of the channel. The paper then proceeds to illustrate how automated grain size measurement in both dry and shallow wetted areas can be used to measure grain sizes automatically for long river lengths. For the present study, this results in a median grain size profile covering an 80 km long river which is constructed from over three million automated grain size measurements.

  19. Measurement of inner and/or outer profiles of pipes using ring beam devices

    Science.gov (United States)

    Wakayama, T.; Yoshizawa, T.

    2009-11-01

    Inner profile measurement is an important matter in such fields as medicine, dentistry and anthropology as well as mechanical engineering and industry. Here we propose a measurement method for inner diameter of pipes and/or holes. The key device in this technique is a ring beam device which consists of a conical mirror and a laser diode. And the fundamental principle is based on optical sectioning without any contact probe. The optically sectioned profile of an inner wall of a pipe-like object is analyzed to give the inner profile in addition to the inner diameter. This optical instrument with a simple and small configuration is now under development for practical uses. In the hitherto-tried experimental works, the availability of this instrument has been highly evaluated and usability for practical applications is expected, especially, for measurement and inspection of mechanical components and elements besides pipes. This ring beam device consisting of a conical mirror and a LD is assembled to form a disklike light beam sheet. We show measurement result of pipes and holes, and, at the same time, report a compact inner profile measuring instrument. Both the ring beam device and a miniaturized CCD camera are fabricated in a glass tube. Availability of this instrument is shown by measuring the inner profiles of various pipes. In response to this trial, there appeared a strong request that not only the internal but external profiles should be measured simultaneously. Therefore we propose an improved method for measuring the external profile in addition to the internal profile. In our arrangement, one pair of concaved conical mirrors is used for the external profile measurement. In combination with the inner profile measurement technique, simultaneous measurement of the inner and outer profiles becomes attainable. A measurement result on a bevel gear shows availability of newly proposed principle. Now we are aiming to realize simultaneous measurement of the internal

  20. Multiplex cytological profiling assay to measure diverse cellular states.

    Directory of Open Access Journals (Sweden)

    Sigrun M Gustafsdottir

    Full Text Available Computational methods for image-based profiling are under active development, but their success hinges on assays that can capture a wide range of phenotypes. We have developed a multiplex cytological profiling assay that "paints the cell" with as many fluorescent markers as possible without compromising our ability to extract rich, quantitative profiles in high throughput. The assay detects seven major cellular components. In a pilot screen of bioactive compounds, the assay detected a range of cellular phenotypes and it clustered compounds with similar annotated protein targets or chemical structure based on cytological profiles. The results demonstrate that the assay captures subtle patterns in the combination of morphological labels, thereby detecting the effects of chemical compounds even though their targets are not stained directly. This image-based assay provides an unbiased approach to characterize compound- and disease-associated cell states to support future probe discovery.

  1. 3D-profile measurement of advanced semiconductor features by reference metrology

    Science.gov (United States)

    Takamasu, Kiyoshi; Iwaki, Yuuki; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami; Lorusso, Gian F.; Horiguchi, Naoto

    2016-03-01

    A method of sub-nanometer uncertainty for the 3D-profile measurement using TEM (Transmission Electron Microscope) images is proposed to standardize 3D-profile measurement through reference metrology. The proposed method has been validated for profiles of Si lines, photoresist features and advanced-FinFET (Fin-shaped Field-Effect Transistor) features in our previous investigations. However, efficiency of 3D-profile measurement using TEM is limited by measurement time including processing of the sample. In this article, we demonstrate a novel on-wafer 3D-profile metrology as "FIB-to-CDSEM method" with FIB (Focused Ion Beam) slope cut and CD-SEM (Critical Dimension Secondary Electron Microscope) measuring. Using the method, a few micrometer wide on a wafer is coated and cut by 45 degree slope using FIB tool. Then, the wafer is transferred to CD-SEM to measure the cross section image by top down CD-SEM measurement. We apply FIB-to-CDSEM method to CMOS sensor device. 3D-profile and 3D-profile parameters such as top line width and side wall angles of CMOS sensor device are evaluated. The 3D-profile parameters also are measured by TEM images as reference metrology. We compare the 3D-profile parameters by TEM method and FIB-to-CDSEM method. The average values and correlations on the wafer are agreed well between TEM and FIB-to- CDSEM methods.

  2. Evaluation of Laser Profile and Deflection Measuring System

    Science.gov (United States)

    1984-09-01

    LRSERS F, BC TEST 5 20.0 LASER9S fiBC TEST -A-5 PROFILES VITH NO CORRECTIONS ST. LARWENCE ROArO WES LASERS ABCO TEST 6 * 2Q. 4-50.@ DITAC - ET 1 A...LASERS ABCO TEST 3 * .0 1-4~ Lui z 󈧎. 160.0 019𔄁 8 . 0 . DIT*C FEE X L PROFILES HIGH PRSS FILTERED RUNWRY. TY’NDRLL FIR FORCE BASE "LASERS ABCD TEST 3... ABCO TEST 2 40. . V.@.. Cn1RR EFT ED FPRONFLE EPIM ’D-2 PROFILE MEASUFRED ,I-TH RnO AND LEVELRUNWAY AT TYNDALL IR FORCE BAHE LASERS ABCD TEST 3 Il S

  3. 3D profile measurement of large-scale curvature plates using structured light source

    Science.gov (United States)

    Heo, EunChang; Kim, ByoungChang; Lee, Hyunho; Han, JongMan

    2008-08-01

    In heavy industry, especially in the shipbuilding process, 3D profile measurement of large-scale hull pieces is needed for fabrication and assembly. Currently, using many kinds of templates made of wood or plastic still do an important role as a standard ruler. We suggest an efficient method of 3D profile measurement to obtain the xyz-coordinates of curvature plates. The measurement system comprises multiple line structured laser sources and performs profile measurement by projecting structured light source on the object surface. The measurement results show that measurement accuracy is within the boundary of accuracy required in the shipbuilding process.

  4. Enzyme activity measurement via spectral evolution profiling and PARAFAC

    DEFF Research Database (Denmark)

    Baum, Andreas; Meyer, Anne S.; Garcia, Javier Lopez

    2013-01-01

    fingerprints of the reaction mixture at specific time points during the course of the whole enzyme catalyzed reaction and employs multi-way analysis to detect the spectral changes. The methodology is demonstrated by spectral evolution profiling of Fourier Transform Infrared (FTIR) spectral fingerprints using...

  5. The effect of chamber mixing velocity on bias in measurement of sediment oxygen demand rates in the Tualatin River basin, Oregon

    Science.gov (United States)

    Doyle, Micelis C.; Rounds, Stewart

    2003-01-01

    Three sediment oxygen demand (SOD) measurement chambers were deployed in the Tualatin River near Tigard, Oregon, at river mile 10 in August 2000. SOD rates were calculated for three different circulation velocities during each chamber deployment. The SOD rate at each velocity was calculated from a graph of dissolved oxygen concentration versus elapsed time. An acoustic doppler current profiler (ADCP) was used to measure stream discharge and near-bottom water velocities in the Tualatin at river mile 10 and at two upstream locations. Measured river and chamber velocities were similar, indicating that results from the chambers were representative of instream effects.

  6. Automated pavement horizontal curve measurement methods based on inertial measurement unit and 3D profiling data

    Directory of Open Access Journals (Sweden)

    Wenting Luo

    2016-04-01

    Full Text Available Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditional methods for curve geometry investigation are time consuming, labor intensive, and inaccurate, this study attempts to develop a method that can automatically conduct horizontal curve identification and measurement at network level. The digital highway data vehicle (DHDV was utilized for data collection, in which three Euler angles, driving speed, and acceleration of survey vehicle were measured with an inertial measurement unit (IMU. The 3D profiling data used for cross slope calibration was obtained with PaveVision3D Ultra technology at 1 mm resolution. In this study, the curve identification was based on the variation of heading angle, and the curve radius was calculated with kinematic method, geometry method, and lateral acceleration method. In order to verify the accuracy of the three methods, the analysis of variance (ANOVA test was applied by using the control variable of curve radius measured by field test. Based on the measured curve radius, a curve safety analysis model was used to predict the crash rates and safe driving speeds at horizontal curves. Finally, a case study on 4.35 km road segment demonstrated that the proposed method could efficiently conduct network level analysis.

  7. Spectrally resolved measurements of the terahertz beam profile generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Zalkovskij, Maksim; Strikwerda, Andrew

    2014-01-01

    Using a THz camera and THz bandpass filters, we measure the frequency - resolved beam profile emitted from a two - color air plasma. We observe a frequency - independent emission angle from the plasma .......Using a THz camera and THz bandpass filters, we measure the frequency - resolved beam profile emitted from a two - color air plasma. We observe a frequency - independent emission angle from the plasma ....

  8. Medición de la concentración de sedimentos en suspensión mediante dispositivos ópticos y acústicos: aplicación en sistemas tropicales (Delta del río Mira, Colombia Measurement of suspended sediment concentration using optical and acoustic devices: application in tropical systems (Mira River Delta, Colombia

    Directory of Open Access Journals (Sweden)

    Juan Camilo Restrepo

    2012-03-01

    Full Text Available En los últimos años, la utilización de dispositivos ópticos (e.g. Optical Backscatter Sensor, OBS y acústicos (e.g. Acoustic Doppler Current Profiler-ADCP ha permitido monitorear con mayor resolución la variabilidad temporal y espacial de la concentración de sedimentos en suspensión (CSS en ambientes costeros y estuarinos. Sin embargo, la aplicación de estas técnicas en ambientes tropicales ha tenido un desarrollo incipiente. En el presente trabajo se implementó un procedimiento de calibración para un dispositivo OBS-3A, tomando como patrón de calibración sedimento seco y desagregado de la zona de estudio. Además, se presentan las correcciones a las que se debe someter la señal de respuesta del ADCP, debido a la dispersión geométrica, la atenuación del sonido por el agua y las partículas en suspensión, para que sea útil en la estimación de CSS. El ADCP y el OBS-3A se utilizaron para realizar mediciones de CSS en el sistema deltaico del río Mira (isla del Morro y desembocadura principal, ubicado sobre la costa del Pacífico colombiano, un ambiente costero tropical donde algunos factores oceanográficos y estuarinos son determinantes en la señal de respuesta de los equipos.In recent years, the use of optical (Optical Backscatter Sensor, OBS and acoustic (Acoustic Current Doppler Profiler, ADCP instruments has allowed monitoring the temporal and spatial variation of the suspended sediment concentration (SSC in coastal and estuarine environments with greater resolution. However, the development of the application of those techniques in tropical environments is incipient. For this study, an OBS-3A calibration procedure was implemented, taking dry and desegregated sediment from the study zone as a calibrating pattern. Moreover, we present the corrections required for the ADCP signal to be useful in the estimation of SSC due to geometrical spreading, the attenuation of sound by water, and the particles in suspension. The ADCP

  9. The investigation of sediment processes in rivers by means of the Acoustic Doppler Profiler

    Directory of Open Access Journals (Sweden)

    M. Guerrero

    2014-09-01

    Full Text Available The measurement of sediment processes at the scale of a river cross-section is desirable for the evaluation of many issues related to river hydro-morphodynamics, such as the calibration and validation of numerical models for predicting the climate change impacts on water resources and efforts of maintenance of the navigation channel and other hydraulic works. Suspended- and bed-load have traditionally been measured by cumbersome techniques that are difficult to apply in large rivers. The acoustics for the investigation of small-scale sedimentological processes gained acceptance in the marine community because of its ability to simultaneously profile sediment concentration and size distribution, non-intrusively, and with high temporal and spatial resolution. The application of these methods in true riverine case studies presents additional difficulties, mainly related to water depths and stream currents that limit sound propagation into water and challenge the instruments deployment, especially during floods. This article introduces the motivations for using the ADCP for sediment processes investigation other than for flow discharge measurement, summarizes the developed methods and indicates future desirable improvements. In addition, an application on the Po River in Italy is presented, focusing on the calibration of the existing software by means of ADCP recordings. The calibrated model will assist in planning the dredging activities to maintain the navigation channel and the intake of a pump station for irrigation that is periodically obstructed with a sandbar.

  10. Assignment of adenosine deaminase complexing protein (ADCP) gene(s) to human chromosome 2 in rodent-human somatic cell hybrids.

    Science.gov (United States)

    Herbschleb-Voogt, E; Grzeschik, K H; Pearson, P L; Meera Khan, P

    1981-01-01

    The experiments reported in this paper indicate that the expression of human adenosine deaminase complexing protein (ADCP) in the human-rodent somatic cell hybrids is influenced by the state of confluency of the cells and the background rodent genome. Thus, the complement of the L-cell derived A9 or B82 mouse parent apparently prevents the expression of human ADCP in the interspecific somatic cell hybrids. In the a3, E36, or RAG hybrids the human ADCP expression was not prevented by the rodent genome and was found to be proportional to the degree of confluency of the cell in the culture as in the case of primary human fibroblasts. An analysis of human chromosomes, chromosome specific enzyme markers, and ADCP in a panel of rodent-human somatic cell hybrids optimally maintained and harvested at full confluency has shown that the expression of human ADCP in the mouse (RAG)-human as well as in the hamster (E36 or a3)-human hybrids is determined by a gene(s) in human chromosome 2 and that neither chromosome 6 nor any other of the chromosomes of man carry any gene(s) involved in the formation of human ADCP at least in the Chinese hamster-human hybrids. A series of rodent-human hybrid clones exhibiting a mitotic separation of IDH1 and MDH1 indicated that ADCP is most probably situated between corresponding loci in human chromosome 2.

  11. Near-wall velocity profile measurement for nanofluids

    Directory of Open Access Journals (Sweden)

    Anoop Kanjirakat

    2016-01-01

    Full Text Available We perform near-wall velocity measurements of a SiO2–water nanofluid inside a microchannel. Nanoparticle image velocimetry measurements at three visible depths within 500 nm of the wall are conducted. We evaluate the optical properties of the nanofluid and their effect on the measurement technique. The results indicate that the small effect of the nanoparticles on the optical properties of the suspension have a negligible effect on the measurement technique. Our measurements show an increase in nanofluid velocity gradients near the walls, with no measurable slip, relative to the equivalent basefluid flow. We conjecture that particle migration induced by shear may have caused this increase. The effect of this increase in the measured near wall velocity gradient has implications on the viscosity measurement for these fluids.

  12. Profiling of MAX-DOAS BrO measurements from Antarctica and NO2 measurements from CINDI

    Science.gov (United States)

    Hay, Tim; Kreher, Karin; Johnston, Paul; Bodeker, Greg; Schofield, Robyn; Thomas, Alan; McDonald, Adrian; Martinez-Aviles, Monica

    2010-05-01

    We will present a newly developed algorithm for the retrieval of tropospheric trace gas profiles from MAX-DOAS measurements. A Monte Carlo radiative transfer model, NIMO (NIWA Monte Carlo model) is used to calculate the weighting functions and forward model DSCDs (Differential Slant Column Densities). NIMO uses the local estimation technique to substantially speed up the determination of DSCDs for any given set of measurement geometries, enabling use of the model ‘online' rather than using pre-calculated lookup tables. The optimal estimation method is used to retrieve profiles for either single or multiple scan sequences or over prescribed time intervals. This inversion method is used to derive NO2 profiles from MAX-DOAS measurements made during the CINDI campaign at Cabauw, Netherlands, in June/July 2009. BrO profiles retrieved from sea-ice MAX-DOAS measurements, made during two Antarctic springtime campaigns in 2006 and 2007, are also presented.

  13. Prediction of propagated wave profiles based on point measurement

    Directory of Open Access Journals (Sweden)

    Sang-Beom Lee

    2014-03-01

    Full Text Available This study presents the prediction of propagated wave profiles using the wave information at a fixed point. The fixed points can be fixed in either space or time. Wave information based on the linear wave theory can be expressed by Fredholm integral equation of the first kinds. The discretized matrix equation is usually an ill-conditioned system. Tikhonov regularization was applied to the ill-conditioned system to overcome instability of the system. The regularization parameter is calculated by using the L-curve method. The numerical results are compared with the experimental results. The analysis of the numerical computation shows that the Tikhonov regularization method is useful.

  14. Offshore wind profiling using light detection and ranging measurements

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hasager, Charlotte Bay; Gryning, Sven-Erik

    2009-01-01

    The advantages and limitations of the ZephlR (R), a continuous-wave, focused light detection and ranging (LiDAR) wind profiler, to observe offshore winds and turbulence characteristics were tested during a 6 month campaign at the tronsformer/platform of Hams Rev, the world's largest wind form......-derived friction velocities and roughness lengths were compared to Charnock's sea roughness model. These overage values were found to be close to the model, although the scatter of the individual estimations of sea roughness length was large. Copyright (C) 2008 John Wiley & Sons, Ltd....

  15. Modelling and measurements of bunch profiles at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulou, S. [Crete U.; Antoniou, F. [Liverpool U.; Argyropoulos, T. [CERN; Fitterer, M. [Fermilab; Hostettler, M. [CERN; Papaphilippou, Y. [CERN

    2017-07-20

    The bunch profiles in the LHC are often observed to be non-Gaussian, both at Flat Bottom (FB) and Flat Top (FT) energies. Especially at FT, an evolution of the tail population in time is observed. In this respect, the Monte-Carlo Software for IBS and Radiation effects (SIRE) is used to track different types of beam distributions. The impact of the distribution shape on the evolution of bunch characteristics is studied. The results are compared with observations from the LHC Run 2 data.

  16. The Zax Information Profile: a measure of college adjustment.

    Science.gov (United States)

    Sturm, D; Zax, M; Clarfield, S P; Pratt, D M

    1977-08-01

    Evaluated the effectiveness of the Zax Information Profile (ZIP), a personality test based on general fund of information, in discriminating between college students who sought mental health services and those who did not, Three successive classes of freshmen students at the Eastman School of Music of the University of Rochester were administered the ZIP. Help-seeking students were matched with non-help-seeking students for sex, age, and intellectual ability. The hypothesis that ZIP scores would differentiate between these two groups was supported by the data. The potential use of the ZIP as a predictor of college adjustment and as a useful entrance screening device was discussed.

  17. Suspended sediment dynamics in a large-scale turbidity current: Direct measurements from the deep-water Congo Canyon

    Science.gov (United States)

    Simmons, S.; Azpiroz, M.; Cartigny, M.; Clare, M. A.; Parsons, D. R.; Sumner, E.; Talling, P. J.

    2016-12-01

    Turbidity currents that transport sediment to the deep ocean deposit a greater volume of sediment than any other process on Earth. To date, only a handful of studies have directly measured turbidity currents, with flow durations ranging from a few minutes to a few hours. Our understanding of turbidity current dynamics is therefore largely derived from scaled laboratory experiments and numerical modelling. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements using acoustic Doppler current profilers (ADCPs) show that flows can last for many days, rather than hours as seen elsewhere, and provide the first quantification of concentration and grain size within deep-water turbidity currents.Velocity and backscatter were measured at 5 second intervals by an ADCP suspended 80 m above the canyon floor, at 2000 m water depth. A novel inversion method using multiple ADCP frequencies enabled quantification of sediment concentration and grain size within the flows. We identify high concentrations of coarse sediment within a thin frontal cell, which outruns a thicker, trailing body. Thus, the flows grow in length while propagating down-canyon. This is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended fine-grained sediment. The body mixes with the surrounding fluid leaving diffuse clouds of sediment that persist for days after initial entrainment. Ambient tidal flow also controls the mixing within the body and the surrounding fluid. Our results provide a new quantification of suspended sediment within flows and the interaction with the surrounding fluid.

  18. The influence of the Wind Speed Profile on Wind Turbine Performance Measurements

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Antoniou, Ioannis; Pedersen, Søren M.

    2009-01-01

    . Assuming a certain turbine hub height, the profiles with hub-height wind speeds between 6 m s-1 and 8 m s-1 are normalized at 7 m s-1 and grouped to a number of mean shear profiles. The energy in the profiles varies considerably for the same hub-height wind speed. These profiles are then used as input......To identify the influence of wind shear and turbulence on wind turbine performance, flat terrain wind profiles are analysed up to a height of 160 m. The profiles' shapes are found to extend from no shear to high wind shear, and on many occasions, local maxima within the profiles are also observed...... to a Blade Element Momentum model that simulates the Siemens 3.6 MW wind turbine. The analysis is carried out as time series simulations where the electrical power is the primary characterization parameter. The results of the simulations indicate that wind speed measurements at different heights over...

  19. Direct and fast measurement of CT beam filter profiles with simultaneous geometrical calibration.

    Science.gov (United States)

    Yang, Kai; Li, Xinhua; George Xu, X; Liu, Bob

    2017-01-01

    To accurately measure the beam filter profiles from a variety of CT scanner models and to provide reference data for Monte Carlo simulations of CT scanners. This study proposed a new method to measure CT beam filter profiles using a linear-array x-ray detector (X-Scan 0.8f3-512; Detection Technology Inc., Espoo, Finland) under gantry rotation mode. A robust geometrical calibration approach was developed to determine key geometrical parameters by considering the x-ray focal spot location relative to the linear-array detector and the gantry's angular increment at each acquisition point. CT beam intensity profiles were synthesized from continuously measured data during a 10° gantry rotation range with calibrated detector response and system geometry information. Relative transmission profiles of nineteen sets of beam filters were then derived for nine different CT scanner models from three different manufacturers. Equivalent aluminum thickness profiles of these beam filters were determined by analytical calculation using the Spektr Matlab software package to match the measured transmission profiles. Three experiments were performed to validate the accuracy of the geometrical calibration, detector response modeling, and the derived equivalent aluminum thickness profiles. The beam intensity profiles measured from gantry rotation mode showed very good agreement with those measured with gantry stationary mode, with a maximal difference of 3%. The equivalent aluminum thickness determined by this proposed method agreed well with what was measured by an ion chamber, with a mean difference of 0.4%. The determined HVL profiles matched well with data from a previous study (max difference of 4.7%). An accurate and robust method to directly measure profiles from a broad list of beam filters and CT scanner models was developed, implemented, and validated. Useful reference data was provided for future research on CT system modeling. © 2016 American Association of Physicists in

  20. Transcriptome-wide measurement of translation by ribosome profiling.

    Science.gov (United States)

    McGlincy, Nicholas J; Ingolia, Nicholas T

    2017-08-15

    Translation is one of the fundamental processes of life. It comprises the assembly of polypeptides whose amino acid sequence corresponds to the codon sequence of an mRNA's ORF. Translation is performed by the ribosome; therefore, in order to understand translation and its regulation we must be able to determine the numbers and locations of ribosomes on mRNAs in vivo. Furthermore, we must be able to examine their redistribution in different physiological contexts and in response to experimental manipulations. The ribosome profiling method provides us with an opportunity to learn these locations, by sequencing a cDNA library derived from the short fragments of mRNA covered by the ribosome. Since its original description, the ribosome profiling method has undergone continuing development; in this article we describe the method's current state. Important improvements include: the incorporation of sample barcodes to enable library multiplexing, the incorporation of unique molecular identifiers to enable to removal of duplicated sequences, and the replacement of a gel-purification step with the enzymatic degradation of unligated linker. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Modeling and Experimental Tests of a Mechatronic Device to Measure Road Profiles Considering Impact Dynamics

    DEFF Research Database (Denmark)

    Souza, A.; Santos, Ilmar

    2002-01-01

    Vehicles travel at different speeds and, as a consequence, experience a broad spectrum of vibrations. One of the most important source of vehicle vibration is the road profile. Hence the knowledge of the characteristics of a road profile enables engineers to predict the dynamic behavior...... of a vehicle and to test its components in laboratory. In this framework a mechanism to measure road profiles is designed and presented. Such a mechanism is composed of two rolling wheels and two long beams attached to the vehicles by means of four Kardan joints. The wheels are kept in contact to the ground...... profile by means of gravitational and spring forces. Accelerometers are attached above the rolling wheels and the wheels follow the profiles of a rough ground. After integrating the acceleration signal twice and measuring the vehicle displacement the road profiles can be achieved. It is important...

  2. Prediction of propagated wave profiles based on point measurement

    Directory of Open Access Journals (Sweden)

    Lee Sang-Beom

    2014-03-01

    Full Text Available This study presents the prediction of propagated wave profiles using the wave information at a fixed point. The fixed points can be fixed in either space or time. Wave information based on the linear wave theory can be expressed by Fredholm integral equation of the first kinds. The discretized matrix equation is usually an ill-conditioned system. Tikhonov regularization was applied to the ill-conditioned system to overcome instability of the system. The regularization parameter is calculated by using the L-curve method. The numerical results are compared with the expe¬rimental results. The analysis of the numerical computation shows that the Tikhonov regularization method is useful.

  3. A measurement system for vertical seawater profiles close to the air–sea interface

    Directory of Open Access Journals (Sweden)

    R. P. Sims

    2017-09-01

    Full Text Available This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s−1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.

  4. 3D-profile measurement of advanced semiconductor features by using FIB as reference metrology

    Science.gov (United States)

    Takamasu, Kiyoshi; Iwaki, Yuuki; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami

    2017-03-01

    A novel method of sub-nanometer uncertainty for the 3D-profile measurement and LWR (Line Width Roughness) measurement by using FIB (Focused Ion Beam) processing, and TEM (Transmission Electron Microscope) and CD-SEM (Critical Dimension Scanning Electron Microscope) images measurement is proposed to standardize 3D-profile measurement through reference metrology. In this article, we apply the methodology to line profile measurements and roughness measurement of advanced FinFET (Fin-shaped Field-Effect Transistor) features. The FinFET features are horizontally sliced as a thin specimen by FIB micro sampling system. Horizontally images of the specimens are obtained then by a planar TEM. LWR is calculated from the edges positions on TEM images. Moreover, we already have demonstrated the novel on-wafer 3D-profile metrology as "FIB-to-CDSEM method" with FIB slope cut and CD-SEM measuring. Using the method, a few micrometers wide on a wafer is coated and cut by 45-degree slope using FIB tool. Then, the wafer is transferred to CD-SEM to measure the cross section image by top down CD-SEM measurement. We applied FIB-to-CDSEM method to a CMOS image sensor feature. The 45-degree slope cut surface is observed using AFM. The surface profile of slope cut surface and line profiles are analyzed for improving the accuracy of FIB-to-CDSEM method.

  5. In Situ Aerosol Profile Measurements and Comparisons with SAGE 3 Aerosol Extinction and Surface Area Profiles at 68 deg North

    Science.gov (United States)

    2005-01-01

    Under funding from this proposal three in situ profile measurements of stratospheric sulfate aerosol and ozone were completed from balloon-borne platforms. The measured quantities are aerosol size resolved number concentration and ozone. The one derived product is aerosol size distribution, from which aerosol moments, such as surface area, volume, and extinction can be calculated for comparison with SAGE III measurements and SAGE III derived products, such as surface area. The analysis of these profiles and comparison with SAGE III extinction measurements and SAGE III derived surface areas are provided in Yongxiao (2005), which comprised the research thesis component of Mr. Jian Yongxiao's M.S. degree in Atmospheric Science at the University of Wyoming. In addition analysis continues on using principal component analysis (PCA) to derive aerosol surface area from the 9 wavelength extinction measurements available from SAGE III. Ths paper will present PCA components to calculate surface area from SAGE III measurements and compare these derived surface areas with those available directly from in situ size distribution measurements, as well as surface areas which would be derived from PCA and Thomason's algorithm applied to the four wavelength SAGE II extinction measurements.

  6. A subharmonic detrending or data-smoothing approach for longitudinal road profile measurements

    DEFF Research Database (Denmark)

    Gaunholt, Hans

    2001-01-01

    Commonly used figure-of-merits for longitudinal road profiles such as the International Roughness Index (IRI) and the Ride Number (RN) are based on statistical properties. Raw measured longitudinal road profile data may contain large trending components especially when the measurements are made...... with walking profilers in hilly regions. To obtain approximate stationary data suitable for statistical processing measurements should be subjected to detrending before calculating the IRI- or RN- value. In this paper a novel detrending method is proposed which is well suited for removing large profile trends...... without significantly corrupting the short wavelength content of the profile data. The method called sub-harmonic detrending works by fitting sub-harmonic sinusoids to the data followed by circular filtering in order to remove the trend. The method is also well suited for data-smoothing....

  7. Profile measurements in the plasma edge of MAST using a ball pen probe

    CERN Document Server

    Walkden, N R; Allan, S; Dudson, B D; Elmore, S; Fishpool, G; Harrison, J; Kirk, A; Komm, M

    2014-01-01

    The ball pen probe (BPP) technique is used successfully to make profile measurements of plasma potential, electron temperature and radial electric field on the Mega Amp Spherical Tokamak (MAST). The potential profile measured by the BPP is shown to significantly differ from the floating potential both in polarity and profile shape. By combining the BPP potential and the floating potential the electron temperature can be measured, which is compared with the Thomson scattering (TS) diagnostic. Excellent agreement between the two diagnostics is obtained when secondary electron emission is accounted for in the floating potential. From the BPP profile an estimate of the radial electric field is extracted which is shown to be of the order ~1kV/m and increases with plasma current. Corrections to the BPP measurement, constrained by the TS comparison, introduce uncertainty into the ER measurements. The uncertainty is most significant in the electric field well inside the separatrix. The electric field is used to estim...

  8. LHC Beam Instrumentation: Beam Profile Measurements (2/3)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  9. A measurement model of multiple intelligence profiles of management graduates

    Science.gov (United States)

    Krishnan, Heamalatha; Awang, Siti Rahmah

    2017-05-01

    In this study, developing a fit measurement model and identifying the best fitting items to represent Howard Gardner's nine intelligences namely, musical intelligence, bodily-kinaesthetic intelligence, mathematical/logical intelligence, visual/spatial intelligence, verbal/linguistic intelligence, interpersonal intelligence, intrapersonal intelligence, naturalist intelligence and spiritual intelligence are the main interest in order to enhance the opportunities of the management graduates for employability. In order to develop a fit measurement model, Structural Equation Modeling (SEM) was applied. A psychometric test which is the Ability Test in Employment (ATIEm) was used as the instrument to measure the existence of nine types of intelligence of 137 University Teknikal Malaysia Melaka (UTeM) management graduates for job placement purposes. The initial measurement model contains nine unobserved variables and each unobserved variable is measured by ten observed variables. Finally, the modified measurement model deemed to improve the Normed chi-square (NC) = 1.331; Incremental Fit Index (IFI) = 0.940 and Root Mean Square of Approximation (RMSEA) = 0.049 was developed. The findings showed that the UTeM management graduates possessed all nine intelligences either high or low. Musical intelligence, mathematical/logical intelligence, naturalist intelligence and spiritual intelligence contributed highest loadings on certain items. However, most of the intelligences such as bodily kinaesthetic intelligence, visual/spatial intelligence, verbal/linguistic intelligence interpersonal intelligence and intrapersonal intelligence possessed by UTeM management graduates are just at the borderline.

  10. Development of an inner profile measurement instrument using a ring beam device

    Science.gov (United States)

    Yoshizawa, T.; Wakayama, T.

    2010-11-01

    Inner profile measurement is an important matter in such fields as medicine, dentistry and anthropology as well as mechanical engineering and other industrial applications. Here we describe recent development of our measurement principle for inner diameter of pipes and/or holes. The key device in this technique is a ring beam device which consists of a conical mirror and a laser diode. And the fundamental principle is based on optical sectioning without using any contact type stylus. The optically sectioned profile of an inner wall of a pipe-like object is analyzed to give the inner profile in addition to the inner diameter. This optical instrument with a simple and small configuration is now under development for practical uses. In our hitherto trial experimental works, the availability of this instrument has been evaluated in many cases and availability for practical applications is expected, especially, for measurement and inspection of mechanical components and elements besides pipes. This ring beam device consisting of a conical mirror and a LD is assembled to form a disk-like light sheet. We show measurement result of pipes and holes, and, at the same time, report a compact inner profile measuring instrument at this point. Both the ring beam device and a miniaturized CCD camera are fabricated into a glass tube. Availability of this instrument is shown by measuring the inner profiles of various pipes. In response to this trial, there appeared a strong request that not only the internal but external profiles should be measured simultaneously. Therefore we propose potentially possible method for measurement of external profile at the same time with internal profile. If one pair of concave mirrors are used in our arrangement, external profile is captured. In combination with inner profile measurement technique, simultaneous measurement of inner and outer profiles becomes attainable. A measurement result on a bevel gear shows availability of here proposed

  11. Developing a peak performance profile measurement for sport ...

    African Journals Online (AJOL)

    The purpose of this study was to construct a measuring instrument to assess sportspersons' psychological strengths and weaknesses. With this in mind, various developmental procedures were applied in the construction and development of an instrument over a period of more than seven years. The research was ...

  12. Proficiency testing for sensory profile panels : measuring panel performance

    NARCIS (Netherlands)

    Mcewan, J.A.; Hunter, E.A.; Gemert, L.J. van; Lea, P.

    2002-01-01

    Proficiency testing in sensory analysis is an important step towards demonstrating that results from one sensory panel are consistent with the results of other sensory panels. The uniqueness of sensory analysis poses some specific problems for measuring the proficiency of the human instrument

  13. A comparison between vertical motions measured by ADCP and inferred from temperature data

    Directory of Open Access Journals (Sweden)

    H. van Haren

    2008-09-01

    Full Text Available Combined vertical current (w and thermistor string data demonstrate that high-, near-buoyancy frequency internal "wave" trains along a pycnocline in a flat-bottom shelf sea consist for 2 periods of a dominant mode-1 non-linear part, while thereafter mainly of linear [mode-2, quadrupled frequency] waves, to first order. In a simple [linear] heat budget the use of unfiltered temperature gradient or its time mean changes results by only 10%. The observations also demonstrate that temperature is not always adequate to estimate vertical motions using the linear 1-D heat equation. In shallow seas, tidal-w estimated from temperature data can be an order of magnitude weaker than directly observed w, and thus do not represent free internal waves. In the ocean, not too far from the main internal wave topography source, tidal motions represent linear waves and are well described by temperature-inferred w. There however, temperature-inferred w and directly observed w differ strongly near the buoyancy frequency, at which w is dominated by non-linear waves, and near [sub]inertial frequencies, at which w is dominated by eddies and gyroscopic waves.

  14. Refractive-index profile measurement of highly multimode planar waveguides by guided-beam tracking.

    Science.gov (United States)

    Ctyroký, J; Janta, J; Schröfel, J

    1982-11-01

    A novel method of measuring the refractive-index profile of deep multimode planar waveguides is described. Unlike in mode spectroscopy, several modes are excited simultaneously by a prism coupler. Superposition of the modes forms a guided beam that refracts continuously inside the graded-index waveguide and reflects periodically from the waveguide surface. Measurement of the periodicity as a function of the excitation angle enables one to calculate the refractive-index profile of the waveguide.

  15. Measuring depth profiles of residual stress with Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

    1988-12-01

    Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

  16. Repeatability of in vitro power profile measurements for multifocal contact lenses.

    Science.gov (United States)

    Domínguez-Vicent, Alberto; Marín-Franch, Iván; Esteve-Taboada, Jose Juan; Madrid-Costa, David; Montés-Micó, Robert

    2015-06-01

    To evaluate the repeatability of an optical device (NIMO TR1504, Lambda-X, Belgium) for measuring multifocal contact lens power profiles. The NIMO TR1504 was used to measure power profiles 30 times for each of 10 different contact lenses from 4 major companies. All contact lenses were labelled as -3D for distance vision; half were for high addition and half for low addition. The optical zone in all measurements was set to 3-mm radius. For each lens, the median power profile and the residuals of the 30 measurements were calculated. The 95% confidence bands and two indices that summarize measurement errors were calculated: the repeatability limit and an index of repeatability heterogeneity, quantifying heterogeneity of measurement errors over the optical zone. The repeatability limit was good (from 0.04D to 0.12D), for all multifocal contact lenses. Variability of measurement errors of power profiles was quite homogeneous along the optical zone for all lenses, although for some lenses variability was slightly higher in the centre than peripherally. The repeatability of measured power profiles obtained by the NIMO TR1504 is lower than 0.12D for the multifocal contact lenses. Copyright © 2015 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  17. Comparison of neutral density profiles measured using Dα and C5+ in NSTX-U

    Science.gov (United States)

    Bell, R. E.; Scotti, F.; Diallo, A.; Leblanc, B. P.; Podesta, M.; Sabbagh, S. A.

    2017-10-01

    Edge neutral density profiles determined from two different measurements are compared on NSTX-U plasmas. Neutral density measurements were not typical on NSTX plasmas. An array of fibers dedicated to the measurement of passive emission of C5+, used to subtract background emission for charge exchange recombination spectroscopy (CHERS), can be used to infer deuterium neutral density near the plasma edge. The line emission from C5+ is dominated by charge exchange with neutral deuterium near the plasma edge. An edge neutral density diagnostic consisting of a camera with a Dα filter was installed on NSTX-U. The line-integrated measurements from both diagnostics are inverted to obtain local emissivity profiles. Neutral density is then inferred using atomics rates from ADAS and profile measurements from Thomson scattering and CHERS. Comparing neutral density profiles from the two diagnostic measurements helps determine the utility of using the more routinely available C5+ measurements for neutral density profiles. Initial comparisons show good agreement between the two measurements inside the separatrix. Supported by US DoE Contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.

  18. Errors in GNSS radio occultation data: relevance of the measurement geometry and obliquity of profiles

    Directory of Open Access Journals (Sweden)

    U. Foelsche

    2011-02-01

    Full Text Available Atmospheric profiles retrieved from GNSS (Global Navigation Satellite System radio occultation (RO measurements are increasingly used to validate other measurement data. For this purpose it is important to be aware of the characteristics of RO measurements. RO data are frequently compared with vertical reference profiles, but the RO method does not provide vertical scans through the atmosphere. The average elevation angle of the tangent point trajectory (which would be 90° for a vertical scan is about 40° at altitudes above 70 km, decreasing to about 25° at 20 km and to less than 5° below 3 km. In an atmosphere with high horizontal variability we can thus expect noticeable representativeness errors if the retrieved profiles are compared with vertical reference profiles. We have performed an end-to-end simulation study using high-resolution analysis fields (T799L91 from the European Centre for Medium-Range Weather Forecasts (ECMWF to simulate a representative ensemble of RO profiles via high-precision 3-D ray tracing. Thereby we focused on the dependence of systematic and random errors on the measurement geometry, specifically on the incidence angle of the RO measurement rays with respect to the orbit plane of the receiving satellite, also termed azimuth angle, which determines the obliquity of RO profiles. We analyzed by how much errors are reduced if the reference profile is not taken vertical at the mean tangent point but along the retrieved tangent point trajectory (TPT of the RO profile. The exact TPT can only be determined by performing ray tracing, but our results confirm that the retrieved TPT – calculated from observed impact parameters – is a very good approximation to the "true" one. Systematic and random errors in RO data increase with increasing azimuth angle, less if the TPT is properly taken in to account, since the increasing obliquity of the RO profiles leads to an increasing sensitivity to departures from horizontal

  19. Adaptation profiles comprising objective and subjective measures in fibromyalgia: the al-Ándalus project.

    Science.gov (United States)

    Estévez-López, Fernando; Segura-Jiménez, Víctor; Álvarez-Gallardo, Inmaculada C; Borges-Cosic, Milkana; Pulido-Martos, Manuel; Carbonell-Baeza, Ana; Aparicio, Virginia A; Geenen, Rinie; Delgado-Fernández, Manuel

    2017-11-01

    The aim of this study was to identify subgroups in terms of adaptation to FM and to test differences in FM severity between these subgroups. The al-Ándalus project made it possible to perform a comprehensive population-based cross-sectional study in 486 FM patients including multiple assessments of modifiable (could be targeted in therapy) resilience and vulnerability factors, measured by objective and subjective assessments, related to psychological and physical function. FM severity was assessed by means of FM impact (total score of the Revised Fibromyalgia Impact Questionnaire) and distress (Polysymptomatic Distress Scale of the modified 2011 preliminary criteria for FM). Exploratory factor analysis, cluster analysis and analysis of variance were conducted. Factor analysis yielded eight factors: three included objective measures (declarative memory, active lifestyle and objective physical fitness) and five included subjective measures (fatigue, psychological distress, catastrophizing, resilience and subjective physical fitness). Cluster analysis based on these eight factors identified five profiles: Adapted (16%), Fit (18%), Poor performer (20%), Positive (20%) and Maladapted (26%). Most profile comparisons revealed different levels of FM severity varying from Adapted (the most favourable profile) to Maladapted (the most unfavourable profile) with Fit, Poor performer and Positive obtaining intermediate positions. Heterogeneity of FM was shown by five clinically meaningful profiles of modifiable factors that were associated with FM severity. It is of clinical interest to examine whether these profiles are associated with FM prognosis and the effectiveness of interventions, which would enhance the development of customized interventions based on adaptation profiles in FM.

  20. Diagnostic Profiles of Patients Differentially Failing Executive Functioning Measures.

    Science.gov (United States)

    Hammers, Dustin; Ramirez, Gabriela; Persad, Carol; Heidebrink, Judith; Barbas, Nancy; Giordani, Bruno

    2016-05-01

    Limited research exists to explain differential executive functioning impairment in clinical populations, particularly between the Wisconsin Card Sorting Task (WCST) and the Trail Making Test (TMT). The distribution of clinical diagnoses was examined in patients failing none, one, or both tasks, and executive task performance was compared among dementia-related diagnoses. Two hundred and sixty-six participants received evaluations through an Alzheimer's Disease Research Center, which included executive tasks. Dementia-related diagnoses were established through consensus. Chi-square analyses indicated that TMT failure, with or without WCST failure, possessed higher associations with dementia diagnoses. Repeated measures analysis of variance similarly indicated that participants with dementia, especially mild and moderate severity, performed worse on TMT. Executive dysfunction was observed in dementia-related diagnoses, and TMT failure was implicated in dementia in higher proportions than WCST impairment. Trail Making Test appears more sensitive than WCST for assessing executive impairment across diagnoses, especially when time and resources are limited in screening and clinical settings. © The Author(s) 2015.

  1. Smoothness of ozone profiles: analysis of 11 years of ozone sonde measurements at Sodankylä

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2004-09-01

    Full Text Available This paper discusses the smoothness of vertical profiles of ozone concentrations. We describe the smoothness of ozone profiles via a characteristic scale of the profile fluctuations. The characteristic scale was computed for 11-years (1989-1999 ozone sonde data at Sodankylä. Mean values of the characteristic scale were determined. They are ~1km in the troposphere and ~1.4km in the lower stratosphere (up to 25km. Only slight seasonal variations of these parameters are observed. The information about smoothness of ozone profiles is needed both in the instrumental design for defining the vertical resolution requirements and in the development of inversion algorithms from remote sensing measurements, in order to obtain the best accuracy in retrieved ozone profiles and sufficient resolution.

  2. Smoothness of ozone profiles: analysis of 11 years of ozone sonde measurements at Sodankylä

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2004-09-01

    Full Text Available This paper discusses the smoothness of vertical profiles of ozone concentrations. We describe the smoothness of ozone profiles via a characteristic scale of the profile fluctuations. The characteristic scale was computed for 11-years (1989-1999 ozone sonde data at Sodankylä. Mean values of the characteristic scale were determined. They are ~1km in the troposphere and ~1.4km in the lower stratosphere (up to 25km. Only slight seasonal variations of these parameters are observed.

    The information about smoothness of ozone profiles is needed both in the instrumental design for defining the vertical resolution requirements and in the development of inversion algorithms from remote sensing measurements, in order to obtain the best accuracy in retrieved ozone profiles and sufficient resolution.

  3. Study on error analysis and accuracy improvement for aspheric profile measurement

    Science.gov (United States)

    Gao, Huimin; Zhang, Xiaodong; Fang, Fengzhou

    2017-06-01

    Aspheric surfaces are important to the optical systems and need high precision surface metrology. Stylus profilometry is currently the most common approach to measure axially symmetric elements. However, if the asphere has the rotational alignment errors, the wrong cresting point would be located deducing the significantly incorrect surface errors. This paper studied the simulated results of an asphere with rotational angles around X-axis and Y-axis, and the stylus tip shift in X, Y and Z direction. Experimental results show that the same absolute value of rotational errors around X-axis would cause the same profile errors and different value of rotational errors around Y-axis would cause profile errors with different title angle. Moreover, the greater the rotational errors, the bigger the peak-to-valley value of profile errors. To identify the rotational angles in X-axis and Y-axis, the algorithms are performed to analyze the X-axis and Y-axis rotational angles respectively. Then the actual profile errors with multiple profile measurement around X-axis are calculated according to the proposed analysis flow chart. The aim of the multiple measurements strategy is to achieve the zero position of X-axis rotational errors. Finally, experimental results prove the proposed algorithms achieve accurate profile errors for aspheric surfaces avoiding both X-axis and Y-axis rotational errors. Finally, a measurement strategy for aspheric surface is presented systematically.

  4. High resolution measurements and modeling of auroral hydrogen emission line profiles

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    2003-07-01

    Full Text Available Measurements in the visible wavelength range at high spectral resolution (1.3 Å have been made at Longyearbyen, Svalbard (15.8 E,78.2 N during an interval of intense proton precipitation. The shape and Doppler shift of hydrogen Balmer beta line profiles have been compared with model line profiles, using as input ion energy spectra from almost coincident passes of the FAST and DMSP spacecraft. The comparison shows that the simulation contains the important physical processes that produce the profiles, and confirms that measured changes in the shape and peak wave-length of the hydrogen profiles are the result of changing energy input. This combination of high resolution measurements with modeling provides a method of estimating the incoming energy and changes in flux of precipitating protons over Svalbard, for given energy and pitch-angle distributions. Whereas for electron precipitation, information on the incident particles is derived from brightness and brightness ratios which require at least two spectral windows, for proton precipitation the Doppler profile of resulting hydrogen emission is directly related to the energy and energy flux of the incident energetic protons and can be used to gather information about the source region. As well as the expected Doppler shift to shorter wavelengths, the measured profiles have a significant red-shifted component, the result of upward flowing emitting hydrogen atoms.Key words. Ionosphere (auroral ionosphere; particle precipitation – Magnetospheric physics (auroral phenomena

  5. Relative vegetation profiles in a Neotropical forest: comparison of lidar instrumentation and field-based measurements

    Science.gov (United States)

    Sullivan, F. B.; Palace, M. W.; Ducey, M.; Czarnecki, C.; Zanin Shimbo, J.; Mota e Silva, J.

    2012-12-01

    Tropical forests are considered to be some of the most structurally complex forests in the world. Understanding vegetation height structure in these forests can aid in understanding the spatial temporal components of disturbance, from blowdowns to gap dynamics. Vegetation profiles can be used to better estimate carbon storage and flux across the landscape. Using light detection and ranging (lidar) data collected at La Selva, Costa Rica from four instruments (three airborne, one terrestrial) at four times since 2005, and field data collected in January 2012, we generated relative vegetation profiles for twenty plots in La Selva. Relative vegetation profiles were derived from lidar data by accounting for obscured plant material through a log transformation of the cumulative proportion of observations (percent canopy closure). Profiles were derived from field data using two different sets of allometric equations describing crown shape and tree height. We conducted a cluster analysis on similarity matrices developed in R (version 2.14.1) using three different metrics (sum of squares, Kullback-Leibler divergence, Kolmogorov-Smirnov D statistic) and identified general similarity between lidar profiles. Results were consistent across each of the three similarity metrics. Three distinct clusters were found, with profiles from three airborne lidar instruments, two profiles from a terrestrial lidar instrument, and profiles derived from field data forming the clusters. Our results indicate that although estimating lidar relative vegetation profiles from field data was not possible, terrestrial lidar relative vegetation profiles are generally similar to airborne relative vegetation profiles. Given the rapidity and repeatability of terrestrial lidar measurements, these results show promise for terrestrial lidar instruments to collect plot-specific data on forest structure and vertical distribution of plant material. Furthermore, identifying relationships between terrestrial and

  6. Measuring vertical oxygen profiles in the hyporheic zone using planar optodes

    Science.gov (United States)

    Vieweg, M.; Fleckenstein, J. H.; Schmidt, C.

    2012-04-01

    On of the key parameters, controlling biogeochemical reactions in the hyporheic zone (HZ) is the distribution of oxygen. A reliable measurement of the vertical oxygen distribution is an important tool to understand the dynamic fluctuations of the aerobic zone within the HZ. With repeated measurements of continuous profiles, mixing of surface water and groundwater as well as the consumption of oxygen can be evaluated. We present a novel approach for the in situ measurements of vertical oxygen distribution in the riverbed using a planar optode. The luminescence based optode measurement enables a non invasive measurement without consumption of oxygen, no creation of preferential flow paths and only minimal disturbance of the flow field. Possible atmospheric contamination by pumping pore water into a vessel can be avoided and the readings are independent of flow velocity. A self manufactured planar optode is wrapped around an acrylic tube and installed in the riverbed. The measurement is performed by vertically moving a profiler-piston inside the acrylic tube. The piston holds a robust polymer optical fibre which emits a modulated light signal through the acrylic glass to the optode-foil and transmits the induced luminescence signal back to a commercially available trace oxygen meter. Temperature compensation is accomplished using a depth-oriented temperature probe nearby and processing the raw data within a Matlab script. Robust and unbiased oxygen profiles are obtained by averaging multiple consecutive measurements. To ensure a constant velocity of the profiler for replicating the exact measuring depths, an electric motor device is used. First results at our test site show a variable oxygen profile down to 40 cm depth which is strongly influenced by stream level and upwelling groundwater conditions. The measured oxygen profiles will serve as input parameter for a 3D solute transport and chemical reaction subsurface model of the HZ.

  7. Rapid measurement of charged particle beam profiles using a current flux grating

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Samit; Chowdhury, Abhishek; Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur 208016, UP (India)

    2015-02-15

    The principle and physics issues of charged particle beam diagnostics using a current flux grating are presented. Unidirectional array of conducting channels with interstitial insulating layers of spacing d is placed in the beam path to capture flux of charge and electronically reproduce an exact beam current profile with density variation. The role of secondary electrons due to the impinging particle beam (both electron and ion) on the probe is addressed and a correction factor is introduced. A 2-dimensional profile of the electron beam is obtained by rotating the probe about the beam axis. Finally, a comparison of measured beam profile with a Gaussian is presented.

  8. Iterative reconstruction of a refractive-index profile from x-ray or neutron reflectivity measurements.

    Science.gov (United States)

    Hohage, Thorsten; Giewekemeyer, Klaus; Salditt, Tim

    2008-05-01

    Analysis of x-ray and neutron reflectivity is usually performed by modeling the density profile of the sample and performing a least square fit to the measured (phaseless) reflectivity data. Here we address the uniqueness of the reflectivity problem as well as its numerical reconstruction. In particular, we derive conditions for uniqueness, which are applicable in the kinematic limit (Born approximation), and for the most relevant case of box model profiles with Gaussian roughness. At the same time we present an iterative method to reconstruct the profile based on regularization methods. The method is successfully implemented and tested both on simulated and real experimental data.

  9. Measuring the uncertainties of discharge measurements: interlaboratory experiments in hydrometry

    Science.gov (United States)

    Le Coz, Jérôme; Blanquart, Bertrand; Pobanz, Karine; Dramais, Guillaume; Pierrefeu, Gilles; Hauet, Alexandre; Despax, Aurélien

    2015-04-01

    Quantifying the uncertainty of streamflow data is key for hydrological sciences. The conventional uncertainty analysis based on error propagation techniques is restricted by the absence of traceable discharge standards and by the weight of difficult-to-predict errors related to the operator, procedure and measurement environment. Field interlaboratory experiments recently emerged as an efficient, standardized method to 'measure' the uncertainties of a given streamgauging technique in given measurement conditions. Both uncertainty approaches are compatible and should be developed jointly in the field of hydrometry. In the recent years, several interlaboratory experiments have been reported by different hydrological services. They involved different streamgauging techniques, including acoustic profilers (ADCP), current-meters and handheld radars (SVR). Uncertainty analysis was not always their primary goal: most often, testing the proficiency and homogeneity of instruments, makes and models, procedures and operators was the original motivation. When interlaboratory experiments are processed for uncertainty analysis, once outliers have been discarded all participants are assumed to be equally skilled and to apply the same streamgauging technique in equivalent conditions. A universal requirement is that all participants simultaneously measure the same discharge, which shall be kept constant within negligible variations. To our best knowledge, we were the first to apply the interlaboratory method for computing the uncertainties of streamgauging techniques, according to the authoritative international documents (ISO standards). Several specific issues arise due to the measurements conditions in outdoor canals and rivers. The main limitation is that the best available river discharge references are usually too uncertain to quantify the bias of the streamgauging technique, i.e. the systematic errors that are common to all participants in the experiment. A reference or a

  10. Augmenting two-dimensional hydrodynamic simulations with measured velocity data to identify flow paths as a function of depth on Upper St. Clair River in the Great Lakes basin

    Science.gov (United States)

    Holtschlag, D.J.; Koschik, J.A.

    2005-01-01

    Upper St. Clair River, which receives outflow from Lake Huron, is characterized by flow velocities that exceed 7 feet per second and significant channel curvature that creates complex flow patterns downstream from the Blue Water Bridge in the Port Huron, Michigan, and Sarnia, Ontario, area. Discrepancies were detected between depth-averaged velocities previously simulated by a two-dimensional (2D) hydrodynamic model and surface velocities determined from drifting buoy deployments. A detailed ADCP (acoustic Doppler current profiler) survey was done on Upper St. Clair River during July 1–3, 2003, to help resolve these discrepancies. As part of this study, a refined finite-element mesh of the hydrodynamic model used to identify source areas to public water intakes was developed for Upper St. Clair River. In addition, a numerical procedure was used to account for radial accelerations, which cause secondary flow patterns near channel bends. The refined model was recalibrated to better reproduce local velocities measured in the ADCP survey. ADCP data also were used to help resolve the remaining discrepancies between simulated and measured velocities and to describe variations in velocity with depth. Velocity data from ADCP surveys have significant local variability, and statistical processing is needed to compute reliable point estimates. In this study, velocity innovations were computed for seven depth layers posited within the river as the differences between measured and simulated velocities. For each layer, the spatial correlation of velocity innovations was characterized by use of variogram analysis. Results were used with kriging to compute expected innovations within each layer at applicable model nodes. Expected innovations were added to simulated velocities to form integrated velocities, which were used with reverse particle tracking to identify the expected flow path near a sewage outfall as a function of flow depth. Expected particle paths generated by use

  11. Depth profile of In and As in Si measured by RBS with He and C ions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Q.; Fang, Z. [Newcastle Univ., NSW (Australia). Dept. of Physics; Ophel, T.R. [Australian National Univ., Canberra, ACT (Australia). Dept. of Nuclear Physics

    1993-12-31

    The depth profile of As and In implanted into Si have been measured by RBS (Rutherford Backscattering Spectrometry) with 2 MeV He ions and 6 MeV C ions. Advantages of enhanced depth and mass resolution with C ions have been demonstrated over the conventional He RBS. More reliable information for the depth profile of In and As in Si has been obtained. 12 refs., 3 figs.

  12. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    NARCIS (Netherlands)

    Meng, C.; Janssen, M.H.M.

    2015-01-01

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the

  13. General-purpose configuration of radiometric instruments for measuring concentration profiles

    Energy Technology Data Exchange (ETDEWEB)

    Kubicek, P.; Wozniakova, B. (Ceskoslovenska Akademie Ved, Ostrava. Ustav Teorie Hutnickych Procesu); Drapala, J. (Vysoka Skola Banska, Ostrava (Czechoslovakia). Katedra Nezeleznych Kovu a Jaderne Metalurgie)

    1981-01-01

    The configuration of radiometric apparatuses for the automatic measuring of the concentration profile of active admixtures along the specimen applying the slot method and its three variants is described. A practical example is given of the adjustment of radiometric apparatuses. An equipment for automatic graphical recording of nuclear radiation spectra measured by a single-channel spectrometer is described.

  14. Impact of three-dimensional polarization profiles on spin-dependent measurements in colliding beam experiments

    Directory of Open Access Journals (Sweden)

    Wolfram Fischer

    2012-04-01

    Full Text Available We derive the effect of 3-dimensional polarization profiles on the measured polarization in polarimeters, as well as the observed polarization and the polarization-weighted luminosity (figure of merit in single and double spin measurements in colliding beam experiments. Applications to RHIC are discussed.

  15. Dysarthria Impact Profile: Development of a Scale to Measure Psychosocial Effects

    Science.gov (United States)

    Walshe, Margaret; Peach, Richard K.; Miller, Nick

    2009-01-01

    Background: The psychosocial impact of acquired dysarthria on the speaker is well recognized. To date, speech-and-language therapists have no instrument available to measure this construct. This has implications for outcome measurement and for planning intervention. This paper describes the Dysarthria Impact Profile (DIP), an instrument that has…

  16. Image processing techniques for measuring non-uniform film thickness profiles

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, S.V.; Liu, An-Hong; Plawsky, J.L.; Wayner, P.C. Jr. [Rensselaer Polytechnique Institute, Troy, NY (United States)

    1996-12-31

    The long term objective of this research program is to determine the fluid flow and drying characteristics of thin liquid/solid films using image processing techniques such as Image Analyzing Interferometry (IAI) and Image Scanning Ellipsometry (ISE). The primary purpose of this paper is to present experimental data on the effectiveness of IAI and ISE to measure nonuniform film thickness profiles. Steady-state, non-isothermal profiles of evaporating films were measured using IAI. Transient thickness profiles of a draining film were measured using ISE. The two techniques are then compared and contrasted. The ISE can be used to measure transient as well as steady-state profiles of films with thickness ranging from 1 nm to > 20 {mu}m, whereas IAI can be used to directly measure Steady-state and transient profiles of only films thicker than about 100 nm. An evaluation of the reflected intensity can be used to extend the use of the IAI below 100 nm.

  17. Density profile measurements by amplitude modulation reflectometry on the TJ-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Luna, E. de la; Zhuravlev, V.; Branas, B.; Sanchez, J.; Estrada, T. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Segovia, J.; Oramas, J.L. [Universidad Politecnica de Madrid (Spain)

    1993-12-31

    Amplitude Modulation (AM) reflectometry has been proposed as an alternative method to the more traditional swept frequency reflectometry systems which can be strongly affected by the presence of plasma density fluctuations. Compared to the time domain systems, the time measurements are replaced in AM reflectometry by much simpler phase delay measurements. In AM reflectometry, the time delay of the microwave beam propagating to the reflecting layer and back is directly obtained through the phase delay of the modulating envelope, which is directly measured in a linear (0-2{pi}) phase meter. This method avoids operation with multifringe counters and is a very attractive alternative for real time determination of the plasma position and density profile. In order to achieve real time density profile monitoring, fast analysis methods are necessary, first results of Neural Networks application to the problem of fast inversion of the density profile are shown. (author) 3 refs., 5 figs.

  18. Investigations on the spatial resolution of autocollimator-based slope measuring profilers

    Energy Technology Data Exchange (ETDEWEB)

    Siewert, F., E-mail: frank.siewert@helmholtz-berlin.de [Helmholtz Zentrum Berlin/BESSY-II—Institut für Nanometer Optik und Technologie, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Buchheim, J.; Höft, T.; Zeschke, T. [Helmholtz Zentrum Berlin/BESSY-II—Institut für Nanometer Optik und Technologie, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Schindler, A.; Arnold, T. [IOM—Leibniz Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany)

    2013-05-11

    During the last decade, autocollimator-based slope measuring profilers like the Nanometer Optical Component Measuring Machine (NOM) at BESSY-II have become standard instrument for the ultra-precise characterization of synchrotron optics with nanometer accuracy. Due to the increasing demand for highest accuracy, which can be provided by these profilers, further investigations are necessary to understand the performance of these instruments. Besides the achievable accuracy, it is of particular interest to characterize the possible spatial resolution of such instrumentation. The performance of the BESSY-NOM was characterized by means of sinusoidal and chirped surface profiles. A dedicated sample was prepared using the Atmospheric Plasma Jet Machining technology at the IOM—Leibniz-Institut für Oberflächenmodifizierung e.V. We report on our tests on the NOM, the interferometer measurements done for comparison as well as the sample preparation.

  19. Fiber optic picosecond laser pulse transmission line for hydrogen ion beam longitudinal profile measurement.

    Science.gov (United States)

    Huang, Chunning; Liu, Yun; Aleksandrov, Alexander

    2013-07-01

    We present a fiber optic laser pulse transmission line for nonintrusive longitudinal profile measurement of the hydrogen ion (H(-)) beam at the front-end of the Spallation Neutron Source accelerator. The 80.5 MHz, 2.5 ps, multikilowatt optical pulses are delivered to the accelerator beam line through a large-mode-area polarization-maintaining optical fiber to ensure high measurement stability. The transmission efficiency, output laser beam quality, pulse jitter, and pulse width broadening over a 30 m long fiber line are experimentally investigated. A successful measurement of the H(-) beam microbunch (~130 ps) profile is obtained. The experiment is the first demonstration to our knowledge of particle beam profile diagnostics using a fiber optic laser pulse transmission line.

  20. Wind lidar profile measurements in the coastal boundary layer: comparison with WRF modelling

    DEFF Research Database (Denmark)

    Floors, Rogier; Pena Diaz, Alfredo; Vincent, Claire Louise

    2012-01-01

    We use measurements from a pulsed wind lidar to study the wind speed profile in the planetary boundary layer (PBL) up to 600 m above the surface at a coastal site. Due to the high availability and quality of wind lidar data and the high vertical range of the measurements, it is possible to study...... WRF is compared to the wind lidar data combined with measurements from a tall meteorological mast, it is found that the model surface layer fluxes are largely overestimated and that the vertical wind speed profile does not have enough shear in the lower part of the PBL, partly as a consequence...... in the amount of observed low level jet. The wind speed predicted by WRF does not improve when a higher resolution is used. Therefore, both the inhomogeneous (westerly) and homogeneous (easterly) flow contribute to a large negative bias in the mean wind speed profile at heights between 100 and 200 m....

  1. Calculation of the Scattered Radiation Profile in 64 Slice CT Scanners Using Experimental Measurement

    Directory of Open Access Journals (Sweden)

    Afshin Akbarzadeh

    2009-06-01

    Full Text Available Introduction: One of the most important parameters in x-ray CT imaging is the noise induced by detected scattered radiation. The detected scattered radiation is completely dependent on the scanner geometry as well as size, shape and material of the scanned object. The magnitude and spatial distribution of the scattered radiation in x-ray CT should be quantified for development of robust scatter correction techniques. Empirical methods based on blocking the primary photons in a small region are not able to extract scatter in all elements of the detector array while the scatter profile is required for a scatter correction procedure. In this study, we measured scatter profiles in 64 slice CT scanners using a new experimental measurement. Material and Methods: To measure the scatter profile, a lead block array was inserted under the collimator and the phantom was exposed at the isocenter. The raw data file, which contained detector array readouts, was transferred to a PC and was read using a dedicated GUI running under MatLab 7.5. The scatter profile was extracted by interpolating the shadowed area. Results: The scatter and SPR profiles were measured. Increasing the tube voltage from 80 to 140 kVp resulted in an 80% fall off in SPR for a water phantom (d=210 mm and 86% for a polypropylene phantom (d = 350 mm. Increasing the air gap to 20.9 cm caused a 30% decrease in SPR. Conclusion: In this study, we presented a novel approach for measurement of scattered radiation distribution and SPR in a CT scanner with 64-slice capability using a lead block array. The method can also be used on other multi-slice CT scanners. The proposed technique can accurately estimate scatter profiles. It is relatively straightforward, easy to use, and can be used for any related measurement.

  2. Development of ultrasonic pulse-train Doppler method for velocity profile and flowrate measurement

    Science.gov (United States)

    Wada, Sanehiro; Furuichi, Noriyuki; Shimada, Takashi

    2016-11-01

    We present a novel technique for measuring the velocity profile and flowrate in a pipe. This method, named the ultrasonic pulse-train Doppler method (UPTD), has the advantages of expanding the velocity range and setting the smaller measurement volume with low calculation and instrument costs in comparison with the conventional ultrasonic pulse Doppler method. The conventional method has limited measurement of the velocity range due to the Nyquist sampling theorem. In addition, previous reports indicate that a smaller measurement volume increases the accuracy of the measurement. In consideration of the application of the conventional method to actual flow fields, such as industrial facilities and power plants, the issues of velocity range and measurement volume are important. The UPTD algorithm, which exploits two pulses of ultrasound with a short interval and envelope detection, is proposed. Velocity profiles calculated by this algorithm were examined through simulations and excellent agreement was found in all cases. The influence of the signal-to-noise ratio (SNR) on the algorithm was also estimated. The result indicates that UPTD can measure velocity profiles with high accuracy, even under a small SNR. Experimental measurements were conducted and the results were evaluated at the national standard calibration facility of water flowrate in Japan. Every detected signal forms a set of two pulses and the enveloped line can be observed clearly. The results show that UPTD can measure the velocity profiles over the pipe diameter, even if the velocities exceed the measurable velocity range. The measured flowrates were under 0.6% and the standard deviations for all flowrate conditions were within  ±0.38%, which is the uncertainty of the flowrate measurement estimated in the previous report. In conclusion, UPTD provides superior accuracy and expansion of the velocity range.

  3. Direct localised measurement of electrical resistivity profile in rat and embryonic chick retinas using a microprobe

    Directory of Open Access Journals (Sweden)

    Harald van Lintel

    2010-01-01

    Full Text Available We report an alternative technique to perform a direct and local measurement of electrical resistivities in a layered retinal tissue. Information on resistivity changes along the depth in a retina is important for modelling retinal stimulation by retinal prostheses. Existing techniques for resistivity-depth profiling have the drawbacks of a complicated experimental setup, a less localised resistivity probing and/or lower stability for measurements. We employed a flexible microprobe to measure local resistivity with bipolar impedance spectroscopy at various depths in isolated rat and chick embryo retinas for the first time. Small electrode spacing permitted high resolution measurements and the probe flexibility contributed to stable resistivity profiling. The resistivity was directly calculated based on the resistive part of the impedance measured with the Peak Resistance Frequency (PRF methodology. The resistivity-depth profiles for both rat and chick embryo models are in accordance with previous mammalian and avian studies in literature. We demonstrate that the measured resistivity at each depth has its own PRF signature. Resistivity profiles obtained with our setup provide the basis for the construction of an electric model of the retina. This model can be used to predict variations in parameters related to retinal stimulation and especially in the design and optimisation of efficient retinal implants.

  4. Measurement of the temperature profile of an exothermic autocatalytic reaction front.

    Science.gov (United States)

    Martin, J; Rakotomalala, N; Talon, L; Salin, D

    2009-11-01

    Autocatalytic reactions may propagate as solitary waves, namely, at a constant front velocity and with a stationary concentration profile, resulting from a balance between molecular diffusion and chemical reaction. When the reaction is exothermic, a thermal wave is linked to the chemical front. As the thermal diffusivity is nearly two orders of magnitude larger than the molecular one, the temperature profile spreads over length scales (mm) two orders of magnitude larger than the concentration one. Using an infrared camera, we measure the temperature profiles for a chlorite-tetrathionate autocatalytic reaction. The profiles are compared quantitatively to lattice Bhatnagar-Gross-Krook (BGK) numerical simulations. Our analysis also accounts for the lack of observation of the thermal wave for the iodate arsenous acid reaction.

  5. Measurement of dynamic gas disengagement profile by using an analog output level gauge

    Science.gov (United States)

    Mikkilineni, S.; Koelle, M.; Xu, H.

    The dynamic gas disengagement profile was measured in a 0.14 m diameter and 3.66 m high plexiglas column by using an analog output gauge, which was connected to a data acquisition system. This analog output gauge is a high accuracy continuous measurement level gauge. It is made up of a wave guide, a float, a motion or stress sensing device and a probe housing. The fluid level at any gas velocity is obtained by using the data acquisition system. The dynamic gas disengagement profile produced one slope in the bubble flow and two slopes in the churn turbulent flow representing unimodal and bimodal distributions of bubbles.

  6. Calibration method for accurate optical measurement of thickness profile for the paper industry

    Science.gov (United States)

    Graeffe, Jussi

    2009-06-01

    Online measurement of paper thickness profile is essential in paper production. For decades paper thickness has been measured online with sensors that are contacting the web on both sides. In 2005 a new optical online paper thickness gauge was introduced which only contacts the web on the other side. The sensor is based on a laser triangulation sensor and a magnetic sensor, and it determines the paper thickness from the difference of the two measurements. For calibration of the two sensors, a robust concept has been developed which utilizes the measured object and takes place in the measuring environment so that the calibration is automatically adjusted to the current measuring circumstances. More importantly, with the presented method the non-linearity of the laser sensor is cancelled enabling the measurement of the thickness profile shape with an accuracy much better than that of the laser sensor. Profile accuracy of 0.5 μm (2σ) has become normal while the measuring range is often several hundreds of microns and the measuring distance to the paper web 1.0-1.5 mm with a laser sensor having linearity of +/-2 μm.

  7. ACCURATE: Greenhouse Gas Profiles Retrieval from Combined IR-Laser and Microwave Occultation Measurements

    Science.gov (United States)

    Proschek, Veronika; Kirchengast, Gottfried; Schweitzer, Susanne; Fritzer, Johannes

    2010-05-01

    The new climate satellite concept ACCURATE (Atmospheric Climate and Chemistry in the UTLS Region And climate Trends Explorer) enables simultaneous measurement of profiles of greenhouse gases, isotopes, wind and thermodynamic variables from Low Earth Orbit (LEO) satellites. The measurement principle applied is a combination of the novel LEO-LEO infrared laser occultation (LIO) technique and the already better studied LEO-LEO microwave occultation (LMO) technique. Resulting occultation events are evenly distributed around the world, have high vertical resolution and accuracy and are stable over long time periods. The LIO uses near-monochromatic signals in the short-wave infrared range (~2-2.5 μm for ACCURATE). These signals are absorbed by various trace species in the Earth's atmosphere. Profiles of the concentration of the absorbing species can be derived from signal transmission measurements. Accurately known temperature, pressure and humidity profiles derived from simultaneously measured LMO signals are essential pre-information for the retrieval of the trace species profiles. These LMO signals lie in the microwave band region from 17-23 GHz and, optionally, 178-195 GHz. The current ACCURATE mission design is arranged for the measurement of six greenhouse gases (GHG) (H2O, CO2, CH4, N2O, O3, CO) and four isotopes (13CO2, C18OO, HDO, H218O), with focus on the upper troposphere/lower stratosphere region (UTLS, 5-35 km). Wind speed in line-of-sight can be derived from a line-symmetric transmission difference which is caused by wind-induced Doppler shift. By-products are information on cloud layering, aerosol extinction, and scintillation strength. We introduce the methodology to retrieve GHG profiles from quasi-realistic forward-simulated intensities of LIO signals and thermodynamic profiles retrieved in a preceding step from LMO signals. Key of the retrieval methodology is the differencing of two LIO transmission signals, one being GHG sensitive on a target

  8. Ozone profile smoothness as a priori information in the inversion of limb measurements

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2004-11-01

    Full Text Available In this work we discuss inclusion of a priori information about the smoothness of atmospheric profiles in inversion algorithms. The smoothness requirement can be formulated in the form of Tikhonov-type regularization, where the smoothness of atmospheric profiles is considered as a constraint or in the form of Bayesian optimal estimation (maximum a posteriori method, MAP, where the smoothness of profiles can be included as a priori information. We develop further two recently proposed retrieval methods. One of them - Tikhonov-type regularization according to the target resolution - develops the classical Tikhonov regularization. The second method - maximum a posteriori method with smoothness a priori - effectively combines the ideas of the classical MAP method and Tikhonov-type regularization. We discuss a grid-independent formulation for the proposed inversion methods, thus isolating the choice of calculation grid from the question of how strong the smoothing should be. The discussed approaches are applied to the problem of ozone profile retrieval from stellar occultation measurements by the GOMOS instrument on board the Envisat satellite. Realistic simulations for the typical measurement conditions with smoothness a priori information created from 10-years analysis of ozone sounding at Sodankylä and analysis of the total retrieval error illustrate the advantages of the proposed methods. The proposed methods are equally applicable to other profile retrieval problems from remote sensing measurements.

  9. Ozone profile smoothness as a priori information in the inversion of limb measurements

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2004-11-01

    Full Text Available In this work we discuss inclusion of a priori information about the smoothness of atmospheric profiles in inversion algorithms. The smoothness requirement can be formulated in the form of Tikhonov-type regularization, where the smoothness of atmospheric profiles is considered as a constraint or in the form of Bayesian optimal estimation (maximum a posteriori method, MAP, where the smoothness of profiles can be included as a priori information. We develop further two recently proposed retrieval methods. One of them - Tikhonov-type regularization according to the target resolution - develops the classical Tikhonov regularization. The second method - maximum a posteriori method with smoothness a priori - effectively combines the ideas of the classical MAP method and Tikhonov-type regularization. We discuss a grid-independent formulation for the proposed inversion methods, thus isolating the choice of calculation grid from the question of how strong the smoothing should be.

    The discussed approaches are applied to the problem of ozone profile retrieval from stellar occultation measurements by the GOMOS instrument on board the Envisat satellite. Realistic simulations for the typical measurement conditions with smoothness a priori information created from 10-years analysis of ozone sounding at Sodankylä and analysis of the total retrieval error illustrate the advantages of the proposed methods.

    The proposed methods are equally applicable to other profile retrieval problems from remote sensing measurements.

  10. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    Directory of Open Access Journals (Sweden)

    J.-C. Raut

    2008-02-01

    Full Text Available A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF, enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL for the ACRI is close to 1.51(±0.02–i0.017(±0.003 at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  11. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Congsen [LaserLaB Amsterdam, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Department of Physics, National University of Defense Technology, Changsha 410073 (China); Janssen, Maurice H. M. [LaserLaB Amsterdam, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2015-02-15

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude.

  12. A robust fibre laser system for electro-optic electron bunch profile measurements at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Wissmann, Laurens-Georg

    2012-08-15

    For the electro-optic measurement of electron bunch profiles at FLASH a robust ytterbium doped fibre laser (YDFL) system has been developed consisting of a laser oscillator and a two-staged amplifier. The oscillator is designed to meet the specifications of high reliability and low noise operation. The amplifier makes use of tailored nonlinearity to enhance the spectral bandwidth of the output laser pulses. Active repetition rate control enables sub-picosecond synchronisation of the laser to the accelerator reference RF. Using a two-stage gating scheme the output pulse train repetition rate is adopted to the accelerator repetition rate. An experimental site used for electro-optic electron bunch diagnostics has been redesigned to support single-shot bunch profile measurements based on spectral decoding. An existing bunch profile monitor with a similar laser system was upgraded and electro-optic bunch profile measurements were conducted, allowing for a comparison with measurements done with other longitudinal electron bunch diagnostics and with former measurements.

  13. Clear air boundary layer spaced antenna wind measurement with the Multiple Antenna Profiler (MAPR

    Directory of Open Access Journals (Sweden)

    S. A. Cohn

    2001-08-01

    Full Text Available Spaced antenna (SA wind measurement techniques are applied to Multiple Antenna Profiler (MAPR data to evaluate its performance in clear air conditions. MAPR is a multiple antenna 915 MHz wind profiler developed at the National Center for Atmospheric Research (NCAR and described in Cohn et al. (1997, designed to make high resolution wind measurements. Previous reported measurements with MAPR were restricted to precipitation because of low signal to noise (SNR and signal to ground-clutter (SCR ratios. By using a standard pulse-coding technique and upgrading the profiler control software, increases in average power and SNR were achieved, making routine measurements in clear air possible. Comparison of winds measured by MAPR and by a sonic anemometer on a nearby 300 m tower show correlation coefficients in the range of R2 = 0.75 – 0.80, and an average absolute error of ~ 1.4 m s - 1 . This compares favorably with the agreement typically found in wind profiler comparisons. We also consider the use of the parameter ah , which is related to the value of the cross-correlation function at its zero crossing. This parameter is a data quality indicator and possibly a key component in a ground clutter removal technique.Key words. Meteorology and atmospheric dynamics (mesoscale meteorology; instruments and techniques – Radio science (remote sensing

  14. Clear air boundary layer spaced antenna wind measurement with the Multiple Antenna Profiler (MAPR

    Directory of Open Access Journals (Sweden)

    S. A. Cohn

    Full Text Available Spaced antenna (SA wind measurement techniques are applied to Multiple Antenna Profiler (MAPR data to evaluate its performance in clear air conditions. MAPR is a multiple antenna 915 MHz wind profiler developed at the National Center for Atmospheric Research (NCAR and described in Cohn et al. (1997, designed to make high resolution wind measurements. Previous reported measurements with MAPR were restricted to precipitation because of low signal to noise (SNR and signal to ground-clutter (SCR ratios. By using a standard pulse-coding technique and upgrading the profiler control software, increases in average power and SNR were achieved, making routine measurements in clear air possible. Comparison of winds measured by MAPR and by a sonic anemometer on a nearby 300 m tower show correlation coefficients in the range of R2 = 0.75 – 0.80, and an average absolute error of ~ 1.4 m s - 1 . This compares favorably with the agreement typically found in wind profiler comparisons. We also consider the use of the parameter ah , which is related to the value of the cross-correlation function at its zero crossing. This parameter is a data quality indicator and possibly a key component in a ground clutter removal technique.

    Key words. Meteorology and atmospheric dynamics (mesoscale meteorology; instruments and techniques – Radio science (remote sensing

  15. The influence of profiled ceilings on sports hall acoustics : Ground effect predictions and scale model measurements

    NARCIS (Netherlands)

    Wattez, Y.C.M.; Tenpierik, M.J.; Nijs, L.

    2018-01-01

    Over the last few years, reverberation times and sound pressure levels have been measured in many sports halls. Most of these halls, for instance those made from stony materials, perform as predicted. However, sports halls constructed with profiled perforated steel roof panels have an unexpected

  16. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon doppler velocimetry (PDV)

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Richard L [Los Alamos National Laboratory; Bartram, Brian D [Los Alamos National Laboratory; Sanchez, Nathaniel (nate) J [Los Alamos National Laboratory

    2009-01-01

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparison of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.

  17. Profile grid monitor and first measurement results at the MedAustron accelerator

    CERN Document Server

    Repovz, M; Kerschbaum, A; Osmic, F; Schwarz, S; Burtin, G

    2013-01-01

    MedAustron is a synchrotron based ion beam therapy center located in Wiener Neustadt/Austria. The MedAustron accelerator design is based on CERN’s Proton-Ion Medical Machine Study (PIMMS) [1] and is currently in the accelerator installation and beam commissioning phase. One of the basic measurements for commissioning of an accelerator is also beam profile measurement. The beam at the end of the Low Energy Beam Transport (LEBT) line and in the Medium Energy Beam Transport (MEBT) line (after the fast deflector) is pulsed. Due to pulsed beam the Wire Scanner Monitor (WSX) cannot be used. To measure a beam profile at these locations a new monitor has been developed – Profile Grid Monitor (PGX). The PGX is also known as harp grid monitor and it contains 64 wires positioned vertically and 64 wires horizontally for measuring the beam profile in both transverse planes. The PGX acquires the current of all 128 wires simultaneously, converts it to voltage, digitizes the values and processes the co...

  18. Subgrouping of Readers Based on Performance Measures: A Latent Profile Analysis

    Science.gov (United States)

    Wolff, Ulrika

    2010-01-01

    By using latent profile analysis eight stable and interpretable subgroups of readers were identified. The basis for subgrouping was different performance measures with four aspects of reading in focus: reading of continuous texts, reading of document texts, word reading and reading speed. Participants were 9-year-old Swedish students included in…

  19. Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry

    NARCIS (Netherlands)

    van der Veen, Roeland; Tran, Tuan; Lohse, Detlef; Sun, Chao

    2012-01-01

    A drop impacting on a solid surface deforms before the liquid makes contact with the surface. We directly measure the time evolution of the air layer profile under the droplet using high-speed color interferometry, obtaining the air layer thickness before and during the wetting process. Based on the

  20. Measuring Beach Profiles along a Low-Wave Energy Microtidal Coast, West-Central Florida, USA

    Directory of Open Access Journals (Sweden)

    Jun Cheng

    2016-10-01

    Full Text Available Monitoring storm-induced dramatic beach morphology changes and long-term beach evolution provides crucial data for coastal management. Beach-profile measurement using total station has been conducted along the coast of west-central Florida over the last decade. This paper reviews several case studies of beach morphology changes based on total-station survey along this coast. The advantage of flexible and low-cost total-station surveys is discussed in comparison to LIDAR (light detection and ranging method. In an attempt to introduce total-station survey from a practical prospective, measurement of cross-shore beach profile in various scenarios are discussed, including: (1 establishing a beach profile line with known instrument and benchmark locations; (2 surveying multiple beach profiles with one instrument setup; (3 implementation of coordinate rotation to convert local system to real-earth system. Total-station survey is a highly effective and accurate method in documenting beach profile changes along low-energy coasts.

  1. First Experimental Results And Improvements On Profile Measurements With The Vibrating Wire Scanner

    CERN Document Server

    Arutunian, S G; Dobrovolski, N M; Mailian, M R; Soghoyan, H E; Vasiniuk, I E

    2003-01-01

    The paper presents the first experimental results of transverse profile scans using a wire scanner based on a vibrating wire (vibrating wire scanner - VWS). The measurements were performed at the injector electron beam (6 nA) of the Yerevan synchrotron. The beam profile information is obtained by measuring the wire natural oscillations that depend on the wire temperature. This first experiments on weak electron beam proved this new method as a very sensitive tool, even suitable for tail measurements. Additional, improvements were tested to overcome some problems connected with signal conditioning and signal transfer in the presence of electromagnetic noise. As a result the noises were neatly separated and reduced. A mathematical method for rejection of distorted data was developed. Experiments with the scanner at the PETRA accelerator at DESY are planned for measurements of beam tails.

  2. Research and application of online measurement system of tire tread profile in automobile tire production

    Science.gov (United States)

    Wang, Pengyao; Chen, Xiangguang; Yang, Kai; Liu, Xuejiao

    2017-01-01

    To improve the measuring efficiency of width and thickness of tire tread in the process of automobile tire production, the actual condition for the tire production process is analyzed, and a fast online measurement system based on moving tire tread of tire specifications is established in this paper. The coordinate data of tire tread profile is acquired by 3D laser sensor, and we use C# language for programming which is an object-oriented programming language to complete the development of client program. The system with laser sensor can provide real-time display of tire tread profile and the data to require in the process of tire production. Experimental results demonstrate that the measuring precision of the system is <= 1mm, it can meet the measurement requirements of the production process, and the system has the characteristics of convenient installation and testing, system stable operation.

  3. Does the effectiveness of control measures depend on the influenza pandemic profile?

    Directory of Open Access Journals (Sweden)

    Solen Kernéis

    Full Text Available BACKGROUND: Although strategies to contain influenza pandemics are well studied, the characterization and the implications of different geographical and temporal diffusion patterns of the pandemic have been given less attention. METHODOLOGY/MAIN FINDINGS: Using a well-documented metapopulation model incorporating air travel between 52 major world cities, we identified potential influenza pandemic diffusion profiles and examined how the impact of interventions might be affected by this heterogeneity. Clustering methods applied to a set of pandemic simulations, characterized by seven parameters related to the conditions of emergence that were varied following Latin hypercube sampling, were used to identify six pandemic profiles exhibiting different characteristics notably in terms of global burden (from 415 to >160 million of cases and duration (from 26 to 360 days. A multivariate sensitivity analysis showed that the transmission rate and proportion of susceptibles have a strong impact on the pandemic diffusion. The correlation between interventions and pandemic outcomes were analyzed for two specific profiles: a fast, massive pandemic and a slow building, long-lasting one. In both cases, the date of introduction for five control measures (masks, isolation, prophylactic or therapeutic use of antivirals, vaccination correlated strongly with pandemic outcomes. Conversely, the coverage and efficacy of these interventions only moderately correlated with pandemic outcomes in the case of a massive pandemic. Pre-pandemic vaccination influenced pandemic outcomes in both profiles, while travel restriction was the only measure without any measurable effect in either. CONCLUSIONS: our study highlights: (i the great heterogeneity in possible profiles of a future influenza pandemic; (ii the value of being well prepared in every country since a pandemic may have heavy consequences wherever and whenever it starts; (iii the need to quickly implement control

  4. Ultrasonic Measurement of Velocity Profile on Bubbly Flow Using Fast Fourier Transform (FFT) Technique

    Science.gov (United States)

    Wongsaroj, W.; Hamdani, A.; Thong-un, N.; Takahashi, H.; Kikura, H.

    2017-10-01

    In two-phase bubbly flow, measurement of liquid and bubble velocity is a necessity to understand fluid characteristic. The conventional ultrasonic velocity profiler (UVP), which has been known as a nonintrusive measurement technique, can measure velocity profile of liquid and bubble simultaneously by applying a separation technique for both phases (liquid and bubble) and transparent test section is unnecessary. The aim of this study was to develop a new technique for separating liquid and bubble velocity data in UVP method to measure liquid and bubble velocity profiles separately. The technique employs only single resonant frequency transducer and a simple UVP system. An extra equipment is not required. Fast Fourier Transform (FFT) based frequency estimator paralleled with other signal processing techniques, which is called as proposed technique, was proposed to measure liquid and bubble velocity separately. The experimental facility of two-phase bubbly flow in the vertical pipe was constructed. Firstly, the Doppler frequency estimation by using the FFT technique was evaluated in single-phase liquid flow. Results showed that FFT technique showed a good agreement with autocorrelation and maximum likelihood estimator. Then, separation of liquid and bubble velocity was demonstrated experimentally in the two-phase bubbly flow. The proposed technique confirmed that liquid and bubble velocity could be measured efficiently.

  5. Modelling and Measurements of Bunch Profiles at the LHC Flat Bottom

    CERN Document Server

    Papadopoulou, Stefania; Muller, Juan; Papaphilippou, Yannis; Trad, Georges

    2016-01-01

    At the LHC flat bottom the interplay between a series of effects (i.e. intrabeam scattering, longitudinal beam manipulations, non-linearities of the machine, etc) can lead to a population of the tails of the beam distributions, which may become non-Gaussian. This paper presents observations of the evolution of particle distributions in the LHC flat bottom. Novel distribution functions are employed to represent the beam profiles, and used as a guideline for generalising emittance growth rate estimations due to IBS. Finally, an attempt is made to benchmark an IBS Monte-Carlo simulation code, able to track 3D particle distributions, with the measured beam profile evolutions.

  6. Transverse beam profile measurements with slit scanner and Faraday cup at REX-ISOLDE

    CERN Document Server

    Cantero, E D; Lanaia, D; Sosa, A; Voulot, D

    2014-01-01

    The transverse profiles for the HIE-ISOLDE beams will be measured using a system composed of a scanning slit and a Faraday cup. A validation test of the proposed device was performed using the REX-ISOLDE stable beam and a prototype diagnostic box designed for HIE-ISOLDE. The slit used for this test was very thin (0.2 mm width), but still fairly good profiles could be obtained for beams with total current of around 20 pA (typical beam intensity during normal set-up procedures for REX-ISOLDE).

  7. Complete methodology on generating realistic wind speed profiles based on measurements

    DEFF Research Database (Denmark)

    Gavriluta, Catalin; Spataru, Sergiu; Mosincat, Ioan

    2012-01-01

    The wind speed represents the main exogenous signal applied to a Wind Energy Conversion System (WECS) and determines its behavior. The erratic variation of the wind speed, highly dependent on the given site and on the atmospheric conditions, makes the wind speed quite difficult to model. Moreover......, wind modelling for medium and large time scales is poorly treated in the present literature. This paper presents methods for generating realistic wind speed profiles based on real measurements. The wind speed profile is divided in a low- frequency component (describing long term variations...... and modelling methods based on white noise filtering are presented....

  8. On mean wind and turbulence profile measurements from ground-based wind lidars

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    2009-01-01

    Two types of wind lidar?s have become available for ground-based vertical mean wind and turbulence profiling. A continuous wave (CW) wind lidar, and a pulsed wind lidar. Although they both are build upon the same recent 1.55 μ telecom fibre technology, they possess fundamental differences between...... their temporal and spatial resolution capabilities. A literature review of the two lidar systems spatial and temporal resolution characteristics will be presented, and the implication for the two lidar types vertical profile measurements of mean wind and turbulence in the lower atmospheric boundary layer...

  9. A Model for Converting Solid State Fermentation Growth Profiles Between Absolute and Relative Measurement Bases

    Directory of Open Access Journals (Sweden)

    Graciele Viccini

    2003-01-01

    Full Text Available A mathematical model is developed for converting between the two measurement bases commonly used in the construction of growth profiles in solid-state fermentation, namely absolute mass ratio m(dry biomass/m(initial dry matter and relative mass ratio m(dry biomass/m(dry matter. These are not equivalent, due to the loss of dry matter as CO2 during the fermentation. The model is equally applicable to any biomass component used in indirect measurements of growth, such as protein. Use of the model to convert absolute mass ratio of the biomass profiles for the growth of Rhizopus oligosporus to a relative basis gave profiles that agreed well with the experimentally determined relative biomass profiles. This agreement was obtained for three different fermentations using the same set of parameter values in the model, namely a yield coefficient of m(protein/m(dry substrate = 0.2 g/g and a maintenance coefficient of zero, giving confidence in the reliability of the model. The model was then used to show that the measurement basis used can affect the form of the curve and therefore can also affect the conclusion drawn about the type of kinetics shown by the organism, with the extent of this effect depending on the length of time that growth occurs and the values of the yield and maintenance coefficients. This work shows that great care must be taken in drawing conclusions about growth kinetics in solid-state fermentation.

  10. Vertical profile measurements of ozone at Lauder, New Zealand, during ASHOE/MAESA

    Science.gov (United States)

    McGee, Thomas J.; Gross, Michael; Singh, Upendra; Kimvilakani, Patrick; Matthews, Andrew; Bodeker, Gregory; Connor, Brian; Tsou, J. J.; Proffitt, Michael; Margitan, James

    1997-06-01

    The Goddard Space Flight Center stratospheric ozone lidar was deployed at the National Institute for Water and Atmospheric Research (NIWA) facility at Lauder, New Zealand (45°S, 169°E), during all four of the Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft (ASHOE/MAESA) flight periods. The site is about 500 km south of Christchurch. Efforts were made to acquire lidar data before dawn and after sunset on the days the ER-2 was flown. A total of 79 measurements were made on 47 individual nights. Each measurement provided vertical profiles of aerosols, temperature, and ozone. Profiles begin at ˜8 km and extend to 35, 50-55, and 75 km for aerosols, ozone, and temperature, respectively. NIWA personnel launched electrochemical concentration cell ozonesondes on a number of these occasions. A summary of these data will be presented along with comparisons with data from ER-2 instruments. Average profiles for each of the four ASHOE/MAESA deployments were constructed for use as a climatological profile for model initialization.

  11. On the use of horizontal acoustic doppler profilers for continuous bed shear stress monitoring

    NARCIS (Netherlands)

    Vermeulen, B.; Hoitink, A.J.F.; Sassi, M.G.

    2013-01-01

    Continuous monitoring of bed shear stress in large river systems may serve to better estimate alluvial sediment transport to the coastal ocean. Here we explore the possibility of using a horizontally deployed acoustic Doppler current profiler (ADCP) to monitor bed shear stress, applying a prescribed

  12. The substance use risk profile scale: a scale measuring traits linked to reinforcement-specific substance use profiles.

    Energy Technology Data Exchange (ETDEWEB)

    Woicik, P.A.; Stewart, S.H.; Pihl, R.O.; Conrod, P.J.

    2009-12-01

    The Substance Use Risk Profile Scale (SURPS) is based on a model of personality risk for substance abuse in which four personality dimensions (hopelessness, anxiety sensitivity, impulsivity, and sensation seeking) are hypothesized to differentially relate to specific patterns of substance use. The current series of studies is a preliminary exploration of the psychometric properties of the SURPS in two populations (undergraduate and high school students). In study 1, an analysis of the internal structure of two versions of the SURPS shows that the abbreviated version best reflects the 4-factor structure. Concurrent, discriminant, and incremental validity of the SURPS is supported by convergent/divergent relationships between the SURPS subscales and other theoretically relevant personality and drug use criterion measures. In Study 2, the factorial structure of the SURPS is confirmed and evidence is provided for its test-retest reliability and validity with respect to measuring personality vulnerability to reinforcement-specific substance use patterns. In Study 3, the SURPS was administered in a more youthful population to test its sensitivity in identifying younger problematic drinkers. The results from the current series of studies demonstrate support for the reliability and construct validity of the SURPS, and suggest that four personality dimensions may be linked to substance-related behavior through different reinforcement processes. This brief assessment tool may have important implications for clinicians and future research.

  13. Atmospheric boundary layer wind profile at a flat coastal site – wind speed lidar measurements and mesoscale modeling results

    DEFF Research Database (Denmark)

    Floors, Rogier; Batchvarova, Ekaterina; Gryning, Sven-Erik

    2011-01-01

    Wind profiles up to 600m height are investigated. Measurements of mean wind speed profiles were obtained from a novel wind lidar and compared to model simulations from a mesoscale model (WRFARW v3.1). It is found that WRF is able to predict the mean wind profile rather well and typically within 1......–2ms−1 to the individual measured values. WRF underpredicts the normalized wind profile, especially for stable conditions. The effect of baroclinicity on the upper part of the wind profile is discussed....

  14. Optical measurement of static temperature and hydroxyl radical profiles in a hydrogen-fueled supersonic combustor

    Science.gov (United States)

    Gaugler, R. E.

    1974-01-01

    Profiles of static temperature and hydroxyl radical concentration were measured in a two-dimensional supersonic combustor test section 22.8 cm downstream of hydrogen injection. A high-pressure gas generator supplied vitiated air to the test section at Mach 2.44, atmospheric pressure, and a total temperature of about 2240 K. Room-temperature hydrogen was injected through a 0.40-cm step slot at Mach 1 and matched pressure. The measurements utilized a noninterfering spectral line absorption technique in which narrow ultraviolet emission lines of the hydroxyl electronic transition are absorbed by the broader absorption lines in the combustion gas. Comparison of the measured temperature profiles with theoretical calculations showed good agreement.

  15. Comparison of the inversion algorithms applied to the ozone vertical profile retrieval from SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    A. Rozanov

    2007-09-01

    Full Text Available This paper is devoted to an intercomparison of ozone vertical profiles retrieved from the measurements of scattered solar radiation performed by the SCIAMACHY instrument in the limb viewing geometry. Three different inversion algorithms including the prototype of the operational Level 1 to 2 processor to be operated by the European Space Agency are considered. Unlike usual validation studies, this comparison removes the uncertainties arising when comparing measurements made by different instruments probing slightly different air masses and focuses on the uncertainties specific to the modeling-retrieval problem only. The intercomparison was performed for 5 selected orbits of SCIAMACHY showing a good overall agreement of the results in the middle stratosphere, whereas considerable discrepancies were identified in the lower stratosphere and upper troposphere altitude region. Additionally, comparisons with ground-based lidar measurements are shown for selected profiles demonstrating an overall correctness of the retrievals.

  16. Measurements and modeling of the wind profile up to 600 meters at a flat coastal site

    DEFF Research Database (Denmark)

    Batchvarova, Ekaterina; Gryning, Sven-Erik; Floors, Rogier Ralph

    2014-01-01

    This study shows long-term ABL wind profile features by comparing long-range wind lidar measurements and the output from a mesoscale model. The study is based on one-year pulsed lidar (Wind Cube 70) measurements of wind speed and direction from 100 to 600 meters with vertical resolution of 50...... as function of height. It is found that 1) WRF is generally under predicting both the profiles of the measured wind speed, direction and power density, 2) the scatter of observations to model results of the wind speed does not change significantly with height between 100 and 600 meters, and 3) the scale (A...... meters and time resolution of 10 minutes at a coastal site on the West coast of Denmark and WRF ARW (NCAR) simulations for the same period. The model evaluation is performed based on wind speed, wind direction, as well as statistical parameters of the Weibull distribution of the wind speed time series...

  17. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    Science.gov (United States)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  18. Technical Note: Robust measurement of the slice-sensitivity profile in breast tomosynthesis.

    Science.gov (United States)

    Maki, Aili K; Mainprize, James G; Yaffe, Martin J

    2016-08-01

    The purpose of this work is to improve the repeatability of the measurement of the slice-sensitivity profile (SSP) in reconstructed breast tomosynthesis volumes. A grid of aluminum ball-bearings (BBs) within a PMMA phantom was imaged on breast tomosynthesis systems from three different manufacturers. The full-width half-maximum (FWHM) values were measured for the SSPs of the BBs in the reconstructed volumes. The effect of transforming the volumes from a Cartesian coordinate system (CCS) to a cone-beam coordinate system (CBCS) on the variability in the FWHM values was assessed. Transforming the volumes from a CCS to a CBCS before measuring the SSPs reduced the coefficient of variation (COV) in the measurements of FWHM in repeated measurements by 56% and reduced the dependence of the FWHM values on the location of the BBs within the reconstructed volume by 76%. Measuring the SSP in the volumes in a CBCS improves the robustness of the measurement.

  19. Expression of a pathogen-induced cysteine protease (AdCP) in tapetum results in male sterility in transgenic tobacco.

    Science.gov (United States)

    Shukla, Pawan; Singh, Naveen Kumar; Kumar, Dilip; Vijayan, Sambasivam; Ahmed, Israr; Kirti, Pulugurtha Bharadwaja

    2014-06-01

    Usable male sterility systems have immense potential in developing hybrid varieties in crop plants, which can also be used as a biological safety containment to prevent horizontal transgene flow. Barnase-Barstar system developed earlier was the first approach to engineer male sterility in plants. In an analogous situation, we have evolved a system of inducing pollen abortion and male sterility in transgenic tobacco by expressing a plant gene coding for a protein with known developmental function in contrast to the Barnase-Barstar system, which deploys genes of prokaryotic origin, i.e., from Bacillus amyloliquefaciens. We have used a plant pathogen-induced gene, cysteine protease for inducing male sterility. This gene was identified in the wild peanut, Arachis diogoi differentially expressed when it was challenged with the late leaf spot pathogen, Phaeoisariopsis personata. Arachis diogoi cysteine protease (AdCP) was expressed under the strong tapetum-specific promoter (TA29) and tobacco transformants were generated. Morphological and histological analysis of AdCP transgenic plants showed ablated tapetum and complete pollen abortion in three transgenic lines. Furthermore, transcript analysis displayed the expression of cysteine protease in these male sterile lines and the expression of the protein was identified in western blot analysis using its polyclonal antibody raised in the rabbit system.

  20. Turbulence Measurements from a Moored Platform at Mid-Depth in a Swift Tidal Channel

    Science.gov (United States)

    Hay, Alex; Lueck, Rolf; Wolk, Fabian; McMillan, Justine

    2014-05-01

    Results are presented from a turbulence experiment with a 3-m long streamlined floatation body, instrumented with velocity shear probes, fast-response thermistors, a 1 MHz Acoustic Doppler Current Profiler (AD2CP), and an Acoustic Doppler Velocimeter (ADV). The system was deployed over seven tidal cycles at mid-depth in a 30-m deep tidal channel in the lower Bay of Fundy, Canada. Peak flow speeds exceeded 2 m s-1, and while 10-min time scale average speeds were similar between ebb and flood, the variances were markedly higher during flood. Turbulent kinetic energy (TKE) dissipation rates measured with the shear probes exhibit a pronounced flood/ebb contrast: O(10-4) W kg-1 peak values during flood, but lower by an order of magnitude during ebb. Dissipation rates follow u3 scaling over a wide range of flow speeds between 0.5 and 2.5 m s-1. Below 0.5 m s-1 an asymmetry in the mounting arrangement caused the floatation body to pitch upward, biasing the measured dissipation values high. The ADV on the platform registered mean speed - used to implement Taylor's hypothesis - which was corroborated with the platform-mounted ADCP. Additional ADCPs were also deployed on a nearby bottom pod, sampling at turbulence resolving rates - up to 8 Hz. Comparisons between the shear probe and acoustic estimates of the TKE spectrum and dissipation rate - at comparable depths - are presented.

  1. Dose profile monitoring with carbon ions by means of prompt-gamma measurements

    Energy Technology Data Exchange (ETDEWEB)

    Testa, E. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France)], E-mail: e.testa@ipnl.in2p3.fr; Bajard, M.; Chevallier, M.; Dauvergne, D.; Le Foulher, F. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France); Freud, N.; Letang, J.M. [Institut National des Sciences Appliquees de Lyon, Laboratoire de Controle Non-Destructif par Rayonnements Ionisants (France); Poizat, J.C.; Ray, C.; Testa, M. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France)

    2009-03-15

    A key point in the quality control of ion therapy is real-time monitoring and imaging of the dose delivered to the patient. Among the possible signals that can be used to make such a monitoring, prompt gamma-rays issued from nuclear fragmentation are possible candidates, provided the correlation between the emission profile and the primary beam range can be established. By means of simultaneous energy and time-of-flight discrimination, we could measure the longitudinal profile of the prompt gamma-rays emitted by 73 MeV/u carbon ions stopping inside a PMMA target. This technique allowed us to minimize the shielding against neutrons and scattered gamma rays, and to find a good correlation between the prompt-gamma profile and the ion range. This profile was studied as a function of the observation angle. By extrapolating our results to higher energies and realistic detection efficiencies, we showed that prompt gamma-ray measurements make it feasible to control in real time the longitudinal dose during ion therapy treatments.

  2. Measurements of noninterceptive fluorescence profile monitor prototypes using 9 MeV deuterons

    Directory of Open Access Journals (Sweden)

    J. M. Carmona

    2012-07-01

    Full Text Available Two types of noninterceptive optical monitors, based on gas fluorescence, have been designed for use on the Linear IFMIF Prototype Accelerator (LIPAc that is currently under development (a 125 mA, 9 MeV, 175 MHz continuous wave deuteron beam. These diagnostics offer a technique to characterize the transverse beam profile for medium to high current hadron beams, without intercepting the beam core. This paper reports on beam tests using the prototype monitors developed for LIPAc. Tests were carried out at an experimental line of the Centro Nacional de Aceleradores cyclotron, using 9 MeV deuterons with beam currents from 0.4 to 40  μA. In addition, transverse beam profile measurements were performed under high background radiation (e.g. gamma dose rate up to 83  mSv/h. Preliminary cross-checks with different profilers, as well as a systematic scan of beam current and vacuum pressures and tests with different injected gases (nitrogen and xenon have been performed. In this work, we present a brief description of the experimental setup and the first measurements obtained with these prototype profilers plus a discussion of the first analysis of the background signal in a detector as a function of radiation background.

  3. Vertical Position and Current Profile Measurements by Faraday-effect Polarimetry On EAST tokamak

    Science.gov (United States)

    Ding, Weixing; Liu, H. Q.; Jie, Y. X.; Brower, D. L.; Qian, J. P.; Zou, Z. Y.; Lian, H.; Wang, S. X.; Luo, Z. P.; Xiao, B. J.; Ucla Team; Asipp Team

    2017-10-01

    A primary goal for ITER and prospective fusion power reactors is to achieve controlled long-pulse/steady-state burning plasmas. For elongated divertor plasmas, both the vertical position and current profile have to be precisely controlled to optimize performance and prevent disruptions. An eleven-channel laser-based POlarimeter-INTerferometer (POINT) system has been developed for measuring the internal magnetic field in the EAST tokamak and can be used to obtain the plasma current profile and vertical position. Current profiles are determined from equilibrium reconstruction including internal magnetic field measurements as internal constraints. Horizontally-viewing chords at/near the mid-plane allow us to determine plasma vertical position non-inductively with subcentimeter spatial resolution and time response up to 1 s. The polarimeter-based position measurement, which does not require equilibrium reconstruction, is benchmarked against conventional flux loop measurements and can be exploited for feedback control. Work supported by US DOE through Grants No. DE-FG02-01ER54615 and No. DC-SC0010469.

  4. Temperature Profile Measurements in a Newly Constructed 30-Stage 5 cm Centrifugal Contactor pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Troy G. Garn; Dave H. Meikrantz; Mitchell R. Greenhalgh; Jack D. Law

    2008-09-01

    An annular centrifugal contactor pilot plant incorporating 30 stages of commercial 5 cm CINC V-02 units has been built and operated at INL during the past year. The pilot plant includes an automated process control and data acquisitioning system. The primary purpose of the pilot plant is to evaluate the performance of a large number of inter-connected centrifugal contactors and obtain temperature profile measurements within a 30-stage cascade. Additional solvent extraction flowsheet testing using stable surrogates is also being considered. Preliminary hydraulic testing was conducted with all 30 contactors interconnected for continuous counter-current flow. Hydraulic performance and system operational tests were conducted successfully but with higher single-stage rotor speeds found necessary to maintain steady interstage flow at flowrates of 1 L/min and higher. Initial temperature profile measurements were also completed in this configuration studying the performance during single aqueous and two-phase counter-current flow at ambient and elevated inlet solution temperatures. Temperature profile testing of two discreet sections of the cascade required additional feed and discharge connections. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 were the solution feeds for all the testing described in this report. Numerous temperature profiles were completed using a newly constructed 30-stage centrifugal contactor pilot plant. The automated process control and data acquisition system worked very well throughout testing. Temperature data profiles for an array of total flowrates (FT) and contactor rpm values for both single-phase and two-phase systems have been collected with selected profiles and comparisons reported. Total flowrates (FT) ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Solution inlet temperatures ranging from ambient up to 50° C were tested. Ambient temperature testing shows that a

  5. GOMOS ozone profile validation using ground-based and balloon sonde measurements

    Directory of Open Access Journals (Sweden)

    J. A. E. van Gijsel

    2010-11-01

    Full Text Available The validation of ozone profiles retrieved by satellite instruments through comparison with data from ground-based instruments is important to monitor the evolution of the satellite instrument, to assist algorithm development and to allow multi-mission trend analyses.

    In this study we compare ozone profiles derived from GOMOS night-time observations with measurements from lidar, microwave radiometer and balloon sonde. Collocated pairs are analysed for dependence on several geophysical and instrument observational parameters. Validation results are presented for the operational ESA level 2 data (GOMOS version 5.00 obtained during nearly seven years of observations and a comparison using a smaller dataset from the previous processor (version 4.02 is also included.

    The profiles obtained from dark limb measurements (solar zenith angle >107° when the provided processing flag is properly considered match the ground-based measurements within ±2 percent over the altitude range 20 to 40 km. Outside this range, the pairs start to deviate more and there is a latitudinal dependence: in the polar region where there is a higher amount of straylight contamination, differences start to occur lower in the mesosphere than in the tropics, whereas for the lower part of the stratosphere the opposite happens: the profiles in the tropics reach less far down as the signal reduces faster because of the higher altitude at which the maximum ozone concentration is found compared to the mid and polar latitudes. Also the bias is shifting from mostly negative in the polar region to more positive in the tropics

    Profiles measured under "twilight" conditions are often matching the ground-based measurements very well, but care has to be taken in all cases when dealing with "straylight" contaminated profiles.

    For the selection criteria applied here (data within 800 km, 3 degrees in equivalent latitude, 20 h (5 h above 50 km and a relative

  6. Real-time MSE measurements for current profile control on KSTARa)

    Science.gov (United States)

    De Bock, M. F. M.; Aussems, D.; Huijgen, R.; Scheffer, M.; Chung, J.

    2012-10-01

    To step up from current day fusion experiments to power producing fusion reactors, it is necessary to control long pulse, burning plasmas. Stability and confinement properties of tokamak fusion reactors are determined by the current or q profile. In order to control the q profile, it is necessary to measure it in real-time. A real-time motional Stark effect diagnostic is being developed at Korean Superconducting Tokamak for Advanced Research for this purpose. This paper focuses on 3 topics important for real-time measurements: minimize the use of ad hoc parameters, minimize external influences and a robust and fast analysis algorithm. Specifically, we have looked into extracting the retardance of the photo-elastic modulators from the signal itself, minimizing the influence of overlapping beam spectra by optimizing the optical filter design and a multi-channel, multiharmonic phase locking algorithm.

  7. Self-presentation and emotional contagion on Facebook: new experimental measures of profiles' emotional coherence

    OpenAIRE

    Guazzini, Andrea; Guidi, Elisa; Cecchini, Cristina; Milani, Monica; Vilone, Daniele; Meringolo, Patrizia

    2016-01-01

    Social Networks allow users to self-present by sharing personal contents with others which may add comments. Recent studies highlighted how the emotions expressed in a post affect others' posts, eliciting a congruent emotion. So far, no studies have yet investigated the emotional coherence between wall posts and its comments. This research evaluated posts and comments mood of Facebook profiles, analyzing their linguistic features, and a measure to assess an excessive self-presentation was int...

  8. Measuring Aerosol Optical Depth (AOD and Aerosol Profiles Simultaneously with a Camera Lidar

    Directory of Open Access Journals (Sweden)

    Barnes John

    2016-01-01

    Full Text Available CLidar or camera lidar is a simple, inexpensive technique to measure nighttime tropospheric aerosol profiles. Stars in the raw data images used in the CLidar analysis can also be used to calculate aerosol optical depth simultaneously. A single star can be used with the Langley method or multiple star pairs can be used to reduce the error. The estimated error from data taken under clear sky conditions at Mauna Loa Observatory is approximately +/- 0.01.

  9. Interface profile studies in immiscible and partially miscible binary polymer blends from free volume measurement

    Science.gov (United States)

    Ramya, P.; Meghala, D.; Pasang, T.; Raj, J. M.; Ranganathaiah, C.; Williams, J. F.

    2013-06-01

    The diffused interface widths in an immiscible and a partially miscible polymer blend namely Polyvinyl chloride/Ethylene vinyl acetate (PVC/EVA) and Polystyrene/Polymethylmethacrylate (PS/PMMA) are experimentally measured and reported here. A new empirical relation found between hydrodynamic interaction parameter α derived from free volume data and the Flory-Huggins interaction parameter χ is used to construct density profile across the interface to derive the interface width in above two binary blends.

  10. Vessel-mounted acoustic Doppler current profiler (ADCP) data from the mouth of the Columbia River, Oregon and Washington, 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Spatial surveys of water column currents were performed between June 14 and 16, 2013, in the mouth of the Columbia River, Oregon and Washington. These data were...

  11. Transfer characteristics of optical profilers with respect to rectangular edge and step height measurement

    Science.gov (United States)

    Xie, Weichang; Hagemeier, Sebastian; Bischoff, Jörg; Mastylo, Rostyslav; Manske, Eberhard; Lehmann, Peter

    2017-06-01

    Optical profilers are mature instruments used in research and industry to study surface topography features. Although the corresponding standards are based on simple step height measurements, in practical applications these instruments are often used to study the fidelity of surface topography. In this context it is well-known that in certain situations a surface profile obtained by an optical profiler will differ from the real profile. With respect to practical applications such deviations often occur in the vicinity of steep walls and in cases of high aspect ratio. In this contribution we compare the transfer characteristics of different 3D optical profiler principles, namely white-light interferometry, focus sensing, and confocal microscopy. Experimental results demonstrate that the transfer characteristics do not only depend on the parameters of the optical measurement system (e. g. wavelength and coherence of light, numerical aperture, evaluated signal feature, polarization) but also on the properties of the measuring object such as step height, aspect ratio, material properties and homogeneity, rounding and steepness of the edges, surface roughness. As a result, typical artefacts such as batwings occur for certain parameter combinations, particularly at certain height-to-wavelength ratio (HWR) values. Understanding of the mechanisms behind these phenomena enables to reduce them by an appropriate parameter adaption. However, it is not only the edge artefacts, but also the position of an edge that may be changed due to the properties of the measuring object. In order to investigate the relevant effects theoretically, several models are introduced. These are based on either an extension of Richards-Wolf modeling or rigorous coupled wave analysis (RCWA). Although these models explain the experimental effects quite well they suffer from different limitations, so that a quantitative correspondence of theoretical modeling and experimental results is hard to achieve

  12. Changes in corneal endothelial cell profile measurements after deep anterior lamellar keratoplasty for keratoconus.

    Science.gov (United States)

    Salouti, Ramin; Masoumpour, Masoumeh; Nowroozzadeh, Mohammad H; Zamani, Mohammad; Ghoreyshi, Maryam; Melles, Gerrit R J

    2013-06-01

    The primary objective was to evaluate whether postoperative alterations in corneal shape (as reflected by keratometry values) affect endothelial cell profile measurements after deep anterior lamellar keratoplasty (DALK) in a group of patients with keratoconus. Secondary objective was to describe the pattern of changes in corneal endothelial cell profile measurements during the first 3 years after DALK. In this prospective interventional case series, we enrolled patients who had significant keratoconus and were scheduled for DALK (Melles technique). Cases with concomitant intraocular surgeries, intra-/postoperative complications, and poor quality of images were excluded. Two hundred one eyes and 45 eyes (of the original 201) were enrolled for evaluating the primary and the secondary objectives, respectively. At 3 months post DALK, the mean endothelial cell density (ECD) had significantly increased and the mean cell area had decreased compared with preoperative measurements (2721 vs. 2823 cells/mm2, P = 0.015; and 378 vs. 362 μm2, P = 0.005, respectively). Regression analysis revealed a weak but significant nonlinear association between changes in mean keratometry and ECD changes at 3 months (R2 = 0.039, P = 0.02). Standard deviation of mean cell area had significantly decreased at 12 months after DALK compared with measurements taken at 3 months after surgery (P = 0.023) and remained stable thereafter. Apparent measurements of ECD may not show a decrease but instead even a slight increase in some cases after uncomplicated DALK (Melles technique) for keratoconus. This finding along with a later decrease in standard deviation of mean cell area suggests that notable postoperative changes in corneal biomechanical forces may affect endothelial cell profile measurements.

  13. Profile and Emittance Measurements at the CERN LINAC4 3 MeV test Stand

    CERN Document Server

    Zocca, F; Duraffourg, M; Focker, GJ; Gerard, D; Raich, U; Roncarolo, F

    2013-01-01

    A new 160 MeV H- Linac named Linac-4 will be built at CERN to replace the old 50 MeV proton Linac. The ion source, the 3 MeV Radio Frequency Quadrupole (RFQ) and the Medium Energy Beam Transport (MEBT) line hosting a chopper, have been commissioned in a dedicated test stand. Wire grids and wire scanners were used to measure the transverse beam profile and a slit/grid emittance meter was installed on a temporary test bench plugged at the RFQ and MEBT exit in different stages. The emittance meter slit was also used as a scanning scraper able to reconstruct the transverse profile by measuring the transmission with a downstream current transformer. On the same measurement bench, a spectrometer in conjunction with a wire grid allowed measuring the energy spread of the particles. This paper summarizes the measurement results that allowed characterizing the 3 MeV beam and discusses the present understanding of monitor performance.

  14. Development of a Rapid Beam Emittance Measurement System using a Real-Time Beam Profile Monitor

    Science.gov (United States)

    Kamakura, Keita; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Yorita, Tetsuhiko; Ueda, Hiroshi; Saito, Takane; Morinobu, Shunpei; Nagayama, Keiichi; Tamura, Hitoshi; Yasuda, Yuusuke

    2016-06-01

    We have developed a rapid beam emittance measurement system for the injection beam of the K140 azimuthally varying field (AVF) cyclotron at Research Center for Nuclear Physics (RCNP). So far, a conventional emittance monitor has been used in a section of a medium energy beam transport (MEBT) system to evaluate the quality of the injected beam to the K400 ring cyclotron. Two kinds of emittance monitors were supplemented in the low energy beam line for evaluation of ion beams from ion sources. One of them is a conventional type consisting of two sets of position-variable slits and a three-wire profile monitor (TPM), similar to the one installed in the MEBT system of the AVF cyclotron. It takes about 30 min to get emittances in both the horizontal and vertical planes. For quick emittance measurements, we have developed a new system equipped with a set of fast moving slits with a fixed gap and a real-time beam profile monitor (BPM83) with a rotating helical wire. With this system the measurement time was considerably reduced to 70 s for both the horizontal and vertical emittances. Moreover the data analysis and graphical processing were completely automated. The overall measurement and analysis time was successfully minimized within 75 s. This rapid emittance measurement system has contributed to improve the beam quality by optimizing parameters of ion sources and the beam transport system.

  15. Non-destructive profile measurement of intensive heavy ion beams; Zerstoerungsfreie Profilmessung intensiver Schwerionenstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Frank

    2010-02-08

    Within the framework of the FAIR-project (Facility for Antiproton and Ion Research) at GSI (Helmholtz Center for Heavy Ion Research), high intensity beams from protons to uranium ions with kinetic energies up to 30 AGeV are foreseen. Present GSI-accelerators like the UNILAC and the Heavy Ion Synchrotron (SIS-18) with a magnetic rigidity of 18 Tm will be used as injectors for the future synchrotron (SIS-100). Their beam current will be increased by up to two orders of magnitude. An accurate beam position and beam profile measurement is mandatory for a safe operation of transport sections, in particular in front of production targets (Fragment Separator (FRS)-target, anti p-production-target and Warm Dense Matter (WDM)-targets). Conventional intercepting profile monitors will not withstand the thermal stress of intensive ion beams, particularly for low energy applications or focused beams. For transverse profile determination a non-intercepting Beam Induced Fluorescence (BIF)-monitor was developed, working with residual gas. The BIF-monitor exploits fluorescence light emitted by residual gas molecules after atomic collisions with beam ions. Fluorescence-images were recorded with an image-intensified camera system, and beam profiles were obtained by projecting these images. Within the scope of this dissertation the following topics have been investigated: The photon yield, profile shape and background contribution were determined for different ion species (H{sup +}, S{sup 6+}, Ar{sup 18+}, K{sup +}, Ni{sup 9+}, Xe{sup 48+}, Ta{sup 24+}, Au{sup 65+}, U{sup 73+}), beam energies (7.7 AkeV-750 AMeV), gas pressures (10{sup -6}-3 mbar) and gas species (N{sub 2}, He, Ne, Ar, Kr, Xe). Applying an imaging spectrograph and narrowband 10 nm interference filters, the spectral response was mapped and associated with the corresponding gas transitions. Spectrally resolved beam profiles were also obtained form the spectrographic images. Major results are the light yield showing a

  16. Vertical profiles of aerosol optical properties over central Illinois and comparison with surface and satellite measurements

    Directory of Open Access Journals (Sweden)

    P. J. Sheridan

    2012-12-01

    Full Text Available Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1 measure the in situ aerosol properties and determine their vertical and temporal variability and (2 relate these aircraft measurements to concurrent surface and satellite measurements. The primary profile location was within 15 km of the NOAA/ESRL surface aerosol monitoring station near Bondville, Illinois. Identical instruments at the surface and on the aircraft ensured that the data from both platforms would be directly comparable and permitted a determination of how representative surface aerosol properties were of the lower column. Aircraft profiles were also conducted occasionally at two other nearby locations to increase the frequency of A-Train satellite underflights for the purpose of comparing in situ and satellite-retrieved aerosol data. Measurements of aerosol properties conducted at low relative humidity over the Bondville site compare well with the analogous surface aerosol data and do not indicate any major sampling issues or that the aerosol is radically different at the surface compared with the lowest flyby altitude of ~ 240 m above ground level. Statistical analyses of the in situ vertical profile data indicate that aerosol light scattering and absorption (related to aerosol amount decreases substantially with increasing altitude. Parameters related to the nature of the aerosol (e.g., single-scattering albedo, Ångström exponent, etc., however, are relatively constant throughout the mixed layer, and do not vary as much as the aerosol amount throughout the profile. While individual profiles often showed more variability, the median in situ single-scattering albedo was 0.93–0.95 for all sampled altitudes. Several parameters (e.g., submicrometer scattering fraction, hemispheric backscattering fraction, and

  17. Analysis of Ozone And CO2 Profiles Measured At A Diary Facility

    Science.gov (United States)

    Ogunjemiyo, S. O.; Hasson, A. S.; Ashkan, S.; Steele, J.; Shelton, T.

    2015-12-01

    Ozone and carbon dioxide are both greenhouse gasses in the planetary boundary layer. Ozone is a harmful secondary pollutant in the troposphere produced mostly during the day when there is a photochemical reaction in which primary pollutant precursors such as nitrous oxide (NOx) or volatile organic compounds (VOC's) mix with sunlight. As with most pollutants in the lower troposphere, both ozone and carbon dioxide vary in spatial and temporal scale depending on sources of pollution, environmental conditions and the boundary layer dynamics. Among the several factors that influence ozone variation, the seasonal changes in meteorological parameters and availability of ozone precursors are crucial because they control ozone formation and decay. Understanding how the difference in emission sources affect vertical transport of ozone and carbon dioxide is considered crucial to the improvement of their regional inventory sources. The purpose of this study is to characterize vertical transport of ozone and carbon at a diary facility. The study was conducted in the summer of 2011 and 2012 at a commercial dairy facility in Central California and involved profile measurements of ozone and CO2 using electrochemical ozonesondes, meteorological sondes and CO2 probe tethered to a 9 cubic meters helium balloon. On each day of the data collection, multiple balloon launches were made over a period representing different stages of the boundary layer development. The results show ozone and CO2 profiles display different characteristics. Regardless of the time of the day, the CO2 concentration decreases with height with a sharp gradient near the surface that is strengthened by a stable atmospheric condition, a feature suggesting the surface as the source. On the other hand, ozone profiles show greater link to the evolution of the lower boundary layer. Ozone profiles display unique features indicating ozone destruction near the surface. This unusual near the surface, observed even in the

  18. The Valuable Role of Measuring Serum Lipid Profile in Cancer Progression

    Directory of Open Access Journals (Sweden)

    Farahnaz Ghahremanfard

    2015-09-01

    Full Text Available Objective: Serum lipid levels are not only associated with etiology, but also with prognosis in cancer. To investigate this issue further, we aimed to evaluate the serum levels of lipids in association with the most important prognostic indicators in cancer patients at the start of chemotherapy. Methods: In a retrospective cross-sectional study, using existing medical records obtained from 2009–2014, the data of all incident cancer cases in Iranian patients referred to the Semnan oncology clinic for chemotherapy were analyzed. Data on demographics, cancer type, prognostic indicators (e.g. lymph node involvement, metastasis, and stage of disease, as well as the patient’s lipid profile were collected. We used multiple logistic regression models to show the relationship between prognosis indicators and lipid profile adjusting for age, gender, and type of cancer. Results: The data of 205 patients was gathered. We found a significant difference in the lipid profile between different types of cancers (breast, colon, gastric, and ovarian. With the exception of high-density lipoprotein levels in women, which were higher than in men, the means of other lipid profiles were similar between the genders. There was a significant association between higher levels of low-density lipoprotein (LDL >110mg/dL in the serum and metastasis (adjusted odds ratio=2.4, 95% CI 1.2–3.5. No significant association was reported between lipid profile and lymph nodes involvement and stage of the disease. Conclusion: Our study suggested a benefit of measuring serum levels of lipids for predicting cancer progression. Increased LDL levels can be considered a predictive factor for increasing the risk of metastasis.

  19. Construct Validity of the Relationship Profile Test: Links With Measures of Psychopathology and Adult Attachment.

    Science.gov (United States)

    Haggerty, Greg; Bornstein, Robert F; Khalid, Mohammad; Sharma, Vishal; Riaz, Usman; Blanchard, Mark; Siefert, Caleb J; Sinclair, Samuel J

    2016-01-01

    This study assessed the construct validity of the Relationship Profile Test (RPT; Bornstein & Languirand, 2003 ) with a substance abuse sample. One hundred-eight substance abuse patients completed the RPT, Experiences in Close Relationships Scale-Short Form (Wei, Russell, Mallinckrodt, & Vogel, 2007 ), Personality Assessment Inventory (Morey, 1991 ), and Symptom Checklist-90-Revised (Derogatis, 1983 ). Results suggest that the RPT has good construct validity when compared against theoretically related broadband measures of personality, psychopathology, and adult attachment. Overall, health dependency was negatively related to measures of psychopathology and insecure attachment, and overdependence was positively related to measures of psychopathology and attachment anxiety. Many of the predictions regarding RPT detachment and the criterion measures were not supported. Implications of these findings are discussed.

  20. CT false-profile view of the hip: a reproducible method of measuring anterior acetabular coverage using volume CT data

    Energy Technology Data Exchange (ETDEWEB)

    Needell, Steven D.; Borzykowski, Ross M. [Boca Radiology Group, Boca Raton, FL (United States); Carreira, Dominic S.; Kozy, John [Broward Health Orthopedics and Sports Medicine, Fort Lauderdale, FL (United States)

    2014-11-15

    To devise a simple, reproducible method of using CT data to measure anterior acetabular coverage that results in values analogous to metrics derived from false-profile radiographs. Volume CT images were used to generate simulated false-profile radiographs and cross-sectional false-profile views by angling a multiplanar reformat 115 through the affected acetabulum relative to a line tangential to the posterior margin of the ischial tuberosities. The anterolateral margin of the acetabulum was localized on the CT false-profile view corresponding with the cranial opening of the acetabular roof. Anterior center edge angle (CEA) was measured between a vertical line passing through the center of the femoral head and a line connecting the center of the femoral head with the anterior edge of the condensed line of the acetabulum (sourcil). Anterior CEA values measured on CT false-profile views of 38 symptomatic hips were compared with values obtained on simulated and projection false-profile radiographs. The CT false-profile view produces a cross-sectional image in the same obliquity as false-profile radiographs. Anterior CEA measured on CT false-profile views were statistically similar to values obtained with false-profile radiographs. CT technologists quickly mastered the technique of generating this view. Inter-rater reliability indicated this method to be highly reproducible. The CT false-profile view is simple to generate and anterior CEA measurements derived from it are similar to those obtained using well-positioned false-profile radiographs. Utilization of CT to assess hip geometry enables precise control of pelvic inclination, eliminates projectional errors, and minimizes limitations of image quality inherent to radiography. (orig.)

  1. Measurement of neutral-beam deposition profiles at W7-AS and LHD stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Rust, N.; Hartmann, D.; Ott, W.; Speth, E. [Max-Planck-Institut fuer Plasmaphysik, Association EURATOM-IPP, Garching (Germany); Osakabe, M. [National Institute for Fusion Science (NIFS), Oroshi-cho, Toki, GIFU (Japan)

    2003-07-01

    Experiments to determine the neutral-beam deposition profiles in a stellarator have now been carried out at W7-AS and recently also at LHD using the same method for data evaluation. While modulating the neutral beam, spatially resolved measurements of the resulting Te modulation amplitudes are carried out. Their evaluation yields the neutral-beam deposition profiles. On W7-AS as compared to the previous modulation experiments the diagnostic was improved during its last experimental campaign. At LHD these modulation experiments have been performed not only on a significantly larger machine, but the neutral beam system at LHD is quite different from that of W7-AS. The LHD system uses a negative-ion beam at a significantly higher acceleration voltage. (orig.)

  2. Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement.

    Science.gov (United States)

    Sawosz, P; Kacprzak, M; Weigl, W; Borowska-Solonynko, A; Krajewski, P; Zolek, N; Ciszek, B; Maniewski, R; Liebert, A

    2012-12-07

    A time-gated intensified CCD camera was applied for time-resolved imaging of light penetrating in an optically turbid medium. Spatial distributions of light penetration probability in the plane perpendicular to the axes of the source and the detector were determined at different source positions. Furthermore, visiting probability profiles of diffuse reflectance measurement were obtained by the convolution of the light penetration distributions recorded at different source positions. Experiments were carried out on homogeneous phantoms, more realistic two-layered tissue phantoms based on the human skull filled with Intralipid-ink solution and on cadavers. It was noted that the photons visiting probability profiles depend strongly on the source-detector separation, the delay between the laser pulse and the photons collection window and the complex tissue composition of the human head.

  3. Influence of veneer thickness on residual stress profile in veneering ceramic: measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2012-02-01

    The veneering process of frameworks induces residual stresses and can initiate cracks when combined with functional stresses. The stress distribution within the veneering ceramic as a function of depth is a key factor influencing failure by chipping. This is a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the influence of veneer thickness on the stress profile in zirconia- and metal-based structures. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples of 20 mm diameter, with a 1 mm thick zirconia or metal framework. Different veneering ceramic thicknesses were performed: 1 mm, 1.5 mm, 2 mm, 2.5 mm and 3 mm. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth up to 0.5-1.0 mm from the surface, and then becoming compressive again near the framework, except for the 1.5 mm-veneered zirconia samples which exhibited interior tensile stresses. Stresses in the surface of metal samples were not influenced by veneer thickness. Variation of interior stresses at 1.2 mm from the surface in function of veneer thickness was inverted for metal and zirconia samples. Veneer thickness influences in an opposite way the residual stress profile in metal- and in zirconia-based structures. A three-step approach and the hypothesis of the crystalline transformation are discussed to explain the less favorable residual stress development in zirconia samples. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Radiation Budget Profiles measured through the Atmosphere with a Return Glider Radiosonde

    Science.gov (United States)

    Philipona, R.; Kraeuchi, A.; Kivi, R.

    2015-12-01

    Very promising radiation budget profile measurements through the atmosphere were made in 2011 with a balloon borne short- and longwave net radiometer. New and improved radiation sensors from Kipp&Zonen are now used in a glider aircraft together with a standard Swiss radiosonde from Meteolabor AG. This new return glider radiosonde (RG-R), is lifted up with double balloon technique to prevent pendulum motion and to keep the radiation instruments as horizontal as possible during the ascent measuring phase. The RG-R is equipped with a release mechanism and an autopilot that flies the glider radiosonde back to the launch site, or to a predefined open space, where it releases a parachute for landing once it is 100 meter above ground. The RG-R was successfully tested and deployed for tropospheric and stratospheric radiation measurements up to 30 hPa (24 km altitude) at the GRUAN sites Payerne (Switzerland) and Sodankylä (Finland). Radiation profiles and the radiation budget through the atmosphere during different daytimes and under cloud-free and cloudy situations will be shown in relation to temperature and humidity at the surface and in the atmosphere. The RG-R flight characteristics and new measurement possibilities will also be discussed.

  5. Quality controls for wind measurement of a 1290-MHz boundary layer profiler under strong wind conditions.

    Science.gov (United States)

    Liu, Zhao; Zheng, Chaorong; Wu, Yue

    2017-09-01

    Wind profilers have been widely adopted to observe the wind field information in the atmosphere for different purposes. But accuracy of its observation has limitations due to various noises or disturbances and hence need to be further improved. In this paper, the data measured under strong wind conditions, using a 1290-MHz boundary layer profiler (BLP), are quality controlled via a composite quality control (QC) procedure proposed by the authors. Then, through the comparison with the data measured by radiosonde flights (balloon observations), the critical thresholds in the composite QC procedure, including consensus average threshold T 1 and vertical shear threshold T 3 , are systematically discussed. And the performance of the BLP operated under precipitation is also evaluated. It is found that to ensure the high accuracy and high data collectable rate, the optimal range of subsets is determined to be 4 m/s. Although the number of data rejected by the combined algorithm of vertical shear examination and small median test is quite limited, it is proved that the algorithm is quite useful to recognize the outlier with a large discrepancy. And the optimal wind shear threshold T 3 can be recommended as 5 ms -1 /100m. During patchy precipitation, the quality of data measured by the four oblique beams (using the DBS measuring technique) can still be ensured. After the BLP data are quality controlled by the composite QC procedure, the output can show good agreement with the balloon observation.

  6. GOME-2 Tropospheric Ozone Profile Retrievals from Joint UV/Visible Measurement

    Science.gov (United States)

    Liu, X.; Zoogman, P.; Chance, K.; Cai, Z.; Nowlan, C. R.; Huang, G.; Gonzalez Abad, G.

    2016-12-01

    It has been shown from sensitivity studies that adding visible measurements in the Chappuis ozone band to UV measurements in the Hartley/Huggins ozone bands can significantly enhance retrieval sensitivity to lower tropospheric ozone from backscattered solar radiances due to deeper photon penetration in the visible to the surface than in the ultraviolet. The first NASA EVI (Earth Venture Instrument) TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument is being developed to measure backscattered solar radiation in two channels ( 290-490 and 540-740 nm) and make atmospheric pollution measurements over North America from the Geostationary orbit. However, this retrieval enhancement has yet to be demonstrated from existing measurements due to the weak ozone absorption in the visible and strong interferences from surface reflectance and aerosols and the requirement of accurate radiometric calibration across different spectral channels. We present GOME-2 retrievals from joint UV/visible measurements using the SAO ozone profile retrieval algorithm, to directly explore the retrieval improvement in lower tropospheric ozone from additional visible measurements. To reduce the retrieval interference from surface reflectance, we add characterization of surface spectral reflectance in the visible based on combining EOFs (Empirical Orthogonal Functions) derived from ASTER and other surface reflectance spectra with MODIS BRDF climatology into the ozone profile algorithm. The impacts of various types of aerosols and surface BRDF on the retrievals will be investigated. In addition, we will also perform empirical radiometric calibration of the GOME-2 data based on radiative transfer simulations. We will evaluate the retrieval improvement of joint UV/visible retrieval over the UV retrieval based on fitting quality and validation against ozonesonde observations.

  7. Comparison of improved Aura Tropospheric Emission Spectrometer CO2 with HIPPO and SGP aircraft profile measurements

    Directory of Open Access Journals (Sweden)

    S. S. Kulawik

    2013-03-01

    Full Text Available Thermal infrared radiances from the Tropospheric Emission Spectrometer (TES between 10 and 15 μm contain significant carbon dioxide (CO2 information, however the CO2 signal must be separated from radiative interference from temperature, surface and cloud parameters, water, and other trace gases. Validation requires data sources spanning the range of TES CO2 sensitivity, which is approximately 2.5 to 12 km with peak sensitivity at about 5 km and the range of TES observations in latitude (40° S to 40° N and time (2005–2011. We therefore characterize Tropospheric Emission Spectrometer (TES CO2 version 5 biases and errors through comparisons to ocean and land-based aircraft profiles and to the CarbonTracker assimilation system. We compare to ocean profiles from the first three Hiaper Pole-to-Pole Observations (HIPPO campaigns between 40° S and 40° N with measurements between the surface and 14 km and find that TES CO2 estimates capture the seasonal and latitudinal gradients observed by HIPPO CO2 measurements. Actual errors range from 0.8–1.8 ppm, depending on the campaign and pressure level, and are approximately 1.6–2 times larger than the predicted errors. The bias of TES versus HIPPO is within 1 ppm for all pressures and datasets; however, several of the sub-tropical TES CO2 estimates are lower than expected based on the calculated errors. Comparisons to land aircraft profiles from the United States Southern Great Plains (SGP Atmospheric Radiation Measurement (ARM between 2005 and 2011 measured from the surface to 5 km to TES CO2 show good agreement with an overall bias of −0.3 ppm to 0.1 ppm and standard deviations of 0.8 to 1.0 ppm at different pressure levels. Extending the SGP aircraft profiles above 5 km using AIRS or CONTRAIL measurements improves comparisons with TES. Comparisons to CarbonTracker (version CT2011 show a persistent spatially dependent bias pattern and comparisons to SGP show a time-dependent bias of −0.2 ppm

  8. O2 density and temperature profiles retrieving from direct solar Lyman-alpha radiation measurements

    Science.gov (United States)

    Guineva, V.; Witt, G.; Gumbel, J.; Khaplanov, M.; Werner, R.; Hedin, J.; Neichev, S.; Kirov, B.; Bankov, L.; Gramatikov, P.; Tashev, V.; Popov, M.; Hauglund, K.; Hansen, G.; Ilstad, J.; Wold, H.

    2009-12-01

    The resonance transition 2P-2S of the atomic hydrogen (Lyman-alpha emission) is the strongest and most conspicuous feature in the solar EUV spectrum. The Lyman-alpha radiation transfer depends on the resonance scattering from the hydrogen atoms in the atmosphere and on the O2 absorption. Since the Lyman-alpha extinction in the atmosphere is a measure for the column density of the oxygen molecules, the atmospheric O2 density and temperature profiles can be calculated thereof. A detector of solar Lyman-alpha radiation was manufactured in the Stara Zagora Department of the Solar-Terrestrial Influences Laboratory (STIL). Its basic part is an ionization camera, filled in with NO. A 60 V power supply is applied to the chamber. The produced photoelectric current from the sensor is fed to a two-channel amplifier, providing analog signal. The characteristics of the Lyman-alpha detector were studied. It passed successfully all tests and the results showed that the so-designed instrument could be used in rocket experiments to measure the Lymanalpha flux. From the measurements of the detector, the Lyman-alpha vertical profile can be obtained. Programs are created to compute the O2 density, atmospheric power and temperature profiles based on Lymanalpha data. The detector design appertained to ASLAF project (Attenuation of the Solar Lyman-Alpha Flux), a scientific cooperation between STIL—Bul.Acad.Sci., Stara Zagora Department and the Atmospheric Physics Group at the Department of Meteorology (MISU), Stockholm University, Sweden. The joint project was part of the rocket experiment HotPay I, in the ALOMAR eARI Project, EU’s 6th Framework Programme, Andøya Rocket Range, Andenes, Norway. The project is partly financed by the Bulgarian Ministry of Science and Education.

  9. Measurements of density profile evolution during the stably-stratified filling of an open enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Tarawneh, Constantine M. [Department of Mechanical Engineering, University of Texas-Pan American, Edinburg, TX 78539-2999 (United States); Homan, K.O. [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, formerly University of Missouri-Rolla, Rolla, MO 65409-0050 (United States)], E-mail: khoman@umr.edu

    2008-08-15

    The stably-stratified filling of an open enclosure produces an interfacial gradient layer which is transported through the enclosure with the bulk flow. The evolution of this interfacial layer is strongly time-dependent and is driven by the nature of the interaction between the internal gravity waves and the inlet-driven interfacial shear. Measurements of density profile evolution have been completed for a rectangular enclosure with a single corner inlet and density variation produced by saline concentration. This system serves as a mass transfer analog to large-scale, thermally-stratified energy storage devices, preserving dynamic similitude in a laboratory-scale system. The experiments covered jet Reynolds numbers of 200-2200 and Froude numbers of 0.06-0.6 in an enclosure with a width 23 times the jet inlet height. The density profiles are seen to be strongly asymmetric and exhibit growth rates significantly different than due to simple one-dimensional molecular diffusion. In addition, shadowgraph and hydrogen bubble visualizations of the density and velocity fields in the gradient layer show the persistence of complex multi-dimensional flow structure even at relatively late stages of the filling process when the gradient layer has been transported well away from the enclosure inlet. The evolution of the vertical density profile has been compared quantitatively to a quasi one-dimensional model based upon empirical diffusivity coefficients.

  10. Flying spot laser triangulation scanner using lateral synchronization for surface profile precision measurement.

    Science.gov (United States)

    Zhang, Hanlin; Ren, Yongjie; Liu, Changjie; Zhu, Jigui

    2014-07-10

    High-speed surface profile measurement with high precision is crucial for target inspection and quality control. In this study, a laser scanner based on a single point laser triangulation displacement sensor and a high-speed rotating polygon mirror is proposed. The autosynchronized scanning scheme is introduced to alleviate the trade-off between the field of view and the range precision, which is the inherent deficiency of the conventional triangulation. The lateral synchronized flying spot technology has excellent characteristics, such as programmable and larger field of view, high immunity to ambient light or secondary reflections, high optical signal-to-noise ratio, and minimum shadow effect. Owing to automatic point-to-point laser power control, high accuracy and superior data quality are possible when measuring objects featuring varying surface characteristics even in demanding applications. The proposed laser triangulation scanner is validated using a laboratory-built prototype and practical considerations for design and implementation of the system are described, including speckle noise reduction method and real-time signal processing. A method for rapid and accurate calibration of the laser triangulation scanner using lookup tables is also devised, and the system calibration accuracy is generally smaller than ±0.025  mm. Experimental results are presented and show a broad application prospect for fast surface profile precision measurement.

  11. Optimal tuning and calibration of bendable mirrors with slope measuring profilers

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, Wayne; Kirschman, Jonathan; MacDowell, Alastair; Warwick, Tony; Yashchuk, Valeriy

    2009-06-22

    We describe a technique to optimally tune and calibrate bendable x-ray optics for sub-micron focusing. The focusing is divided between two elliptically cylindrical reflecting elements, a Kirkpatrick-Baez (KB) pair. Each optic is shaped by applying unequal bending couples to each end of a flat mirror. The developed technique allowsoptimal tuning of these systems using surface slope data obtained with a slope measuring instrument, the long trace profiler (LTP). Due to the near linearity of the problem, the minimal set of data necessary for the tuning of each bender, consists of only three slope traces measured before and after a single adjustment of each bending couple. The data are analyzed with software realizing a method of regression analysis with experimentally found characteristic functions of the benders. The resulting approximation to the functional dependence of the desired shape provides nearly final settings. Moreover, the characteristic functions of the benders found in the course of tuning, can be used for retuning to a new desired shape without removal from the beamline and re-measuring. We perform a ray trace, using profiler data for the finally tuned optics, predicting the performance to be expected during use of the optics on the beamline.

  12. Studies of longitudinal profile of electron bunches and impedance measurements at Indus-2 synchrotron radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Akash Deep, E-mail: akash-deep@rrcat.gov.in [Beam Diagnostics Section (BDS), Indus Operations, Beam Dynamics and Diagnostics Division (IOBDD), Raja Ramanna Centre for Advanced Technology, Indore 452 013, M.P. (India); Homi Bhabha National Institute (HBNI) at Raja Ramanna Centre for Advanced Technology, Indore (India); Yadav, S.; Kumar, Mukesh; Shrivastava, B.B.; Karnewar, A.K.; Ojha, A.; Puntambekar, T.A. [Beam Diagnostics Section (BDS), Indus Operations, Beam Dynamics and Diagnostics Division (IOBDD), Raja Ramanna Centre for Advanced Technology, Indore 452 013, M.P. (India)

    2016-04-01

    Indus-2 is a 3rd generation synchrotron radiation source at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We study the longitudinal profile of electrons in Indus-2 by using dual sweep synchroscan streak camera at visible diagnostic beamline. In this paper, the longitudinal profiles of electron bunch are analyzed by filling beam current in a single bunch mode. These studies are carried at injection energy (550 MeV) and at ramped beam energy (2.5 GeV). The effects of the wakefield generated interactions between the circulating electrons and the surrounding vacuum chamber are analyzed in terms of measured effects on longitudinal beam distribution. The impedance of the storage ring is obtained by fitting the solutions of Haissinski equation to the measured bunch lengthening with different impedance models. The impedance of storage ring obtained by a series R+L impedance model indicates a resistance (R) of 1350±125 Ω, an inductance (L) of 180±25 nH and broadband impedance of 2.69 Ω. These results are also compared with the values obtained from measured synchronous phase advancing and scaling laws. These studies are very useful in better understanding and control of the electromagnetic interactions.

  13. Distortion of particulate extinction profiles measured with lidar in a two-component atmosphere.

    Science.gov (United States)

    Kovalev, V A; Moosmüller, H

    1994-09-20

    Distortions of particular extinction-coefficient profiles measured with lidar in a two-component (molecular and aerosol) scattering atmosphere are analyzed. The error of the extinction coefficient measured at range r depends on the location of the point r(b), where a boundary value is specified, and the particulate optical depth of the atmosphere between r and r(b); the particulate backscatter-to-extinction ratio; and the ratio of particulate and molecular scattering extinction. If the near-end solution is used, small measurement errors can produce a significant divergence between the actual and the retrieved extinction-coefficient profiles, even if the boundary value and the particulate backscatter-to-extinction ratio are specified accurately. This effect is exacerbated at small values of the particulate scattering coefficient and the backscatter-to-extinction ratio. When reasonable criteria are used, feasible minimum and maximum boundary values can be specified to restrict the range of lidar equation solutions from below and from above.

  14. Measurement of the nTOF beam profile in the second experimental area (EAR2) using a silicon detector

    CERN Document Server

    Suljik, Fidan

    2017-01-01

    A new beam line and a second experimental area (EAR2) have been recently built at the neutron Time-Of-Flight (nTOF) facility at CERN. The characterization of the neutron beam in terms of spatial profile is a prerequisite for high accuracy cross-sections measurements. A silicon strip detector equipped with a neutron converter has been used to determine the beam profile as a function of incident neutron energy, in particular neutron beam profile has been measured from thermal energy up to 10 eV. Preliminary results have been compared with those collected with a MicroMegas detector also installed during the measurement.

  15. Maximum entropy algorithm and its implementation for the neutral beam profile measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Wook; Cho, Gyu Seong [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Cho, Yong Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A tomography algorithm to maximize the entropy of image using Lagrangian multiplier technique and conjugate gradient method has been designed for the measurement of 2D spatial distribution of intense neutral beams of KSTAR NBI (Korea Superconducting Tokamak Advanced Research Neutral Beam Injector), which is now being designed. A possible detection system was assumed and a numerical simulation has been implemented to test the reconstruction quality of given beam profiles. This algorithm has the good applicability for sparse projection data and thus, can be used for the neutral beam tomography. 8 refs., 3 figs. (Author)

  16. Measurement the Thermal Profile of Steelmaking Ladle with Subsequent Evaluation the Reasons of Lining Damage

    Directory of Open Access Journals (Sweden)

    Vlček J.

    2016-03-01

    Full Text Available Based on the operational measurement, of which content was to determine ladle thermal profile, there were analysed causes of possible damage of lining in steel ladles by steel breakout through the ladle shell. There exists connection between thermal state of ladle lining during the operation and its lifetime. There were reached to the conclusion that the cause of failure in the lining of ladle is except for high temperature of bath, also wide interval of temperature change during the tap operation, in consequence with possible insufficient pre-heating of ladle, discontinuous operation of aggregate and damage of insulating lining layer, respectively deformation of ladles shell.

  17. On mean wind and turbulence profile measurements from ground-based wind lidars

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    Two types of wind lidar’s have recently become available for ground-based vertical mean wind and turbulence profiling. A continuous wave (CW) wind lidar, and a pulsed wind lidar. Although both types have been build upon recent 1.55 &My telecom fibre technology, there are significant fundamental...... differences between the two lidars temporal and spatial resolution capabilities. A review of the two lidar systems special and temporal resolution characteristics will be presented, and the implication for measurements of mean wind and turbulence in the lower atmospheric boundary layer will be discussed....

  18. Can pyrene probes be used to measure lateral pressure profiles of lipid membranes? Perspective through atomistic simulations

    DEFF Research Database (Denmark)

    Franova, M. D.; Vattulainen, I.; Ollila, O. H. S.

    2014-01-01

    simulations, since established methods to measure the lateral pressure profile experimentally have not been available. The only experiments that have attempted to gauge the lateral pressure profile have been done by using di-pyrenyl-phosphatidylcholine (di-pyr-PC) probes. In these experiments, the excimer...

  19. Comparison of Temperature Measurements in the Middle Atmosphere by Satellite with Profiles Obtained by Meteorological Rockets

    Science.gov (United States)

    Goldberg, Richard A.; Schmidlin, Francis J.; Feofilov, Artem; Bedrick, M.; Rose, R. Lynn

    2012-01-01

    Measurements using the inflatable falling sphere technique have occasionally been used to obtain temperature results from density data and thereby provide comparison with temperature profiles obtained by satellite sounders in the mesosphere and stratosphere. To insure density measurements within narrow time frames and close in space, the inflatable falling sphere is launched within seconds of the nearly overhead satellite pass. Sphere measurements can be used to validate remotely measured temperatures but also have the advantage of measuring small-scale atmospheric features. Even so, with the dearth of remaining falling spheres available (the manufacture of these systems has been discontinued), it may be time to consider whether the remote measurements are mature enough to stand alone. Three field studies are considered, one in 2003 from Northern Sweden, and two in 2010 from the vicinity of Kwajalein Atoll in the South Pacific and from Barking Sands, Hawaii. All three sites are used to compare temperature retrievals between satellite and in situ falling spheres. The major satellite instruments employed are SABER, MLS, and AIRS. The comparisons indicate that remotely measured temperatures mimic the sphere temperature measurements quite well. The data also confirm that satellite retrievals, while not always at the exact location required for detailed studies in space and time, compare sufficiently well to be highly useful. Although the falling sphere will provide a measurement at a specific location and time, satellites only pass a given location daily or less frequently. This report reveals that averaged satellite measurements can provide temperatures and densities comparable to those obtained from the falling sphere, thereby providing a reliable measure of global temperature

  20. Prediction of Facial Profile Based on Morphometric Measurements and Profile Characteristics of Permanent Maxillary Central Incisor Teeth

    Directory of Open Access Journals (Sweden)

    N Raghavendra

    2015-01-01

    Full Text Available The computation of facial profile from dental morphometrics has been a subject of great interest in forensic odontology. The use of teeth to draw a profile and facial features is valuable in times of mass disasters when body remains are unavailable due to extreme destruction. This study aims to identify and evaluate applicable parameters in the permanent maxillary central incisors and the face of an individual. A correlation of these parameters establishes a mathematical equation that further charts a tooth-facial profile table. Thirty soft and hard tissue landmarks on the face in the frontal and the lateral profiles (using standardized photographs and seven landmarks on the facial/labial surface of the clinical crown of the permanent maxillary central incisor (using casts of the maxilla were identified for the study. Based on these, a set of eight horizontal and seven vertical parameters on the face and four parameters on the tooth were created for the assessment. Internal and external correlations between the two were carried out and statistically analyzed. A logistic regression was made to predict the probability of the parameters most likely to be reproduced in the creation of the facial profile, based on tooth morphometrics. The results indicated a definite correlation between the facial and the tooth parameters. Among the multiple parameters, a definite correlation in the horizontal dimension could be established between the mouth width and the mesiodistal width (MDW of the tooth. In the vertical dimension, a definite relationship existed between the crown height of the tooth and the width of the midface (zygoma-mandible. There exist divergences in the correlation of tooth and facial parameters.

  1. Bias in mean velocities and noise in variances and covariances measured using a multistatic acoustic profiler: the Nortek Vectrino Profiler

    Science.gov (United States)

    Thomas, R. E.; Schindfessel, L.; McLelland, S. J.; Creëlle, S.; De Mulder, T.

    2017-07-01

    This paper compiles the technical characteristics and operating principles of the Nortek Vectrino Profiler and reviews previously reported user experiences. A series of experiments are then presented that investigate instrument behaviour and performance, with a particular focus on variations within the profile. First, controlled tests investigate the sensitivity of acoustic amplitude (and Signal-to-Noise Ratio, SNR) and pulse-to-pulse correlation coefficient, R 2, to seeding concentration and cell geometry. Second, a novel methodology that systematically shifts profiling cells through a single absolute vertical position investigates the sensitivity of mean velocities, SNR and noise to: (a) emitted sound intensity and the presence (or absence) of acoustic seeding; and (b) varying flow rates under ideal acoustic seeding conditions. A new solution is derived to quantify the noise affecting the two perpendicular tristatic systems of the Vectrino Profiler and its contribution to components of the Reynolds stress tensor. Results suggest that for the Vectrino Profiler: 1. optimum acoustic seeding concentrations are ~3000 to 6000 mg L-1 2. mean velocity magnitudes are biased by variable amounts in proximal cells but are consistently underestimated in distal cells; 3. noise varies parabolically with a minimum around the ‘sweet spot’, 50 mm below the transceiver; 4. the receiver beams only intersect at the sweet spot and diverge nearer to and further from the transceiver. This divergence significantly reduces the size of the sampled area away from the sweet spot, reducing data quality; 5. the most reliable velocity data will normally be collected in the region between approximately 43 and 61 mm below the transceiver.

  2. Analysis and high resolution modelling of black carbon vertical profiles measured over three Italian valleys

    Science.gov (United States)

    Gandolfi, Ilaria; Curci, Gabriele; Falasca, Serena; Ferrero, Luca

    2017-04-01

    Analysis and high resolution modelling of black carbon vertical profiles measured over three Italian valleys Ilaria Gandolfi1,2, Gabriele Curci1,2, Serena Falasca1,2, Luca Ferrero3 1 Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy 2 Center of Excellence CETEMPS, University of L'Aquila, L'Aquila, Italy 3 POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy Last decades were characterized by a growing interest in aerosols: mainly for their effect on human health and on the energy balance of solar and planetary radiation, thus their role in climate change. In this study, we analyze the evolution of vertical profile of black carbon (BC) through tethered balloon observations and chemistry-transport modelling. Black carbon is regarded as the second most important anthropogenic climate forcing agent and its concentration varies significantly depending on the altitude and the sources on the territory. In winter of 2010 University Of Milan Bicocca conducted three intensive measurements campaigns over three Italian basin valleys (Terni, Po Valley, Passiria Valley). The choice of the valleys was made taking into consideration the orography and the river basin structure. The measurement campaign was based on a helium-filled tethered balloon, on which the instrumentation for the analysis has been mounted; the instrumentation consisted on a meteorological station, an OPC, a cascade impactor and a micro-Aethalometer. Subsequently, at University of L'Aquila simulations were produced to help interpretation of these vertical aerosol profiles (mass, composition and distribution) and related optical properties (scattering, absorption) using a chemistry-transport model (WRF-CHIMERE) at high horizontal resolution (1 km). The analysis focused primarily on the calculation of the heating rate and of the Direct Radiative Effect (DRE), and on the analysis of the

  3. Influence of cooling rate on residual stress profile in veneering ceramic: measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2011-09-01

    The manufacture of dental crowns and bridges generates residual stresses within the veneering ceramic and framework during the cooling process. Residual stress is an important factor that control the mechanical behavior of restorations. Knowing the stress distribution within the veneering ceramic as a function of depth can help the understanding of failures, particularly chipping, a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the cooling rate dependence of the stress profile in veneering ceramic layered on metal and zirconia frameworks. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples 20 mm in diameter, with a 0.7 mm thick metal or Yttria-tetragonal-zirconia-polycrystal framework and a 1.5mm thick veneering ceramic. Three different cooling procedures were investigated. The magnitude of the stresses in the surface of the veneering ceramic was found to increase with cooling rate, while the interior stresses decreased. At the surface, compressive stresses were observed in all samples. In the interior, compressive stresses were observed in metal samples and tensile in zirconia samples. Cooling rate influences the magnitude of residual stresses. These can significantly influence the mechanical behavior of metal-and zirconia-based bilayered systems. The framework material influenced the nature of the interior stresses, with zirconia samples showing a less favorable stress profile than metal. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Speed profiles in wheelchair court sports; comparison of two methods for measuring wheelchair mobility performance.

    Science.gov (United States)

    van der Slikke, R M A; Mason, B S; Berger, M A M; Goosey-Tolfrey, V L

    2017-12-08

    Wheelchair mobility performance is an important aspect in most wheelchair court sports, commonly measured with an indoor tracking system or wheelchair bound inertial sensors. Both methods provide key wheelchair mobility performance outcomes regarding speed. In this study, we compared speed profiles of both methods to gain insight into the level of agreement, for recommendations regarding future performance measurement. Data were obtained from 5 male highly trained wheelchair basketball players during match play. Players were equipped simultaneously with a tag on the footplate for the indoor tracking system (∼8 Hz) and inertial sensors on both wheels and frame (199.8 Hz). Being part of a larger study on 3 vs 3 player game formats, data were collected in several matches with varying field sizes, but activity profiles closely resembled regular match play. Both systems provide similar outcomes regarding distance covered and average speed. Due to differences in sampling frequency and sensor location (reference point) on the wheelchair (for speed calculation), minor differences were revealed at low speeds (wheelchair basketball or wheelchair court sports in general. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Validation of the survey of work styles: a profile measure of the type A behaviour pattern.

    Science.gov (United States)

    Gray, A; Jackson, D N; Howard, J H

    1989-01-01

    The present study compares the Type A classification accuracy of the Jenkins Activity Survey (JAS), The Framingham Type A Scale, and a new Type A behaviour pattern (TABP) measure. The Survey of Work Styles (SWS), a self-report measure of the TABP, was developed using a construct approach to scale construction. It consists of six content scales. Impatience, Anger, Work Involvement, Time Urgency, Job Dissatisfaction and Competitiveness. In addition to the six content scales, a seventh scale, Scale A, is comprised of items empirically selected to relate to the Rosenman Structured Interview. In the present study the SWS was found to be significantly related to both the JAS, and the Framingham Type A Scale in a sample of 163 business managers. Median reliability of the SWS subscales was 0.82, and for the total scale 0.90. Discriminant function analysis using cross validational jackknifing procedures resulted in a classification accuracy of 83% of the Type A managers in relation to the Structured Interview. Classification using the SWS was found to correlate significantly higher with the Structured Interview than did either classification with the JAS or with the Framingham Type A Scale. Modal profile analysis yielded three independent bipolar typal dimensions, indicating that a single dimension or classification of the TABP represents an oversimplification of a complex behaviour pattern. These results support the reconceptualization of the TABP in terms of distinct facets and profile patterns.

  6. Path Profiles of Cn2 Derived from Radiometer Temperature Measurements and Geometrical Ray Tracing

    Science.gov (United States)

    Vyhnalek, Brian E.

    2017-01-01

    Atmospheric turbulence has significant impairments on the operation of Free-Space Optical (FSO) communication systems, in particular temporal and spatial intensity fluctuations at the receiving aperture resulting in power surges and fades, changes in angle of arrival, spatial coherence degradation, etc. The refractive index structure parameter Cn2 is a statistical measure of the strength of turbulence in the atmosphere and is highly dependent upon vertical height. Therefore to understand atmospheric turbulence effects on vertical FSO communication links such as space-to-ground links, it is necessary to specify Cn2 profiles along the atmospheric propagation path. To avoid the limitations on the applicability of classical approaches, propagation simulation through geometrical ray tracing is applied. This is achieved by considering the atmosphere along the optical propagation path as a spatial distribution of spherical bubbles with varying relative refractive index deviations representing turbulent eddies. The relative deviations of the refractive index are statistically determined from altitude-dependent and time-varying temperature fluctuations, as measured by a microwave profiling radiometer. For each representative atmosphere ray paths are analyzed using geometrical optics, which is particularly advantageous in situations of strong turbulence where there is severe wavefront distortion and discontinuity. The refractive index structure parameter is then determined as a function of height and time.

  7. Exhaustion measured by the SF-36 vitality scale is associated with a flattened diurnal cortisol profile

    DEFF Research Database (Denmark)

    Lindeberg, Sara I; Eek, Frida; Lindbladh, Eva

    2008-01-01

    The possible association between stress-related exhaustion and reduced activity in the hypothalamo-pituitary-adrenal (HPA) axis is increasingly in focus. The aim of the present study was to examine whether exhaustion measured in a non-patient population is associated with alterations in diurnal...... cortisol profile. The study population included 78 working individuals. The study group was dichotomised into exhausted and non-exhausted groups by means of the SF-36 vitality scale. Salivary cortisol was measured at three times during 1 workday: at awakening, 30min after awakening, and in the evening....... The results showed that diurnal cortisol variation was significantly reduced in exhausted individuals. The difference in cortisol variation was mainly due to lowered morning cortisol in the exhausted group. Differences in cortisol levels at each sampling time or in mean diurnal output of cortisol were...

  8. Measurement of a small vertical emittance with a laser wire beam profile monitor

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakai

    2002-12-01

    Full Text Available We describe in this paper a measurement of vertical emittance in the Accelerator Test Facility (ATF damping ring at KEK with a laser wire beam profile monitor. This monitor is based on the Compton scattering process of electrons with a laser light target which is produced by injecting a cw laser beam into a Fabry-Perot optical cavity. We installed the monitor at a straight section of the damping ring and measured the vertical emittance with three different ring conditions. In all cases, the ATF ring was operated at 1.28 GeV in a single bunch mode. When the ring was tuned for ultralow emittance, the vertical emittance of ε_{y}=(1.18±0.08×10^{-11}   mrad was achieved. This shows that the ATF damping ring has realized its target value also vertically.

  9. A LOFAR census of non-recycled pulsars: average profiles, dispersion measures, flux densities, and spectra

    Science.gov (United States)

    Bilous, A. V.; Kondratiev, V. I.; Kramer, M.; Keane, E. F.; Hessels, J. W. T.; Stappers, B. W.; Malofeev, V. M.; Sobey, C.; Breton, R. P.; Cooper, S.; Falcke, H.; Karastergiou, A.; Michilli, D.; Osłowski, S.; Sanidas, S.; ter Veen, S.; van Leeuwen, J.; Verbiest, J. P. W.; Weltevrede, P.; Zarka, P.; Grießmeier, J.-M.; Serylak, M.; Bell, M. E.; Broderick, J. W.; Eislöffel, J.; Markoff, S.; Rowlinson, A.

    2016-06-01

    We present first results from a LOFAR census of non-recycled pulsars. The census includes almost all such pulsars known (194 sources) at declinations Dec > 8° and Galactic latitudes |Gb| > 3°, regardless of their expected flux densities and scattering times. Each pulsar was observed for ≥20 min in the contiguous frequency range of 110-188 MHz. Full-Stokes data were recorded. We present the dispersion measures, flux densities, and calibrated total intensity profiles for the 158 pulsars detected in the sample. The median uncertainty in census dispersion measures (1.5 × 10-3 pc cm-3) is ten times smaller, on average, than in the ATNF pulsar catalogue. We combined census flux densities with those in the literature and fitted the resulting broadband spectra with single or broken power-law functions. For 48 census pulsars such fits are being published for the first time. Typically, thechoice between single and broken power-laws, as well as the location of the spectral break, were highly influenced by the spectral coverage of the available flux density measurements. In particular, the inclusion of measurements below 100 MHz appears essential for investigating the low-frequency turnover in the spectra for most of the census pulsars. For several pulsars, we compared the spectral indices from different works and found the typical spread of values to be within 0.5-1.5, suggesting a prevailing underestimation of spectral index errors in the literature. The census observations yielded some unexpected individual source results, as we describe in the paper. Lastly, we will provide this unique sample of wide-band, low-frequency pulse profiles via the European Pulsar Network Database. Tables B.1-B.4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A134

  10. Metal sheet thickness profile measurement method based on two-side line triangulation and continuous vibration compensation

    Science.gov (United States)

    Lehtonen, Petri; Miettinen, Jari; Keränen, Heimo; Vaarala, Tapio

    2008-04-01

    Dimension measurements in metal production are getting increasingly important to improve quality and yield. One important measurement is thickness profile, in this case of copper strip. Knowing the strip profile in entrance and exit side of milling line helps optimizing the milling depth and give information about tool wearing. In this study a comparative measurement method was traversing point measurement system. It gives profile as a series of points which take a relatively long time to measure. Now presented method is based on two-side optical triangulation formed by line illuminators and CMOS-cameras and enables instantaneous thickness profile measurement. Results from both sides are fixed together using reference plates on both ends of the measurement area. From 1.3 m stand-off distance, 1.4 m wide measurement area is achieved. This paper presents the measurement method and results of laboratory and on-line tests. Using laser line illumination the accuracy of thickness was 150 μm when measuring 9 mm thick test plate. Accuracy was limited by laser speckle during static calibration. Other illumination method based on white light was therefore tested and the accuracy was 12 μm correspondingly. Measurement time for one profile was 1 second and resolution in cross machine direction 50 mm after averaging. Now presented method enables thickness profile measurement of copper and other metal sheets. Using white light the accuracy is at same level as the present traversing point measurement. Method has also continuous reference measurement to compensate errors caused by vibration; therefore the system can be realized at reasonable cost.

  11. Retrieving moisture profiles from precipitable water measurements using a variational data assimilation approach

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.R.; Zou, X.; Kuo, Y.H. [National Center for Atmospheric Research, Boulder, CO (United States)

    1996-04-01

    Atmospheric moisture distribution is directly related to the formation of clouds and precipitation and affects the atmospheric radiation and climate. Currently, several remote sensing systems can measure precipitable water (PW) with fairly high accuracy. As part of the development of an Integrated Data Assimilation and Sounding System in support of the Atmospheric Radiation Measurement Program, retrieving the 3-D water vapor fields from PW measurements is an important problem. A new four dimensional variational (4DVAR) data assimilation system based on the Penn State/National Center for Atmospheric Research (NCAR) mesoscale model (MM5) has been developed by Zou et al. (1995) with the adjoint technique. In this study, we used this 4DVAR system to retrieve the moisture profiles. Because we do not have a set of real observed PW measurements now, the special soundings collected during the Severe Environmental Storm and Mesoscale Experiment (SESAME) in 1979 were used to simulate a set of PW measurements, which were then assimilated into the 4DVAR system. The accuracy of the derived water vapor fields was assessed by direct comparison with the detailed specific humidity soundings. The impact of PW assimilation on precipitation forecast was examined by conducting a series of model forecast experiments started from the different initial conditions with or without data assimilation.

  12. Validation of six years of SCIAMACHY carbon monoxide observations using MOZAIC CO profile measurements

    Directory of Open Access Journals (Sweden)

    A. T. J. de Laat

    2012-09-01

    Full Text Available This paper presents a validation study of SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY carbon monoxide (CO total column measurements from the Iterative Maximum Likelihood Method (IMLM algorithm using vertically integrated profile aircraft measurements obtained within the MOZAIC project for the six year time period of 2003–2008.

    Overall we find a good agreement between SCIAMACHY and airborne measurements for both mean values – also on a year-to-year basis – as well as seasonal variations. Several locations show large biases that are attributed to local effects like orography and proximity of large emission sources. Differences were detected for individual years: 2003, 2004 and 2006 have larger biases than 2005, 2007 and 2008, which appear to be related to SCIAMACHY instrumental issues but require more research. Results from this study are consistent with, and complementary to, findings from a previous validation study using ground-based measurements (de Laat et al., 2010b. According to this study, the SCIAMACHY data, if individual measurements are of sufficient quality – good signal-to-noise, can be used to determine the spatial distribution and seasonal cycles of CO total columns over clean areas. Biases found over areas with strong emissions (Africa, China could be explained by low sensitivity of the instrument in the boundary layer and users are recommended to avoid using the SCIAMACHY data while trying to quantify CO burden and/or retrieve CO emissions in such areas.

  13. Measurement of Rapid Protein Diffusion in the Cytoplasm by Photo-Converted Intensity Profile Expansion

    Directory of Open Access Journals (Sweden)

    Rotem Gura Sadovsky

    2017-03-01

    Full Text Available The fluorescence microscopy methods presently used to characterize protein motion in cells infer protein motion from indirect observables, rather than measuring protein motion directly. Operationalizing these methods requires expertise that can constitute a barrier to their broad utilization. Here, we have developed PIPE (photo-converted intensity profile expansion to directly measure the motion of tagged proteins and quantify it using an effective diffusion coefficient. PIPE works by pulsing photo-convertible fluorescent proteins, generating a peaked fluorescence signal at the pulsed region, and analyzing the spatial expansion of the signal. We demonstrate PIPE’s success in measuring accurate diffusion coefficients in silico and in vitro and compare effective diffusion coefficients of native cellular proteins and free fluorophores in vivo. We apply PIPE to measure diffusion anomality in the cell and use it to distinguish free fluorophores from native cellular proteins. PIPE’s direct measurement and ease of use make it appealing for cell biologists.

  14. Efficacy of single-component MTV to measure turbulent wall-flow velocity derivative profiles at high resolution

    Science.gov (United States)

    Elsnab, John R.; Monty, Jason P.; White, Christopher M.; Koochesfahani, Manoochehr M.; Klewicki, Joseph C.

    2017-09-01

    Physical interpretations and especially analytical considerations benefit from the ability to accurately estimate derivatives of experimentally measured statistical profiles. Toward this aim, experiments were conducted to investigate the efficacy of single-component molecular tagging velocimetry (1c-MTV) to measure mean velocity profiles that can be differentiated multiple times. Critical effects here pertain to finite measurement uncertainty in the presence of high spatial resolution. Measurements acquired in fully developed turbulent channel flow over a friction Reynolds number range from 390 to 1800 are used to investigate these issues. Each measured profile contains about 880 equally spaced data points that span from near the edge of the viscous sublayer to the channel centreline. As a result of the high spatial resolution, even very small levels of uncertainty in the data adversely affect the capacity to produce smooth velocity derivative profiles. It is demonstrated that the present 1c-MTV measurements can be differentiated twice, with the resulting profile remaining smooth and accurate. The experimental mean velocity profiles and their wall-normal derivatives up to second order are shown to convincingly agree with existing DNS data, including the apparent variations with Reynolds number.

  15. Littoral Hydrodynamics and Sediment Transport Around a Semi-Permeable Breakwater

    Science.gov (United States)

    2015-09-18

    primary access channels within the marina basins were also surveyed. 2.2 ADCP measurements Two Acoustic Doppler Current Profilers ( ADCPs ) were...Figure 1). The current data were collected from both ADCPs , and water level and directional wave data were collected on the ocean side. Due to...instrument failure, the outside ADCP collected only about six days of data. Figure 1 Bathymetric and LiDAR survey area. Red dots show the location of

  16. Moored ADCP current data from deployment 2 of the Multi-disciplinary Ocean Sensors for Environmental Analyses and Networks (MOSEAN) project north of Hawaii 2004-2005 (NODC Accession 0116094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ADCP data were collected by sensors from seven deployments within 2004-2007 on the HALE-ALOHA mooring, a location about 100 km north of Oahu, Hawaii, USA. The...

  17. Validity of a Simple Method for Measuring Force-Velocity-Power Profile in Countermovement Jump.

    Science.gov (United States)

    Jiménez-Reyes, Pedro; Samozino, Pierre; Pareja-Blanco, Fernando; Conceição, Filipe; Cuadrado-Peñafiel, Víctor; González-Badillo, Juan José; Morin, Jean-Benoît

    2017-01-01

    To analyze the reliability and validity of a simple computation method to evaluate force (F), velocity (v), and power (P) output during a countermovement jump (CMJ) suitable for use in field conditions and to verify the validity of this computation method to compute the CMJ force-velocity (F-v) profile (including unloaded and loaded jumps) in trained athletes. Sixteen high-level male sprinters and jumpers performed maximal CMJs under 6 different load conditions (0-87 kg). A force plate sampling at 1000 Hz was used to record vertical ground-reaction force and derive vertical-displacement data during CMJ trials. For each condition, mean F, v, and P of the push-off phase were determined from both force-plate data (reference method) and simple computation measures based on body mass, jump height (from flight time), and push-off distance and used to establish the linear F-v relationship for each individual. Mean absolute bias values were 0.9% (± 1.6%), 4.7% (± 6.2%), 3.7% (± 4.8%), and 5% (± 6.8%) for F, v, P, and slope of the F-v relationship (SFv), respectively. Both methods showed high correlations for F-v-profile-related variables (r = .985-.991). Finally, all variables computed from the simple method showed high reliability, with ICC >.980 and CV power, and F-v profiles in athletes and could be used in practice under field conditions when body mass, push-off distance, and jump height are known.

  18. Measuring the Intrinsic Lyman-alpha Profiles of High-Velocity G, K, and M dwarfs

    Science.gov (United States)

    Youngblood, Allison

    2017-08-01

    H I Lyman alpha (LyA; 1216 A) is the brightest emission line in the UV spectrum of F-K dwarfs and is as bright as the rest of the entire 1150-3000 A emission from M dwarfs. Stellar LyA emission plays a critical role in the chemistry of exoplanet atmospheres, energy transport in the stellar chromosphere, and in probing the density structure of the ISM. Thus, accurately characterizing LyA is critically important. However, interstellar H I removes more than 50% of the stellar LyA flux even for the nearest stars, necessitating reconstruction from the observed line profile wings and an assumption concerning the shape of the line core. The Sun (a G2 dwarf) is the only star for which we have high-resolution direct observations of the line core shape, which is self-reversed. Self-reversal in the LyA line core likely depends on spectral type, so incorrect assumptions of the line core shape for stars cooler or more active than the Sun will result in erroneous intrinsic LyA fluxes. We propose to directly measure with high spectral resolution (STIS E140M) the LyA line cores of five high radial velocity stars (G8 V to M4 V). These will be the first measurements of the LyA line with large Doppler shifts and sufficient resolution to probe the LyA line core shape. We will quantify the self-reversal depth, width, and symmetry, and compare amongst the spectral types. STIS E230H spectra will measure the Mg II line core shapes to test whether they are a good proxy for the LyA core shape. This program will create the first publicly available LyA intrinsic profile templates for late-type stars and update widely-used stellar LyA databases like the MUSCLES Treasury Survey.

  19. A system for vertical profile measurements of sensible heat and chemical concentrations near the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Hyppoenen, M.; Walden, J.A.

    1996-12-31

    The design, construction and measurements of a computer controlled system applicable to flux measurements of a scalar quantity by the gradient technique are described. Accuracy requirements for the measured variables which are used for flux calculations are considered, together with some practical aspects concerning data storage and control. The construction includes the hardware and the data acquisition, sample intake, and temperature measurement systems. The measurements comprise laboratory tests of the temperature probes and the hardware as well as field tests over wheat and grass land for temperature and wind speed and ozone (O{sub 3}), carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O) concentration profiles. The hardware takes care of most of the operation and only the necessary part is done by the software. The data acquisition system is flexible, accepting the input of either digital and/or analog signals. It also controls the whole system, storing all the data in a single data file. The sample intake unit is designed to take continuous samples in to the monitors as well as grab samples into the canisters. Samples can be selected from one to four levels with no dead volumes in the sampling tubes. The temperature measurement system is constructed using a pair of temperature probes, Pt-100, which are connected to the same signal processing card, in order to remove the offset of the electronic components as well as the bias associated with single probes. This ensures the accuracy of the probes down to 0.005 deg C. According to the field measurements, the relative error limits for the sensible heat fluxes varied from 7 to 20 % in an unstable atmospheric situation. For the ozone flux, the error limits varied from 20 to 100 %, indicating a much poorer accuracy of the monitor compared to the temperature probes. (orig.) 16 refs.

  20. Exploring measurement invariance by gender in the profile of mood states depression subscale among cancer survivors.

    Science.gov (United States)

    Kim, Jihye; Smith, Tenbroeck

    2017-01-01

    The Profile of Mood States-Short Form (POMS-SF) is a well-validated tool commonly used in medical/clinical research. Less attention has been paid to the measurement invariance of the POMS-the degree to which the structure and items behave similarly for different groups (e.g., women and men). This study investigated the measurement invariance of the POMS Depression subscale across gender groups in a sample of cancer survivors. The POMS Depression subscale has 8 items (Unhappy, Sad, Blue, Hopeless, Discouraged, Miserable, Helpless, and Worthless). Invariance was measured using multigroup confirmatory factor analysis. This study used data from American Cancer Society Studies of Cancer Survivors-II, a population-based survey of adult cancer survivors (n = 9170). We found factor structures and factor loadings were invariant for gender groups, but moderate differential item functioning (DIF) in the question containing the word blue. With regard to cancer survivors' gender, we found the Depression subscale of the POMS-SF had configural invariance, and partial metric and scalar invariance. This suggests that results should be interpreted with caution, especially when gender is considered important. More broadly, our finding suggests that questions with the word blue may introduce DIF into other measures of depressive mood. More research is needed to replicate these findings in other samples and with other instruments.

  1. [Measurements of CO2 Concentration Profile in Troposphere Based on Balloon-Borne TDLAS System].

    Science.gov (United States)

    Yao, Lu; Liu, Wen-qing; Liu, Jian-guo; Kan, Rui-feng; Xu, Zhen-yu; Ruan, Jun; Yuan, Song

    2015-10-01

    The main source and sink of CO2 in the atmosphere are concentrated in the troposphere. It is of great significance to the study of CO2 flux and global climate change to obtain the accurate tropospheric CO2 concentration profile. For the characteristics of high resolution, high sensitivity and fast response of tunable diode laser absorption spectroscopy (TDLAS), a compact balloon-borne system based on direct absorption was developed to detect the CO2 concentration profiles by use of the 2 004. 02 nm, R(16), v1+v3 line without the interfere of H2O absorption and the CO2 density of the number of molecules below 10 km in the troposphere was obtained. Due to the balloon-borne environment, a compact design of one single board integrated with laser driver, signal conditioning, spectra acquiring and concentration retrieving was developed. Limited by the working capability and hardware resources of embedded micro-processor, the spectra processing algorithm was optimized to reduce the time-cost. Compared with the traditional TDLAS sensors with WMS technique, this system was designed based on the direct absorption technique by means of an open-path Herriott cell with 20 m optical-path, which avoided the process of standardization and enhanced the environmental adaptation. The universal design of hardware and software platform achieved diverse gas measuring by changing the laser and adjusting some key parameters in algorithm. The concept of compact design helped to reduce the system's power and volume and balanced the response speed and measure precision. The power consumes below 1.5 W in room temperature and the volume of the single board is 120 mm x 100 mm x 25 mm, and the measurement accuracy is ± 0.6 x 10(-6) at 1.5 s response time. It has been proved that the system can realize high precision detection of CO2 profile at 15 m vertical resolution in troposphere and TDLAS is an available method for balloon-borne detection.

  2. Measurements of profiles of aerosol/cloud in the lower atmosphere using a lidar system

    Science.gov (United States)

    Gasmi, Khaled

    2016-10-01

    Preliminary measurements of profiles of aerosol/cloud in the lower atmosphere using a homemade stationary groundbased lidar system will be presented. In addition, information on basic characteristics and performance of the lidar system will be provided. Aerosol/Cloud lidar system in monostatic coaxial configuration uses the fundamental (1064 nm) and the second harmonic (532 nm) of a pulsed solid state Nd:YAG laser to provide information on the relative concentration and spatial distribution of aerosol particles and cloud water droplets. Beam expander is used to reduce the laser beam divergence before to be transmitted into the atmosphere. In this study, high-resolution vertical profiles from the near ground up to 15 km altitude are obtained. A Newtonian telescope of diameter 400 mm with an adjustable field of view (FOV) is used to collect the elastic backscattered signal. A photomultiplier tube (PMT) is used for the 532 nm wavelength detection channel, while an avalanche photodiode (APD) is used for the 1064 nm wavelength detection channel. The optoelectronic detection channels use two similar very high frequency preamplification circuit. Data are acquired with a nominal spatial resolution of 7.5 m using a 12-bit 20 MHz analog-to-digital converter (ADC) for each channel. Many functions, such as, range determination, background subtraction, digitization, and averaging are performed by the receiver subsystem. In addition, spatial resolution and linear dynamic range were optimized during signal processing.

  3. Pressure-driven flow of a micro-polar fluid: measurement of the velocity profile

    CERN Document Server

    François, Peters; Lemaire, Elisabeth

    2010-01-01

    The pressure-driven flow of a suspension of spinning particles in a rectangular channel is studied using an acoustic method. The suspension is made of insulating particles (PMMA) dispersed in a slightly conducting oil (Ugilec + Dielec) and is subjected to a DC electric field. In such a case, the particles are polarized in the direction opposite to that of the electric field and begin to rotate in order to flip their dipoles in the field direction. Such a rotation of the particles is known as Quincke rotation and is responsible for an important decrease of the effective viscosity of the suspension. Indeed, due to the electric torque exerted on the particles, the stress tensor in the suspension is not symmetric anymore and a driving effect arises from the anti-symmetric part. When such a suspension flows through a rectangular channel, the velocity profile is expected to deviate from the usual Poiseuille flow. In this paper, the velocity profiles are measured using Pulsed Ultrasound Doppler Velocimetry technique...

  4. Tracer concentration profiles measured in central London as part of the REPARTEE campaign

    Directory of Open Access Journals (Sweden)

    D. Martin

    2011-01-01

    Full Text Available There have been relatively few tracer experiments carried out that have looked at vertical plume spread in urban areas. In this paper we present results from two tracer (cyclic perfluorocarbon experiments carried out in 2006 and 2007 in central London centred on the BT Tower as part of the REPARTEE (Regent's Park and Tower Environmental Experiment campaign. The height of the tower gives a unique opportunity to study vertical dispersion profiles and transport times in central London. Vertical gradients are contrasted with the relevant Pasquill stability classes. Estimation of lateral advection and vertical mixing times are made and compared with previous measurements. Data are then compared with a simple operational dispersion model and contrasted with data taken in central London as part of the DAPPLE campaign. This correlates dosage with non-dimensionalised distance from source. Such analyses illustrate the feasibility of the use of these empirical correlations over these prescribed distances in central London.

  5. Effect of H- stripped electrons on the LINAC4 profile measurements

    CERN Document Server

    Chevallay, E; Duraffourg, M; Focker, GJ; Hessler, C; Raich, U; Roncarolo, F; Vuitton, C; Zocca, F

    2013-01-01

    At CERN's LINAC4 it is foreseen to measure transverse beam profiles by means of Secondary Emission wire grids (normally referred to as SEM monitors or SEM grids) and Beam Wire Scanners (BWS). Following observations at the SNS linac BWS, that showed cross-talk between wire signals attributed to scattering of H- stripped electrons, it was decided to investigate this effect for the LINAC4 case. The interaction of electron beams with Carbon and Tungsten wires was studied through Monte Carlo simulations (FLUKA code), analytical calculations, particle tracking simulations in EM fields (CST Particle Studio) and a laboratory experiment based on a 70 keV electron beam, well reproducing the case of 128 MeV H- ions.

  6. Degradation Behaviour of Lithium-Ion Batteries based on Field Measured Frequency Regulation Mission Profile

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stroe, Ana-Irina

    2015-01-01

    Energy storage systems based on Lithium-ion batteries have been proposed as an environmental friendly alternative to traditional conventional generating units for providing grid frequency regulation. One major challenge regarding the use of Lithium-ion batteries in such applications is their cost...... competitiveness in comparison to other storage technologies or with the traditional frequency regulation methods. In order to surpass this challenge and to allow for optimal sizing and proper use of the battery, accurate knowledge about the lifetime of the Lithium-ion battery and its degradation behaviour...... is required. This paper aims to investigate, based on a laboratory developed lifetime model, the degradation behaviour of the performance parameters (i.e., capacity and power capability) of a Lithium-ion battery cell when it is subjected to a field measured mission profile, which is characteristic...

  7. Measurement and Simulation of the Dew Profile in the Plant Canopy

    Science.gov (United States)

    Maruyama, A.; Kuwagata, T.; Watanabe, T.; Ohba, K.

    2005-12-01

    Dew on the leaves of the plant plays an important role not only on nocturnal local climate but also on the evapotranspiration on next daytime and the outbreaks of plant diseases. Most of disease germs colonize at particular sites of the plant, so that the dew distribution in the plant canopy is important factor that affect the germ development. We measured vertical variation of the dew in the rice plant canopy on summer season under warm temperate climate, and simulate it by using mechanistic micrometeorological model to study the relationship between dew formation and canopy structure. Dew on the leaves and panicles were measured with two hours intervals during the nighttime at clear sky days on mid-stage (August 19, 21 and 24) and late-stage (October 1) of 2005 rice growing season in Kumamoto plain, Japan. Vertical one-dimensional Double Source Model (DSM) and Multi Layer Model (MLM) were used as the simulation model, which based on the radiation transfer, heat budget and mass diffusion theories on soil-plant-atmosphere. DSM separates the land surface for soil layer and plant layer, and solves the heat budget equations of both layers to calculate the dew formation flux. MLM additionally separates the plant layer for vertical multi layer, and solves the heat budget equations to calculate the dew formation flux on each layer. Maximum values of measured total weight of the dew in the plant on unit ground area were 0.14 kg m-2 on August 19, 0.09 kg m-2 on August 21, 0.18 kg m-2 on August 24 and 0.38 kg m-2 on October 1. These maximum values were observed at 6:00 am on every case. Simulated values of total dew weight using DSM were smaller than measured values, whereas that using MLM showed good agreement with measured values. The reason could be comes from the difference between two models that MLM calculate the temperature and humidity profile of the atmosphere in the canopy that was not calculated in DSM. Since the atmospheric humidity in the canopy was higher than

  8. Relating gas chromatographic profiles to sensory measurements describing the end products of the Maillard reaction.

    Science.gov (United States)

    Stanimirova, I; Boucon, C; Walczak, B

    2011-01-30

    Often in analytical practice, a set of samples is described by different types of measurements in the hope that a comprehensive characterisation of samples will provide a more complete picture and will help in determining the similarities among samples. The main focus is then on how to combine the information described by different measurement variables and how to analyse it simultaneously. In other words, the main goal is to find a common representation of samples that emphasises the individual and common properties of the different blocks of variables. Several methods can be adopted for the simultaneous analysis of multiblock data with a common object mode. These are: consensus principal component analysis (CPCA), SUM-PCA, multiple factor analysis (MFA) and structuration des tableaux à trois indices de la statistique (STATIS).In this article we present a comparison of the performances of these methods for data describing the chemistry and sensory profiles of the Maillard reaction products. The aroma compounds formed during the reaction of thermal heating between one or two selected amino acids and one or two reducing sugars have been analysed by head space gas chromatography and the intensity and nature of the odour of the resulting products has been evaluated according to selected descriptors by a panel of sensory experts.The results showed that using the information of the chromatographic and sensory data in conjunction enhanced the interpretability of the data. SUM-PCA and more specifically multiple factor analysis, MFA, allowed for a detailed study of the similarities of mixtures in terms of reaction products and sensory profiles. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Investigating PAH relative reactivity using congener profiles, quinone measurements and back trajectories

    Science.gov (United States)

    Alam, M. S.; Delgado-Saborit, J. M.; Stark, C.; Harrison, R. M.

    2014-03-01

    Vapour and particle-associated concentrations of 15 polycyclic aromatic hydrocarbons (PAH) and 11 PAH quinones have been measured in winter and summer campaigns at the rural site, Weybourne in eastern England. Concentrations of individual PAH are relatively smaller than average concentrations measured previously at urban sites in the UK. The concentrations of PAH of the air masses originating from southern England and mainland UK are significantly larger than those from Eastern Europe and the North Atlantic, while quinone to parent PAH ratios show an inverse behaviour, being highest in the more aged North Atlantic polar air masses. While concentrations of 1,2-naphthoquinone decline from winter to summer, those of 1,4-naphthoquinone and anthraquinone increase suggesting a photochemical formation pathway. A comparison of congener concentration profiles measured at Weybourne with those from an urban source area (Birmingham) reveals differential losses at the rural site, especially evident in fluoranthene : pyrene ratios and consistent with the known rates of vapour phase reactions of 3 and 4 ring compounds with hydroxyl radical. The ratios of quinones to their parent PAH at Weybourne are greater than those in the urban source area indicating either more rapid loss processes for PAH, or formation of quinones during advection of the air mass, or probably both.

  10. Non-contact automatic measurement of free-form surface profiles on CNC machines

    Science.gov (United States)

    Fan, Kuang-Chao; Wen, Kuang-Pu

    1993-09-01

    This paper describes the work to develop a non-contact type automatic measurement system for any free-form surfaces on a CNC machine tool or a coordinate measuring machine (CMM) and its CAD/CAM integration. A laser probe made by Keyence Co. model LC-2220 was integrated into the CNC machine as the non-contact sensor. A measurement software has been developed for automatic surface tracing of any free-form profile. Data transfer to any commercially available CAD/CAM system for reverse engineering is also available via proper DXF file. Extensive calibration work has been carried out on the systematic accuracy of the laser probe with respect to the color material surface slope and edge detection of the workpiece by the use of a HP5528 laser interferometer system. Having employed the surface painting technique the shape error of the copied object relative to its master piece was found within 30 micrometers which is deemed adequate enough to the mold industry.

  11. Measurements and modeling of flow structure in the wake of a low profile wishbone vortex generator

    Science.gov (United States)

    Wendt, B. J.; Hingst, W. R.

    1994-01-01

    The results of an experimental examination of the vortex structures shed from a low profile 'wishbone' generator are presented. The vortex generator height relative to the turbulent boundary layer was varied by testing two differently sized models. Measurements of the mean three-dimensional velocity field were conducted in cross-stream planes downstream of the vortex generators. In all cases, a counter-rotating vortex pair was observed. Individual vortices were characterized by three descriptors derived from the velocity data; circulation, peak vorticity, and cross-stream location of peak vorticity. Measurements in the cross plane at two axial locations behind the smaller wishbone characterize the downstream development of the vortex pairs. A single region of stream wise velocity deficit is shared by both vortex cores. This is in contrast to conventional generators, where each core coincides with a region of velocity deficit. The measured cross-stream velocities for each case are compared to an Oseen model with matching descriptors. The best comparison occurs with the data from the larger wishbone.

  12. Energy Response and Longitudinal Shower Profiles Measured in CMS HCAL and Comparison With Geant4

    CERN Document Server

    Baiatian, G; Emeliantchik, Igor; Massolov, V; Shumeiko, Nikolai; Stefanovich, R; Damgov, Jordan; Dimitrov, Lubomir; Genchev, Vladimir; Piperov, Stefan; Vankov, Ivan; Litov, Leander; Bencze, Gyorgy; Laszlo, Andras; Pal, Andras; Vesztergombi, Gyorgy; Zálán, Peter; Fenyvesi, Andras; Bawa, Harinder Singh; Beri, Suman Bala; Bhatnagar, Vipin; Kaur, Manjit; Kohli, Jatinder Mohan; Kumar, Arun; Singh, Jas Bir; Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Chendvankar, Sanjay; Dugad, Shashikant; Kalmani, Suresh Devendrappa; Katta, S; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Patil, Mandakini Ravindra; Reddy, L; Satyanarayana, B; Sharma, Seema; Sudhakar, Katta; Verma, Piyush; Hashemi, Majid; Mohammadi-Najafabadi, M; Paktinat, S; Golutvin, Igor; Kalagin, Vladimir; Kosarev, Ivan; Ladygin, Vladimir; Mescheryakov, G; Moissenz, P; Petrosian, A; Sergeyev, S; Smirnov, Vitaly; Vishnevskiy, Alexander; Volodko, Anton; Zarubin, Anatoli; Gavrilov, Vladimir; Gershtein, Yuri; Ilyina, N; Kaftanov, Vitali; Kisselevich, I; Kolossov, V; Krokhotin, Andrey; Kuleshov, Sergey; Litvintsev, Dmitri; Ulyanov, A; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Demianov, A; Gribushin, Andrey; Kodolova, Olga; Petrushanko, Sergey; Sarycheva, Ludmila; Teplov, V; Vardanyan, Irina; Yershov, A; Abramov, Victor; Goncharov, Petr; Kalinin, Alexey; Khmelnikov, Alexander; Korablev, Andrey; Korneev, Yury; Krinitsyn, Alexander; Kryshkin, V; Lukanin, Vladimir; Pikalov, Vladimir; Ryazanov, Anton; Talov, Vladimir; Turchanovich, L; Volkov, Alexey; Camporesi, Tiziano; De Visser, Theo; Vlassov, E; Aydin, Sezgin; Bakirci, Mustafa Numan; Cerci, Salim; Dumanoglu, Isa; Eskut, Eda; Kayis-Topaksu, A; Koylu, S; Kurt, Pelin; Onengüt, G; Ozkurt, Halil; Polatoz, A; Sogut, Kenan; Topakli, Huseyin; Vergili, Mehmet; Yetkin, Taylan; Cankocak, Kerem; Esendemir, Akif; Gamsizkan, Halil; Güler, M; Ozkan, Cigdem; Sekmen, Sezen; Serin-Zeyrek, M; Sever, Ramazan; Yazgan, Efe; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Dindar, Kamile; Gülmez, Erhan; Isiksal, Engin; Kaya, Mithat; Ozkorucuklu, Suat; Levchuk, Leonid; Sorokin, Pavel; Senchishin, V; Hauptman, John M; Abdullin, Salavat; Elias, John E; Elvira, D; Freeman, Jim; Green, Dan; Los, Serguei; O'Dell, Vivian; Ronzhin, Anatoly; Suzuki, Ichiro; Vidal, Richard; Whitmore, Juliana; Arcidy, M; Hazen, Eric; Heering, Arjan Hendrix; Lawlor, C; Lazic, Dragoslav; Machado, Emanuel; Rohlf, James; Varela, F; Wu, Shouxiang; Baden, Drew; Bard, Robert; Eno, Sarah Catherine; Grassi, Tullio; Jarvis, Chad; Kellogg, Richard G; Kunori, Shuichi; Mans, Jeremy; Skuja, Andris; Podrasky, V; Sanzeni, Christopher; Winn, Dave; Akgun, Ugur; Ayan, S; Duru, Firdevs; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Miller, Michael; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Schmidt, Ianos; Akchurin, Nural; Carrell, Kenneth Wayne; Gumus, Kazim; Kim, Heejong; Spezziga, Mario; Thomas, Ray; Baarmand, Marc M; Mermerkaya, Hamit; Ralich, Robert; Vodopiyanov, Igor; Kramer, Laird; Linn, Stephan; Markowitz, Pete; Cushman, Priscilla; Ma, Yousi; Sherwood, Brian; Cremaldi, Lucien Marcus; Reidy, Jim; Sanders, David A; Karmgard, Daniel John; Ruchti, Randy; Fisher, Wade Cameron; Tully, Christopher; Bodek, Arie; De Barbaro, Pawel; Budd, Howard; Chung, Yeon Sei; Haelen, T; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Barnes, Virgil E; Laasanen, Alvin T

    2007-01-01

    The response of the CMS combined electromagnetic and hadron calorimeter to beams of pions with momenta in the range 5-300 GeV/c has been measured in the H2 test beam at CERN. The raw response with the electromagnetic compartment calibrated to electrons and the hadron compartment calibrated to 300 GeV pions may be represented by sigma = (1.2) sqrt{E} oplus (0.095) E. The fraction of energy visible in the calorimeter ranges from 0.72 at 5 GeV to 0.95 at 300 GeV, indicating a substantial nonlinearity. The intrinsic electron to hadron ratios are fit as a function of energy and found to be in the range 1.3-2.7 for the electromagnetic compartment and 1.4-1.8 for the hadronic compartment. The fits are used to correct the non-linearity of the e pi response to 5% over the entire measured range resulting in a substantially improved resolution at low energy. Longitudinal shower profile have been measured in detail and compared to Geant4 models, LHEP-3.7 and QGSP-2.8. At energies below 30 GeV, the data, LHEP and QGSP are...

  13. Overview of laserwire beam profile and emittance measurements for high power proton accelerators

    CERN Document Server

    Gibson, S M; Bosco, A; Gabor, C; Pozimski, J; Savage, P; Hofmann, T

    2013-01-01

    Laserwires were originally developed to measure micron-sized electron beams via Compton scattering, where traditional wire scanners are at the limit of their resolution. Laserwires have since been applied to larger beamsize, high power H$^-$ ion beams, where the non-invasive method can probe beam densities that would damage traditional diagnostics. While photo-detachment of H$^-$ ions is now routine to measure beam profiles, extending the technique to transverse and longitudinal emittance measurements is a key aim of the laserwire emittance scanner under construction at the Front End Test Stand (FETS) at the RAL. A pulsed, 30 kHz, 8kW peak power laser is fibrecoupled to motorized collimating optics, which controls the position and thickness of the laserwire delivered to the H- interaction chamber. The laserwire slices out a beamlet of neutralized particles, which propagate to a downstream scintillator and camera. The emittance is reconstructed from 2D images as the laserwire position is scanned. Results from ...

  14. Field measurements of temperature profile for floatovoltaic dryer in the tropics

    Science.gov (United States)

    Osman, F. A.; Ya'acob, M. E.; Iskandar, A. Noor

    2017-09-01

    Most of the equator region in a tropical climate zone experiences hot and humid weather but sometimes heavy rain and thunderstorms which occur stochastically in monsoon season. Sunlight which is the energy source can be harvested approximately 8 hours (on average basis) daily throughout the year which leads to the promotion of Solar PV technologies. This works projects the field performance for a new Floatovoltaic Dryer prototype with flexible PV roofing structures covering the top of the dryer system. The field measurements are collected on the lake of Engineering Faculty, UPM supported with 4-parameter weather station. Temperature profile with RH measurements inside the Floatovoltaic Dryer compartments as compared to direct-sun drying mechanism are the main contributions of this work and it projects more than 12 W of convection heat energy could be harvested by using the clean system. The field measurements imply various points of thermocouple and humidity sensor throughout the experiment. Temperature and humidity will be the main elements recorded to analyze the differences under monocrystalline PV panel as compared to natural drying.

  15. Comparison of spiculogenesis in in vitro ADCP-primmorph and explants culture of marine sponge Hymeniacidon perleve with 3-TMOSPU supplementation.

    Science.gov (United States)

    Cao, Xupeng; Yu, Xingju; Zhang, Wei

    2007-01-01

    This study aims to test the feasibility of introducing functional chemical groups into biogenic silica spicules by examining the effect of supplementing a silican coupler [3-(trimethoxysilyl)propyl]urea (3-TMOSPU) as silica source in the cultures of archaeocytes-dominant-cell-population (ADCP) primmorphs and explants of the marine sponge Hymeniacidon perleve. Analysis by Fourier Transform Infrared Spectroscopy (FT-IR) confirmed that the organic group in 3-TMOSPU was introduced into silica spicules. By comparing ADCP-primmorph cultures when supplemented with Na2SiO3, 3-TMOSPU supplementation showed no notable effect on the primmorphs development and cell locomotion behaviors. A decline in silicatein expression quantified by real-time RT-PCR was, however, observed during spiculogenesis. The decline was slower for the 3-TMOSPU group whereas significantly fewer spicules were formed. When sponge papillae explants were cultured, 3-TMOSPU supplementation had no negative effect on sponge growth but inhibited the growth biofouling of the diatom Nitzschia closterium. By monitoring the detectable Si concentration, it seemed that 3-TMOSPU was converted by the sponge and its conversion was related to spiculogenesis. Analysis of spicule dimensional changes indicated that the inhibition of spiculogenesis by 3-TMOSPU supplementation was less in ADCP-primmorphs culture due to lower 3-TMOSPU/detectable Si ratio in the media.

  16. ProVal : First data from a new Argo profiler dedicated to high quality radiometric measurement

    Science.gov (United States)

    Organelli, E.; Leymarie, E.; Penkerc'h, C.; Claustre, H.; Antoine, D.; Marty, S.

    2016-02-01

    Following the recommendation of the International Ocean Color Coordinating Group in 2011 (IOCCG report #11), the Laboratoire d'Oceanographie de Villefranche (LOV) has developed a new profiling float dedicated to the validation of satellite ocean color remote sensing data. Taking advantage of our experience in both Argo floats and radiometric measurements, we have developed the ProVal float. This new float has a two-arm design that allows sensor redundancy and mitigation of shading by the float through using the radiometer best placed with respect to the sun. ProVal measures downward irradiance and upwelling radiance at seven wavelengths with the highest quality currently achievable with this type of radiometer. It also measures the downward Photosynthetically Available Radiation, the fluorescence of Chlorophyll-a and of Colored Dissolved Organic Matter and finally the backscattering at 700nm. ProVal is able to monitor all year round these apparent and inherent optical properties of the water column simultaneously with ocean color satellite observations. After a description of the original concept of our platform based on a new float designed by NKE (PROVOR CTS5) combined with a new acquisition board developed on our specifications, we present initial data from this float taken during several deployments in the Mediterranean Sea. Together with results on sensor aging over deployments, ProVal data are compared with those acquired by other platforms dedicated to Ocean Color measurements (buoy measurements from the BOUSSOLE site and satellite ocean color observations). Perspective of future deployments will be also presented.

  17. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hiratsuka, Junichi, E-mail: hiratsuka.junichi@jaea.go.jp; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka 311-0193 (Japan); Miyamoto, Kenji [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan)

    2016-02-15

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  18. 2D spatial profile measurements of potential fluctuation with heavy ion beam probe on the Large Helical Device.

    Science.gov (United States)

    Shimizu, A; Ido, T; Nishiura, M; Kato, S; Ogawa, K; Takahashi, H; Igami, H; Yoshimura, Y; Kubo, S; Shimozuma, T

    2016-11-01

    Two-dimensional spatial profiles of potential fluctuation were measured with the heavy ion beam probe (HIBP) in the Large Helical Device (LHD). For 2D spatial profile measurements, the probe beam energy has to be changed, which requires the adjustment of many deflectors in the beam transport line to optimize the beam trajectory, since the transport line of LHD-HIBP system is long. The automatic beam adjustment system was developed, which allows us to adjust the beam trajectory easily. By analyzing coherence between potential fluctuation and magnetic probe signal, the noise level of the mode power spectrum of the potential fluctuation can be reduced. By using this method, the 2D spatial profile of potential fluctuation profile was successfully obtained.

  19. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.

    Science.gov (United States)

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  20. Innovative real-time and non-destructive method of beam profile measurement under large beam current irradiation for BNCT

    Science.gov (United States)

    Takada, M.; Kamada, S.; Suda, M.; Fujii, R.; Nakamura, M.; Hoshi, M.; Sato, H.; Endo, S.; Hamano, T.; Arai, S.; Higashimata, A.

    2012-10-01

    We developed a real-time and non-destructive method of beam profile measurement on a target under large beam current irradiation, and without any complex radiation detectors or electrical circuits. We measured the beam profiles on a target by observing the target temperature using an infrared-radiation thermometer camera. The target temperatures were increased and decreased quickly by starting and stopping the beam irradiation within 1 s in response speed. Our method could trace beam movements rapidly. The beam size and position were calibrated by measuring O-ring heat on the target. Our method has the potential to measure beam profiles at beam current over 1 mA for proton and deuteron with the energy around 3 MeV and allows accelerator operators to adjust the beam location during beam irradiation experiments without decreasing the beam current.

  1. Innovative real-time and non-destructive method of beam profile measurement under large beam current irradiation for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Takada, M., E-mail: m_takada@nirs.go.jp [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kamada, S.; Suda, M. [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Fujii, R.; Nakamura, M. [Cancer Intelligence Care Systems, Inc., 3-5-7 Ariake, Koto-ku, Tokyo 135-0063 (Japan); Hoshi, M. [Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Sato, H. [Ibaraki Prefectural University of Health Sciences, 4669-2, Ami Ami-Cho, Inashiki-gun, Ibaraki 300-0394 (Japan); Endo, S. [Quantum Energy Applications, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Hamano, T. [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Arai, S.; Higashimata, A. [Sanki Industry Co., 318-6, Sannoh, Inage-ku, Chiba 263-0002 (Japan)

    2012-10-11

    We developed a real-time and non-destructive method of beam profile measurement on a target under large beam current irradiation, and without any complex radiation detectors or electrical circuits. We measured the beam profiles on a target by observing the target temperature using an infrared-radiation thermometer camera. The target temperatures were increased and decreased quickly by starting and stopping the beam irradiation within 1 s in response speed. Our method could trace beam movements rapidly. The beam size and position were calibrated by measuring O-ring heat on the target. Our method has the potential to measure beam profiles at beam current over 1 mA for proton and deuteron with the energy around 3 MeV and allows accelerator operators to adjust the beam location during beam irradiation experiments without decreasing the beam current.

  2. Ground-Based Remote or In Situ Measurement of Vertical Profiles of Wind in the Lower Troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Newman, Jennifer

    2017-02-24

    Knowledge of winds in the lower troposphere is essential for a range of applications, including weather forecasting, transportation, natural hazards, and wind energy. This presentation focuses on the measurement of vertical profiles of wind in the lower troposphere for wind energy applications. This presentation introduces the information that wind energy site development and operations require, how it used, and the benefits and problems of current measurements from in-situ measurements and remote sensing. The development of commercial Doppler wind lidar systems over the last 10 years are shown, along with the lessons learned from this experience. Finally, potential developments in wind profiling aimed at reducing uncertainty and increasing data availability are introduced.

  3. High-Resolution Vertical Profile Measurements for Carbon Dioxide and Water Vapour Concentrations Within and Above Crop Canopies

    Science.gov (United States)

    Ney, Patrizia; Graf, Alexander

    2017-10-01

    We present a portable elevator-based facility for measuring CO2 , water vapour, temperature and wind-speed profiles between the soil surface and the atmospheric surface layer above crop canopies. The end of a tube connected to a closed-path gas analyzer is continuously moved up and down over the profile range (in our case, approximately 2 m) while concentrations are logged at a frequency of 20 s^{-1} . Using campaign measurements in winter wheat, winter barley and a catch crop mixture (spring 2015 to autumn 2016) during different stages of crop development and different times of the day, we demonstrate a simple approach to correct for time lags, and the resulting profiles of 30-min mean mole fractions of CO2 and H2O over height increments of 0.025 m. The profiles clearly show the effects of soil respiration and photosynthetic carbon assimilation, varying both during the diurnal cycle and during the growing season. Profiles of temperature and wind speed are based on a ventilated finewire thermocouple and a hot-wire anemometer, respectively. Measurements over bare soil and a short plant canopy were analyzed in the framework of Monin-Obukhov similarity theory to check the validity of the measurements and raw-data-processing approach. Derived fluxes of CO2 , latent and sensible heat and momentum show good agreement with eddy-covariance measurements.

  4. Tropospheric profiles of wet refractivity and humidity from the combination of remote sensing data sets and measurements on the ground

    Directory of Open Access Journals (Sweden)

    F. Hurter

    2013-11-01

    Full Text Available We reconstruct atmospheric wet refractivity profiles for the western part of Switzerland with a least-squares collocation approach from data sets of (a zenith path delays that are a byproduct of the GPS (global positioning system processing, (b ground meteorological measurements, (c wet refractivity profiles from radio occultations whose tangent points lie within the study area, and (d radiosonde measurements. Wet refractivity is a parameter partly describing the propagation of electromagnetic waves and depends on the atmospheric parameters temperature and water vapour pressure. In addition, we have measurements of a lower V-band microwave radiometer at Payerne. It delivers temperature profiles at high temporal resolution, especially in the range from ground to 3000 m a.g.l., though vertical information content decreases with height. The temperature profiles together with the collocated wet refractivity profiles provide near-continuous dew point temperature or relative humidity profiles at Payerne for the study period from 2009 to 2011. In the validation of the humidity profiles, we adopt a two-step procedure. We first investigate the reconstruction quality of the wet refractivity profiles at the location of Payerne by comparing them to wet refractivity profiles computed from radiosonde profiles available for that location. We also assess the individual contributions of the data sets to the reconstruction quality and demonstrate a clear benefit from the data combination. Secondly, the accuracy of the conversion from wet refractivity to dew point temperature and relative humidity profiles with the radiometer temperature profiles is examined, comparing them also to radiosonde profiles. For the least-squares collocation solution combining GPS and ground meteorological measurements, we achieve the following error figures with respect to the radiosonde reference: maximum median offset of relative refractivity error is −16% and quartiles are 5% to

  5. Stratospheric Profiling of HDO from Far InfraRed Limb Measurements by TELIS

    Science.gov (United States)

    Xu, Jian; Schreier, Franz; Doicu, Adrian; Trautmann, Thomas; Birk, Manfred; Wagner, Georg

    2016-08-01

    Water vapour is the dominant greenhouse gas in the troposphere and has been increasing in the stratosphere as well. It is generally believed that stratospheric water vapor affects ozone chemistry in the stratosphere. HDO, one of the rare isotopologues, has been recently monitored by several operational satellite instruments by detecting thermal emission in the infrared and microwave range.The balloon-borne TELIS (TErahertz and submillimeter LImb Sounder) instrument has been cooperatively developed by a consortium of European institutes, i.e. DLR (German Aerospace Center), SRON (Netherlands Institute for Space Research), and RAL (Rutherford Appleton Laboratory). Together with MIPAS-B and mini-DOAS operated by KIT (Karlsruhe Institute of Technology) and Heidelberg University, respectively, TELIS was installed on a stratospheric balloon gondola and has participated in four scientific campaigns since 2009. The high spectral resolution spectrometer TELIS allows the vertical information of the rare isotopologues between about 10 and 40 km by resolving power of individual lines. The concentration profile of HDO in the upper troposphere and lower stratosphere can be observed by both the 1.8 THz (far infrared) channel and the 480-650 GHz (submillimeter) channel. For the far infrared frequency channel, the HDO product is retrieved from the 1818.50 GHz transition. We make use of the retrieval code PILS (Profile Inversion for Limb Sounding) to carry out the inversion and to assess the accuracy of the retrieval product.In this work, we present the HDO retrievals from the 2009-2011 winter polar campaigns. The outcome of this comparison helps us to better understand the measurement capabilities of the TELIS instrument and to make contribution to cross-validation of these spaceborne sensors.

  6. Coupling above and below ground gas measurements to understand greenhouse gas production in the soil profile

    Science.gov (United States)

    Nickerson, Nick; Creelman, Chance

    2016-04-01

    Natural and anthropogenic changes in climate have the potential to significantly affect the Earth's natural greenhouse gas balances. To understand how these climatic changes will manifest in a complex biological, chemical and physical system, a process-based understanding of the production and consumption of greenhouse gases in soils is critical. Commonly, both chamber methods and gradient-based approaches are used to estimate greenhouse gas flux from the soil to the atmosphere. Each approach offers benefits, but not surprisingly, comes with a list of drawbacks. Chambers are easily deployed on the surface without significant disturbance to the soil, and can be easily spatially replicated. However the high costs of automated chamber systems and the inability to partition fluxes by depth are potential downfalls. The gradient method requires a good deal of disturbance for installation, however it also offers users spatiotemporally resolved flux estimates at a reasonable price point. Researchers widely recognize that the main drawback of the gradient approach is the requirement to estimate diffusivity using empirical models based on studies of specific soils or soil types. These diffusivity estimates can often be off by several orders of magnitude, yielding poor flux estimates. Employing chamber and gradient methods in unison allows for in-situ estimation of the diffusion coefficient, and therefore improves gradient-based estimates of flux. A dual-method approach yields more robust information on the temporal dynamics and depth distribution of greenhouse gas production and consumption in the soil profile. Here we present a mathematical optimization framework that allows these complimentary measurement techniques to yield more robust information than a single technique alone. We then focus on how it can be used to improve the process-based understanding of greenhouse gas production in the soil profile.

  7. Accurate Profile Measurement of the low Intensity Secondary Beams in the CERN Experimental Areas

    CERN Document Server

    AUTHOR|(CDS)2084531; Tranquille, Gerard

    2018-02-23

    The CERN accelerators deliver a wide spectrum of secondary beams to the Experimental Areas. These beams are composed of hadrons, leptons, and heavy ions that can vary greatly in momentum (1 GeV/c to 400 GeV/c) and intensity (10^2 to 10^8 particles per second). The profile, position, and intensity of these beams are measured utilising particle detectors. However, the current systems show several problems that limit the quality of this kind of monitoring. The aim of this doctoral thesis is to investigate the best detector technology that could replace the existing monitors and build a first prototype of it. A review of the existing detection techniques has led to the choice of Scintillating Fibres (SciFi) read-out with Silicon Photomultipliers (SiPM). This detection technology has the potential to perform better in terms of material budget, range of intensities measured, and active area size. In addition, it has particle counting capabilities, which could extend its application to momentum spectrometry or Time...

  8. A Quantum Gas Jet for Non-Invasive Beam Profile Measurement

    CERN Document Server

    Holzer, EB; Lefevre, T; Tzoganis, V; Welsch, C; Zhang, H

    2014-01-01

    A novel instrument for accelerator beam diagnostics is being developed by using De Broglie-wave focusing to create an ultra-thin neutral gas jet. Scanning the gas jet across a particle beam while measuring the interaction products, the beam profile can be measured. Such a jet scanner will provide an invaluable diagnostic tool in beams which are too intense for the use of wire scanners, such as the proposed CLIC Drive Beam. In order to create a sufficiently thin jet, a focusing element working on the de Broglie wavelength of the Helium atom has been designed. Following the principles of the Photon Sieve, we have constructed an Atomic Sieve consisting of 5230 nano-holes etched into a thin film of silicon nitride. When a quasi-monochromatic Helium jet is incident on the sieve, an interference pattern with a single central maximum is created. The stream of Helium atoms passing through this central maximum is much narrower than a conventional gas jet. The first experiences with this device are presented here, alon...

  9. A measure of family eating habits: initial psychometric properties using the profile pattern approach (PPA).

    Science.gov (United States)

    Klempel, Natalie; Kim, Se-Kang; Wilson, Monique; Annunziato, Rachel A

    2013-01-01

    Although it seems likely that family characteristics and eating habits are a major factor in the development of eating behaviors, there are no self-report measures that examine how individuals view their family's eating habits. Seventy-one women ages 18-22 were recruited from a private university in a large northeastern city and asked to complete a short questionnaire packet consisting of demographic questions, the newly developed Family Eating Habits Questionnaire (FEHQ) and the Eating Inventory (EI). Internal consistency and test-retest reliability of the FEHQ was established. Significant associations were found between the FEHQ and the EI, indicating convergent validity for the FEHQ. Further validation was conducted using a novel statistical technique, the profile pattern approach (PPA). The results of the present study are limited by the restricted sample characteristic of a university setting. However, our findings show that the family eating habits' measure appears psychometrically sound. A future aim will be to continue validating this instrument in other samples, particularly to determine its predictive value. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. A Spinning Mirror for Fast Angular Scans of EBW Emission for Magnetic Pitch Profile Measurement

    CERN Document Server

    Volpe, Francesco

    2010-01-01

    A tilted spinning mirror rapidly steers the line of sight of the electron Bernstein wave (EBW) emission radiometer at the Mega Amp Spherical Tokamak (MAST). In order to resist high mechanical stresses at rotation speeds of up to 12,000 rpm and to avoid eddy current induced magnetic braking, the mirror consists of a glass-reinforced nylon substrate of a special self-balanced design, coated with a reflecting layer. By completing an angular scan every 2.5-10ms, it allows one to characterize with good time resolution the Bernstein-extraordinary-ordinary mode-conversion efficiency as a function of the view angles. Angular maps of conversion efficiency are directly related to the magnetic pitch angle at the cutoff layer for the ordinary mode. Hence, measurements at various frequencies provide the safety factor profile at the plasma edge. Initial measurements and indications of the feasibility of the diagnostic are presented. Moreover, angular scans indicate the best launch conditions for EBW heating.

  11. Airborne DOAS limb measurements of tropospheric trace gas profiles: case studies on the profile retrieval of O4 and BrO

    Directory of Open Access Journals (Sweden)

    N. Theys

    2011-06-01

    Full Text Available A novel limb scanning mini-DOAS spectrometer for the detection of UV/vis absorbing radicals (e.g., O3, BrO, IO, HONO was deployed on the DLR-Falcon (Deutsches Zentrum für Luft- und Raumfahrt aircraft and tested during the ASTAR 2007 campaign (Arctic Study of Tropospheric Aerosol, Clouds and Radiation that took place at Svalbard (78° N in spring 2007. Our main objectives during this campaign were to test the instrument, and to perform spectral and profile retrievals of tropospheric trace gases, with particular interest on investigating the distribution of halogen compounds (e.g., BrO during the so-called ozone depletion events (ODEs. In the present work, a new method for the retrieval of vertical profiles of tropospheric trace gases from tropospheric DOAS limb observations is presented. Major challenges arise from modeling the radiative transfer in an aerosol and cloud particle loaded atmosphere, and from overcoming the lack of a priori knowledge of the targeted trace gas vertical distribution (e.g., unknown tropospheric BrO vertical distribution. Here, those challenges are tackled by a mathematical inversion of tropospheric trace gas profiles using a regularization approach constrained by a retrieved vertical profile of the aerosols extinction coefficient EM. The validity and limitations of the algorithm are tested with in situ measured EM, and with an absorber of known vertical profile (O4. The method is then used for retrieving vertical profiles of tropospheric BrO. Results indicate that, for aircraft ascent/descent observations, the limit for the BrO detection is roughly 1.5 pptv (pmol mol−1, and the BrO profiles inferred from the boundary layer up to the upper troposphere and lower stratosphere have around 10 degrees of freedom. For the ASTAR 2007 deployments during ODEs, the retrieved BrO vertical profiles consistently indicate high BrO mixing ratios (∼15 pptv within the boundary layer, low BrO mixing ratios (≤1.5 pptv in the free

  12. A tunable single-monochromator Raman system based on the supercontinuum laser and tunable filters for resonant Raman profile measurements

    Science.gov (United States)

    Liu, X.-L.; Liu, H.-N.; Tan, P.-H.

    2017-08-01

    Resonant Raman spectroscopy requires that the wavelength of the laser used is close to that of an electronic transition. A tunable laser source and a triple spectrometer are usually necessary for resonant Raman profile measurements. However, such a system is complex with low signal throughput, which limits its wide application by scientific community. Here, a tunable micro-Raman spectroscopy system based on the supercontinuum laser, transmission grating, tunable filters, and single-stage spectrometer is introduced to measure the resonant Raman profile. The supercontinuum laser in combination with transmission grating makes a tunable excitation source with a bandwidth of sub-nanometer. Such a system exhibits continuous excitation tunability and high signal throughput. Its good performance and flexible tunability are verified by resonant Raman profile measurement of twisted bilayer graphene, which demonstrates its potential application prospect for resonant Raman spectroscopy.

  13. Measurements and modeling of transport and impurity radial profiles in the EXTRAP T2R reversed field pinch

    Science.gov (United States)

    Kuldkepp, M.; Brunsell, P. R.; Cecconello, M.; Dux, R.; Menmuir, S.; Rachlew, E.

    2006-09-01

    Radial impurity profiles of oxygen in the rebuilt reversed field pinch EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] have been measured with a multichannel spectrometer. Absolute ion densities for oxygen peak between 1-4×1010cm-3 for a central electron density of 1×1013cm-3. Transport simulations with the one-dimensional transport code STRAHL with a diffusion coefficient of 20m2 s-1 yield density profiles similar to those measured. Direct measurement of the ion profile evolution during pulsed poloidal current drive suggests that the diffusion coefficient is reduced by a factor ˜2 in the core but remains unaffected toward the edge. Core transport is not significantly affected by the radial magnetic field growth seen at the edge in discharges without feedback control. This indicates that the mode core amplitude remains the same while the mode eigenfunction increases at the edge.

  14. A tunable single-monochromator Raman system based on the supercontinuum laser and tunable filters for resonant Raman profile measurements.

    Science.gov (United States)

    Liu, X-L; Liu, H-N; Tan, P-H

    2017-08-01

    Resonant Raman spectroscopy requires that the wavelength of the laser used is close to that of an electronic transition. A tunable laser source and a triple spectrometer are usually necessary for resonant Raman profile measurements. However, such a system is complex with low signal throughput, which limits its wide application by scientific community. Here, a tunable micro-Raman spectroscopy system based on the supercontinuum laser, transmission grating, tunable filters, and single-stage spectrometer is introduced to measure the resonant Raman profile. The supercontinuum laser in combination with transmission grating makes a tunable excitation source with a bandwidth of sub-nanometer. Such a system exhibits continuous excitation tunability and high signal throughput. Its good performance and flexible tunability are verified by resonant Raman profile measurement of twisted bilayer graphene, which demonstrates its potential application prospect for resonant Raman spectroscopy.

  15. REAL-TIME STABILITY AND PROFILE COMPARISON MEASUREMENTS BETWEEN TWO DIFFERENT LTPS.

    Energy Technology Data Exchange (ETDEWEB)

    QIAN, S.; WANG, D.J.

    2005-07-31

    The Long Trace Profiler (LTP) is a precise angle measurement instrument, with a sensitivity and accuracy that can be in the sub-micron radian range. LTP characteristics depend on the particular LTP system schematic design, and the quality of components and assembly. The conditions of temperature, alignment, and mirror support during the measurement process vary between different laboratories, which influences significantly the test repeatability and accuracy. In this paper we introduce a direct comparison method to test the same object at the same point in the same environment at the same time by using two LTPs, which significantly increases the reliability of the comparison. A compact, portable LTP (PTLTP), which can be carried to different laboratories around the world, is used for comparison testing. Stability Comparison experiments between the LTP II at the National Synchrotron Radiation Research Center (NSRRC), and the PTLTP of Brookhaven National Laboratory (BNL) reveal significant differences in performance between the instruments. The experiment is set up so that each optical head simultaneously records both its own sample probe beam and also the probe beam from the other optical head. The two probe beams are reflected from same point on the mirror. Tests show that the stability of the PTLTP with a monolithic beam splitter is 10 times better than the stability of the LTP II which has a separated beam splitter unit. A scheme for comparing scanning measurements of a mirror is introduced. Experimental results show a significant difference between the two LTPs due mainly to distortions in the optical components inside the optical head. A new scheme is proposed for further mirror comparison scanning tests.

  16. Using Psychophysiological Measures to Examine the Temporal Profile of Verbal Humor Elicitation.

    Science.gov (United States)

    Fiacconi, Chris M; Owen, Adrian M

    2015-01-01

    Despite its pervasiveness in popular culture, there remains much to be learned about the psychological and physiological processes that underlie our experience of humor. In the present study, we examined the temporal profile of verbal humor elicitation using psychophysiological measures of heart rate (HR) and facial electromyography (EMG). Consistent with recent prior research on cardiovascular changes to perceived humor, we found that HR acceleration was greater for jokes relative to non-jokes, and was positively related to the level of perceived humor elicited by these jokes. In addition, activity recorded from the zygomaticus major muscle that controls smiling was found to be greater for jokes relative to non-jokes. To link these physiological changes to the psychological processes that govern humor comprehension, we took the initial inflection point of the zygomatic EMG response as a marker for the onset of humor comprehension, and used this marker to probe the pattern of cardiovascular activity at this time-point. We estimated the onset of the humor response to occur during the initial HR deceleration phase, and found that jokes relative to non-jokes elicited a decreased HR response at this time-point. This result questions the previously forwarded notion that the psychological "moment of insight" that signals the start of the humor response is always associated with heightened cardiovascular activity. This discrepancy is discussed in relation to possible differences in the cognitive processes required to comprehend different forms of humor. At a broader level, our results also demonstrate the advantages of combining different psychophysiological measures to examine psychological phenomena, and illustrate how one such measure can constrain the interpretation of others.

  17. Gamma-ray-based measurement of concentration distribution in pipe flow of settling slurry: vertical profiles and tomographic maps

    Directory of Open Access Journals (Sweden)

    Krupička Jan

    2014-06-01

    Full Text Available Principles of gamma-ray-based measurement are summarized and their application is demonstrated on an operation of the radiometric facility installed in the test loop for slurry flows at the Institute of Hydrodynamics. The facility is able to measure vertical profiles of chord-averaged concentrations and concentration maps in the pipe cross section. A methodology of measurement is proposed including detection and quantification of random and systematic errors. Experimental results are discussed in the light of the proposed methodology. Experimentally determined vertical profiles of concentration are presented for slurry flows of four different fractions of glass beads. The tomographic application of the radiometric device is demonstrated on a measured concentration map and a suitable image reconstruction method is tested. High reliability of measured concentration distributions is proved except for regions near the pipe wall. The radiometric method is shown to be a useful tool for measurement of concentration distribution in slurry flow through a pipe.

  18. Measuring the Ultimate Halo Mass of Galaxy Clusters: Redshifts and Mass Profiles from the Hectospec Cluster Survey (HeCS)

    Science.gov (United States)

    Rines, Kenneth; Geller, Margaret J.; Diaferio, Antonaldo; Kurtz, Michael J.

    2013-04-01

    The infall regions of galaxy clusters represent the largest gravitationally bound structures in a ΛCDM universe. Measuring cluster mass profiles into the infall regions provides an estimate of the ultimate mass of these halos. We use the caustic technique to measure cluster mass profiles from galaxy redshifts obtained with the Hectospec Cluster Survey (HeCS), an extensive spectroscopic survey of galaxy clusters with MMT/Hectospec. We survey 58 clusters selected by X-ray flux at 0.1 noise spectra for ~200 cluster members and a comparable number of foreground/background galaxies. The cluster members trace out infall patterns around the clusters. The members define a very narrow red sequence. We demonstrate that the determination of velocity dispersion is insensitive to the inclusion of bluer members (a small fraction of the cluster population). We apply the caustic technique to define membership and estimate the mass profiles to large radii. The ultimate halo mass of clusters (the mass that remains bound in the far future of a ΛCDM universe) is on average (1.99 ± 0.11)M 200, a new observational cosmological test in essential agreement with simulations. Summed profiles binned in M 200 and in LX demonstrate that the predicted Navarro-Frenk-White form of the density profile is a remarkably good representation of the data in agreement with weak lensing results extending to large radius. The concentration of these summed profiles is also consistent with theoretical predictions.

  19. Biologically relevant physical measurements in the ice-free valleys of southern Victoria Land: soil temperature profiles and ultraviolet radiation

    Science.gov (United States)

    Nienow, J. A.; Meyer, M. A.; Friedmann, E. I. (Principal Investigator)

    1986-01-01

    As part of the ongoing comprehensive study of the cryptoendolithic microbial community in the ice-free valleys of southern Victoria Land, thermal properties of the soil and the ultraviolet radiation regime were measured. Although soil temperature profiles have been measured in the ice-free valleys (e.g., Cameron et al. 1970; Cameron 1972), these are the first such data from higher elevations. This is apparently the first time the ultraviolet radiation regime has been measured in the Antarctic.

  20. Measurements of the Spatial Variability of Mean Wind Profiles Using Multiple Doppler Lidars over Distances less than 1 Km

    Science.gov (United States)

    Banta, R. M.; Choukulkar, A.; Brewer, A.; Lundquist, J. K.; Iungo, V.; Pichugina, Y. L.; Quelet, P. T.; Wolfe, D. E.; Oncley, S.; Sandberg, S.; Weickmann, A. M.; Delgado, R.; McCaffrey, K.

    2015-12-01

    Small differences in wind speed can translate to large differences in wind energy (WE) revenues, so WE decision making requires accurate measurements of wind profiles through the turbine rotor layer of the lower atmosphere. Advances in understanding and modeling of boundary-layer processes, also needed by WE, requires such measurements through an even deeper layer—at least the lowest few hundreds of meters. An important use for such accurate measured wind-profile data is in the initiation and verification of NWP models. This prospect raises several fundamental questions, such as, what does the modeled profile represent, how was the measured profile determined, and what if the profile had been measured from a different site within the grid cell? To address these questions, two experiments were conducted at the Boulder Atmospheric Observatory (BAO) in modestly complex terrain downwind of the mountains. The Lidar Uncertainty Measurement Experiment (LUMEX) in June-July 2014 featured 5 Doppler lidars (2 scanning), and XPIA in April-May 2015, 11 Doppler lidars, including 5 scanning systems. Two broad goals of these projects were to assess differences in scanning and other data acquisition procedures on the measurements, addressed in (Pichugina et al.) at this conference, and to evaluate the effects of varying spatial separations on differences in the measured winds, addressed in the present paper. Sonic anemometers every 50 m on the 300-m BAO tower were used as a reference for the wind calculations, as well as another profile location. Lidar scan data indicated terrain-related regions of stronger flow within the scan volume of more than 1 m/s that were at least semi-recurrent. This variability produced significant differences in mean rotor-level winds by 2 identical profiling lidars separated by 500 m. During XPIA, four of the scanning Doppler lidars performed intersecting elevation scans (vertical-slice or "RHI") to create 'virtual towers' at various separation

  1. Experimental investigation of the relationship between HF radar measurements of currents and the dynamical properties of the upper ocean.

    Science.gov (United States)

    Fraunie, Philippe

    2014-05-01

    Forget P., Barbin Y., Bellomo L., Doglioli, *Lecuyer E., Fraunié P., Malengros D., Marmain J., Molcard A., Petrenko A., Quentin C., *Sentchev A. Mediterranean Institute of Oceanography-MIO UM 110 UTLN - AMU - CNRS/INSU 7294 - IRD 235 BP 20132 F-83957 La Garde cedex *Laboratoire d'Océanologie et Géosciences CNRS UMR 8187 LOG Université du Littoral - Côte d'Opale 32 avenue Foch, 62930 Wimereux The increasing application of HF radio-oceanography for coastal circulation monitoring requires a validation of the radar derived current velocities using independent velocity estimates. Surface currents measured by radar, as they are relative to some finite patch of the sea (the radar cell), depend on the spatial distribution of the current within the radar cell, its time variability, its vertical structure near the surface and the presence of ocean waves. We present an experimental investigation conducted in the NW Mediterranean to measure radial surface currents by HF radar simultaneously to the dynamical properties of the surface ocean. These latter included high resolution current profiling by ADCP, microprofiling of temperature/salinity by SCAMP and Lagrangian velocities from surface drifting buoys. All the data were GPS geo-localized. The current profiling by towed ADCP was performed along the radar beam directions. The poster shows the first results of the experiment and presents samples of the 3D structure of the horizontal current (down to 15m and over some km2) and of the stratification. The spatial distribution of the surface currents is described from Lagrangian measurements. The radar derived surface currents are discussed on the basis of these in situ data. Acknowledgements : This research was supported by the LEFE IMAGO program of CNRS -INSU, project SUBCORAD.

  2. Electron beam based transversal profile measurements of intense ion beams; Elektronenstrahl-Diagnostik zur Bestimmung vom transversalen Profil intensiver Ionenstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    El Moussati, Said

    2014-11-03

    A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the

  3. Technical Development of Profile Measurement for the Soft X-Ray Via Compton Backward Scattering

    CERN Document Server

    Saito, Taku; Hayano, Hitoshi; Hidume, Kentaro; Kashiwagi, Shigeru; Kuroda, Ryunosuke; Minamiguchi, Shuichi; Oshima, Akihiro; Ueyama, Daisuke; Urakawa, Junji; Washio, Masakazu

    2005-01-01

    A compact X-ray source is called for such various fields as material development, biological science, and medical treatment. At Waseda University, we have already succeeded to generate the soft X-ray of the wavelength within so-called water window region (250-500eV) via Compton backward scattering between 1047nm Nd:YLF laser and 4.2MeV high quality electron beam. Although this method equips some useful characters, e.g. high intensity, short pulse, energy variableness, etc, the X-ray generating system is compact enough to fit in tabletop size. In the next step, there rises two principal tasks, that is, to make the soft X-ray intensity higher, and to progress X-ray profile measurement techniques as preliminary experiments for biomicroscopy. Specifically, we utilize two-pass amp for the former, and irradiate X-ray to a resist film which is previously exposed by UV lamp or get images with X-ray CCD for the latter. In this conference, we will show the experimental results and some future plans.

  4. Profiling Space Heating Behavior in Chilean Social Housing: Towards Personalization of Energy Efficiency Measures

    Directory of Open Access Journals (Sweden)

    Victor Bunster

    2015-06-01

    Full Text Available Global increases in the demand for energy are imposing strong pressures over the environment while compromising the capacity of emerging economies to achieve sustainable development. In this context, implementation of effective strategies to reduce consumption in residential buildings has become a priority concern for policy makers as minor changes at the household scale can result in major energy savings. This study aims to contribute to ongoing research on energy consumer profiling by exploring the forecasting capabilities of discrete socio-economic factors that are accessible through social housing allocation systems. Accordingly, survey data gathered by the Chilean Ministry of Social Development was used identify key characteristics that may predict firewood usage for space heating purposes among potential beneficiaries of the Chilean social housing program. The analyzed data evidences strong correlations between general household characteristics and space heating behavior in certain climatic zones, suggesting that personalized delivery of energy efficiency measures can potentially increase the effectiveness of initiatives aimed towards the reduction of current patterns of consumption.

  5. Principles of epistemological accountability with methodological implications for measuring, assessing, and profiling human resilience

    Directory of Open Access Journals (Sweden)

    Astier M. Almedom

    2015-09-01

    Full Text Available We propose two fundamental principles of epistemological accountability with critical methodological implications for studies designed to measure, assess, and/or profile human psychosocial resilience. Firstly, researchers involved in human psychosocial resilience studies owe it to the individuals and communities that they engage to disclose their motives and possible misreadings of the situations they enter, albeit with good intentions. Secondly, researchers and those individuals researched need to share a language of colearning and coproduction, and utilization of knowledge that is mutually intelligible. Again, the onus is on researchers and their funders to respect the researched and their particular epistemological sovereignties. As the number of published examples of authentic community- and/or needs-driven research and action to strengthen human psychosocial resilience increases, the sustainability of human social well-being and harmony may also be expected to rise. Psychosocial resilience encompasses a dynamic multidimensional set of personal capabilities as well as social and material assets/resources that individuals, families, and communities mobilize to mentally and emotionally embrace "turbulent" change and transformation while maintaining routine functioning without loss of identity, integrity, or core purpose in life that defines them as who they are individually as well as collectively. These proposed informed predictions are yet to be widely adopted and applied in the new paradigm for advancing this century of human psychosocial resilience, well-being, and sustainability.

  6. Neuropsychological Profile in Early-Onset Schizophrenia-Spectrum Disorders: Measured With the MATRICS Battery

    Science.gov (United States)

    Holmén, Aina; Juuhl-Langseth, Monica; Thormodsen, Rune; Melle, Ingrid; Rund, Bjørn Rishovd

    2010-01-01

    Objective: Neurocognitive impairments have been documented in adolescents with early-onset schizophrenia (EOS). There is still inconsistency regarding an average profile, which could be due to the fact that each study uses different tests. The purpose of this study was to examine whether the “Measurement and Treatment Research to Improve Cognition in Schizophrenia” (MATRICS) battery is useful in detecting differences between the patient group and the healthy controls, and to describe the neuropsychological pattern in the EOS group. Method: Neuropsychological functioning was examined in 31 adolescents with schizophrenia spectrum disorders and 67 healthy controls, using the MATRICS battery. Results: There were significant differences between the patients and the controls on every domain except for social cognition. Patients showed a generalized neurocognitive deficit of 0.8–1.8 SDs compared with controls, with verbal learning, working memory, and visual learning being the most affected areas. Conclusions: The MATRICS battery is sensitive in detecting differences between patients and controls in the adolescent population. However, we question the use of Mayer-Salovey-Caruso Emotional Intelligence Test in this age group. Results document a significant generalized deficit in adolescents with EOS. PMID:19223656

  7. Characterization of Rheumatoid Arthritis Subtypes Using Symptom Profiles, Clinical Chemistry and Metabolomics Measurements

    Science.gov (United States)

    van der Kooij, Anita J.; Reijmers, Theo H.; Schroën, Yan; Wang, Mei; Xu, Zhiliang; Wang, Xinchang; Kong, Hongwei; Xu, Guowang; Hankemeier, Thomas; Meulman, Jacqueline J.; van der Greef, Jan

    2012-01-01

    Objective The aim is to characterize subgroups or phenotypes of rheumatoid arthritis (RA) patients using a systems biology approach. The discovery of subtypes of rheumatoid arthritis patients is an essential research area for the improvement of response to therapy and the development of personalized medicine strategies. Methods In this study, 39 RA patients are phenotyped using clinical chemistry measurements, urine and plasma metabolomics analysis and symptom profiles. In addition, a Chinese medicine expert classified each RA patient as a Cold or Heat type according to Chinese medicine theory. Multivariate data analysis techniques are employed to detect and validate biochemical and symptom relationships with the classification. Results The questionnaire items ‘Red joints’, ‘Swollen joints’, ‘Warm joints’ suggest differences in the level of inflammation between the groups although c-reactive protein (CRP) and rheumatoid factor (RHF) levels were equal. Multivariate analysis of the urine metabolomics data revealed that the levels of 11 acylcarnitines were lower in the Cold RA than in the Heat RA patients, suggesting differences in muscle breakdown. Additionally, higher dehydroepiandrosterone sulfate (DHEAS) levels in Heat patients compared to Cold patients were found suggesting that the Cold RA group has a more suppressed hypothalamic-pituitary-adrenal (HPA) axis function. Conclusion Significant and relevant biochemical differences are found between Cold and Heat RA patients. Differences in immune function, HPA axis involvement and muscle breakdown point towards opportunities to tailor disease management strategies to each of the subgroups RA patient. PMID:22984493

  8. Improvements in body composition, anthropometric measurements and lipid profile following discontinuation of clozapine.

    Science.gov (United States)

    Wysokiński, Adam; Sobów, Tomasz

    2016-01-01

    Metabolic syndrome (obesity, glucose intolerance, insulin resistance and dyslipidaemia) is a well-known adverse effect of most antipsychotics. It is particularly common in patients treated with olanzapine and clozapine. Currently, the mechanisms underlying its development are not completely understood. We present a case of improved body composition (reduced amount of total body fat and visceral adipose tissue), anthropometric measurements (body weight, waist, abdominal and hip circumferences) and lipid profile in a 31-year-old man with schizophrenia following discontinuation of clozapine. During a combined treatment with clozapine, flupentixol and ziprasidone, a routine laboratory test revealed a severe dyslipidaemia (triglycerides > 1800 mg/dL; > 20.3 mmol/L), despite previous lipid-lowering therapy. This abnormality completely recovered after clozapine has been discontinued. Clozapine may cause severe, but reversible metabolic abnormalities, including obesity and hypertriglyceridaemia. Atypical antipsychotic-related lipid abnormalities may have a very rapid onset, occur in relatively young patients, with severe lipid derangements and have potential serious complications. This case confirms how important is to monitor metabolic parameters in patients taking antipsychotics. Discontinuation or switching to another antipsychotic medication may improve components of the metabolic syndrome.

  9. Lunar magnetic field measurements, electrical conductivity calculations and thermal profile inferences

    Science.gov (United States)

    Colburn, D. S.

    1971-01-01

    Steady magnetic field measurements of magnitude 30 to 100 gamma on the lunar surface impose problems of interpretation when coupled with the nondetectability of a lunar field at 0.4 lunar radius altitude and the limb induced perturbations of the solar wind at the Explorer orbit. The lunar time-varying magnetic field clearly indicates the presence of eddy currents in the lunar interior and permits calculation of an electrical conductivity profile. The problem is complicated by the day-night asymmetry of the moon's electromagnetic environment, the possible presence of the transverse magnetic mode, and the variable wave directions of the driving function. The electrical conductivity is calculated to be low near the surface, rising to a peak of .006/ohm meter at 250 km, dropping steeply inwards to a value of about .00005/ohm meter, and then rising toward the interior. A transition at 250 km depth from a high conductivity to a low conductivity material is inferred, suggesting an olivine-like core at approximately 800 C, although other models are possible.

  10. Profiling measurements of metal ion distribution in thin polymer inclusion membranes by Rutherford backscattering spectrometry

    Science.gov (United States)

    Guedioura, B.; Bendjaballah, N.; Alioui, N.

    2014-05-01

    Polymer inclusion membranes (PIMs) composed of a homogeneous mixture of cellulose triacetate matrix, 2-nitro-phenyl-octyl-ether as plasticizer and tri-octyl-phosphine-oxyde as carrier were synthesized by the spin coating method. Synthesized membranes were doped with molybdenum metal ions and then characterized by four experimental techniques: thermo gravimetric and differential analyses, scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and Rutherford backscattering (RBS) spectrometry using a 3.2 MeV He+ ion beam. The RBS analysis has established both the elemental composition as well as the Mo+ metal profiling of the studied PIMs. The experimental irradiation conditions were optimized in order to determine the ion fluence thresholds resulting in measurable changes in elemental composition of membranes. Changes in physico-chemical properties of the irradiated PIMs vs He+ ion fluence were observed with the ATR-FTIR analysis. Also, the SEM analysis of PIMs surfaces has revealed a porous texture, while the thermal analysis of annealed PIMs at 105°C has showed no significant changes of mass (∼1%) of the studied samples.

  11. Characterization of rheumatoid arthritis subtypes using symptom profiles, clinical chemistry and metabolomics measurements.

    Directory of Open Access Journals (Sweden)

    Herman A van Wietmarschen

    Full Text Available OBJECTIVE: The aim is to characterize subgroups or phenotypes of rheumatoid arthritis (RA patients using a systems biology approach. The discovery of subtypes of rheumatoid arthritis patients is an essential research area for the improvement of response to therapy and the development of personalized medicine strategies. METHODS: In this study, 39 RA patients are phenotyped using clinical chemistry measurements, urine and plasma metabolomics analysis and symptom profiles. In addition, a Chinese medicine expert classified each RA patient as a Cold or Heat type according to Chinese medicine theory. Multivariate data analysis techniques are employed to detect and validate biochemical and symptom relationships with the classification. RESULTS: The questionnaire items 'Red joints', 'Swollen joints', 'Warm joints' suggest differences in the level of inflammation between the groups although c-reactive protein (CRP and rheumatoid factor (RHF levels were equal. Multivariate analysis of the urine metabolomics data revealed that the levels of 11 acylcarnitines were lower in the Cold RA than in the Heat RA patients, suggesting differences in muscle breakdown. Additionally, higher dehydroepiandrosterone sulfate (DHEAS levels in Heat patients compared to Cold patients were found suggesting that the Cold RA group has a more suppressed hypothalamic-pituitary-adrenal (HPA axis function. CONCLUSION: Significant and relevant biochemical differences are found between Cold and Heat RA patients. Differences in immune function, HPA axis involvement and muscle breakdown point towards opportunities to tailor disease management strategies to each of the subgroups RA patient.

  12. Direct measurements of the effect of biomass burning over the Amazon on the atmospheric temperature profile

    Directory of Open Access Journals (Sweden)

    L. Remer

    2009-11-01

    Full Text Available Aerosols suspended in the atmosphere interact with solar radiation and clouds, thus change the radiation energy fluxes in the atmospheric column. In this paper we measure changes in the atmospheric temperature profile as a function of the smoke loading and the cloudiness, over the Amazon basin, during the dry seasons (August and September of 2005–2008. We show that as the aerosol optical depth (AOD increases from 0.02 to a value of ~0.6, there is a decrease of ~4°C at 1000 hPa, and an increase of ~1.5°C at 850 hPa. The warming of the aerosol layer at 850 hPa is likely due to aerosol absorption when the particles are exposed to direct illumination by the sun. The large values of cooling in the lower layers could be explained by a combination of aerosol extinction of the solar flux in the layers aloft together with an aerosol-induced increase of cloud cover which shade the lower atmosphere. We estimate that the increase in cloud fraction due to aerosol contributes about half of the observed cooling in the lower layers.

  13. Estimates of boundary layer parameters using measured wind and temperature profile near the ground

    Science.gov (United States)

    Popov, Z.; Rajkovic, B.

    2009-09-01

    In almost every application related to planetary boundary layer, PBL, two parameters are of the most relevance, "friction" velocity and PBL height. The first is connected to near surface processes, while the second one appears in the problems related to the whole BL or its substantial portions. One of the most famous parametrizations of the of the PBL height is h ~u*o- f. This paper looks into this formulation for different stability classes and mean daily variation of wind and these parameters, using the approach made by Holstlag (1984), to estimate diabatic wind profile where zo is independent of stability, but depends on wind direction. The second procedure used here is the one suggested by Kramm (1989), where zo is a function of stability and u*o depends on zo and L, the Monin-Obukhov length scale, and all of them, u_*o, zo and L, are simultaneously calculated through the least square method. From these parameters two methods for wind extrapolations with height are analyzed, Beljaars and Holstlag (1990), and Grining amd Batchvarova (2007). The wind data came form the Caubauw wind mast 1987, while the second set is wind and temperature gradient from the Panonian region, synoptic weather station 13168 near the city of Novi Sad, Serbia. Finally we analyze the difference between extrapolated and measured wind speed at Caubauw mast for different values of friction velocity, roughness length and Obukhov length.

  14. Measurement of Rapid Variations in Lower-Tropospheric Humidity Profiles Using Ground-Based Scanning Compact Microwave Radiometers

    Science.gov (United States)

    Sahoo, S.; Bosch-Lluis, X.; Reising, S. C.; Vivekanandan, J.

    2012-12-01

    Thermodynamic properties of the troposphere, particularly water vapor content and temperature, change in response to physical mechanisms, including frictional drag, evaporation, transpiration, heat transfer, pollutant emission and flow modification due to terrain. The planetary boundary layer (PBL) is characterized by a greater rate of change in the thermodynamic state of the atmosphere than at higher altitudes in the troposphere. Measurement of these changes, such as large horizontal gradients in water vapor and vertical profiles, provides very important data for improved weather prediction. Sensitivity studies for severe storm prediction indicate that a lack of accurate observations of water vapor densities throughout the lower troposphere limits the forecasting of severe storms. Therefore, measurements of water vapor density using microwave radiometers may help to improve accuracy of severe weather prediction. The HUMidity EXperiment 2011 (HUMEX11) was conducted to validate remote sensing of tropospheric humidity using ground-based scanning Compact Microwave Radiometers for Humidity profiling (CMR-H). Two microwave radiometers were scanned to sample an atmospheric volume at the U.S. Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility. Scientific objectives of HUMEX11 were to measure water vapor profiles in the lower troposphere with high vertical and temporal resolution and to track rapid variations in water vapor in the lowest 3 km of the troposphere. The principal reason for conducting the campaign at the SGP Climate Research Facility was the ability to compare the water vapor profile results with other measurements like ARM microwave radiometers and Raman lidar. The Raman lidar water vapor profiles were used as truth for comparison with the retrieved profiles. The study also focuses on optimizing the size of the background data set to minimize retrieval error as well as varying the

  15. Measurements and Mesoscale Modeling of Autumnal Vertical Ozone Profiles in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Yen-Ping Peng

    2008-01-01

    Full Text Available Vertical measurements of ozone were made using a tethered balloon at the Linyuan site in Kaohsiung County, southern Taiwan. Ozone was monitored at altitudes of 0, 100, 300, 500, and 1000 m from November 23 to 25 in 2005. The potential temperature profiles revealed a stable atmosphere during the study period, largely because of the dominance of the high-pressure system and nocturnal radiation cooling close to the surface. The mixing height was low (50 - 300 m, particularly in the late night and early morning. The surface ozone concentrations that were predicted using TAPM (The Air Pollution Model were high (33.7 - 119 ppbv in the daytime (10:00 - 16:00 and were low (10 - 40 ppbv at other times; the predictions of which were consistent with the observations. The simulated surface ozone concentrations reveal that costal lands typically had higher ozone concentrations than those inland, because most industrial parks are located in or close to the boundaries of Kaohsiung City. Both measurements and simulations indicate that daytime ozone concentrations decreased quickly with increasing height at altitudes below 300 m; while nighttime ozone concentrations were lower at low altitudes (50 to 300 m than at higher altitudes, partly because of dry deposition and titration of surface ozone by the near-surface nitrogen oxides (NOx and partly because of the existence of the residual layer above the stable nocturnal boundary layer. The simulations show a good correlation between the maximum daytime surface ozone concentration and average nighttime ozone concentration above the nocturnal boundary layer.

  16. Effects of soil amendment on gas depth profiles in soil monoliths using direct mass spectrometric measurement.

    Science.gov (United States)

    Sheppard, S K; Lloyd, D

    2002-08-01

    Land use and agricultural practices are known to influence the source and sink concentrations of various gases, including greenhouse gases (NOx CH4 and CO2). in soils. With everincreasing production of domestic sewage sludge and the prohibition of disposal at sea, pressure on waste disposal increases. Anaerobically digested domestic sewage sludge and/or lime were applied to an upland. Scottish soil and their effects on gas depth profiles monitored as indicators of microbial processes of the soil ecosystem. The concentrations of various gases (Ar, O2. CO2, CH4, N2, NOx) were measured simultaneously at each depth using membrane inlet mass spectrometry (MIMS). This technique enables the direct measurement of multiple gas species throughout soil cores with minimal disturbance. Intact soil monoliths were collected from the sample site, following amendment, and maintained in a constant temperature, environmental growth chambers. Statistical analyses (one-way ANOVA and LSD tests) were conducted to identify the depths at which gas concentrations in amended cores were significantly different from those in control (un-amended) cores. Significant effects were observed on the concentration of CO2, CH4, NOx and N2 at certain depths. Average CH4 concentration was consistently higher (>1 microM) in the upper horizon following application of sludge and sludge and lime together. N2 and NOx concentrations were elevated in cores treated with lime by approximately 100 and 32 microM. respectively, in much of the upper horizon. CO2 concentration increased above control mean values, at certain depths, following application of either sludge or lime. Some explanation for the changes in soil gas concentration was provided by reference to the microorganism assemblages and the gases associated with biochemistry of nitrification, denitrification, methane oxidation and methanogenesis.

  17. In situ measurements of X-ray peak profile asymmetry from individual grains

    DEFF Research Database (Denmark)

    Wejdemann, Christian; Lienert, U.; Pantleon, Wolfgang

    2010-01-01

    Two copper samples, pre-deformed in tension to 5% plastic strain, are subjected to an in situ tensile deformation of 1% plastic strain while X-ray peak profiles from individual bulk grains are obtained. One sample is oriented with the in situ tensile axis parallel to the pre-deformation axis......, and peak profiles are obtained with the scattering vector parallel to this direction. The profiles show the expected asymmetry explained by the composite model as caused by intra-grain stresses. The other sample is oriented with the in situ tensile axis perpendicular to the pre-deformation axis, and peak...... profiles are obtained with the scattering vector parallel to the in situ tensile axis. In this case the profiles initially show an opposite asymmetry, but during the in situ deformation the asymmetry reverses sign as the deformation under new loading conditions leads to changes in the intra-grain stresses....

  18. Three-dimensional profile measurement of micro-electro-mechanical systems structures based on infrared light reflection interference

    Science.gov (United States)

    Shi, Jianhua; Han, Bingchen

    2017-11-01

    A new method of measuring the three-dimensional (3D) profile of micro-electro-mechanical systems (MEMS) structures based on infrared light reflection interference is developed in this paper. The application of reflection interference technology in a 3D profile reconstruction is extended from white light to infrared light. The measurement system comprised an infrared light source, an interference microscope, an infrared light charge-coupled device, a ceramic piezo and a data acquisition system. The 3D profile of the MEMS device structures was obtained by vertical scanning interferometry and it is consistent with the scanning electron microscope image. The results indicate that the lateral resolution is 0.18 um and the vertical resolution is 1 nm.

  19. a Compact Dial LIDAR for Ground-Based Ozone Atmospheric Profiling Measurements

    Science.gov (United States)

    De Young, R.; Carrion, W.; Pliutau, D.; Ganoe, R. E.

    2013-12-01

    ozone profiles from 100 to 200-m above ground. To obtain an ozone atmospheric measurement, the transmitter sends a laser pulse into the atmosphere at alternating on-line and off-line wavelengths (500Hz each line). The 527-nm green laser output is always transmitted giving a return from atmospheric aerosols. Examples of ozone profiles in the Hampton Roads region of Virginia will be presented. The system has been configured to enable mobile operation from a trailer which is environmentally controlled, and is towed with a truck to sites that are equipped with power. The objective is to make the system mobile such that it can be setup at remote sites to support major air quality field campaigns.

  20. Relations Between the Intelligibility of Speech in Noise and Psychophysical Measures of Hearing Measured in Four Languages Using the Auditory Profile Test Battery

    NARCIS (Netherlands)

    van Esch, T. E. M.; Dreschler, W. A.

    2015-01-01

    The aim of the present study was to determine the relations between the intelligibility of speech in noise and measures of auditory resolution, loudness recruitment, and cognitive function. The analyses were based on data published earlier as part of the presentation of the Auditory Profile, a test

  1. Risø 1978: Further Investigations into the Effects of Local Terrain Irregularties on Tower-Measured Wind Profiles

    DEFF Research Database (Denmark)

    Peterson, E. W.; Taylor, P. A.; Højstrup, Jørgen

    1980-01-01

    Observations of flow over complex terrain taken at Risø during June–July 1978 and numerical studies confirm earlier findings that small variations in surface elevation have significant effects on mean wind profiles. Measured shear stresses in the nonequilibrium region of the flow are consistent w...

  2. Relations Between the Intelligibility of Speech in Noise and Psychophysical Measures of Hearing Measured in Four Languages Using the Auditory Profile Test Battery

    OpenAIRE

    Esch, T.E.M. van; Dreschler, W. A.

    2015-01-01

    The aim of the present study was to determine the relations between the intelligibility of speech in noise and measures of auditory resolution, loudness recruitment, and cognitive function. The analyses were based on data published earlier as part of the presentation of the Auditory Profile, a test battery implemented in four languages. Tests of the intelligibility of speech, resolution, loudness recruitment, and lexical decision making were measured using headphones in five centers: in Germa...

  3. A quantitative measure of the structure of gamma-ray burst time profiles

    Science.gov (United States)

    Lestrade, John P.; Fishman, G.; Horack, J.; Meegan, C.; Moore, P.; Paciesas, W.; Wilson, R.

    1992-01-01

    A cursory examination of cosmic gamma-ray burst time profiles indicates an inhomogeneous distribution of structure. In the first approximation, there seem to be two types of profiles; smooth ones with little structure and highly variable ones with lots of structure. To put this observation to the test, we have examined the statistical nature of the profile derivative to choose which parameter might best be called the burst 'spikiness'. We have found that a good estimator is given by a count of the number of 'spikes' (defined by a specific numerical recipe) and not by the rms deviations from either a pre-burst background or any type of moving average background. The application of this parameter to 30 burst time histories shows it to be consistent over a wide range of profile types. The analysis also reveals a preferred average time between spikes of approximately 1.5 seconds.

  4. Do Students with Dyslexia Have a Different Personality Profile as Measured with the Big Five?

    National Research Council Canada - National Science Library

    Tops, Wim; Verguts, Ellen; Callens, Maaike; Brysbaert, Marc

    2013-01-01

    ...(s): To obtain empirical evidence, we compared the personality profile of a group of 100 Dutch-speaking students with dyslexia with that of a control group of 100 students without learning disabilities. Methods...

  5. Measuring currents in a coastal inlet by advection of turbulent eddies in airborne optical imagery

    Science.gov (United States)

    Dugan, J. P.; Piotrowski, C. C.

    2012-03-01

    Water current vector fields in a coastal inlet are retrieved from temporal sequences of optical imagery collected from an aircraft, the velocity being calculated by tracking modulations in the radiance from the surface. The modulations are shown to be consistent with an advecting passive tracer in turbulent flow, leading to the physical mechanism for this signature being turbulent eddies in the flow. The intensity modulations are hypothesized to be light scattered from variations in the sediment load being transported by these turbulent eddies, although other imaging mechanisms such as surface roughness variations may be occurring as well. Supporting evidence is the prevalence of the signature in sediment-laden, nearshore flows along an exposed coast and through a tidal inlet and eddy-like variations in the echo intensity of acoustic Doppler current profilers (ADCPs). Also, the 3-D frequency-wave number spectrum of mapped image sequence data exhibits a classic shape that is consistent with surface turbulence generation by boils and subsequent mixing and advection by eddies in shallow channels. The velocity vector is retrieved by the geometry obtained in the least squares fit of a 2-D planar surface representing advective variance in the 3-D spectrum. These retrievals agree within 15 cm/s root-mean-square (RMS) with concurrent ADCP measurements and within 2 cm/s RMS of measurements of the Doppler shift of surface gravity waves that also are present in the data. The method provides an important new capability for measuring currents over large areas of the littorals, specifically including locations where waves are not present and visible variations in radiance from the water often are not strong.

  6. Using Principal Component and Tidal Analysis as a Quality Metric for Detecting Systematic Heading Uncertainty in Long-Term Acoustic Doppler Current Profiler Data

    Science.gov (United States)

    Morley, M. G.; Mihaly, S. F.; Dewey, R. K.; Jeffries, M. A.

    2015-12-01

    Ocean Networks Canada (ONC) operates the NEPTUNE and VENUS cabled ocean observatories to collect data on physical, chemical, biological, and geological ocean conditions over multi-year time periods. Researchers can download real-time and historical data from a large variety of instruments to study complex earth and ocean processes from their home laboratories. Ensuring that the users are receiving the most accurate data is a high priority at ONC, requiring quality assurance and quality control (QAQC) procedures to be developed for all data types. While some data types have relatively straightforward QAQC tests, such as scalar data range limits that are based on expected observed values or measurement limits of the instrument, for other data types the QAQC tests are more comprehensive. Long time series of ocean currents from Acoustic Doppler Current Profilers (ADCP), stitched together from multiple deployments over many years is one such data type where systematic data biases are more difficult to identify and correct. Data specialists at ONC are working to quantify systematic compass heading uncertainty in long-term ADCP records at each of the major study sites using the internal compass, remotely operated vehicle bearings, and more analytical tools such as principal component analysis (PCA) to estimate the optimal instrument alignments. In addition to using PCA, some work has been done to estimate the main components of the current at each site using tidal harmonic analysis. This paper describes the key challenges and presents preliminary PCA and tidal analysis approaches used by ONC to improve long-term observatory current measurements.

  7. Residual stress profiles in veneering ceramic on Y-TZP, alumina and ZTA frameworks: measurement by hole-drilling.

    Science.gov (United States)

    Fukushima, K A; Sadoun, M J; Cesar, P F; Mainjot, A K

    2014-02-01

    The residual stress profile developed within the veneering ceramic during the manufacturing process is an important predicting factor in chipping failures, which constitute a well-known problem with yttria-tetragonal-zirconia polycrystal (Y-TZP) based restorations. The objectives of this study are to measure and to compare the residual stress profile in the veneering ceramic layered on three different polycrystalline ceramic framework materials: Y-TZP, alumina polycrystal (AL) and zirconia toughened alumina (ZTA). The stress profile was measured with the hole-drilling method in bilayered disk samples of 19 mm diameter with a 0.7 mm thick Y-TZP, AL or ZTA framework and a 1.5mm thick layer of the corresponding veneering ceramic. The AL samples exhibited increasing compressive stresses with depth, while compressive stresses switching into interior tensile stresses were measured in Y-TZP samples. ZTA samples exhibited compressive stress at the ceramic surface, decreasing with depth up to 0.6mm from the surface, and then becoming compressive again near the framework. Y-TZP samples exhibited a less favorable stress profile than those of AL and ZTA samples. Results support the hypothesis of the occurrence of structural changes within the Y-TZP surface in contact with the veneering ceramic to explain the presence of tensile stresses. Even if the presence of Y-TZP in the alumina matrix seems to negatively affect the residual stress profiles in ZTA samples in comparison with AL samples, the registered profiles remain positive in terms of veneer fracture resistance. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Potential of fermentation profiling via rapid measurement of amino acid metabolism by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Dalluge, Joseph J; Smith, Sean; Sanchez-Riera, Fernando; McGuire, Chris; Hobson, Russell

    2004-07-16

    Monitoring amino acid metabolism during fermentation has significant potential from the standpoint of strain selection, optimizing growth and production in host strains, and profiling microbial metabolism and growth state. A method has been developed based on rapid quantification of underivatized amino acids using liquid chromatography-electrospray tandem mass spectrometry (LC-MS-MS) to monitor the metabolism of 20 amino acids during microbial fermentation. The use of a teicoplanin-based chiral stationary phase coupled with electrospray tandem mass spectrometry allows complete amino acid analyses in less than 4 min. Quantification is accomplished using five isotopically labeled amino acids as internal standards. Because comprehensive chromatographic separation and derivatization are not required, analysis time is significantly less than traditional reversed- or normal-phase LC-based amino acid assays. Intra-sample precisions for amino acid measurements in fermentation supernatants using this method average 4.9% (R.S.D.). Inter-day (inter-fermentation) precisions for individual amino acid measurements range from 4.2 to 129% (R.S.D.). Calibration curves are linear over the range 0-300 microg/ml, and detection limits are estimated at 50-450 ng/ml. Data visualization techniques for constructing semi-quantitative fermentation profiles of nitrogen source utilization have also been developed and implemented, and demonstrate that amino acid profiles generally correlate with observed growth profiles. Further, cellular growth events, such as lag-time and cell lysis can be detected using this methodology. Correlation coefficients for the time profiles of each amino acid measured illustrate that while several amino acids are differentially metabolized in similar fermentations, a select group of amino acids display strong correlations in these samples, indicating a sub-population of analytes that may be most useful for fermentation profiling.

  9. CO{sub 2} laser diagnostics for measurements of the plasma density profile and plasma density fluctuations on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Vyacheslavov, L.N. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Tanaka, K.; Kawahata, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-04-01

    A CO{sub 2} laser based diagnostics complimentary to the existing FIR interferometer is proposed. It combines interferometry for plasma density profile measurement under conditions of large density gradients, and both imaging and scattering techniques for observation of plasma fluctuations. Two-colour interferometer with a slablike probe beam and a single multichannel linear detector array provide observation of plasma density profile and density fluctuations at two locations along the probe beam. Basic characteristics of the diagnostics are considered as well as some effects that include dispersion and are critical for two colour imaging technique. The results of the bench-top experiments with the prototype of the interferometer are presented. (author)

  10. Accuracy Improvement of Discharge Measurement with Modification of Distance Made Good Heading

    Directory of Open Access Journals (Sweden)

    Jongkook Lee

    2016-01-01

    Full Text Available Remote control boats equipped with an Acoustic Doppler Current Profiler (ADCP are widely accepted and have been welcomed by many hydrologists for water discharge, velocity profile, and bathymetry measurements. The advantages of this technique include high productivity, fast measurements, operator safety, and high accuracy. However, there are concerns about controlling and operating a remote boat to achieve measurement goals, especially during extreme events such as floods. When performing river discharge measurements, the main error source stems from the boat path. Due to the rapid flow in a flood condition, the boat path is not regular and this can cause errors in discharge measurements. Therefore, improvement of discharge measurements requires modification of boat path. As a result, the measurement errors in flood flow conditions are 12.3–21.8% before the modification of boat path, but 1.2–3.7% after the DMG modification of boat path. And it is considered that the modified discharges are very close to the observed discharge in the flood flow conditions. In this study, through the distance made good (DMG modification of the boat path, a comprehensive discharge measurement with high accuracy can be achieved.

  11. [Objective measures for setting the processors of cochlear implant systems : Use of discrimination functions and consideration of electrode profiles].

    Science.gov (United States)

    Hoth, S; Herisanu, I; Praetorius, M

    2016-12-01

    When setting the electrical stimulation level of cochlear implants during individual adjustment of the speech processor, especially in children, objective measures such as intracochlearly measured electrically evoked compound action potentials (eCAP) and intraoperative observation of electrically elicited stapedial reflexes (eSR) are indispensable. The benefit of these objective measures is based on the correlation between the derived response thresholds and psychometric data. The amplitude growth functions of eCAPs were measured intraoperatively for all electrodes in 30 ears of adult patients. The stimulus-dependent incidence of observable eSRs was recorded for all electrodes in 16 ears of adult patients. For evaluation of the data, new algorithms were applied which allowed the determination of thresholds without intervention of the investigator. Essential features were the conversion of observations into binary variables, and the consideration of logistic discrimination functions and their exceedance of a numeric threshold criterion. Regarding the eCAP data, closer and significant correlations are observed between objective thresholds and psychometric measures in comparison to conventional procedures. Profiles are more efficient than pooled data. Significant correlations are also observed for eSR thresholds, albeit to a lesser extent and without an evident difference between profiles and pooled data. Considering the by no means consistent international literature, the results illustrate the need for a consistent definition of response thresholds and the consideration of electrode profiles.

  12. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles.

    Science.gov (United States)

    Reges, José E O; Salazar, A O; Maitelli, Carla W S P; Carvalho, Lucas G; Britto, Ursula J B

    2016-07-13

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved.

  13. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    Directory of Open Access Journals (Sweden)

    José E. O. Reges

    2016-07-01

    Full Text Available This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1; 10.47% and 9.88% (for injection zone 2. Therefore, the methodology was successfully validated and all objectives of this work were achieved.

  14. Cross-shore profile and coastline changes of a sandy beach in Pieria, Greece, based on measurements and numerical simulation

    Directory of Open Access Journals (Sweden)

    A.M. PROSPATHOPOULOS

    2004-06-01

    Full Text Available In the present work, the changes of cross-shore profile and the coastline of a sandy beach in Pieria, Greece, are studied by using topographic profiles, sediment analysis and a numerical simulation model. The work is motivated by the considerable erosion problems caused to an extended portion of the coast north of the studied area due to the construction of a craft shelter, and its scope is two-fold: to help in understanding the dynamics of the beach based on results of the field work and to proceed a step further, studying the responses of this beach by numerical simulation, utilizing the topographic and sediment field data and measured wave data. The study of the cross-shore profiles, as well as the sediment analysis of the samples obtained along the profiles, revealed the morphological features of the coast under study and provided information concerning the dynamic zones in each profile. The sediment grain size reduces from south to north, following the direction of the longshore currents generated in the area. The results of the numerical simulation concerning the coastline evolution are found to be in agreement with the qualitative estimations and visual observations of existing coastal changes to the broader area.

  15. Measurements of the vertical profile of water vapor abundance in the Martian atmosphere from Mars Observer

    Science.gov (United States)

    Schofield, J. T.; Mccleese, Daniel J.

    1988-01-01

    An analysis is presented of the Pressure Modulator Infrared Radiometer (PMIRR) capabilities along with how the vertical profiles of water vapor will be obtained. The PMIRR will employ filter and pressure modulation radiometry using nine spectral channels, in both limb scanning and nadir sounding modes, to obtain daily, global maps of temperature, dust extinction, condensate extinction, and water vapor mixing ratio profiles as a function of pressure to half scale height or 5 km vertical resolution. Surface thermal properties will also be mapped, and the polar radiactive balance will be monitored.

  16. Investigation of Flux-Linkage Profile Measurement Methods for Switched-Reluctance Motors and Permanent-Magnet Motors

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2009-01-01

    Knowledge of actual flux linkage versus current profiles plays an important role in design verification and performance prediction for switched reluctance motors (SRM's) and permanent magnet motors (PMM's). Various measurement methods have been proposed and discussed so far but each method has its...... the described AC method on an SRM and on a PM motor. For these two motors, the measured flux-linkage-current curves are compared to those measured using other methods. The comparison results show good effectiveness of the proposed AC method for both the SRM and the PM motor....

  17. Effects of Zinc Supplementation on the Anthropometric Measurements, Lipid Profiles and Fasting Blood Glucose in the Healthy Obese Adults

    Directory of Open Access Journals (Sweden)

    Sepide Mahluji

    2013-02-01

    Full Text Available Purpose: The aim of this study was to assess the effects of zinc supplementation on anthropometric measures, improving lipid profile biomarkers, and fasting blood glucose level in obese people. Methods: This randomized, double- blind clinical trial was carried out on 60 obese participants in the 18-45 age range for one month. The participants were randomly divided into the intervention group, who received 30 mg/d zinc gluconate, and the placebo group who received 30mg/d starch. Anthropometric measurements (body mass index (BMI, weight and waist circumference were recorded before and at the end of study. Lipid profile biomarkers and fasting blood glucose were determined using enzymatic procedure. Analysis of Covariance (ANCOVA test was run to compare the post-treatment values of the two groups, and t-test was conducted to compare within group changes. Results: Serum zinc concentration was increased significantly in intervention group (p=0.024. BMI and body weight was significantly decreased (p=0.030 and p=0.020, respectively. Lipid profile biomarkers and fating blood glucose did not change significantly but triglyceride level was significantly decreased (p=0.006 in the intervention group. Conclusion: The obtained results indicate that zinc supplementation improves BMI, body weight, and triglyceride concentration without considerable effects on lipid profile and glucose level. Zinc can be suggested as a suitable supplementation therapy for obese people, but more studies are needed to verify the results.

  18. A Study of the Location of the Entrance of a Fishway in a Regulated River with CFD and ADCP

    Directory of Open Access Journals (Sweden)

    Anders G. Andersson

    2012-01-01

    Full Text Available Simulation-driven design with computational fluid dynamics has been used to evaluate the flow downstream of a hydropower plant with regards to upstream migrating fish. Field measurements with an Acoustic Doppler Current Profiler were performed, and the measurements were used to validate the simulations. The measurements indicate a more unstable flow than the simulations, and the tailrace jet from the turbines is stronger in the simulations. A fishway entrance was included in the simulations, and the subsequent attraction water was evaluated for two positions and two angles of the entrance at different turbine discharges. Results show that both positions are viable and that a position where the flow from the fishway does not have to compete with the flow from the power plant will generate superior attraction water. Simulations were also performed for further downstream where the flow from the turbines meets the old river bed which is the current fish passage for upstream migrating fish. A modification of the old river bed was made in the model as one scenario to generate better attraction water. This considerably increases the attraction water although it cannot compete with the flow from the tailrace tunnel.

  19. Analysis of the Effect of Environmental Conditions in Conducting Amphibious Assaults Using a Ship Simulator/Vessel-Response Model Proof-of-Concept Study

    Science.gov (United States)

    2017-05-01

    ADCP -measured gyre. ........................................... 31 Figure 25. Tidal current on 11 August 2006 at 16:15 Zulu...miles 2.59 square kilometers ERDC/CHL TR-17-4 x Acronyms AAV Assault Amphibious Vehicles ADCP Acoustic Doppler Current Profiler ADCRIC...gyres were compared to those measured with Acoustic Doppler Current Profilers ( ADCP ) sensor during field surveys. 5.5.2 Harmonic analysis A harmonic

  20. Repeated surveys by acoustic Doppler current profiler for flow and sediment dynamics in a tidal river

    Science.gov (United States)

    Dinehart, R. L.; Burau, J. R.

    2005-11-01

    A strategy of repeated surveys by acoustic Doppler current profiler (ADCP) was applied in a tidal river to map velocity vectors and suspended-sediment indicators. The Sacramento River at the junction with the Delta Cross Channel at Walnut Grove, California, was surveyed over several tidal cycles in the Fall of 2000 and 2001 with a vessel-mounted ADCP. Velocity profiles were recorded along flow-defining survey paths, with surveys repeated every 27 min through a diurnal tidal cycle. Velocity vectors along each survey path were interpolated to a three-dimensional Cartesian grid that conformed to local bathymetry. A separate array of vectors was interpolated onto a grid from each survey. By displaying interpolated vector grids sequentially with computer animation, flow dynamics of the reach could be studied in three-dimensions as flow responded to the tidal cycle. Velocity streamtraces in the grid showed the upwelling of flow from the bottom of the Sacramento River channel into the Delta Cross Channel. The sequential display of vector grids showed that water in the canal briefly returned into the Sacramento River after peak flood tides, which had not been known previously. In addition to velocity vectors, ADCP data were processed to derive channel bathymetry and a spatial indicator for suspended-sediment concentration. Individual beam distances to bed, recorded by the ADCP, were transformed to yield bathymetry accurate enough to resolve small bedforms within the study reach. While recording velocity, ADCPs also record the intensity of acoustic backscatter from particles suspended in the flow. Sequential surveys of backscatter intensity were interpolated to grids and animated to indicate the spatial movement of suspended sediment through the study reach. Calculation of backscatter flux through cross-sectional grids provided a first step for computation of suspended-sediment discharge, the second step being a calibrated relation between backscatter intensity and sediment

  1. Gem Detectors For the Transverse Profile Measurement of Low Energy Antiprotons and High Energy Hadrons

    CERN Document Server

    Spanggaard, J; Duarte Pinto, S; Tranquille, G

    2013-01-01

    Gas Electron Multipliers (GEM) are finding more and more applications in beam instrumentation. Gas Electron Multiplication is a very similar physical phenomenon to that which occurs in Multi Wire Proportional Chambers (MWPC), but for small profile monitors GEMs are much more cost effective to produce and maintain. \

  2. One Year of Vertical Wind Profiles Measurements at a Mediterranean Coastal Site of South Italy

    DEFF Research Database (Denmark)

    Calidonna, Claudia Roberta; Gullì, Daniel; Avolio, Elenio

    2015-01-01

    To exploit wind energy both onshore and offshore in coastal area the effect of the coastal discontinuity is important. The shape of the vertical wind profiles and the related c parameter of the Weibull distribution are impacted by the atmospheric internal boundary layers developing from the coast...

  3. Density profile evolution and nonequilibrium effects in partial and full spreading measurements of surface diffusion

    DEFF Research Database (Denmark)

    Nikunen, P.; Vattulainen, Ilpo Tapio; Ala-Nissila, T.

    2001-01-01

    (theta) to determine the locations of phase boundaries and find such data to be clearly time dependent during full spreading. We conclude that nonequilibrium effects seem to be an inherent feature in profile evolution studies of surface diffusion in all cases where ordering plays a prominent role. This warrants...

  4. MEASURING QUALITY-OF-LIFE WITH THE SICKNESS IMPACT PROFILE - A PILOT-STUDY

    NARCIS (Netherlands)

    HULSEBOS, RG; BELTMAN, FW; MIRANDA, DD; SPANGENBERG, JFA

    1991-01-01

    A pilot-study was done to investigate the applicability of the sickness impact profile (SIP) in ex-ICU patients. For this study 221 consecutively admitted patients were reviewed retrospectively after excluding children, deceased patients and readmissions. SIP was assessed in these patients by either

  5. Methodology for extraction of space charge density profiles at nanoscale from Kelvin probe force microscopy measurements

    Science.gov (United States)

    Villeneuve-Faure, C.; Boudou, L.; Makasheva, K.; Teyssedre, G.

    2017-12-01

    To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson’s equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.

  6. Nottingham health profile a reliable tool to measure quality of life of ...

    African Journals Online (AJOL)

    The objective of this study is to determine if Nottingham Health Profile (NHP) can be a useful tool in the Philippines. Eighty patients undergoing hemodialysis in the dialysis unit of our hospital were enrolled for this study. Sixty-nine patients completed the study. Comparative analysis revealed significant difference in social ...

  7. Methodology for extraction of space charge density profiles at nanoscale from Kelvin probe force microscopy measurements.

    Science.gov (United States)

    Villeneuve-Faure, C; Boudou, L; Makasheva, K; Teyssedre, G

    2017-12-15

    To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson's equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.

  8. Measurement of radius of curvature of spherical optical surfaces with small curvature and aperture by optical profiler

    Science.gov (United States)

    Ma, Shuang; Yi, Shengzhen; Chen, Shenghao; Wang, Zhanshan

    2014-11-01

    Monochromatic energy multilayer Kirkpatrick-Baez microscope is one of key diagnostic tools for researches on inertial confinement fusion. It is composed by two orthogonal concave spherical mirrors with small curvature and aperture, and produce the image of an object by collecting X-rays in each orthogonal direction, independently. Accurate measurement of radius of curvature of concave spherical mirrors is very important to achieve its design optical properties including imaging quality, optical throughput and energy resolution. However, it is difficult to measure the radius of curvature of spherical optical surfaces with small curvature and aperture by conventional methods, for the produced reflective intensity of glass is too low to correctly test. In this paper, we propose an improved measuring method of optical profiler to accomplish accurate measurement of radius of curvature of spherical optical surfaces with small curvature and aperture used in the monochromatic energy multilayer Kirkpatrick-Baez microscope. Firstly, we use a standard super-smooth optical flat to calibrate reference mirror before each experiment. Following, deviation of central position between measurement area and interference pattern is corrected by the theory of Newton's rings, and the zero-order fringe position is derived from the principle of interference in which surface roughness has minimum values in the position of zero light path difference. Measured results by optical profiler show the low relative errors and high repeatability. Eventually, an imaging experiment of monochromatic energy multilayer Kirkpatrick-Baez microscope determines the measurement accuracy of radius of curvature.

  9. Direct Detection 1.6?m DIAL / Doppler Lidar for Measurements of CO2 Concentration and Wind Profiles (Invited)

    Science.gov (United States)

    Shibata, Y.; Nagasawa, C.; Abo, M.

    2013-12-01

    Knowledge of present carbon sources and sinks including their spatial distribution and their variation in time is one of the essential information for predicting future CO2 atmospheric concentration levels. Moreover, wind information is an important parameter for transport simulations and inverse estimation of surface CO2 flux. The differential absorption lidar (DIAL) and the Doppler wind lidar with the range resolution is expected to measure atmospheric CO2 profiles and wind profiles in the atmospheric boundary layer and lower troposphere from a ground platform. We have succeeded to develop a scanning 1.6 μm DIAL and incoherent Doppler lidar system for simultaneously measuring CO2 concentration and wind speed profiles. Our 1.6 μm DIAL system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd: YAG laser with high repetition rate (500 Hz) and the receiving optics that included the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detect a Doppler shift, and a 25 cm telescope [1] [2]. We had developed an optical parametric oscillator (OPO) system for 1.6 μm CO2 DIAL[3]. To achieve continuous tuning of the resonant OPO output without mode hopping, it is necessary to vary the OPO cavity length synchronously with the seed-frequency. On the other hand, the OPG does not require a cavity and instead rely on sufficient conversion efficiency to be obtained with a single pass through the crystal. The single-frequency oscillation of the OPG was achieved by injection seeding. The CO2-DIAL was operated with the range-height indicator (RHI) mode, and the 2-D measurement provided inhomogeneity in the boundary layer. Vertical CO2 concentration profiles and wind profiles were also measured simultaneously. The elevation angle was fixed at 52 deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m height resolution. Vertical

  10. Improved density profile measurements in the C-2U advanced beam-driven Field-Reversed Configuration (FRC) plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Beall, M., E-mail: mbeall@trialphaenergy.com; Deng, B. H.; Gota, H. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    In the prior C-2 experiment, electron density was measured using a two-color 6-chord CO{sub 2}/HeNe interferometer. Analysis shows that high-frequency common mode phase noise can be reduced by a factor of 3 by constructing a reference chord. In the system upgrade from C-2 to C-2U a 4-chord far-infrared laser interferometer was developed, which demonstrated superior sensitivity (1 × 10{sup 16} m{sup −2} at >1 MHz bandwidth) and solved the under spatial sampling issue of the C-2 interferometer system. Improved density-profile measurement results are presented in this paper, including evidence of fast-ion modified density profile and stabilization of the n = 1 plasma wobble mode.

  11. Improved density profile measurements in the C-2U advanced beam-driven Field-Reversed Configuration (FRC) plasmas

    Science.gov (United States)

    Beall, M.; Deng, B. H.; Gota, H.

    2016-11-01

    In the prior C-2 experiment, electron density was measured using a two-color 6-chord CO2/HeNe interferometer. Analysis shows that high-frequency common mode phase noise can be reduced by a factor of 3 by constructing a reference chord. In the system upgrade from C-2 to C-2U a 4-chord far-infrared laser interferometer was developed, which demonstrated superior sensitivity (1 × 1016 m-2 at >1 MHz bandwidth) and solved the under spatial sampling issue of the C-2 interferometer system. Improved density-profile measurement results are presented in this paper, including evidence of fast-ion modified density profile and stabilization of the n = 1 plasma wobble mode.

  12. An innovative rotational Raman lidar to measure the temperature profile from the surface to 30 km altitude

    Directory of Open Access Journals (Sweden)

    Hauchecorne Alain

    2016-01-01

    Full Text Available A concept of innovative rotational Raman lidar with daylight measurement capability is proposed to measure the vertical profile of temperature from the ground to the middle stratosphere. The optical filtering is made using a Fabry-Pérot Interferometer with line spacing equal to the line spacing of the Raman spectrum. The detection is made using a linear PMT array operated in photon counting mode. We plan to build a prototype and to test it at the Haute-Provence Observatory lidar facility. to achieve a time resolution permitting the observation of small-scale atmospheric processes playing a role in the troposphere-stratosphere interaction as gravity waves. If successful, this project will open the possibility to consider a Raman space lidar for the global observation of atmospheric temperature profiles.

  13. Improved density profile measurements in the C-2U advanced beam-driven Field-Reversed Configuration (FRC) plasmas.

    Science.gov (United States)

    Beall, M; Deng, B H; Gota, H

    2016-11-01

    In the prior C-2 experiment, electron density was measured using a two-color 6-chord CO2/HeNe interferometer. Analysis shows that high-frequency common mode phase noise can be reduced by a factor of 3 by constructing a reference chord. In the system upgrade from C-2 to C-2U a 4-chord far-infrared laser interferometer was developed, which demonstrated superior sensitivity (1 × 1016 m-2 at >1 MHz bandwidth) and solved the under spatial sampling issue of the C-2 interferometer system. Improved density-profile measurement results are presented in this paper, including evidence of fast-ion modified density profile and stabilization of the n = 1 plasma wobble mode.

  14. Surface layer and bloom dynamics observed with the Prince William Sound Autonomous Profiler

    Science.gov (United States)

    Campbell, R. W.

    2016-02-01

    As part of a recent long term monitoring effort, deployments of a WETLabs Autonomous Moored Profiler (AMP) began Prince William Sound (PWS) in 2013. The PWS AMP consists of a positively buoyant instrument frame, with a winch and associated electronics that profiles the frame from a park depth (usually 55 m) to the surface by releasing and retrieving a thin UHMWPE tether; it generally conducts a daily cast and measures temperature, salinity, chlorophyll-a fluorescence, turbidity, and oxygen and nitrate concentrations. Upward and downward looking ADCPs are mounted on a float below the profiler, and an in situ plankton imager is in development and will be installed in 2016. Autonomous profilers are a relatively new technology, and early deployments experienced a number of failures from which valuable lessons may be learned. Nevertheless, an unprecedented time series of the seasonal biogeochemical procession in the surface waters coastal Gulf of Alaska was collected in 2014 and 2015. The northern Gulf of Alaska has experienced a widespread warm anomaly since early 2014, and surface layer temperature anomalies in PWS were strongly positive during winter 2014. The spring bloom observed by the profiler began 2-3 weeks earlier than average, with surface nitrate depleted by late April. Although surface temperatures were still above average in 2015, bloom timing was much later, with a short vigorous bloom in late April and a subsurface bloom in late May that coincided with significant nitrate drawdown. As well as the vernal blooms, wind-driven upwelling events lead to several small productivity pulses that were evident in changes in nitrate and oxygen concentrations, and chlorophyll-a fluorescence. As well as providing a mechanistic understanding of surface layer biogeochemistry, high frequency observations such as these put historical observations in context, and provide new insights into the scales of variability in the annual cycles of the surface ocean in the North

  15. GIS-measured walkability, transit, and recreation environments in relation to older Adults' physical activity: A latent profile analysis.

    Science.gov (United States)

    Todd, Michael; Adams, Marc A; Kurka, Jonathan; Conway, Terry L; Cain, Kelli L; Buman, Matthew P; Frank, Lawrence D; Sallis, James F; King, Abby C

    2016-12-01

    An infrequently studied question is how diverse combinations of built environment (BE) features relate to physical activity (PA) for older adults. We derived patterns of geographic information systems- (GIS) measured BE features and explored how they accounted for differences in objective and self-reported PA, sedentary time, and BMI in a sample of older adults. Senior Neighborhood Quality of Life Study participants (N=714, aged 66-97years, 52.1% women, 29.7% racial/ethnic minority) were sampled in 2005-2008 from the Seattle-King County, WA and Baltimore, MD-Washington, DC regions. Participants' home addresses were geocoded, and net residential density, land use mix, retail floor area ratio, intersection density, public transit density, and public park and private recreation facility density measures for 1-km network buffers were derived. Latent profile analyses (LPAs) were estimated from these GIS-based measures. In multilevel regression models, profiles were compared on accelerometer-measured moderate-to-vigorous PA (MVPA) and sedentary time and self-reported PA, adjusting for covariates and clustering. Analyses were conducted in 2014-2015. LPAs yielded three profiles: low walkability/transit/recreation (L-L-L); mean walkability/transit/recreation (M-M-M); and high walkability/transit/recreation (H-H-H). Three PA outcomes were more favorable in the HHH than the LLL profile group (difference of 7.2min/day for MVPA, 97.8min/week for walking for errands, and 79.2min/week for walking for exercise; all pswalkability index, suggesting that diverse BE features are important for healthy aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Influence of thermal expansion mismatch on residual stress profile in veneering ceramic layered on zirconia: Measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Najjar, Achref; Jakubowicz-Kohen, Boris D; Sadoun, Michaël J

    2015-09-01

    Mismatch in thermal expansion coefficient between core and veneering ceramic (Δα=αcore-αveneer, ppm/°C) is reported as a crucial parameter influencing veneer fractures with Yttria-tetragonal-zirconia-polycrystal (Y-TZP) prostheses, which still constitutes a misunderstood problem. However, the common positive Δα concept remains empirical. The objective of this study is to investigate the Δα dependence of residual stress profiles in veneering ceramic layered on Y-TZP frameworks. The stress profile was measured with the hole-drilling method in bilayered disc samples of 20mm diameter with a 0.7mm thick Y-TZP framework and a 1.5mm thick veneer layer. 3 commercial and 4 experimental veneering ceramics (n=3 per group) were used to obtain different Δα varying from -1.3ppm/°C to +3.2ppm/°C, which were determined by dilatometric analyses. Veneer fractures were observed in samples with Δα≥+2.3 or ≤-0.3ppm/°C. Residual stress profiles measured in other groups showed compressive stresses in the surface, these stresses decreasing with depth and then becoming more compressive again near the interface. Small Δα variations were shown to induce significant changes in residual stress profiles. Compressive stress near the framework was found to decrease inversely to Δα. Veneer CTE close to Y-TZP (+0.2ppm/°C Δα) gived the most favorable stress profile. Yet, near the framework, Δα-induced residual stress varied inversely to predictions. This could be explained by the hypothesis of structural changes occurrence within the Y-TZP surface. Consequently, the optimum Δα value cannot be determined before understanding Y-TZP's particular behavior when veneered. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Balloon-borne stratospheric BrO measurements: comparison with Envisat/SCIAMACHY BrO limb profiles

    Directory of Open Access Journals (Sweden)

    M. Dorf

    2006-01-01

    Full Text Available For the first time, results of four stratospheric BrO profiling instruments, are presented and compared with reference to the SLIMCAT 3-dimensional chemical transport model (3-D CTM. Model calculations are used to infer a BrO profile validation set, measured by 3 different balloon sensors, for the new Envisat/SCIAMACHY (ENVIronment SATellite/SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY satellite instrument. The balloon observations include (a balloon-borne in situ resonance fluorescence detection of BrO (Triple, (b balloon-borne solar occultation DOAS measurements (Differential Optical Absorption Spectroscopy of BrO in the UV, and (c BrO profiling from the solar occultation SAOZ (Systeme d'Analyse par Observation Zenithale balloon instrument. Since stratospheric BrO is subject to considerable diurnal variation and none of the measurements are performed close enough in time and space for a direct comparison, all balloon observations are considered with reference to outputs from the 3-D CTM. The referencing is performed by forward and backward air mass trajectory calculations to match the balloon with the satellite observations. The diurnal variation of BrO is considered by 1-D photochemical model calculation along the trajectories. The 1-D photochemical model is initialised with output data of the 3-D model with additional constraints on the vertical transport, the total amount and photochemistry of stratospheric bromine as given by the various balloon observations. Total [Bry]=(20.1±2.5 pptv obtained from DOAS BrO observations at mid-latitudes in 2003, serves as an upper limit of the comparison. Most of the balloon observations agree with the photochemical model predictions within their given error estimates. First retrieval exercises of BrO limb profiling from the SCIAMACHY satellite instrument on average agree to around 20% with the photochemically-corrected balloon observations of the remote sensing instruments (SAOZ

  18. Balloon-borne radiometer measurements of Northern Hemisphere mid-latitude stratospheric HNO3 profiles spanning 12 years

    Directory of Open Access Journals (Sweden)

    K. A. Walker

    2007-12-01

    Full Text Available Low-resolution atmospheric thermal emission spectra collected by balloon-borne radiometers over the time span of 1990–2002 are used to retrieve vertical profiles of HNO3, CFC-11 and CFC-12 volume mixing ratios between approximately 10 and 35 km altitude. All of the data analyzed have been collected from launches from a Northern Hemisphere mid-latitude site, during late summer, when stratospheric dynamic variability is at a minimum. The retrieval technique incorporates detailed forward modeling of the instrument and the radiative properties of the atmosphere, and obtains a best fit between modeled and measured spectra through a combination of onion-peeling and optimization steps. The retrieved HNO3 profiles are consistent over the 12-year period, and are consistent with recent measurements by the Atmospheric Chemistry Experiment-Fourier transform spectrometer satellite instrument. We therefore find no evidence of long-term changes in the HNO3 summer mid-latitude profile, although the uncertainty of our measurements precludes a conclusive trend analysis.

  19. Direct measurements of safety factor profiles with motional Stark effect for KSTAR tokamak discharges with internal transport barriers

    Science.gov (United States)

    Ko, J.; Chung, J.

    2017-06-01

    The safety factor profile evolutions have been measured from the plasma discharges with the external current drive mechanism such as the multi-ion-source neutral beam injection for the Korea Superconducting Tokamak Advanced Research (KSTAR) for the first time. This measurement has been possible by the newly installed motional Stark effect (MSE) diagnostic system that utilizes the polarized Balmer-alpha emission from the energetic neutral deuterium atoms induced by the Stark effect under the Lorentz electric field. The 25-channel KSTAR MSE diagnostic is based on the conventional photoelastic modulator approach with the spatial and temporal resolutions less than 2 cm (for the most of the channels except 2 to 3 channels inside the magnetic axis) and about 10 ms, respectively. The strong Faraday rotation imposed on the optical elements in the diagnostic system is calibrated out from a separate and well-designed polarization measurement procedure using an in-vessel reference polarizer during the toroidal-field ramp-up phase before the plasma experiment starts. The combination of the non-inductive current drive during the ramp-up and shape control enables the formation of the internal transport barrier where the pitch angle profiles indicate flat or slightly hollow profiles in the safety factor.

  20. Simultaneous measurements of wind speed profiles at two sites using Doppler sodars

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Y. [Tokyo Institute of Polytechnics, 1583 Iiyama, Atsugi, Kanagawa (Japan); Suda, K. [Sato Kogyo, 47-3 Sanda, Atsugi, Kanagawa (Japan); Sasaki, A. [Nishimatsu Construction, 4054 Nakatsu, Aikawa, Aiko-gun, Kanagawa (Japan); Iwatani, Y. [Nihon University, 2-11-1 Shin-ei, Narashino, Chiba (Japan); Fujii, K. [Wind Engineering Institute, 3-29 Kandajinbocho, Chiyoda-ku, Tokyo (Japan); Ishibashi, R. [Urban Development Corporation, 2683 Ishikawa, Hachioji, Tokyo (Japan); Hibi, K. [Shimizu Corporation, 3-4-17 Etchujima, Koto-ku, Tokyo (Japan)

    2001-03-01

    In the wind-resistant design of buildings and structures, it is very important to accurately assess the design wind speed at a particular site, considering the variation in wind speed with terrain roughness. The authors attempt to find a reasonable method for estimating design wind speed for given terrain roughness, through simultaneous wind observations at altitudes up to 420m at sites with different roughnesses using two sets of Doppler sodars. In this paper, the characteristics of the mean wind speed profiles evaluated for each distinguished wind speed in each wind direction were presented. The longitudinal mean wind speed profiles in the same storms were also compared for two pairs of sites to study the variation in longitudinal mean wind speed as it is affected by inland terrain roughness.

  1. Do students with dyslexia have a different personality profile as measured with the big five?

    Directory of Open Access Journals (Sweden)

    Wim Tops

    Full Text Available BACKGROUND: Few studies are available about the personality profile of higher education students with dyslexia and to which extent this could be any different from their non-dyslexic peers. AIMS AND SAMPLES: To obtain empirical evidence, we compared the personality profile of a group of 100 Dutch-speaking students with dyslexia with that of a control group of 100 students without learning disabilities. METHODS: The NEO-PI-R based on the Big Five in personality research was used. RESULTS AND CONCLUSIONS: Our study showed no differences in the personality between both groups. This agrees with a recent meta-analysis of English findings (Swanson & Hsieh, 2009, suggesting that students with dyslexia do not perceive themselves differently than their non-dyslexic peers. Practical implications and directions for future research are considered.

  2. Kinetic equilibrium reconstruction of KSTAR plasmas including internal pitch angle profile measurement

    Science.gov (United States)

    Jiang, Yanzheng; Sabbagh, Steven; Park, Youngseok; Ahn, Jaeheon; Ko, Jinseok

    2017-10-01

    High fidelity kinetic equilibrium reconstructions are an essential requirement for accurate stability and disruption prediction analyses to support continuous operation of high beta KSTAR tokamak plasmas. The present work significantly expands our past magnetics-only equilibrium reconstruction capability. The present kinetic equilibrium reconstructions include Thomson scattering (TS) data, charge exchange spectroscopy (CES) data, and allowance for fast particle pressure in addition to external magnetics and shaping field current data, and inclusion of vacuum vessel and passive plate currents following a ``partial kinetic'' approach used successfully in other devices. In addition, up to 25 channels of Motional Stark Effect (MSE) data are used to constrain the local magnetic field pitch angle to produce reliable evaluation of the safety factor profile. The ramifications of the inclusion of the kinetic profiles and MSE data are examined in the context of plasma stability evaluation, and parameters and analysis used for disruption event characterization and forecasting (DECAF). Supported by US DOE Grant DE-SC0016614.

  3. Measuring Dark Matter Profiles Non-Parametrically in Dwarf Spheroidals: An Application to Draco

    Science.gov (United States)

    Jardel, John R.; Gebhardt, Karl; Fabricius, Maximilian H.; Drory, Niv; Williams, Michael J.

    2013-02-01

    We introduce a novel implementation of orbit-based (or Schwarzschild) modeling that allows dark matter density profiles to be calculated non-parametrically in nearby galaxies. Our models require no assumptions to be made about velocity anisotropy or the dark matter profile. The technique can be applied to any dispersion-supported stellar system, and we demonstrate its use by studying the Local Group dwarf spheroidal galaxy (dSph) Draco. We use existing kinematic data at larger radii and also present 12 new radial velocities within the central 13 pc obtained with the VIRUS-W integral field spectrograph on the 2.7 m telescope at McDonald Observatory. Our non-parametric Schwarzschild models find strong evidence that the dark matter profile in Draco is cuspy for 20 = 20 pc is well fit by a power law with slope α = -1.0 ± 0.2, consistent with predictions from cold dark matter simulations. Our models confirm that, despite its low baryon content relative to other dSphs, Draco lives in a massive halo.

  4. Measuring molecular abundance profiles from 5 microns ground-based spectroscopy in support of JUNO investigations

    Science.gov (United States)

    Blain, Doriann; Fouchet, Thierry; Encrenaz, Thérèse; Drossart, Pierre; Greathouse, Thomas; Orton, Glenn; Fletcher, Leigh

    2017-04-01

    We report on early results of an observational campaign to support the Juno mission. At the beginning of 2015, using TEXES (Texas Echelon cross-dispersed Echelle Spectrograph), mounted on the NASA Infrared Telescope Facility (IRTF), we obtained data cubes of Jupiter in several spectral ranges between 2100 and 2200 cm-1 (4.5 - 4.7 μm) which probes the atmosphere in the 1-4 bar region, with a spectral resolution of R ≈ 7000 and an angular resolution of ≈ 1.5''. This dataset is analyzed by a code which combines a line-by-line radiative transfer model with a non-linear optimal estimation inversion method. The inversion takes into account the abundance profiles of AsH_3, CO, GeH4 and H_2O, as well as clouds contribution, in addtion to the abundance profiles of NH3 and PH_3. We will present the inverted abundance profiles, the spatial distribution of the molecular abundances, their significance for the understanding of Jupiter's atmospheric dynamics, and how this will be useful for the determination of water abundance up to 200 bars, which is one of the main objectives of the instrument MWR (MicroWave Radiometer) mounted on the Juno spacecraft. This work will also be useful to prepare the analysis of the JIRAM (Jovian InfraRed Auroral Mapper) 5-microns data aboard Juno.

  5. Vacancy profile in reverse osmosis membranes studied by positron annihilation lifetime measurements and molecular dynamics simulations

    Science.gov (United States)

    Shimazu, A.; Goto, H.; Shintani, T.; Hirose, M.; Suzuki, R.; Kobayashi, Y.

    2013-06-01

    The positron annihilation technique using a slow positron beam can be used for the study of the vacancy profiles in typical reverse osmosis (RO) membranes. In this study, the vacancy profile in the polyamide membrane that exhibits a high permselectivity between ions and water was studied using the positron annihilation technique and molecular dynamics simulations. Ortho-positronium (o-Ps) lifetimes in the surface region of the membranes were evaluated by using a slow positron beam. The diffusion behavior of Na+ and water in the polyamides was simulated by molecular dynamics (MD) methods using the TSUBAME2 supercomputer at the Tokyo Institute of Technology and discussed with the vacancy profile probed by the o-Ps. The results suggested that the large hydration size of Na+ compared to the vacancy size in the polyamides contributes to the increased diffusivity selectivity of water/Na+ that is related to the NaCl desalination performance of the membrane. Both the hydration size of the ions and the vacancy size appeared to be significant parameters to discuss the diffusivity selectivity of water/ions in typical polyamide membranes.

  6. Use of In Situ Cloud Condensation Nuclei, Extinction, and Aerosol Size Distribution Measurements to Test a Method for Retrieving Cloud Condensation Nuclei Profiles From Surface Measurements

    Science.gov (United States)

    Ghan, Stephen J.; Rissman, Tracey A.; Ellman, Robert; Ferrare, Richard A.; Turner, David; Flynn, Connor; Wang, Jian; Ogren, John; Hudson, James; Jonsson, Haflidi H.; hide

    2006-01-01

    If the aerosol composition and size distribution below cloud are uniform, the vertical profile of cloud condensation nuclei (CCN) concentration can be retrieved entirely from surface measurements of CCN concentration and particle humidification function and surface-based retrievals of relative humidity and aerosol extinction or backscatter. This provides the potential for long-term measurements of CCN concentrations near cloud base. We have used a combination of aircraft, surface in situ, and surface remote sensing measurements to test various aspects of the retrieval scheme. Our analysis leads us to the following conclusions. The retrieval works better for supersaturations of 0.1% than for 1% because CCN concentrations at 0.1% are controlled by the same particles that control extinction and backscatter. If in situ measurements of extinction are used, the retrieval explains a majority of the CCN variance at high supersaturation for at least two and perhaps five of the eight flights examined. The retrieval of the vertical profile of the humidification factor is not the major limitation of the CCN retrieval scheme. Vertical structure in the aerosol size distribution and composition is the dominant source of error in the CCN retrieval, but this vertical structure is difficult to measure from remote sensing at visible wavelengths.

  7. Influence of zirconia framework thickness on residual stress profile in veneering ceramic: measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2012-04-01

    Framework design is reported to influence chipping in zirconia-based restorations, which is an important cause of failure of such restorations. Residual stress profile in the veneering ceramic after the manufacturing process is an important predictive factor of the mechanical behavior of the material. The objective of this study is to investigate the influence of framework thickness on the stress profile measured in zirconia-based structures. The stress profile was measured with the hole-drilling method in bilayered disc samples of 20mm diameter with a 1.5 mm thick veneering ceramic layer. Six different framework thicknesses from 0.5 mm to 3 mm were studied. Two different cooling procedures were also investigated. Compressive stresses were observed in the surface, and tensile stresses in the depth of most of the samples. The slow cooling procedure was found to promote the development of interior tensile stresses, except for the sample with a 3mm thick framework. With the tempering procedure, samples with a 1.5 mm thick framework exhibited the most favorable stress profile, while thicker and thinner frameworks exhibited respectively in surface or interior tensile stresses. The measurements performed highlight the importance of framework thickness, which determine the nature of stresses and can explain clinical failures encountered, especially with thin frameworks. The adequate ratio between veneering ceramic and zirconia is hard to define, restricting the range of indications of zirconia-based restorations until a better understanding of such a delicate veneering process is achieved. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Comparing Two Numerical Models in Simulating Hydrodynamics and Sediment Transport at a Dual Inlet System, West-Central Florida

    Science.gov (United States)

    2015-05-15

    Pass, the Willmott skill was 0.989 for CMS and 0.938 for DELFT3D. Qualitatively, as compared to flow field measurements using a ship- mounted ADCP , both...offshore, providing boundary conditions for the numerical models. Several methods were used to measure the flow field. An upward-looking ADCP was...deployed in the main channel of each inlet to measured current profiles. A side-looking ADCP was deployed at each inlet to measured cross-channel

  9. In situ TDLAS measurement of absolute acetylene concentration profiles in a non-premixed laminar counter-flow flame

    Science.gov (United States)

    Wagner, S.; Klein, M.; Kathrotia, T.; Riedel, U.; Kissel, T.; Dreizler, A.; Ebert, V.

    2012-06-01

    Acetylene (C2H2), as an important precursor for chemiluminescence species, is a key to understand, simulate and model the chemiluminescence and the related reaction paths. Hence we developed a high resolution spectrometer based on direct Tunable Diode Laser Absorption Spectroscopy (TDLAS) allowing the first quantitative, calibration-free and spatially resolved in situ C2H2 measurement in an atmospheric non-premixed counter-flow flame supported on a Tsuji burner. A fiber-coupled distributed feedback diode laser near 1535 nm was used to measure several absolute C2H2 concentration profiles (peak concentrations up to 9700 ppm) in a laminar non-premixed CH4/air flame ( T up to 1950 K) supported on a modified Tsuji counter-flow burner with N2 purge slots to minimize end flames. We achieve a fractional optical resolution of up to 5×10-5 OD (1 σ) in the flame, resulting in temperature-dependent acetylene detection limits for the P17e line at 6513 cm-1 of up to 2.1 ppmṡm. Absolute C2H2 concentration profiles were obtained by translating the burner through the laser beam using a DC motor with 100 μm step widths. Intercomparisons of the experimental C2H2 profiles with simulations using our new hydrocarbon oxidation mechanisms show excellent agreement in position, shape and in the absolute C2H2 values.

  10. Shipboard Measurements of Surface Flux and Near Surface Profiles and Surface Flux Parameterization

    Science.gov (United States)

    2009-01-01

    overall project. Mr. Richard J. Lind worked on instrument preparation, calibration, and data sampling. Dr. John Kalogiros, an external research...temperature measured at the same time as the SST measurements where the multiple spike in the measurements are likely results of the ship plumes

  11. Combining in situ measurements and altimetry to estimate volume, heat and salt transport variability through the Faroe–Shetland Channel

    Directory of Open Access Journals (Sweden)

    B. Berx

    2013-07-01

    Full Text Available From 1994 to 2011, instruments measuring ocean currents (Acoustic Doppler Current Profilers; ADCPs have been moored on a section crossing the Faroe–Shetland Channel. Together with CTD (Conductivity Temperature Depth measurements from regular research vessel occupations, they describe the flow field and water mass structure in the channel. Here, we use these data to calculate the average volume transport and properties of the flow of warm water through the channel from the Atlantic towards the Arctic, termed the Atlantic inflow. We find the average volume transport of this flow to be 2.7 ± 0.5 Sv (1 Sv = 106 m3 s–1 between the shelf edge on the Faroe side and the 150 m isobath on the Shetland side. The average heat transport (relative to 0 °C was estimated to be 107 ± 21 TW (1 TW = 1012 W and the average salt import to be 98 ± 20 × 106 kg s−1. Transport values for individual months, based on the ADCP data, include a large level of variability, but can be used to calibrate sea level height data from satellite altimetry. In this way, a time series of volume transport has been generated back to the beginning of satellite altimetry in December 1992. The Atlantic inflow has a seasonal variation in volume transport that peaks around the turn of the year and has an amplitude of 0.7 Sv. The Atlantic inflow has become warmer and more saline since 1994, but no equivalent trend in volume transport was observed.

  12. How Well do State-of-the-Art Techniques Measuring the Vertical Profile of Tropospheric Aerosol Extinction Compare?

    Science.gov (United States)

    Schmid, B.; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.; hide

    2006-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well-characterized aerosol sampling ability carrying well-proven and new aerosol instrumentation devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from six different instruments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, groundbased Raman lidar, and two ground-based elastic backscatter lidars. We find the in situ measured sigma(ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002-0.004 Km!1 equivalent to 13-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(ep)(lambda) are higher: Bias differences are 0.004 Km(-1) (13%) and 0.007 Km(-1) (24%) for the two elastic backscatter lidars (MPLNET and MPLARM, lambda = 523 nm) and 0.029 Km(-1) (54%) for the Raman lidar (lambda = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP, and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of sigma(ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(ep)(lambda). On the other hand, sigma(ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated

  13. Characterization of Rockwell hardness indenter Tip using image processing and optical profiler and evaluation of measurement uncertainty

    Directory of Open Access Journals (Sweden)

    Moona G.

    2014-01-01

    Full Text Available Hardness is a measure of the resistance of a material to be penetrated and eroded by sharp projections of other materials such as diamond. The process of creating sharp projections on any test surface is known as indentation. Hardness measurement of any material is the result of a complex process of deformation during indentation. The indenter tip geometry, which includes radius of curvature at the tip and tip angle, affects the hardness measurement by influencing the nature of the penetration process on the test surface, because every indenter deforms the specimen surface with a different geometry. The controlled indenter geometry can improve the consistency of hardness measurement. In this paper we report the estimation of two important geometrical parameters, radius of curvature and tip angle of a Rockwell indenter by using a simple method of image processing and compare the results with those obtained with a traceable 3D optical profiler. Evaluation of uncertainty in measuremts is carried out as per ISO guidelines (ISO-GUM and a detailed uncertainty budget is presented. The tip angle estimted is 119.95 degree. The radius of curvature is estimted to be 199.96 ± 0.80μm by image analysis which agrees well with the value estimated by using optical profiler i.e. 199.12 μm.

  14. Simultaneous measurement of force and respiratory profiles during chest physiotherapy in ventilated children.

    Science.gov (United States)

    Gregson, R K; Stocks, J; Petley, G W; Shannon, H; Warner, J O; Jagannathan, R; Main, E

    2007-09-01

    There are currently no objective means of quantifying chest wall vibrations during manual physiotherapy. The aims of the study were to (i) develop a method to quantify physiotherapy-applied forces and simultaneous changes in respiratory flow and pressure, (ii) assess the feasibility of using this method in ventilated children and (iii) characterize treatment profiles delivered by physiotherapists in the paediatric intensive care unit. Customized sensing mats were designed and used in combination with a respiratory profile monitor. Software was developed to align force and flow data streams. Force and respiratory data were successfully collected in 55 children (median age 1.6 years (range 0.02-13.7 years)). Physiotherapists demonstrated distinctive variations in the pattern of force applied and manual lung inflations. The maximum applied force ranged from 15 to 172 N, and was correlated with the child's age (r = 0.76). Peak expiratory flow increased significantly during manual inflations both with and without chest wall vibrations (p manual lung inflations as an essential precursor to developing evidence-based practice.

  15. Dealloying evidence on corroded brass by laser-induced breakdown spectroscopy mapping and depth profiling measurements

    Science.gov (United States)

    Cerrato, R.; Casal, A.; Mateo, M. P.; Nicolas, G.

    2017-04-01

    The dealloying phenomenon, also called demetalification, is a; consequence of a corrosion problem found in binary alloys where an enrichment of one of the two main elements of the alloy is produced at the expense of the leaching of the other element. In the present work, the ability of laser induced breakdown spectroscopy (LIBS) for the detection and characterization of dealloying films formed on metal has been tested. For this purpose, specific areas of brass specimens have been subjected to a chemical attack of the surface in order to produce a selective leaching of zinc or dezincification. For the lateral and in-depth characterization of the dealloyed areas by LIBS, depth profiles, 2D and 3D maps have been generated from the treated samples and from a reference non-treated sample. The differences in the maps and depth profiles between the corroded and non-corroded regions have allowed to reveal the localization and extension of the dealloying process along the brass sample surface and to estimate the thickness of the dezincification layers, demonstrating the capability of LIBS technique for the characterization of dealloying phenomena.

  16. Comparison of Blood Cholesterol Profiles Before and After The Measurements of Maximum Aerobic Capacity (VO2max

    Directory of Open Access Journals (Sweden)

    Ar Rasyid Shadiqin

    2013-11-01

    Full Text Available This study is aimed to compare the blood cholesterol profile, before and after the measurement of maximum aerobic capacity (VO2max in the students of Jurusan Pendidikan Olahraga dan Kesehatan (JPOK pada Fakultas Keguruan dan Ilmu Pendidikan (FKIP Universitas Lambung Mangkurat Banjarmasin.Variables in this study consist of lipid profiles, including total cholesterol, high density lipoprotein (HDL, low density lipoprotein (LDL, triglyceride (TG and Maximum Aerobic Capacity (VO2max. The concept of VO2max according to Kent(1994:268: “maximum oxygen volume consumed per minute to show total work capacity, or volume per minute relative to body weight (ml/kg.min”. Operationally, VO2max referred in this study is the maximum volume of oxygen that can be consumed per minute, as measured at progressive run (Bleep Test.The method used in this study is pre-experimental with one group pretest-posttest design. This design implies that a group of subjects are treated for a specific period and the measurements are taken both pre and post.The results: There are changes in blood cholesterol profile after the measurement of maximum oxygen capacity (VO2max, shown by significant decrease of total cholesterol variable, increased HDL, and decreased LDL. Changes in triglyceride variable showed no significant decrease despite the statistic differences. Specific HDL sub-class increasing after exercise is a constructive lipoprotein sub-class whereas LDL is destructive lipoproteins sub-class that might damage the body. Therefore, an increase in HDL and decrease in LDL found in this study appears to be advantageous and consequently might alter the risk of coronary heart disease.

  17. In-situ NO and NO2 profiles measured onboard passenger aircraft over Frankfurt airport in Germany

    Science.gov (United States)

    Berkes, Florian; Houben, Norbert; Blomel, Torben; Tappertzhofen, Marlon; Volz-Thomas, Andreas; Petzold, Andreas

    2017-04-01

    NOx (sum of NO and NO2) play a central role in atmospheric chemistry related to ozone and oxidation capacity (OH and NO3 radicals). The most important sources of NOx in the upper troposphere are lightning, and transport from the boundary layer (combustion processes, from biomass burning, agriculture, and industry/transport/aircraft emissions). In-situ measurements of NOx from the upper troposphere and lower stratosphere (UTLS) down to the surface are rare, but important for understanding the local photochemistry and for the assessment of the impact of aviation on the budgets of greenhouse gases such as ozone. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System) operates a global-scale monitoring system for atmospheric temperature, trace gases, aerosols and clouds at high spatial resolution by passenger aircraft. The IAGOS NOx instrument is designed for the autonomous measurement of nitrogen oxides over serval months. The measurement principle is based on the well-established chemiluminescence technique, using one channel with sequential measurements of NO and NOx every 50 s. Here, we present vertical profiles of nitrogen oxides from the UTLS down to the surface for day and night time conditions obtained over 12 months in 2015 and 2016. The analysis focuses mainly on Europe, the region with the largest amount of profiles. Other regions (North America, South America and East Asia) will also be discussed. Typically, NO and NO2 varies in the low ppt range in the UT, slightly increasing towards the pressure altitude of 200 hPa. Down to the surface, the values of NO and of NO2 increase up to several ppb. These profiles combined with in-situ water vapor and cloud parameters will be valuable for validation of model and of satellite data in the future.

  18. A study of the surface roughness lengths of a high-altitude topical glacier using profile and eddy covariance measurements

    Science.gov (United States)

    Sicart, J.; Litt, M.

    2012-12-01

    The turbulent fluxes remain poorly understood on tropical glaciers. Studies based on the bulk method have shown that sublimation can be high during the dry season, reducing the energy available for melting. However, uncertainties on the bulk method are large, especially when katabatic flows cause a wind speed maximum at low height. Wind and temperature data from an 8-level 6-m mast positioned at 5060 m asl in the ablation area of the Zongo Glacier, Bolivia (16°S), were collected during a one-month period in the dry season of 2007. Concomitant measurements of radiation fluxes and eddy covariance turbulent fluxes were conducted. The surface roughness lengths for temperature and momentum were calculated using the profile and the eddy covariance methods at the hourly time scale. The measurement period was characterized by low synoptic forcing conditions and katabatic wind prevailed at night and most of the day. Katabatic flows were often associated with a wind speed maximum at a height of about 2-3 m and with a strong temperature inversion. Near-neutral profiles were selected to avoid the presence of the katabatic wind speed maximum. Results indicate z0 values of about 3 mm and zT values of about 0.2 mm, in rough agreement with terrain observations. However the scatter in the zT values is large indicating large random errors. The relation between the ratio zT/z0 and the roughness Reynolds number is in rough agreement with the surface renewal model. However, this relation turns out to be mostly due to spurious self-correlation because of the shared variable z0 in zT/z0 and Re*. Finally, the random and systematic errors on the roughness lengths derived from the profile measurements were briefly investigated. The results emphasize the need of accurate measurements of the sensor heights to obtain unbiased roughness lengths.

  19. A study of the surface roughness lengths of a high-altitude tropical glacier using profile and eddy covariance measurements

    Science.gov (United States)

    Sicart, Jean-Emmanuel; Litt, Maxime; Ben Tahar, Vanessa

    2013-04-01

    The turbulent fluxes remain poorly understood on tropical glaciers. Studies based on the bulk method have shown that sublimation can be high during the dry season, reducing the energy available for melting. However, uncertainties on the bulk method are large, especially when katabatic flows cause a wind speed maximum at low height. Wind and temperature data from an 8-level 6-m mast positioned at 5060 m a.s.l. in the ablation area of the Zongo Glacier, Bolivia (16°S), were collected during a one-month period in the dry season of 2007. Concomitant measurements of radiation fluxes and eddy covariance turbulent fluxes were conducted. The surface roughness lengths for temperature (zT) and momentum (z0) were calculated using the profile and the eddy covariance methods at the hourly timescale. The measurement period was characterized by low synoptic forcing conditions and katabatic wind prevailed at night and most of the day. Katabatic flows were often associated with a wind speed maximum at a height of about 2-3 m and with a strong temperature inversion. Near-neutral profiles were selected to avoid the presence of the katabatic wind speed maximum. Results indicate z0 values of about 3 mm and zT values of about 0.2 mm, in rough agreement with terrain observations. However the scatter in the zT values is large indicating large random errors. The relation between the ratio zT/z0 and the roughness Reynolds number (Re*) is in rough agreement with the surface renewal model. However, this relation turns out to be mostly due to spurious self-correlation because of the shared variable z0 in zT/z0 and Re*. Finally, the random and systematic errors on the roughness lengths derived from the profile measurements were briefly investigated. The results emphasize the need of accurate measurements of the sensor heights to obtain unbiased roughness lengths.

  20. Use of the measure your medical outcome profile (MYMOP2 and W-BQ12 (Well-Being outcomes measures to evaluate chiropractic treatment: an observational study

    Directory of Open Access Journals (Sweden)

    Polus Barbara I

    2011-03-01

    Full Text Available Abstract Background The objective was to assess the use of the Measure Yourself Medical Outcome Profile (MYMOP2 and W-BQ12 well-being questionnaire for measuring clinical change associated with a course of chiropractic treatment. Methods Chiropractic care of the patients involved spinal manipulative therapy (SMT, mechanically assisted techniques, soft tissue therapy, and physiological therapeutic devices. Outcome measures used were MYMOP2 and the Well-Being Questionnaire 12 (W-BQ12. Results Statistical and clinical significant changes were demonstrated with W-BQ12 and MYMOP2. Conclusions The study demonstrated that MYMOP2 was responsive to change and may be a useful instrument for assessing clinical changes among chiropractic patients who present with a variety of symptoms and clinical conditions.

  1. Comparison of acoustic doppler current profiler and Price AA mechanical current meter measurements made during the 2011 Mississippi River Flood

    Science.gov (United States)

    O'Brien, Patrick; Mueller, David; Pratt, Thad

    2012-01-01

    The Mississippi River and Tributaries project performed as designed during the historic 2011 Mississippi River flood, with many of the operational decisions based on discharge targets as opposed to stage. Measurement of discharge at the Tarbert Landing, Mississippi range provides critical information used in operational decisions for the floodways located in Louisiana. Historically, discharge measurements have been made using a Price AA current meter and the mid-section method, and a long record exists based on these types of measurements, including historical peak discharges. Discharge measurements made using an acoustic Doppler current profiler from a moving boat have been incorporated into the record since the mid 1990's, and are used along with the Price AA mid-section measurements. During the 2011 flood event, both methods were used and appeared to provide different results at times. The apparent differences between the measurement techniques are due to complex hydrodynamics at this location that created large spatial and temporal fluctuations in the flow. The data and analysis presented herein show the difference between the two methods to be within the expected accuracy of the measurements when the measurements are made concurrently. The observed fluctuations prevent valid comparisons of data collected sequentially or even with different observation durations.

  2. Characterizing Three-Dimensional Mixing Process in a River Confluence using Hydro-acoustical Backscatter and Flow Measurement

    Science.gov (United States)

    Son, Geunsoo; Kim, Dongsu; Kim, YoungDo; Lyu, Siwan; Kim, Seojun

    2017-04-01

    River confluences are zones where two rivers with different geomorphic and hydraulic characteristics amalgamate, resulting in rapid change in terms of flow regime, sediment entrainment and hydraulic geometry. In these confluence zones, the flow structure is basically complicated responded with concurrent mixing of physical and chemical aquatic properties, and continuous channel morphology could be changed due to erosion and sedimentation. In addition, the confluences are regions in which two rivers join and play an important role in river ecology. In order to characterize the mixing process of confluence for understanding the impacts of a river on the other river, therefore, it has been crucial to analyze the spatial mixing patterns for main streams depending on various inflow conditions of tributaries. However, most conventional studies have mostly relied upon hydraulic or water quality numerical models for understanding mixing pattern analysis of confluences, due to the difficulties to acquire a wide spatial range of in-situ data especially for characterizing this kind of mixing process. Even with intensive in-situ measurements, those researches tended to focus mainly on the hydraulic characteristics such as the flow and morphological complexity of confluence, so that very few studies comprehensively included sediment variation with flow at the same time. In this study, subsequently, flow and sediment mixing characteristics were concurrently investigated in the confluence between Nakdong and Nam river in South Korea, where it has been frequently questioned to determine how Nam river affects Nakdong river that recently have suffered various environmental problems such as green algae bloom and erosion/deposition in the confluence. We basically examined the mixing characteristics of confluence by using acoustic Doppler current profilers (ADCPs) which were used to measure hydraulic factors such as flow rate and depth, as well as measuring the suspended sediment

  3. Measuring Individual Differences in Emotion Regulation: The Emotion Regulation Profile-Revised (ERP-R

    Directory of Open Access Journals (Sweden)

    Delphine Nelis

    2011-02-01

    Full Text Available The main purpose of this study was to validate a new instrument aimed to assess emotion regulation: the Emotion Regulation Profile-Revised (ERP-R. Exploratory factor analyses yielded two theoretically meaningful factors: down-regulation of negative emotions and up-regulation of positive emotions. Internal reliability scores of the two factors were good. Findings showed evidence of convergent/discriminant validity, with ERP-R scores being independent of non verbal reasoning and verbal skills while positively related to emotional intelligence and to relevant personality dimensions. There was also preliminary evidence of criterion validity. ERP-R scores also demonstrated incremental validity to predict a number of criteria over and above emotional intelligence and emotional stability. Overall, the results show a clear 2 factors solution for the ERP-R and high correlations with convergent and divergent scales as well as good criterion and incremental validities.

  4. An analysis of type F2 software measurement standards for profile surface texture parameters

    Science.gov (United States)

    Todhunter, L. D.; Leach, R. K.; Lawes, S. D. A.; Blateyron, F.

    2017-06-01

    This paper reports on an in-depth analysis of ISO 5436 part 2 type F2 reference software for the calculation of profile surface texture parameters that has been performed on the input, implementation and output results of the reference software developed by the National Physical Laboratory (NPL), the National Institute of Standards and Technology (NIST) and Physikalisch-Technische Bundesanstalt (PTB). Surface texture parameters have been calculated for a selection of 17 test data files obtained from the type F1 reference data sets on offer from NPL and NIST. The surface texture parameter calculation results show some disagreements between the software methods of the National Metrology Institutes. These disagreements have been investigated further, and some potential explanations are given.

  5. Measurement of the n{sub T}OF beam profile with a micromegas detector

    Energy Technology Data Exchange (ETDEWEB)

    Pancin, J. E-mail: jpancin@cea.fr; Abbondanno, U.; Aerts, G.; Alvarez, H.; Andriamonje, S.; Angelopoulos, A.; Assimakopoulos, P.; Bacri, C.; Badurek, G.; Baumann, P.; Becvar, F.; Beer, H.; Benlliure, J.; Berthier, B.; Berthoumieux, E.; Boffi, S.; Borcea, C.; Boscolo-Marchi, E.; Bustreo, N.; Calvino, F.; Cano-ott, D.; Capote, R.; Carlson, P.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Cortina, D.; Couture, A.; Cox, J.; Dababneh, S.; Dahlfors, M.; David, S.; Delbart, A.; Derre, J.; Dolfini, R.; Domingo, C.; Duran-Escribano, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Lourenco, L.; Ferreiramarques, R.; Frais-Koelbl, H.; Furman, W.; Giomataris, Y.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Gunsing, F.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Ioannides, K.; Janeva, N.; Jeanneau, F.; Jericha, E.; Kaeppeler, F.; Kadi, Y.; Karamanis, D.; Kelic, A.; Ketlerov, V.; Kitis, G.; Koehler, P.; Konovalov, V.; Kossionides, E.; Lacoste, V.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Markov, S.; Marrone, S.; Martinez-Val, J.; Mastinu, P.; Mengoni, A.; Milazzo, P.; Minguez, E.; Molina-Coballes, A.; Moreau, C.; Neves, F.; Oberhummer, H.; O' brien, S.; Papadopoulos, I.; Papavengelou, T.; Paradela, C.; Pavlik, A.; Pavlopoulos, P.; Perez-Parra, A.; Perlado, J.; Peskov, V.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Policarpo, A.; Pretel, C.; Quesada, J.; Radici, M.; Raman, S.; Rapp, W.; Reifarth, R.; Rejmund, F.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Savvidis, E.; Stephan, C.; Tagliente, G.; Tain, J.; Tapia, C.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Terrani, M.; Tsangas, N.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin-Fernandez, D.; Vincente-Vincente, M.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Wendler, H.; Wiescher, M.; Wisshak, K.; Zanini, L

    2004-05-21

    A Micromegas detector was used in the neutron Time-Of-Flight (n{sub T}OF) facility at CERN to evaluate the spatial distribution of the neutron beam as a function of its kinetic energy. This was achieved over a large range of neutron energies by using two complementary processes: at low energy by capture of a neutron via the {sup 6}Li(n,{alpha})t reaction, and at high energy by elastic scattering of neutrons on gas nuclei (argon+isobutane or helium+isobutane). Data are compared to Monte Carlo simulations and an analytic function fitting the beam profile has been calculated with a sufficient precision to use in neutron capture experiments at the n{sub T}OF facility.

  6. Measurement of the nTOF beam profile with a micromegas detector

    CERN Document Server

    Pancin, J; Aerts, G; Alvarez, H; Andriamonje, Samuel A; Angelopoulos, Angelos; Assimakopoulos, P A; Bacri, C O; Badurek, G; Baumann, P; Becvar, F; Beer, H; Benlliure, J; Berthier, B; Berthoumieux, E; Boffi, S; Borcea, C; Boscolo-Marchi, E; Bustreo, N; Calviño, F; Cano-Ott, D; Capote, R; Carlson, Per J; Cennini, P; Chepel, V Yu; Chiaveri, Enrico; Colonna, N; Cortés, G; Cortina-Gil, D; Couture, A; Cox, J; Dababneh, S; Dahlfors, M; David, S; Delbart, A; Derré, J; Dolfini, R; Domingo, C; Duran-Escribano, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Lourenço, L; Ferreira-Marques, R; Frais-Kölbl, H; Furman, W; Giomataris, Ioanis; Gonçalves, I; González-Romero, E M; Goverdovski, A A; Gramegna, F; Griesmayer, E; Gunsing, F; Haight, R; Heil, M; Herrera-Martínez, A; Ioannides, K G; Janeva, N; Jeanneau, F; Jericha, E; Käppeler, F K; Kadi, Y; Karamanis, D; Kelic, A; Ketlerov, V; Kitis, G; Köhler, P; Konovalov, V; Kossionides, E; Lacoste, V; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Markov, S; Marrone, S; Martínez-Val, J M; Mastinu, P; Mengoni, A; Milazzo, P; Minguez, E; Molina-Coballes, A; Moreau, C; Neves, F; Oberhummer, Heinz; O'Brien, S; Papadopoulos, I M; Papavengelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Pérez-Parra, A; Perlado, J; Perrot, L; Peskov, Vladimir; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, Armando; Pretel, C; Quesada, J; Radici, M; Raman, S; Rapp, W; Reifarth, R; Rejmund, F; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Savvidis, E; Stéphan, C; Tagliente, G; Taín, J L; Tapia, C; Tassan-Got, L; Tavora, L; Terlizzi, R; Terrani, M; Tsangas, N; Vannini, G; Vaz, P; Ventura, A; Villamarín-Fernández, D; Vincente-Vincente, M; Vlachoudis, V; Vlastou, R; Voss, F; Wendler, H; Wiescher, M; Wisshak, K; Zanini, L

    2004-01-01

    A Micromegas detector was used in the neutron Time-Of-Flight (n_TOF) facility at CERN to evaluate the spatial distribution of the neutron beam as a function of its kinetic energy. This was achieved over a large range of neutron energies by using two complementary processes: at low energy by capture of a neutron via the **6Li(n, alpha)t reaction, and at high energy by elastic scattering of neutrons on gas nuclei (argon+isobutane or helium+isobutane). Data are compared to Monte Carlo simulations and an analytic function fitting the beam profile has been calculated with a sufficient precision to use in neutron capture experiments at the n_TOF facility.

  7. An evaluation method of the profile of plasma-induced defects based on capacitance-voltage measurement

    Science.gov (United States)

    Okada, Yukimasa; Ono, Kouichi; Eriguchi, Koji

    2017-06-01

    Aggressive shrinkage and geometrical transition to three-dimensional structures in metal-oxide-semiconductor field-effect transistors (MOSFETs) lead to potentially serious problems regarding plasma processing such as plasma-induced physical damage (PPD). For the precise control of material processing and future device designs, it is extremely important to clarify the depth and energy profiles of PPD. Conventional methods to estimate the PPD profile (e.g., wet etching) are time-consuming. In this study, we propose an advanced method using a simple capacitance-voltage (C-V) measurement. The method first assumes the depth and energy profiles of defects in Si substrates, and then optimizes the C-V curves. We applied this methodology to evaluate the defect generation in (100), (111), and (110) Si substrates. No orientation dependence was found regarding the surface-oxide layers, whereas a large number of defects was assigned in the case of (110). The damaged layer thickness and areal density were estimated. This method provides the highly sensitive PPD prediction indispensable for designing future low-damage plasma processes.

  8. Whispering Gallery Modes in Standard Optical Fibres for Fibre Profiling Measurements and Sensing of Unlabelled Chemical Species

    Directory of Open Access Journals (Sweden)

    Anna Boleininger

    2010-03-01

    Full Text Available Whispering gallery mode resonances in liquid droplets and microspheres have attracted considerable attention due to their potential uses in a range of sensing and technological applications. We describe a whispering gallery mode sensor in which standard optical fibre is used as the whispering gallery mode resonator. The sensor is characterised in terms of the response of the whispering gallery mode spectrum to changes in resonator size, refractive index of the surrounding medium, and temperature, and its measurement capabilities are demonstrated through application to high-precision fibre geometry profiling and the detection of unlabelled biochemical species. The prototype sensor is capable of detecting unlabelled biomolecular species in attomole quantities.

  9. Whispering Gallery Modes in Standard Optical Fibres for Fibre Profiling Measurements and Sensing of Unlabelled Chemical Species

    Science.gov (United States)

    Boleininger, Anna; Lake, Thomas; Hami, Sophia; Vallance, Claire

    2010-01-01

    Whispering gallery mode resonances in liquid droplets and microspheres have attracted considerable attention due to their potential uses in a range of sensing and technological applications. We describe a whispering gallery mode sensor in which standard optical fibre is used as the whispering gallery mode resonator. The sensor is characterised in terms of the response of the whispering gallery mode spectrum to changes in resonator size, refractive index of the surrounding medium, and temperature, and its measurement capabilities are demonstrated through application to high-precision fibre geometry profiling and the detection of unlabelled biochemical species. The prototype sensor is capable of detecting unlabelled biomolecular species in attomole quantities. PMID:22294898

  10. Suspended sediment profiles derived from spectral attenuation coefficients measurements using neural network method

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, G.; Suresh, T.; Matondkar, S.G.P.; Desa, E.; Kamath, S.S.

    total suspended matter values from water samples obtained at discrete depths at the same location. An artificial neural network (ANN) model has been used to derive suspended matter from the spectral values of beam attenuation coefficients measured using...

  11. Measuring the stratospheric aerosol size distribution profile following the next big volcanic eruption. What is required?

    Science.gov (United States)

    Deshler, T.

    2015-12-01

    Two of the key missing features of fresh and evolving volcanic plumes are the particle size distribution and its partitioning into non-volatile ash and volatile sulfate particles. Such information would allow more refined estimates of the evolution and dispersal of the aerosol, of the impacts of the aerosol on radiation and on stratospheric chemistry, and of the overall amount of sulfur injected into the stratosphere. To provide this information aerosol measurements must be sensitive to particles in the 0.1 - 10 μm radius range, with concentration detection thresholds > 0.001 cm-3, and to the total aerosol population. An added bonus would be a size resolved measurement of the non-volatile fraction of the aerosol. The measurements must span the lower and mid stratosphere up to about 30 km. There are no remote measurements which can provide this information. In situ measurements using aerosol and condensation nuclei counters are required. Aircraft platforms are available for measurements up to 20 km, but beyond that requires balloon platforms. Measurements above 20 km would be required for a large volcanic eruption. There are balloon-borne instruments capable of fulfilling all of the measurement requirements; however such instruments are reasonably large and not expendable. The difficulty is deploying the instruments, obtaining the flight permissions from air traffic control, and recovering the instruments after flight. Such difficulties are compounded in the tropics. This talk will detail some previous experience in this area and suggest ways forward to be ready for the next big eruption.

  12. Relations Between the Intelligibility of Speech in Noise and Psychophysical Measures of Hearing Measured in Four Languages Using the Auditory Profile Test Battery.

    Science.gov (United States)

    Van Esch, T E M; Dreschler, W A

    2015-12-08

    The aim of the present study was to determine the relations between the intelligibility of speech in noise and measures of auditory resolution, loudness recruitment, and cognitive function. The analyses were based on data published earlier as part of the presentation of the Auditory Profile, a test battery implemented in four languages. Tests of the intelligibility of speech, resolution, loudness recruitment, and lexical decision making were measured using headphones in five centers: in Germany, the Netherlands, Sweden, and the United Kingdom. Correlations and stepwise linear regression models were calculated. In sum, 72 hearing-impaired listeners aged 22 to 91 years with a broad range of hearing losses were included in the study. Several significant correlations were found with the intelligibility of speech in noise. Stepwise linear regression analyses showed that pure-tone average, age, spectral and temporal resolution, and loudness recruitment were significant predictors of the intelligibility of speech in fluctuating noise. Complex interrelationships between auditory factors and the intelligibility of speech in noise were revealed using the Auditory Profile data set in four languages. After taking into account the effects of pure-tone average and age, spectral and temporal resolution and loudness recruitment had an added value in the prediction of variation among listeners with respect to the intelligibility of speech in noise. The results of the lexical decision making test were not related to the intelligibility of speech in noise, in the population studied. © The Author(s) 2015.

  13. Relations Between the Intelligibility of Speech in Noise and Psychophysical Measures of Hearing Measured in Four Languages Using the Auditory Profile Test Battery

    Directory of Open Access Journals (Sweden)

    T. E. M. Van Esch

    2015-12-01

    Full Text Available The aim of the present study was to determine the relations between the intelligibility of speech in noise and measures of auditory resolution, loudness recruitment, and cognitive function. The analyses were based on data published earlier as part of the presentation of the Auditory Profile, a test battery implemented in four languages. Tests of the intelligibility of speech, resolution, loudness recruitment, and lexical decision making were measured using headphones in five centers: in Germany, the Netherlands, Sweden, and the United Kingdom. Correlations and stepwise linear regression models were calculated. In sum, 72 hearing-impaired listeners aged 22 to 91 years with a broad range of hearing losses were included in the study. Several significant correlations were found with the intelligibility of speech in noise. Stepwise linear regression analyses showed that pure-tone average, age, spectral and temporal resolution, and loudness recruitment were significant predictors of the intelligibility of speech in fluctuating noise. Complex interrelationships between auditory factors and the intelligibility of speech in noise were revealed using the Auditory Profile data set in four languages. After taking into account the effects of pure-tone average and age, spectral and temporal resolution and loudness recruitment had an added value in the prediction of variation among listeners with respect to the intelligibility of speech in noise. The results of the lexical decision making test were not related to the intelligibility of speech in noise, in the population studied.

  14. Metabolic profile of visual cortex in diabetic rats measured with in vivo proton MRS.

    Science.gov (United States)

    Li, Shuang; Wang, Xinghua; Yang, Junjie; Lei, Hao; Wang, Xuxia; Xiang, Yi

    2017-11-01

    The purpose of the present study was to characterize the metabolic profile of the visual cortex in streptozotocin-induced Type 1 diabetic rats by means of in vivo proton MRS. Several metabolite concentration ratios in the visual cortex were calculated. In addition, postmortem histologic analyses for retinal ganglion cell (RGC) loss, optic nerve injury and visual cortex alterations were monitored. The results showed that diabetes induced several changes in visual cortex metabolites, such as reduced N-acetylaspartate, glutamate, γ-aminobutyric acid, taurine and choline-containing compound levels. Nevertheless, myo-inositol levels increased significantly as compared with controls. Remarkable RGC loss and optic nerve degeneration were observed by morphological analysis. Moreover, the results showed significant neuronal loss and glial activation in the visual cortex. These findings indicated that, besides vascular abnormalities, neuronal loss and degeneration in the visual pathway were induced due to disrupted glucose homeostasis in diabetes. Metabolic or functional abnormalities were induced in cerebral neurons of the visual cortex by diabetes. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Development of a low-cost autofocusing probe for profile measurement

    Science.gov (United States)

    Fan, Kuang-Chao; Chu, Chih-Liang; Mou, Jong-I.

    2001-12-01

    In this research, a low-cost and precision autofocus laser probe system was developed. Modified from the pickup head of a commercially available DVD as a basis, it can detect the focus error signal (FES) of the object with a built-in four-quadrant photodiode. The FES will feed back to the developed controller, through which the objective lens can be adjusted in position automatically to remain in focus, driven by a voice coil motor (VCM). The driving current (converted from servo-FES) of the VCM and the objective lens displacement are one to one linearly related within several hundred micrometres. Because of this relationship, the surface profile and the surface roughness of the tested object can be realized. Calibrated results showed that the designed probe has 200 µm linearity range, 0.2 µm accuracy, 0.1 µm resolution and standard deviation of 0.2 µm on average. Some examples are given to show the applicability of this probe system.

  16. Measuring the total and baryonic mass profiles of the very massive CASSOWARY 31 strong lens

    DEFF Research Database (Denmark)

    Grillo, Claudio; Christensen, L.; Gallazzi, A.

    2013-01-01

    images are distributed around a bright early-type galaxy at redshift 0.683, surrounded by several smaller galaxies at similar photometric redshifts. We use available optical and X-ray data to constrain the deflector total, stellar and hot gas mass through, respectively, strong lensing, stellar population...... analysis and plasma modelling. We derive a total mass projected within the Einstein radius R-Ein = 70 kpc of (40 +/- 1) x 10(12) M-circle dot, and a central logarithmic slope of -1.7 +/- 0.2 for the total mass density. Despite a very high stellar mass and velocity dispersion of the central galaxy of (3...... +/- 1) x 10(12) M-circle dot and (450 +/- 80) km s(-1), respectively, the cumulative stellar-to-total mass profile of the deflector implies a remarkably low stellar mass fraction of 20 per cent (3-6 per cent) in projection within the central galaxy effective radius R-e = 25 kpc (R = 100 kpc). We also...

  17. The Formation and Fate of Internal Waves in the South China Sea

    Science.gov (United States)

    2015-11-05

    function of salinity, temperature and pressure. Velocity is measured with acoustic Doppler current profilers ( ADCPs ). These are affixed to the hull of the...kHz acoustic pulses backscat- tered from the water column. The precision of CTD and ADCP measurements depends on set-up and several other factors...and 400 m below the surface and about 10 m above the bottom. Above, a series of approximately 30 densely spaced temperature loggers and an ADCP gave

  18. Development of multi-purpose 2-dimensional detectors for radiation beam profile measurement

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Myungkook; Chio, Younghyun; Kim, Hyunok; Lim, Changhwy; Park, Jeehyun

    2013-08-15

    In recent years, accelerators for radiation generation of variety purposes have been developed and used. The most important part of the radiation emitting device is the accuracy and consistency of the generated radiation dose rate and the dose distribution. In this study, we developed the position sensitive MWPC (Multi-Wire Proportional Chamber) and THGEM (Thick-Gas Electron Multiplier) for measurement of the 2-dimensional radiation dose distribution and measured the radiation dose distribution using them. And we developed devices for conversion, transmission and amplification of radiation signal as the low noise preamplifier and the TDC (Time to Digital Convertor). Through to develop the new high-speed data transmission system, we installed the system that can transfer a stable signal. The developed radiation dose distribution measurement system is expected to be used the measurement of the dose distribution beam of accelerator, as well as measurement of the low energy X-ray dose distribution as the SAXS (Small Angle X-ray Scattering)

  19. Measured and calculated optical property profiles in the mixed layer and free troposphere

    Science.gov (United States)

    Rosen, James M.; Bodhaine, Barry A.; Boatman, Joe F.; Deluisi, John J.; Post, M. J.; Kim, Young; Schnell, Russell C.; Sheridan, Patrick J.; Garvey, Dennis M.

    1992-01-01

    Nearly simultaneous measurements of the physical and optical properties of mixed layer and free tropospheric aerosols near Boulder, Colorado, were made on several occasions using aircraft, balloon, and ground-based sensors. This effort (Front Range Lidar, Aircraft, and Balloon experiment (FRLAB)) was conducted with the purpose of obtaining a diverse, self-consistent data set that could be used for testing optical model calculations based on measured physical characteristics such as apparent size distribution, composition, and shape. It was found that even with the uncertainties involved, the model predictions are in good agreement with the measurements in the visible and near infrared wavelength regions. At CO2 lidar wavelengths there is considerably more uncertainty in both the calculated and measured values; however, within the estimated errors there appears to be satisfactory agreement except for the highest free tropospheric layer studied. The results also indicate that during FRLAB the aerosol in the boundary layer and free troposphere behaved as spherical particles for optical modeling purposes. The utility of the observations for determining the extinction-to-backscatter ratio relevant to aerosols in the boundary layer and free troposphere is described with typical measured values being in the 20 to 30 sr range.

  20. Temperature profile measurement of graphite material using a CO{sub 2} laser

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Payal; Sarma, Arun [Pandit Deendayal Petroleum University, Raisan, Gandhinagar-382007, Gujarat (India); Ghosh, Joydeep; Pandya, Shwetang; Pandya, Santosh; Choudhuri, Paritosh; Govindarajan, J [Institute for Plasma Research, Bhat, Gandhinagar-382428, Gujarat (India); Schrittwieser, C Ionita; Schrittwieser, Roman, E-mail: arun.sarma@spt.pdpu.ac.i [Institute for Ion Physics, University of Innsbruck, Innsbruck (Austria)

    2010-11-15

    Emissive probes have been used for the direct measurement of plasma potential in many plasma devices and different approaches have been introduced to measure plasma potential using emissive probes. But the biggest disadvantage of the emissive probe is its short lifespan due to its self-arrangement and different plasma environment. For example, filament emissive probes cannot be used in high-temperature plasma devices. A few initiatives have begun to measure the plasma potential by using a laser-heated emissive probe. In these cases, mostly graphite and LaB{sub 6} are being used as a probe tip to emit electrons by heating them with a laser light. However, very few studies aiming to understand the mechanism of the heating process of the graphite material have been performed. The heating dynamics of the graphite material heated by a CW CO{sub 2} laser with a maximum power of 30 W have been investigated in this study. The in situ temperature of the probe tip has been measured by using an infrared camera. Complete theoretical and simulation models have been developed to understand the experimentally measured data. Further, the experimental results are compared with ANSYS simulations.

  1. Coupled penetrometer, MBES and ADCP assessments of tidal variations of the surface sediment layer along active subaqueous dunes, Danish Wadden Sea

    DEFF Research Database (Denmark)

    Stark, Nina; Hanff, Henrik; Svenson, Christian

    2011-01-01

    In-situ geotechnical measurements of surface sediments were carried out along large subaqueous dunes in the Knudedyb tidal inlet channel in the DanishWadden Sea using a small free-falling penetrometer. Vertical profiles showed a typical stratification pattern with a resolution of ~1 cm depicting ...

  2. Profiles of temperature, salinity, and other measurements from CTD, XBT, and bottle samplers received from the Japan Oceanographic Data Center (NODC Accession 0054093)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Profiles of temperature, salinity, and other measurements received from the Japan Oceanographic Data Center, Hydrographic and Oceanographic Department as a...

  3. Oceanographic profile temperature, salinity, oxygen and other measurement collected using bottle in the Barents, Kara, Laptev, White, Norwegian Seas from 1900 - 1940 (NODC Accession 0002118)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other measurements were collected using bottle casts from the SOTRA in the Barents Sea and other locations from 16 May 1900 to 20 October...

  4. Oceanographic profile temperature, salinity, oxygen and other measurements collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1970 through 1975 (NODC Accession 0002125)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature, salinity, oxygen and other measurements collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1970...

  5. Oceanographic profile temperature, salinity, oxygen and other measurement collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1976 through 1982 (NODC Accession 0002126)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature, salinity, oxygen and other measurement collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1976...

  6. Oceanographic profile temperature, salinity, oxygen and other measurements collected using bottle in the Barents, Kara, Laptev, White, Norwegian Seas from 1965 - 1969 (NODC Accession 0002124)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature, salinity, oxygen and other measurements collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1965...

  7. Oceanographic profile temperature, salinity, oxygen and other measurement collected using bottle in the Barents, Kara, Laptev, White, Norwegian Seas from 1943 - 1950 (NODC Accession 0002119)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other measurements were collected using bottle casts in the Barents Sea and other locations from 02 June 1943 to 16 June 1950. Data were...

  8. Oceanographic profile temperature, salinity, oxygen measurements collected using bottle from multiple platforms in the Azov, Black Seas from 1924-1990 (NODC Accession 0002717)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature, salinity, oxygen measurements collected using bottle from multiple platforms in the Azov, Black Seas from 1924-1990

  9. A comparison between Warner-Bratzler shear force measurement and texture profile analysis of meat and meat products: a review

    Science.gov (United States)

    Novaković, S.; Tomašević, I.

    2017-09-01

    Texture is one of the most important characteristics of meat and we can explain it as the human physiological-psychological awareness of a number of rheological and other properties of foods and their relations. In this paper, we discuss instrumental measurement of texture by Warner-Bratzler shear force (WBSF) and texture profile analysis (TPA). The conditions for using the device are detailed in WBSF measurements, and the influence of different parameters on the execution of the method and final results are shown. After that, the main disadvantages are reflected in the non-standardized method. Also, we introduce basic texture parameters which connect and separate TPA and WBSF methods and mention contemporary methods with their main advantage.

  10. Design of a Michelson Interferometer for Quantitative Refraction Index Profile Measurements

    NARCIS (Netherlands)

    Nijholt, J.L.M.

    1998-01-01

    This book describes the theoretical design of a three camera Michelson interferometer set-up for quantitative refractive index measuerments. Although a two camera system is easier to align and less expensive, a three camera interferometer is preferred because the expected measuring accuracy is much

  11. Lidar profilers in the context of wind energy–a verification procedure for traceable measurements

    DEFF Research Database (Denmark)

    Gottschall, Julia; Courtney, Michael; Wagner, Rozenn

    2012-01-01

    a repeatable test. Second, a linear regression is applied to the data for each height. The third step is a bin-average analysis of the lidar error, i.e. the difference between the lidar and reference measurements, forming the basis for the ensuing uncertainty estimation. The results of the verification test...

  12. Improved electron beam weld design and control with beam current profile measurements

    Science.gov (United States)

    Giedt, Warren H.

    The determination of machine settings for making an electron beam weld still involves trial and error tests. Also, even after settings are selected, serious variations in penetration may occur. Results are presented to demonstrate that improved weld consistency and quality can be obtained with measurement of the beam size and intensity distribution.

  13. Predicting clinical concussion measures at baseline based on motivation and academic profile.

    Science.gov (United States)

    Trinidad, Katrina J; Schmidt, Julianne D; Register-Mihalik, Johna K; Groff, Diane; Goto, Shiho; Guskiewicz, Kevin M

    2013-11-01

    The purpose of this study was to predict baseline neurocognitive and postural control performance using a measure of motivation, high school grade point average (hsGPA), and Scholastic Aptitude Test (SAT) score. Cross-sectional. Clinical research center. Eighty-eight National Collegiate Athletic Association Division I incoming student-athletes (freshman and transfers). Participants completed baseline clinical concussion measures, including a neurocognitive test battery (CNS Vital Signs), a balance assessment [Sensory Organization Test (SOT)], and motivation testing (Rey Dot Counting). Participants granted permission to access hsGPA and SAT total score. Standard scores for each CNS Vital Signs domain and SOT composite score. Baseline motivation, hsGPA, and SAT explained a small percentage of the variance of complex attention (11%), processing speed (12%), and composite SOT score (20%). Motivation, hsGPA, and total SAT score do not explain a significant amount of the variance in neurocognitive and postural control measures but may still be valuable to consider when interpreting neurocognitive and postural control measures.

  14. The Wind Profile in the Coastal Boundary Layer: Wind Lidar Measurements and Numerical Modelling

    DEFF Research Database (Denmark)

    Floors, Rogier; Vincent, Claire Louise; Gryning, Sven-Erik

    2013-01-01

    Traditionally it has been difficult to verify mesoscale model wind predictions against observations in the planetary boundary layer (PBL). Here we used measurements from a wind lidar to study the PBL up to 800 m above the surface at a flat coastal site in Denmark during a one month period in autu...

  15. Wind profile modelling using WAsP and "tall" wind measurements

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph; Kelly, Mark C.; Troen, Ib

    2015-01-01

    A and B in the geostrophic drag law was taken into account by specifying a mean offset between the thermal and surface geostrophic wind vector and a mean magnitude of the thermal wind vector. Wind lidar and mast measurements from 11 different sites (that were not used in determining the empirical...

  16. RELATIONSHIPS BETWEEN NEAR-BOTTOM DISSOLVED OXYGEN AND SEDIMENT PROFILE CAMERA MEASUREMENTS

    Science.gov (United States)

    The United States Environmental Protection Agency (U.S. EPA) and other environmental authorities regulate concentrations of dissolved oxygen (DO) as a measure of nutrient-related eutrophication in estuarine and coastal waters. However, in situ DO concentrations are extremely var...

  17. Reading Profiles for Adults with Low-Literacy: Cluster Analysis with Power and Speeded Measures

    Science.gov (United States)

    Mellard, Daryl F.; Fall, Emily; Mark, Caroline

    2009-01-01

    The United States' National Institute for Literacy's (NIFL) review of adult literacy instruction research recommended adult education (AE) programs assess underlying reading abilities in order to plan appropriate instruction for low-literacy learners. This study developed adult reading ability groups using measures from power tests and speeded…

  18. Toward an integrated profile of emotional intelligence: introducing a brief measure.

    Science.gov (United States)

    Kemp, Andrew H; Cooper, Nicholas J; Hermens, Gerard; Gordon, Evian; Bryant, Richard; Williams, Leanne M

    2005-03-01

    Over the last decade, an increasing number of research studies have focused on the construct of Emotional Intelligence (EI), which may be broadly defined as the capacity to perceive and regulate emotions in oneself as well as those of others. Researchers have generally adopted an organizational or management focus to the study of EI, however studies which adopt a more integrated perspective by combining psychological with biological measures, may help in further elucidating this relatively abstract construct. The first objective of this paper was to report on the psychometric properties of a brief, self-report measure of EI (Brain Resource Inventory for Emotional intelligence Factors or BRIEF), comprising internal emotional capacity (IEC), external emotional capacity (EEC) and self concept (SELF). Second, we further explored the validity of the measure by assessing the relationships between the BRIEF and variables considered relevant to the understanding of EI (including gender, age, personality, cognitive intelligence and resting state electroencephalography, EEG). The BRIEF possessed sound psychometric properties (internal consistency, r=0.68-0.81; test-retest reliability, r=0.92; construct validity with the Self Report Emotional Intelligence Test, r=0.70). As hypothesized, females were found to score higher than males on EI. EI was associated more with personality than with cognitive ability, and EEG was found to explain a significant portion of the variance in EI scores. The finding that low EI is related to underarousal of the left-frontal cortex (increased theta EEG) is consistent with research on patients with depression, as well as attention deficit hyperactivity disorder. Although EI did not display age-related increases, this might relate to the exclusion of adolescents from our sample. In conclusion, examination of the way in which EI measures relate to a complementary range of psychological and biological measures may help to further elucidate this

  19. The relationship, structure and profiles of schizophrenia measurements: a post-hoc analysis of the baseline measures from a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Chen Lei

    2011-12-01

    Full Text Available Background To fully assess the various dimensions affected by schizophrenia, clinical trials often include multiple scales measuring various symptom profiles, cognition, quality of life, subjective well-being, and functional impairment. In this exploratory study, we characterized the relationships among six clinical, functional, cognitive, and quality-of-life measures, identifying a parsimonious set of measurements. Methods We used baseline data from a randomized, multicenter study of patients diagnosed with schizophrenia, schizoaffective disorder, or schizophreniform disorder who were experiencing an acute symptom exacerbation (n = 628 to examine the relationship among several outcome measures. These measures included the Positive and Negative Syndrome Scale (PANSS, Montgomery-Asberg Depression Rating Scale (MADRS, Brief Assessment of Cognition in Schizophrenia Symbol Coding Test, Subjective Well-being Under Neuroleptics Scale Short Form (SWN-K, Schizophrenia Objective Functioning Instrument (SOFI, and Quality of Life Scale (QLS. Three analytic approaches were used: 1 path analysis; 2 factor analysis; and 3 categorical latent variable analysis. In the optimal path model, the SWN-K was selected as the final outcome, while the SOFI mediated the effect of the exogenous variables (PANSS, MADRS on the QLS. Results The overall model explained 47% of variance in QLS and 17% of the variance in SOFI, but only 15% in SWN-K. Factor analysis suggested four factors: "Functioning," "Daily Living," "Depression," and "Psychopathology." A strong positive correlation was observed between the SOFI and QLS (r = 0.669, and both the QLS and SOFI loaded on the "Functioning" factor, suggesting redundancy between these scales. The measurement profiles from the categorical latent variable analysis showed significant variation in functioning and quality of life despite similar levels of psychopathology. Conclusions Researchers should consider collecting PANSS, SOFI, and

  20. The application of an instrument for non-destructive measurements of soil temperature and resistance profiles at a high Arctic field site

    Directory of Open Access Journals (Sweden)

    C. R. Lloyd

    1998-01-01

    Full Text Available An easily constructed and installed instrument for measuring colocated soil temperature and resistance profiles is described. Minimum disturbance to the soil structure is achieved. The system indicates the melting front of permafrost at a high Arctic field site and shows the effect and extent of summer rainfall events upon the soil water profile. The system is capable of long-term recording of soil moisture profiles at a frequency commensurate with eddy correlation measurements of the surface fluxes of water vapour and carbon dioxide; it thus provides the information necessary for understanding the processes involved in the soil-atmosphere exchange of water and carbon dioxide.

  1. Improving the quality of stripes in structured-light three-dimensional profile measurement

    Science.gov (United States)

    Qi, Zhaoshuai; Wang, Zhao; Huang, Junhui; Xue, Qi; Gao, Jianmin

    2017-03-01

    Measuring objects with high dynamic range (HDR) reflectivity by coded structured-light, captured stripes are usually seriously distorted by reflectivity, causing inaccurate measurement results. A stripe enhancement method is proposed to deal with the problem. The method is based on the correspondence between phase and intensity of the stripe. First, the phase map of the captured stripe pattern is retrieved by phase-shift algorithm and multiexposure method, where saturation and low contrast of the stripe are eliminated; then, the modulation of stripes is normalized to eliminate the influence of reflectivity; finally, the enhanced stripe is obtained by assembling the modulation and the phase map. Experimental results demonstrate that the method is efficient for objects with HDR reflectivity and achieves high accuracy.

  2. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    Science.gov (United States)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  3. Investigation of surface and subsurface profile, techniques of measurement, and replication of the Chinese Magic Mirror

    Science.gov (United States)

    Kang Min, Eden T.; Watt, Sook May; Sreemathy, Parthasarathy; Huang, Lei; Asundi, Anand

    2013-06-01

    The Chinese magic mirror is an ancient convex bronze mirror, it reflects parallel light rays to form a unique image within the reflected patch of light by altering the reflected ray paths. Using Phase Measuring Reflectometry (PMR), surface irregularities of a micron range were found to be present on the mirror; these irregularities concentrate and disperse reflected light rays, giving rise to brighter and darker patches on the reflected image, forming a contrast, allowing the unique pattern to be observed. To ascertain location and nature of the surface defects that come in forms of indentations and raised platforms, other measurement techniques were employed. Reverse engineering then facilitated the exploration of reproduction of a very own original Chinese Magic Mirror with the use of optical principles behind the mirror.

  4. Performance simulation of a spaceborne infrared coherent lidar for measuring tropospheric wind profiles.

    Science.gov (United States)

    Baron, Philippe; Ishii, Shoken; Kyoka, Gamo; Mizutani, Kohei; Chikako, Takahashi; Itabe, Toshikazu; Iwasaki, Toshiki; Kubota, Takuji; Okamoto, Kozo; Oki, Riko; Satoh, Masaki; Satoh, Yohei

    2014-05-01

    An effort has begun in Japan to develop a spaceborne instrument for measuring tropospheric winds. This project is a collaboration between the Japan Aerospace Exploration Agency (JAXA), the Meteorological Research Institute (MRI, Japan) and the National Institute of Information and Communications Technology (NICT, Japan) [1,2]. The aim is to measure the horizontal wind field in the troposphere on a global scale with a precision better than 3 ms-1, and a vertical and horizontal (along the satellite ground track) resolution better than 1 km and 100 km, respectively. In order to support the definition and the development of the instrument, an end-to-end simulator has been implemented including modules for i) simulating the time-dependent laser shot return power, ii) for averaging the spectral power of several returns and iii) for estimating the line-of-sight wind from the Doppler shift of the averaged spectra. The simulations take into account the satellite position and motion along the orbit track, the observational and instrumental characteristics, a 3-D representation of the relevant atmospheric parameters (i.e. wind field, cloud coverage and aerosols distribution) and the Earth surface characteristics. The simulator and the method for estimating the line-of-sight wind will be presented. We will show the results obtained for a payload composed of two 2-μm coherent LIDARs looking in orthogonal directions, and for a satellite moving on a low orbit. The precision, accuracy and the vertical and horizontal resolution of the wind estimates will be discussed. References: [1] S. Ishii, T. Iwasaki, M. Sato, R. Oki, K. Okamoto, T. Ishibashi, P. Baron, and T. Nishizawa, Future Doppler lidar wind measurement from space in Japan, Proc. of SPIE Vol. 8529, 2012 [2] S. Ishii, H. Iwai, K. Mizutani, P. Baron, T. Itabe, H. Fukuoka, T. Ishikawa, A. Sato and A. Asai, 2-μm coherent LIDAR for CO2 and wind measurements, Proc. of SPIE Vol. 8872, 2013

  5. Design of a Michelson Interferometer for Quantitative Refraction Index Profile Measurements

    OpenAIRE

    Nijholt, J.L.M.

    1998-01-01

    This book describes the theoretical design of a three camera Michelson interferometer set-up for quantitative refractive index measuerments. Although a two camera system is easier to align and less expensive, a three camera interferometer is preferred because the expected measuring accuracy is much better. Here analytical expressions are found for the calculation of the required alignment accuracy of the interferometer's components: three CCD-cameras (six degrees of freedom each), a quarter w...

  6. Direct measurement of local dissolved oxygen concentration spatial profiles in a cell culture environment.

    Science.gov (United States)

    Kagawa, Yuki; Matsuura, Katsuhisa; Shimizu, Tatsuya; Tsuneda, Satoshi

    2015-06-01

    Controlling local dissolved oxygen concentration (DO) in media is critical for cell or tissue cultures. Various biomaterials and culture methods have been developed to modulate DO. Direct measurement of local DO in cultures has not been validated as a method to test DO modulation. In the present study we developed a DO measurement system equipped with a Clark-type oxygen microelectrode manipulated with 1 μm precision in three-dimensional space to explore potential applications for tissue engineering. By determining the microelectrode tip position precisely against the bottom plane of culture dishes with rat or human cardiac cells in static monolayer culture, we successfully obtained spatial distributions of DO in the medium. Theoretical quantitative predictions fit the obtained data well. Based on analyses of the variance between samples, we found the data reflected "local" oxygen consumption in the vicinity of the microelectrode and the detection of temporal changes in oxygen consumption rates of cultured cells was limited by the diffusion rate of oxygen in the medium. This oxygen measuring system monitors local oxygen consumption and production with high spatial resolution, and can potentially be used with recently developed oxygen modulating biomaterials to design microenvironments and non-invasively monitor local DO dynamics during culture. © 2015 Wiley Periodicals, Inc.

  7. Comprehensive and Highly Accurate Measurements of Crane Runways, Profiles and Fastenings.

    Science.gov (United States)

    Dennig, Dirk; Bureick, Johannes; Link, Johannes; Diener, Dmitri; Hesse, Christian; Neumann, Ingo

    2017-05-13

    The process of surveying crane runways has been continually refined due to the competitive situation, modern surveying instruments, additional sensors, accessories and evaluation procedures. Guidelines, such as the International Organization for Standardization (ISO) 12488-1, define target values that must be determined by survey. For a crane runway these are for example the span, the position and height of the rails. The process has to be objective and reproducible. However, common processes of surveying crane runways do not meet these requirements sufficiently. The evaluation of the protocols, ideally by an expert, requires many years of experience. Additionally, the recording of crucial parameters, e.g., the wear of the rail, or the condition of the rail fastening and rail joints, is not regulated and for that reason are often not considered during the measurement. To solve this deficit the Advanced Rail Track Inspection System (ARTIS) was developed. ARTIS is used to measure the 3D position of crane rails, the cross-section of the crane rails, joints and, for the first time, the (crane-rail) fastenings. The system consists of a monitoring vehicle and an external tracking sensor. It makes kinematic observations with the tracking sensor from outside the rail run, e.g., the floor of an overhead crane runway, possible. In this paper we present stages of the development process of ARTIS, new target values, calibration of sensors and results of a test measurement.

  8. In-Situ Acoustic Measurements of Temperature Profile in Extreme Environments

    Energy Technology Data Exchange (ETDEWEB)

    Skliar, Mikhail [Univ. of Utah, Salt Lake City, UT (United States)

    2015-03-31

    A gasifier’s temperature is the primary characteristic that must be monitored to ensure its performance and the longevity of its refractory. One of the key technological challenges impacting the reliability and economics of coal and biomass gasification is the lack of temperature sensors that are capable of providing accurate, reliable, and long-life performance in an extreme gasification environment. This research has proposed, demonstrated, and validated a novel approach that uses a noninvasive ultrasound method that provides real-time temperature distribution monitoring across the refractory, especially the hot face temperature of the refractory. The essential idea of the ultrasound measurements of segmental temperature distribution is to use an ultrasound propagation waveguide across a refractory that has been engineered to contain multiple internal partial reflectors at known locations. When an ultrasound excitation pulse is introduced on the cold side of the refractory, it will be partially reflected from each scatterer in the US propagation path in the refractory wall and returned to the receiver as a train of partial echoes. The temperature in the corresponding segment can be determined based on recorded ultrasonic waveform and experimentally defined relationship between the speed of sound and temperature. The ultrasound measurement method offers a powerful solution to provide continuous real time temperature monitoring for the occasions that conventional thermal, optical and other sensors are infeasible, such as the impossibility of insertion of temperature sensor, harsh environment, unavailable optical path, and more. Our developed ultrasound system consists of an ultrasound engineered waveguide, ultrasound transducer/receiver, and data acquisition, logging, interpretation, and online display system, which is simple to install on the existing units with minimal modification on the gasifier or use with new units. This system has been successfully tested

  9. Two Photon Absorption Laser Induced Fluorescence for Neutral Hydrogen Profile Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Scime, Earl E. [West Virginia Univ., Morgantown, WV (United States)

    2016-09-23

    The magnitude and spatial dependence of neutral density in magnetic confinement fusion experiments is a key physical parameter, particularly in the plasma edge. Modeling codes require precise measurements of the neutral density to calculate charge-exchange power losses and drag forces on rotating plasmas. However, direct measurements of the neutral density are problematic. In this work, we proposed to construct a laser-based diagnostic capable of providing spatially resolved measurements of the neutral density in the edge of plasma in the DIII-D tokamak. The diagnostic concept is based on two-photon absorption laser induced fluorescence (TALIF). By injecting two beams of 205 nm light (co or counter propagating), ground state hydrogen (or deuterium or tritium) can be excited from the n = 1 level to the n = 3 level at the location where the two beams intersect. Individually, the beams experience no absorption, and therefore have no difficulty penetrating even dense plasmas. After excitation, a fraction of the hydrogen atoms decay from the n = 3 level to the n = 2 level and emit photons at 656 nm (the Hα line). Calculations based on the results of previous TALIF experiments in magnetic fusion devices indicated that a laser pulse energy of approximately 3 mJ delivered in 5 ns would provide sufficient signal-to-noise for detection of the fluorescence. In collaboration with the DIII-D engineering staff and experts in plasma edge diagnostics for DIII-D from Oak Ridge National Laboratory (ORNL), WVU researchers designed a TALIF system capable of providing spatially resolved measurements of neutral deuterium densities in the DIII-D edge plasma. The laser systems were specified, purchased, and assembled at WVU. The TALIF system was tested on a low-power hydrogen discharge at WVU and the plan was to move the instrument to DIII-D for installation in collaboration with ORNL researchers. After budget cuts at DIII-D, the DIII-D facility declined to support

  10. Deep ocean current profiles, water temperatures, and echo amplitudes from bottom-moored ADCP during 2011-2013 of the Aloha Cabled Observatory (NCEI Accession 0123608)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ALOHA Cabled Observatory (ACO) is a system of hardware and software that extends electric power and the Internet offshore, supporting sustained real-time...

  11. Upper Ocean Stratification in the Bay of Bengal

    Science.gov (United States)

    2015-09-30

    taken along the cruise track. A 300 kHz ADCP installed on the Sagar Nidhi worked very well. A second 500 kHz ADCP , capable of shallower measurements...based on the uCTD and ADCP profiles, the first attempt to undertake adaptive sampling. This was done for 3 days by the Indian scientists, with only...drifts while profiling the velocity structure of the overlying mixing layer with an ADCP . Since the drift depth is very close to the drogue depth of

  12. Identification of sources and estimation of emission profiles from highly time-resolved pollutant measurements in Tampa, FL

    Science.gov (United States)

    Pancras, Joseph Patrick; Ondov, John M.; Poor, Noreen; Landis, Matthew S.; Stevens, Robert K.

    Aerosol slurry samples were collected at 30-min intervals for sequential 1-month periods at each of two sites (Sydney and "Dairy") in the Tampa Bay area during the 2002 Bay Regional Atmospheric Chemistry Experiment using the University of Maryland Semicontinuous Elements in Aerosol Sampler-II (SEAS-II). More than 500 samples, believed to be affected by plumes from local utility and industrial sources, were selected for electrothermal atomic absorption spectrophotometric analyses for elemental markers (Al, Fe, Cr, Cu, Mn, Pb, Se, As, Ni, Zn and Cd) based on excursions in SO 2 and NO x measurements. Correlation of short-term excursions in metals and SO 2, and surface wind directions observed between May 23 and 26th, 2002, revealed the influence of an animal feed supplements production facility (AFS), 17 km upwind at a station angle of 81°, for which emissions had not previously been detected by standard monitoring methods. Emission "profiles" for this source were developed, separately, from the time series data and by using principle components analysis (PCA) and positive matrix factorization (PMF). In addition, a local dust component was evident in Al and Fe concentration profiles during periods of elevated wind speeds and was resolved by PCA/PMF. Similarly, large but brief 1.5-h excursions in Zn (maximum, 403 ng m -3), Cd, and Pb on May 17th were correlated with winds from the direction of an incinerator (station angle, 250°) 17 km from Sydney. Lastly, large excursions in As concentrations (maximum, 86 ng m -3) observed (May 4th and 5th at Sydney and November 2nd and 3rd at the Dairy) were used to locate previously unrecognized sources, tentatively associated with combustion/production of pressure-treated lumber. Profiles developed directly from the time series data were in the range of those derived from PCA-PMF (AFS); and those for the incinerator, with previously published values.

  13. Microwave measurements of temperature profiles, integrated water vapour, and liquid water path at Thule Air Base, Greenland.

    Science.gov (United States)

    Pace, Giandomenico; Di Iorio, Tatiana; di Sarra, Alcide; Iaccarino, Antonio; Meloni, Daniela; Mevi, Gabriele; Muscari, Giovanni; Cacciani, Marco

    2017-04-01

    A RPG Humidity And Temperature PROfiler (HATPRO-G2 ) radiometer was installed at Thule Air Base (76.5° N, 68.8° W), Greenland, in June 2016 in the framework of the Study of the water VApour in the polar AtmosPhere (SVAAP) project. The Danish Meteorological Institute started measurements of atmospheric properties at Thule Air Base in early '90s. The Thule High Arctic Atmospheric Observatory (THAAO) has grown in size and observing capabilities during the last three decades through the international effort of United States (NCAR and University of Alaska Fairbanks) and Italian (ENEA, INGV, University of Roma and Firenze) institutions (http://www.thuleatmos-it.it). Within this context, the intensive field campaign of the SVAAP project was aimed at the investigation of the surface radiation budget and took place from 5 to 28 July, 2016. After the summer campaign the HATPRO has continued to operate in order to monitor the annual variability of the temperature profile and integrated water vapour as well as the presence and characteristics of liquid clouds in the Artic environment. The combined use of the HATPRO together with other automatic instruments, such as a new microwave spectrometer (the water Vapour Emission Spectrometer for Polar Atmosphere VESPA-22), upward- and downward-looking pyranometers and pyrgeometers, a zenith-looking pyrometer operating in the 9.6-11.5 µm spectral range, an all sky camera, and a meteorological station, allows to investigate the clouds' physical and optical properties, as well as their impact on the surface radiation budget. This study will present and discuss the first few months of HATPRO observations; the effectiveness of the statistical retrieval used to derive the physical parameters from the HATPRO brightness temperatures will also be investigated through the comparison of the temperature and humidity profiles, and integrated water vapour, with data from radiosondes launched during the summer campaign and in winter time.

  14. Measurement of the plasma edge profiles using the combined probe on W7-X

    Science.gov (United States)

    Drews, P.; Liang, Y.; Liu, S.; Krämer-Flecken, A.; Neubauer, O.; Geiger, J.; Rack, M.; Nicolai, D.; Grulke, O.; Killer, C.; Wang, N.; Charl, A.; Schweer, B.; Denner, P.; Henkel, M.; Gao, Y.; Hollfeld, K.; Satheeswaran, G.; Sandri, N.; Höschen, D.; The W7-X Team

    2017-12-01

    Wendelstein 7-X (W7-X), started operation in December 2015 with a limiter configuration. In conjunction with the multi-purpose manipulator, a carrier for fast reciprocating probe systems, the combined probe has been installed. This combined probe is able to measure the local electron temperatures and densities, magnetic field, the electric field and the plasma flow. These parameters are very useful in ascertaining the edge plasma perfomance. In addition, the field line tracing feature of the W7-X webservices was used to calculate the connection length along the path of the probe, for each configuration.

  15. Environmental Profile of a Community's Health (EPOCH: an ecometric assessment of measures of the community environment based on individual perception.

    Directory of Open Access Journals (Sweden)

    Daniel J Corsi

    Full Text Available BACKGROUND: Public health research has turned towards examining upstream, community-level determinants of cardiovascular disease risk factors. Objective measures of the environment, such as those derived from direct observation, and perception-based measures by residents have both been associated with health behaviours. However, current methods are generally limited to objective measures, often derived from administrative data, and few instruments have been evaluated for use in rural areas or in low-income countries. We evaluate the reliability of a quantitative tool designed to capture perceptions of community tobacco, nutrition, and social environments obtained from interviews with residents in communities in 5 countries. METHODOLOGY/ PRINCIPAL FINDINGS: Thirteen measures of the community environment were developed from responses to questionnaire items from 2,360 individuals residing in 84 urban and rural communities in 5 countries (China, India, Brazil, Colombia, and Canada in the Environmental Profile of a Community's Health (EPOCH study. Reliability and other properties of the community-level measures were assessed using multilevel models. High reliability (>0.80 was demonstrated for all community-level measures at the mean number of survey respondents per community (n = 28 respondents. Questionnaire items included in each scale were found to represent a common latent factor at the community level in multilevel factor analysis models. CONCLUSIONS/ SIGNIFICANCE: Reliable measures which represent aspects of communities potentially related to cardiovascular disease (CVD/risk factors can be obtained using feasible sample sizes. The EPOCH instrument is suitable for use in different settings to explore upstream determinants of CVD/risk factors.

  16. Validation of SCIAMACHY limb NO2 profiles using solar occultation measurements

    Directory of Open Access Journals (Sweden)

    H. Bovensmann

    2012-05-01

    Full Text Available The increasing amounts of reactive nitrogen in the stratosphere necessitate accurate global measurements of stratospheric nitrogen dioxide (NO2. Over the past decade, the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY instrument on ENVISAT (European Environmental Satellite has been providing global coverage of stratospheric NO2 every 6 days. In this study, the vertical distributions of NO2 retrieved from SCIAMACHY limb measurements of the scattered solar light are validated by comparison with NO2 products from three different satellite instruments (SAGE II, HALOE and ACE-FTS. The retrieval algorithm based on the information operator approach is discussed, and the sensitivity of the SCIAMACHY NO2 limb retrievals is investigated. The photochemical corrections needed to make this validation feasible, and the chosen collocation criteria are described. For each instrument, a time period of two years is analyzed with several hundreds of collocation pairs for each year. As NO2 is highly variable, the comparisons are performed for five latitudinal bins and four seasons. In the 20 to 40 km altitude range, mean relative differences between SCIAMACHY and other instruments are found to be typically within 20 to 30%. The mean partial NO2 columns in this altitude range agree typically within 15% (both global monthly and zonal annual means. Larger differences are seen for SAGE II comparisons, which is consistent with the results presented by other authors. For SAGE II and ACE-FTS, the observed differences can be partially attributed to the diurnal effect error.

  17. Profile stiffness measurements in the Helically Symmetric experiment and comparison to nonlinear gyrokinetic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Weir, G. M.; Faber, B. J.; Likin, K. M.; Talmadge, J. N.; Anderson, D. T.; Anderson, F. S. B. [HSX Plasma Laboratory, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States)

    2015-05-15

    Stiffness measurements are presented in the quasi-helically symmetric experiment (HSX), in which the neoclassical transport is comparable to that in a tokamak and turbulent transport dominates throughout the plasma. Electron cyclotron emission is used to measure the local electron temperature response to modulated electron cyclotron resonant heating. The amplitude and phase of the heat wave through the steep electron temperature gradient (ETG) region of the plasma are used to determine a transient electron thermal diffusivity that is close to the steady-state diffusivity. The low stiffness in the region between 0.2 ≤ r/a ≤ 0.4 agrees with the scaling of the steady-state heat flux with temperature gradient in this region. These experimental results are compared to gyrokinetic calculations in a flux-tube geometry using the gyrokinetic electromagnetic numerical experiment code with two kinetic species. Linear simulations show that the ETG mode may be experimentally relevant within r/a ≤ 0.2, while the Trapped Electron Mode (TEM) is the dominant long-wavelength microturbulence instability across most of the plasma. The TEM is primarily driven by the density gradient. Non-linear calculations of the saturated heat flux driven by the TEM and ETG bracket the experimental heat flux.

  18. Three-dimensional measurement of small inner surface profiles using feature-based 3-D panoramic registration

    Science.gov (United States)

    Gong, Yuanzheng; Seibel, Eric J.

    2017-01-01

    Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection.

  19. Three-dimensional measurement of small inner surface profiles using feature-based 3-D panoramic registration.

    Science.gov (United States)

    Gong, Yuanzheng; Seibel, Eric J

    2017-01-01

    Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection.

  20. Measurements of plasma profiles using a fast swept Langmuir probe in the VINETA-II magnetic reconnection experiment

    Science.gov (United States)

    Shesterikov, I.; Von Stechow, A.; Grulke, O.; Stenzel, R.; Klinger, T.

    2017-07-01

    A fast-swept Langmuir probe capable to be biased at a high voltages has been constructed and successfully operated at the VINETA-II magnetic reconnection experiment. The presented circuit has two main features beneficial for fast transient parameter changes in laboratory experiments as, e.g., plasma guns or magnetic reconnection: the implementation simplicity and the high voltage sweep range. This work presents its design and performance for time-dependent measurements of VINETA-II plasmas. The probe is biased with a sinusoidal voltage at a fixed frequency. Current - voltage characteristics are measured along the falling and rising slopes of the probe bias. The sweep frequency is fsweep= 150 kHz. The spatiotemporal evolution of radial plasma profiles is obtained by evaluation of the probe characteristics. The plasma density measurements agree with those derived from a microwave interferometer, demonstrating the reliability of the measurements. As a model plasma system, a plasma gun discharge with typical pulse times of 60 μ s is chosen.