WorldWideScience

Sample records for productivity forecast model

  1. A mathematical model to forecast uranium production

    International Nuclear Information System (INIS)

    Camisani-Calzolari, F.A.G.M.

    1987-01-01

    The uranium production forecasting program described in this paper projects production from reasonably assured, estimated additional and speculative resources in the cost categories of less than $130/kg U. Originally designed to handle South African production, it has been expanded and redimensioned using available published information to forecast production for countries of the Western World. The program forecasts production from up to 400 plants over a period of fifty years and has built-in production models derived from documented historical data of the more important uranium provinces. It is particularly suitable to assess production capabilities on a national and global scale where variations in outputs for the individual plants tend to even out. The program is aimed at putting the uranium potential of any one country into a realistic perspective, and it could thus be useful for planning purposes and marketing strategies

  2. A review of forecasting models for new products

    Directory of Open Access Journals (Sweden)

    Marta Mas-Machuca

    2014-02-01

    Full Text Available Purpose. The main objective of this article is to present an up-to-date review of new product forecasting techniques. Design/methodology/approach: A systematic review of forecasting journals was carried out using the ISI-Web of Knowledge database. Several articles were retrieved and examined, and forecasting techniques relevant to this study were selected and assessed. Findings: The strengths, weaknesses and applications of the main forecasting models are discussed to examine trends and set future challenges. Research limitations/implications: A theoretical reference framework for forecasting techniques classified into judgmental, consumer/market research, cause-effect and artificial intelligence is proposed. Future research can assess these models qualitatively. Practical implications: Companies are currently motivated to launch new products and thus attract new customers to expand their market share.  In order to reduce uncertainty and risk, many companies go to extra lengths to forecast sales accurately using several techniques. Originality/value: This article outlines new lines of research on the improvement of new product performance which will aid managers in decision making and allow companies to sustain their competitive advantages in this challenging world.

  3. Forecasting corn production in Serbia using ARIMA model

    Directory of Open Access Journals (Sweden)

    Ilić Ivana

    2016-01-01

    Full Text Available Agricultural crop production is closely related to climate, as a decisive success factor. Temperature fluctuations and changes in the volume of precipitation are the main factors affecting the growth and development of crops, and, ultimately, the quantity produced. Corn is the most common crop necessary to provide for domestic needs, and a strategic product for export. Production of corn in the period from 1947 to 2014 in Serbia had an oscillatory trend, with significant jumps and falls in production. The subject of this paper is the forecasting of future trends in corn production in Serbia. Building on the subject, the purpose of this paper is to create the model for forecasting future corn production and establishing its trends.

  4. Surrogate reservoir models for CSI well probabilistic production forecast

    Directory of Open Access Journals (Sweden)

    Saúl Buitrago

    2017-09-01

    Full Text Available The aim of this work is to present the construction and use of Surrogate Reservoir Models capable of accurately predicting cumulative oil production for every well stimulated with cyclic steam injection at any given time in a heavy oil reservoir in Mexico considering uncertain variables. The central composite experimental design technique was selected to capture the maximum amount of information from the model response with a minimum number of reservoir models simulations. Four input uncertain variables (the dead oil viscosity with temperature, the reservoir pressure, the reservoir permeability and oil sand thickness hydraulically connected to the well were selected as the ones with more impact on the initial hot oil production rate according to an analytical production prediction model. Twenty five runs were designed and performed with the STARS simulator for each well type on the reservoir model. The results show that the use of Surrogate Reservoir Models is a fast viable alternative to perform probabilistic production forecasting of the reservoir.

  5. Forecasting Rice Productivity and Production of Odisha, India, Using Autoregressive Integrated Moving Average Models

    Directory of Open Access Journals (Sweden)

    Rahul Tripathi

    2014-01-01

    Full Text Available Forecasting of rice area, production, and productivity of Odisha was made from the historical data of 1950-51 to 2008-09 by using univariate autoregressive integrated moving average (ARIMA models and was compared with the forecasted all Indian data. The autoregressive (p and moving average (q parameters were identified based on the significant spikes in the plots of partial autocorrelation function (PACF and autocorrelation function (ACF of the different time series. ARIMA (2, 1, 0 model was found suitable for all Indian rice productivity and production, whereas ARIMA (1, 1, 1 was best fitted for forecasting of rice productivity and production in Odisha. Prediction was made for the immediate next three years, that is, 2007-08, 2008-09, and 2009-10, using the best fitted ARIMA models based on minimum value of the selection criterion, that is, Akaike information criteria (AIC and Schwarz-Bayesian information criteria (SBC. The performances of models were validated by comparing with percentage deviation from the actual values and mean absolute percent error (MAPE, which was found to be 0.61 and 2.99% for the area under rice in Odisha and India, respectively. Similarly for prediction of rice production and productivity in Odisha and India, the MAPE was found to be less than 6%.

  6. Modelling the Errors of EIA’s Oil Prices and Production Forecasts by the Grey Markov Model

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Hasantash

    2012-01-01

    Full Text Available Grey theory is about systematic analysis of limited information. The Grey-Markov model can improve the accuracy of forecast range in the random fluctuating data sequence. In this paper, we employed this model in energy system. The average errors of Energy Information Administrations predictions for world oil price and domestic crude oil production from 1982 to 2007 and from 1985 to 2008 respectively were used as two forecasted examples. We showed that the proposed Grey-Markov model can improve the forecast accuracy of original Grey forecast model.

  7. The management of subsurface uncertainty using probabilistic modeling of life cycle production forecasts and cash flows

    International Nuclear Information System (INIS)

    Olatunbosun, O. O.

    1998-01-01

    The subject pertains to the implementation of the full range of subsurface uncertainties in life cycle probabilistic forecasting and its extension to project cash flows using the methodology of probabilities. A new tool has been developed in the probabilistic application of Crystal-Ball which can model reservoir volumetrics, life cycle production forecasts and project cash flows in a single environment. The tool is modular such that the volumetrics and cash flow modules are optional. Production forecasts are often generated by applying a decline equation to single best estimate values of input parameters such as initial potential, decline rate, abandonment rate etc -or sometimes by results of reservoir simulation. This new tool provides a means of implementing the full range of uncertainties and interdependencies of the input parameters into the production forecasts by defining the input parameters as probability density functions, PDFs and performing several iterations to generate an expectation curve forecast. Abandonment rate is implemented in each iteration via a link to an OPEX model. The expectation curve forecast is input into a cash flow model to generate a probabilistic NPV. Base case and sensitivity runs from reservoir simulation can likewise form the basis for a probabilistic production forecast from which a probabilistic cash flow can be generated. A good illustration of the application of this tool is in the modelling of the production forecast for a well that encounters its target reservoirs in OUT/ODT situation and thus has significant uncertainties. The uncertainty in presence and size (if present) of gas cap and dependency between ultimate recovery and initial potential amongst other uncertainties can be easily implemented in the production forecast with this tool. From the expectation curve forecast, a probabilistic NPV can be easily generated. Possible applications of this tool include: i. estimation of range of actual recoverable volumes based

  8. Forecast Icing Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Forecast Icing Product (FIP) is an automatically-generated index suitable for depicting areas of potentially hazardous airframe icing. The FIP algorithm uses...

  9. Seasonal Forecasting of Agriculture Gross Domestic Production in Iran: Application of Periodic Autoregressive Model

    Directory of Open Access Journals (Sweden)

    Mohammad Ghahremanzadeh

    2014-06-01

    Full Text Available Agriculture as one of the major economic sectors of Iran, has an important role in Gross Domestic Production by providing about 14% of GDP. This study attempts to forecast the value of the agriculture GDP using Periodic Autoregressive model (PAR, as the new seasonal time series techniques. To address this aim, the quarterly data were collected from March 1988 to July 1989. The collected data was firstly analyzed using periodic unit root test Franses & Paap (2004. The analysis found non-periodic unit root in the seasonal data. Second, periodic seasonal behavior (Boswijk & Franses, 1996 was examined. The results showed that periodic autoregressive model fits agriculture GDP well. This makes an accurate forecast of agriculture GDP possible. Using the estimated model, the future value of quarter agricultural GDP from March 2011 to July 2012was forecasted. With consideration to the fair fit of this model with agricultural GDP, It is recommended to use periodic autoregressive model for the future studies.

  10. Estimation efficiency of usage satellite derived and modelled biophysical products for yield forecasting

    Science.gov (United States)

    Kolotii, Andrii; Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii; Ostapenko, Vadim; Oliinyk, Tamara

    2015-04-01

    Efficient and timely crop monitoring and yield forecasting are important tasks for ensuring of stability and sustainable economic development [1]. As winter crops pay prominent role in agriculture of Ukraine - the main focus of this study is concentrated on winter wheat. In our previous research [2, 3] it was shown that usage of biophysical parameters of crops such as FAPAR (derived from Geoland-2 portal as for SPOT Vegetation data) is far more efficient for crop yield forecasting to NDVI derived from MODIS data - for available data. In our current work efficiency of usage such biophysical parameters as LAI, FAPAR, FCOVER (derived from SPOT Vegetation and PROBA-V data at resolution of 1 km and simulated within WOFOST model) and NDVI product (derived from MODIS) for winter wheat monitoring and yield forecasting is estimated. As the part of crop monitoring workflow (vegetation anomaly detection, vegetation indexes and products analysis) and yield forecasting SPIRITS tool developed by JRC is used. Statistics extraction is done for landcover maps created in SRI within FP-7 SIGMA project. Efficiency of usage satellite based and modelled with WOFOST model biophysical products is estimated. [1] N. Kussul, S. Skakun, A. Shelestov, O. Kussul, "Sensor Web approach to Flood Monitoring and Risk Assessment", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 815-818. [2] F. Kogan, N. Kussul, T. Adamenko, S. Skakun, O. Kravchenko, O. Kryvobok, A. Shelestov, A. Kolotii, O. Kussul, and A. Lavrenyuk, "Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models," International Journal of Applied Earth Observation and Geoinformation, vol. 23, pp. 192-203, 2013. [3] Kussul O., Kussul N., Skakun S., Kravchenko O., Shelestov A., Kolotii A, "Assessment of relative efficiency of using MODIS data to winter wheat yield forecasting in Ukraine", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 3235 - 3238.

  11. A comparison of two typical multicyclic models used to forecast the world's conventional oil production

    International Nuclear Information System (INIS)

    Wang Jianliang; Feng Lianyong; Zhao Lin; Snowden, Simon; Wang Xu

    2011-01-01

    This paper introduces two typical multicyclic models: the Hubbert model and the Generalized Weng model. The model-solving process of the two is expounded, and it provides the basis for an empirical analysis of the world's conventional oil production. The results for both show that the world's conventional oil (crude+NGLs) production will reach its peak in 2011 with a production of 30 billion barrels (Gb). In addition, the forecasting effects of these two models, given the same URR are compared, and the intrinsic characteristics of these two models are analyzed. This demonstrates that for specific criteria the multicyclic Generalized Weng model is an improvement on the multicyclic Hubbert model. Finally, based upon the resultant forecast for the world's conventional oil, some suggestions are proposed for China's policy makers. - Highlights: ► Hubbert model and Generalized Weng model are introduced and compared in this article. ► We conclude each model's characteristic and scopes and conditions of applicable. ► We get the same peak production and time of world's oil by applying two models. ► Multicyclic Generalized Weng model is proven slightly better than Hubbert model.

  12. Forecasting China’s Annual Biofuel Production Using an Improved Grey Model

    Directory of Open Access Journals (Sweden)

    Nana Geng

    2015-10-01

    Full Text Available Biofuel production in China suffers from many uncertainties due to concerns about the government’s support policy and supply of biofuel raw material. Predicting biofuel production is critical to the development of this energy industry. Depending on the biofuel’s characteristics, we improve the prediction precision of the conventional prediction method by creating a dynamic fuzzy grey–Markov prediction model. Our model divides random time series decomposition into a change trend sequence and a fluctuation sequence. It comprises two improvements. We overcome the problem of considering the status of future time from a static angle in the traditional grey model by using the grey equal dimension new information and equal dimension increasing models to create a dynamic grey prediction model. To resolve the influence of random fluctuation data and weak anti-interference ability in the Markov chain model, we improve the traditional grey–Markov model with classification of states using the fuzzy set theory. Finally, we use real data to test the dynamic fuzzy prediction model. The results prove that the model can effectively improve the accuracy of forecast data and can be applied to predict biofuel production. However, there are still some defects in our model. The modeling approach used here predicts biofuel production levels based upon past production levels dictated by economics, governmental policies, and technological developments but none of which can be forecast accurately based upon past events.

  13. Forecasting production of fossil fuel sources in Turkey using a comparative regression and ARIMA model

    International Nuclear Information System (INIS)

    Ediger, Volkan S.; Akar, Sertac; Ugurlu, Berkin

    2006-01-01

    This study aims at forecasting the most possible curve for domestic fossil fuel production of Turkey to help policy makers to develop policy implications for rapidly growing dependency problem on imported fossil fuels. The fossil fuel dependency problem is international in scope and context and Turkey is a typical example for emerging energy markets of the developing world. We developed a decision support system for forecasting fossil fuel production by applying a regression, ARIMA and SARIMA method to the historical data from 1950 to 2003 in a comparative manner. The method integrates each model by using some decision parameters related to goodness-of-fit and confidence interval, behavior of the curve, and reserves. Different forecasting models are proposed for different fossil fuel types. The best result is obtained for oil since the reserve classifications used it is much better defined them for the others. Our findings show that the fossil fuel production peak has already been reached; indicating the total fossil fuel production of the country will diminish and theoretically will end in 2038. However, production is expected to end in 2019 for hard coal, in 2024 for natural gas, in 2029 for oil and 2031 for asphaltite. The gap between the fossil fuel consumption and production is growing enormously and it reaches in 2030 to approximately twice of what it is in 2000

  14. Storm Prediction Center Forecast Products

    Science.gov (United States)

    select the go button to submit request Local forecast by "City, St" or "ZIP" City, St Archive NOAA Weather Radio Research Non-op. Products Forecast Tools Svr. Tstm. Events SPC Publications SPC services. Forecast Products Current Weather Watches This is the current graphic showing any severe

  15. A prediction model to forecast the cost impact from a break in the production schedule

    Science.gov (United States)

    Delionback, L. M.

    1977-01-01

    The losses which are experienced after a break or stoppage in sequence of a production cycle portends an extremely complex situation and involves numerous variables, some of uncertain quantity and quality. There are no discrete formulas to define the losses during a gap in production. The techniques which are employed are therefore related to a prediction or forecast of the losses that take place, based on the conditions which exist in the production environment. Such parameters as learning curve slope, number of predecessor units, and length of time the production sequence is halted are utilized in formulating a prediction model. The pertinent current publications related to this subject are few in number, but are reviewed to provide an understanding of the problem. Example problems are illustrated together with appropriate trend curves to show the approach. Solved problems are also given to show the application of the models to actual cases or production breaks in the real world.

  16. FORECASTING MODELS IN MANAGEMENT

    OpenAIRE

    Sindelar, Jiri

    2008-01-01

    This article deals with the problems of forecasting models. First part of the article is dedicated to definition of the relevant areas (vertical and horizontal pillar of definition) and then the forecasting model itself is defined; as article presents theoretical background for further primary research, this definition is crucial. Finally the position of forecasting models within the management system is identified. The paper is a part of the outputs of FEM CULS grant no. 1312/11/3121.

  17. FORECASTING NEW PRODUCT SALES

    Directory of Open Access Journals (Sweden)

    R. Siriram

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper tests the accuracy of using Linear regression, Logistics regression, and Bass curves in selected new product rollouts, based on sales data. The selected new products come from the electronics and electrical engineering and information and communications technology industries. The eight selected products are: electronic switchgear, electric motors, supervisory control and data acquisition systems, programmable logic controllers, cell phones, wireless modules, routers, and antennas. We compare the Linear regression, Logistics regression and Bass curves with respect to forecasting using analysis of variance. The accuracy of these three curves is studied and conclusions are drawn. We use an expert panel to compare the different curves and provide lessons for managers to improve forecasting new product sales. In addition, comparison between the two industries is drawn, and areas for further research are indicated.

    AFRIKAANSE OPSOMMING: Hierdie artikel toets die akkuraatheid van die gebruik van linêere regressie, logistiese regressie en Bass-krommes by die bekendstelling van nuwe produkte gebaseer op verkoopsdata. Die geselekteerde nuwe produkte is uit die elektriese en elektroniese asook informasietegnologie- en kommunikasie bedrywe. Linêere regressie, logistiese regressie en Bass-krommes word vergelyk ten opsigte van vooruitskatting deur variansie te ontleed. Die akkuraatheid word ontleed en gevolgtrekkings gemaak. Die doel is om vooruitskatting van nuwe produkverkope te verbeter.

  18. Evaluation of the product ratio coherent model in forecasting mortality rates and life expectancy at births by States

    Science.gov (United States)

    Shair, Syazreen Niza; Yusof, Aida Yuzi; Asmuni, Nurin Haniah

    2017-05-01

    Coherent mortality forecasting models have recently received increasing attention particularly in their application to sub-populations. The advantage of coherent models over independent models is the ability to forecast a non-divergent mortality for two or more sub-populations. One of the coherent models was recently developed by [1] known as the product-ratio model. This model is an extension version of the functional independent model from [2]. The product-ratio model has been applied in a developed country, Australia [1] and has been extended in a developing nation, Malaysia [3]. While [3] accounted for coherency of mortality rates between gender and ethnic group, the coherency between states in Malaysia has never been explored. This paper will forecast the mortality rates of Malaysian sub-populations according to states using the product ratio coherent model and its independent version— the functional independent model. The forecast accuracies of two different models are evaluated using the out-of-sample error measurements— the mean absolute forecast error (MAFE) for age-specific death rates and the mean forecast error (MFE) for the life expectancy at birth. We employ Malaysian mortality time series data from 1991 to 2014, segregated by age, gender and states.

  19. Evaluation of Statistical Methods for Modeling Historical Resource Production and Forecasting

    Science.gov (United States)

    Nanzad, Bolorchimeg

    This master's thesis project consists of two parts. Part I of the project compares modeling of historical resource production and forecasting of future production trends using the logit/probit transform advocated by Rutledge (2011) with conventional Hubbert curve fitting, using global coal production as a case study. The conventional Hubbert/Gaussian method fits a curve to historical production data whereas a logit/probit transform uses a linear fit to a subset of transformed production data. Within the errors and limitations inherent in this type of statistical modeling, these methods provide comparable results. That is, despite that apparent goodness-of-fit achievable using the Logit/Probit methodology, neither approach provides a significant advantage over the other in either explaining the observed data or in making future projections. For mature production regions, those that have already substantially passed peak production, results obtained by either method are closely comparable and reasonable, and estimates of ultimately recoverable resources obtained by either method are consistent with geologically estimated reserves. In contrast, for immature regions, estimates of ultimately recoverable resources generated by either of these alternative methods are unstable and thus, need to be used with caution. Although the logit/probit transform generates high quality-of-fit correspondence with historical production data, this approach provides no new information compared to conventional Gaussian or Hubbert-type models and may have the effect of masking the noise and/or instability in the data and the derived fits. In particular, production forecasts for immature or marginally mature production systems based on either method need to be regarded with considerable caution. Part II of the project investigates the utility of a novel alternative method for multicyclic Hubbert modeling tentatively termed "cycle-jumping" wherein overlap of multiple cycles is limited. The

  20. A Decision Optimization Model for Leased Manufacturing Equipment with Warranty under Forecasting Production/Maintenance Problem

    Directory of Open Access Journals (Sweden)

    Zied Hajej

    2015-01-01

    Full Text Available Due to the expensive production equipment, many manufacturers usually lease production equipment with a warranty period during a finite leasing horizon, rather than purchasing them. The lease contract contains the possibility of obtaining an extended warranty for a given additional cost. In this paper, based on the forecasting production/maintenance optimization problem, we develop a mathematical model to study the lease contract with basic and extended warranty based on win-win relationship between the lessee and the lessor. The influence of the production rates in the equipment degradation consequently on the total cost by each side during the finite leasing horizon is stated in order to determine a theoretical condition under which a compromise-pricing zone exists under different possibilities of maintenance policies.

  1. Forecasting wind power production from a wind farm using the RAMS model

    DEFF Research Database (Denmark)

    Tiriolo, L.; Torcasio, R. C.; Montesanti, S.

    2015-01-01

    of the ECMWF Integrated Forecasting System (IFS), whose horizontal resolution over Central Italy is about 25 km at the time considered in this paper. Because wind observations were not available for the site, the power curve for the whole wind farm was derived from the ECMWF wind operational analyses available......The importance of wind power forecast is commonly recognized because it represents a useful tool for grid integration and facilitates the energy trading. This work considers an example of power forecast for a wind farm in the Apennines in Central Italy. The orography around the site is complex...... and the horizontal resolution of the wind forecast has an important role. To explore this point we compared the performance of two 48 h wind power forecasts using the winds predicted by the Regional Atmospheric Modeling System (RAMS) for the year 2011. The two forecasts differ only for the horizontal resolution...

  2. An application of ensemble/multi model approach for wind power production forecast.

    Science.gov (United States)

    Alessandrini, S.; Decimi, G.; Hagedorn, R.; Sperati, S.

    2010-09-01

    The wind power forecast of the 3 days ahead period are becoming always more useful and important in reducing the problem of grid integration and energy price trading due to the increasing wind power penetration. Therefore it's clear that the accuracy of this forecast is one of the most important requirements for a successful application. The wind power forecast is based on a mesoscale meteorological models that provides the 3 days ahead wind data. A Model Output Statistic correction is then performed to reduce systematic error caused, for instance, by a wrong representation of surface roughness or topography in the meteorological models. The corrected wind data are then used as input in the wind farm power curve to obtain the power forecast. These computations require historical time series of wind measured data (by an anemometer located in the wind farm or on the nacelle) and power data in order to be able to perform the statistical analysis on the past. For this purpose a Neural Network (NN) is trained on the past data and then applied in the forecast task. Considering that the anemometer measurements are not always available in a wind farm a different approach has also been adopted. A training of the NN to link directly the forecasted meteorological data and the power data has also been performed. The normalized RMSE forecast error seems to be lower in most cases by following the second approach. We have examined two wind farms, one located in Denmark on flat terrain and one located in a mountain area in the south of Italy (Sicily). In both cases we compare the performances of a prediction based on meteorological data coming from a single model with those obtained by using two or more models (RAMS, ECMWF deterministic, LAMI, HIRLAM). It is shown that the multi models approach reduces the day-ahead normalized RMSE forecast error of at least 1% compared to the singles models approach. Moreover the use of a deterministic global model, (e.g. ECMWF deterministic

  3. An application of ensemble/multi model approach for wind power production forecasting

    Science.gov (United States)

    Alessandrini, S.; Pinson, P.; Hagedorn, R.; Decimi, G.; Sperati, S.

    2011-02-01

    The wind power forecasts of the 3 days ahead period are becoming always more useful and important in reducing the problem of grid integration and energy price trading due to the increasing wind power penetration. Therefore it's clear that the accuracy of this forecast is one of the most important requirements for a successful application. The wind power forecast applied in this study is based on meteorological models that provide the 3 days ahead wind data. A Model Output Statistic correction is then performed to reduce systematic error caused, for instance, by a wrong representation of surface roughness or topography in the meteorological models. For this purpose a training of a Neural Network (NN) to link directly the forecasted meteorological data and the power data has been performed. One wind farm has been examined located in a mountain area in the south of Italy (Sicily). First we compare the performances of a prediction based on meteorological data coming from a single model with those obtained by the combination of models (RAMS, ECMWF deterministic, LAMI). It is shown that the multi models approach reduces the day-ahead normalized RMSE forecast error (normalized by nominal power) of at least 1% compared to the singles models approach. Finally we have focused on the possibility of using the ensemble model system (EPS by ECMWF) to estimate the hourly, three days ahead, power forecast accuracy. Contingency diagram between RMSE of the deterministic power forecast and the ensemble members spread of wind forecast have been produced. From this first analysis it seems that ensemble spread could be used as an indicator of the forecast's accuracy at least for the first three days ahead period.

  4. Combining SKU-level sales forecasts from models and experts

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); R. Legerstee (Rianne)

    2009-01-01

    textabstractWe study the performance of SKU-level sales forecasts which linearly combine statistical model forecasts and expert forecasts. Using a large and unique database containing model forecasts for monthly sales of various pharmaceutical products and forecasts given by about fifty experts, we

  5. Progress toward forecasting product quality and quantity of mammalian cell culture processes by performance-based modeling.

    Science.gov (United States)

    Schmidberger, Timo; Posch, Christoph; Sasse, Alexandra; Gülch, Carina; Huber, Robert

    2015-01-01

    The production of biopharmaceuticals requires highly sophisticated, complex cell based processes. Once a process has been developed, acceptable ranges for various control parameters are typically defined based on process characterization studies often comprising several dozens of small scale bioreactor cultivations. A lot of data is generated during these studies and usually only the information needed to define acceptable ranges is processed in more detail. Making use of the wealth of information contained in such data sets, we present here a methodology that uses performance data (such as metabolite profiles) to forecast the product quality and quantity of mammalian cell culture processes based on a toolbox of advanced statistical methods. With this performance based modeling (PBM) the final product concentration and 12 quality attributes (QAs) for two different biopharmaceutical products were predicted in daily intervals throughout the main stage process. The best forecast was achieved for product concentration in a very early phase of the process. Furthermore, some glycan isoforms were predicted with good accuracy several days before the bioreactor was harvested. Overall, PBM clearly demonstrated its capability of early process endpoint prediction by only using commonly available data, even though it was not possible to predict all QAs with the desired accuracy. Knowing the product quality prior to the harvest allows the manufacturer to take counter measures in case the forecasted quality or quantity deviates from what is expected. This would be a big step towards real-time release, an important element of the FDA's PAT initiative. © 2015 American Institute of Chemical Engineers.

  6. Forecast Model of Russia’s Gross Domestic Product Depending on Financial Instruments of Trade in Energy and Commodities

    Directory of Open Access Journals (Sweden)

    Samkov T.L.

    2018-04-01

    Full Text Available Methodology of forecasting the gross domestic product (GDP growth for complex socio-economic systems is projected on economic conditions of the Russian Federation. The most important factors affecting GDP change, development of a GDP forecast econometric model for the Russian economy and the methodology of the model use are identified. The model is used as a source of information necessary for the analysis of territorial multi-sectoral objects (ATMO model which we developed. ATMO model is the model of planning regional sectoral production systems of independent corporate participants and can predict their behavior utilizing game approach. Non-systemic "signal" information (GDP growth rate is necessary to change the strategies. The factors for predicting are the primary and secondary financial instruments of trade in energy and raw commodities. The principle of behavioral imitation is introduced for the first time in relation to a class of such tasks. Technology of decisions making corresponds to the knowledge of managers and officials rather than to that of analysts. The forecast model reflects the "ordinary" view of mentioned decision makers on the nature of GDP dependence on trade in specific goods (oil, gas, grain, gold, silver, copper, etc.. Almost any company leader will be able to use this set to forecast GDP as guidelines for further development of the enterprise. The ATMO model makes it possible to influence the economy to achieve macroeconomic goals and gives the opportunity to increase the available volumes of energy resources for export, e.g., for functioning of the emerging gas hub in EU.

  7. Model of analyzing and forecasting the dynamics of industrial production and space sector of the Russian Federation

    Directory of Open Access Journals (Sweden)

    Dmitriy Yu. Ivanov

    2016-01-01

    Full Text Available Objective to carry out a comparative analysis of the dynamics of industrial production and the rocket and space industry of Russia. Methods an asynchronous method of harmonic analysis comparative method. Results the forecasts of the development of rocket and space industry for 2015 and 2016 are obtained which are compared with the data of the Ministry of Economic Development and the World Bank of Development. The comparison of the results showed that the analysis and forecast data of the Ministry of Economic Development and the World Bank of Development coincide only partially. The tendency to increase the volumes in rocket and space industry is shown. Scientific novelty the mathematical models are presented for the dynamics of industrial production and the rocket and space industry of the Russian Federation built on the basis of the asynchronous harmonic analysis. The retrospective of the rocketspace complex development is considered. Practical significance using the proposed mathematical models of the dynamics of industrial production and the rocket and space industry of the Russian Federation based on the economy cycles the more accurate forecasts of economic development can be made. nbsp

  8. Forecasting production in Liquid Rich Shale plays

    Science.gov (United States)

    Nikfarman, Hanieh

    Production from Liquid Rich Shale (LRS) reservoirs is taking center stage in the exploration and production of unconventional reservoirs. Production from the low and ultra-low permeability LRS plays is possible only through multi-fractured horizontal wells (MFHW's). There is no existing workflow that is applicable to forecasting multi-phase production from MFHW's in LRS plays. This project presents a practical and rigorous workflow for forecasting multiphase production from MFHW's in LRS reservoirs. There has been much effort in developing workflows and methodology for forecasting in tight/shale plays in recent years. The existing workflows, however, are applicable only to single phase flow, and are primarily used in shale gas plays. These methodologies do not apply to the multi-phase flow that is inevitable in LRS plays. To account for complexities of multiphase flow in MFHW's the only available technique is dynamic modeling in compositional numerical simulators. These are time consuming and not practical when it comes to forecasting production and estimating reserves for a large number of producers. A workflow was developed, and validated by compositional numerical simulation. The workflow honors physics of flow, and is sufficiently accurate while practical so that an analyst can readily apply it to forecast production and estimate reserves in a large number of producers in a short period of time. To simplify the complex multiphase flow in MFHW, the workflow divides production periods into an initial period where large production and pressure declines are expected, and the subsequent period where production decline may converge into a common trend for a number of producers across an area of interest in the field. Initial period assumes the production is dominated by single-phase flow of oil and uses the tri-linear flow model of Erdal Ozkan to estimate the production history. Commercial software readily available can simulate flow and forecast production in this

  9. Evaluating Extensions to Coherent Mortality Forecasting Models

    Directory of Open Access Journals (Sweden)

    Syazreen Shair

    2017-03-01

    Full Text Available Coherent models were developed recently to forecast the mortality of two or more sub-populations simultaneously and to ensure long-term non-divergent mortality forecasts of sub-populations. This paper evaluates the forecast accuracy of two recently-published coherent mortality models, the Poisson common factor and the product-ratio functional models. These models are compared to each other and the corresponding independent models, as well as the original Lee–Carter model. All models are applied to age-gender-specific mortality data for Australia and Malaysia and age-gender-ethnicity-specific data for Malaysia. The out-of-sample forecast error of log death rates, male-to-female death rate ratios and life expectancy at birth from each model are compared and examined across groups. The results show that, in terms of overall accuracy, the forecasts of both coherent models are consistently more accurate than those of the independent models for Australia and for Malaysia, but the relative performance differs by forecast horizon. Although the product-ratio functional model outperforms the Poisson common factor model for Australia, the Poisson common factor is more accurate for Malaysia. For the ethnic groups application, ethnic-coherence gives better results than gender-coherence. The results provide evidence that coherent models are preferable to independent models for forecasting sub-populations’ mortality.

  10. Short time ahead wind power production forecast

    International Nuclear Information System (INIS)

    Sapronova, Alla; Meissner, Catherine; Mana, Matteo

    2016-01-01

    An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast. (paper)

  11. Short time ahead wind power production forecast

    Science.gov (United States)

    Sapronova, Alla; Meissner, Catherine; Mana, Matteo

    2016-09-01

    An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast.

  12. Effective Heuristics for Capacitated Production Planning with Multiperiod Production and Demand with Forecast Band Refinement

    OpenAIRE

    Philip Kaminsky; Jayashankar M. Swaminathan

    2004-01-01

    In this paper we extend forecast band evolution and capacitated production modelling to the multiperiod demand case. In this model, forecasts of discrete demand for any period are modelled as bands and defined by lower and upper bounds on demand, such that future forecasts lie within the current band. We develop heuristics that utilize knowledge of demand forecast evolution to make production decisions in capacitated production planning environments. In our computational study we explore the ...

  13. Coal production forecast and low carbon policies in China

    International Nuclear Information System (INIS)

    Wang Jianzhou; Dong Yao; Wu Jie; Mu Ren; Jiang He

    2011-01-01

    With rapid economic growth and industrial expansion, China consumes more coal than any other nation. Therefore, it is particularly crucial to forecast China's coal production to help managers make strategic decisions concerning China's policies intended to reduce carbon emissions and concerning the country's future needs for domestic and imported coal. Such decisions, which must consider results from forecasts, will have important national and international effects. This article proposes three improved forecasting models based on grey systems theory: the Discrete Grey Model (DGM), the Rolling DGM (RDGM), and the p value RDGM. We use the statistical data of coal production in China from 1949 to 2005 to validate the effectiveness of these improved models to forecast the data from 2006 to 2010. The performance of the models demonstrates that the p value RDGM has the best forecasting behaviour over this historical time period. Furthermore, this paper forecasts coal production from 2011 to 2015 and suggests some policies for reducing carbon and other emissions that accompany the rise in forecasted coal production. - Highlights: → Improved forecasting models make full use of the advantages of individual model. → Proposed models create commendable improvements for current research. → Proposed models do not make complicated decisions about the explicit form. → We forecast coal production of China from 2011 to 2015. → We suggest some policies for reducing carbon emissions.

  14. Coal production forecast and low carbon policies in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jianzhou [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China); Dong Yao, E-mail: dongyao20051987@yahoo.cn [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China); Wu Jie; Mu Ren; Jiang He [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China)

    2011-10-15

    With rapid economic growth and industrial expansion, China consumes more coal than any other nation. Therefore, it is particularly crucial to forecast China's coal production to help managers make strategic decisions concerning China's policies intended to reduce carbon emissions and concerning the country's future needs for domestic and imported coal. Such decisions, which must consider results from forecasts, will have important national and international effects. This article proposes three improved forecasting models based on grey systems theory: the Discrete Grey Model (DGM), the Rolling DGM (RDGM), and the p value RDGM. We use the statistical data of coal production in China from 1949 to 2005 to validate the effectiveness of these improved models to forecast the data from 2006 to 2010. The performance of the models demonstrates that the p value RDGM has the best forecasting behaviour over this historical time period. Furthermore, this paper forecasts coal production from 2011 to 2015 and suggests some policies for reducing carbon and other emissions that accompany the rise in forecasted coal production. - Highlights: > Improved forecasting models make full use of the advantages of individual model. > Proposed models create commendable improvements for current research. > Proposed models do not make complicated decisions about the explicit form. > We forecast coal production of China from 2011 to 2015. > We suggest some policies for reducing carbon emissions.

  15. Optimal modeling and forecasting of the energy consumption and production in China

    International Nuclear Information System (INIS)

    Xiong, Ping-ping; Dang, Yao-guo; Yao, Tian-xiang; Wang, Zheng-xin

    2014-01-01

    Energy is of fundamental importance to a nation's economy. Accurate prediction of the energy consumption and production in China can play a guiding role in making the energy consumption plan, and facilitate timely and effective decision making of energy policy. This article proposes a novel GM (gray model) (1,1) model based on optimizing initial condition according to the principle of new information priority. The optimized model and five other GM (1,1) models are applied in the modeling of China's energy consumption and production. Both the simulation and prediction accuracy of the models are compared and analyzed. We obtain the result that the optimized model has higher prediction accuracy than the other five models. Therefore, the presented optimized model is further utilized to predict China's energy consumption and production from 2013 to 2017. The result indicates that China's energy consumption and production will keep increasing and the gap between the energy production and consumption will also be increasing. Finally, we predict Iran's and Argentina's energy consumption to further prove the effectiveness of the proposed model. - Highlights: • We proposed a novel GM (1,1) model based on optimizing initial condition. • The prediction accuracy of the proposed model is better than the other models. • We used the proposed model to predict China's energy consumption and production. • The proposed model can be used to predict other countries' energy consumption

  16. NYHOPS Forecast Model Results

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 3D Marine Nowcast/Forecast System for the New York Bight NYHOPS subdomain. Currents, waves, surface meteorology, and water conditions.

  17. The daily hour forecasting of the electrical energy production from renewable energy sources – a required condition for the operation of the new energy market model

    International Nuclear Information System (INIS)

    Kalpachka, Gergana; Kalpachki, Georgi

    2011-01-01

    The report presented the new energy market model in Bulgaria and the main attention is directed to a daily hour forecasting of the electrical energy production from renewable energy sources. The need of development of a methodology and the development of the most precise methods for predicting is reviewed and some of the used methods at the moment are presented. An analysis of the problems related to the daily hour forecasting is done using data from the producers of electrical energy from renewable energy sources in the territory of western Bulgaria. Keywords: Renewable energy sources, daily hour forecasting, electrical energy

  18. Forecasting with Dynamic Regression Models

    CERN Document Server

    Pankratz, Alan

    2012-01-01

    One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

  19. A Fuzzy Collaborative Forecasting Approach for Forecasting the Productivity of a Factory

    Directory of Open Access Journals (Sweden)

    Yi-Chi Wang

    2013-01-01

    Full Text Available Productivity is always considered as one of the most basic and important factors to the competitiveness of a factory. For this reason, all factories have sought to enhance productivity. To achieve this goal, we first need to estimate the productivity. However, there is considerable degree of uncertainty in productivity. For this reason, a fuzzy collaborative forecasting approach is proposed in this study to forecast the productivity of a factory. First, a learning model is established to estimate the future productivity. Subsequently, the learning model is converted into three equivalent nonlinear programming problems to be solved from various viewpoints. The fuzzy productivity forecasts by different experts may not be equal and should therefore be aggregated. To this end, the fuzzy intersection and back propagation network approach is applied. The practical example of a dynamic random access memory (DRAM factory is used to evaluate the effectiveness of the proposed methodology.

  20. Global-warming forecasting models

    International Nuclear Information System (INIS)

    Moeller, K.P.

    1992-01-01

    In spite of an annual man-made quantity of about 20 billion tons, carbon dioxide has remained a trace gas in the atmosphere (350 ppm at present). The reliability of model calculations which forecast temperatures is dicussed in view of the world-wide increase in carbon dioxides. Computer simulations reveal a general, serious threat to the future of mankind. (DG) [de

  1. Forecasting of energy and diesel consumption and the cost of energy production in isolated electrical systems in the Amazon using a fuzzification process in time series models

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Joao C. do L, E-mail: jcaldas@ufam.edu.br [Group of Optimization and Fuzzy Systems, Federal University of Amazonas, General Rodrigo Octavio Jordao Ramos Avenue, 3000, Academic Campus, 69077-000 Manaus, Amazonas (Brazil); Costa Junior, Carlos T. da [Postgraduate Program in Electrical Engineering, Institute of Technology, Federal University of Para, Augusto Correa Street, 1, Guama, 66075-900 Belem, Para (Brazil); Bitar, Sandro D.B. [Group of Optimization and Fuzzy Systems, Federal University of Amazonas, General Rodrigo Octavio Jordao Ramos Avenue, 3000, Academic Campus, 69077-000 Manaus, Amazonas (Brazil); Junior, Walter B. [Postgraduate Program in Electrical Engineering, Institute of Technology, Federal University of Para, Augusto Correa Street, 1, Guama, 66075-900 Belem, Para (Brazil)

    2011-09-15

    Understanding the uncertainty inherent in the analysis of diesel fuel consumption and its impact on the generation of electricity is an important topic for planning the expansion of isolated thermoelectric systems in the state of Amazonas. In light of this, a decision support system has been developed to forecast the cost of electricity production using non-stationary data by integrating the methodology of time series models with fuzzy systems and optimization tools. The method presented herein combines the potential of the Autoregressive Integrated Moving Average (ARIMA) and the Seasonal ARIMA (SARIMA) models, such as the forecasting tool, with the advantages of fuzzy set theory to compensate for the uncertainties and errors encountered in the observed data, which would degrade the validity of forecasted values. The results show that incorporation of the {alpha}-cut concept facilitated the evaluation of risks while allowing simultaneous consideration of intervals for the unitary cost of energy production. This provides the analyst with the ability to make decisions using various predicted intervals with different membership values instead of the common practice of simply using the specific costs. - Highlights: > A decision support system has been developed using SARIMA with fuzzy systems and optimizations tools. > It assists the decision-making process for planning the expansion in isolated thermoelectric systems. > The {alpha}-cut concept facilitated the evaluation of risks for the cost of electricity production. > Provides decisions using various forecasted interval for this cost with different membership values.

  2. Forecasting of energy and diesel consumption and the cost of energy production in isolated electrical systems in the Amazon using a fuzzification process in time series models

    International Nuclear Information System (INIS)

    Neto, Joao C. do L; Costa Junior, Carlos T. da; Bitar, Sandro D.B.; Junior, Walter B.

    2011-01-01

    Understanding the uncertainty inherent in the analysis of diesel fuel consumption and its impact on the generation of electricity is an important topic for planning the expansion of isolated thermoelectric systems in the state of Amazonas. In light of this, a decision support system has been developed to forecast the cost of electricity production using non-stationary data by integrating the methodology of time series models with fuzzy systems and optimization tools. The method presented herein combines the potential of the Autoregressive Integrated Moving Average (ARIMA) and the Seasonal ARIMA (SARIMA) models, such as the forecasting tool, with the advantages of fuzzy set theory to compensate for the uncertainties and errors encountered in the observed data, which would degrade the validity of forecasted values. The results show that incorporation of the α-cut concept facilitated the evaluation of risks while allowing simultaneous consideration of intervals for the unitary cost of energy production. This provides the analyst with the ability to make decisions using various predicted intervals with different membership values instead of the common practice of simply using the specific costs. - Highlights: → A decision support system has been developed using SARIMA with fuzzy systems and optimizations tools. → It assists the decision-making process for planning the expansion in isolated thermoelectric systems. → The α-cut concept facilitated the evaluation of risks for the cost of electricity production. → Provides decisions using various forecasted interval for this cost with different membership values.

  3. INFERENCE AND SENSITIVITY IN STOCHASTIC WIND POWER FORECAST MODELS.

    KAUST Repository

    Elkantassi, Soumaya

    2017-10-03

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  4. INFERENCE AND SENSITIVITY IN STOCHASTIC WIND POWER FORECAST MODELS.

    KAUST Repository

    Elkantassi, Soumaya; Kalligiannaki, Evangelia; Tempone, Raul

    2017-01-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  5. Gravity models of forest products trade: applications to forecasting and policy analysis

    Science.gov (United States)

    Joseph Buongiorno

    2016-01-01

    To predict the value of trade between countries, a differential gravity model of bilateral trade flowswas formulated and estimated with panel data from 2005 to 2014 for each of the commodity groups HS44 (wood and articles of wood), HS47 (pulp of wood, fibrous cellulosic material) and HS48 (paper and paperboard). The parameters were estimated with a large database by...

  6. Energy production forecasting, experiences from Lillgrund. Lillgrund Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Lasse; Schelander, Peter; Haakansson, Maans; Hansson, Johan (Vattenfall Vindkraft AB, Stockholm (Sweden))

    2010-01-15

    Forecasts of energy production at Lillgrund are being made with the prediction tool WPPT. The forecasts are updated every hour with observed wind- and production data. WPPT combines statistical and physical methods and the nature of the model changes with time. In the very short range, the observed data is the dominant factor predicting energy production while the physical methods, e.g. the weather forecasts, gradually are given more weight as we go further away from the production hour. Until recently Vattenfall has relied solely on weather forecasts from one institute, namely DMI (The Danish Meteorological Institute), in predicting the energy produced at Lillgrund. The uncertainty in the forecast has been given some attention but since only one source of information has been available the possibilities of a comprehensive uncertainty analysis has been limited. To meet the growing demand for quality and delivery reliability, Vattenfall has begun to purchase additional weather data from the Swedish supplier WeatherTech Scandinavia. These data will be used together with data from DMI. You get a kind of ensemble forecast approach. The difference in structure, configuration and physical approaches of the models presumably makes the model related forecast errors uncorrelated. This lays the path for quality improvements when the different forecasts are combined optimally. WPPT has been used in forecasting the energy production at Lillgrund since production began in 2007. The average absolute error in the production forecast / turbine is 0.17 MW. If WPPT only relied on a persistence forecast for the next 24 hours the error will become almost three times as high. So far WPPT has a skill score of 86% in the 24-hour forecasts compared to an assumption of persistence. There is a clearly visible pattern that WPPT underestimates production in situations with strong winds and conversely overestimate production when winds are weak. This is also typical for pure persistence

  7. Modelling and Forecasting Multivariate Realized Volatility

    DEFF Research Database (Denmark)

    Halbleib, Roxana; Voev, Valeri

    2011-01-01

    This paper proposes a methodology for dynamic modelling and forecasting of realized covariance matrices based on fractionally integrated processes. The approach allows for flexible dependence patterns and automatically guarantees positive definiteness of the forecast. We provide an empirical appl...

  8. Forecasting Rubber Production Using Intelligent Time Series Analysis to Support Decision Makers

    OpenAIRE

    Subsorn, Panida; Xiao, Jitian; Clayden, Judy

    2010-01-01

    This chapter has investigated the best-fitting forecasting model for national rubber production forecasting for 2007 and 2008. The methods used in this study were based on non-neural network training and neural network training techniques to compare with the actual rubber production data for the best-fitting forecasting model. Hence, neural network training was presented to obtain more accurate forecasts for 2007 and 2008. To our knowledge, this is the preliminary study that brings a new pers...

  9. Interval Forecast for Smooth Transition Autoregressive Model ...

    African Journals Online (AJOL)

    In this paper, we propose a simple method for constructing interval forecast for smooth transition autoregressive (STAR) model. This interval forecast is based on bootstrapping the residual error of the estimated STAR model for each forecast horizon and computing various Akaike information criterion (AIC) function. This new ...

  10. Data Driven Broiler Weight Forecasting using Dynamic Neural Network Models

    DEFF Research Database (Denmark)

    Johansen, Simon Vestergaard; Bendtsen, Jan Dimon; Riisgaard-Jensen, Martin

    2017-01-01

    In this article, the dynamic influence of environmental broiler house conditions and broiler growth is investigated. Dynamic neural network forecasting models have been trained on farm-scale broiler batch production data from 12 batches from the same house. The model forecasts future broiler weight...... and uses environmental conditions such as heating, ventilation, and temperature along with broiler behavior such as feed and water consumption. Training data and forecasting data is analyzed to explain when the model might fail at generalizing. We present ensemble broiler weight forecasts to day 7, 14, 21...

  11. Ridge Regression: A tool to forecast wheat area and production

    Directory of Open Access Journals (Sweden)

    Nasir Jamal

    2007-07-01

    Full Text Available This research study is designed to develop forecasting models for acreage and production of wheat crop for Chakwal district of Rawalpindi region keeping in view the assumptions of OLS estimation. The forecasting models are developed on the basis of 15 years data from 1984-85 to 1998-99 then wheat area and production for next five years from 1999-2000 to 2003-04 is forecasted through the models and compared with the actual figures. After evaluating the accuracy of the models, final models are developed on the basis of 20 years data for the period 1984-85 to 2003-04. These linear models can be used to forecast wheat area and production of next five years. The Urea fertilizer, DAP fertilizer and manures plays a significant role to enhance the production of wheat crop. Number of ploughs in the wheat fields is significant factor to increase the production of wheat crop. Good rains in the month of October and November significantly contributes to increase the production of wheat crop and mean maximum temperature in the month of March is a significant factor to reduce the production of wheat crop.

  12. Pollen Forecast and Dispersion Modelling

    Science.gov (United States)

    Costantini, Monica; Di Giuseppe, Fabio; Medaglia, Carlo Maria; Travaglini, Alessandro; Tocci, Raffaella; Brighetti, M. Antonia; Petitta, Marcello

    2014-05-01

    The aim of this study is monitoring, mapping and forecast of pollen distribution for the city of Rome using in-situ measurements of 10 species of common allergenic pollens and measurements of PM10. The production of daily concentration maps, associated to a mobile phone app, are innovative compared to existing dedicated services to people who suffer from respiratory allergies. The dispersal pollen is one of the most well-known causes of allergic disease that is manifested by disorders of the respiratory functions. Allergies are the third leading cause of chronic disease and it is estimated that tens millions of people in Italy suffer from it. Recent works reveal that during the last few years there was a progressive increase of affected subjects, especially in urban areas. This situation may depend: on the ability to transport of pollutants, on the ability to react between pollutants and pollen and from a combination of other irritants, existing in densely populated and polluted urban areas. The methodology used to produce maps is based on in-situ measurements time series relative to 2012, obtained from networks of air quality and pollen stations in the metropolitan area of Rome. The monitoring station aerobiological of University of Rome "Tor Vergata" is located at the Department of Biology. The instrument used to pollen monitoring is a volumetric sampler type Hirst (Hirst 1952), Model 2000 VPPS Lanzoni; the data acquisition is carried out as reported in Standard UNI 11008:2004 - "Qualità dell'aria - Metodo di campionamento e conteggio dei granuli pollinici e delle spore fungine aerodisperse" - the protocol that describes the procedure for measuring of the concentration of pollen grains and fungal spores dispersed into the atmosphere, and reported in the "Manuale di gestione e qualità della R.I.M.A" (Travaglini et. al. 2009). All 10 allergenic pollen are monitored since 1996. At Tor Vergata university is also operating a meteorological station (SP2000, CAE

  13. A Hybrid Model for Forecasting Sales in Turkish Paint Industry

    Directory of Open Access Journals (Sweden)

    Alp Ustundag

    2009-12-01

    Full Text Available Sales forecasting is important for facilitating effective and efficient allocation of scarce resources. However, how to best model and forecast sales has been a long-standing issue. There is no best forecasting method that is applicable in all circumstances. Therefore, confidence in the accuracy of sales forecasts is achieved by corroborating the results using two or more methods. This paper proposes a hybrid forecasting model that uses an artificial intelligence method (AI with multiple linear regression (MLR to predict product sales for the largest Turkish paint producer. In the hybrid model, three different AI methods, fuzzy rule-based system (FRBS, artificial neural network (ANN and adaptive neuro fuzzy network (ANFIS, are used and compared to each other. The results indicate that FRBS yields better forecasting accuracy in terms of root mean squared error (RMSE and mean absolute percentage error (MAPE.

  14. New interval forecast for stationary autoregressive models ...

    African Journals Online (AJOL)

    In this paper, we proposed a new forecasting interval for stationary Autoregressive, AR(p) models using the Akaike information criterion (AIC) function. Ordinarily, the AIC function is used to determine the order of an AR(p) process. In this study however, AIC forecast interval compared favorably with the theoretical forecast ...

  15. Towards uncertainty estimation for operational forecast products - a multi-model-ensemble approach for the North Sea and the Baltic Sea

    Science.gov (United States)

    Golbeck, Inga; Li, Xin; Janssen, Frank

    2014-05-01

    Several independent operational ocean models provide forecasts of the ocean state (e.g. sea level, temperature, salinity and ice cover) in the North Sea and the Baltic Sea on a daily basis. These forecasts are the primary source of information for a variety of information and emergency response systems used e.g. to issue sea level warnings or carry out oil drift forecast. The forecasts are of course highly valuable as such, but often suffer from a lack of information on their uncertainty. With the aim of augmenting the existing operational ocean forecasts in the North Sea and the Baltic Sea by a measure of uncertainty a multi-model-ensemble (MME) system for sea surface temperature (SST), sea surface salinity (SSS) and water transports has been set up in the framework of the MyOcean-2 project. Members of MyOcean-2, the NOOS² and HIROMB/BOOS³ communities provide 48h-forecasts serving as inputs. Different variables are processed separately due to their different physical characteristics. Based on the so far collected daily MME products of SST and SSS, a statistical method, Empirical Orthogonal Function (EOF) analysis is applied to assess their spatial and temporal variability. For sea surface currents, progressive vector diagrams at specific points are consulted to estimate the performance of the circulation models especially in hydrodynamic important areas, e.g. inflow/outflow of the Baltic Sea, Norwegian trench and English Channel. For further versions of the MME system, it is planned to extend the MME to other variables like e.g. sea level, ocean currents or ice cover based on the needs of the model providers and their customers. It is also planned to include in-situ data to augment the uncertainty information and for validation purposes. Additionally, weighting methods will be implemented into the MME system to develop more complex uncertainty measures. The methodology used to create the MME will be outlined and different ensemble products will be presented. In

  16. Multivariate Time Series Analysis for Optimum Production Forecast ...

    African Journals Online (AJOL)

    FIRST LADY

    (Amstrong, 1994, Bates, 1969, Newbold and Granger, 1974 and Whinkler and Makridakis ... distinct, essential components of inventory management while the random production is first ... To achieve this goal, model parameters are estimated or ... important regression model in forecasting of that nature, hence this study.

  17. Empirical testing of forecast update procedure forseasonal products

    DEFF Research Database (Denmark)

    Wong, Chee Yew; Johansen, John

    2008-01-01

    Updating of forecasts is essential for successful collaborative forecasting, especially for seasonal products. This paper discusses the results of a theoretical simulation and an empirical test of a proposed time-series forecast updating procedure. It involves a two-stage longitudinal case study...... of a toy supply chain. The theoretical simulation involves historical weekly consumer demand data for 122 toy products. The empirical test is then carried out in real-time with 291 toy products. The results show that the proposed forecast updating procedure: 1) reduced forecast errors of the annual...... provided less forecast accuracy improvement and it needed a longer time to achieve relatively acceptable forecast uncertainty....

  18. Application of Discrete Event Simulation in Mine Production Forecast

    African Journals Online (AJOL)

    Application of Discrete Event Simulation in Mine Production Forecast. Felix Adaania Kaba, Victor Amoako Temeng, Peter Arroja Eshun. Abstract. Mine production forecast is pertinent to mining as it serves production goals for a production period. Perseus Mining Ghana Limited (PMGL), Ayanfuri, deterministically forecasts ...

  19. Short-term forecasting model for aggregated regional hydropower generation

    International Nuclear Information System (INIS)

    Monteiro, Claudio; Ramirez-Rosado, Ignacio J.; Fernandez-Jimenez, L. Alfredo

    2014-01-01

    Highlights: • Original short-term forecasting model for the hourly hydropower generation. • The use of NWP forecasts allows horizons of several days. • New variable to represent the capacity level for generating hydroelectric energy. • The proposed model significantly outperforms the persistence model. - Abstract: This paper presents an original short-term forecasting model of the hourly electric power production for aggregated regional hydropower generation. The inputs of the model are previously recorded values of the aggregated hourly production of hydropower plants and hourly water precipitation forecasts using Numerical Weather Prediction tools, as well as other hourly data (load demand and wind generation). This model is composed of three modules: the first one gives the prediction of the “monthly” hourly power production of the hydropower plants; the second module gives the prediction of hourly power deviation values, which are added to that obtained by the first module to achieve the final forecast of the hourly hydropower generation; the third module allows a periodic adjustment of the prediction of the first module to improve its BIAS error. The model has been applied successfully to the real-life case study of the short-term forecasting of the aggregated hydropower generation in Spain and Portugal (Iberian Peninsula Power System), achieving satisfactory results for the next-day forecasts. The model can be valuable for agents involved in electricity markets and useful for power system operations

  20. Forecasting forest chip energy production in Finland 2008-2014

    International Nuclear Information System (INIS)

    Linden, Mikael

    2011-01-01

    Energy policy measures aim to increase energy production from forest chips in Finland to 10 TWh by year 2010. However, on the regional level production differences are large, and the regional estimates of the potential base of raw materials for the production of forest chips are heterogeneous. In order to analyse the validity of the above target, two methods are proposed to derive forecasts for region-level energy production from forest chips in Finland in the years 2008-2014. The plant-level data from 2003-2007 gives a starting point for a detailed statistical analysis of present and future region-level forest chip production. Observed 2008 regional levels are above the estimated prediction 95% confidence intervals based on aggregation of plant-level time averages. A simple time trend model with fixed-region effects provides accurate forecasts for the years 2008-2014. Forest chip production forecast confidence intervals cover almost all regions for the 2008 levels and the estimates of potential production levels for 2014. The forecast confidence intervals are also derived with re-sampling methods, i.e. with bootstrap methods, to obtain more reliable results. Results confirm that a general materials shortfall is not expected in the near future for forest chip energy production in Finland.

  1. Improving wave forecasting by integrating ensemble modelling and machine learning

    Science.gov (United States)

    O'Donncha, F.; Zhang, Y.; James, S. C.

    2017-12-01

    Modern smart-grid networks use technologies to instantly relay information on supply and demand to support effective decision making. Integration of renewable-energy resources with these systems demands accurate forecasting of energy production (and demand) capacities. For wave-energy converters, this requires wave-condition forecasting to enable estimates of energy production. Current operational wave forecasting systems exhibit substantial errors with wave-height RMSEs of 40 to 60 cm being typical, which limits the reliability of energy-generation predictions thereby impeding integration with the distribution grid. In this study, we integrate physics-based models with statistical learning aggregation techniques that combine forecasts from multiple, independent models into a single "best-estimate" prediction of the true state. The Simulating Waves Nearshore physics-based model is used to compute wind- and currents-augmented waves in the Monterey Bay area. Ensembles are developed based on multiple simulations perturbing input data (wave characteristics supplied at the model boundaries and winds) to the model. A learning-aggregation technique uses past observations and past model forecasts to calculate a weight for each model. The aggregated forecasts are compared to observation data to quantify the performance of the model ensemble and aggregation techniques. The appropriately weighted ensemble model outperforms an individual ensemble member with regard to forecasting wave conditions.

  2. Overview and forecast on forestry productions worldwide.

    Science.gov (United States)

    Wenjun, Zhang

    2007-02-01

    Our world is largely dependent upon the forestry productions. Through the exploitation of forest reserves, we manufacture various industrial products, furniture, and obtain fuel and energy. Forestry productions should be conducted without large-scale deforestation and environmental degradation. In present study we perform a review and forecast analysis on forestry productions worldwide, with the objectives of providing an insight into the trend for several types of forestry productions in the future, and providing referential data for sustainable forestry productions and environmental management. Polynomial functions are used to fit trajectories of forestry productions since 1961 and forecasts during the coming 20 years are given in detail. If the past pattern continues, world fibreboard production would dramatically grow and reach 224,300,000 +/- 44,400,000 m(3) by the year 2020, an increase up to 240.7 to 408.9% as compared to the present level. Roundwood production of the world would change by -55.5 to 70.4% and reach 3,526,600,000 +/- 2,066,800,000 m(3) by 2020. In 2020 world production of sawlogs and veneer logs would change by -100 to 164.6% and reach 1,212,900,000 +/- 1,242,600,000 m(3). Global wood fuel production would change by -68.9 to 1.4% and reach 1,130,900,000 +/- 600,800,000 m(3) by 2020. Forestry productions in developed countries would largely surpass productions in developing countries in the near future. World forestry production grew since 1961 excluding wood fuel. Roundwood and wood fuel account for the critical proportions in the forestry productions. Wood fuel production has being declined and rapid growing of roundwood production has slowed in recent years. Widespread use of regenerative wood substitutes and worldwide afforestation against deforestation will be among the most effective ways to reduce deforestation and environment degradation associated with forestry productions.

  3. A heuristic forecasting model for stock decision

    OpenAIRE

    Zhang, D.; Jiang, Q.; Li, X.

    2005-01-01

    This paper describes a heuristic forecasting model based on neural networks for stock decision-making. Some heuristic strategies are presented for enhancing the learning capability of neural networks and obtaining better trading performance. The China Shanghai Composite Index is used as case study. The forecasting model can forecast the buying and selling signs according to the result of neural network prediction. Results are compared with a benchmark buy-and-hold strategy. ...

  4. A Forecast Model for Unemployment by Education

    DEFF Research Database (Denmark)

    Tranæs, Torben; Larsen, Anders Holm; Groes, Niels

    1994-01-01

    We present a dynamic forecast model for the labour market: demand for labour by education and the distribution of labour by education among industries are determined endogenously with overall demand by industry given exogenously. The model is derived from a simple behavioural equation based on a ...... for educational groups, where the initial forecast year is a change point for unemployment....

  5. Forecasting with periodic autoregressive time series models

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); R. Paap (Richard)

    1999-01-01

    textabstractThis paper is concerned with forecasting univariate seasonal time series data using periodic autoregressive models. We show how one should account for unit roots and deterministic terms when generating out-of-sample forecasts. We illustrate the models for various quarterly UK consumption

  6. Midway Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midway Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a suite...

  7. Modelling and forecasting WIG20 daily returns

    DEFF Research Database (Denmark)

    Amado, Cristina; Silvennoinen, Annestiina; Terasvirta, Timo

    of the model is that the deterministic component is specified before estimating the multiplicative conditional variance component. The resulting model is subjected to misspecification tests and its forecasting performance is compared with that of commonly applied models of conditional heteroskedasticity....

  8. Yakutat Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Yakutat, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  9. Bermuda Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bermuda Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  10. Forecasting Ebola with a regression transmission model

    Directory of Open Access Journals (Sweden)

    Jason Asher

    2018-03-01

    Full Text Available We describe a relatively simple stochastic model of Ebola transmission that was used to produce forecasts with the lowest mean absolute error among Ebola Forecasting Challenge participants. The model enabled prediction of peak incidence, the timing of this peak, and final size of the outbreak. The underlying discrete-time compartmental model used a time-varying reproductive rate modeled as a multiplicative random walk driven by the number of infectious individuals. This structure generalizes traditional Susceptible-Infected-Recovered (SIR disease modeling approaches and allows for the flexible consideration of outbreaks with complex trajectories of disease dynamics. Keywords: Ebola, Forecasting, Mathematical modeling, Bayesian inference

  11. Demand forecast model based on CRM

    Science.gov (United States)

    Cai, Yuancui; Chen, Lichao

    2006-11-01

    With interiorizing day by day management thought that regarding customer as the centre, forecasting customer demand becomes more and more important. In the demand forecast of customer relationship management, the traditional forecast methods have very great limitation because much uncertainty of the demand, these all require new modeling to meet the demands of development. In this paper, the notion is that forecasting the demand according to characteristics of the potential customer, then modeling by it. The model first depicts customer adopting uniform multiple indexes. Secondly, the model acquires characteristic customers on the basis of data warehouse and the technology of data mining. The last, there get the most similar characteristic customer by their comparing and forecast the demands of new customer by the most similar characteristic customer.

  12. Recent advances in operational seasonal forecasting in South Africa: Models, infrastructure and networks

    CSIR Research Space (South Africa)

    Landman, WA

    2011-11-01

    Full Text Available The various institutions involved with seasonal forecast development and production are discussed. New modelling approaches and the establishment of infrastructures to improve forecast dissemination are discussed....

  13. Stochastic model of forecasting spare parts demand

    Directory of Open Access Journals (Sweden)

    Ivan S. Milojević

    2012-01-01

    hypothesis of the existence of phenomenon change trends, the next step in the methodology of forecasting is the determination of a specific growth curve that describes the regularity of the development in time. These curves of growth are obtained by the analytical representation (expression of dynamic lines. There are two basic stages in the process of expression and they are: - The choice of the type of curve the shape of which corresponds to the character of the dynamic order variation - the determination of the number of values (evaluation of the curve parameters. The most widespread method of forecasting is the trend extrapolation. The basis of the trend extrapolation is the continuing of past trends in the future. The simplicity of the trend extrapolation process, on the one hand, and the absence of other information on the other hand, are the main reasons why the trend extrapolation is used for forecasting. The trend extrapolation is founded on the following assumptions: - The phenomenon development can be presented as an evolutionary trajectory or trend, - General conditions that influenced the trend development in the past will not undergo substantial changes in the future. Spare parts demand forecasting is constantly being done in all warehouses, workshops, and at all levels. Without demand forecasting, neither planning nor decision making can be done. Demand forecasting is the input for determining the level of reserve, size of the order, ordering cycles, etc. The question that arises is the one of the reliability and accuracy of a forecast and its effects. Forecasting 'by feeling' is not to be dismissed if there is nothing better, but in this case, one must be prepared for forecasting failures that cause unnecessary accumulation of certain spare parts, and also a chronic shortage of other spare parts. All this significantly increases costs and does not provide a satisfactory supply of spare parts. The main problem of the application of this model is that each

  14. Forecast of wind energy production and ensuring required balancing power

    International Nuclear Information System (INIS)

    Merkulov, M.

    2010-01-01

    The wind energy is gaining larger part of the energy mix around the world as well as in Bulgaria. Having in mind the irregularity of the wind, we are in front of a challenge for management of the power grid in new unknown conditions. The world's experience has proven that there could be no effective management of the grid without forecasting tools, even with small scale of wind power penetration. Application of such tools promotes simple management of large wind energy production and reduction of the quantities of required balancing powers. The share of the expenses and efforts for forecasting of the wind energy is incomparably small in comparison with expenses for keeping additional powers in readiness. The recent computers potential allow simple and rapid processing of large quantities of data from different sources, which provides required conditions for modeling the world's climate and producing sophisticated forecast. (author)

  15. Econometric Models for Forecasting of Macroeconomic Indices

    Science.gov (United States)

    Sukhanova, Elena I.; Shirnaeva, Svetlana Y.; Mokronosov, Aleksandr G.

    2016-01-01

    The urgency of the research topic was stipulated by the necessity to carry out an effective controlled process by the economic system which can hardly be imagined without indices forecasting characteristic of this system. An econometric model is a safe tool of forecasting which makes it possible to take into consideration the trend of indices…

  16. Forecasting with nonlinear time series models

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    In this paper, nonlinear models are restricted to mean nonlinear parametric models. Several such models popular in time series econo- metrics are presented and some of their properties discussed. This in- cludes two models based on universal approximators: the Kolmogorov- Gabor polynomial model...... applied to economic fore- casting problems, is briefly highlighted. A number of large published studies comparing macroeconomic forecasts obtained using different time series models are discussed, and the paper also contains a small simulation study comparing recursive and direct forecasts in a partic...... and two versions of a simple artificial neural network model. Techniques for generating multi-period forecasts from nonlinear models recursively are considered, and the direct (non-recursive) method for this purpose is mentioned as well. Forecasting with com- plex dynamic systems, albeit less frequently...

  17. Using analogs to generate production forecasts in Faja

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Lugo, Rolando A. [Repsol (Canada)

    2011-07-01

    In the Carabobol Block, extra heavy oil will be produced by cold production from Miocene Morical Member sands. Many parameters such as pressure, temperature, solution gas oil ratio and viscosity variation significantly impact well productivity; unfortunately little information is available on the Carabobol Block. The aim of this paper is to provide a new methodology for using analog data to develop fluid properties correlations and a future production profile. Data from the analog neighbour field in the Orinoco oil belt was used. A methodology using scatter data was successfully applied for the Carabobol Block and fluid composition, a complete PVT and an analytical forecast were found and confirmed with actual laboratory data and a gross numerical model. This study showed that analog data can be used as a first approach to assess initial reservoir conditions and fluid properties and to generate production forecasts.

  18. Forecasting Ebola with a regression transmission model

    OpenAIRE

    Asher, Jason

    2017-01-01

    We describe a relatively simple stochastic model of Ebola transmission that was used to produce forecasts with the lowest mean absolute error among Ebola Forecasting Challenge participants. The model enabled prediction of peak incidence, the timing of this peak, and final size of the outbreak. The underlying discrete-time compartmental model used a time-varying reproductive rate modeled as a multiplicative random walk driven by the number of infectious individuals. This structure generalizes ...

  19. A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors

    International Nuclear Information System (INIS)

    Liu, Xiuli; Moreno, Blanca; García, Ana Salomé

    2016-01-01

    A combined forecast of Grey forecasting method and neural network back propagation model, which is called Grey Neural Network and Input-Output Combined Forecasting Model (GNF-IO model), is proposed. A real case of energy consumption forecast is used to validate the effectiveness of the proposed model. The GNF-IO model predicts coal, crude oil, natural gas, renewable and nuclear primary energy consumption volumes by Spain's 36 sub-sectors from 2010 to 2015 according to three different GDP growth scenarios (optimistic, baseline and pessimistic). Model test shows that the proposed model has higher simulation and forecasting accuracy on energy consumption than Grey models separately and other combination methods. The forecasts indicate that the primary energies as coal, crude oil and natural gas will represent on average the 83.6% percent of the total of primary energy consumption, raising concerns about security of supply and energy cost and adding risk for some industrial production processes. Thus, Spanish industry must speed up its transition to an energy-efficiency economy, achieving a cost reduction and increase in the level of self-supply. - Highlights: • Forecasting System Using Grey Models combined with Input-Output Models is proposed. • Primary energy consumption in Spain is used to validate the model. • The grey-based combined model has good forecasting performance. • Natural gas will represent the majority of the total of primary energy consumption. • Concerns about security of supply, energy cost and industry competitiveness are raised.

  20. Short term forecasting of petroleum product demand in France

    International Nuclear Information System (INIS)

    Cadren, M.

    1998-01-01

    The analysis of petroleum product demand became a privileged thrust of research following the modifications in terms of structure and level of the petroleum markets since eighties. The greatest importance to econometrics models of Energy demand, joint works about nonstationary data, explained the development of error-correction models and the co-integration. In this context, the short term econometrics modelling of petroleum product demand does not only focus on forecasts but also on the measure of the gain acquired from using error-correction techniques and co-integration. It's filling to take the influence of technical improvement and environment pressures into account in econometrics modelling of petroleum products demand. The first part presents the evolution of Energy Demand in France and more particularly the petroleum product demand since 1986. The objective is to determine the main characteristics of each product, which will help us to analyse and validate the econometrics models. The second part focus on the recent developments in times series modelling. We study the problem of nonstationary data and expose different unit root tests. We examine the main approaches to univariate and multivariate modelling with nonstationary data and distinguish the forecasts of the latter's. The third part is intended to applications; its objective is to illustrate the theoretic developments of the second part with a comparison between the performances of different approaches (approach Box and Jenkins, Johansen approach's and structural approach). The models will be applied to the main French petroleum market. The observed asymmetrical demand behaviour is also considered. (author)

  1. Forecast of useful energy for the TIMES-Norway model

    International Nuclear Information System (INIS)

    Rosenberg, Eva

    2012-01-01

    A regional forecast of useful energy demand in seven Norwegian regions is calculated based on an earlier work with a national forecast. This forecast will be input to the energy system model TIMES-Norway and analyses will result in forecasts of energy use of different energy carriers with varying external conditions (not included in this report). The forecast presented here describes the methodology used and the resulting forecast of useful energy. lt is based on information of the long-term development of the economy by the Ministry of Finance, projections of population growths from Statistics Norway and several other studies. The definition of a forecast of useful energy demand is not absolute, but depends on the purpose. One has to be careful not to include parts that are a part of the energy system model, such as energy efficiency measures. In the forecast presented here the influence of new building regulations and the prohibition of production of incandescent light bulbs in EU etc. are included. Other energy efficiency measures such as energy management, heat pumps, tightening of leaks etc. are modelled as technologies to invest in and are included in the TIMES-Norway model. The elasticity between different energy carriers are handled by the TIMES-Norway model and some elasticity is also included as the possibility to invest in energy efficiency measures. The forecast results in an increase of the total useful energy from 2006 to 2050 by 18 o/o. The growth is expected to be highest in the regions South and East. The industry remains at a constant level in the base case and increased or reduced energy demand is analysed as different scenarios with the TIMES-Norway model. The most important driver is the population growth. Together with the assumptions made it results in increased useful energy demand in the household and service sectors of 25 o/o and 57 % respectively.(au)

  2. Forecast of useful energy for the TIMES-Norway model

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2012-07-25

    A regional forecast of useful energy demand in seven Norwegian regions is calculated based on an earlier work with a national forecast. This forecast will be input to the energy system model TIMES-Norway and analyses will result in forecasts of energy use of different energy carriers with varying external conditions (not included in this report). The forecast presented here describes the methodology used and the resulting forecast of useful energy. lt is based on information of the long-term development of the economy by the Ministry of Finance, projections of population growths from Statistics Norway and several other studies. The definition of a forecast of useful energy demand is not absolute, but depends on the purpose. One has to be careful not to include parts that are a part of the energy system model, such as energy efficiency measures. In the forecast presented here the influence of new building regulations and the prohibition of production of incandescent light bulbs in EU etc. are included. Other energy efficiency measures such as energy management, heat pumps, tightening of leaks etc. are modelled as technologies to invest in and are included in the TIMES-Norway model. The elasticity between different energy carriers are handled by the TIMES-Norway model and some elasticity is also included as the possibility to invest in energy efficiency measures. The forecast results in an increase of the total useful energy from 2006 to 2050 by 18 o/o. The growth is expected to be highest in the regions South and East. The industry remains at a constant level in the base case and increased or reduced energy demand is analysed as different scenarios with the TIMES-Norway model. The most important driver is the population growth. Together with the assumptions made it results in increased useful energy demand in the household and service sectors of 25 o/o and 57 % respectively.(au)

  3. Nambe Pueblo Water Budget and Forecasting model.

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  4. Inventory model using bayesian dynamic linear model for demand forecasting

    Directory of Open Access Journals (Sweden)

    Marisol Valencia-Cárdenas

    2014-12-01

    Full Text Available An important factor of manufacturing process is the inventory management of terminated product. Constantly, industry is looking for better alternatives to establish an adequate plan of production and stored quantities, with optimal cost, getting quantities in a time horizon, which permits to define resources and logistics with anticipation, needed to distribute products on time. Total absence of historical data, required by many statistical models to forecast, demands the search for other kind of accurate techniques. This work presents an alternative that not only permits to forecast, in an adjusted way, but also, to provide optimal quantities to produce and store with an optimal cost, using Bayesian statistics. The proposal is illustrated with real data. Palabras clave: estadística bayesiana, optimización, modelo de inventarios, modelo lineal dinámico bayesiano. Keywords: Bayesian statistics, opti

  5. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-11-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  6. Spatiotemporal drought forecasting using nonlinear models

    Science.gov (United States)

    Vasiliades, Lampros; Loukas, Athanasios

    2010-05-01

    Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. In order to achieve spatiotemporal forecasting, some mature analysis tools, e.g., time series and spatial statistics are extended to the spatial dimension and the temporal dimension, respectively. Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Despite the widespread application of nonlinear mathematical models, comparative studies on spatiotemporal drought forecasting using different models are still a huge task for modellers. This study uses a promising approach, the Gamma Test (GT), to select the input variables and the training data length, so that the trial and error workload could be greatly reduced. The GT enables to quickly evaluate and estimate the best mean squared error that can be achieved by a smooth model on any unseen data for a given selection of inputs, prior to model construction. The GT is applied to forecast droughts using monthly Standardized Precipitation Index (SPI) timeseries at multiple timescales in several precipitation stations at Pinios river basin in Thessaly region, Greece. Several nonlinear models have been developed efficiently, with the aid of the GT, for 1-month up to 12-month ahead forecasting. Several temporal and spatial statistical indices were considered for the performance evaluation of the models. The predicted results show reasonably good agreement with the actual data for short lead times, whereas the forecasting accuracy decreases with

  7. Multicomponent ensemble models to forecast induced seismicity

    Science.gov (United States)

    Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.

    2018-01-01

    In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels

  8. Forecasting Production Losses at a Swedish Wind Farm

    DEFF Research Database (Denmark)

    compared this statistical model with a simpler method that does not rely on a physical icing model. In that method meteorological icing is identified as periods when WRF forecasts clouds and the temperature is below freezing. During these periods it is assumed that there is no production from the turbines...... shown to predict periods of icing at a wind farm in northern Sweden (Davis et al, 2012) with improved skill compared to persistence and threshold models. Based on these results, we have developed a statistical model to estimate the loss of production at the wind park due to these icing periods. We......, however as soon as the cloud goes away in the model we assume production returns to the idealized power curve. One unique aspect of the wind park we are working with is that it is not required to shut down when icing occurs. Therefore, during icing periods production still occurs, but below the idealized...

  9. Modeling and forecasting petroleum futures volatility

    International Nuclear Information System (INIS)

    Sadorsky, Perry

    2006-01-01

    Forecasts of oil price volatility are important inputs into macroeconometric models, financial market risk assessment calculations like value at risk, and option pricing formulas for futures contracts. This paper uses several different univariate and multivariate statistical models to estimate forecasts of daily volatility in petroleum futures price returns. The out-of-sample forecasts are evaluated using forecast accuracy tests and market timing tests. The TGARCH model fits well for heating oil and natural gas volatility and the GARCH model fits well for crude oil and unleaded gasoline volatility. Simple moving average models seem to fit well in some cases provided the correct order is chosen. Despite the increased complexity, models like state space, vector autoregression and bivariate GARCH do not perform as well as the single equation GARCH model. Most models out perform a random walk and there is evidence of market timing. Parametric and non-parametric value at risk measures are calculated and compared. Non-parametric models outperform the parametric models in terms of number of exceedences in backtests. These results are useful for anyone needing forecasts of petroleum futures volatility. (author)

  10. Sizing inventory of blood products in a blood bank at Brazil based on a model of inventory management and a demand forecast

    Directory of Open Access Journals (Sweden)

    Julia Lorena Marques Gurgel

    2014-02-01

    Full Text Available The management of the stocks of products derived from the blood processing collected in blood banks is a problem for health services in Brazil and the world. Quantify the stocks of these products in order to equalize the demand and supply is not a simple task. It's necessary ensure that the product is available when needed and in due time. However, there is no how overestimate these stocks given that the product is perishable and it is not easy the availability of raw material (blood for processing. There are few studies in Brazil, however, that discuss this issue. This study will focus on one Brazilian Hemocentro, which has faced the challenge of measure the demand for haemotherapic's products and establish parameters to control their stocks. Thus, it was sought to adapt a recent study realized out of the country, about sizing of stocks of a inventory for blood banks, combined with a forecast model of demand for blood derivatives subclassified by blood type. This control aims to increase the availability of the transfusion service, as it intends to reduce shortages and wastage of the blood collected.

  11. The AviaDem forecasting model: illustration of a forecasting case at Amsterdam Schiphol Airport

    NARCIS (Netherlands)

    Veldhuis, J.; Lieshout, R.

    2010-01-01

    The paper describes an aviation market forecasting model which focuses on market forecasts for airports. Most forecasting models in use today assess aviation trends resulting from macroeconomic trends. The model described in this paper has this feature built in, but the added value of this model is

  12. A model for Long-term Industrial Energy Forecasting (LIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  13. Forecasting Inflation through Econometrics Models: An Empirical ...

    African Journals Online (AJOL)

    This article aims at modeling and forecasting inflation in Pakistan. For this purpose a number of econometric approaches are implemented and their results are compared. In ARIMA models, adding additional lags for p and/or q necessarily reduced the sum of squares of the estimated residuals. When a model is estimated ...

  14. Modelling and Forecasting Multivariate Realized Volatility

    DEFF Research Database (Denmark)

    Chiriac, Roxana; Voev, Valeri

    . We provide an empirical application of the model, in which we show by means of stochastic dominance tests that the returns from an optimal portfolio based on the model's forecasts second-order dominate returns of portfolios optimized on the basis of traditional MGARCH models. This result implies...

  15. A model for Long-term Industrial Energy Forecasting (LIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  16. Application of Discrete EventSimulation in Mine Production Forecast*

    African Journals Online (AJOL)

    Michael

    2016-06-01

    Jun 1, 2016 ... Mine production forecast is pertinent to mining as it serves production ... Besides the inability of this method to mimic the .... management and truck operators understood the ..... Mining Engineering Handbook, Hartman, H. L..

  17. Evaluation of the performance of DIAS ionospheric forecasting models

    Directory of Open Access Journals (Sweden)

    Tsagouri Ioanna

    2011-08-01

    Full Text Available Nowcasting and forecasting ionospheric products and services for the European region are regularly provided since August 2006 through the European Digital upper Atmosphere Server (DIAS, http://dias.space.noa.gr. Currently, DIAS ionospheric forecasts are based on the online implementation of two models: (i the solar wind driven autoregression model for ionospheric short-term forecast (SWIF, which combines historical and real-time ionospheric observations with solar-wind parameters obtained in real time at the L1 point from NASA ACE spacecraft, and (ii the geomagnetically correlated autoregression model (GCAM, which is a time series forecasting method driven by a synthetic geomagnetic index. In this paper we investigate the operational ability and the accuracy of both DIAS models carrying out a metrics-based evaluation of their performance under all possible conditions. The analysis was established on the systematic comparison between models’ predictions with actual observations obtained over almost one solar cycle (1998–2007 at four European ionospheric locations (Athens, Chilton, Juliusruh and Rome and on the comparison of the models’ performance against two simple prediction strategies, the median- and the persistence-based predictions during storm conditions. The results verify operational validity for both models and quantify their prediction accuracy under all possible conditions in support of operational applications but also of comparative studies in assessing or expanding the current ionospheric forecasting capabilities.

  18. A production throughput forecasting system in an automated hard disk drive test operation using GRNN

    Energy Technology Data Exchange (ETDEWEB)

    Samattapapong, N.; Afzulpurkar, N.

    2016-07-01

    The goal of this paper is to develop a pragmatic system of a production throughput forecasting system for an automated test operation in a hard drive manufacturing plant. The accurate forecasting result is necessary for the management team to response to any changes in the production processes and the resources allocations. In this study, we design a production throughput forecasting system in an automated test operation in hard drive manufacturing plant. In the proposed system, consists of three main stages. In the first stage, a mutual information method was adopted for selecting the relevant inputs into the forecasting model. In the second stage, a generalized regression neural network (GRNN) was implemented in the forecasting model development phase. Finally, forecasting accuracy was improved by searching the optimal smoothing parameter which selected from comparisons result among three optimization algorithms: particle swarm optimization (PSO), unrestricted search optimization (USO) and interval halving optimization (IHO). The experimental result shows that (1) the developed production throughput forecasting system using GRNN is able to provide forecasted results close to actual values, and to projected the future trends of production throughput in an automated hard disk drive test operation; (2) An IHO algorithm performed as superiority appropriate optimization method than the other two algorithms. (3) Compared with current forecasting system in manufacturing, the results show that the proposed system’s performance is superior to the current system in prediction accuracy and suitable for real-world application. The production throughput volume is a key performance index of hard disk drive manufacturing systems that need to be forecast. Because of the production throughput forecasting result is useful information for management team to respond to any changing in production processes and resources allocation. However, a practically forecasting system for

  19. Day-ahead wind speed forecasting using f-ARIMA models

    International Nuclear Information System (INIS)

    Kavasseri, Rajesh G.; Seetharaman, Krithika

    2009-01-01

    With the integration of wind energy into electricity grids, it is becoming increasingly important to obtain accurate wind speed/power forecasts. Accurate wind speed forecasts are necessary to schedule dispatchable generation and tariffs in the day-ahead electricity market. This paper examines the use of fractional-ARIMA or f-ARIMA models to model, and forecast wind speeds on the day-ahead (24 h) and two-day-ahead (48 h) horizons. The models are applied to wind speed records obtained from four potential wind generation sites in North Dakota. The forecasted wind speeds are used in conjunction with the power curve of an operational (NEG MICON, 750 kW) turbine to obtain corresponding forecasts of wind power production. The forecast errors in wind speed/power are analyzed and compared with the persistence model. Results indicate that significant improvements in forecasting accuracy are obtained with the proposed models compared to the persistence method. (author)

  20. A Hybrid Model for Forecasting Sales in Turkish Paint Industry

    OpenAIRE

    Alp Ustundag

    2009-01-01

    Sales forecasting is important for facilitating effective and efficient allocation of scarce resources. However, how to best model and forecast sales has been a long-standing issue. There is no best forecasting method that is applicable in all circumstances. Therefore, confidence in the accuracy of sales forecasts is achieved by corroborating the results using two or more methods. This paper proposes a hybrid forecasting model that uses an artificial intelligence method (AI) w...

  1. Linking seasonal climate forecasts with crop models in Iberian Peninsula

    Science.gov (United States)

    Capa, Mirian; Ines, Amor; Baethgen, Walter; Rodriguez-Fonseca, Belen; Han, Eunjin; Ruiz-Ramos, Margarita

    2015-04-01

    Translating seasonal climate forecasts into agricultural production forecasts could help to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. In this study, we use seasonal rainfall forecasts and crop models to improve predictability of wheat yield in the Iberian Peninsula (IP). Additionally, we estimate economic margins and production risks associated with extreme scenarios of seasonal rainfall forecast. This study evaluates two methods for disaggregating seasonal climate forecasts into daily weather data: 1) a stochastic weather generator (CondWG), and 2) a forecast tercile resampler (FResampler). Both methods were used to generate 100 (with FResampler) and 110 (with CondWG) weather series/sequences for three scenarios of seasonal rainfall forecasts. Simulated wheat yield is computed with the crop model CERES-wheat (Ritchie and Otter, 1985), which is included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5, Hoogenboom et al., 2010). Simulations were run at two locations in northeastern Spain where the crop model was calibrated and validated with independent field data. Once simulated yields were obtained, an assessment of farmer's gross margin for different seasonal climate forecasts was accomplished to estimate production risks under different climate scenarios. This methodology allows farmers to assess the benefits and risks of a seasonal weather forecast in IP prior to the crop growing season. The results of this study may have important implications on both, public (agricultural planning) and private (decision support to farmers, insurance companies) sectors. Acknowledgements Research by M. Capa-Morocho has been partly supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM) and MULCLIVAR project (CGL2012-38923-C02-02) References Hoogenboom, G. et al., 2010. The Decision

  2. Analysis and forecasting of profit by using simulation models for growing pea in conventional and organic plant production in Serbia

    Directory of Open Access Journals (Sweden)

    Mladenović Jelena

    2016-01-01

    Full Text Available Bean is the third most important food legume crop of the world after soybean and groundnuts; it provides an important source of dietary proteins, carbohydrates, minerals and fiber essential in human nutrition worldwide. A high, per capita bean consumption of 13 to 40 kg yr-1 was observed in developing countries. In EU developed countries, market of the organic products is growing in average 10 % per annum, but this growth has not been followed by production growth and this is the chance for Serbian products. Organic bean growing enables the producers a higher profit. Expenses in organic production are higher (2170 EUR/ha than those in conventional bean production (1825 EUR/ha. However, net profit in the organic production was estimated to 1440 EUR/ha, while the profit in the conventional concept was 315 EUR/ha. Also, profitability rate and the economic efficiency coefficient had higher values when growing bean in organic concept.

  3. Forecasting Costa Rican Quarterly Growth with Mixed-frequency Models

    Directory of Open Access Journals (Sweden)

    Adolfo Rodríguez Vargas

    2014-11-01

    Full Text Available We assess the utility of mixed-frequency models to forecast the quarterly growth rate of Costa Rican real GDP: we estimate bridge and MiDaS models with several lag lengths using information of the IMAE and compute forecasts (horizons of 0-4 quarters which are compared between themselves, with those of ARIMA models and with those resulting from forecast combinations. Combining the most accurate forecasts is most useful when forecasting in real time, whereas MiDaS forecasts are the best-performing overall: as the forecasting horizon increases, their precisionis affected relatively little; their success rates in predicting the direction of changes in the growth rate are stable, and several forecastsremain unbiased. In particular, forecasts computed from simple MiDaS with 9 and 12 lags are unbiased at all horizons and information sets assessed, and show the highest number of significant differences in forecasting ability in comparison with all other models.

  4. The Possibility Using the Power Production Function of Complex Variable for Economic Forecasting

    Directory of Open Access Journals (Sweden)

    Sergey Gennadyevich Svetunkov

    2016-09-01

    Full Text Available The possibility of dynamic analysis and forecasting production results using the power production functions of complex variables with real coefficients is considered. This model expands the arsenal of instrumental methods and allows multivariate production forecasts which are unattainable by other methods of real variables as the functions of complex variables simulate the production differently in comparison with the models of real variables. The values of coefficients of the power production functions of complex variables can be calculated for each statistical observation. This allows to consider the change of the coefficients over time, to analyze this trend and predict the values of the coefficients for a given term, thereby to predict the form of the production function, which forecasts the operating results. Thus, the model of the production function with variable coefficients is introduced into the scientific circulation. With this model, the inverse problem of forecasting might be solved, such as the determination of the necessary quantities of labor and capital to achieve the desired operational results. The study is based on the principles of the modern methodology of complex-valued economy, one of its sections is the complex-valued patterns of production functions. In the article, the possibility of economic forecasting is tested on the example of the UK economy. The results of this prediction are compared with the forecasts obtained by other methods, which have led to the conclusion about the effectiveness of the proposed approach and the method of forecasting at the macro levels of production systems. A complex-valued power model of the production function is recommended for the multivariate prediction of sustainable production systems — the global economy, the economies of individual countries, major industries and regions.

  5. FORECASTING MODEL OF GHG EMISSION IN MANUFACTURING SECTORS OF THAILAND

    Directory of Open Access Journals (Sweden)

    Pruethsan Sutthichaimethee

    2017-01-01

    Full Text Available This study aims to analyze the modeling and forecasting the GHG emission of energy consumption in manufacturing sectors. The scope of the study is to analysis energy consumption and forecasting GHG emission of energy consumption for the next 10 years (2016-2025 and 25 years (2016-2040 by using ARIMAX model from the Input-output table of Thailand. The result shows that iron and steel has the highest value of energy consumption and followed by cement, fluorite, air transport, road freight transport, hotels and places of loading, coal and lignite, petrochemical products, other manufacturing, road passenger transport, respectively. The prediction results show that these models are effective in forecasting by measured by using RMSE, MAE, and MAPE. The results forecast of each model is as follows: 1 Model 1(2,1,1 shows that GHG emission will be increasing steadily and increasing at 25.17% by the year 2025 in comparison to 2016. 2 Model 2 (2,1,2 shows that GHG emission will be rising steadily and increasing at 41.51% by the year 2040 in comparison to 2016.

  6. Forecasting Aggregate Productivity using Information from Firm-level Data

    NARCIS (Netherlands)

    Bartelsman, E.J.; Wolf, Z.

    2014-01-01

    In this paper, we explore whether information from firm-level data can improve forecasts of aggregate productivity growth. We generate firm-level productivity measures and aggregate them into time-series components that capture within-firm productivity and the productivity contribution of

  7. Mesoscale Modeling, Forecasting and Remote Sensing Research.

    Science.gov (United States)

    remote sensing , cyclonic scale diagnostic studies and mesoscale numerical modeling and forecasting are summarized. Mechanisms involved in the release of potential instability are discussed and simulated quantitatively, giving particular attention to the convective formulation. The basic mesoscale model is documented including the equations, boundary condition, finite differences and initialization through an idealized frontal zone. Results of tests including a three dimensional test with real data, tests of convective/mesoscale interaction and tests with a detailed

  8. Marine Text Forecasts and Products Listing

    Science.gov (United States)

    FQPZ23KWNO West Coast 06z, 18z FQAC23KWNO Artic Alaska 06z, 18z Computer-generated extratropical storm surge Water Levels Tsunami Coastal/Lakeshore Hazard Message; Storm Surge Forecasts Satellite Orbit Predictions Update (Storm #1) As required TCUAT2 (alt) Tropical Cyclone Update (Storm #2) As required TCUAT3 (alt

  9. Probabilistic Forecast of Wind Power Generation by Stochastic Differential Equation Models

    KAUST Repository

    Elkantassi, Soumaya

    2017-04-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  10. EXPENSES FORECASTING MODEL IN UNIVERSITY PROJECTS PLANNING

    Directory of Open Access Journals (Sweden)

    Sergei A. Arustamov

    2016-11-01

    Full Text Available The paper deals with mathematical model presentation of cash flows in project funding. We describe different types of expenses linked to university project activities. Problems of project budgeting that contribute most uncertainty have been revealed. As an example of the model implementation we consider calculation of vacation allowance expenses for project participants. We define problems of forecast for funds reservation: calculation based on methodology established by the Ministry of Education and Science calculation according to the vacation schedule and prediction of the most probable amount. A stochastic model for vacation allowance expenses has been developed. We have proposed methods and solution of the problems that increase the accuracy of forecasting for funds reservation based on 2015 data.

  11. Forecasting the potential of Danish biogas production

    DEFF Research Database (Denmark)

    Bojesen, Mikkel; Skov-Petersen, Hans; Gylling, Morten

    , except for those farms which are in the largest state class. Regional differences in development trends were documented. The strategic objective of the model is to provide data for the spatial assessment of the potential of biogas production which can form the basis for a location analysis for future...... biogas plants....

  12. Using Bayes Model Averaging for Wind Power Forecasts

    Science.gov (United States)

    Preede Revheim, Pål; Beyer, Hans Georg

    2014-05-01

    For operational purposes predictions of the forecasts of the lumped output of groups of wind farms spread over larger geographic areas will often be of interest. A naive approach is to make forecasts for each individual site and sum them up to get the group forecast. It is however well documented that a better choice is to use a model that also takes advantage of spatial smoothing effects. It might however be the case that some sites tends to more accurately reflect the total output of the region, either in general or for certain wind directions. It will then be of interest giving these a greater influence over the group forecast. Bayesian model averaging (BMA) is a statistical post-processing method for producing probabilistic forecasts from ensembles. Raftery et al. [1] show how BMA can be used for statistical post processing of forecast ensembles, producing PDFs of future weather quantities. The BMA predictive PDF of a future weather quantity is a weighted average of the ensemble members' PDFs, where the weights can be interpreted as posterior probabilities and reflect the ensemble members' contribution to overall forecasting skill over a training period. In Revheim and Beyer [2] the BMA procedure used in Sloughter, Gneiting and Raftery [3] were found to produce fairly accurate PDFs for the future mean wind speed of a group of sites from the single sites wind speeds. However, when the procedure was attempted applied to wind power it resulted in either problems with the estimation of the parameters (mainly caused by longer consecutive periods of no power production) or severe underestimation (mainly caused by problems with reflecting the power curve). In this paper the problems that arose when applying BMA to wind power forecasting is met through two strategies. First, the BMA procedure is run with a combination of single site wind speeds and single site wind power production as input. This solves the problem with longer consecutive periods where the input data

  13. Developing energy forecasting model using hybrid artificial intelligence method

    Institute of Scientific and Technical Information of China (English)

    Shahram Mollaiy-Berneti

    2015-01-01

    An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accurate demand value. A new energy forecasting model was proposed based on the back-propagation (BP) type neural network and imperialist competitive algorithm. The proposed method offers the advantage of local search ability of BP technique and global search ability of imperialist competitive algorithm. Two types of empirical data regarding the energy demand (gross domestic product (GDP), population, import, export and energy demand) in Turkey from 1979 to 2005 and electricity demand (population, GDP, total revenue from exporting industrial products and electricity consumption) in Thailand from 1986 to 2010 were investigated to demonstrate the applicability and merits of the present method. The performance of the proposed model is found to be better than that of conventional back-propagation neural network with low mean absolute error.

  14. Modeling and forecasting of electrical power demands for capacity planning

    International Nuclear Information System (INIS)

    Al-Shobaki, S.; Mohsen, M.

    2007-01-01

    Jordan imports oil from neighboring countries for use in power production. As such, the cost of electricity production is high compared to oil producing countries. It is anticipated that Jordan will face major challenges in trying to meet the growing energy and electricity demands while also developing the energy sector in a way that reduces any adverse impacts on the economy, the environment and social life. This paper described the development of forecasting models to predict future generation and sales loads of electrical power in Jordan. Two models that could be used for the prediction of electrical energy demand in Amman, Jordan were developed and validated. An analysis of the data was also presented. The first model was based on the levels of energy generated by the National Electric Power Company (NEPCO) and the other was based on the levels of energy sold by the company in the same area. The models were compared and the percent error was presented. Energy demand was also forecasted across the next 60 months for both models. Results were then compared with the output of the in-house forecast model used by NEPCO to predict the levels of generated energy needed across the 60 months time period. It was concluded that the NEPCO model predicted energy demand higher than the validated generated data model by an average of 5.25 per cent. 8 refs., 5 tabs., 15 figs

  15. Modeling and forecasting of electrical power demands for capacity planning

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shobaki, S. [Hashemite Univ., Zarka (Jordan). Dept. of Industrial Engineering; Mohsen, M. [Hashemite Univ., Zarka (Jordan). Dept. of Mechanical Engineering

    2007-07-01

    Jordan imports oil from neighboring countries for use in power production. As such, the cost of electricity production is high compared to oil producing countries. It is anticipated that Jordan will face major challenges in trying to meet the growing energy and electricity demands while also developing the energy sector in a way that reduces any adverse impacts on the economy, the environment and social life. This paper described the development of forecasting models to predict future generation and sales loads of electrical power in Jordan. Two models that could be used for the prediction of electrical energy demand in Amman, Jordan were developed and validated. An analysis of the data was also presented. The first model was based on the levels of energy generated by the National Electric Power Company (NEPCO) and the other was based on the levels of energy sold by the company in the same area. The models were compared and the percent error was presented. Energy demand was also forecasted across the next 60 months for both models. Results were then compared with the output of the in-house forecast model used by NEPCO to predict the levels of generated energy needed across the 60 months time period. It was concluded that the NEPCO model predicted energy demand higher than the validated generated data model by an average of 5.25 per cent. 8 refs., 5 tabs., 15 figs.

  16. Modeling and Forecasting Mortality With Economic Growth: A Multipopulation Approach.

    Science.gov (United States)

    Boonen, Tim J; Li, Hong

    2017-10-01

    Research on mortality modeling of multiple populations focuses mainly on extrapolating past mortality trends and summarizing these trends by one or more common latent factors. This article proposes a multipopulation stochastic mortality model that uses the explanatory power of economic growth. In particular, we extend the Li and Lee model (Li and Lee 2005) by including economic growth, represented by the real gross domestic product (GDP) per capita, to capture the common mortality trend for a group of populations with similar socioeconomic conditions. We find that our proposed model provides a better in-sample fit and an out-of-sample forecast performance. Moreover, it generates lower (higher) forecasted period life expectancy for countries with high (low) GDP per capita than the Li and Lee model.

  17. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the islands of Samoa at...

  18. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the island of Guam at...

  19. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 3.5-day hourly forecast for the region surrounding the Hawaiian island of Oahu at...

  20. Weather Research and Forecasting (WRF) Regional Atmospheric Model: CNMI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Commonwealth of the Northern...

  1. AIRLINE ACTIVITY FORECASTING BY REGRESSION MODELS

    Directory of Open Access Journals (Sweden)

    Н. Білак

    2012-04-01

    Full Text Available Proposed linear and nonlinear regression models, which take into account the equation of trend and seasonality indices for the analysis and restore the volume of passenger traffic over the past period of time and its prediction for future years, as well as the algorithm of formation of these models based on statistical analysis over the years. The desired model is the first step for the synthesis of more complex models, which will enable forecasting of passenger (income level airline with the highest accuracy and time urgency.

  2. Modeling and Forecasting Large Realized Covariance Matrices and Portfolio Choice

    NARCIS (Netherlands)

    Callot, Laurent A.F.; Kock, Anders B.; Medeiros, Marcelo C.

    2017-01-01

    We consider modeling and forecasting large realized covariance matrices by penalized vector autoregressive models. We consider Lasso-type estimators to reduce the dimensionality and provide strong theoretical guarantees on the forecast capability of our procedure. We show that we can forecast

  3. forecasting with nonlinear time series model: a monte-carlo

    African Journals Online (AJOL)

    PUBLICATIONS1

    erated recursively up to any step greater than one. For nonlinear time series model, point forecast for step one can be done easily like in the linear case but forecast for a step greater than or equal to ..... London. Franses, P. H. (1998). Time series models for business and Economic forecasting, Cam- bridge University press.

  4. Canadian crude oil production and supply forecast 2006-2020

    International Nuclear Information System (INIS)

    2006-05-01

    In order to enable members to plan for pipeline capacity requirements for transporting Canadian crude oil to markets, the Canadian Association of Petroleum Producers (CAPP) 2006-2020 crude oil production and supply forecast provides a long-range outlook of Canadian crude oil production. It provides a forecast of supply and demand for both western and eastern Canada. Because offshore eastern oil production does not rely on pipeline access to reach markets, the analysis primarily focuses on western Canadian production and supply. Over the next fifteen years, Alberta's oil sands provides the main source of growth in the western Canadian production forecast. A survey of CAPP members encompassing all oil sands projects was conducted. Survey responses reflect both planned and envisioned projects over a fifteen year period, although some of the envisioned projects have been risk adjusted by modifying the potential completion schedules for projects which are deemed more uncertain. Detailed tables are provided on forecast data. Three sets of tables are included to show production, two supply scenarios and a high level assessment of the need for incremental pipeline capacity. The report also discusses delays and risk factors that could slow the pace of oil sands development and the corresponding increase in production being forecast in the base case. 16 tabs

  5. The Red Sea Modeling and Forecasting System

    KAUST Repository

    Hoteit, Ibrahim

    2015-04-01

    Despite its importance for a variety of socio-economical and political reasons and the presence of extensive coral reef gardens along its shores, the Red Sea remains one of the most under-studied large marine physical and biological systems in the global ocean. This contribution will present our efforts to build advanced modeling and forecasting capabilities for the Red Sea, which is part of the newly established Saudi ARAMCO Marine Environmental Research Center at KAUST (SAMERCK). Our Red Sea modeling system compromises both regional and nested costal MIT general circulation models (MITgcm) with resolutions varying between 8 km and 250 m to simulate the general circulation and mesoscale dynamics at various spatial scales, a 10-km resolution Weather Research Forecasting (WRF) model to simulate the atmospheric conditions, a 4-km resolution European Regional Seas Ecosystem Model (ERSEM) to simulate the Red Sea ecosystem, and a 1-km resolution WAVEWATCH-III model to simulate the wind driven surface waves conditions. We have also implemented an oil spill model, and a probabilistic dispersion and larval connectivity modeling system (CMS) based on a stochastic Lagrangian framework and incorporating biological attributes. We are using the models outputs together with available observational data to study all aspects of the Red Sea circulations. Advanced monitoring capabilities are being deployed in the Red Sea as part of the SAMERCK, comprising multiple gliders equipped with hydrographical and biological sensors, high frequency (HF) surface current/wave mapping, buoys/ moorings, etc, complementing the available satellite ocean and atmospheric observations and Automatic Weather Stations (AWS). The Red Sea models have also been equipped with advanced data assimilation capabilities. Fully parallel ensemble-based Kalman filtering (EnKF) algorithms have been implemented with the MITgcm and ERSEM for assimilating all available multivariate satellite and in-situ data sets. We

  6. The Red Sea Modeling and Forecasting System

    KAUST Repository

    Hoteit, Ibrahim; Gopalakrishnan, Ganesh; Latif, Hatem; Toye, Habib; Zhan, Peng; Kartadikaria, Aditya R.; Viswanadhapalli, Yesubabu; Yao, Fengchao; Triantafyllou, George; Langodan, Sabique; Cavaleri, Luigi; Guo, Daquan; Johns, Burt

    2015-01-01

    Despite its importance for a variety of socio-economical and political reasons and the presence of extensive coral reef gardens along its shores, the Red Sea remains one of the most under-studied large marine physical and biological systems in the global ocean. This contribution will present our efforts to build advanced modeling and forecasting capabilities for the Red Sea, which is part of the newly established Saudi ARAMCO Marine Environmental Research Center at KAUST (SAMERCK). Our Red Sea modeling system compromises both regional and nested costal MIT general circulation models (MITgcm) with resolutions varying between 8 km and 250 m to simulate the general circulation and mesoscale dynamics at various spatial scales, a 10-km resolution Weather Research Forecasting (WRF) model to simulate the atmospheric conditions, a 4-km resolution European Regional Seas Ecosystem Model (ERSEM) to simulate the Red Sea ecosystem, and a 1-km resolution WAVEWATCH-III model to simulate the wind driven surface waves conditions. We have also implemented an oil spill model, and a probabilistic dispersion and larval connectivity modeling system (CMS) based on a stochastic Lagrangian framework and incorporating biological attributes. We are using the models outputs together with available observational data to study all aspects of the Red Sea circulations. Advanced monitoring capabilities are being deployed in the Red Sea as part of the SAMERCK, comprising multiple gliders equipped with hydrographical and biological sensors, high frequency (HF) surface current/wave mapping, buoys/ moorings, etc, complementing the available satellite ocean and atmospheric observations and Automatic Weather Stations (AWS). The Red Sea models have also been equipped with advanced data assimilation capabilities. Fully parallel ensemble-based Kalman filtering (EnKF) algorithms have been implemented with the MITgcm and ERSEM for assimilating all available multivariate satellite and in-situ data sets. We

  7. Development of a sales forecasting model for canopy windows

    OpenAIRE

    2014-01-01

    M.Com. (Business Management) Forecasting is an important function used in a wide range of business planning or decision-making situations. The purpose ofthis study was to build a sales forecasting model that would be practical and cost effective, from the various forecasting methods and techniques available. Various forecast models, methods and techniques are outlined in the initial part of this study by the author. The author has outlined some of the fundamentals and limitations that unde...

  8. Fuzzy logic-based analogue forecasting and hybrid modelling of horizontal visibility

    Science.gov (United States)

    Tuba, Zoltán; Bottyán, Zsolt

    2018-04-01

    Forecasting visibility is one of the greatest challenges in aviation meteorology. At the same time, high accuracy visibility forecasts can significantly reduce or make avoidable weather-related risk in aviation as well. To improve forecasting visibility, this research links fuzzy logic-based analogue forecasting and post-processed numerical weather prediction model outputs in hybrid forecast. Performance of analogue forecasting model was improved by the application of Analytic Hierarchy Process. Then, linear combination of the mentioned outputs was applied to create ultra-short term hybrid visibility prediction which gradually shifts the focus from statistical to numerical products taking their advantages during the forecast period. It gives the opportunity to bring closer the numerical visibility forecast to the observations even it is wrong initially. Complete verification of categorical forecasts was carried out; results are available for persistence and terminal aerodrome forecasts (TAF) as well in order to compare. The average value of Heidke Skill Score (HSS) of examined airports of analogue and hybrid forecasts shows very similar results even at the end of forecast period where the rate of analogue prediction in the final hybrid output is 0.1-0.2 only. However, in case of poor visibility (1000-2500 m), hybrid (0.65) and analogue forecasts (0.64) have similar average of HSS in the first 6 h of forecast period, and have better performance than persistence (0.60) or TAF (0.56). Important achievement that hybrid model takes into consideration physics and dynamics of the atmosphere due to the increasing part of the numerical weather prediction. In spite of this, its performance is similar to the most effective visibility forecasting methods and does not follow the poor verification results of clearly numerical outputs.

  9. Application of artificial intelligence to forecast hydrocarbon production from shales

    Directory of Open Access Journals (Sweden)

    Palash Panja

    2018-03-01

    Full Text Available Artificial intelligence (AI methods and applications have recently gained a great deal of attention in many areas, including fields of mathematics, neuroscience, economics, engineering, linguistics, gaming, and many others. This is due to the surge of innovative and sophisticated AI techniques applications to highly complex problems as well as the powerful new developments in high speed computing. Various applications of AI in everyday life include machine learning, pattern recognition, robotics, data processing and analysis, etc. The oil and gas industry is not behind either, in fact, AI techniques have recently been applied to estimate PVT properties, optimize production, predict recoverable hydrocarbons, optimize well placement using pattern recognition, optimize hydraulic fracture design, and to aid in reservoir characterization efforts. In this study, three different AI models are trained and used to forecast hydrocarbon production from hydraulically fractured wells. Two vastly used artificial intelligence methods, namely the Least Square Support Vector Machine (LSSVM and the Artificial Neural Networks (ANN, are compared to a traditional curve fitting method known as Response Surface Model (RSM using second order polynomial equations to determine production from shales. The objective of this work is to further explore the potential of AI in the oil and gas industry. Eight parameters are considered as input factors to build the model: reservoir permeability, initial dissolved gas-oil ratio, rock compressibility, gas relative permeability, slope of gas oil ratio, initial reservoir pressure, flowing bottom hole pressure, and hydraulic fracture spacing. The range of values used for these parameters resemble real field scenarios from prolific shale plays such as the Eagle Ford, Bakken, and the Niobrara in the United States. Production data consists of oil recovery factor and produced gas-oil ratio (GOR generated from a generic hydraulically

  10. Ensemble empirical model decomposition and neuro-fuzzy conjunction model for middle and long-term runoff forecast

    Science.gov (United States)

    Tan, Q.

    2017-12-01

    Forecasting the runoff over longer periods, such as months and years, is one of the important tasks for hydrologists and water resource managers to maximize the potential of the limited water. However, due to the nonlinear and nonstationary characteristic of the natural runoff, it is hard to forecast the middle and long-term runoff with a satisfactory accuracy. It has been proven that the forecast performance can be improved by using signal decomposition techniques to product more cleaner signals as model inputs. In this study, a new conjunction model (EEMD-neuro-fuzzy) with adaptive ability is proposed. The ensemble empirical model decomposition (EEMD) is used to decompose the runoff time series into several components, which are with different frequencies and more cleaner than the original time series. Then the neuro-fuzzy model is developed for each component. The final forecast results can be obtained by summing the outputs of all neuro-fuzzy models. Unlike the conventional forecast model, the decomposition and forecast models in this study are adjusted adaptively as long as new runoff information is added. The proposed models are applied to forecast the monthly runoff of Yichang station, located in Yangtze River of China. The results show that the performance of adaptive forecast model we proposed outperforms than the conventional forecast model, the Nash-Sutcliffe efficiency coefficient can reach to 0.9392. Due to its ability to process the nonstationary data, the forecast accuracy, especially in flood season, is improved significantly.

  11. Limited Area Forecasting and Statistical Modelling for Wind Energy Scheduling

    DEFF Research Database (Denmark)

    Rosgaard, Martin Haubjerg

    forecast accuracy for operational wind power scheduling. Numerical weather prediction history and scales of atmospheric motion are summarised, followed by a literature review of limited area wind speed forecasting. Hereafter, the original contribution to research on the topic is outlined. The quality...... control of wind farm data used as forecast reference is described in detail, and a preliminary limited area forecasting study illustrates the aggravation of issues related to numerical orography representation and accurate reference coordinates at ne weather model resolutions. For the o shore and coastal...... sites studied limited area forecasting is found to deteriorate wind speed prediction accuracy, while inland results exhibit a steady forecast performance increase with weather model resolution. Temporal smoothing of wind speed forecasts is shown to improve wind power forecast performance by up to almost...

  12. Real-time Social Internet Data to Guide Forecasting Models

    Energy Technology Data Exchange (ETDEWEB)

    Del Valle, Sara Y. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-20

    Our goal is to improve decision support by monitoring and forecasting events using social media, mathematical models, and quantifying model uncertainty. Our approach is real-time, data-driven forecasts with quantified uncertainty: Not just for weather anymore. Information flow from human observations of events through an Internet system and classification algorithms is used to produce quantitatively uncertain forecast. In summary, we want to develop new tools to extract useful information from Internet data streams, develop new approaches to assimilate real-time information into predictive models, validate approaches by forecasting events, and our ultimate goal is to develop an event forecasting system using mathematical approaches and heterogeneous data streams.

  13. Short term load forecasting: two stage modelling

    Directory of Open Access Journals (Sweden)

    SOARES, L. J.

    2009-06-01

    Full Text Available This paper studies the hourly electricity load demand in the area covered by a utility situated in the Seattle, USA, called Puget Sound Power and Light Company. Our proposal is put into proof with the famous dataset from this company. We propose a stochastic model which employs ANN (Artificial Neural Networks to model short-run dynamics and the dependence among adjacent hours. The model proposed treats each hour's load separately as individual single series. This approach avoids modeling the intricate intra-day pattern (load profile displayed by the load, which varies throughout days of the week and seasons. The forecasting performance of the model is evaluated in similiar mode a TLSAR (Two-Level Seasonal Autoregressive model proposed by Soares (2003 using the years of 1995 and 1996 as the holdout sample. Moreover, we conclude that non linearity is present in some series of these data. The model results are analyzed. The experiment shows that our tool can be used to produce load forecasting in tropical climate places.

  14. Models for forecasting energy use in the US farm sector

    Science.gov (United States)

    Christensen, L. R.

    1981-07-01

    Econometric models were developed and estimated for the purpose of forecasting electricity and petroleum demand in US agriculture. A structural approach is pursued which takes account of the fact that the quantity demanded of any one input is a decision made in conjunction with other input decisions. Three different functional forms of varying degrees of complexity are specified for the structural cost function, which describes the cost of production as a function of the level of output and factor prices. Demand for materials (all purchased inputs) is derived from these models. A separate model which break this demand up into demand for the four components of materials is used to produce forecasts of electricity and petroleum is a stepwise manner.

  15. Uncertainty calculation in transport models and forecasts

    DEFF Research Database (Denmark)

    Manzo, Stefano; Prato, Carlo Giacomo

    Transport projects and policy evaluations are often based on transport model output, i.e. traffic flows and derived effects. However, literature has shown that there is often a considerable difference between forecasted and observed traffic flows. This difference causes misallocation of (public...... implemented by using an approach based on stochastic techniques (Monte Carlo simulation and Bootstrap re-sampling) or scenario analysis combined with model sensitivity tests. Two transport models are used as case studies: the Næstved model and the Danish National Transport Model. 3 The first paper...... in a four-stage transport model related to different variable distributions (to be used in a Monte Carlo simulation procedure), assignment procedures and levels of congestion, at both the link and the network level. The analysis used as case study the Næstved model, referring to the Danish town of Næstved2...

  16. An efficient and simplified model for forecasting using SRM

    International Nuclear Information System (INIS)

    Asif, H.M.; Hyat, M.F.; Ahmad, T.

    2014-01-01

    Learning form continuous financial systems play a vital role in enterprise operations. One of the most sophisticated non-parametric supervised learning classifiers, SVM (Support Vector Machines), provides robust and accurate results, however it may require intense computation and other resources. The heart of SLT (Statistical Learning Theory), SRM (Structural Risk Minimization )Principle can also be used for model selection. In this paper, we focus on comparing the performance of model estimation using SRM with SVR (Support Vector Regression) for forecasting the retail sales of consumer products. The potential benefits of an accurate sales forecasting technique in businesses are immense. Retail sales forecasting is an integral part of strategic business planning in areas such as sales planning, marketing research, pricing, production planning and scheduling. Performance comparison of support vector regression with model selection using SRM shows comparable results to SVR but in a computationally efficient manner. This research targeted the real life data to conclude the results after investigating the computer generated datasets for different types of model building. (author)

  17. An Efficient and Simplified Model for Forecasting using SRM

    Directory of Open Access Journals (Sweden)

    Hafiz Muhammad Shahzad Asif

    2014-01-01

    Full Text Available Learning form continuous financial systems play a vital role in enterprise operations. One of the most sophisticated non-parametric supervised learning classifiers, SVM (Support Vector Machines, provides robust and accurate results, however it may require intense computation and other resources. The heart of SLT (Statistical Learning Theory, SRM (Structural Risk Minimization Principle can also be used for model selection. In this paper, we focus on comparing the performance of model estimation using SRM with SVR (Support Vector Regression for forecasting the retail sales of consumer products. The potential benefits of an accurate sales forecasting technique in businesses are immense. Retail sales forecasting is an integral part of strategic business planning in areas such as sales planning, marketing research, pricing, production planning and scheduling. Performance comparison of support vector regression with model selection using SRM shows comparable results to SVR but in a computationally efficient manner. This research targeted the real life data to conclude the results after investigating the computer generated datasets for different types of model building

  18. Uncertainty Analysis of Multi-Model Flood Forecasts

    Directory of Open Access Journals (Sweden)

    Erich J. Plate

    2015-12-01

    Full Text Available This paper demonstrates, by means of a systematic uncertainty analysis, that the use of outputs from more than one model can significantly improve conditional forecasts of discharges or water stages, provided the models are structurally different. Discharge forecasts from two models and the actual forecasted discharge are assumed to form a three-dimensional joint probability density distribution (jpdf, calibrated on long time series of data. The jpdf is decomposed into conditional probability density distributions (cpdf by means of Bayes formula, as suggested and explored by Krzysztofowicz in a series of papers. In this paper his approach is simplified to optimize conditional forecasts for any set of two forecast models. Its application is demonstrated by means of models developed in a study of flood forecasting for station Stung Treng on the middle reach of the Mekong River in South-East Asia. Four different forecast models were used and pairwise combined: forecast with no model, with persistence model, with a regression model, and with a rainfall-runoff model. Working with cpdfs requires determination of dependency among variables, for which linear regressions are required, as was done by Krzysztofowicz. His Bayesian approach based on transforming observed probability distributions of discharges and forecasts into normal distributions is also explored. Results obtained with his method for normal prior and likelihood distributions are identical to results from direct multiple regressions. Furthermore, it is shown that in the present case forecast accuracy is only marginally improved, if Weibull distributed basic data were converted into normally distributed variables.

  19. Modeling, Forecasting and Mitigating Extreme Earthquakes

    Science.gov (United States)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  20. Forecasting short-term wind farm production in complex terrain. Volume 1

    International Nuclear Information System (INIS)

    LeBlanc, M.

    2005-01-01

    Wind energy forecasting adds financial value to wind farms and may soon become a regulatory requirement. A robust information technology system is essential for addressing industry demands. Various forecasting methodologies for short-term wind production in complex terrain were presented. Numerical weather predictions were discussed with reference to supervisory control and data acquisition (SCADA) system site measurements. Forecasting methods using wind speed, direction, temperature and pressure, as well as issues concerning statistical modelling were presented. Model output statistics and neural networks were reviewed, as well as significant components of error. Results from a Garrad Hassan forecaster with a European wind farm were presented, including wind speed evaluation, and forecast horizon for T + 1 hours, T + 12 hours, and T + 36 hours. It was suggested that buy prices often reflect the cost of under-prediction, and that forecasting has more potential where the spread is greatest. Accurate T + 19 hours to T + 31 hours could enable participation in the day-ahead market, which is less volatile and prices are usually better. Estimates of possible profits per annum through the use of GH forecaster power predictions were presented, calculated over and above spilling power to the grid. It was concluded that accurate forecasts combined with certainty evaluation enables the optimization of wind energy in the market, and is applicable to a wide range of weather regimes and terrain types. It was suggested that site feedback is essential for good forecasts at short horizons, and that the value of forecasting is dependent on the market. refs., tabs., figs

  1. Forecasting Lightning Threat using Cloud-resolving Model Simulations

    Science.gov (United States)

    McCaul, E. W., Jr.; Goodman, S. J.; LaCasse, K. M.; Cecil, D. J.

    2009-01-01

    As numerical forecasts capable of resolving individual convective clouds become more common, it is of interest to see if quantitative forecasts of lightning flash rate density are possible, based on fields computed by the numerical model. Previous observational research has shown robust relationships between observed lightning flash rates and inferred updraft and large precipitation ice fields in the mixed phase regions of storms, and that these relationships might allow simulated fields to serve as proxies for lightning flash rate density. It is shown in this paper that two simple proxy fields do indeed provide reasonable and cost-effective bases for creating time-evolving maps of predicted lightning flash rate density, judging from a series of diverse simulation case study events in North Alabama for which Lightning Mapping Array data provide ground truth. One method is based on the product of upward velocity and the mixing ratio of precipitating ice hydrometeors, modeled as graupel only, in the mixed phase region of storms at the -15\\dgc\\ level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domainwide statistics of the peak values of simulated flash rate proxy fields against domainwide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. A blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Weather Research and Forecast Model simulations of selected North Alabama cases show that this model can distinguish the general character and intensity of most convective events, and that the proposed methods show promise as a means of generating

  2. The long-run forecasting of energy prices using the model of shifting trend

    International Nuclear Information System (INIS)

    Radchenko, Stanislav

    2005-01-01

    Developing models for accurate long-term energy price forecasting is an important problem because these forecasts should be useful in determining both supply and demand of energy. On the supply side, long-term forecasts determine investment decisions of energy-related companies. On the demand side, investments in physical capital and durable goods depend on price forecasts of a particular energy type. Forecasting long-run rend movements in energy prices is very important on the macroeconomic level for several developing countries because energy prices have large impacts on their real output, the balance of payments, fiscal policy, etc. Pindyck (1999) argues that the dynamics of real energy prices is mean-reverting to trend lines with slopes and levels that are shifting unpredictably over time. The hypothesis of shifting long-term trend lines was statistically tested by Benard et al. (2004). The authors find statistically significant instabilities for coal and natural gas prices. I continue the research of energy prices in the framework of continuously shifting levels and slopes of trend lines started by Pindyck (1999). The examined model offers both parsimonious approach and perspective on the developments in energy markets. Using the model of depletable resource production, Pindyck (1999) argued that the forecast of energy prices in the model is based on the long-run total marginal cost. Because the model of a shifting trend is based on the competitive behavior, one may examine deviations of oil producers from the competitive behavior by studying the difference between actual prices and long-term forecasts. To construct the long-run forecasts (10-year-ahead and 15-year-ahead) of energy prices, I modify the univariate shifting trends model of Pindyck (1999). I relax some assumptions on model parameters, the assumption of white noise error term, and propose a new Bayesian approach utilizing a Gibbs sampling algorithm to estimate the model with autocorrelation. To

  3. PETRA. The Forecast Model. Synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The aim of the PETRA project was to develop a model that could recreate the main aspects involved in the demand for travel. The attainment of this objective requires that the model system should retain a high degree of detail and be based on disaggregate models. This was both to ensure an accurate representation of the underlying behavioural intentions, and allow analysis of the underlying travel demand and related aspects across a number of dimensions. This has been achieved in all main respects. The model system is capable of close reproduction of the observed behaviour and generally responds as expected to changes, exhibiting consistent and plausible reactions. The dis-aggregation of the forecast population, according to the various criteria, allows the model to clearly illustrates the behavioural differences between different population segments. Thus, it seems reasonable to conclude that PETRA is capable of detailed analyses of the distributional and behavioural effects of policy changes. (au) EFP-94. 20 refs.

  4. Palm oil price forecasting model: An autoregressive distributed lag (ARDL) approach

    Science.gov (United States)

    Hamid, Mohd Fahmi Abdul; Shabri, Ani

    2017-05-01

    Palm oil price fluctuated without any clear trend or cyclical pattern in the last few decades. The instability of food commodities price causes it to change rapidly over time. This paper attempts to develop Autoregressive Distributed Lag (ARDL) model in modeling and forecasting the price of palm oil. In order to use ARDL as a forecasting model, this paper modifies the data structure where we only consider lagged explanatory variables to explain the variation in palm oil price. We then compare the performance of this ARDL model with a benchmark model namely ARIMA in term of their comparative forecasting accuracy. This paper also utilize ARDL bound testing approach to co-integration in examining the short run and long run relationship between palm oil price and its determinant; production, stock, and price of soybean as the substitute of palm oil and price of crude oil. The comparative forecasting accuracy suggests that ARDL model has a better forecasting accuracy compared to ARIMA.

  5. Bias correction of satellite precipitation products for flood forecasting application at the Upper Mahanadi River Basin in Eastern India

    Science.gov (United States)

    Beria, H.; Nanda, T., Sr.; Chatterjee, C.

    2015-12-01

    High resolution satellite precipitation products such as Tropical Rainfall Measuring Mission (TRMM), Climate Forecast System Reanalysis (CFSR), European Centre for Medium-Range Weather Forecasts (ECMWF), etc., offer a promising alternative to flood forecasting in data scarce regions. At the current state-of-art, these products cannot be used in the raw form for flood forecasting, even at smaller lead times. In the current study, these precipitation products are bias corrected using statistical techniques, such as additive and multiplicative bias corrections, and wavelet multi-resolution analysis (MRA) with India Meteorological Department (IMD) gridded precipitation product,obtained from gauge-based rainfall estimates. Neural network based rainfall-runoff modeling using these bias corrected products provide encouraging results for flood forecasting upto 48 hours lead time. We will present various statistical and graphical interpretations of catchment response to high rainfall events using both the raw and bias corrected precipitation products at different lead times.

  6. Trend time-series modeling and forecasting with neural networks.

    Science.gov (United States)

    Qi, Min; Zhang, G Peter

    2008-05-01

    Despite its great importance, there has been no general consensus on how to model the trends in time-series data. Compared to traditional approaches, neural networks (NNs) have shown some promise in time-series forecasting. This paper investigates how to best model trend time series using NNs. Four different strategies (raw data, raw data with time index, detrending, and differencing) are used to model various trend patterns (linear, nonlinear, deterministic, stochastic, and breaking trend). We find that with NNs differencing often gives meritorious results regardless of the underlying data generating processes (DGPs). This finding is also confirmed by the real gross national product (GNP) series.

  7. Neural Network Models for Time Series Forecasts

    OpenAIRE

    Tim Hill; Marcus O'Connor; William Remus

    1996-01-01

    Neural networks have been advocated as an alternative to traditional statistical forecasting methods. In the present experiment, time series forecasts produced by neural networks are compared with forecasts from six statistical time series methods generated in a major forecasting competition (Makridakis et al. [Makridakis, S., A. Anderson, R. Carbone, R. Fildes, M. Hibon, R. Lewandowski, J. Newton, E. Parzen, R. Winkler. 1982. The accuracy of extrapolation (time series) methods: Results of a ...

  8. Space weather: Modeling and forecasting ionospheric

    International Nuclear Information System (INIS)

    Calzadilla Mendez, A.

    2008-01-01

    Full text: Space weather is the set of phenomena and interactions that take place in the interplanetary medium. It is regulated primarily by the activity originating in the Sun and affects both the artificial satellites that are outside of the protective cover of the Earth's atmosphere as the rest of the planets in the solar system. Among the phenomena that are of great relevance and impact on Earth are the auroras and geomagnetic storms , these are a direct result of irregularities in the flow of the solar wind and the interplanetary magnetic field . Given the high complexity of the physical phenomena involved (magnetic reconnection , particle inlet and ionizing radiation to the atmosphere) one of the great scientific challenges today is to forecast the state of plasmatic means either the interplanetary medium , the magnetosphere and ionosphere , for their importance to the development of various human activities such as radio , global positioning , navigation, etc. . It briefly address some of the international ionospheric modeling methods and contributions and participation that currently has the space group of the Institute of Geophysics Geophysics and Astronomy (IGA) in these activities of modeling and forecasting ionospheric. (author)

  9. Agricultural Productivity Forecasts for Improved Drought Monitoring

    Science.gov (United States)

    Limaye, Ashutosh; McNider, Richard; Moss, Donald; Alhamdan, Mohammad

    2010-01-01

    Water stresses on agricultural crops during critical phases of crop phenology (such as grain filling) has higher impact on the eventual yield than at other times of crop growth. Therefore farmers are more concerned about water stresses in the context of crop phenology than the meteorological droughts. However the drought estimates currently produced do not account for the crop phenology. US Department of Agriculture (USDA) and National Oceanic and Atmospheric Administration (NOAA) have developed a drought monitoring decision support tool: The U.S. Drought Monitor, which currently uses meteorological droughts to delineate and categorize drought severity. Output from the Drought Monitor is used by the States to make disaster declarations. More importantly, USDA uses the Drought Monitor to make estimates of crop yield to help the commodities market. Accurate estimation of corn yield is especially critical given the recent trend towards diversion of corn to produce ethanol. Ethanol is fast becoming a standard 10% ethanol additive to petroleum products, the largest traded commodity. Thus the impact of large-scale drought will have dramatic impact on the petroleum prices as well as on food prices. USDA's World Agricultural Outlook Board (WAOB) serves as a focal point for economic intelligence and the commodity outlook for U.S. WAOB depends on Drought Monitor and has emphatically stated that accurate and timely data are needed in operational agrometeorological services to generate reliable projections for agricultural decision makers. Thus, improvements in the prediction of drought will reflect in early and accurate assessment of crop yields, which in turn will improve commodity projections. We have developed a drought assessment tool, which accounts for the water stress in the context of crop phenology. The crop modeling component is done using various crop modules within Decision Support System for Agrotechnology Transfer (DSSAT). DSSAT is an agricultural crop

  10. Data Assimilation at FLUXNET to Improve Models towards Ecological Forecasting (Invited)

    Science.gov (United States)

    Luo, Y.

    2009-12-01

    Dramatically increased volumes of data from observational and experimental networks such as FLUXNET call for transformation of ecological research to increase its emphasis on quantitative forecasting. Ecological forecasting will also meet the societal need to develop better strategies for natural resource management in a world of ongoing global change. Traditionally, ecological forecasting has been based on process-based models, informed by data in largely ad hoc ways. Although most ecological models incorporate some representation of mechanistic processes, today’s ecological models are generally not adequate to quantify real-world dynamics and provide reliable forecasts with accompanying estimates of uncertainty. A key tool to improve ecological forecasting is data assimilation, which uses data to inform initial conditions and to help constrain a model during simulation to yield results that approximate reality as closely as possible. In an era with dramatically increased availability of data from observational and experimental networks, data assimilation is a key technique that helps convert the raw data into ecologically meaningful products so as to accelerate our understanding of ecological processes, test ecological theory, forecast changes in ecological services, and better serve the society. This talk will use examples to illustrate how data from FLUXNET have been assimilated with process-based models to improve estimates of model parameters and state variables; to quantify uncertainties in ecological forecasting arising from observations, models and their interactions; and to evaluate information contributions of data and model toward short- and long-term forecasting of ecosystem responses to global change.

  11. Neural network versus classical time series forecasting models

    Science.gov (United States)

    Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam

    2017-05-01

    Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.

  12. Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system

    Science.gov (United States)

    Wu, Qi

    2010-03-01

    Demand forecasts play a crucial role in supply chain management. The future demand for a certain product is the basis for the respective replenishment systems. Aiming at demand series with small samples, seasonal character, nonlinearity, randomicity and fuzziness, the existing support vector kernel does not approach the random curve of the sales time series in the space (quadratic continuous integral space). In this paper, we present a hybrid intelligent system combining the wavelet kernel support vector machine and particle swarm optimization for demand forecasting. The results of application in car sale series forecasting show that the forecasting approach based on the hybrid PSOWv-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves that this method is, for the discussed example, better than hybrid PSOv-SVM and other traditional methods.

  13. Electricity price forecasting through transfer function models

    International Nuclear Information System (INIS)

    Nogales, F.J.; Conejo, A.J.

    2006-01-01

    Forecasting electricity prices in present day competitive electricity markets is a must for both producers and consumers because both need price estimates to develop their respective market bidding strategies. This paper proposes a transfer function model to predict electricity prices based on both past electricity prices and demands, and discuss the rationale to build it. The importance of electricity demand information is assessed. Appropriate metrics to appraise prediction quality are identified and used. Realistic and extensive simulations based on data from the PJM Interconnection for year 2003 are conducted. The proposed model is compared with naive and other techniques. Journal of the Operational Research Society (2006) 57, 350-356.doi:10.1057/palgrave.jors.2601995; published online 18 May 2005. (author)

  14. Statistical and RBF NN models : providing forecasts and risk assessment

    OpenAIRE

    Marček, Milan

    2009-01-01

    Forecast accuracy of economic and financial processes is a popular measure for quantifying the risk in decision making. In this paper, we develop forecasting models based on statistical (stochastic) methods, sometimes called hard computing, and on a soft method using granular computing. We consider the accuracy of forecasting models as a measure for risk evaluation. It is found that the risk estimation process based on soft methods is simplified and less critical to the question w...

  15. Tourism Demand Modelling and Forecasting: A Review of Recent Research

    OpenAIRE

    Song, H; Li, G

    2008-01-01

    This paper reviews the published studies on tourism demand modelling and forecasting since 2000. One of the key findings of this review is that the methods used in analysing and forecasting the demand for tourism have been more diverse than those identified by other review articles. In addition to the most popular time-series and econometric models, a number of new techniques have emerged in the literature. However, as far as the forecasting accuracy is concerned, the study shows that there i...

  16. Forecasting US renewables in the national energy modelling system

    International Nuclear Information System (INIS)

    Diedrich, R.; Petersik, T.W.

    2001-01-01

    The Energy information Administration (EIA) of the US Department of Energy (DOE) forecasts US renewable energy supply and demand in the context of overall energy markets using the National Energy Modelling System (NEMS). Renewables compete with other supply and demand options within the residential, commercial, industrial, transportation, and electricity sectors of the US economy. NEMS forecasts renewable energy for grid-connected electricity production within the Electricity Market Module (EM), and characterizes central station biomass, geothermal, conventional hydroelectric, municipal solid waste, solar thermal, solar photovoltaic, and wind-powered electricity generating technologies. EIA's Annual Energy Outlook 1998, projecting US energy markets, forecasts marketed renewables to remain a minor part of US energy production and consumption through to 2020. The USA is expected to remain primarily a fossil energy producer and consumer throughout the period. An alternative case indicates that biomass, wind, and to some extent geothermal power would likely increase most rapidly if the US were to require greater use of renewables for power supply, though electricity prices would increase somewhat. (author)

  17. Models of Investor Forecasting Behavior — Experimental Evidence

    Directory of Open Access Journals (Sweden)

    Federico Bonetto

    2017-12-01

    Full Text Available Different forecasting behaviors affect investors’ trading decisions and lead to qualitatively different asset price trajectories. It has been shown in the literature that the weights that investors place on observed asset price changes when forecasting future price changes, and the nature of their confidence when price changes are forecast, determine whether price bubbles, price crashes, and unpredictable price cycles occur. In this paper, we report the results of behavioral experiments involving multiple investors who participated in a market for a virtual asset. Our goal is to study investors’ forecast formation. We conducted three experimental sessions with different participants in each session. We fit different models of forecast formation to the observed data. There is strong evidence that the investors forecast future prices by extrapolating past price changes, even when they know the fundamental value of the asset exactly and the extrapolated forecasts differ significantly from the fundamental value. The rational expectations hypothesis seems inconsistent with the observed forecasts. The forecasting models of all participants that best fit the observed forecasting data were of the type that cause price bubbles and cycles in dynamical systems models, and price bubbles and cycles ended up occurring in all three sessions.

  18. Pharmaceutical expenditure forecast model to support health policy decision making.

    Science.gov (United States)

    Rémuzat, Cécile; Urbinati, Duccio; Kornfeld, Åsa; Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Mzoughi, Olfa; Toumi, Mondher

    2014-01-01

    With constant incentives for healthcare payers to contain their pharmaceutical budgets, modelling policy decision impact became critical. The objective of this project was to test the impact of various policy decisions on pharmaceutical budget (developed for the European Commission for the project 'European Union (EU) Pharmaceutical expenditure forecast' - http://ec.europa.eu/health/healthcare/key_documents/index_en.htm). A model was built to assess policy scenarios' impact on the pharmaceutical budgets of seven member states of the EU, namely France, Germany, Greece, Hungary, Poland, Portugal, and the United Kingdom. The following scenarios were tested: expanding the UK policies to EU, changing time to market access, modifying generic price and penetration, shifting the distribution chain of biosimilars (retail/hospital). Applying the UK policy resulted in dramatic savings for Germany (10 times the base case forecast) and substantial additional savings for France and Portugal (2 and 4 times the base case forecast, respectively). Delaying time to market was found be to a very powerful tool to reduce pharmaceutical expenditure. Applying the EU transparency directive (6-month process for pricing and reimbursement) increased pharmaceutical expenditure for all countries (from 1.1 to 4 times the base case forecast), except in Germany (additional savings). Decreasing the price of generics and boosting the penetration rate, as well as shifting distribution of biosimilars through hospital chain were also key methods to reduce pharmaceutical expenditure. Change in the level of reimbursement rate to 100% in all countries led to an important increase in the pharmaceutical budget. Forecasting pharmaceutical expenditure is a critical exercise to inform policy decision makers. The most important leverages identified by the model on pharmaceutical budget were driven by generic and biosimilar prices, penetration rate, and distribution. Reducing, even slightly, the prices of

  19. Stationarity test with a direct test for heteroskedasticity in exchange rate forecasting models

    Science.gov (United States)

    Khin, Aye Aye; Chau, Wong Hong; Seong, Lim Chee; Bin, Raymond Ling Leh; Teng, Kevin Low Lock

    2017-05-01

    Global economic has been decreasing in the recent years, manifested by the greater exchange rates volatility on international commodity market. This study attempts to analyze some prominent exchange rate forecasting models on Malaysian commodity trading: univariate ARIMA, ARCH and GARCH models in conjunction with stationarity test on residual diagnosis direct testing of heteroskedasticity. All forecasting models utilized the monthly data from 1990 to 2015. Given a total of 312 observations, the data used to forecast both short-term and long-term exchange rate. The forecasting power statistics suggested that the forecasting performance of ARIMA (1, 1, 1) model is more efficient than the ARCH (1) and GARCH (1, 1) models. For ex-post forecast, exchange rate was increased from RM 3.50 per USD in January 2015 to RM 4.47 per USD in December 2015 based on the baseline data. For short-term ex-ante forecast, the analysis results indicate a decrease in exchange rate on 2016 June (RM 4.27 per USD) as compared with 2015 December. A more appropriate forecasting method of exchange rate is vital to aid the decision-making process and planning on the sustainable commodities' production in the world economy.

  20. A Simple Hybrid Model for Short-Term Load Forecasting

    Directory of Open Access Journals (Sweden)

    Suseelatha Annamareddi

    2013-01-01

    Full Text Available The paper proposes a simple hybrid model to forecast the electrical load data based on the wavelet transform technique and double exponential smoothing. The historical noisy load series data is decomposed into deterministic and fluctuation components using suitable wavelet coefficient thresholds and wavelet reconstruction method. The variation characteristics of the resulting series are analyzed to arrive at reasonable thresholds that yield good denoising results. The constitutive series are then forecasted using appropriate exponential adaptive smoothing models. A case study performed on California energy market data demonstrates that the proposed method can offer high forecasting precision for very short-term forecasts, considering a time horizon of two weeks.

  1. Electricity production by hydro power plants: possibilities of forecasting

    International Nuclear Information System (INIS)

    Barkans, J.; Zicmane, I.

    2004-01-01

    Hydro energy accounts for 17% of global electricity production and is the most important source of renewable energies actively used today, being at the same time the least influential ecologically. Its only disadvantages is that this kind of energy is difficult to forecast, which hinders not only the planning of tariffs, year budgets and investments, but also contractual negotiations in particular month. The paper shows that the forecasting of hydro energy production can be linked to certain natural processes, namely, to the cyclic behaviour observed for water flows of the world's rivers. The authors propose a method according to which the forecasting procedure is performed using the data of observations as signals applied to special digital filters transforming the water flow process into integral and differential forms, which after appropriate treatment are expected again in usual water flow units. For this purpose the water flow integral function is to be divided, by means of spectral analysis, into 'low-frequency' (with a semi-period of 44 years) and 'high-frequency' (4-6 year semi-periods) components, which are of different origin. Each of them should be forecasted separately, with the following summation of the results. In the research it is shown that the cyclic fluctuations of world rivers' water flows are directly associated with variations in the Solar activity. (authors)

  2. Electricity consumption forecasting in Italy using linear regression models

    Energy Technology Data Exchange (ETDEWEB)

    Bianco, Vincenzo; Manca, Oronzio; Nardini, Sergio [DIAM, Seconda Universita degli Studi di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy)

    2009-09-15

    The influence of economic and demographic variables on the annual electricity consumption in Italy has been investigated with the intention to develop a long-term consumption forecasting model. The time period considered for the historical data is from 1970 to 2007. Different regression models were developed, using historical electricity consumption, gross domestic product (GDP), gross domestic product per capita (GDP per capita) and population. A first part of the paper considers the estimation of GDP, price and GDP per capita elasticities of domestic and non-domestic electricity consumption. The domestic and non-domestic short run price elasticities are found to be both approximately equal to -0.06, while long run elasticities are equal to -0.24 and -0.09, respectively. On the contrary, the elasticities of GDP and GDP per capita present higher values. In the second part of the paper, different regression models, based on co-integrated or stationary data, are presented. Different statistical tests are employed to check the validity of the proposed models. A comparison with national forecasts, based on complex econometric models, such as Markal-Time, was performed, showing that the developed regressions are congruent with the official projections, with deviations of {+-}1% for the best case and {+-}11% for the worst. These deviations are to be considered acceptable in relation to the time span taken into account. (author)

  3. Electricity consumption forecasting in Italy using linear regression models

    International Nuclear Information System (INIS)

    Bianco, Vincenzo; Manca, Oronzio; Nardini, Sergio

    2009-01-01

    The influence of economic and demographic variables on the annual electricity consumption in Italy has been investigated with the intention to develop a long-term consumption forecasting model. The time period considered for the historical data is from 1970 to 2007. Different regression models were developed, using historical electricity consumption, gross domestic product (GDP), gross domestic product per capita (GDP per capita) and population. A first part of the paper considers the estimation of GDP, price and GDP per capita elasticities of domestic and non-domestic electricity consumption. The domestic and non-domestic short run price elasticities are found to be both approximately equal to -0.06, while long run elasticities are equal to -0.24 and -0.09, respectively. On the contrary, the elasticities of GDP and GDP per capita present higher values. In the second part of the paper, different regression models, based on co-integrated or stationary data, are presented. Different statistical tests are employed to check the validity of the proposed models. A comparison with national forecasts, based on complex econometric models, such as Markal-Time, was performed, showing that the developed regressions are congruent with the official projections, with deviations of ±1% for the best case and ±11% for the worst. These deviations are to be considered acceptable in relation to the time span taken into account. (author)

  4. Forecast model of landslides in a short time

    International Nuclear Information System (INIS)

    Sanchez Lopez, Reinaldo

    2006-01-01

    The IDEAM in development of their functions as member of the national technical committee for the prevention and disasters attention (SNPAD) accomplishes the follow-up, monitoring and forecast in real time of the environmental dynamics that in extreme situations constitute threats and natural risks. One of the frequent dynamics and of greater impact is related to landslides, those that affect persistently the life of the persons, the infrastructure, the socioeconomic activities and the balance of the environment. The landslide in Colombia and in the world are caused mainly by effects of the rain, due to that, IDEAM has come developing forecast model, as an instrument for risk management in a short time. This article presents aspects related to their structure, operation, temporary space resolution, products, results, achievements and projections of the model. Conceptually, the model is support by the principle of the dynamic temporary - space, of the processes that consolidate natural hazards, particularly in areas where the man has come building the risk. Structurally, the model is composed by two sub-models; the general susceptibility of the earthly model and the critical rain model as a denotative factor, that consolidate the hazard process. In real time, the model, works as a GIS, permitting the automatic zoning of the landslides hazard for issue public advisory warming to help makers decisions on the risk that cause frequently these events, in the country

  5. Nawiliwili, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nawiliwili, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  6. Neah Bay, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Neah Bay, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  7. Bar Harbor, ME Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bar Harbor, Maine Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  8. Sitka, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  9. Newport, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Newport, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  10. Wake Island Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Wake Island Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  11. Garibaldi, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Garibaldi, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  12. Keauhou, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Keauhou, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  13. Westport, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Westport, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  14. Daytona Beach, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Daytona Beach, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  15. Lahaina, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Lahaina, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  16. Fajardo, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Fajardo, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  17. Florence, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Florence, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  18. Ponce, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ponce, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  19. Shemya, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Shemya, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  20. Key West, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Key West, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  1. Montauk, New York Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Montauk, New York Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  2. Kodiak, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kodiak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  3. Sand Point, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sand Point, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  4. Ocean City, Maryland Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean City, Maryland Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  5. Kahului, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kahului, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  6. Port Orford, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Orford, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  7. Kailua-Kona, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kailua-Kona, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  8. Seward, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seward, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  9. Seaside, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seaside, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  10. Apra Harbor, Guam Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Apra Harbor, Guam Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  11. Kihei, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kihei, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  12. Adak, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Adak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  13. Arecibo, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arecibo, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  14. San Juan, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Juan, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  15. Pearl Harbor, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pearl Harbor, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  16. Palm Beach, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Palm Beach, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  17. Toke Point, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Toke Point, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  18. Hanalei, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hanalei, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  19. Homer, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Homer, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  20. Nikolski, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nikolski, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  1. Monterey, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Monterey, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  2. Port Alexander, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Alexander, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  3. La Push, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The La Push, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  4. Haleiwa, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Haleiwa, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  5. Hilo, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hilo, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  6. Savannah, Georgia Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Savannah, Georgia Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  7. Description of historical crop calendar data bases developed to support foreign commodity production forecasting project experiments

    Science.gov (United States)

    West, W. L., III (Principal Investigator)

    1981-01-01

    The content, format, and storage of data bases developed for the Foreign Commodity Production Forecasting project and used to produce normal crop calendars are described. In addition, the data bases may be used for agricultural meteorology, modeling of stage sequences and planting dates, and as indicators of possible drought and famine.

  8. Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection

    DEFF Research Database (Denmark)

    Bork, Lasse; Møller, Stig Vinther

    2015-01-01

    We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves substantia......We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves...

  9. When mechanism matters: Bayesian forecasting using models of ecological diffusion

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.

    2017-01-01

    Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.

  10. Day ahead price forecasting of electricity markets by a mixed data model and hybrid forecast method

    International Nuclear Information System (INIS)

    Amjady, Nima; Keynia, Farshid

    2008-01-01

    In a competitive electricity market, forecast of energy prices is a key information for the market participants. However, price signal usually has a complex behavior due to its nonlinearity, nonstationarity, and time variancy. In spite of all performed researches on this area in the recent years, there is still an essential need for more accurate and robust price forecast methods. In this paper, a combination of wavelet transform (WT) and a hybrid forecast method is proposed for this purpose. The hybrid method is composed of cascaded forecasters where each forecaster consists of a neural network (NN) and an evolutionary algorithms (EA). Both time domain and wavelet domain features are considered in a mixed data model for price forecast, in which the candidate input variables are refined by a feature selection technique. The adjustable parameters of the whole method are fine-tuned by a cross-validation technique. The proposed method is examined on PJM electricity market and compared with some of the most recent price forecast methods. (author)

  11. Plutonium production and utilization forecasts in Europe

    International Nuclear Information System (INIS)

    Haijtink, B.

    1976-01-01

    The planned accelerated growth of nuclear energy generation in the near future will lead to a large production of plutonium in the thermal reactors. Therefore, up to 1985, the major part of the available plutonium will be plutonium recovered from spent uranium-metal, particularly in the United Kingdom and in France. Because of the low demand for fuelling the fast breeder reactors within the near future, a surplus of fissile plutonium will be accumulated in Europe. Even if the planned availability of the oxide reprocessing capacity will be delayed with two or three years, a plutonium surplus will still exist in Europe, e.g.; in 1985: 25-20 tons. On longer term, up to 2000, the plutonium production in thermal reactors will be sufficient to meet the estimated demand for fast breeder reactors at their commercial introduction foreseen for the nineties. That means that all the plutonium surplus needs not to be stocked for use in fast breeder reactors later on but could be recycled in thermal reactors. The magnitude of the available fissionable materials give an idea of the importance to promote, on an industrial scale, the plutonium recycling technology

  12. New watershed-based climate forecast products for hydrologists and water managers

    Science.gov (United States)

    Baker, S. A.; Wood, A.; Rajagopalan, B.; Lehner, F.; Peng, P.; Ray, A. J.; Barsugli, J. J.; Werner, K.

    2017-12-01

    Operational sub-seasonal to seasonal (S2S) climate predictions have advanced in skill in recent years but are yet to be broadly utilized by stakeholders in the water management sector. While some of the challenges that relate to fundamental predictability are difficult or impossible to surmount, other hurdles related to forecast product formulation, translation, relevance, and accessibility can be directly addressed. These include products being misaligned with users' space-time needs, products disseminated in formats users cannot easily process, and products based on raw model outputs that are biased relative to user climatologies. In each of these areas, more can be done to bridge the gap by enhancing the usability, quality, and relevance of water-oriented predictions. In addition, water stakeholder impacts can benefit from short-range extremes predictions (such as 2-3 day storms or 1-week heat waves) at S2S time-scales, for which few products exist. We present interim results of a Research to Operations (R2O) effort sponsored by the NOAA MAPP Climate Testbed to (1) formulate climate prediction products so as to reduce hurdles to in water stakeholder adoption, and to (2) explore opportunities for extremes prediction at S2S time scales. The project is currently using CFSv2 and National Multi-­Model Ensemble (NMME) reforecasts and forecasts to develop real-time watershed-based climate forecast products, and to train post-processing approaches to enhance the skill and reliability of raw real-time S2S forecasts. Prototype S2S climate data products (forecasts and associated skill analyses) are now being operationally staged at NCAR on a public website to facilitate further product development through interactions with water managers. Initial demonstration products include CFSv2-based bi-weekly climate forecasts (weeks 1-2, 2-3, and 3-4) for sub-regional scale hydrologic units, and NMME-based monthly and seasonal prediction products. Raw model mean skill at these time

  13. Regional Model Nesting Within GFS Daily Forecasts Over West Africa

    Science.gov (United States)

    Druyan, Leonard M.; Fulakeza, Matthew; Lonergan, Patrick; Worrell, Ruben

    2010-01-01

    The study uses the RM3, the regional climate model at the Center for Climate Systems Research of Columbia University and the NASA/Goddard Institute for Space Studies (CCSR/GISS). The paper evaluates 30 48-hour RM3 weather forecasts over West Africa during September 2006 made on a 0.5 grid nested within 1 Global Forecast System (GFS) global forecasts. September 2006 was the Special Observing Period #3 of the African Monsoon Multidisciplinary Analysis (AMMA). Archived GFS initial conditions and lateral boundary conditions for the simulations from the US National Weather Service, National Oceanographic and Atmospheric Administration were interpolated four times daily. Results for precipitation forecasts are validated against Tropical Rainfall Measurement Mission (TRMM) satellite estimates and data from the Famine Early Warning System (FEWS), which includes rain gauge measurements, and forecasts of circulation are compared to reanalysis 2. Performance statistics for the precipitation forecasts include bias, root-mean-square errors and spatial correlation coefficients. The nested regional model forecasts are compared to GFS forecasts to gauge whether nesting provides additional realistic information. They are also compared to RM3 simulations driven by reanalysis 2, representing high potential skill forecasts, to gauge the sensitivity of results to lateral boundary conditions. Nested RM3/GFS forecasts generate excessive moisture advection toward West Africa, which in turn causes prodigious amounts of model precipitation. This problem is corrected by empirical adjustments in the preparation of lateral boundary conditions and initial conditions. The resulting modified simulations improve on the GFS precipitation forecasts, achieving time-space correlations with TRMM of 0.77 on the first day and 0.63 on the second day. One realtime RM3/GFS precipitation forecast made at and posted by the African Centre of Meteorological Application for Development (ACMAD) in Niamey, Niger

  14. Forecasting new product diffusion using both patent citation and web search traffic.

    Science.gov (United States)

    Lee, Won Sang; Choi, Hyo Shin; Sohn, So Young

    2018-01-01

    Accurate demand forecasting for new technology products is a key factor in the success of a business. We propose a way to forecasting a new product's diffusion through technology diffusion and interest diffusion. Technology diffusion and interest diffusion are measured by the volume of patent citations and web search traffic, respectively. We apply the proposed method to forecast the sales of hybrid cars and industrial robots in the US market. The results show that that technology diffusion, as represented by patent citations, can explain long-term sales for hybrid cars and industrial robots. On the other hand, interest diffusion, as represented by web search traffic, can help to improve the predictability of market sales of hybrid cars in the short-term. However, interest diffusion is difficult to explain the sales of industrial robots due to the different market characteristics. Finding indicates our proposed model can relatively well explain the diffusion of consumer goods.

  15. Wind-Farm Forecasting Using the HARMONIE Weather Forecast Model and Bayes Model Averaging for Bias Removal.

    Science.gov (United States)

    O'Brien, Enda; McKinstry, Alastair; Ralph, Adam

    2015-04-01

    Building on previous work presented at EGU 2013 (http://www.sciencedirect.com/science/article/pii/S1876610213016068 ), more results are available now from a different wind-farm in complex terrain in southwest Ireland. The basic approach is to interpolate wind-speed forecasts from an operational weather forecast model (i.e., HARMONIE in the case of Ireland) to the precise location of each wind-turbine, and then use Bayes Model Averaging (BMA; with statistical information collected from a prior training-period of e.g., 25 days) to remove systematic biases. Bias-corrected wind-speed forecasts (and associated power-generation forecasts) are then provided twice daily (at 5am and 5pm) out to 30 hours, with each forecast validation fed back to BMA for future learning. 30-hr forecasts from the operational Met Éireann HARMONIE model at 2.5km resolution have been validated against turbine SCADA observations since Jan. 2014. An extra high-resolution (0.5km grid-spacing) HARMONIE configuration has been run since Nov. 2014 as an extra member of the forecast "ensemble". A new version of HARMONIE with extra filters designed to stabilize high-resolution configurations has been run since Jan. 2015. Measures of forecast skill and forecast errors will be provided, and the contributions made by the various physical and computational enhancements to HARMONIE will be quantified.

  16. Dispersion Modeling Using Ensemble Forecasts Compared to ETEX Measurements.

    Science.gov (United States)

    Straume, Anne Grete; N'dri Koffi, Ernest; Nodop, Katrin

    1998-11-01

    Numerous numerical models are developed to predict long-range transport of hazardous air pollution in connection with accidental releases. When evaluating and improving such a model, it is important to detect uncertainties connected to the meteorological input data. A Lagrangian dispersion model, the Severe Nuclear Accident Program, is used here to investigate the effect of errors in the meteorological input data due to analysis error. An ensemble forecast, produced at the European Centre for Medium-Range Weather Forecasts, is then used as model input. The ensemble forecast members are generated by perturbing the initial meteorological fields of the weather forecast. The perturbations are calculated from singular vectors meant to represent possible forecast developments generated by instabilities in the atmospheric flow during the early part of the forecast. The instabilities are generated by errors in the analyzed fields. Puff predictions from the dispersion model, using ensemble forecast input, are compared, and a large spread in the predicted puff evolutions is found. This shows that the quality of the meteorological input data is important for the success of the dispersion model. In order to evaluate the dispersion model, the calculations are compared with measurements from the European Tracer Experiment. The model manages to predict the measured puff evolution concerning shape and time of arrival to a fairly high extent, up to 60 h after the start of the release. The modeled puff is still too narrow in the advection direction.

  17. Operational forecasting based on a modified Weather Research and Forecasting model

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  18. With string model to time series forecasting

    Science.gov (United States)

    Pinčák, Richard; Bartoš, Erik

    2015-10-01

    Overwhelming majority of econometric models applied on a long term basis in the financial forex market do not work sufficiently well. The reason is that transaction costs and arbitrage opportunity are not included, as this does not simulate the real financial markets. Analyses are not conducted on the non equidistant date but rather on the aggregate date, which is also not a real financial case. In this paper, we would like to show a new way how to analyze and, moreover, forecast financial market. We utilize the projections of the real exchange rate dynamics onto the string-like topology in the OANDA market. The latter approach allows us to build the stable prediction models in trading in the financial forex market. The real application of the multi-string structures is provided to demonstrate our ideas for the solution of the problem of the robust portfolio selection. The comparison with the trend following strategies was performed, the stability of the algorithm on the transaction costs for long trade periods was confirmed.

  19. Morehead City, North Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Morehead City, North Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  20. Christiansted, Virgin Islands Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Christiansted, Virgin Islands Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  1. Arena Cove, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arena Cove, California Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  2. Atlantic City, New Jersey Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic City, New Jersey Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  3. Crescent City, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Crescent City, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  4. Charlotte Amalie, Virgin Islands Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Charlotte Amalie, Virgin Islands Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami...

  5. Pago Pago, American Samoa Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pago Pago, American Samoa Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  6. Statistical Studies of Mesoscale Forecast Models MM5 and WRF

    National Research Council Canada - National Science Library

    Henmi, Teizi

    2004-01-01

    ... models were carried out and the results were compared with surface observation data. Both models tended to overforecast temperature and dew-point temperature, although the correlation coefficients between forecast and observations were fairly high...

  7. Myrtle Beach, South Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Myrtle Beach, South Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  8. Los Angeles, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Los Angeles, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  9. Port Angeles, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Angeles, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  10. Virginia Beach Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Virginia Beach, Virginia Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  11. Cordova, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cordova, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  12. Nantucket, Massachusetts Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nantucket, Massachusetts Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  13. Unalaska, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Unalaska, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  14. Santa Barbara, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Santa Barbara, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  15. Point Reyes, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Point Reyes, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  16. Port San Luis, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port San Luis, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  17. Eureka, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Eureka, California Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  18. Cape Hatteras, North Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cape Hatteras, North Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  19. San Francisco, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Francisco, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  20. Elfin Cove, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Elfin Cove, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  1. British Columbia, Canada Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The British Columbia, Canada Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  2. Chignik, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Chignik, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  3. Pharmaceutical expenditure forecast model to support health policy decision making

    Science.gov (United States)

    Rémuzat, Cécile; Urbinati, Duccio; Kornfeld, Åsa; Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Mzoughi, Olfa; Toumi, Mondher

    2014-01-01

    Background and objective With constant incentives for healthcare payers to contain their pharmaceutical budgets, modelling policy decision impact became critical. The objective of this project was to test the impact of various policy decisions on pharmaceutical budget (developed for the European Commission for the project ‘European Union (EU) Pharmaceutical expenditure forecast’ – http://ec.europa.eu/health/healthcare/key_documents/index_en.htm). Methods A model was built to assess policy scenarios’ impact on the pharmaceutical budgets of seven member states of the EU, namely France, Germany, Greece, Hungary, Poland, Portugal, and the United Kingdom. The following scenarios were tested: expanding the UK policies to EU, changing time to market access, modifying generic price and penetration, shifting the distribution chain of biosimilars (retail/hospital). Results Applying the UK policy resulted in dramatic savings for Germany (10 times the base case forecast) and substantial additional savings for France and Portugal (2 and 4 times the base case forecast, respectively). Delaying time to market was found be to a very powerful tool to reduce pharmaceutical expenditure. Applying the EU transparency directive (6-month process for pricing and reimbursement) increased pharmaceutical expenditure for all countries (from 1.1 to 4 times the base case forecast), except in Germany (additional savings). Decreasing the price of generics and boosting the penetration rate, as well as shifting distribution of biosimilars through hospital chain were also key methods to reduce pharmaceutical expenditure. Change in the level of reimbursement rate to 100% in all countries led to an important increase in the pharmaceutical budget. Conclusions Forecasting pharmaceutical expenditure is a critical exercise to inform policy decision makers. The most important leverages identified by the model on pharmaceutical budget were driven by generic and biosimilar prices, penetration rate

  4. Cash flow forecasting model for nuclear power projects

    International Nuclear Information System (INIS)

    Liu Wei; Guo Jilin

    2002-01-01

    Cash flow forecasting is very important for owners and contractors of nuclear power projects to arrange the capital and to decrease the capital cost. The factors related to contractor cash flow forecasting are analyzed and a cash flow forecasting model is presented which is suitable for both contractors and owners. The model is efficiently solved using a cost-schedule data integration scheme described. A program is developed based on the model and verified with real project data. The result indicates that the model is efficient and effective

  5. Operational forecast products and applications based on WRF/Chem

    Science.gov (United States)

    Hirtl, Marcus; Flandorfer, Claudia; Langer, Matthias; Mantovani, Simone; Olefs, Marc; Schellander-Gorgas, Theresa

    2015-04-01

    The responsibilities of the national weather service of Austria (ZAMG) include the support of the federal states and the public in questions connected to the protection of the environment in the frame of advisory and counseling services as well as expert opinions. The ZAMG conducts daily Air-Quality forecasts using the on-line coupled model WRF/Chem. The mother domain expands over Europe, North Africa and parts of Russia. The nested domain includes the alpine region and has a horizontal resolution of 4 km. Local emissions (Austria) are used in combination with European inventories (TNO and EMEP) for the simulations. The modeling system is presented and the results from the evaluation of the assimilation of pollutants using the 3D-VAR software GSI is shown. Currently observational data (PM10 and O3) from the Austrian Air-Quality network and from European stations (EEA) are assimilated into the model on an operational basis. In addition PM maps are produced using Aerosol Optical Thickness (AOT) observations from MODIS in combination with model data using machine learning techniques. The modeling system is operationally evaluated with different data sets. The emphasis of the application is on the forecast of pollutants which are compared to the hourly values (PM10, O3 and NO2) of the Austrian Air-Quality network. As the meteorological conditions are important for transport and chemical processes, some parameters like wind and precipitation are automatically evaluated (SAL diagrams, maps, …) with other models (e.g. ECMWF, AROME, …) and ground stations via web interface. The prediction of the AOT is also important for operators of solar power plants. In the past Numerical Weather Prediction (NWP) models were used to predict the AOT based on cloud forecasts at the ZAMG. These models do not consider the spatial and temporal variation of the aerosol distribution in the atmosphere with a consequent impact on the accuracy of forecasts especially during clear-sky days

  6. Forecasting Analysis of Shanghai Stock Index Based on ARIMA Model

    Directory of Open Access Journals (Sweden)

    Li Chenggang

    2017-01-01

    Full Text Available Prediction and analysis of the Shanghai Composite Index is conducive for investors to investing in the stock market, and providing investors with reference. This paper selects Shanghai Composite Index monthly closing price from Jan, 2005 to Oct, 2016 to construct ARIMA model. This paper carries on the forecast of the last three monthly closing price of Shanghai Stock Index that have occurred, and compared it with the actual value, which tests the accuracy and feasibility of the model in the short term Shanghai Stock Index forecast. At last, this paper uses the ARIMA model to forecast the Shanghai Composite Index closing price of the last two months in 2016.

  7. Evaluation of statistical models for forecast errors from the HBV model

    Science.gov (United States)

    Engeland, Kolbjørn; Renard, Benjamin; Steinsland, Ingelin; Kolberg, Sjur

    2010-04-01

    SummaryThree statistical models for the forecast errors for inflow into the Langvatn reservoir in Northern Norway have been constructed and tested according to the agreement between (i) the forecast distribution and the observations and (ii) median values of the forecast distribution and the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order auto-regressive model was constructed for the forecast errors. The parameters were conditioned on weather classes. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order auto-regressive model was constructed for the forecast errors. For the third model positive and negative errors were modeled separately. The errors were first NQT-transformed before conditioning the mean error values on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: we wanted (a) the forecast distribution to be reliable; (b) the forecast intervals to be narrow; (c) the median values of the forecast distribution to be close to the observed values. Models 1 and 2 gave almost identical results. The median values improved the forecast with Nash-Sutcliffe R eff increasing from 0.77 for the original forecast to 0.87 for the corrected forecasts. Models 1 and 2 over-estimated the forecast intervals but gave the narrowest intervals. Their main drawback was that the distributions are less reliable than Model 3. For Model 3 the median values did not fit well since the auto-correlation was not accounted for. Since Model 3 did not benefit from the potential variance reduction that lies in bias estimation and removal it gave on average wider forecasts intervals than the two other models. At the same time Model 3 on average slightly under-estimated the forecast intervals, probably explained by the use of average measures to evaluate the fit.

  8. Verification of short lead time forecast models: applied to Kp and Dst forecasting

    Science.gov (United States)

    Wintoft, Peter; Wik, Magnus

    2016-04-01

    In the ongoing EU/H2020 project PROGRESS models that predicts Kp, Dst, and AE from L1 solar wind data will be used as inputs to radiation belt models. The possible lead times from L1 measurements are shorter (10s of minutes to hours) than the typical duration of the physical phenomena that should be forecast. Under these circumstances several metrics fail to single out trivial cases, such as persistence. In this work we explore metrics and approaches for short lead time forecasts. We apply these to current Kp and Dst forecast models. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637302.

  9. Probabilistic Electricity Price Forecasting Models by Aggregation of Competitive Predictors

    Directory of Open Access Journals (Sweden)

    Claudio Monteiro

    2018-04-01

    Full Text Available This article presents original probabilistic price forecasting meta-models (PPFMCP models, by aggregation of competitive predictors, for day-ahead hourly probabilistic price forecasting. The best twenty predictors of the EEM2016 EPF competition are used to create ensembles of hourly spot price forecasts. For each hour, the parameter values of the probability density function (PDF of a Beta distribution for the output variable (hourly price can be directly obtained from the expected and variance values associated to the ensemble for such hour, using three aggregation strategies of predictor forecasts corresponding to three PPFMCP models. A Reliability Indicator (RI and a Loss function Indicator (LI are also introduced to give a measure of uncertainty of probabilistic price forecasts. The three PPFMCP models were satisfactorily applied to the real-world case study of the Iberian Electricity Market (MIBEL. Results from PPFMCP models showed that PPFMCP model 2, which uses aggregation by weight values according to daily ranks of predictors, was the best probabilistic meta-model from a point of view of mean absolute errors, as well as of RI and LI. PPFMCP model 1, which uses the averaging of predictor forecasts, was the second best meta-model. PPFMCP models allow evaluations of risk decisions based on the price to be made.

  10. Climate Prediction Center (CPC) NCEP-Global Forecast System (GFS) Precipitation Forecast Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Forecast System (GFS) forecast precipitation data at 37.5km resolution is created at the NOAA Climate Prediction Center for the purpose of near real-time...

  11. Application of the North American Multi-Model Ensemble to seasonal water supply forecasting in the Great Lakes basin through the use of the Great Lakes Seasonal Climate Forecast Tool

    Science.gov (United States)

    Gronewold, A.; Apps, D.; Fry, L. M.; Bolinger, R.

    2017-12-01

    The U.S. Army Corps of Engineers (USACE) contribution to the internationally coordinated 6-month forecast of Great Lakes water levels relies on several water supply models, including a regression model relating a coming month's water supply to past water supplies, previous months' precipitation and temperature, and forecasted precipitation and temperature. Probabilistic forecasts of precipitation and temperature depicted in the Climate Prediction Center's seasonal outlook maps are considered to be standard for use in operational forecasting for seasonal time horizons, and have provided the basis for computing a coming month's precipitation and temperature for use in the USACE water supply regression models. The CPC outlook maps are a useful forecast product offering insight into interpretation of climate models through the prognostic discussion and graphical forecasts. However, recent evolution of USACE forecast procedures to accommodate automated data transfer and manipulation offers a new opportunity for direct incorporation of ensemble climate forecast data into probabilistic outlooks of water supply using existing models that have previously been implemented in a deterministic fashion. We will present results from a study investigating the potential for applying data from the North American Multi-Model Ensemble to operational water supply forecasts. The use of NMME forecasts is facilitated by a new, publicly available, Great Lakes Seasonal Climate Forecast Tool that provides operational forecasts of monthly average temperatures and monthly total precipitation summarized for each lake basin.

  12. A hybrid spatiotemporal drought forecasting model for operational use

    Science.gov (United States)

    Vasiliades, L.; Loukas, A.

    2010-09-01

    Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. This study develops a hybrid spatiotemporal scheme for integrated spatial and temporal forecasting. Temporal forecasting is achieved using feed-forward neural networks and the temporal forecasts are extended to the spatial dimension using a spatial recurrent neural network model. The methodology is demonstrated for an operational meteorological drought index the Standardized Precipitation Index (SPI) calculated at multiple timescales. 48 precipitation stations and 18 independent precipitation stations, located at Pinios river basin in Thessaly region, Greece, were used for the development and spatiotemporal validation of the hybrid spatiotemporal scheme. Several quantitative temporal and spatial statistical indices were considered for the performance evaluation of the models. Furthermore, qualitative statistical criteria based on contingency tables between observed and forecasted drought episodes were calculated. The results show that the lead time of forecasting for operational use depends on the SPI timescale. The hybrid spatiotemporal drought forecasting model could be operationally used for forecasting up to three months ahead for SPI short timescales (e.g. 3-6 months) up to six months ahead for large SPI timescales (e.g. 24 months). The above findings could be useful in developing a drought preparedness plan in the region.

  13. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  14. Network bandwidth utilization forecast model on high bandwidth networks

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wuchert (William) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-30

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  15. A hierarchical spatiotemporal analog forecasting model for count data.

    Science.gov (United States)

    McDermott, Patrick L; Wikle, Christopher K; Millspaugh, Joshua

    2018-01-01

    Analog forecasting is a mechanism-free nonlinear method that forecasts a system forward in time by examining how past states deemed similar to the current state moved forward. Previous applications of analog forecasting has been successful at producing robust forecasts for a variety of ecological and physical processes, but it has typically been presented in an empirical or heuristic procedure, rather than as a formal statistical model. The methodology presented here extends the model-based analog method of McDermott and Wikle (Environmetrics, 27, 2016, 70) by placing analog forecasting within a fully hierarchical statistical framework that can accommodate count observations. Using a Bayesian approach, the hierarchical analog model is able to quantify rigorously the uncertainty associated with forecasts. Forecasting waterfowl settling patterns in the northwestern United States and Canada is conducted by applying the hierarchical analog model to a breeding population survey dataset. Sea surface temperature (SST) in the Pacific Ocean is used to help identify potential analogs for the waterfowl settling patterns.

  16. Mean Bias in Seasonal Forecast Model and ENSO Prediction Error.

    Science.gov (United States)

    Kim, Seon Tae; Jeong, Hye-In; Jin, Fei-Fei

    2017-07-20

    This study uses retrospective forecasts made using an APEC Climate Center seasonal forecast model to investigate the cause of errors in predicting the amplitude of El Niño Southern Oscillation (ENSO)-driven sea surface temperature variability. When utilizing Bjerknes coupled stability (BJ) index analysis, enhanced errors in ENSO amplitude with forecast lead times are found to be well represented by those in the growth rate estimated by the BJ index. ENSO amplitude forecast errors are most strongly associated with the errors in both the thermocline slope response and surface wind response to forcing over the tropical Pacific, leading to errors in thermocline feedback. This study concludes that upper ocean temperature bias in the equatorial Pacific, which becomes more intense with increasing lead times, is a possible cause of forecast errors in the thermocline feedback and thus in ENSO amplitude.

  17. A forecasting model of gaming revenues in Clark County, Nevada

    International Nuclear Information System (INIS)

    Edwards, B.; Bando, A.; Basset, G.; Rosen, A.; Meenan, C.; Carlson, J.

    1992-01-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. It is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry, and identify the exogenous variables that affect gaming revenues. This model will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming related economic activity resulting from future events like the siting of a permanent high-level radioactive waste repository at Yucca Mountain

  18. Forecasting daily meteorological time series using ARIMA and regression models

    Science.gov (United States)

    Murat, Małgorzata; Malinowska, Iwona; Gos, Magdalena; Krzyszczak, Jaromir

    2018-04-01

    The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt- Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.

  19. A forecasting model of gaming revenues in Clark County, Nevada

    International Nuclear Information System (INIS)

    Edwards, B.; Bando, A.; Bassett, G.; Rosen, A.; Carlson, J.; Meenan, C.

    1992-01-01

    This paper describes the Western Area Gaining and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. It is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry, an identify the exogenous variables that affect gaming revenues. This model will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming related economic activity resulting from future events like the siting of a permanent high-level radioactive waste repository at Yucca Mountain

  20. A forecasting model of gaming revenues in Clark County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.; Bando, A.; Bassett, G.; Rosen, A. [Argonne National Lab., IL (United States); Carlson, J.; Meenan, C. [Science Applications International Corp., Las Vegas, NV (United States)

    1992-04-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. It is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry, an identify the exogenous variables that affect gaming revenues. This model will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming related economic activity resulting from future events like the siting of a permanent high-level radioactive waste repository at Yucca Mountain.

  1. Using JPSS Retrievals to Implement a Multisensor, Synoptic, Layered Water Vapor Product for Forecasters

    Science.gov (United States)

    Forsythe, J. M.; Jones, A. S.; Kidder, S. Q.; Fuell, K.; LeRoy, A.; Bikos, D.; Szoke, E.

    2015-12-01

    Forecasters have been using the NOAA operational blended total precipitable water (TPW) product, developed by the Cooperative Institute for Research in the Atmosphere (CIRA), since 2009. Blended TPW has a wide variety of uses related to heavy precipitation and flooding, such as measuring the amount of moisture in an atmospheric river originating in the tropics. But blended TPW conveys no information on the vertical distribution of moisture, which is relevant to a variety of forecast concerns. Vertical profile information is particularly lacking over the oceans for landfalling storms. A blended six-satellite, four-layer, layered water vapor product demonstrated by CIRA and the NASA Short-term Prediction Research and Transition Center (SPoRT) in allows forecasters to see the vertical distribution of water vapor in near real-time. National Weather Service (NWS) forecaster feedback indicated that this new, vertically-resolved view of water vapor has a substantial impact on forecasts. This product uses NOAA investments in polar orbiting satellite sounding retrievals from passive microwave radiances, in particular, the Microwave Integrated Retrieval System (MIRS). The product currently utilizes data from the NOAA-18 and -19 spacecraft, Metop-A and -B, and the Defense Meteorological Program (DMSP) F18 spacecraft. The sounding instruments onboard the Suomi-NPP and JPSS spacecraft will be cornerstone instruments in the future evolution of this product. Applications of the product to heavy rain cases will be presented and compared to commonly used data such as radiosondes and Geostationary Operational Environmental Satellite (GOES) water vapor channel imagery. Research is currently beginning to implement advective blending, where model winds are used to move the water vapor profiles to a common time. Interactions with the NOAA Satellite Analysis Branch (SAB), National Center for Environmental Prediction (NCEP) centers including the Ocean Prediction Center (OPC) and Weather

  2. Human-model hybrid Korean air quality forecasting system.

    Science.gov (United States)

    Chang, Lim-Seok; Cho, Ara; Park, Hyunju; Nam, Kipyo; Kim, Deokrae; Hong, Ji-Hyoung; Song, Chang-Keun

    2016-09-01

    The Korean national air quality forecasting system, consisting of the Weather Research and Forecasting, the Sparse Matrix Operator Kernel Emissions, and the Community Modeling and Analysis (CMAQ), commenced from August 31, 2013 with target pollutants of particulate matters (PM) and ozone. Factors contributing to PM forecasting accuracy include CMAQ inputs of meteorological field and emissions, forecasters' capacity, and inherent CMAQ limit. Four numerical experiments were conducted including two global meteorological inputs from the Global Forecast System (GFS) and the Unified Model (UM), two emissions from the Model Intercomparison Study Asia (MICS-Asia) and the Intercontinental Chemical Transport Experiment (INTEX-B) for the Northeast Asia with Clear Air Policy Support System (CAPSS) for South Korea, and data assimilation of the Monitoring Atmospheric Composition and Climate (MACC). Significant PM underpredictions by using both emissions were found for PM mass and major components (sulfate and organic carbon). CMAQ predicts PM2.5 much better than PM10 (NMB of PM2.5: -20~-25%, PM10: -43~-47%). Forecasters' error usually occurred at the next day of high PM event. Once CMAQ fails to predict high PM event the day before, forecasters are likely to dismiss the model predictions on the next day which turns out to be true. The best combination of CMAQ inputs is the set of UM global meteorological field, MICS-Asia and CAPSS 2010 emissions with the NMB of -12.3%, the RMSE of 16.6μ/m(3) and the R(2) of 0.68. By using MACC data as an initial and boundary condition, the performance skill of CMAQ would be improved, especially in the case of undefined coarse emission. A variety of methods such as ensemble and data assimilation are considered to improve further the accuracy of air quality forecasting, especially for high PM events to be comparable to for all cases. The growing utilization of the air quality forecast induced the public strongly to demand that the accuracy of the

  3. Medium Range Forecast (MRF) and Nested Grid Model (NGM)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nested Grid Model (NGM) and Medium Range Forecast (MRF) Archive is historical digital data set DSI-6140, archived at the NOAA National Centers for Environmental...

  4. Empirical evaluation of a forecasting model for successful facilitation ...

    African Journals Online (AJOL)

    During 2000 the annual Facilitator Customer Satisfaction Survey was ... the forecasting model is successful concerning the CSI value and a high positive linear ... namely that of human behaviour to incorporate other influences than just the ...

  5. forecasting with nonlinear time series model: a monte-carlo

    African Journals Online (AJOL)

    PUBLICATIONS1

    Carlo method of forecasting using a special nonlinear time series model, called logistic smooth transition ... We illustrate this new method using some simulation ..... in MATLAB 7.5.0. ... process (DGP) using the logistic smooth transi-.

  6. Development of rainfall-runoff forecast model | Oyebode | Journal of ...

    African Journals Online (AJOL)

    ... and meterological variables involved in rainfall-runoff process to improve forecast accuracy of rainfallrunoff. ... The simulation was done using MATLAB® 7.0. The simulation results showed that neurofuzzy-based model has higher coefficient ...

  7. Evaluation and Application of the Weather Research and Forecast Model

    National Research Council Canada - National Science Library

    Passner, Jeffrey E

    2007-01-01

    ... by the U.S. Army Research Laboratory (ARL) to determine how accurate and robust the model is under a variety of meteorological conditions, with an emphasis on fine resolution, short-range forecasts in complex terrain...

  8. Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model

    Science.gov (United States)

    Li, Ji; Chen, Yangbo; Wang, Huanyu; Qin, Jianming; Li, Jie; Chiao, Sen

    2017-03-01

    Long lead time flood forecasting is very important for large watershed flood mitigation as it provides more time for flood warning and emergency responses. The latest numerical weather forecast model could provide 1-15-day quantitative precipitation forecasting products in grid format, and by coupling this product with a distributed hydrological model could produce long lead time watershed flood forecasting products. This paper studied the feasibility of coupling the Liuxihe model with the Weather Research and Forecasting quantitative precipitation forecast (WRF QPF) for large watershed flood forecasting in southern China. The QPF of WRF products has three lead times, including 24, 48 and 72 h, with the grid resolution being 20 km  × 20 km. The Liuxihe model is set up with freely downloaded terrain property; the model parameters were previously optimized with rain gauge observed precipitation, and re-optimized with the WRF QPF. Results show that the WRF QPF has bias with the rain gauge precipitation, and a post-processing method is proposed to post-process the WRF QPF products, which improves the flood forecasting capability. With model parameter re-optimization, the model's performance improves also. This suggests that the model parameters be optimized with QPF, not the rain gauge precipitation. With the increasing of lead time, the accuracy of the WRF QPF decreases, as does the flood forecasting capability. Flood forecasting products produced by coupling the Liuxihe model with the WRF QPF provide a good reference for large watershed flood warning due to its long lead time and rational results.

  9. Formation of an Integrated Stock Price Forecast Model in Lithuania

    Directory of Open Access Journals (Sweden)

    Audrius Dzikevičius

    2016-12-01

    Full Text Available Technical and fundamental analyses are widely used to forecast stock prices due to lack of knowledge of other modern models and methods such as Residual Income Model, ANN-APGARCH, Support Vector Machine, Probabilistic Neural Network and Genetic Fuzzy Systems. Although stock price forecast models integrating both technical and fundamental analyses are currently used widely, their integration is not justified comprehensively enough. This paper discusses theoretical one-factor and multi-factor stock price forecast models already applied by investors at a global level and determines possibility to create and apply practically a stock price forecast model which integrates fundamental and technical analysis with the reference to the Lithuanian stock market. The research is aimed to determine the relationship between stock prices of the 14 Lithuanian companies listed in the Main List by the Nasdaq OMX Baltic and various fundamental variables. Based on correlation and regression analysis results and application of c-Squared Test, ANOVA method, a general stock price forecast model is generated. This paper discusses practical implications how the developed model can be used to forecast stock prices by individual investors and suggests additional check measures.

  10. Modelling and forecasting Turkish residential electricity demand

    International Nuclear Information System (INIS)

    Dilaver, Zafer; Hunt, Lester C

    2011-01-01

    This research investigates the relationship between Turkish residential electricity consumption, household total final consumption expenditure and residential electricity prices by applying the structural time series model to annual data over the period from 1960 to 2008. Household total final consumption expenditure, real energy prices and an underlying energy demand trend are found to be important drivers of Turkish residential electricity demand with the estimated short run and the long run total final consumption expenditure elasticities being 0.38 and 1.57, respectively, and the estimated short run and long run price elasticities being -0.09 and -0.38, respectively. Moreover, the estimated underlying energy demand trend, (which, as far as is known, has not been investigated before for the Turkish residential sector) should be of some benefit to Turkish decision makers in terms of energy planning. It provides information about the impact of past policies, the influence of technical progress, the impacts of changes in consumer behaviour and the effects of changes in economic structure. Furthermore, based on the estimated equation, and different forecast assumptions, it is predicted that Turkish residential electricity demand will be somewhere between 48 and 80 TWh by 2020 compared to 40 TWh in 2008. - Research highlights: → Estimated short run and long run expenditure elasticities of 0.38 and 1.57, respectively. → Estimated short run and long run price elasticities of -0.09 and -0.38, respectively. → Estimated UEDT has increasing (i.e. energy using) and decreasing (i.e. energy saving) periods. → Predicted Turkish residential electricity demand between 48 and 80 TWh in 2020.

  11. Forecast of oil reserves and production in Daqing oilfield of China

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xu; Zhang, Baosheng; Feng, Lianyong [The School of Business Administration, China University of Petroleum-Beijing, 18 Fuxue Road, Changping, Beijing (China); Hoeoek, Mikael [Global Energy Systems, Department of Physics and Astronomy, Uppsala University, Box 535, SE-751 21 Uppsala (Sweden)

    2010-07-15

    As China' largest oilfield, Daqing is of great importance to China, this paper analyzes the status of the Daqing oilfield and forecasts its ultimate recoverable reserves by use of the URR model. The forecast results are presented for three scenarios which show that the ultimate recoverable reserves in Daqing oilfield are 3574.0 million tons in the optimistic scenario, 3169.3 million in the base case scenario and 3033.3 million in the pessimistic scenario, respectively. A system dynamics model is established and the quantitative relationships between variables in the model are determined. Total oil production, remaining recoverable reserves, annual newly discovered reserves, and the degree of reserves recovery before 2060 are simulated under the three scenarios by use of the system dynamics model. The forecast results show that the future oil production in Daqing oilfield will continue declining, under the base case scenario, from 41.6 million tons in 2007 to 8.0 million tons in 2060. For Chinese policy-makers, it is worth paying attention to the problem of whether oil production in new oilfields can effectively make up for the decline in production of the large, old oilfields. (author)

  12. Research and Application of a Hybrid Forecasting Model Based on Data Decomposition for Electrical Load Forecasting

    Directory of Open Access Journals (Sweden)

    Yuqi Dong

    2016-12-01

    Full Text Available Accurate short-term electrical load forecasting plays a pivotal role in the national economy and people’s livelihood through providing effective future plans and ensuring a reliable supply of sustainable electricity. Although considerable work has been done to select suitable models and optimize the model parameters to forecast the short-term electrical load, few models are built based on the characteristics of time series, which will have a great impact on the forecasting accuracy. For that reason, this paper proposes a hybrid model based on data decomposition considering periodicity, trend and randomness of the original electrical load time series data. Through preprocessing and analyzing the original time series, the generalized regression neural network optimized by genetic algorithm is used to forecast the short-term electrical load. The experimental results demonstrate that the proposed hybrid model can not only achieve a good fitting ability, but it can also approximate the actual values when dealing with non-linear time series data with periodicity, trend and randomness.

  13. Macroeconomic Forecasts in Models with Bayesian Averaging of Classical Estimates

    Directory of Open Access Journals (Sweden)

    Piotr Białowolski

    2012-03-01

    Full Text Available The aim of this paper is to construct a forecasting model oriented on predicting basic macroeconomic variables, namely: the GDP growth rate, the unemployment rate, and the consumer price inflation. In order to select the set of the best regressors, Bayesian Averaging of Classical Estimators (BACE is employed. The models are atheoretical (i.e. they do not reflect causal relationships postulated by the macroeconomic theory and the role of regressors is played by business and consumer tendency survey-based indicators. Additionally, survey-based indicators are included with a lag that enables to forecast the variables of interest (GDP, unemployment, and inflation for the four forthcoming quarters without the need to make any additional assumptions concerning the values of predictor variables in the forecast period.  Bayesian Averaging of Classical Estimators is a method allowing for full and controlled overview of all econometric models which can be obtained out of a particular set of regressors. In this paper authors describe the method of generating a family of econometric models and the procedure for selection of a final forecasting model. Verification of the procedure is performed by means of out-of-sample forecasts of main economic variables for the quarters of 2011. The accuracy of the forecasts implies that there is still a need to search for new solutions in the atheoretical modelling.

  14. Coastal and Riverine Flood Forecast Model powered by ADCIRC

    Science.gov (United States)

    Khalid, A.; Ferreira, C.

    2017-12-01

    Coastal flooding is becoming a major threat to increased population in the coastal areas. To protect coastal communities from tropical storms & hurricane damages, early warning systems are being developed. These systems have the capability of real time flood forecasting to identify hazardous coastal areas and aid coastal communities in rescue operations. State of the art hydrodynamic models forced by atmospheric forcing have given modelers the ability to forecast storm surge, water levels and currents. This helps to identify the areas threatened by intense storms. Study on Chesapeake Bay area has gained national importance because of its combined riverine and coastal phenomenon, which leads to greater uncertainty in flood predictions. This study presents an automated flood forecast system developed by following Advanced Circulation (ADCIRC) Surge Guidance System (ASGS) guidelines and tailored to take in riverine and coastal boundary forcing, thus includes all the hydrodynamic processes to forecast total water in the Potomac River. As studies on tidal and riverine flow interaction are very scarce in number, our forecast system would be a scientific tool to examine such area and fill the gaps with precise prediction for Potomac River. Real-time observations from National Oceanic and Atmospheric Administration (NOAA) and field measurements have been used as model boundary feeding. The model performance has been validated by using major historical riverine and coastal flooding events. Hydrodynamic model ADCIRC produced promising predictions for flood inundation areas. As better forecasts can be achieved by using coupled models, this system is developed to take boundary conditions from Global WaveWatchIII for the research purposes. Wave and swell propagation will be fed through Global WavewatchIII model to take into account the effects of swells and currents. This automated forecast system is currently undergoing rigorous testing to include any missing parameters which

  15. ECONOMIC FORECASTS BASED ON ECONOMETRIC MODELS USING EViews 5

    Directory of Open Access Journals (Sweden)

    Cornelia TomescuDumitrescu,

    2009-05-01

    Full Text Available The forecast of evolution of economic phenomena represent on the most the final objective of econometrics. It withal represent a real attempt of validity elaborate model. Unlike the forecasts based on the study of temporal series which have an recognizable inertial character the forecasts generated by econometric model with simultaneous equations are after to contour the future of ones of important economic variables toward the direct and indirect influences bring the bear on their about exogenous variables. For the relief of the calculus who the realization of the forecasts based on the econometric models its suppose is indicate the use of the specialized informatics programs. One of this is the EViews which is applied because it reduces significant the time who is destined of the econometric analysis and it assure a high accuracy of calculus and of the interpretation of results.

  16. A Comparative Study Of Stock Price Forecasting Using Nonlinear Models

    Directory of Open Access Journals (Sweden)

    Diteboho Xaba

    2017-03-01

    Full Text Available This study compared the in-sample forecasting accuracy of three forecasting nonlinear models namely: the Smooth Transition Regression (STR model, the Threshold Autoregressive (TAR model and the Markov-switching Autoregressive (MS-AR model. Nonlinearity tests were used to confirm the validity of the assumptions of the study. The study used model selection criteria, SBC to select the optimal lag order and for the selection of appropriate models. The Mean Square Error (MSE, Mean Absolute Error (MAE and Root Mean Square Error (RMSE served as the error measures in evaluating the forecasting ability of the models. The MS-AR models proved to perform well with lower error measures as compared to LSTR and TAR models in most cases.

  17. Coupling meteorological and hydrological models for flood forecasting

    Directory of Open Access Journals (Sweden)

    Bartholmes

    2005-01-01

    Full Text Available This paper deals with the problem of analysing the coupling of meteorological meso-scale quantitative precipitation forecasts with distributed rainfall-runoff models to extend the forecasting horizon. Traditionally, semi-distributed rainfall-runoff models have been used for real time flood forecasting. More recently, increased computer capabilities allow the utilisation of distributed hydrological models with mesh sizes from tenths of metres to a few kilometres. On the other hand, meteorological models, providing the quantitative precipitation forecast, tend to produce average values on meshes ranging from slightly less than 10 to 200 kilometres. Therefore, to improve the quality of flood forecasts, the effects of coupling the meteorological and the hydrological models at different scales were analysed. A distributed hydrological model (TOPKAPI was developed and calibrated using a 1x1 km mesh for the case of the river Po closed at Ponte Spessa (catchment area c. 37000 km2. The model was then coupled with several other European meteorological models ranging from the Limited Area Models (provided by DMI and DWD with resolutions from 0.0625° * 0.0625°, to the ECMWF ensemble predictions with a resolution of 1.85° * 1.85°. Interesting results, describing the coupled model behaviour, are available for a meteorological extreme event in Northern Italy (Nov. 1994. The results demonstrate the poor reliability of the quantitative precipitation forecasts produced by meteorological models presently available; this is not resolved using the Ensemble Forecasting technique, when compared with results obtainable with measured rainfall.

  18. Meteoroid Environment Modeling: the Meteoroid Engineering Model and Shower Forecasting

    Science.gov (United States)

    Moorhead, Althea V.

    2017-01-01

    The meteoroid environment is often divided conceptually into meteor showers plus a sporadic background component. The sporadic complex poses the bulk of the risk to spacecraft, but showers can produce significant short-term enhancements of the meteoroid flux. The Meteoroid Environment Office (MEO) has produced two environment models to handle these cases: the Meteoroid Engineering Model (MEM) and an annual meteor shower forecast. Both MEM and the forecast are used by multiple manned spaceflight projects in their meteoroid risk evaluation, and both tools are being revised to incorporate recent meteor velocity, density, and timing measurements. MEM describes the sporadic meteoroid complex and calculates the flux, speed, and directionality of the meteoroid environment relative to a user-supplied spacecraft trajectory, taking the spacecraft's motion into account. MEM is valid in the inner solar system and offers near-Earth and cis-lunar environments. While the current version of MEM offers a nominal meteoroid environment corresponding to a single meteoroid bulk density, the next version of MEMR3 will offer both flux uncertainties and a density distribution in addition to a revised near-Earth environment. We have updated the near-Earth meteor speed distribution and have made the first determination of uncertainty in this distribution. We have also derived a meteor density distribution from the work of Kikwaya et al. (2011). The annual meteor shower forecast takes the form of a report and data tables that can be used in conjunction with an existing MEM assessment. Fluxes are typically quoted to a constant limiting kinetic energy in order to comport with commonly used ballistic limit equations. For the 2017 annual forecast, the MEO substantially revised the list of showers and their characteristics using 14 years of meteor flux measurements from the Canadian Meteor Orbit Radar (CMOR). Defunct or insignificant showers were removed and the temporal profiles of many showers

  19. Comparison on the forecast model of landfill surface

    International Nuclear Information System (INIS)

    Zhou Xiaozhi; Sang Shuxun; Cao Liwen; Ji Xiaoyan

    2010-01-01

    Using four large-scale simulated landfill equipments, indoor parallel simulation landfill experiment was carried out. By monitoring the cumulative settlement of MSW, comparable researches indicate the actual effects of 'empirical model' and 'biodegradation model' on landfill surface settlement forecast, and the optimization measures are proposed on the basis of model defects analysis. Research leaded to following results: To the short-term prediction of MSW settlement, two types of models all have satisfactory predictive validity. When performing medium and long-term prediction, 'empirical model' predicted a significant deviation from the actual, and the forecasting error of 'biodegradation model' is also gradually enlarge with the extending forecast period. For optimizing these two types of model, long-term surface settlement monitoring is fundamental method, and constantly modify the model parameters is the key according to the dynamic monitoring data. (authors)

  20. A complex autoregressive model and application to monthly temperature forecasts

    Directory of Open Access Journals (Sweden)

    X. Gu

    2005-11-01

    Full Text Available A complex autoregressive model was established based on the mathematic derivation of the least squares for the complex number domain which is referred to as the complex least squares. The model is different from the conventional way that the real number and the imaginary number are separately calculated. An application of this new model shows a better forecast than forecasts from other conventional statistical models, in predicting monthly temperature anomalies in July at 160 meteorological stations in mainland China. The conventional statistical models include an autoregressive model, where the real number and the imaginary number are separately disposed, an autoregressive model in the real number domain, and a persistence-forecast model.

  1. A variant of the Hubbert curve for world oil production forecasts

    International Nuclear Information System (INIS)

    Maggio, G.; Cacciola, G.

    2009-01-01

    In recent years, the economic and political aspects of energy problems have prompted many researchers and analysts to focus their attention on the Hubbert Peak Theory with the aim of forecasting future trends in world oil production. In this paper, a model that attempts to contribute in this regard is presented; it is based on a variant of the well-known Hubbert curve. In addition, the sum of multiple-Hubbert curves (two cycles) is used to provide a better fit for the historical data on oil production (crude and natural gas liquid (NGL)). Taking into consideration three possible scenarios for oil reserves, this approach allowed us to forecast when peak oil production, referring to crude oil and NGL, should occur. In particular, by assuming a range of 2250-3000 gigabarrels (Gb) for ultimately recoverable conventional oil, our predictions foresee a peak between 2009 and 2021 at 29.3-32.1 Gb/year.

  2. Can models help to forecast rainwater dynamics for rainfed ecosystem?

    Directory of Open Access Journals (Sweden)

    Mukhtar Ahmed

    2014-10-01

    Full Text Available Simulation models are important tools to explore and illustrate dynamics of climatic variables in crop based ecosystem. In the rainfed ecosystem (RE, wheat production is impinged on certain climatic events per se high variability in rainfall and increased temperature. These climatic events turn out due to climatic drivers like Sea Surface Temperatures (SSTs and pressure. Current study is aimed to analyze long term rainfall data (1961–2011 of Pakistan׳s rainfed ecosystem zone (Islamabad, Chakwal and Talagang by using Agricultural Production Systems Simulator (APSIM and R model. The principal objective of this analysis was to study the link between SOI phases and SSTs; and thereby understanding the pattern of climate change due to these climatic drivers under rainfed conditions in Pakistan. The results revealed a positive link between July SOI phases and the rainfall variability during October–November (the sowing time of wheat in Pakistan. Long term rainfall data analysis (1961–2011 of Islamabad, Chakwal and Talagang revealed 44%, 40%, 35% possibility of exceeding median rainfall near zero whereas probability of consistently negative SOI phases were 35%, 34% and 33% respectively during July. Similarly, the forecasting results estimated by R using covariates like dry spell, NINO1.2, NINO3, NINO4, NINO3.4 and IOD of different months revealed that prediction of monsoon, wheat early growth, wheat grain filling period and total wheat growing season rainfall, have significant signals with climatic drivers. The study justified the importance of models in the decision making processes and rainfall forecasting as a beneficial and necessary tool for rainfed ecosystem conservation.

  3. Application of Markov Model in Crude Oil Price Forecasting

    Directory of Open Access Journals (Sweden)

    Nuhu Isah

    2017-08-01

    Full Text Available Crude oil is an important energy commodity to mankind. Several causes have made crude oil prices to be volatile. The fluctuation of crude oil prices has affected many related sectors and stock market indices. Hence, forecasting the crude oil prices is essential to avoid the future prices of the non-renewable natural resources to rise. In this study, daily crude oil prices data was obtained from WTI dated 2 January to 29 May 2015. We used Markov Model (MM approach in forecasting the crude oil prices. In this study, the analyses were done using EViews and Maple software where the potential of this software in forecasting daily crude oil prices time series data was explored. Based on the study, we concluded that MM model is able to produce accurate forecast based on a description of history patterns in crude oil prices.

  4. Methodology and forecast products for the optimal offering of ancillary services from wind in a market environment

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Pinson, Pierre

    . This enables the estimation of return levels below which the extreme wind power forecast error events occur only at a specified rate, e.g. once a month or once every year. The techniques allows extrapolation beyond the available data period. In the study data from 1.5 years is used. It consists of hourly wind...... power production in the two regions of Denmark (DK1 and DK2) and corresponding wind power forecasts. The wind power forecasts are generated using the software WPPT and are based on the outcome of three numerical weather prediction models. They cover horizons from 1 to 42 hours ahead in time...

  5. Verification of“Trend-Volatility Model”in Short-Term Forecast of Grain Production Potential

    Directory of Open Access Journals (Sweden)

    MI Chang-hong

    2016-02-01

    Full Text Available The "trend-volatility model" in short-term forecasting of grain production potential was verified and discussed systematically by using the grain production data from 1949 to 2014, in 16 typical counties and 6 typical districts, and 31 provinces, of China. The results showed as follows:(1 Size of forecast error reflected the precision of short-term production potential, the main reason of large prediction error was a great amount of high yield farmlands were occupied in developed areas and a great increase of vegetable and fruit planted that made grain yield decreased in a short time;(2 The micro-trend amendment method was a necessary part of "trend-volatility model", which could involve the short-term factors such as meteorological factors, science and technology input, social factors and other effects, while macro-trend prediction could not. Therefore, The micro-trend amendment method could improve the forecast precision.(3 In terms of actual situation in recent years in China, the more developed the areas was, the bigger the volatility of short-term production potential was; For the short-term production potential, the stage of increasing-decreasing-recovering also existed in developed areas;(4 In the terms of forecast precision of short-terms production potential, the scale of national was higher than the scale of province, the scale of province was higher than the scale of district, the scale of district was higher than the scale of county. And it was large differences in precision between different provinces, different districts and different counties respectively, which was concerned to the complementarity of domestic climate and the ability of the farmland resistance to natural disasters.

  6. On the effect of model parameters on forecast objects

    Science.gov (United States)

    Marzban, Caren; Jones, Corinne; Li, Ning; Sandgathe, Scott

    2018-04-01

    Many physics-based numerical models produce a gridded, spatial field of forecasts, e.g., a temperature map. The field for some quantities generally consists of spatially coherent and disconnected objects. Such objects arise in many problems, including precipitation forecasts in atmospheric models, eddy currents in ocean models, and models of forest fires. Certain features of these objects (e.g., location, size, intensity, and shape) are generally of interest. Here, a methodology is developed for assessing the impact of model parameters on the features of forecast objects. The main ingredients of the methodology include the use of (1) Latin hypercube sampling for varying the values of the model parameters, (2) statistical clustering algorithms for identifying objects, (3) multivariate multiple regression for assessing the impact of multiple model parameters on the distribution (across the forecast domain) of object features, and (4) methods for reducing the number of hypothesis tests and controlling the resulting errors. The final output of the methodology is a series of box plots and confidence intervals that visually display the sensitivities. The methodology is demonstrated on precipitation forecasts from a mesoscale numerical weather prediction model.

  7. Modeling and forecasting of electrical power demands for capacity planning

    International Nuclear Information System (INIS)

    Al-Shobaki, Salman; Mohsen, Mousa

    2008-01-01

    This paper describes the development of forecasting models to predict future generation and electrical power consumption in Jordan. This is critical to production cost since power is generated by burning expensive imported oil. Currently, the National Electric Power Company (NEPCO) is using regression models that only accounts for trend dynamics in their planning of loads and demand levels. The models are simplistic and are based on generated energy historical levels. They produce results on yearly bases and do not account for monthly variability in demand levels. The paper presents two models, one based on the generated energy data and the other is based on the consumed energy data. The models account for trend, monthly seasonality, and cycle dynamics. Both models are compared to NEPCO's model and indicate that NEPCO is producing energy at levels higher than needed (5.25%) thus increasing the loss in generated energy. The developed models also show a 13% difference between the generated energy and the consumed energy that is lost due to transmission line and in-house consumption

  8. Modeling and forecasting of electrical power demands for capacity planning

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shobaki, Salman [Department of Industrial Engineering, Hashemite University, Zarka 13115 (Jordan); Mohsen, Mousa [Department of Mechanical Engineering, Hashemite University, Zarka 13115 (Jordan)

    2008-11-15

    This paper describes the development of forecasting models to predict future generation and electrical power consumption in Jordan. This is critical to production cost since power is generated by burning expensive imported oil. Currently, the National Electric Power Company (NEPCO) is using regression models that only accounts for trend dynamics in their planning of loads and demand levels. The models are simplistic and are based on generated energy historical levels. They produce results on yearly bases and do not account for monthly variability in demand levels. The paper presents two models, one based on the generated energy data and the other is based on the consumed energy data. The models account for trend, monthly seasonality, and cycle dynamics. Both models are compared to NEPCO's model and indicate that NEPCO is producing energy at levels higher than needed (5.25%) thus increasing the loss in generated energy. The developed models also show a 13% difference between the generated energy and the consumed energy that is lost due to transmission line and in-house consumption. (author)

  9. Wavelet regression model in forecasting crude oil price

    Science.gov (United States)

    Hamid, Mohd Helmie; Shabri, Ani

    2017-05-01

    This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.

  10. Forecasting seasonal demand : a serious limitation of Winters' forecasting procedure and the added value of product-aggregation

    NARCIS (Netherlands)

    Donselaar, van K.H.

    2003-01-01

    The well-known method for forecasting seasonal demand, Winters’ procedure, has a serious drawback: if the relative demand uncertainty increases (e.g. due to larger product assortments) or if the amount of historical demand data decreases (e.g. due to smaller product life cycles), the quality of the

  11. Functional dynamic factor models with application to yield curve forecasting

    KAUST Repository

    Hays, Spencer

    2012-09-01

    Accurate forecasting of zero coupon bond yields for a continuum of maturities is paramount to bond portfolio management and derivative security pricing. Yet a universal model for yield curve forecasting has been elusive, and prior attempts often resulted in a trade-off between goodness of fit and consistency with economic theory. To address this, herein we propose a novel formulation which connects the dynamic factor model (DFM) framework with concepts from functional data analysis: a DFM with functional factor loading curves. This results in a model capable of forecasting functional time series. Further, in the yield curve context we show that the model retains economic interpretation. Model estimation is achieved through an expectation- maximization algorithm, where the time series parameters and factor loading curves are simultaneously estimated in a single step. Efficient computing is implemented and a data-driven smoothing parameter is nicely incorporated. We show that our model performs very well on forecasting actual yield data compared with existing approaches, especially in regard to profit-based assessment for an innovative trading exercise. We further illustrate the viability of our model to applications outside of yield forecasting.

  12. Container Throughput Forecasting Using Dynamic Factor Analysis and ARIMAX Model

    Directory of Open Access Journals (Sweden)

    Marko Intihar

    2017-11-01

    Full Text Available The paper examines the impact of integration of macroeconomic indicators on the accuracy of container throughput time series forecasting model. For this purpose, a Dynamic factor analysis and AutoRegressive Integrated Moving-Average model with eXogenous inputs (ARIMAX are used. Both methodologies are integrated into a novel four-stage heuristic procedure. Firstly, dynamic factors are extracted from external macroeconomic indicators influencing the observed throughput. Secondly, the family of ARIMAX models of different orders is generated based on the derived factors. In the third stage, the diagnostic and goodness-of-fit testing is applied, which includes statistical criteria such as fit performance, information criteria, and parsimony. Finally, the best model is heuristically selected and tested on the real data of the Port of Koper. The results show that by applying macroeconomic indicators into the forecasting model, more accurate future throughput forecasts can be achieved. The model is also used to produce future forecasts for the next four years indicating a more oscillatory behaviour in (2018-2020. Hence, care must be taken concerning any bigger investment decisions initiated from the management side. It is believed that the proposed model might be a useful reinforcement of the existing forecasting module in the observed port.

  13. Statistical bias correction modelling for seasonal rainfall forecast for the case of Bali island

    Science.gov (United States)

    Lealdi, D.; Nurdiati, S.; Sopaheluwakan, A.

    2018-04-01

    Rainfall is an element of climate which is highly influential to the agricultural sector. Rain pattern and distribution highly determines the sustainability of agricultural activities. Therefore, information on rainfall is very useful for agriculture sector and farmers in anticipating the possibility of extreme events which often cause failures of agricultural production. This research aims to identify the biases from seasonal forecast products from ECMWF (European Centre for Medium-Range Weather Forecasts) rainfall forecast and to build a transfer function in order to correct the distribution biases as a new prediction model using quantile mapping approach. We apply this approach to the case of Bali Island, and as a result, the use of bias correction methods in correcting systematic biases from the model gives better results. The new prediction model obtained with this approach is better than ever. We found generally that during rainy season, the bias correction approach performs better than in dry season.

  14. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    Science.gov (United States)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  15. Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models

    DEFF Research Database (Denmark)

    David, M.; Ramahatana, F.; Trombe, Pierre-Julien

    2016-01-01

    Forecasting of the solar irradiance is a key feature in order to increase the penetration rate of solar energy into the energy grids. Indeed, the anticipation of the fluctuations of the solar renewables allows a better management of the production means of electricity and a better operation...... sky index show some similarities with that of financial time series. The aim of this paper is to assess the performances of a commonly used combination of two linear models (ARMA and GARCH) in econometrics in order to provide probabilistic forecasts of solar irradiance. In addition, a recursive...... regarding the statistical distribution of the error, the reliability of the probabilistic forecasts stands in the same order of magnitude as other works done in the field of solar forecasting....

  16. Ensemble Prediction Model with Expert Selection for Electricity Price Forecasting

    Directory of Open Access Journals (Sweden)

    Bijay Neupane

    2017-01-01

    Full Text Available Forecasting of electricity prices is important in deregulated electricity markets for all of the stakeholders: energy wholesalers, traders, retailers and consumers. Electricity price forecasting is an inherently difficult problem due to its special characteristic of dynamicity and non-stationarity. In this paper, we present a robust price forecasting mechanism that shows resilience towards the aggregate demand response effect and provides highly accurate forecasted electricity prices to the stakeholders in a dynamic environment. We employ an ensemble prediction model in which a group of different algorithms participates in forecasting 1-h ahead the price for each hour of a day. We propose two different strategies, namely, the Fixed Weight Method (FWM and the Varying Weight Method (VWM, for selecting each hour’s expert algorithm from the set of participating algorithms. In addition, we utilize a carefully engineered set of features selected from a pool of features extracted from the past electricity price data, weather data and calendar data. The proposed ensemble model offers better results than the Autoregressive Integrated Moving Average (ARIMA method, the Pattern Sequence-based Forecasting (PSF method and our previous work using Artificial Neural Networks (ANN alone on the datasets for New York, Australian and Spanish electricity markets.

  17. eWaterCycle: A global operational hydrological forecasting model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Development of an operational hyper-resolution hydrological global model is a central goal of the eWaterCycle project (www.ewatercycle.org). This operational model includes ensemble forecasts (14 days) to predict water related stress around the globe. Assimilation of near-real time satellite data is part of the intended product that will be launched at EGU 2015. The challenges come from several directions. First, there are challenges that are mainly computer science oriented but have direct practical hydrological implications. For example, we aim to make use as much as possible of existing standards and open-source software. For example, different parts of our system are coupled through the Basic Model Interface (BMI) developed in the framework of the Community Surface Dynamics Modeling System (CSDMS). The PCR-GLOBWB model, built by Utrecht University, is the basic hydrological model that is the engine of the eWaterCycle project. Re-engineering of parts of the software was needed for it to run efficiently in a High Performance Computing (HPC) environment, and to be able to interface using BMI, and run on multiple compute nodes in parallel. The final aim is to have a spatial resolution of 1km x 1km, which is currently 10 x 10km. This high resolution is computationally not too demanding but very memory intensive. The memory bottleneck becomes especially apparent for data assimilation, for which we use OpenDA. OpenDa allows for different data assimilation techniques without the need to build these from scratch. We have developed a BMI adaptor for OpenDA, allowing OpenDA to use any BMI compatible model. To circumvent memory shortages which would result from standard applications of the Ensemble Kalman Filter, we have developed a variant that does not need to keep all ensemble members in working memory. At EGU, we will present this variant and how it fits well in HPC environments. An important step in the eWaterCycle project was the coupling between the hydrological and

  18. Assessing Variability and Errors in Historical Runoff Forecasting with Physical Models and Alternative Data Sources

    Science.gov (United States)

    Penn, C. A.; Clow, D. W.; Sexstone, G. A.

    2017-12-01

    Water supply forecasts are an important tool for water resource managers in areas where surface water is relied on for irrigating agricultural lands and for municipal water supplies. Forecast errors, which correspond to inaccurate predictions of total surface water volume, can lead to mis-allocated water and productivity loss, thus costing stakeholders millions of dollars. The objective of this investigation is to provide water resource managers with an improved understanding of factors contributing to forecast error, and to help increase the accuracy of future forecasts. In many watersheds of the western United States, snowmelt contributes 50-75% of annual surface water flow and controls both the timing and volume of peak flow. Water supply forecasts from the Natural Resources Conservation Service (NRCS), National Weather Service, and similar cooperators use precipitation and snowpack measurements to provide water resource managers with an estimate of seasonal runoff volume. The accuracy of these forecasts can be limited by available snowpack and meteorological data. In the headwaters of the Rio Grande, NRCS produces January through June monthly Water Supply Outlook Reports. This study evaluates the accuracy of these forecasts since 1990, and examines what factors may contribute to forecast error. The Rio Grande headwaters has experienced recent changes in land cover from bark beetle infestation and a large wildfire, which can affect hydrological processes within the watershed. To investigate trends and possible contributing factors in forecast error, a semi-distributed hydrological model was calibrated and run to simulate daily streamflow for the period 1990-2015. Annual and seasonal watershed and sub-watershed water balance properties were compared with seasonal water supply forecasts. Gridded meteorological datasets were used to assess changes in the timing and volume of spring precipitation events that may contribute to forecast error. Additionally, a

  19. A Hierarchical Approach Using Machine Learning Methods in Solar Photovoltaic Energy Production Forecasting

    Directory of Open Access Journals (Sweden)

    Zhaoxuan Li

    2016-01-01

    Full Text Available We evaluate and compare two common methods, artificial neural networks (ANN and support vector regression (SVR, for predicting energy productions from a solar photovoltaic (PV system in Florida 15 min, 1 h and 24 h ahead of time. A hierarchical approach is proposed based on the machine learning algorithms tested. The production data used in this work corresponds to 15 min averaged power measurements collected from 2014. The accuracy of the model is determined using computing error statistics such as mean bias error (MBE, mean absolute error (MAE, root mean square error (RMSE, relative MBE (rMBE, mean percentage error (MPE and relative RMSE (rRMSE. This work provides findings on how forecasts from individual inverters will improve the total solar power generation forecast of the PV system.

  20. Adaptive modelling and forecasting of offshore wind power fluctuations with Markov-switching autoregressive models

    DEFF Research Database (Denmark)

    Pinson, Pierre; Madsen, Henrik

    optimized is based on penalized maximum-likelihood, with exponential forgetting of past observations. MSAR models are then employed for 1-step-ahead point forecasting of 10-minute resolution time-series of wind power at two large offshore wind farms. They are favourably compared against persistence and Auto......Wind power production data at temporal resolutions of a few minutes exhibits successive periods with fluctuations of various dynamic nature and magnitude, which cannot be explained (so far) by the evolution of some explanatory variable. Our proposal is to capture this regime-switching behaviour......Regressive (AR) models. It is finally shown that the main interest of MSAR models lies in their ability to generate interval/density forecasts of significantly higher skill....

  1. Adaptive modelling and forecasting of offshore wind power fluctuations with Markov-switching autoregressive models

    DEFF Research Database (Denmark)

    Pinson, Pierre; Madsen, Henrik

    2012-01-01

    optimized is based on penalized maximum likelihood, with exponential forgetting of past observations. MSAR models are then employed for one-step-ahead point forecasting of 10 min resolution time series of wind power at two large offshore wind farms. They are favourably compared against persistence......Wind power production data at temporal resolutions of a few minutes exhibit successive periods with fluctuations of various dynamic nature and magnitude, which cannot be explained (so far) by the evolution of some explanatory variable. Our proposal is to capture this regime-switching behaviour...... and autoregressive models. It is finally shown that the main interest of MSAR models lies in their ability to generate interval/density forecasts of significantly higher skill....

  2. Forecasting Performance of Asymmetric GARCH Stock Market Volatility Models

    Directory of Open Access Journals (Sweden)

    Hojin Lee

    2009-12-01

    Full Text Available We investigate the asymmetry between positive and negative returns in their effect on conditional variance of the stock market index and incorporate the characteristics to form an out-of-sample volatility forecast. Contrary to prior evidence, however, the results in this paper suggest that no asymmetric GARCH model is superior to basic GARCH(1,1 model. It is our prior knowledge that, for equity returns, it is unlikely that positive and negative shocks have the same impact on the volatility. In order to reflect this intuition, we implement three diagnostic tests for volatility models: the Sign Bias Test, the Negative Size Bias Test, and the Positive Size Bias Test and the tests against the alternatives of QGARCH and GJR-GARCH. The asymmetry test results indicate that the sign and the size of the unexpected return shock do not influence current volatility differently which contradicts our presumption that there are asymmetric effects in the stock market volatility. This result is in line with various diagnostic tests which are designed to determine whether the GARCH(1,1 volatility estimates adequately represent the data. The diagnostic tests in section 2 indicate that the GARCH(1,1 model for weekly KOSPI returns is robust to the misspecification test. We also investigate two representative asymmetric GARCH models, QGARCH and GJR-GARCH model, for our out-of-sample forecasting performance. The out-of-sample forecasting ability test reveals that no single model is clearly outperforming. It is seen that the GJR-GARCH and QGARCH model give mixed results in forecasting ability on all four criteria across all forecast horizons considered. Also, the predictive accuracy test of Diebold and Mariano based on both absolute and squared prediction errors suggest that the forecasts from the linear and asymmetric GARCH models need not be significantly different from each other.

  3. Air Quality Forecasts Using the NASA GEOS Model

    Science.gov (United States)

    Keller, Christoph A.; Knowland, K. Emma; Nielsen, Jon E.; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Follette-Cook, Melanie; Liu, Junhua; hide

    2018-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  4. An interdisciplinary approach for earthquake modelling and forecasting

    Science.gov (United States)

    Han, P.; Zhuang, J.; Hattori, K.; Ogata, Y.

    2016-12-01

    Earthquake is one of the most serious disasters, which may cause heavy casualties and economic losses. Especially in the past two decades, huge/mega earthquakes have hit many countries. Effective earthquake forecasting (including time, location, and magnitude) becomes extremely important and urgent. To date, various heuristically derived algorithms have been developed for forecasting earthquakes. Generally, they can be classified into two types: catalog-based approaches and non-catalog-based approaches. Thanks to the rapid development of statistical seismology in the past 30 years, now we are able to evaluate the performances of these earthquake forecast approaches quantitatively. Although a certain amount of precursory information is available in both earthquake catalogs and non-catalog observations, the earthquake forecast is still far from satisfactory. In most case, the precursory phenomena were studied individually. An earthquake model that combines self-exciting and mutually exciting elements was developed by Ogata and Utsu from the Hawkes process. The core idea of this combined model is that the status of the event at present is controlled by the event itself (self-exciting) and all the external factors (mutually exciting) in the past. In essence, the conditional intensity function is a time-varying Poisson process with rate λ(t), which is composed of the background rate, the self-exciting term (the information from past seismic events), and the external excitation term (the information from past non-seismic observations). This model shows us a way to integrate the catalog-based forecast and non-catalog-based forecast. Against this background, we are trying to develop a new earthquake forecast model which combines catalog-based and non-catalog-based approaches.

  5. EXCHANGE-RATES FORECASTING: EXPONENTIAL SMOOTHING TECHNIQUES AND ARIMA MODELS

    Directory of Open Access Journals (Sweden)

    Dezsi Eva

    2011-07-01

    Full Text Available Exchange rates forecasting is, and has been a challenging task in finance. Statistical and econometrical models are widely used in analysis and forecasting of foreign exchange rates. This paper investigates the behavior of daily exchange rates of the Romanian Leu against the Euro, United States Dollar, British Pound, Japanese Yen, Chinese Renminbi and the Russian Ruble. Smoothing techniques are generated and compared with each other. These models include the Simple Exponential Smoothing technique, as the Double Exponential Smoothing technique, the Simple Holt-Winters, the Additive Holt-Winters, namely the Autoregressive Integrated Moving Average model.

  6. Space Weather Products and Tools Used in Auroral Monitoring and Forecasting at CCMC/SWRC

    Science.gov (United States)

    Zheng, Yihua; Rastaetter, Lutz

    2015-01-01

    Key points discussed in this chapter are (1) the importance of aurora research to scientific advances and space weather applications, (2) space weather products at CCMC that are relevant to aurora monitoring and forecasting, and (3) the need for more effort from the whole community to achieve a better and long-lead-time forecast of auroral activity. Aurora, as manifestations of solar wind-magnetosphere-ionosphere coupling that occurs in a region of space that is relatively easy to access for sounding rockets, satellites, and other types of observational platforms, serves as a natural laboratory for studying the underlying physics of the complex system. From a space weather application perspective, auroras can cause surface charging of technological assets passing through the region, result in scintillation effects affecting communication and navigation, and cause radar cluttering that hinders military and civilian applications. Indirectly, an aurora and its currents can induce geomagnetically induced currents (GIC) on the ground, which poses major concerns for the wellbeing and operation of power grids, particularly during periods of intense geomagnetic activity. In addition, accurate auroral forecasting is desired for auroral tourism. In this chapter, we first review some of the existing auroral models and discuss past validation efforts. Such efforts are crucial in transitioning a model(s) from research to operations and for further model improvement and development that also benefits scientific endeavors. Then we will focus on products and tools that are used for auroral monitoring and forecasting at the Space Weather Research Center (SWRC). As part of the CCMC (Community Coordinated Modeling Center), SWRC has been providing space weather services since 2010.

  7. Machine learning based switching model for electricity load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Shu; Lee, Wei-Jen [Energy Systems Research Center, The University of Texas at Arlington, 416 S. College Street, Arlington, TX 76019 (United States); Chen, Luonan [Department of Electronics, Information and Communication Engineering, Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-0013 (Japan)

    2008-06-15

    In deregulated power markets, forecasting electricity loads is one of the most essential tasks for system planning, operation and decision making. Based on an integration of two machine learning techniques: Bayesian clustering by dynamics (BCD) and support vector regression (SVR), this paper proposes a novel forecasting model for day ahead electricity load forecasting. The proposed model adopts an integrated architecture to handle the non-stationarity of time series. Firstly, a BCD classifier is applied to cluster the input data set into several subsets by the dynamics of the time series in an unsupervised manner. Then, groups of SVRs are used to fit the training data of each subset in a supervised way. The effectiveness of the proposed model is demonstrated with actual data taken from the New York ISO and the Western Farmers Electric Cooperative in Oklahoma. (author)

  8. Machine learning based switching model for electricity load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Fan Shu [Energy Systems Research Center, University of Texas at Arlington, 416 S. College Street, Arlington, TX 76019 (United States); Chen Luonan [Department of Electronics, Information and Communication Engineering, Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-0013 (Japan); Lee, Weijen [Energy Systems Research Center, University of Texas at Arlington, 416 S. College Street, Arlington, TX 76019 (United States)], E-mail: wlee@uta.edu

    2008-06-15

    In deregulated power markets, forecasting electricity loads is one of the most essential tasks for system planning, operation and decision making. Based on an integration of two machine learning techniques: Bayesian clustering by dynamics (BCD) and support vector regression (SVR), this paper proposes a novel forecasting model for day ahead electricity load forecasting. The proposed model adopts an integrated architecture to handle the non-stationarity of time series. Firstly, a BCD classifier is applied to cluster the input data set into several subsets by the dynamics of the time series in an unsupervised manner. Then, groups of SVRs are used to fit the training data of each subset in a supervised way. The effectiveness of the proposed model is demonstrated with actual data taken from the New York ISO and the Western Farmers Electric Cooperative in Oklahoma.

  9. Machine learning based switching model for electricity load forecasting

    International Nuclear Information System (INIS)

    Fan Shu; Chen Luonan; Lee, Weijen

    2008-01-01

    In deregulated power markets, forecasting electricity loads is one of the most essential tasks for system planning, operation and decision making. Based on an integration of two machine learning techniques: Bayesian clustering by dynamics (BCD) and support vector regression (SVR), this paper proposes a novel forecasting model for day ahead electricity load forecasting. The proposed model adopts an integrated architecture to handle the non-stationarity of time series. Firstly, a BCD classifier is applied to cluster the input data set into several subsets by the dynamics of the time series in an unsupervised manner. Then, groups of SVRs are used to fit the training data of each subset in a supervised way. The effectiveness of the proposed model is demonstrated with actual data taken from the New York ISO and the Western Farmers Electric Cooperative in Oklahoma

  10. Econometric Forecasting Models for Air Traffic Passenger of Indonesia

    Directory of Open Access Journals (Sweden)

    Viktor Suryan

    2017-01-01

    Full Text Available One of the major benefits of the air transport services operating in bigger countries is the fact that they provide a vital social economic linkage. This study is an attempt to establish the determinants of the passenger air traffic in Indonesia. The main objective of the study is to determine the economic variables that affect the number of airline passengers using the econometrics model of projection with an emphasis on the use of panel data and to determine the economic variables that affect the number of airline passengers using the econometrics model of projection with an emphasis on the use of time series data. This research also predicts the upcoming number of air traffic passenger until 2030. Air transportation and the economic activity in a country are interdependent. This work first uses the data at the country level and then at the selected airport level for review. The methodology used in this study has adopted the study for both normal regression and panel data regression techniques. Once all these steps are performed, the final equation is taken up for the forecast of the passenger inflow data in the Indonesian airports. To forecast the same, the forecasted numbers of the GDP (Gross Domestic Product and population (independent variables were chosen as a part of the literature review exercise are used. The result of this study shows the GDP per capita have significant related to a number of passengers which the elasticity 2.23 (time-series data and 1.889 for panel data. The exchange rate variable is unrelated to a number of passengers as shown in the value of elasticity. In addition, the total of population gives small value for the elasticity. Moreover, the number of passengers is also affected by the dummy variable (deregulation. With three scenarios: low, medium and high for GDP per capita, the percentage of growth for total number of air traffic passenger from the year 2015 to 2030 is 199.3%, 205.7%, and 320.9% respectively.

  11. Verification of ECMWF and ECMWF/MACC's global and direct irradiance forecasts with respect to solar electricity production forecasts

    Directory of Open Access Journals (Sweden)

    M. Schroedter-Homscheidt

    2017-02-01

    conversion scheme. Cloudy situations and especially thin ice cloud cases are forecasted much better with respect to biases and RMSE, but large biases are introduced in clear sky cases. When applying the MACC aerosol scheme to include aerosol direct effects, an improvement especially in DNI biases is found for cloud free cases as expected. However, a performance decrease is found for water cloud cases. It is assumed that this is caused by the lack of an explicit modelling of cloud-aerosol interactions, while other meteorological forcings for cloud processes like the temperature field are modified by the aerosols.

  12. Forecasting rain events - Meteorological models or collective intelligence?

    Science.gov (United States)

    Arazy, Ofer; Halfon, Noam; Malkinson, Dan

    2015-04-01

    Collective intelligence is shared (or group) intelligence that emerges from the collective efforts of many individuals. Collective intelligence is the aggregate of individual contributions: from simple collective decision making to more sophisticated aggregations such as in crowdsourcing and peer-production systems. In particular, collective intelligence could be used in making predictions about future events, for example by using prediction markets to forecast election results, stock prices, or the outcomes of sport events. To date, there is little research regarding the use of collective intelligence for prediction of weather forecasting. The objective of this study is to investigate the extent to which collective intelligence could be utilized to accurately predict weather events, and in particular rainfall. Our analyses employ metrics of group intelligence, as well as compare the accuracy of groups' predictions against the predictions of the standard model used by the National Meteorological Services. We report on preliminary results from a study conducted over the 2013-2014 and 2014-2015 winters. We have built a web site that allows people to make predictions on precipitation levels on certain locations. During each competition participants were allowed to enter their precipitation forecasts (i.e. 'bets') at three locations and these locations changed between competitions. A precipitation competition was defined as a 48-96 hour period (depending on the expected weather conditions), bets were open 24-48 hours prior to the competition, and during betting period participants were allowed to change their bets with no limitation. In order to explore the effect of transparency, betting mechanisms varied across study's sites: full transparency (participants able to see each other's bets); partial transparency (participants see the group's average bet); and no transparency (no information of others' bets is made available). Several interesting findings emerged from

  13. Lake Michigan lake trout PCB model forecast post audit

    Science.gov (United States)

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents th...

  14. Forecast model of safety economy contribution rate of China

    Institute of Scientific and Technical Information of China (English)

    LIU Li-jun; SHI Shi-liang

    2005-01-01

    It is the rational and exact computation of the safety economy contribution rate that has the far-reaching realistic meaning to the improvement of society cognition to safety and the investment to the nation safety and the national macro-safety decision-makings. The accurate function between safety inputs and outputs was obtained through a founded econometric model. Then the forecasted safety economy contribution rate is 3.01% and the forecasted ratio between safety inputs and outputs is 1:1.81 in China in 2005. And the model accords with the practice of China and the results are satisfying.

  15. Financial impact of errors in business forecasting: a comparative study of linear models and neural networks

    Directory of Open Access Journals (Sweden)

    Claudimar Pereira da Veiga

    2012-08-01

    Full Text Available The importance of demand forecasting as a management tool is a well documented issue. However, it is difficult to measure costs generated by forecasting errors and to find a model that assimilate the detailed operation of each company adequately. In general, when linear models fail in the forecasting process, more complex nonlinear models are considered. Although some studies comparing traditional models and neural networks have been conducted in the literature, the conclusions are usually contradictory. In this sense, the objective was to compare the accuracy of linear methods and neural networks with the current method used by the company. The results of this analysis also served as input to evaluate influence of errors in demand forecasting on the financial performance of the company. The study was based on historical data from five groups of food products, from 2004 to 2008. In general, one can affirm that all models tested presented good results (much better than the current forecasting method used, with mean absolute percent error (MAPE around 10%. The total financial impact for the company was 6,05% on annual sales.

  16. Modeling of spatial dependence in wind power forecast uncertainty

    DEFF Research Database (Denmark)

    Papaefthymiou, George; Pinson, Pierre

    2008-01-01

    It is recognized today that short-term (up to 2-3 days ahead) probabilistic forecasts of wind power provide forecast users with a paramount information on the uncertainty of expected wind generation. When considering different areas covering a region, they are produced independently, and thus...... neglect the interdependence structure of prediction errors, induced by movement of meteorological fronts, or more generally by inertia of meteorological systems. This issue is addressed here by describing a method that permits to generate interdependent scenarios of wind generation for spatially...... distributed wind power production for specific look-ahead times. The approach is applied to the case of western Denmark split in 5 zones, for a total capacity of more than 2.1 GW. The interest of the methodology for improving the resolution of probabilistic forecasts, for a range of decision-making problems...

  17. Development of S-ARIMA Model for Forecasting Demand in a Beverage Supply Chain

    Science.gov (United States)

    Mircetic, Dejan; Nikolicic, Svetlana; Maslaric, Marinko; Ralevic, Nebojsa; Debelic, Borna

    2016-11-01

    Demand forecasting is one of the key activities in planning the freight flows in supply chains, and accordingly it is essential for planning and scheduling of logistic activities within observed supply chain. Accurate demand forecasting models directly influence the decrease of logistics costs, since they provide an assessment of customer demand. Customer demand is a key component for planning all logistic processes in supply chain, and therefore determining levels of customer demand is of great interest for supply chain managers. In this paper we deal with exactly this kind of problem, and we develop the seasonal Autoregressive IntegratedMoving Average (SARIMA) model for forecasting demand patterns of a major product of an observed beverage company. The model is easy to understand, flexible to use and appropriate for assisting the expert in decision making process about consumer demand in particular periods.

  18. A national econometric forecasting model of the dental sector.

    Science.gov (United States)

    Feldstein, P J; Roehrig, C S

    1980-01-01

    The Econometric Model of the the Dental Sector forecasts a broad range of dental sector variables, including dental care prices; the amount of care produced and consumed; employment of hygienists, dental assistants, and clericals; hours worked by dentists; dental incomes; and number of dentists. These forecasts are based upon values specified by the user for the various factors which help determine the supply an demand for dental care, such as the size of the population, per capita income, the proportion of the population covered by private dental insurance, the cost of hiring clericals and dental assistants, and relevant government policies. In a test of its reliability, the model forecast dental sector behavior quite accurately for the period 1971 through 1977. PMID:7461974

  19. Modelling and Forecasting Stock Price Movements with Serially Dependent Determinants

    Directory of Open Access Journals (Sweden)

    Rasika Yatigammana

    2018-05-01

    Full Text Available The direction of price movements are analysed under an ordered probit framework, recognising the importance of accounting for discreteness in price changes. By extending the work of Hausman et al. (1972 and Yang and Parwada (2012,This paper focuses on improving the forecast performance of the model while infusing a more practical perspective by enhancing flexibility. This is achieved by extending the existing framework to generate short term multi period ahead forecasts for better decision making, whilst considering the serial dependence structure. This approach enhances the flexibility and adaptability of the model to future price changes, particularly targeting risk minimisation. Empirical evidence is provided, based on seven stocks listed on the Australian Securities Exchange (ASX. The prediction success varies between 78 and 91 per cent for in-sample and out-of-sample forecasts for both the short term and long term.

  20. Ionospheric scintillation forecasting model based on NN-PSO technique

    Science.gov (United States)

    Sridhar, M.; Venkata Ratnam, D.; Padma Raju, K.; Sai Praharsha, D.; Saathvika, K.

    2017-09-01

    The forecasting and modeling of ionospheric scintillation effects are crucial for precise satellite positioning and navigation applications. In this paper, a Neural Network model, trained using Particle Swarm Optimization (PSO) algorithm, has been implemented for the prediction of amplitude scintillation index (S4) observations. The Global Positioning System (GPS) and Ionosonde data available at Darwin, Australia (12.4634° S, 130.8456° E) during 2013 has been considered. The correlation analysis between GPS S4 and Ionosonde drift velocities (hmf2 and fof2) data has been conducted for forecasting the S4 values. The results indicate that forecasted S4 values closely follow the measured S4 values for both the quiet and disturbed conditions. The outcome of this work will be useful for understanding the ionospheric scintillation phenomena over low latitude regions.

  1. Evaluation Of Statistical Models For Forecast Errors From The HBV-Model

    Science.gov (United States)

    Engeland, K.; Kolberg, S.; Renard, B.; Stensland, I.

    2009-04-01

    Three statistical models for the forecast errors for inflow to the Langvatn reservoir in Northern Norway have been constructed and tested according to how well the distribution and median values of the forecasts errors fit to the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order autoregressive model was constructed for the forecast errors. The parameters were conditioned on climatic conditions. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order autoregressive model was constructed for the forecast errors. For the last model positive and negative errors were modeled separately. The errors were first NQT-transformed before a model where the mean values were conditioned on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: We wanted a) the median values to be close to the observed values; b) the forecast intervals to be narrow; c) the distribution to be correct. The results showed that it is difficult to obtain a correct model for the forecast errors, and that the main challenge is to account for the auto-correlation in the errors. Model 1 and 2 gave similar results, and the main drawback is that the distributions are not correct. The 95% forecast intervals were well identified, but smaller forecast intervals were over-estimated, and larger intervals were under-estimated. Model 3 gave a distribution that fits better, but the median values do not fit well since the auto-correlation is not properly accounted for. If the 95% forecast interval is of interest, Model 2 is recommended. If the whole distribution is of interest, Model 3 is recommended.

  2. Evaluation of weather forecast systems for storm surge modeling in the Chesapeake Bay

    Science.gov (United States)

    Garzon, Juan L.; Ferreira, Celso M.; Padilla-Hernandez, Roberto

    2018-01-01

    Accurate forecast of sea-level heights in coastal areas depends, among other factors, upon a reliable coupling of a meteorological forecast system to a hydrodynamic and wave system. This study evaluates the predictive skills of the coupled circulation and wind-wave model system (ADCIRC+SWAN) for simulating storm tides in the Chesapeake Bay, forced by six different products: (1) Global Forecast System (GFS), (2) Climate Forecast System (CFS) version 2, (3) North American Mesoscale Forecast System (NAM), (4) Rapid Refresh (RAP), (5) European Center for Medium-Range Weather Forecasts (ECMWF), and (6) the Atlantic hurricane database (HURDAT2). This evaluation is based on the hindcasting of four events: Irene (2011), Sandy (2012), Joaquin (2015), and Jonas (2016). By comparing the simulated water levels to observations at 13 monitoring stations, we have found that the ADCIR+SWAN System forced by the following: (1) the HURDAT2-based system exhibited the weakest statistical skills owing to a noteworthy overprediction of the simulated wind speed; (2) the ECMWF, RAP, and NAM products captured the moment of the peak and moderately its magnitude during all storms, with a correlation coefficient ranging between 0.98 and 0.77; (3) the CFS system exhibited the worst averaged root-mean-square difference (excepting HURDAT2); (4) the GFS system (the lowest horizontal resolution product tested) resulted in a clear underprediction of the maximum water elevation. Overall, the simulations forced by NAM and ECMWF systems induced the most accurate results best accuracy to support water level forecasting in the Chesapeake Bay during both tropical and extra-tropical storms.

  3. Model for Adjustment of Aggregate Forecasts using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Taracena–Sanz L. F.

    2010-07-01

    Full Text Available This research suggests a contribution in the implementation of forecasting models. The proposed model is developed with the aim to fit the projection of demand to surroundings of firms, and this is based on three considerations that cause that in many cases the forecasts of the demand are different from reality, such as: 1 one of the problems most difficult to model in the forecasts is the uncertainty related to the information available; 2 the methods traditionally used by firms for the projection of demand mainly are based on past behavior of the market (historical demand; and 3 these methods do not consider in their analysis the factors that are influencing so that the observed behaviour occurs. Therefore, the proposed model is based on the implementation of Fuzzy Logic, integrating the main variables that affect the behavior of market demand, and which are not considered in the classical statistical methods. The model was applied to a bottling of carbonated beverages, and with the adjustment of the projection of demand a more reliable forecast was obtained.

  4. Research on light rail electric load forecasting based on ARMA model

    Science.gov (United States)

    Huang, Yifan

    2018-04-01

    The article compares a variety of time series models and combines the characteristics of power load forecasting. Then, a light load forecasting model based on ARMA model is established. Based on this model, a light rail system is forecasted. The prediction results show that the accuracy of the model prediction is high.

  5. Time series modelling and forecasting of emergency department overcrowding.

    Science.gov (United States)

    Kadri, Farid; Harrou, Fouzi; Chaabane, Sondès; Tahon, Christian

    2014-09-01

    Efficient management of patient flow (demand) in emergency departments (EDs) has become an urgent issue for many hospital administrations. Today, more and more attention is being paid to hospital management systems to optimally manage patient flow and to improve management strategies, efficiency and safety in such establishments. To this end, EDs require significant human and material resources, but unfortunately these are limited. Within such a framework, the ability to accurately forecast demand in emergency departments has considerable implications for hospitals to improve resource allocation and strategic planning. The aim of this study was to develop models for forecasting daily attendances at the hospital emergency department in Lille, France. The study demonstrates how time-series analysis can be used to forecast, at least in the short term, demand for emergency services in a hospital emergency department. The forecasts were based on daily patient attendances at the paediatric emergency department in Lille regional hospital centre, France, from January 2012 to December 2012. An autoregressive integrated moving average (ARIMA) method was applied separately to each of the two GEMSA categories and total patient attendances. Time-series analysis was shown to provide a useful, readily available tool for forecasting emergency department demand.

  6. Comparison of Conventional and ANN Models for River Flow Forecasting

    Science.gov (United States)

    Jain, A.; Ganti, R.

    2011-12-01

    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. River flow is generally estimated using time series or rainfall-runoff models. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been extensively adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conventional models. In this paper, a comparative study has been carried out for river flow forecasting using the conventional and ANN models. Among the conventional models, multiple linear, and non linear regression, and time series models of auto regressive (AR) type have been developed. Feed forward neural network model structure trained using the back propagation algorithm, a gradient search method, was adopted. The daily river flow data derived from Godavari Basin @ Polavaram, Andhra Pradesh, India have been employed to develop all the models included here. Two inputs, flows at two past time steps, (Q(t-1) and Q(t-2)) were selected using partial auto correlation analysis for forecasting flow at time t, Q(t). A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. It has been found that the regression and AR models performed comparably, and the ANN model performed the best amongst all the models investigated in this study. It is concluded that ANN model should be adopted in real catchments for hydrological modeling and forecasting.

  7. Earthquake and failure forecasting in real-time: A Forecasting Model Testing Centre

    Science.gov (United States)

    Filgueira, Rosa; Atkinson, Malcolm; Bell, Andrew; Main, Ian; Boon, Steven; Meredith, Philip

    2013-04-01

    Across Europe there are a large number of rock deformation laboratories, each of which runs many experiments. Similarly there are a large number of theoretical rock physicists who develop constitutive and computational models both for rock deformation and changes in geophysical properties. Here we consider how to open up opportunities for sharing experimental data in a way that is integrated with multiple hypothesis testing. We present a prototype for a new forecasting model testing centre based on e-infrastructures for capturing and sharing data and models to accelerate the Rock Physicist (RP) research. This proposal is triggered by our work on data assimilation in the NERC EFFORT (Earthquake and Failure Forecasting in Real Time) project, using data provided by the NERC CREEP 2 experimental project as a test case. EFFORT is a multi-disciplinary collaboration between Geoscientists, Rock Physicists and Computer Scientist. Brittle failure of the crust is likely to play a key role in controlling the timing of a range of geophysical hazards, such as volcanic eruptions, yet the predictability of brittle failure is unknown. Our aim is to provide a facility for developing and testing models to forecast brittle failure in experimental and natural data. Model testing is performed in real-time, verifiably prospective mode, in order to avoid selection biases that are possible in retrospective analyses. The project will ultimately quantify the predictability of brittle failure, and how this predictability scales from simple, controlled laboratory conditions to the complex, uncontrolled real world. Experimental data are collected from controlled laboratory experiments which includes data from the UCL Laboratory and from Creep2 project which will undertake experiments in a deep-sea laboratory. We illustrate the properties of the prototype testing centre by streaming and analysing realistically noisy synthetic data, as an aid to generating and improving testing methodologies in

  8. Forecasting optimal solar energy supply in Jiangsu Province (China): a systematic approach using hybrid of weather and energy forecast models.

    Science.gov (United States)

    Zhao, Xiuli; Asante Antwi, Henry; Yiranbon, Ethel

    2014-01-01

    The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, "least-cost," and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor.

  9. Forecasting Optimal Solar Energy Supply in Jiangsu Province (China: A Systematic Approach Using Hybrid of Weather and Energy Forecast Models

    Directory of Open Access Journals (Sweden)

    Xiuli Zhao

    2014-01-01

    Full Text Available The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, “least-cost,” and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor.

  10. Adaptation of Mesoscale Weather Models to Local Forecasting

    Science.gov (United States)

    Manobianco, John T.; Taylor, Gregory E.; Case, Jonathan L.; Dianic, Allan V.; Wheeler, Mark W.; Zack, John W.; Nutter, Paul A.

    2003-01-01

    Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes

  11. Intercomparison of different operational oceanographic forecast products in the CMEMS IBI area

    Science.gov (United States)

    Lorente, Pablo; Sotillo, Marcos G.; Dabrowski, Tomasz; Amo-Baladrón, Arancha; Aznar, Roland; De Pascual, Alvaro; Levier, Bruno; Bowyer, Peter; Cossarini, Gianpiero; Salon, Stefano; Tonani, Marina; Alvarez-Fanjul, Enrique

    2017-04-01

    The development of skill assessment software packages and dedicated web applications is a relatively novel theme in operational oceanography. Within the CMEMS IBI-MFC, the quality of IBI (Iberia-Biscay-Ireland) forecast products is assessed by means of NARVAL (North Atlantic Regional VALidation) web-based tool. The validation of IBI against independent in situ and remote-sensing measurements is routinely conducted to evaluate model's veracity and prognostic capabilities. Noticeable efforts are in progress to define meaningful skill scores and statistical metrics to quantitatively assess the quality and reliability of the IBI model solution. Likewise, the IBI-MFC compares the IBI forecast products with other model solutions by setting up specific intercomparison exercises on overlapping areas at diverse timescales. In this context, NARVAL web tool already includes a specific module to evaluate strengths and weaknesses of IBI versus other CMEMS operational ocean forecasting systems (OOFSs). In particular, the IBI physical ocean solution is compared against the CMEMS MED and NWS OOFSs. These CMEMS regional services delivered for the Mediterranean and the North West Shelves include data assimilation schemes in their respective operational chains and generate analogous ocean forecast products to the IBI ones. A number of physical parameters (i.e. sea surface temperature, salinity and current velocities) are evaluated through NARVAL on a daily basis in the overlapping areas existing between these three regional systems. NARVAL is currently being updated in order to extend this intercomparison of ocean model parameters to the biogeochemical solutions provided by the aforementioned OOFSs. More specifically, the simulated chlorophyll concentration is evaluated over several subregions of particular concern by using as benchmark the CMEMS satellite-derived observational products. In addition to this IBI comparison against other regional CMEMS products on overlapping areas, a

  12. Antibiotic use in Brazilian broiler and pig production: an indication and forecast of trends

    NARCIS (Netherlands)

    Bokma-Bakker, M.H.; Bondt, N.; Neijenhuis, F.; Mevius, D.J.; Ruiter, S.J.M.

    2014-01-01

    To gain insight in antibiotic use in relation to imported products the current use of antibiotics in pork and broiler production in Brazil are identified and trend forecasting of antibiotic use in the coming 3-5 years is performed.

  13. A general improved methodology to forecasting future oil production: Application to the UK and Norway

    International Nuclear Information System (INIS)

    Fiévet, L.; Forró, Z.; Cauwels, P.; Sornette, D.

    2015-01-01

    We present a new Monte-Carlo methodology to forecast the crude oil production of Norway and the U.K. based on a two-step process, (i) the nonlinear extrapolation of the current/past performances of individual oil fields and (ii) a stochastic model of the frequency of future oil field discoveries. Compared with the standard methodology that tends to underestimate remaining oil reserves, our method gives a better description of future oil production, as validated by our back-tests starting in 2008. Specifically, we predict remaining reserves extractable until 2030 to be 5.7 ± 0.3 billion barrels for Norway and 3.0 ± 0.3 billion barrels for the UK, which are respectively 45% and 66% above the predictions using an extrapolation of aggregate production. - Highlights: • Two step methodology to forecast a countries oil production. • Nonlinear extrapolation of the performance of individual fields. • Stochastic model of the frequency of future discoveries. • Backtest starting in 2008 of the methodology. • Improvement upon standard extrapolation of aggregate production

  14. A systematic review of health manpower forecasting models.

    NARCIS (Netherlands)

    Martins-Coelho, G.; Greuningen, M. van; Barros, H.; Batenburg, R.

    2011-01-01

    Context: Health manpower planning (HMP) aims at matching health manpower (HM) supply to the population’s health requirements. To achieve this, HMP needs information on future HM supply and requirement (S&R). This is estimated by several different forecasting models (FMs). In this paper, we review

  15. Inflation, Forecast Intervals and Long Memory Regression Models

    NARCIS (Netherlands)

    C.S. Bos (Charles); Ph.H.B.F. Franses (Philip Hans); M. Ooms (Marius)

    2001-01-01

    textabstractWe examine recursive out-of-sample forecasting of monthly postwar U.S. core inflation and log price levels. We use the autoregressive fractionally integrated moving average model with explanatory variables (ARFIMAX). Our analysis suggests a significant explanatory power of leading

  16. Inflation, Forecast Intervals and Long Memory Regression Models

    NARCIS (Netherlands)

    Ooms, M.; Bos, C.S.; Franses, P.H.

    2003-01-01

    We examine recursive out-of-sample forecasting of monthly postwar US core inflation and log price levels. We use the autoregressive fractionally integrated moving average model with explanatory variables (ARFIMAX). Our analysis suggests a significant explanatory power of leading indicators

  17. A stochastic model for forecast consumption in master scheduling

    NARCIS (Netherlands)

    Weeda, P.J.; Weeda, P.J.

    1994-01-01

    This paper describes a stochastic model for the reduction of the initial forecast in the Master Schedule (MS) of an MRP system during progress of time by the acceptance of customer orders. Results are given for the expectation and variance of the number of yet unknown deliveries as a function of

  18. Development of a forecast model for global air traffic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Martin

    2012-07-01

    The thesis describes the methodology and results of a simulation model that quantifies fuel consumption and emissions of civil air traffic. Besides covering historical emissions, the model aims at forecasting emissions in the medium-term future. For this purpose, simulation models of aircraft and engine types are used in combination with a database of global flight movements and assumptions about traffic growth, fleet rollover and operational aspects. Results from an application of the model include emissions of scheduled air traffic for the years 2000 to 2010 as well as forecasted emissions until the year 2030. In a baseline scenario of the forecast, input assumptions (e.g. traffic growth rates) are in line with predictions by the aircraft industry. Considering the effects of advanced technologies of the short-term and medium-term future, the forecast focusses on fuel consumption and emissions of nitric oxides. Calculations for historical air traffic additionally cover emissions of carbon monoxide, unburned hydrocarbons and soot. Results are validated against reference data including studies by the International Civil Aviation Organization (ICAO) and simulation results from international research projects. (orig.)

  19. Development of Parallel Code for the Alaska Tsunami Forecast Model

    Science.gov (United States)

    Bahng, B.; Knight, W. R.; Whitmore, P.

    2014-12-01

    The Alaska Tsunami Forecast Model (ATFM) is a numerical model used to forecast propagation and inundation of tsunamis generated by earthquakes and other means in both the Pacific and Atlantic Oceans. At the U.S. National Tsunami Warning Center (NTWC), the model is mainly used in a pre-computed fashion. That is, results for hundreds of hypothetical events are computed before alerts, and are accessed and calibrated with observations during tsunamis to immediately produce forecasts. ATFM uses the non-linear, depth-averaged, shallow-water equations of motion with multiply nested grids in two-way communications between domains of each parent-child pair as waves get closer to coastal waters. Even with the pre-computation the task becomes non-trivial as sub-grid resolution gets finer. Currently, the finest resolution Digital Elevation Models (DEM) used by ATFM are 1/3 arc-seconds. With a serial code, large or multiple areas of very high resolution can produce run-times that are unrealistic even in a pre-computed approach. One way to increase the model performance is code parallelization used in conjunction with a multi-processor computing environment. NTWC developers have undertaken an ATFM code-parallelization effort to streamline the creation of the pre-computed database of results with the long term aim of tsunami forecasts from source to high resolution shoreline grids in real time. Parallelization will also permit timely regeneration of the forecast model database with new DEMs; and, will make possible future inclusion of new physics such as the non-hydrostatic treatment of tsunami propagation. The purpose of our presentation is to elaborate on the parallelization approach and to show the compute speed increase on various multi-processor systems.

  20. Gas analysis modeling system forecast for the Energy Modeling Forum North American Natural Gas Market Study

    International Nuclear Information System (INIS)

    Mariner-Volpe, B.; Trapmann, W.

    1989-01-01

    The Gas Analysis Modeling System is a large computer-based model for analyzing the complex US natural gas industry, including production, transportation, and consumption activities. The model was developed and first used in 1982 after the passage of the NGPA, which initiated a phased decontrol of most natural gas prices at the wellhead. The categorization of gas under the NGPA and the contractual nature of the natural gas market, which existed at the time, were primary factors in the development of the basic structure of the model. As laws and regulations concerning the natural gas market have changed, the model has evolved accordingly. Recent increases in competition in the wellhead market have also led to changes in the model. GAMS produces forecasts of natural gas production, consumption, and prices annually through 2010. It is an engineering-economic model that incorporates several different mathematical structures in order to represent the interaction of the key groups involved in the natural gas market. GAMS has separate supply and demand components that are equilibrated for each year of the forecast by means of a detailed transaction network

  1. Spatio‐temporal analysis and modeling of short‐term wind power forecast errors

    DEFF Research Database (Denmark)

    Tastu, Julija; Pinson, Pierre; Kotwa, Ewelina

    2011-01-01

    of small size like western Denmark, significant correlation between the various zones is observed for time delays up to 5 h. Wind direction is shown to play a crucial role, while the effect of wind speed is more complex. Nonlinear models permitting capture of the interdependence structure of wind power......Forecasts of wind power production are increasingly being used in various management tasks. So far, such forecasts and related uncertainty information have usually been generated individually for a given site of interest (either a wind farm or a group of wind farms), without properly accounting...

  2. An improved market penetration model for wind energy technology forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P D [Helsinki Univ. of Technology, Espoo (Finland). Advanced Energy Systems

    1996-12-31

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  3. An improved market penetration model for wind energy technology forecasting

    International Nuclear Information System (INIS)

    Lund, P.D.

    1995-01-01

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  4. Energy Forecasting Models Within the Department of the Navy.

    Science.gov (United States)

    1982-06-01

    standing the climatic conditions responsible for the results. Both models have particular advantages in parti- cular applications and will be examined...and moving average processes. A similar notation for a model with seasonality . .- considerations will be ARIMA (p d j)(P Q) 3=12, where the upper...AD-A12l 950 ENERGY FORECASTING MODELS WITHIN THE DEPARTMENT OF THE 1/4 NAYY(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA L &I BUTTOIPH JUN 82

  5. An improved market penetration model for wind energy technology forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P.D. [Helsinki Univ. of Technology, Espoo (Finland). Advanced Energy Systems

    1995-12-31

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  6. The Challenge of Forecasting Metropolitan Growth: Urban Characteristics Based Models versus Regional Dummy Based Models

    OpenAIRE

    NA

    2005-01-01

    This paper presents a study of errors in forecasting the population of Metropolitan Statistical Areas and the Primary MSAs of Consolidated Metropolitan Statistical Areas and New England MAs. The forecasts are for the year 2000 and are based on a semi-structural model estimated by Mills and Lubelle using 1970 to 1990 census data on population, employment and relative real wages. This model allows the testing of regional effects on population and employment growth. The year 2000 forecasts are f...

  7. Forecasting performances of three automated modelling techniques during the economic crisis 2007-2009

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    2014-01-01

    . The performances of these three model selectors are compared by looking at the accuracy of the forecasts of the estimated neural network models. We apply the neural network model and the three modelling techniques to monthly industrial production and unemployment series from the G7 countries and the four......In this work we consider the forecasting of macroeconomic variables during an economic crisis. The focus is on a specific class of models, the so-called single hidden-layer feed-forward autoregressive neural network models. What makes these models interesting in the present context is the fact...... that they form a class of universal approximators and may be expected to work well during exceptional periods such as major economic crises. Neural network models are often difficult to estimate, and we follow the idea of White (2006) of transforming the specification and nonlinear estimation problem...

  8. Forecast combinations

    OpenAIRE

    Aiolfi, Marco; Capistrán, Carlos; Timmermann, Allan

    2010-01-01

    We consider combinations of subjective survey forecasts and model-based forecasts from linear and non-linear univariate specifications as well as multivariate factor-augmented models. Empirical results suggest that a simple equal-weighted average of survey forecasts outperform the best model-based forecasts for a majority of macroeconomic variables and forecast horizons. Additional improvements can in some cases be gained by using a simple equal-weighted average of survey and model-based fore...

  9. Regional forecasting with global atmospheric models

    International Nuclear Information System (INIS)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    The scope of the report is to present the results of the fourth year's work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals

  10. Initial assessment of a multi-model approach to spring flood forecasting in Sweden

    Science.gov (United States)

    Olsson, J.; Uvo, C. B.; Foster, K.; Yang, W.

    2015-06-01

    Hydropower is a major energy source in Sweden and proper reservoir management prior to the spring flood onset is crucial for optimal production. This requires useful forecasts of the accumulated discharge in the spring flood period (i.e. the spring-flood volume, SFV). Today's SFV forecasts are generated using a model-based climatological ensemble approach, where time series of precipitation and temperature from historical years are used to force a calibrated and initialised set-up of the HBV model. In this study, a number of new approaches to spring flood forecasting, that reflect the latest developments with respect to analysis and modelling on seasonal time scales, are presented and evaluated. Three main approaches, represented by specific methods, are evaluated in SFV hindcasts for three main Swedish rivers over a 10-year period with lead times between 0 and 4 months. In the first approach, historically analogue years with respect to the climate in the period preceding the spring flood are identified and used to compose a reduced ensemble. In the second, seasonal meteorological ensemble forecasts are used to drive the HBV model over the spring flood period. In the third approach, statistical relationships between SFV and the large-sale atmospheric circulation are used to build forecast models. None of the new approaches consistently outperform the climatological ensemble approach, but for specific locations and lead times improvements of 20-30 % are found. When combining all forecasts in a weighted multi-model approach, a mean improvement over all locations and lead times of nearly 10 % was indicated. This demonstrates the potential of the approach and further development and optimisation into an operational system is ongoing.

  11. Verifying Operational and Developmental Air Force Weather Cloud Analysis and Forecast Products Using Lidar Data from Department of Energy Atmospheric Radiation Measurement (ARM) Sites

    Science.gov (United States)

    Hildebrand, E. P.

    2017-12-01

    Air Force Weather has developed various cloud analysis and forecast products designed to support global Department of Defense (DoD) missions. A World-Wide Merged Cloud Analysis (WWMCA) and short term Advected Cloud (ADVCLD) forecast is generated hourly using data from 16 geostationary and polar-orbiting satellites. Additionally, WWMCA and Numerical Weather Prediction (NWP) data are used in a statistical long-term (out to five days) cloud forecast model known as the Diagnostic Cloud Forecast (DCF). The WWMCA and ADVCLD are generated on the same polar stereographic 24 km grid for each hemisphere, whereas the DCF is generated on the same grid as its parent NWP model. When verifying the cloud forecast models, the goal is to understand not only the ability to detect cloud, but also the ability to assign it to the correct vertical layer. ADVCLD and DCF forecasts traditionally have been verified using WWMCA data as truth, but this might over-inflate the performance of those models because WWMCA also is a primary input dataset for those models. Because of this, in recent years, a WWMCA Reanalysis product has been developed, but this too is not a fully independent dataset. This year, work has been done to incorporate data from external, independent sources to verify not only the cloud forecast products, but the WWMCA data itself. One such dataset that has been useful for examining the 3-D performance of the cloud analysis and forecast models is Atmospheric Radiation Measurement (ARM) data from various sites around the globe. This presentation will focus on the use of the Department of Energy (DoE) ARM data to verify Air Force Weather cloud analysis and forecast products. Results will be presented to show relative strengths and weaknesses of the analyses and forecasts.

  12. Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system

    International Nuclear Information System (INIS)

    Fang, Tingting; Lahdelma, Risto

    2016-01-01

    Highlights: • Social factor is considered for the linear regression models besides weather file. • Simultaneously optimize all the coefficients for linear regression models. • SARIMA combined with linear regression is used to forecast the heat demand. • The accuracy for both linear regression and time series models are evaluated. - Abstract: Forecasting heat demand is necessary for production and operation planning of district heating (DH) systems. In this study we first propose a simple regression model where the hourly outdoor temperature and wind speed forecast the heat demand. Weekly rhythm of heat consumption as a social component is added to the model to significantly improve the accuracy. The other type of model is the seasonal autoregressive integrated moving average (SARIMA) model with exogenous variables as a combination to take weather factors, and the historical heat consumption data as depending variables. One outstanding advantage of the model is that it peruses the high accuracy for both long-term and short-term forecast by considering both exogenous factors and time series. The forecasting performance of both linear regression models and time series model are evaluated based on real-life heat demand data for the city of Espoo in Finland by out-of-sample tests for the last 20 full weeks of the year. The results indicate that the proposed linear regression model (T168h) using 168-h demand pattern with midweek holidays classified as Saturdays or Sundays gives the highest accuracy and strong robustness among all the tested models based on the tested forecasting horizon and corresponding data. Considering the parsimony of the input, the ease of use and the high accuracy, the proposed T168h model is the best in practice. The heat demand forecasting model can also be developed for individual buildings if automated meter reading customer measurements are available. This would allow forecasting the heat demand based on more accurate heat consumption

  13. Forecasting wind-driven wildfires using an inverse modelling approach

    Directory of Open Access Journals (Sweden)

    O. Rios

    2014-06-01

    Full Text Available A technology able to rapidly forecast wildfire dynamics would lead to a paradigm shift in the response to emergencies, providing the Fire Service with essential information about the ongoing fire. This paper presents and explores a novel methodology to forecast wildfire dynamics in wind-driven conditions, using real-time data assimilation and inverse modelling. The forecasting algorithm combines Rothermel's rate of spread theory with a perimeter expansion model based on Huygens principle and solves the optimisation problem with a tangent linear approach and forward automatic differentiation. Its potential is investigated using synthetic data and evaluated in different wildfire scenarios. The results show the capacity of the method to quickly predict the location of the fire front with a positive lead time (ahead of the event in the order of 10 min for a spatial scale of 100 m. The greatest strengths of our method are lightness, speed and flexibility. We specifically tailor the forecast to be efficient and computationally cheap so it can be used in mobile systems for field deployment and operativeness. Thus, we put emphasis on producing a positive lead time and the means to maximise it.

  14. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  15. Short-Term Power Plant GHG Emissions Forecasting Model

    International Nuclear Information System (INIS)

    Vidovic, D.

    2016-01-01

    In 2010, the share of greenhouse gas (GHG) emissions from power generation in the total emissions at the global level was about 25 percent. From January 1st, 2013 Croatian facilities have been involved in the European Union Emissions Trading System (EU ETS). The share of the ETS sector in total GHG emissions in Croatia in 2012 was about 30 percent, where power plants and heat generation facilities contributed to almost 50 percent. Since 2013 power plants are obliged to purchase all emission allowances. The paper describes the short-term climate forecasting model of greenhouse gas emissions from power plants while covering the daily load diagram of the system. Forecasting is done on an hourly domain typically for one day, it is possible and more days ahead. Forecasting GHG emissions in this way would enable power plant operators to purchase additional or sell surplus allowances on the market at the time. Example that describes the operation of the above mentioned forecasting model is given at the end of the paper.(author).

  16. Towards operational modeling and forecasting of the Iberian shelves ecosystem.

    Directory of Open Access Journals (Sweden)

    Martinho Marta-Almeida

    Full Text Available There is a growing interest on physical and biogeochemical oceanic hindcasts and forecasts from a wide range of users and businesses. In this contribution we present an operational biogeochemical forecast system for the Portuguese and Galician oceanographic regions, where atmospheric, hydrodynamic and biogeochemical variables are integrated. The ocean model ROMS, with a horizontal resolution of 3 km, is forced by the atmospheric model WRF and includes a Nutrients-Phytoplankton-Zooplankton-Detritus biogeochemical module (NPZD. In addition to oceanographic variables, the system predicts the concentration of nitrate, phytoplankton, zooplankton and detritus (mmol N m(-3. Model results are compared against radar currents and remote sensed SST and chlorophyll. Quantitative skill assessment during a summer upwelling period shows that our modelling system adequately represents the surface circulation over the shelf including the observed spatial variability and trends of temperature and chlorophyll concentration. Additionally, the skill assessment also shows some deficiencies like the overestimation of upwelling circulation and consequently, of the duration and intensity of the phytoplankton blooms. These and other departures from the observations are discussed, their origins identified and future improvements suggested. The forecast system is the first of its kind in the region and provides free online distribution of model input and output, as well as comparisons of model results with satellite imagery for qualitative operational assessment of model skill.

  17. A state-dependent model for inflation forecasting

    OpenAIRE

    Andrea Stella; James H. Stock

    2012-01-01

    We develop a parsimonious bivariate model of inflation and unemployment that allows for persistent variation in trend inflation and the NAIRU. The model, which consists of five unobserved components (including the trends) with stochastic volatility, implies a time-varying VAR for changes in the rates of inflation and unemployment. The implied backwards-looking Phillips curve has a time-varying slope that is steeper in the 1970s than in the 1990s. Pseudo out-of-sample forecasting experiments i...

  18. COMBINING LONG MEMORY AND NONLINEAR MODEL OUTPUTS FOR INFLATION FORECAST

    OpenAIRE

    Heri Kuswanto; Irhamah Alimuhajin; Laylia Afidah

    2014-01-01

    Long memory and nonlinearity have been proven as two models that are easily to be mistaken. In other words, nonlinearity is a strong candidate of spurious long memory by introducing a certain degree of fractional integration that lies in the region of long memory. Indeed, nonlinear process belongs to short memory with zero integration order. The idea of the forecast is to obtain the future condition with minimum error. Some researches argued that no matter what the model is, the important thi...

  19. Production forecasting and economic evaluation of horizontal wells completed in natural fractured reservoirs

    International Nuclear Information System (INIS)

    Evans, R. D.

    1996-01-01

    A technique for optimizing recovery of hydrocarbons from naturally fractured reservoirs using horizontal well technology was proposed. The technique combines inflow performance analysis, production forecasting and economic considerations, and is based on material balance analysis and linear approximations of reservoir fluid properties as functions of reservoir pressure. An economic evaluation model accounting for the time value of cash flow, interest and inflation rates, is part of the package. Examples of using the technique have been demonstrated. The method is also applied to a gas well producing from a horizontal wellbore intersecting discrete natural fractures. 11 refs., 2 tabs,. 10 figs

  20. Results of verification and investigation of wind velocity field forecast. Verification of wind velocity field forecast model

    International Nuclear Information System (INIS)

    Ogawa, Takeshi; Kayano, Mitsunaga; Kikuchi, Hideo; Abe, Takeo; Saga, Kyoji

    1995-01-01

    In Environmental Radioactivity Research Institute, the verification and investigation of the wind velocity field forecast model 'EXPRESS-1' have been carried out since 1991. In fiscal year 1994, as the general analysis, the validity of weather observation data, the local features of wind field, and the validity of the positions of monitoring stations were investigated. The EXPRESS which adopted 500 m mesh so far was improved to 250 m mesh, and the heightening of forecast accuracy was examined, and the comparison with another wind velocity field forecast model 'SPEEDI' was carried out. As the results, there are the places where the correlation with other points of measurement is high and low, and it was found that for the forecast of wind velocity field, by excluding the data of the points with low correlation or installing simplified observation stations to take their data in, the forecast accuracy is improved. The outline of the investigation, the general analysis of weather observation data and the improvements of wind velocity field forecast model and forecast accuracy are reported. (K.I.)

  1. New Models for Forecasting Enrollments: Fuzzy Time Series and Neural Network Approaches.

    Science.gov (United States)

    Song, Qiang; Chissom, Brad S.

    Since university enrollment forecasting is very important, many different methods and models have been proposed by researchers. Two new methods for enrollment forecasting are introduced: (1) the fuzzy time series model; and (2) the artificial neural networks model. Fuzzy time series has been proposed to deal with forecasting problems within a…

  2. Model Uncertainty and Exchange Rate Forecasting

    NARCIS (Netherlands)

    Kouwenberg, R.; Markiewicz, A.; Verhoeks, R.; Zwinkels, R.C.J.

    2017-01-01

    Exchange rate models with uncertain and incomplete information predict that investors focus on a small set of fundamentals that changes frequently over time. We design a model selection rule that captures the current set of fundamentals that best predicts the exchange rate. Out-of-sample tests show

  3. A forecast comparison of volatility models

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Lunde, Asger

    2005-01-01

    We compare 330 ARCH-type models in terms of their ability to describe the conditional variance. The models are compared out-of-sample using DM-$ exchange rate data and IBM return data, where the latter is based on a new data set of realized variance. We find no evidence that a GARCH(1,1) is outpe......We compare 330 ARCH-type models in terms of their ability to describe the conditional variance. The models are compared out-of-sample using DM-$ exchange rate data and IBM return data, where the latter is based on a new data set of realized variance. We find no evidence that a GARCH(1...... snooping (RC). Our empirical results show that the RC lacks power to an extent that makes it unable to distinguish "good" and "bad" models in our analysis....

  4. Regional forecasting with global atmospheric models

    International Nuclear Information System (INIS)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year's work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals

  5. Modelling and forecasting monthly swordfish catches in the Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    Konstantinos I. Stergiou

    2003-04-01

    Full Text Available In this study, we used the X-11 census technique for modelling and forecasting the monthly swordfish (Xiphias gladius catches in the Greek Seas during 1982-1996 and 1997 respectively, using catches reported by the National Statistical Service of Greece (NSSG. Forecasts built with X-11 were also compared with those derived from ARIMA andWinter’s exponential smoothing (WES models. The X-11 method captured the features of the study series and outperformed the other two methods, in terms of both fitting and forecasting performance, for all the accuracy measures used. Thus, with the exception of October, November and December 1997, when the corresponding absolute percentage error(APE values were very high (as high as 178.6% because of the low level of the catches, monthly catches during the remaining months of 1997 were predicted accurately, with a mean APE of 12.5%. In contrast, the mean APE values of the other two methods for the same months were higher (ARIMA: 14.6%; WES: 16.6%. The overall good performance of X-11 andthe fact that it provides an insight into the various components (i.e. the seasonal, trend-cycle and irregular components of the time series of interest justify its use in fisheries research. The basic features of the swordfish catches revealed by the application of the X-11 method, the effect of the length of the forecasting horizon on forecasting accuracy and the accuracy of the catches reported by NSSG are also discussed.

  6. Smart Irrigation From Soil Moisture Forecast Using Satellite And Hydro -Meteorological Modelling

    Science.gov (United States)

    Corbari, Chiara; Mancini, Marco; Ravazzani, Giovanni; Ceppi, Alessandro; Salerno, Raffaele; Sobrino, Josè

    2017-04-01

    Increased water demand and climate change impacts have recently enhanced the need to improve water resources management, even in those areas which traditionally have an abundant supply of water. The highest consumption of water is devoted to irrigation for agricultural production, and so it is in this area that efforts have to be focused to study possible interventions. The SIM project funded by EU in the framework of the WaterWorks2014 - Water Joint Programming Initiative aims at developing an operational tool for real-time forecast of crops irrigation water requirements to support parsimonious water management and to optimize irrigation scheduling providing real-time and forecasted soil moisture behavior at high spatial and temporal resolutions with forecast horizons from few up to thirty days. This study discusses advances in coupling satellite driven soil water balance model and meteorological forecast as support for precision irrigation use comparing different case studies in Italy, in the Netherlands, in China and Spain, characterized by different climatic conditions, water availability, crop types and irrigation techniques and water distribution rules. Herein, the applications in two operative farms in vegetables production in the South of Italy where semi-arid climatic conditions holds, two maize fields in Northern Italy in a more water reach environment with flood irrigation will be presented. This system combines state of the art mathematical models and new technologies for environmental monitoring, merging ground observed data with Earth observations. Discussion on the methodology approach is presented, comparing for a reanalysis periods the forecast system outputs with observed soil moisture and crop water needs proving the reliability of the forecasting system and its benefits. The real-time visualization of the implemented system is also presented through web-dashboards.

  7. Forecasting models for national economic planning

    CERN Document Server

    Heesterman, A R G

    1972-01-01

    This book is about the specification of linear econometric models, and for this reason some important related fields have been deliberately omitted. I did not want to discuss the problems of parameter-estimation, at least not in any detail, as there are other books on these problems written by specialized statisticians. This book is about the models them­ selves and macro-economic models in particular. A second related sub­ ject is the policy decision that can be made with the help of a model. While I did write a chapter on policy decisions, I limited myself to some extent because of my views on planning as such. The logical approach to this problem is in terms of mathematical programming, but our models and our ideas about the policies we want are too crude for its effective utilisation. A realistic formulation of the problem should involve non­ linearities in an essential way, the models I consider (and most existing models) are linear. At the present state of econometrics, I do not really believe in suc...

  8. Stochastic model of forecasting spare parts demand

    OpenAIRE

    Ivan S. Milojević; Rade V. Guberinić

    2012-01-01

    If demand is known for the whole planning period (complete information), then this type of demand or a supply system is deterministic. In the simplest cases, the demand per time unit is constant. If demand levels change over time following a precisely determined and pre-known principle, this type of demand is also classified as deterministic. This quality of demand is very rare. In most cases demand is the product of a process, for example TMS maintenance, whose progression cannot be predicte...

  9. Daily reservoir inflow forecasting combining QPF into ANNs model

    Science.gov (United States)

    Zhang, Jun; Cheng, Chun-Tian; Liao, Sheng-Li; Wu, Xin-Yu; Shen, Jian-Jian

    2009-01-01

    Daily reservoir inflow predictions with lead-times of several days are essential to the operational planning and scheduling of hydroelectric power system. The demand for quantitative precipitation forecasting (QPF) is increasing in hydropower operation with the dramatic advances in the numerical weather prediction (NWP) models. This paper presents a simple and an effective algorithm for daily reservoir inflow predictions which solicits the observed precipitation, forecasted precipitation from QPF as predictors and discharges in following 1 to 6 days as predicted targets for multilayer perceptron artificial neural networks (MLP-ANNs) modeling. An improved error back-propagation algorithm with self-adaptive learning rate and self-adaptive momentum coefficient is used to make the supervised training procedure more efficient in both time saving and search optimization. Several commonly used error measures are employed to evaluate the performance of the proposed model and the results, compared with that of ARIMA model, show that the proposed model is capable of obtaining satisfactory forecasting not only in goodness of fit but also in generalization. Furthermore, the presented algorithm is integrated into a practical software system which has been severed for daily inflow predictions with lead-times varying from 1 to 6 days of more than twenty reservoirs operated by the Fujian Province Grid Company, China.

  10. Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models

    Directory of Open Access Journals (Sweden)

    Shelton Peiris

    2017-12-01

    Full Text Available This paper considers a flexible class of time series models generated by Gegenbauer polynomials incorporating the long memory in stochastic volatility (SV components in order to develop the General Long Memory SV (GLMSV model. We examine the corresponding statistical properties of this model, discuss the spectral likelihood estimation and investigate the finite sample properties via Monte Carlo experiments. We provide empirical evidence by applying the GLMSV model to three exchange rate return series and conjecture that the results of out-of-sample forecasts adequately confirm the use of GLMSV model in certain financial applications.

  11. Statistical post-processing of seasonal multi-model forecasts: Why is it so hard to beat the multi-model mean?

    Science.gov (United States)

    Siegert, Stefan

    2017-04-01

    Initialised climate forecasts on seasonal time scales, run several months or even years ahead, are now an integral part of the battery of products offered by climate services world-wide. The availability of seasonal climate forecasts from various modeling centres gives rise to multi-model ensemble forecasts. Post-processing such seasonal-to-decadal multi-model forecasts is challenging 1) because the cross-correlation structure between multiple models and observations can be complicated, 2) because the amount of training data to fit the post-processing parameters is very limited, and 3) because the forecast skill of numerical models tends to be low on seasonal time scales. In this talk I will review new statistical post-processing frameworks for multi-model ensembles. I will focus particularly on Bayesian hierarchical modelling approaches, which are flexible enough to capture commonly made assumptions about collective and model-specific biases of multi-model ensembles. Despite the advances in statistical methodology, it turns out to be very difficult to out-perform the simplest post-processing method, which just recalibrates the multi-model ensemble mean by linear regression. I will discuss reasons for this, which are closely linked to the specific characteristics of seasonal multi-model forecasts. I explore possible directions for improvements, for example using informative priors on the post-processing parameters, and jointly modelling forecasts and observations.

  12. Benefits of spatiotemporal modeling for short-term wind power forecasting at both individual and aggregated levels

    DEFF Research Database (Denmark)

    Lenzi, Amanda; Steinsland, Ingelin; Pinson, Pierre

    2018-01-01

    The share of wind energy in total installed power capacity has grown rapidly in recent years. Producing accurate and reliable forecasts of wind power production, together with a quantification of the uncertainty, is essential to optimally integrate wind energy into power systems. We build...... spatiotemporal models for wind power generation and obtain full probabilistic forecasts from 15 min to 5 h ahead. Detailed analyses of forecast performances on individual wind farms and aggregated wind power are provided. The predictions from our models are evaluated on a data set from wind farms in western...... Denmark using a sliding window approach, for which estimation is performed using only the last available measurements. The case study shows that it is important to have a spatiotemporal model instead of a temporal one to achieve calibrated aggregated forecasts. Furthermore, spatiotemporal models have...

  13. A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate

    Directory of Open Access Journals (Sweden)

    Laila A. Puntel

    2018-04-01

    Full Text Available Historically crop models have been used to evaluate crop yield responses to nitrogen (N rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1 evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages; (2 determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3 quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time (R2 = 0.77 using 35-years of historical weather was close to the observed and predicted yield at maturity (R2 = 0.81. Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively. At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR in 62% of the cases examined (n = 31 with an average error range of ±38 kg N ha−1 (22% of the average N rate. Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather

  14. A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate

    Science.gov (United States)

    Puntel, Laila A.; Sawyer, John E.; Barker, Daniel W.; Thorburn, Peter J.; Castellano, Michael J.; Moore, Kenneth J.; VanLoocke, Andrew; Heaton, Emily A.; Archontoulis, Sotirios V.

    2018-01-01

    Historically crop models have been used to evaluate crop yield responses to nitrogen (N) rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM) calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation) combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1) evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR) predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages); (2) determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3) quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time (R2 = 0.77) using 35-years of historical weather was close to the observed and predicted yield at maturity (R2 = 0.81). Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively). At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR) in 62% of the cases examined (n = 31) with an average error range of ±38 kg N ha−1 (22% of the average N rate). Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather years

  15. A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate.

    Science.gov (United States)

    Puntel, Laila A; Sawyer, John E; Barker, Daniel W; Thorburn, Peter J; Castellano, Michael J; Moore, Kenneth J; VanLoocke, Andrew; Heaton, Emily A; Archontoulis, Sotirios V

    2018-01-01

    Historically crop models have been used to evaluate crop yield responses to nitrogen (N) rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM) calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation) combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1) evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR) predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages); (2) determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3) quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time ( R 2 = 0.77) using 35-years of historical weather was close to the observed and predicted yield at maturity ( R 2 = 0.81). Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively). At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR) in 62% of the cases examined ( n = 31) with an average error range of ±38 kg N ha -1 (22% of the average N rate). Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather

  16. Modeling and forecasting natural gas demand in Bangladesh

    International Nuclear Information System (INIS)

    Wadud, Zia; Dey, Himadri S.; Kabir, Md. Ashfanoor; Khan, Shahidul I.

    2011-01-01

    Natural gas is the major indigenous source of energy in Bangladesh and accounts for almost one-half of all primary energy used in the country. Per capita and total energy use in Bangladesh is still very small, and it is important to understand how energy, and natural gas demand will evolve in the future. We develop a dynamic econometric model to understand the natural gas demand in Bangladesh, both in the national level, and also for a few sub-sectors. Our demand model shows large long run income elasticity - around 1.5 - for aggregate demand for natural gas. Forecasts into the future also show a larger demand in the future than predicted by various national and multilateral organizations. Even then, it is possible that our forecasts could still be at the lower end of the future energy demand. Price response was statistically not different from zero, indicating that prices are possibly too low and that there is a large suppressed demand for natural gas in the country. - Highlights: → Natural gas demand is modeled using dynamic econometric methods, first of its kind in Bangladesh. → Income elasticity for aggregate natural gas demand in Bangladesh is large-around 1.5. → Demand is price insensitive, indicating too low prices and/or presence of large suppressed demand. → Demand forecasts reveal large divergence from previous estimates, which is important for planning. → Attempts to model demand for end-use sectors were successful only for the industrial sector.

  17. Electricity prices forecasting by automatic dynamic harmonic regression models

    International Nuclear Information System (INIS)

    Pedregal, Diego J.; Trapero, Juan R.

    2007-01-01

    The changes experienced by electricity markets in recent years have created the necessity for more accurate forecast tools of electricity prices, both for producers and consumers. Many methodologies have been applied to this aim, but in the view of the authors, state space models are not yet fully exploited. The present paper proposes a univariate dynamic harmonic regression model set up in a state space framework for forecasting prices in these markets. The advantages of the approach are threefold. Firstly, a fast automatic identification and estimation procedure is proposed based on the frequency domain. Secondly, the recursive algorithms applied offer adaptive predictions that compare favourably with respect to other techniques. Finally, since the method is based on unobserved components models, explicit information about trend, seasonal and irregular behaviours of the series can be extracted. This information is of great value to the electricity companies' managers in order to improve their strategies, i.e. it provides management innovations. The good forecast performance and the rapid adaptability of the model to changes in the data are illustrated with actual prices taken from the PJM interconnection in the US and for the Spanish market for the year 2002. (author)

  18. Modeling and forecasting natural gas demand in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Wadud, Zia, E-mail: ziawadud@yahoo.com [Bangladesh University of Engineering and Technology (Bangladesh); Dey, Himadri S. [University of Notre Dame (United States); Kabir, Md. Ashfanoor; Khan, Shahidul I. [Bangladesh University of Engineering and Technology (Bangladesh)

    2011-11-15

    Natural gas is the major indigenous source of energy in Bangladesh and accounts for almost one-half of all primary energy used in the country. Per capita and total energy use in Bangladesh is still very small, and it is important to understand how energy, and natural gas demand will evolve in the future. We develop a dynamic econometric model to understand the natural gas demand in Bangladesh, both in the national level, and also for a few sub-sectors. Our demand model shows large long run income elasticity - around 1.5 - for aggregate demand for natural gas. Forecasts into the future also show a larger demand in the future than predicted by various national and multilateral organizations. Even then, it is possible that our forecasts could still be at the lower end of the future energy demand. Price response was statistically not different from zero, indicating that prices are possibly too low and that there is a large suppressed demand for natural gas in the country. - Highlights: > Natural gas demand is modeled using dynamic econometric methods, first of its kind in Bangladesh. > Income elasticity for aggregate natural gas demand in Bangladesh is large-around 1.5. > Demand is price insensitive, indicating too low prices and/or presence of large suppressed demand. > Demand forecasts reveal large divergence from previous estimates, which is important for planning. > Attempts to model demand for end-use sectors were successful only for the industrial sector.

  19. Forecasting characteristic earthquakes in a minimalist model

    DEFF Research Database (Denmark)

    Vázquez-Prada, M.; Pacheco, A.; González, Á.

    2003-01-01

    -dimensional numerical exploration of the loss function. This first strategy is then refined by considering a classification of the seismic cycles of the model according to the presence, or not, of some factors related to the seismicity observed in the cycle. These factors, statistically speaking, enlarge or shorten...

  20. MODELLING CHALLENGES TO FORECAST URBAN GOODS DEMAND FOR RAIL

    Directory of Open Access Journals (Sweden)

    Antonio COMI

    2015-12-01

    Full Text Available This paper explores the new research challenges for forecasting urban goods demand by rail. In fact, the growing interest to find urban logistics solutions for improving city sustainability and liveability, mainly due to the reduction of urban road accessibility and environmental constraints, has pushed to explore solutions alternative to the road. Multimodal urban logistics, based on the use of railway, seem an interesting alternative solution, but it remained mainly at conceptual level. Few studies have explored the factors, that push actors to find competitive such a system with respect to the road, and modelling framework for forecasting the relative demand. Therefore, paper reviews the current literature, investigates the factors involved in choosing such a mode, and finally, recalls a recent modelling framework and hence proposes some advancements that allow to point out the rail transport alternative.

  1. Analysis and forecast of railway coal transportation volume based on BP neural network combined forecasting model

    Science.gov (United States)

    Xu, Yongbin; Xie, Haihong; Wu, Liuyi

    2018-05-01

    The share of coal transportation in the total railway freight volume is about 50%. As is widely acknowledged, coal industry is vulnerable to the economic situation and national policies. Coal transportation volume fluctuates significantly under the new economic normal. Grasp the overall development trend of railway coal transportation market, have important reference and guidance significance to the railway and coal industry decision-making. By analyzing the economic indicators and policy implications, this paper expounds the trend of the coal transportation volume, and further combines the economic indicators with the high correlation with the coal transportation volume with the traditional traffic prediction model to establish a combined forecasting model based on the back propagation neural network. The error of the prediction results is tested, which proves that the method has higher accuracy and has practical application.

  2. Daily air quality forecast (gases and aerosols) over Switzerland. Modeling tool description and first results analysis.

    Science.gov (United States)

    Couach, O.; Kirchner, F.; Porchet, P.; Balin, I.; Parlange, M.; Balin, D.

    2009-04-01

    Map3D, the acronym for "Mesoscale Air Pollution 3D modelling", was developed at the EFLUM laboratory (EPFL) and received an INNOGRANTS awards in Summer 2007 in order to move from a research phase to a professional product giving daily air quality forecast. It is intended to give an objective base for political decisions addressing the improvement of regional air quality. This tool is a permanent modelling system which provides daily forecast of the local meteorology and the air pollutant (gases and particles) concentrations. Map3D has been successfully developed and calculates each day at the EPFL site a three days air quality forecast over Europe and the Alps with 50 km and 15 km resolution, respectively (see http://map3d.epfl.ch). The Map3D user interface is a web-based application with a PostgreSQL database. It is written in object-oriented PHP5 on a MVC (Model-View-Controller) architecture. Our prediction system is operational since August 2008. A first validation of the calculations for Switzerland is performed for the period of August 2008 - January 2009 comparing the model results for O3, NO2 and particulates with the results of the Nabel measurements stations. The subject of air pollution regimes (NOX/VOC) and specific indicators application with the forecast will be also addressed.

  3. Probabilistic Forecast of Wind Power Generation by Stochastic Differential Equation Models

    KAUST Repository

    Elkantassi, Soumaya

    2017-01-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized

  4. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Maui-Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Hawaiian islands of Oahu,...

  5. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Main Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Main Hawaiian Islands (MHI)...

  6. Modeling and Forecasting Persistent Financial Durations

    Czech Academy of Sciences Publication Activity Database

    Žikeš, F.; Baruník, Jozef; Shenai, N.

    2017-01-01

    Roč. 36, č. 10 (2017), s. 1081-1110 ISSN 0747-4938 R&D Projects: GA ČR GA13-32263S EU Projects: European Commission 612955 - FINMAP Institutional support: RVO:67985556 Keywords : price durations * long memory * multifractal models * realized volatility * Whittle estimation Subject RIV: AH - Economics OBOR OECD: Applied Economics , Econometrics Impact factor: 1.333, year: 2016 http://library.utia.cas.cz/separaty/2014/E/barunik-0434201.pdf

  7. State-level electricity demand forecasting model. [For 1980, 1985, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, H. D.

    1978-01-01

    This note briefly describes the Oak Ridge National Laboratory (ORNL) state-level electricity demand (SLED) forecasting model developed for the Nuclear Regulatory Commission. Specifically, the note presents (1) the special features of the model, (2) the methodology used to forecast electricity demand, and (3) forecasts of electricity demand and average price by sector for 15 states for 1980, 1985, 1990.

  8. Ten-year operational dust forecasting - Recent model development and future plans

    International Nuclear Information System (INIS)

    Kallos, G; Spyrou, C; Astitha, M; Mitsakou, C; Solomos, S; Kushta, J; Pytharoulis, I; Katsafados, P; Mavromatidis, E; Papantoniou, N; Vlastou, G

    2009-01-01

    The Sahara desert is one of the major sources of mineral dust on Earth, producing up to 2x10 8 t yr- 1 . A combined effort has been devoted during the last ten years at the University of Athens (UOA) from the Atmospheric Modeling and Weather Forecasting Group (AM and WFG) to the development of an analysis and forecasting tool that will provide early warning of Saharan dust outbreaks. The developed tool is the SKIRON limited-area forecasting system, based on the Eta limited area modeling system with embedded algorithms describing the dust cycle. A new version of the model is currently available, with extra features like eight-size particle bins, radiative transfer corrections, new dust source identification and utilization of rocky soil characterization and incorporation of more accurate deposition schemes. The new version of SKIRON modeling system is coupled with the photochemical model CAMx in order to study processes like the shading effect of dust particles on photochemical processes and the production of second and third generation of aerosols. Moreover, another new development in the AM and WFG is based on the RAMS model, with the incorporation of processes like dust and sea-salt production, gas and aqueous phase chemistry and particle formation. In this study, the major characteristics of the developed (and under development) modeling systems are presented, as well as the spatiotemporal distribution of the transported dust amounts, the interaction with anthropogenically-produced particles and the potential implications on radiative transfer.

  9. Ten-year operational dust forecasting - Recent model development and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Kallos, G; Spyrou, C; Astitha, M; Mitsakou, C; Solomos, S; Kushta, J; Pytharoulis, I; Katsafados, P; Mavromatidis, E; Papantoniou, N; Vlastou, G [University of Athens, School of Physics, Atmospheric Modeling and Weather Forecasting Group - UOA/AM and WFG, University Campus, Bldg. PHYS-V, Athens 15784 (Greece)], E-mail: kallos@mg.uoa.gr

    2009-03-01

    The Sahara desert is one of the major sources of mineral dust on Earth, producing up to 2x10{sup 8} t yr-{sup 1}. A combined effort has been devoted during the last ten years at the University of Athens (UOA) from the Atmospheric Modeling and Weather Forecasting Group (AM and WFG) to the development of an analysis and forecasting tool that will provide early warning of Saharan dust outbreaks. The developed tool is the SKIRON limited-area forecasting system, based on the Eta limited area modeling system with embedded algorithms describing the dust cycle. A new version of the model is currently available, with extra features like eight-size particle bins, radiative transfer corrections, new dust source identification and utilization of rocky soil characterization and incorporation of more accurate deposition schemes. The new version of SKIRON modeling system is coupled with the photochemical model CAMx in order to study processes like the shading effect of dust particles on photochemical processes and the production of second and third generation of aerosols. Moreover, another new development in the AM and WFG is based on the RAMS model, with the incorporation of processes like dust and sea-salt production, gas and aqueous phase chemistry and particle formation. In this study, the major characteristics of the developed (and under development) modeling systems are presented, as well as the spatiotemporal distribution of the transported dust amounts, the interaction with anthropogenically-produced particles and the potential implications on radiative transfer.

  10. An oil production forecast for China considering economic limits

    International Nuclear Information System (INIS)

    Wang, Ke; Feng, Lianyong; Wang, Jianliang; Xiong, Yi; Tverberg, Gail E.

    2016-01-01

    In recent years, it has become apparent that oil prices may not rise endlessly. Unconventional oil is likely to be especially affected by low prices because it tends to be high-priced to extract. To estimate the impact prices might have on future Chinese oil production, we develop a model in which only future unconventional oil production is affected by price. We analyze three price scenarios: Stays Low, Best Estimate, and Ever-Rising Prices. In these scenarios, remaining Ultimate Recoverable Resources (URR) are estimated to be 10%, 50%, and 90% of remaining Technically Recoverable Resources, respectively. Since oil price can be expected to affect the shape of the extraction curve, we spread estimated URR to year using models that do not assume that future production will ultimately produce a symmetric Hubbert-type curve (Multi-Cycle Generalized Weng Model and Stochastic Resource-Constrained Growth Model). In the Best Estimate Scenario, China's oil production is expected to reach a maximum of 226.79 million tons in 2020. In the Ever-Rising Prices Scenario, China's maximum oil production occurs in 2023. In the Stays Low Scenario, maximum production has already been reached. - Highlights: • China's conventional oil reached a peak in 2010 and has begun to decline. • Unconventional oil production will be especially adversely affected by low prices. • Rising selling price of oil may lead to recession, bringing prices back down. • China's total oil supply appears likely to peak about 2020. • Likely oil production is less than Technically Recoverable Resources.

  11. Local TEC Modelling and Forecasting using Neural Networks

    Science.gov (United States)

    Tebabal, A.; Radicella, S. M.; Nigussie, M.; Damtie, B.; Nava, B.; Yizengaw, E.

    2017-12-01

    Abstract Modelling the Earth's ionospheric characteristics is the focal task for the ionospheric community to mitigate its effect on the radio communication, satellite navigation and technologies. However, several aspects of modelling are still challenging, for example, the storm time characteristics. This paper presents modelling efforts of TEC taking into account solar and geomagnetic activity, time of the day and day of the year using neural networks (NNs) modelling technique. The NNs have been designed with GPS-TEC measured data from low and mid-latitude GPS stations. The training was conducted using the data obtained for the period from 2011 to 2014. The model prediction accuracy was evaluated using data of year 2015. The model results show that diurnal and seasonal trend of the GPS-TEC is well reproduced by the model for the two stations. The seasonal characteristics of GPS-TEC is compared with NN and NeQuick 2 models prediction when the latter one is driven by the monthly average value of solar flux. It is found that NN model performs better than the corresponding NeQuick 2 model for low latitude region. For the mid-latitude both NN and NeQuick 2 models reproduce the average characteristics of TEC variability quite successfully. An attempt of one day ahead forecast of TEC at the two locations has been made by introducing as driver previous day solar flux and geomagnetic index values. The results show that a reasonable day ahead forecast of local TEC can be achieved.

  12. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    Science.gov (United States)

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. IMD's model for forecasting monsoon in India

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    feeling of the subject to the younger generation. There is an increa s ing need for modelling, simulating and optimizing technological, physical, medi cal and economic processes. In fa ct, recently a study 2 program ent i- tled ?Tech0... . This is the first instance an Indian scie n- tist has been elected as a foreign fellow. C. N. R. Rao is already a member of all the major academies of the world. MEETING REPORTS Nutrition is the key to health and nation?s develo p ment* So say...

  14. Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models

    International Nuclear Information System (INIS)

    Tan, Zhongfu; Zhang, Jinliang; Xu, Jun; Wang, Jianhui

    2010-01-01

    This paper proposes a novel price forecasting method based on wavelet transform combined with ARIMA and GARCH models. By wavelet transform, the historical price series is decomposed and reconstructed into one approximation series and some detail series. Then each subseries can be separately predicted by a suitable time series model. The final forecast is obtained by composing the forecasted results of each subseries. This proposed method is examined on Spanish and PJM electricity markets and compared with some other forecasting methods. (author)

  15. Artificial neural network models' application for radioactive substances' migration forecasting in soil

    International Nuclear Information System (INIS)

    Kovalenko, V.I.; Khil'ko, O.S.; Kundas, S.P.

    2009-01-01

    The work is indicated to the use of artificial neural network (ANN) models in program complex SPS for radioactive substances' migration forecasting in soil. For the problem solution two ANN models are used. One of them forecasts radioactive substances' migration, another carries out forecasting of physical and chemical soil properties. Program complex SPS allows to achieve a low error of forecasting (no more than 5 %) and high training speed. (authors)

  16. Forecasting macroeconomic variables using neural network models and three automated model selection techniques

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    2016-01-01

    When forecasting with neural network models one faces several problems, all of which influence the accuracy of the forecasts. First, neural networks are often hard to estimate due to their highly nonlinear structure. To alleviate the problem, White (2006) presented a solution (QuickNet) that conv...

  17. Deterministic and heuristic models of forecasting spare parts demand

    Directory of Open Access Journals (Sweden)

    Ivan S. Milojević

    2012-04-01

    Full Text Available Knowing the demand of spare parts is the basis for successful spare parts inventory management. Inventory management has two aspects. The first one is operational management: acting according to certain models and making decisions in specific situations which could not have been foreseen or have not been encompassed by models. The second aspect is optimization of the model parameters by means of inventory management. Supply items demand (asset demand is the expression of customers' needs in units in the desired time and it is one of the most important parameters in the inventory management. The basic task of the supply system is demand fulfillment. In practice, demand is expressed through requisition or request. Given the conditions in which inventory management is considered, demand can be: - deterministic or stochastic, - stationary or nonstationary, - continuous or discrete, - satisfied or unsatisfied. The application of the maintenance concept is determined by the technological level of development of the assets being maintained. For example, it is hard to imagine that the concept of self-maintenance can be applied to assets developed and put into use 50 or 60 years ago. Even less complex concepts cannot be applied to those vehicles that only have indicators of engine temperature - those that react only when the engine is overheated. This means that the maintenance concepts that can be applied are the traditional preventive maintenance and the corrective maintenance. In order to be applied in a real system, modeling and simulation methods require a completely regulated system and that is not the case with this spare parts supply system. Therefore, this method, which also enables the model development, cannot be applied. Deterministic models of forecasting are almost exclusively related to the concept of preventive maintenance. Maintenance procedures are planned in advance, in accordance with exploitation and time resources. Since the timing

  18. Demand Forecast of Petroleum Product Consumption in the Chinese Transportation Industry

    Directory of Open Access Journals (Sweden)

    Shouyang Wang

    2012-03-01

    Full Text Available In this paper, petroleum product (mainly petrol and diesel consumption in the transportation sector of China is analyzed. This was based on the Bayesian linear regression theory and Markov Chain Monte Carlo method (MCMC, establishing a demand-forecast model of petrol and diesel consumption introduced into the analytical framework with explanatory variables of urbanization level, per capita GDP, turnover of passengers (freight in aggregate (TPA, TFA, and civilian vehicle number (CVN and explained variables of petrol and diesel consumption. Furthermore, we forecast the future consumer demand for oil products during “The 12th Five Year Plan” (2011–2015 based on the historical data covering from 1985 to 2009, finding that urbanization is the most sensitive factor, with a strong marginal effect on petrol and diesel consumption in this sector. From the viewpoint of prediction interval value, urbanization expresses the lower limit of the predicted results, and CVN the upper limit of the predicted results. Predicted value from other independent variables is in the range of predicted values which display a validation range and reference standard being much more credible for policy makers. Finally, a comparison between the predicted results from autoregressive integrated moving average models (ARIMA and others is made to assess our task.

  19. A Two-Dimensional Gridded Solar Forecasting System using Situation-Dependent Blending of Multiple Weather Models

    Science.gov (United States)

    Lu, S.; Hwang, Y.; Shao, X.; Hamann, H.

    2015-12-01

    Previously, we reported the application of a "weather situation" dependent multi-model blending approach to improve the forecast accuracy of solar irradiance and other atmospheric parameters. The approach uses machine-learning techniques to classify "weather situations" by a set of atmospheric parameters. The "weather situation" classification is location-dependent and each "weather situation" has characteristic forecast errors from a set of individual input numerical weather prediction (NWP) models. The input models are thus corrected or combined differently for different "weather situations" to minimize the overall forecast error. While the original implementation of the model-blending is applicable to only point-like locations having historical data of both measurements and forecasts, here we extend the approach to provide two-dimensional (2D) gridded forecasts. An experimental 2D forecasting system has been set up to provide gridded forecasts of solar irradiance (global horizontal irradiance), temperature, wind speed, and humidity for the contiguous United States (CONUS). Validation results show around 30% enhancement of 0 to 48 hour ahead solar irradiance forecast accuracy compared to the best input NWP model. The forecasting system may be leveraged by other site- or region-specific solar energy forecast products. To enable the 2D forecasting system, historical solar irradiance measurements from around 1,600 selected sites of the remote automated weather stations (RAWS) network have been employed. The CONUS was divided into smaller sub-regions, each containing a group of 10 to 20 RAWS sites. A group of sites, as classified by statistical analysis, have similar "weather patterns", i.e. the NWPs have similar "weather situation" dependent forecast errors for all sites in a group. The model-blending trained by the historical data from a group of sites is then applied for all locations in the corresponding sub-region. We discuss some key techniques developed for

  20. From probabilistic forecasts to statistical scenarios of short-term wind power production

    DEFF Research Database (Denmark)

    Pinson, Pierre; Papaefthymiou, George; Klockl, Bernd

    2009-01-01

    on the development of the forecast uncertainty through forecast series. However, this additional information may be paramount for a large class of time-dependent and multistage decision-making problems, e.g. optimal operation of combined wind-storage systems or multiple-market trading with different gate closures......Short-term (up to 2-3 days ahead) probabilistic forecasts of wind power provide forecast users with highly valuable information on the uncertainty of expected wind generation. Whatever the type of these probabilistic forecasts, they are produced on a per horizon basis, and hence do not inform....... This issue is addressed here by describing a method that permits the generation of statistical scenarios of short-term wind generation that accounts for both the interdependence structure of prediction errors and the predictive distributions of wind power production. The method is based on the conversion...

  1. Model-Aided Altimeter-Based Water Level Forecasting System in Mekong River

    Science.gov (United States)

    Chang, C. H.; Lee, H.; Hossain, F.; Okeowo, M. A.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Anderson, E.; Hwang, E.

    2017-12-01

    Mekong River, one of the massive river systems in the world, has drainage area of about 795,000 km2 covering six countries. People living in its drainage area highly rely on resources given by the river in terms of agriculture, fishery, and hydropower. Monitoring and forecasting the water level in a timely manner, is urgently needed over the Mekong River. Recently, using TOPEX/Poseidon (T/P) altimetry water level measurements in India, Biancamaria et al. [2011] has demonstrated the capability of an altimeter-based flood forecasting system in Bangladesh, with RMSE from 0.6 - 0.8 m for lead times up to 5 days on 10-day basis due to T/P's repeat period. Hossain et al. [2013] further established a daily water level forecasting system in Bangladesh using observations from Jason-2 in India and HEC-RAS hydraulic model, with RMSE from 0.5 - 1.5 m and an underestimating mean bias of 0.25 - 1.25 m. However, such daily forecasting system relies on a collection of Jason-2 virtual stations (VSs) to ensure frequent sampling and data availability. Since the Mekong River is a meridional river with few number of VSs, the direct application of this system to the Mekong River becomes challenging. To address this problem, we propose a model-aided altimeter-based forecasting system. The discharge output by Variable Infiltration Capacity hydrologic model is used to reconstruct a daily water level product at upstream Jason-2 VSs based on the discharge-to-level rating curve. The reconstructed daily water level is then used to perform regression analysis with downstream in-situ water level to build regression models, which are used to forecast a daily water level. In the middle reach of the Mekong River from Nakhon Phanom to Kratie, a 3-day lead time forecasting can reach RMSE about 0.7 - 1.3 m with correlation coefficient around 0.95. For the lower reach of the Mekong River, the water flow becomes more complicated due to the reversal flow between the Tonle Sap Lake and the Mekong River

  2. Scaling forecast models for wind turbulence and wind turbine power intermittency

    Science.gov (United States)

    Duran Medina, Olmo; Schmitt, Francois G.; Calif, Rudy

    2017-04-01

    The intermittency of the wind turbine power remains an important issue for the massive development of this renewable energy. The energy peaks injected in the electric grid produce difficulties in the energy distribution management. Hence, a correct forecast of the wind power in the short and middle term is needed due to the high unpredictability of the intermittency phenomenon. We consider a statistical approach through the analysis and characterization of stochastic fluctuations. The theoretical framework is the multifractal modelisation of wind velocity fluctuations. Here, we consider three wind turbine data where two possess a direct drive technology. Those turbines are producing energy in real exploitation conditions and allow to test our forecast models of power production at a different time horizons. Two forecast models were developed based on two physical principles observed in the wind and the power time series: the scaling properties on the one hand and the intermittency in the wind power increments on the other. The first tool is related to the intermittency through a multifractal lognormal fit of the power fluctuations. The second tool is based on an analogy of the power scaling properties with a fractional brownian motion. Indeed, an inner long-term memory is found in both time series. Both models show encouraging results since a correct tendency of the signal is respected over different time scales. Those tools are first steps to a search of efficient forecasting approaches for grid adaptation facing the wind energy fluctuations.

  3. Probabilistic Forecasts of Wind Power Generation by Stochastic Differential Equation Models

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Zugno, Marco; Madsen, Henrik

    2016-01-01

    The increasing penetration of wind power has resulted in larger shares of volatile sources of supply in power systems worldwide. In order to operate such systems efficiently, methods for reliable probabilistic forecasts of future wind power production are essential. It is well known...... that the conditional density of wind power production is highly dependent on the level of predicted wind power and prediction horizon. This paper describes a new approach for wind power forecasting based on logistic-type stochastic differential equations (SDEs). The SDE formulation allows us to calculate both state......-dependent conditional uncertainties as well as correlation structures. Model estimation is performed by maximizing the likelihood of a multidimensional random vector while accounting for the correlation structure defined by the SDE formulation. We use non-parametric modelling to explore conditional correlation...

  4. Profit Forecast Model Using Monte Carlo Simulation in Excel

    Directory of Open Access Journals (Sweden)

    Petru BALOGH

    2014-01-01

    Full Text Available Profit forecast is very important for any company. The purpose of this study is to provide a method to estimate the profit and the probability of obtaining the expected profit. Monte Carlo methods are stochastic techniques–meaning they are based on the use of random numbers and probability statistics to investigate problems. Monte Carlo simulation furnishes the decision-maker with a range of possible outcomes and the probabilities they will occur for any choice of action. Our example of Monte Carlo simulation in Excel will be a simplified profit forecast model. Each step of the analysis will be described in detail. The input data for the case presented: the number of leads per month, the percentage of leads that result in sales, , the cost of a single lead, the profit per sale and fixed cost, allow obtaining profit and associated probabilities of achieving.

  5. Application of nonlinear forecasting techniques for meteorological modeling

    Directory of Open Access Journals (Sweden)

    V. Pérez-Muñuzuri

    2000-10-01

    Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields

  6. Application of nonlinear forecasting techniques for meteorological modeling

    Directory of Open Access Journals (Sweden)

    V. Pérez-Muñuzuri

    Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.

    Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields

  7. Forecasting Macedonian Business Cycle Turning Points Using Qual Var Model

    Directory of Open Access Journals (Sweden)

    Petrovska Magdalena

    2016-09-01

    Full Text Available This paper aims at assessing the usefulness of leading indicators in business cycle research and forecast. Initially we test the predictive power of the economic sentiment indicator (ESI within a static probit model as a leading indicator, commonly perceived to be able to provide a reliable summary of the current economic conditions. We further proceed analyzing how well an extended set of indicators performs in forecasting turning points of the Macedonian business cycle by employing the Qual VAR approach of Dueker (2005. In continuation, we evaluate the quality of the selected indicators in pseudo-out-of-sample context. The results show that the use of survey-based indicators as a complement to macroeconomic data work satisfactory well in capturing the business cycle developments in Macedonia.

  8. HOKF: High Order Kalman Filter for Epilepsy Forecasting Modeling.

    Science.gov (United States)

    Nguyen, Ngoc Anh Thi; Yang, Hyung-Jeong; Kim, Sunhee

    2017-08-01

    Epilepsy forecasting has been extensively studied using high-order time series obtained from scalp-recorded electroencephalography (EEG). An accurate seizure prediction system would not only help significantly improve patients' quality of life, but would also facilitate new therapeutic strategies to manage epilepsy. This paper thus proposes an improved Kalman Filter (KF) algorithm to mine seizure forecasts from neural activity by modeling three properties in the high-order EEG time series: noise, temporal smoothness, and tensor structure. The proposed High-Order Kalman Filter (HOKF) is an extension of the standard Kalman filter, for which higher-order modeling is limited. The efficient dynamic of HOKF system preserves the tensor structure of the observations and latent states. As such, the proposed method offers two main advantages: (i) effectiveness with HOKF results in hidden variables that capture major evolving trends suitable to predict neural activity, even in the presence of missing values; and (ii) scalability in that the wall clock time of the HOKF is linear with respect to the number of time-slices of the sequence. The HOKF algorithm is examined in terms of its effectiveness and scalability by conducting forecasting and scalability experiments with a real epilepsy EEG dataset. The results of the simulation demonstrate the superiority of the proposed method over the original Kalman Filter and other existing methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Forecasting oil price trends using wavelets and hidden Markov models

    International Nuclear Information System (INIS)

    Souza e Silva, Edmundo G. de; Souza e Silva, Edmundo A. de; Legey, Luiz F.L.

    2010-01-01

    The crude oil price is influenced by a great number of factors, most of which interact in very complex ways. For this reason, forecasting it through a fundamentalist approach is a difficult task. An alternative is to use time series methodologies, with which the price's past behavior is conveniently analyzed, and used to predict future movements. In this paper, we investigate the usefulness of a nonlinear time series model, known as hidden Markov model (HMM), to predict future crude oil price movements. Using an HMM, we develop a forecasting methodology that consists of, basically, three steps. First, we employ wavelet analysis to remove high frequency price movements, which can be assumed as noise. Then, the HMM is used to forecast the probability distribution of the price return accumulated over the next F days. Finally, from this distribution, we infer future price trends. Our results indicate that the proposed methodology might be a useful decision support tool for agents participating in the crude oil market. (author)

  10. APLICACIÓN DE MODELOS DE PRONÓSTICOS EN PRODUCTOS DE CONSUMO MASIVO APLICAÇÃO DE MODELOS DE PROGNÓSTICO EM PRODUTOS DE CONSUMO APPLICATION OF FORECAST MODELS IN PRODUCTS OF MASSIVE CONSUMPTION

    Directory of Open Access Journals (Sweden)

    RICARDO ALBERTO PÉREZ

    2012-12-01

    étodo de Winters mais adequado para cada elemento e para cada uma das categorias considerando como o fator decisivo o que teve o menor coeficiente de variação. O inquérito revelou que, devido às peculiaridades no comportamento de rotação e heterogênea da demanda para os produtos em cada local de distribuição, é conveniente classificar cada ponto e definir modelos de previsão individualmente.The common inventory problem eventually arises: excessive quantities of product that do not circulate and a few of them that circulate that, along with the great variety of references and points of purchase, make difficult the application of forecasting models and the generation of inventory policies. The historic behavior of the mass consumption product demand in a supply chain with a warehouse and multiple points of purchase (One Warehouse N Retailer Problem was evaluated. Starting from the analysis of the existing classification system of items a new proposal was made with a greater amount of decision-making elements based on the previous aspect and through simulation. The most appropriate forecasting method was also chosen (Moving average, simple exponential smoothing, the Croston method, the Winters method for each element and for each one of the categories, considering as a decision factor the one that obtained the smallest variation of coefficient. The research allows to concluding that, due to the particularities in the product rotation and the heterogeneous behavior of the product demand in each place of distribution, it is convenient to carry out a classification for each point and to define forecasting models individually.

  11. Mean-term forecast of coke production in the world

    International Nuclear Information System (INIS)

    Ukhmylova, G.S.

    1996-01-01

    The causes of decrease in consumption of metallurgical coke in the world in the ninetieth and at the present time are analyzed. Reduction of reliable coke supply sources to the world market is noted. The data on the coke import and export in the world in 1990-1994 are presented and corresponding forecasts for 2000 and 2005 are given

  12. Improving Timeliness of Winter Wheat Production Forecast in United States of America, Ukraine and China Using MODIS Data and NCAR Growing Degree Day

    Science.gov (United States)

    Vermote, E.; Franch, B.; Becker-Reshef, I.; Claverie, M.; Huang, J.; Zhang, J.; Sobrino, J. A.

    2014-12-01

    Wheat is the most important cereal crop traded on international markets and winter wheat constitutes approximately 80% of global wheat production. Thus, accurate and timely forecasts of its production are critical for informing agricultural policies and investments, as well as increasing market efficiency and stability. Becker-Reshef et al. (2010) used an empirical generalized model for forecasting winter wheat production. Their approach combined BRDF-corrected daily surface reflectance from Moderate resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid (CMG) with detailed official crop statistics and crop type masks. It is based on the relationship between the Normalized Difference Vegetation Index (NDVI) at the peak of the growing season, percent wheat within the CMG pixel, and the final yields. This method predicts the yield approximately one month to six weeks prior to harvest. In this study, we include the Growing Degree Day (GDD) information extracted from NCEP/NCAR reanalysis data in order to improve the winter wheat production forecast by increasing the timeliness of the forecasts while conserving the accuracy of the original model. We apply this modified model to three major wheat-producing countries: United States of America, Ukraine and China from 2001 to 2012. We show that a reliable forecast can be made between one month to a month and a half prior to the peak NDVI (meaning two months to two and a half months prior to harvest) while conserving an accuracy of 10% in the production forecast.

  13. Frost Monitoring and Forecasting Using MODIS Land Surface Temperature Data and a Numerical Weather Prediction Model Forecasts for Eastern Africa

    Science.gov (United States)

    Kabuchanga, Eric; Flores, Africa; Malaso, Susan; Mungai, John; Sakwa, Vincent; Shaka, Ayub; Limaye, Ashutosh

    2014-01-01

    Frost is a major challenge across Eastern Africa, severely impacting agricultural farms. Frost damages have wide ranging economic implications on tea and coffee farms, which represent a major economic sector. Early monitoring and forecasting will enable farmers to take preventive actions to minimize the losses. Although clearly important, timely information on when to protect crops from freezing is relatively limited. MODIS Land Surface Temperature (LST) data, derived from NASA's Terra and Aqua satellites, and 72-hr weather forecasts from the Kenya Meteorological Service's operational Weather Research Forecast model are enabling the Regional Center for Mapping of Resources for Development (RCMRD) and the Tea Research Foundation of Kenya to provide timely information to farmers in the region. This presentation will highlight an ongoing collaboration among the Kenya Meteorological Service, RCMRD, and the Tea Research Foundation of Kenya to identify frost events and provide farmers with potential frost forecasts in Eastern Africa.

  14. Models for Train Passenger Forecasting of Java and Sumatra

    Science.gov (United States)

    Sartono

    2017-04-01

    People tend to take public transportation to avoid high traffic, especially in Java. In Jakarta, the number of railway passengers is over than the capacity of the train at peak time. This is an opportunity as well as a challenge. If it is managed well then the company can get high profit. Otherwise, it may lead to disaster. This article discusses models for the train passengers, hence, finding the reasonable models to make a prediction overtimes. The Box-Jenkins method is occupied to develop a basic model. Then, this model is compared to models obtained using exponential smoothing method and regression method. The result shows that Holt-Winters model is better to predict for one-month, three-month, and six-month ahead for the passenger in Java. In addition, SARIMA(1,1,0)(2,0,0) is more accurate for nine-month and twelve-month oversee. On the other hand, for Sumatra passenger forecasting, SARIMA(1,1,1)(0,0,2) gives a better approximation for one-month ahead, and ARIMA model is best for three-month ahead prediction. The rest, Trend Seasonal and Liner Model has the least of RMSE to forecast for six-month, nine-month, and twelve-month ahead.

  15. China’s Rare Earths Production Forecasting and Sustainable Development Policy Implications

    Directory of Open Access Journals (Sweden)

    Xibo Wang

    2017-06-01

    Full Text Available Because of their unique physical and chemical properties, Rare earth elements (REEs perform important functions in our everyday lives, with use in a range of products. Recently, the study of China’s rare earth elements production has become a hot topic of worldwide interest, because of its dominant position in global rare earth elements supply, and an increasing demand for rare earth elements due to the constant use of rare earth elements in high-tech manufacturing industries. At the same time, as an exhaustible resource, the sustainable development of rare earth elements has received extensive attention. However, most of the study results are based on a qualitative analysis of rare earth elements distribution and production capacity, with few studies using quantitative modeling. To achieve reliable results with more factors being taken into consideration, this paper applies the generic multivariant system dynamics model to forecast China’s rare earth elements production trend and Hubbert peak, using Vensim software based on the Hubbert model. The results show that the peak of China’s rare earth elements production will appear by 2040, and that production will slowly decline afterwards. Based on the results, the paper proposes some policy recommendations for the sustainable development of China’s—and the world’s—rare earth elements market and rare earth-related industries.

  16. Forecast Combinations

    OpenAIRE

    Timmermann, Allan G

    2005-01-01

    Forecast combinations have frequently been found in empirical studies to produce better forecasts on average than methods based on the ex-ante best individual forecasting model. Moreover, simple combinations that ignore correlations between forecast errors often dominate more refined combination schemes aimed at estimating the theoretically optimal combination weights. In this paper we analyse theoretically the factors that determine the advantages from combining forecasts (for example, the d...

  17. Forecasting the mortality rates using Lee-Carter model and Heligman-Pollard model

    Science.gov (United States)

    Ibrahim, R. I.; Ngataman, N.; Abrisam, W. N. A. Wan Mohd

    2017-09-01

    Improvement in life expectancies has driven further declines in mortality. The sustained reduction in mortality rates and its systematic underestimation has been attracting the significant interest of researchers in recent years because of its potential impact on population size and structure, social security systems, and (from an actuarial perspective) the life insurance and pensions industry worldwide. Among all forecasting methods, the Lee-Carter model has been widely accepted by the actuarial community and Heligman-Pollard model has been widely used by researchers in modelling and forecasting future mortality. Therefore, this paper only focuses on Lee-Carter model and Heligman-Pollard model. The main objective of this paper is to investigate how accurately these two models will perform using Malaysian data. Since these models involves nonlinear equations that are explicitly difficult to solve, the Matrix Laboratory Version 8.0 (MATLAB 8.0) software will be used to estimate the parameters of the models. Autoregressive Integrated Moving Average (ARIMA) procedure is applied to acquire the forecasted parameters for both models as the forecasted mortality rates are obtained by using all the values of forecasted parameters. To investigate the accuracy of the estimation, the forecasted results will be compared against actual data of mortality rates. The results indicate that both models provide better results for male population. However, for the elderly female population, Heligman-Pollard model seems to underestimate to the mortality rates while Lee-Carter model seems to overestimate to the mortality rates.

  18. Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Hong-Juan Li

    2013-04-01

    Full Text Available Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR, this paper presents a SVR model hybridized with the empirical mode decomposition (EMD method and auto regression (AR for electric load forecasting. The electric load data of the New South Wales (Australia market are employed for comparing the forecasting performances of different forecasting models. The results confirm the validity of the idea that the proposed model can simultaneously provide forecasting with good accuracy and interpretability.

  19. From Product Models to Product State Models

    DEFF Research Database (Denmark)

    Larsen, Michael Holm

    1999-01-01

    A well-known technology designed to handle product data is Product Models. Product Models are in their current form not able to handle all types of product state information. Hence, the concept of a Product State Model (PSM) is proposed. The PSM and in particular how to model a PSM is the Research...

  20. A Feature Fusion Based Forecasting Model for Financial Time Series

    Science.gov (United States)

    Guo, Zhiqiang; Wang, Huaiqing; Liu, Quan; Yang, Jie

    2014-01-01

    Predicting the stock market has become an increasingly interesting research area for both researchers and investors, and many prediction models have been proposed. In these models, feature selection techniques are used to pre-process the raw data and remove noise. In this paper, a prediction model is constructed to forecast stock market behavior with the aid of independent component analysis, canonical correlation analysis, and a support vector machine. First, two types of features are extracted from the historical closing prices and 39 technical variables obtained by independent component analysis. Second, a canonical correlation analysis method is utilized to combine the two types of features and extract intrinsic features to improve the performance of the prediction model. Finally, a support vector machine is applied to forecast the next day's closing price. The proposed model is applied to the Shanghai stock market index and the Dow Jones index, and experimental results show that the proposed model performs better in the area of prediction than other two similar models. PMID:24971455

  1. An investigation of forecast horizon and observation fit’s influence on an econometric rate forecast model in the liner shipping industry

    DEFF Research Database (Denmark)

    Nielsen, Peter; Jiang, Liping; Rytter, Niels Gorm Malý

    2014-01-01

    This paper evaluates the influence of forecast horizon and observation fit on the robustness and performance of a specific freight rate forecast model used in the liner shipping industry. In the first stage of the research, a forecast model used to predict container freight rate development...... of the forecast horizon and observation fit and their interactions on the forecast model's performance. The results underline the complicated nature of creating a suitable forecast model by balancing business needs, a desire to fit a good model and achieve high accuracy. There is strong empirical evidence from...... this study; that a robust model is preferable, that overfitting is a true danger, and that a balance must be achieved between forecast horizon and the number of observations used to fit the model. In addition, methodological guidance has also been provided on how to test, design, and choose the superior...

  2. Operational Efficiency Forecasting Model of an Existing Underground Mine Using Grey System Theory and Stochastic Diffusion Processes

    Directory of Open Access Journals (Sweden)

    Svetlana Strbac Savic

    2015-01-01

    Full Text Available Forecasting the operational efficiency of an existing underground mine plays an important role in strategic planning of production. Degree of Operating Leverage (DOL is used to express the operational efficiency of production. The forecasting model should be able to involve common time horizon, taking the characteristics of the input variables that directly affect the value of DOL. Changes in the magnitude of any input variable change the value of DOL. To establish the relationship describing the way of changing we applied multivariable grey modeling. Established time sequence multivariable response formula is also used to forecast the future values of operating leverage. Operational efficiency of production is often associated with diverse sources of uncertainties. Incorporation of these uncertainties into multivariable forecasting model enables mining company to survive in today’s competitive environment. Simulation of mean reversion process and geometric Brownian motion is used to describe the stochastic diffusion nature of metal price, as a key element of revenues, and production costs, respectively. By simulating a forecasting model, we imitate its action in order to measure its response to different inputs. The final result of simulation process is the expected value of DOL for every year of defined time horizon.

  3. Evaluation of streamflow forecast for the National Water Model of U.S. National Weather Service

    Science.gov (United States)

    Rafieeinasab, A.; McCreight, J. L.; Dugger, A. L.; Gochis, D.; Karsten, L. R.; Zhang, Y.; Cosgrove, B.; Liu, Y.

    2016-12-01

    The National Water Model (NWM), an implementation of the community WRF-Hydro modeling system, is an operational hydrologic forecasting model for the contiguous United States. The model forecasts distributed hydrologic states and fluxes, including soil moisture, snowpack, ET, and ponded water. In particular, the NWM provides streamflow forecasts at more than 2.7 million river reaches for three forecast ranges: short (15 hr), medium (10 days), and long (30 days). In this study, we verify short and medium range streamflow forecasts in the context of the verification of their respective quantitative precipitation forecasts/forcing (QPF), the High Resolution Rapid Refresh (HRRR) and the Global Forecast System (GFS). The streamflow evaluation is performed for summer of 2016 at more than 6,000 USGS gauges. Both individual forecasts and forecast lead times are examined. Selected case studies of extreme events aim to provide insight into the quality of the NWM streamflow forecasts. A goal of this comparison is to address how much streamflow bias originates from precipitation forcing bias. To this end, precipitation verification is performed over the contributing areas above (and between assimilated) USGS gauge locations. Precipitation verification is based on the aggregated, blended StageIV/StageII data as the "reference truth". We summarize the skill of the streamflow forecasts, their skill relative to the QPF, and make recommendations for improving NWM forecast skill.

  4. Overview, comparative assessment and recommendations of forecasting models for short-term water demand prediction

    CSIR Research Space (South Africa)

    Anele, AO

    2017-11-01

    Full Text Available -term water demand (STWD) forecasts. In view of this, an overview of forecasting methods for STWD prediction is presented. Based on that, a comparative assessment of the performance of alternative forecasting models from the different methods is studied. Times...

  5. Adaptive robust polynomial regression for power curve modeling with application to wind power forecasting

    DEFF Research Database (Denmark)

    Xu, Man; Pinson, Pierre; Lu, Zongxiang

    2016-01-01

    of the lack of time adaptivity. In this paper, a refined local polynomial regression algorithm is proposed to yield an adaptive robust model of the time-varying scattered power curve for forecasting applications. The time adaptivity of the algorithm is considered with a new data-driven bandwidth selection......Wind farm power curve modeling, which characterizes the relationship between meteorological variables and power production, is a crucial procedure for wind power forecasting. In many cases, power curve modeling is more impacted by the limited quality of input data rather than the stochastic nature...... of the energy conversion process. Such nature may be due the varying wind conditions, aging and state of the turbines, etc. And, an equivalent steady-state power curve, estimated under normal operating conditions with the intention to filter abnormal data, is not sufficient to solve the problem because...

  6. EMC: Air Quality Forecast Home page

    Science.gov (United States)

    Modeling with NCEP NMMB ( Z. Janjic) ECMWF GEMS Project WMO Sand and Dust Storm Warning and Advisory System Air Quality Forecast Links U.S. AQ Forecast Products Canadian AQ Forecastsp Navy Aerosol Prediction

  7. Perturbations of modeling and forecast of karachi coastal region seawater

    International Nuclear Information System (INIS)

    Hussain, M.A.; Abbas, S.; Ansari, M.R.K.; Zaffar, A.

    2013-01-01

    Global warming is now a stark reality affecting the humanity in many hazardous ways. Continuous floods in Pakistan in past two years are an eye opener in this regard. A great loss of property, agriculture and life as a result of these floods suggests for an intelligent monitoring of the future projections of climate change and global warming. This is necessary because the harmful impacts of natural hazards can be coped and alleviated with a good planning in advance. This monitoring demands for enhanced forecasting capabilities, use of better analytical techniques and a clear determination and study of the controlling factors. Karachi is a coastal city which is also the industrial hub of Pakistan. Moreover, it is among one of the largest metropolitans of the world. So expectedly is most suitable for the study of high level of complex natural and anthropogenic activities. It is peculiar in the sense that it has two summer seasons, a situation scarcely observable on the globe. Here, summer season seawater temperature fluctuations are studied with the help of Seasonal Autoregressive Integrated Moving Average (SARIMA) models and short- and long-term forecasts are made. Our short-term forecasts determine months for the summer wise temperature extremes. It appears that the months of May, June, July and August are the months of extreme temperature for the first summer and October is the month of extreme temperature for the second summer. The long-term forecasts predict that 2014, 2016, 2018, and 2019 will be the years of warm summers. The analysis appearing here would be useful for coastal-urban planners in emphasizing the impact of seawater extreme temperatures on urban industrial activities, etc. (author)

  8. Traffic congestion forecasting model for the INFORM System. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Azarm, A.; Mughabghab, S.; Stock, D.

    1995-05-01

    This report describes a computerized traffic forecasting model, developed by Brookhaven National Laboratory (BNL) for a portion of the Long Island INFORM Traffic Corridor. The model has gone through a testing phase, and currently is able to make accurate traffic predictions up to one hour forward in time. The model will eventually take on-line traffic data from the INFORM system roadway sensors and make projections as to future traffic patterns, thus allowing operators at the New York State Department of Transportation (D.O.T.) INFORM Traffic Management Center to more optimally manage traffic. It can also form the basis of a travel information system. The BNL computer model developed for this project is called ATOP for Advanced Traffic Occupancy Prediction. The various modules of the ATOP computer code are currently written in Fortran and run on PC computers (pentium machine) faster than real time for the section of the INFORM corridor under study. The following summarizes the various routines currently contained in the ATOP code: Statistical forecasting of traffic flow and occupancy using historical data for similar days and time (long term knowledge), and the recent information from the past hour (short term knowledge). Estimation of the empirical relationships between traffic flow and occupancy using long and short term information. Mechanistic interpolation using macroscopic traffic models and based on the traffic flow and occupancy forecasted (item-1), and the empirical relationships (item-2) for the specific highway configuration at the time of simulation (construction, lane closure, etc.). Statistical routine for detection and classification of anomalies and their impact on the highway capacity which are fed back to previous items.

  9. Forecasting Lightning Threat using Cloud-Resolving Model Simulations

    Science.gov (United States)

    McCaul, Eugene W., Jr.; Goodman, Steven J.; LaCasse, Katherine M.; Cecil, Daniel J.

    2008-01-01

    Two new approaches are proposed and developed for making time and space dependent, quantitative short-term forecasts of lightning threat, and a blend of these approaches is devised that capitalizes on the strengths of each. The new methods are distinctive in that they are based entirely on the ice-phase hydrometeor fields generated by regional cloud-resolving numerical simulations, such as those produced by the WRF model. These methods are justified by established observational evidence linking aspects of the precipitating ice hydrometeor fields to total flash rates. The methods are straightforward and easy to implement, and offer an effective near-term alternative to the incorporation of complex and costly cloud electrification schemes into numerical models. One method is based on upward fluxes of precipitating ice hydrometeors in the mixed phase region at the-15 C level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domain-wide statistics of the peak values of simulated flash rate proxy fields against domain-wide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. Our blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Exploratory tests for selected North Alabama cases show that, because WRF can distinguish the general character of most convective events, our methods show promise as a means of generating quantitatively realistic fields of lightning threat. However, because the models tend to have more difficulty in predicting the instantaneous placement of storms, forecasts of the detailed location of the lightning threat based on single

  10. Production models

    DEFF Research Database (Denmark)

    Svensson, Carsten

    2002-01-01

    The Project is co-financed with Nilpeter A/S and investigates the industrialization of build to order production. Project content: - Enterprise engineering - Specification processes - Mass Customization/ Build To Order - Knowledge/information management - Configuration - Supply Chain Management...

  11. Production function application attempt in electricity generation forecasting

    International Nuclear Information System (INIS)

    Kamrat, W.; Augusiak, A.

    1996-01-01

    A modified Cobb-Douglas production function is applied to evaluate level of electricity generation for medium and long term prognosis (up to 2010) in an easy and simple way. The test calculations have been done for hard coal fired power plants, based on generation data supplied in Main Statistical Office of Poland publications.The model of electricity generation is defined using data on capital of a typical productivity power plant and its employment for time series 1980-90. The test calculation results based on the parameters of Rosenbroock's optimization procedure of electricity generation model are presented. The method described is distinguished for its high accuracy as compared to classical methods despite the relatively short time series. It is suitable for studies in electricity generation policy . 1 tab

  12. Propagation of Uncertainty in Bayesian Kernel Models - Application to Multiple-Step Ahead Forecasting

    DEFF Research Database (Denmark)

    Quinonero, Joaquin; Girard, Agathe; Larsen, Jan

    2003-01-01

    The object of Bayesian modelling is predictive distribution, which, in a forecasting scenario, enables evaluation of forecasted values and their uncertainties. We focus on reliably estimating the predictive mean and variance of forecasted values using Bayesian kernel based models such as the Gaus......The object of Bayesian modelling is predictive distribution, which, in a forecasting scenario, enables evaluation of forecasted values and their uncertainties. We focus on reliably estimating the predictive mean and variance of forecasted values using Bayesian kernel based models...... such as the Gaussian process and the relevance vector machine. We derive novel analytic expressions for the predictive mean and variance for Gaussian kernel shapes under the assumption of a Gaussian input distribution in the static case, and of a recursive Gaussian predictive density in iterative forecasting...

  13. Adaptive neuro-fuzzy inference system for forecasting rubber milk production

    Science.gov (United States)

    Rahmat, R. F.; Nurmawan; Sembiring, S.; Syahputra, M. F.; Fadli

    2018-02-01

    Natural Rubber is classified as the top export commodity in Indonesia. Its high production leads to a significant contribution to Indonesia’s foreign exchange. Before natural rubber ready to be exported to another country, the production of rubber milk becomes the primary concern. In this research, we use adaptive neuro-fuzzy inference system (ANFIS) to do rubber milk production forecasting. The data presented here is taken from PT. Anglo Eastern Plantation (AEP), which has high data variance and range for rubber milk production. Our data will span from January 2009 until December 2015. The best forecasting result is 1,182% in term of Mean Absolute Percentage Error (MAPE).

  14. A COMPARATIVE STUDY OF FORECASTING MODELS FOR TREND AND SEASONAL TIME SERIES DOES COMPLEX MODEL ALWAYS YIELD BETTER FORECAST THAN SIMPLE MODELS

    Directory of Open Access Journals (Sweden)

    Suhartono Suhartono

    2005-01-01

    Full Text Available Many business and economic time series are non-stationary time series that contain trend and seasonal variations. Seasonality is a periodic and recurrent pattern caused by factors such as weather, holidays, or repeating promotions. A stochastic trend is often accompanied with the seasonal variations and can have a significant impact on various forecasting methods. In this paper, we will investigate and compare some forecasting methods for modeling time series with both trend and seasonal patterns. These methods are Winter's, Decomposition, Time Series Regression, ARIMA and Neural Networks models. In this empirical research, we study on the effectiveness of the forecasting performance, particularly to answer whether a complex method always give a better forecast than a simpler method. We use a real data, that is airline passenger data. The result shows that the more complex model does not always yield a better result than a simpler one. Additionally, we also find the possibility to do further research especially the use of hybrid model by combining some forecasting method to get better forecast, for example combination between decomposition (as data preprocessing and neural network model.

  15. Distributed HUC-based modeling with SUMMA for ensemble streamflow forecasting over large regional domains.

    Science.gov (United States)

    Saharia, M.; Wood, A.; Clark, M. P.; Bennett, A.; Nijssen, B.; Clark, E.; Newman, A. J.

    2017-12-01

    Most operational streamflow forecasting systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow require an experienced human forecaster. But this approach faces challenges surrounding process reproducibility, hindcasting capability, and extension to large domains. The operational hydrologic community is increasingly moving towards `over-the-loop' (completely automated) large-domain simulations yet recent developments indicate a widespread lack of community knowledge about the strengths and weaknesses of such systems for forecasting. A realistic representation of land surface hydrologic processes is a critical element for improving forecasts, but often comes at the substantial cost of forecast system agility and efficiency. While popular grid-based models support the distributed representation of land surface processes, intermediate-scale Hydrologic Unit Code (HUC)-based modeling could provide a more efficient and process-aligned spatial discretization, reducing the need for tradeoffs between model complexity and critical forecasting requirements such as ensemble methods and comprehensive model calibration. The National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the USACE to implement, assess, and demonstrate real-time, over-the-loop distributed streamflow forecasting for several large western US river basins and regions. In this presentation, we present early results from short to medium range hydrologic and streamflow forecasts for the Pacific Northwest (PNW). We employ a real-time 1/16th degree daily ensemble model forcings as well as downscaled Global Ensemble Forecasting System (GEFS) meteorological forecasts. These datasets drive an intermediate-scale configuration of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model, which represents the PNW using over 11,700 HUCs. The system produces not only streamflow forecasts (using the Mizu

  16. Ensemble hydro-meteorological forecasting for early warning of floods and scheduling of hydropower production

    Science.gov (United States)

    Solvang Johansen, Stian; Steinsland, Ingelin; Engeland, Kolbjørn

    2016-04-01

    Running hydrological models with precipitation and temperature ensemble forcing to generate ensembles of streamflow is a commonly used method in operational hydrology. Evaluations of streamflow ensembles have however revealed that the ensembles are biased with respect to both mean and spread. Thus postprocessing of the ensembles is needed in order to improve the forecast skill. The aims of this study is (i) to to evaluate how postprocessing of streamflow ensembles works for Norwegian catchments within different hydrological regimes and to (ii) demonstrate how post processed streamflow ensembles are used operationally by a hydropower producer. These aims were achieved by postprocessing forecasted daily discharge for 10 lead-times for 20 catchments in Norway by using EPS forcing from ECMWF applied the semi-distributed HBV-model dividing each catchment into 10 elevation zones. Statkraft Energi uses forecasts from these catchments for scheduling hydropower production. The catchments represent different hydrological regimes. Some catchments have stable winter condition with winter low flow and a major flood event during spring or early summer caused by snow melting. Others has a more mixed snow-rain regime, often with a secondary flood season during autumn, and in the coastal areas, the stream flow is dominated by rain, and the main flood season is autumn and winter. For post processing, a Bayesian model averaging model (BMA) close to (Kleiber et al 2011) is used. The model creates a predictive PDF that is a weighted average of PDFs centered on the individual bias corrected forecasts. The weights are here equal since all ensemble members come from the same model, and thus have the same probability. For modeling streamflow, the gamma distribution is chosen as a predictive PDF. The bias correction parameters and the PDF parameters are estimated using a 30-day sliding window training period. Preliminary results show that the improvement varies between catchments depending

  17. Forecasting daily political opinion polls using the fractionally cointegrated VAR model

    DEFF Research Database (Denmark)

    Nielsen, Morten Ørregaard; Shibaev, Sergei S.

    We examine forecasting performance of the recent fractionally cointegrated vector autoregressive (FCVAR) model. We use daily polling data of political support in the United Kingdom for 2010-2015 and compare with popular competing models at several forecast horizons. Our findings show that the four...... trend from the model follows the vote share of the UKIP very closely, and we thus interpret it as a measure of Euro-skepticism in public opinion rather than an indicator of the more traditional left-right political spectrum. In terms of prediction of vote shares in the election, forecasts generated...... variants of the FCVAR model considered are generally ranked as the top four models in terms of forecast accuracy, and the FCVAR model significantly outperforms both univariate fractional models and the standard cointegrated VAR (CVAR) model at all forecast horizons. The relative forecast improvement...

  18. Assessing the Effects of Climate Variability on Orange Yield in Florida to Reduce Production Forecast Errors

    Science.gov (United States)

    Concha Larrauri, P.

    2015-12-01

    Orange production in Florida has experienced a decline over the past decade. Hurricanes in 2004 and 2005 greatly affected production, almost to the same degree as strong freezes that occurred in the 1980's. The spread of the citrus greening disease after the hurricanes has also contributed to a reduction in orange production in Florida. The occurrence of hurricanes and diseases cannot easily be predicted but the additional effects of climate on orange yield can be studied and incorporated into existing production forecasts that are based on physical surveys, such as the October Citrus forecast issued every year by the USDA. Specific climate variables ocurring before and after the October forecast is issued can have impacts on flowering, orange drop rates, growth, and maturation, and can contribute to the forecast error. Here we present a methodology to incorporate local climate variables to predict the USDA's orange production forecast error, and we study the local effects of climate on yield in different counties in Florida. This information can aid farmers to gain an insight on what is to be expected during the orange production cycle, and can help supply chain managers to better plan their strategy.

  19. Out-of-sample Forecasting Performance of Won/Dollar Exchange Rate Return Volatility Model

    Directory of Open Access Journals (Sweden)

    Hojin Lee

    2009-06-01

    Full Text Available We compare the out-of-sample forecasting performance of volatility models using daily exchange rate for the KRW/USD during the period from 1992 to 2008. For various forecasting horizons, historical volatility models with a long memory tend to make more accurate forecasts. Especially, we carefully observe the difference between the EWMA and the GARCH(1,1 model. Our empirical finding that the GARCH model puts too much weight on recent observations relative to those in the past is consistent with prior evidence showing that asset market volatility has a long memory, such as Ding and Granger (1996. The forecasting model with the lowest MSFE and VaR forecast error among the models we consider is the EWMA model in which the forecast volatility for the coming period is a weighted average of recent squared return with exponentially declining weights. In terms of forecast accuracy, it clearly dominates the widely accepted GARCH and rolling window GARCH models. We also present a multiple comparison of the out-of-sample forecasting performance of volatility using the stationary bootstrap of Politis and Romano (1994. We find that the White's reality check for the GARCH(1,1 expanding window model and the FIGARCH(1,1 expanding window model clearly reject the null hypothesis and there exists a better model than the two benchmark models. On the other hand, when the EWMA model is the benchmark, the White's for all forecasting horizons are very high, which indicates the null hypothesis may not be rejected. The Hansen's report the same results. The GARCH(1,1 expanding window model and the FIGARCH(1,1 expanding window model are dominated by the best competing model in most of the forecasting horizons. In contrast, the RiskMetrics model seems to be the most preferred. We also consider combining the forecasts generated by averaging the six raw forecasts and a trimmed set of forecasts which calculate the mean of the four forecasts after disregarding the highest and

  20. Short-Term Wind Power Interval Forecasting Based on an EEMD-RT-RVM Model

    Directory of Open Access Journals (Sweden)

    Haixiang Zang

    2016-01-01

    Full Text Available Accurate short-term wind power forecasting is important for improving the security and economic success of power grids. Existing wind power forecasting methods are mostly types of deterministic point forecasting. Deterministic point forecasting is vulnerable to forecasting errors and cannot effectively deal with the random nature of wind power. In order to solve the above problems, we propose a short-term wind power interval forecasting model based on ensemble empirical mode decomposition (EEMD, runs test (RT, and relevance vector machine (RVM. First, in order to reduce the complexity of data, the original wind power sequence is decomposed into a plurality of intrinsic mode function (IMF components and residual (RES component by using EEMD. Next, we use the RT method to reconstruct the components and obtain three new components characterized by the fine-to-coarse order. Finally, we obtain the overall forecasting results (with preestablished confidence levels by superimposing the forecasting results of each new component. Our results show that, compared with existing methods, our proposed short-term interval forecasting method has less forecasting errors, narrower interval widths, and larger interval coverage percentages. Ultimately, our forecasting model is more suitable for engineering applications and other forecasting methods for new energy.

  1. A note on the multi model super ensemble technique for reducing forecast errors

    International Nuclear Information System (INIS)

    Kantha, L.; Carniel, S.; Sclavo, M.

    2008-01-01

    The multi model super ensemble (S E) technique has been used with considerable success to improve meteorological forecasts and is now being applied to ocean models. Although the technique has been shown to produce deterministic forecasts that can be superior to the individual models in the ensemble or a simple multi model ensemble forecast, there is a clear need to understand its strengths and limitations. This paper is an attempt to do so in simple, easily understood contexts. The results demonstrate that the S E forecast is almost always better than the simple ensemble forecast, the degree of improvement depending on the properties of the models in the ensemble. However, the skill of the S E forecast with respect to the true forecast depends on a number of factors, principal among which is the skill of the models in the ensemble. As can be expected, if the ensemble consists of models with poor skill, the S E forecast will also be poor, although better than the ensemble forecast. On the other hand, the inclusion of even a single skillful model in the ensemble increases the forecast skill significantly.

  2. Synergizing two NWP models to improve hub-height wind speed forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H. [Ortech International, Mississauga, ON (Canada); Taylor, P. [York Univ., Toronto, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed some of the methods used to optimize hub-height wind speed forecasts. Statistical and physical forecast paradigms were considered. Forecast errors are often dictated by phase error, while refined NWP modelling is limited by data availability. A nested meso-scale NWP model was combined with a physical model to predict wind and power forecasts. Maps of data sources were included as well as equations used to derive predictions. Data from meteorological masts located near the Great Lakes were used to demonstrate the model. The results were compared with other modelling prediction methods. Forecasts obtained using the modelling approach can help operators in scheduling and trading procedures. Further research is being conducted to determine if the model can be used to improve ramp forecasts. tabs., figs.

  3. Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes

    DEFF Research Database (Denmark)

    Draxl, Caroline; Hahmann, Andrea N.; Pena Diaz, Alfredo

    2014-01-01

    with different PBL parameterizations at one coastal site over western Denmark. The evaluation focuses on determining which PBL parameterization performs best for wind energy forecasting, and presenting a validation methodology that takes into account wind speed at different heights. Winds speeds at heights...... regarding wind energy at these levels partly depends on the formulation and implementation of planetary boundary layer (PBL) parameterizations in these models. This study evaluates wind speeds and vertical wind shears simulated by theWeather Research and Forecasting model using seven sets of simulations...

  4. Uranium-production forecasting: the simulation of a South African gold mine

    International Nuclear Information System (INIS)

    Boydell, D.W.

    1979-01-01

    A computer program is described that estimates the amount of uranium that will be produced from a mine as a co-product of gold subject to a changing economic environment. The program makes use of two models. The first simulates activities underground, whereas the second simulates the performance of processing plant on the surface. The combination of these models generates a description of the flow of ore from stopes and from development, through hoisting, sorting, and the metallurgical plant to the despatch of saleable product. The total production of uranium to the end of the life of the mine constitutes the uranium reserve. The effects on production forecasts and reserve estimates of future trends in cost and price factors are illustrated by results generated from the application of the program to a typical South African mine producing gold and uranium. The graphs presented show that South Africa's future uranium production from underground sources is critically dependent on the gold price in the years ahead. (author)

  5. Implementation of an atmospheric sulfur scheme in the HIRLAM regional weather forecast model

    International Nuclear Information System (INIS)

    Ekman, Annica

    2000-02-01

    Sulfur chemistry has been implemented into the regional weather forecast model HIRLAM in order to simulate sulfur fields during specific weather situations. The model calculates concentrations of sulfur dioxide in air (SO 2 (a)), sulfate in air (SO 4 (a)), sulfate in cloud water (SO 4 (aq)) and hydrogen peroxide (H 2 O 2 ). Modeled concentrations of SO 2 (a), SO 4 (a) and SO 4 (aq) in rain water are compared with observations for two weather situations, one winter case with an extensive stratiform cloud cover and one summer case with mostly convective clouds. A comparison of the weather forecast parameters precipitation, relative humidity, geopotential and temperature with observations is also performed. The results show that the model generally overpredicts the SO 2 (a) concentration and underpredicts the SO 4 (a) concentration. The agreement between modeled and observed SO 4 (aq) in rain water is poor. Calculated turnover times are approximately 1 day for SO 2 (a) and 2-2.5 days for SO 4 (a). For SO 2 (a) this is in accordance with earlier simulated global turnover times, but for SO 4 (a) it is substantially lower. Several sensitivity simulations show that the fractional mean bias and root mean square error decreases, mainly for SO 4 (a) and SO 4 (aq), if an additional oxidant for converting SO 2 (a) to SO 4 (a) is included in the model. All weather forecast parameters, except precipitation, agree better with observations than the sulfur variables do. Wet scavenging is responsible for about half of the deposited sulfur and in addition, a major part of the sulfate production occurs through in-cloud oxidation. Hence, the distribution of clouds and precipitation must be better simulated by the weather forecast model in order to improve the agreement between observed and simulated sulfur concentrations

  6. Wind and load forecast error model for multiple geographically distributed forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Yuri V.; Reyes-Spindola, Jorge F.; Samaan, Nader; Diao, Ruisheng; Hafen, Ryan P. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2010-07-01

    The impact of wind and load forecast errors on power grid operations is frequently evaluated by conducting multi-variant studies, where these errors are simulated repeatedly as random processes based on their known statistical characteristics. To simulate these errors correctly, we need to reflect their distributions (which do not necessarily follow a known distribution law), standard deviations. auto- and cross-correlations. For instance, load and wind forecast errors can be closely correlated in different zones of the system. This paper introduces a new methodology for generating multiple cross-correlated random processes to produce forecast error time-domain curves based on a transition probability matrix computed from an empirical error distribution function. The matrix will be used to generate new error time series with statistical features similar to observed errors. We present the derivation of the method and some experimental results obtained by generating new error forecasts together with their statistics. (orig.)

  7. Electricity generation modeling and photovoltaic forecasts in China

    Science.gov (United States)

    Li, Shengnan

    With the economic development of China, the demand for electricity generation is rapidly increasing. To explain electricity generation, we use gross GDP, the ratio of urban population to rural population, the average per capita income of urban residents, the electricity price for industry in Beijing, and the policy shift that took place in China. Ordinary least squares (OLS) is used to develop a model for the 1979--2009 period. During the process of designing the model, econometric methods are used to test and develop the model. The final model is used to forecast total electricity generation and assess the possible role of photovoltaic generation. Due to the high demand for resources and serious environmental problems, China is pushing to develop the photovoltaic industry. The system price of PV is falling; therefore, photovoltaics may be competitive in the future.

  8. A numerical storm surge forecast model with Kalman filter

    Institute of Scientific and Technical Information of China (English)

    Yu Fujiang; Zhang Zhanhai; Lin Yihua

    2001-01-01

    Kalman filter data assimilation technique is incorporated into a standard two-dimensional linear storm surge model. Imperfect model equation and imperfect meteorological forcimg are accounted for by adding noise terms to the momentum equations. The deterministic model output is corrected by using the available tidal gauge station data. The stationary Kalman filter algorithm for the model domain is calculated by an iterative procedure using specified information on the inaccuracies in the momentum equations and specified error information for the observations. An application to a real storm surge that occurred in the summer of 1956 in the East China Sea is performed by means of this data assimilation technique. The result shows that Kalman filter is useful for storm surge forecast and hindcast.

  9. Forecasting the Reference Evapotranspiration Using Time Series Model

    Directory of Open Access Journals (Sweden)

    H. Zare Abyaneh

    2016-10-01

    Full Text Available Introduction: Reference evapotranspiration is one of the most important factors in irrigation timing and field management. Moreover, reference evapotranspiration forecasting can play a vital role in future developments. Therefore in this study, the seasonal autoregressive integrated moving average (ARIMA model was used to forecast the reference evapotranspiration time series in the Esfahan, Semnan, Shiraz, Kerman, and Yazd synoptic stations. Materials and Methods: In the present study in all stations (characteristics of the synoptic stations are given in Table 1, the meteorological data, including mean, maximum and minimum air temperature, relative humidity, dry-and wet-bulb temperature, dew-point temperature, wind speed, precipitation, air vapor pressure and sunshine hours were collected from the Islamic Republic of Iran Meteorological Organization (IRIMO for the 41 years from 1965 to 2005. The FAO Penman-Monteith equation was used to calculate the monthly reference evapotranspiration in the five synoptic stations and the evapotranspiration time series were formed. The unit root test was used to identify whether the time series was stationary, then using the Box-Jenkins method, seasonal ARIMA models were applied to the sample data. Table 1. The geographical location and climate conditions of the synoptic stations Station\tGeographical location\tAltitude (m\tMean air temperature (°C\tMean precipitation (mm\tClimate, according to the De Martonne index classification Longitude (E\tLatitude (N Annual\tMin. and Max. Esfahan\t51° 40'\t32° 37'\t1550.4\t16.36\t9.4-23.3\t122\tArid Semnan\t53° 33'\t35° 35'\t1130.8\t18.0\t12.4-23.8\t140\tArid Shiraz\t52° 36'\t29° 32'\t1484\t18.0\t10.2-25.9\t324\tSemi-arid Kerman\t56° 58'\t30° 15'\t1753.8\t15.6\t6.7-24.6\t142\tArid Yazd\t54° 17'\t31° 54'\t1237.2\t19.2\t11.8-26.0\t61\tArid Results and Discussion: The monthly meteorological data were used as input for the Ref-ET software and monthly reference

  10. Forecasting energy demand and CO{sub 2}-emissions from energy production in the forest industry

    Energy Technology Data Exchange (ETDEWEB)

    Malinen, H

    1998-12-31

    The purpose of this study was to develops new energy forecasting methods for the forest industry energy use. The scenarios have been the most commonly used forecasts, but they require a lot of work. The recent scenarios, which are made for the forest industry, give a wide range of results; e.g. from 27,8 TWh to 38 TWh for electricity use in 2010. There is a need for more simple and accurate methods for forecasting. The time scale for the study is from 1975 to 2010, i.e. 36 years. The basic data for the study is collected from time period 1975 - 1995. It includes the wood use, production of main product categories and energy use in the forest industry. The factors affecting energy use at both industry level and at mill level are presented. The most probable technology trends, which can have an effect on energy production and use and CO{sub 2}-emissions are studied. Recent forecasts for the forest industry energy use till the year 2010 are referred and analysed. Three alternative forecasting methods are studied more closely. These methods are (a) Regression analysis, (b) Growth curves and (c) Delphi-method. Total electricity demand, share of purchased electricity, total fuel demand and share of process-based biofuels are estimated for the time period 1996 - 2010. The results from the different methods are compared to each other and to the recent scenarios. The comparison is made for the results concerning the energy use and the usefulness of the methods in practical work. The average energy consumption given by the forecasts for electricity was 31,6 TWh and for fuel 6,2 Mtoe in 2010. The share of purchased electricity totalled 73 % and process based fuels 77 %. The figures from 1995 are 22,8 TWh, 5,5 Mtoe, 64 % and 68 % respectively. All three methods were suitable for forecasting. All the methods required less working hours and were easier to use than scenarios. The methods gave results with a smaller deviation than scenarios, e.g. with electricity use in 2010 from

  11. Forecasting energy demand and CO{sub 2}-emissions from energy production in the forest industry

    Energy Technology Data Exchange (ETDEWEB)

    Malinen, H.

    1997-12-31

    The purpose of this study was to develops new energy forecasting methods for the forest industry energy use. The scenarios have been the most commonly used forecasts, but they require a lot of work. The recent scenarios, which are made for the forest industry, give a wide range of results; e.g. from 27,8 TWh to 38 TWh for electricity use in 2010. There is a need for more simple and accurate methods for forecasting. The time scale for the study is from 1975 to 2010, i.e. 36 years. The basic data for the study is collected from time period 1975 - 1995. It includes the wood use, production of main product categories and energy use in the forest industry. The factors affecting energy use at both industry level and at mill level are presented. The most probable technology trends, which can have an effect on energy production and use and CO{sub 2}-emissions are studied. Recent forecasts for the forest industry energy use till the year 2010 are referred and analysed. Three alternative forecasting methods are studied more closely. These methods are (a) Regression analysis, (b) Growth curves and (c) Delphi-method. Total electricity demand, share of purchased electricity, total fuel demand and share of process-based biofuels are estimated for the time period 1996 - 2010. The results from the different methods are compared to each other and to the recent scenarios. The comparison is made for the results concerning the energy use and the usefulness of the methods in practical work. The average energy consumption given by the forecasts for electricity was 31,6 TWh and for fuel 6,2 Mtoe in 2010. The share of purchased electricity totalled 73 % and process based fuels 77 %. The figures from 1995 are 22,8 TWh, 5,5 Mtoe, 64 % and 68 % respectively. All three methods were suitable for forecasting. All the methods required less working hours and were easier to use than scenarios. The methods gave results with a smaller deviation than scenarios, e.g. with electricity use in 2010 from

  12. Case studies of extended model-based flood forecasting: prediction of dike strength and flood impacts

    Science.gov (United States)

    Stuparu, Dana; Bachmann, Daniel; Bogaard, Tom; Twigt, Daniel; Verkade, Jan; de Bruijn, Karin; de Leeuw, Annemargreet

    2017-04-01

    Flood forecasts, warning and emergency response are important components in flood risk management. Most flood forecasting systems use models to translate weather predictions to forecasted discharges or water levels. However, this information is often not sufficient for real time decisions. A sound understanding of the reliability of embankments and flood dynamics is needed to react timely and reduce the negative effects of the flood. Where are the weak points in the dike system? When, how much and where the water will flow? When and where is the greatest impact expected? Model-based flood impact forecasting tries to answer these questions by adding new dimensions to the existing forecasting systems by providing forecasted information about: (a) the dike strength during the event (reliability), (b) the flood extent in case of an overflow or a dike failure (flood spread) and (c) the assets at risk (impacts). This work presents three study-cases in which such a set-up is applied. Special features are highlighted. Forecasting of dike strength. The first study-case focusses on the forecast of dike strength in the Netherlands for the river Rhine branches Waal, Nederrijn and IJssel. A so-called reliability transformation is used to translate the predicted water levels at selected dike sections into failure probabilities during a flood event. The reliability of a dike section is defined by fragility curves - a summary of the dike strength conditional to the water level. The reliability information enhances the emergency management and inspections of embankments. Ensemble forecasting. The second study-case shows the setup of a flood impact forecasting system in Dumfries, Scotland. The existing forecasting system is extended with a 2D flood spreading model in combination with the Delft-FIAT impact model. Ensemble forecasts are used to make use of the uncertainty in the precipitation forecasts, which is useful to quantify the certainty of a forecasted flood event. From global

  13. Modeling Philippine Stock Exchange Composite Index Using Weighted Geometric Brownian Motion Forecasts

    Directory of Open Access Journals (Sweden)

    Gayo Willy

    2016-01-01

    Full Text Available Philippine Stock Exchange Composite Index (PSEi is the main stock index of the Philippine Stock Exchange (PSE. PSEi is computed using a weighted mean of the top 30 publicly traded companies in the Philippines, called component stocks. It provides a single value by which the performance of the Philippine stock market is measured. Unfortunately, these weights, which may vary for every trading day, are not disclosed by the PSE. In this paper, we propose a model of forecasting the PSEi by estimating the weights based on historical data and forecasting each component stock using Monte Carlo simulation based on a Geometric Brownian Motion (GBM assumption. The model performance is evaluated and its forecast compared is with the results using a direct GBM forecast of PSEi over different forecast periods. Results showed that the forecasts using WGBM will yield smaller error compared to direct GBM forecast of PSEi.

  14. Nonlinear time series modeling and forecasting the seismic data of the Hindu Kush region

    Science.gov (United States)

    Khan, Muhammad Yousaf; Mittnik, Stefan

    2018-01-01

    In this study, we extended the application of linear and nonlinear time models in the field of earthquake seismology and examined the out-of-sample forecast accuracy of linear Autoregressive (AR), Autoregressive Conditional Duration (ACD), Self-Exciting Threshold Autoregressive (SETAR), Threshold Autoregressive (TAR), Logistic Smooth Transition Autoregressive (LSTAR), Additive Autoregressive (AAR), and Artificial Neural Network (ANN) models for seismic data of the Hindu Kush region. We also extended the previous studies by using Vector Autoregressive (VAR) and Threshold Vector Autoregressive (TVAR) models and compared their forecasting accuracy with linear AR model. Unlike previous studies that typically consider the threshold model specifications by using internal threshold variable, we specified these models with external transition variables and compared their out-of-sample forecasting performance with the linear benchmark AR model. The modeling results show that time series models used in the present study are capable of capturing the dynamic structure present in the seismic data. The point forecast results indicate that the AR model generally outperforms the nonlinear models. However, in some cases, threshold models with external threshold variables specification produce more accurate forecasts, indicating that specification of threshold time series models is of crucial importance. For raw seismic data, the ACD model does not show an improved out-of-sample forecasting performance over the linear AR model. The results indicate that the AR model is the best forecasting device to model and forecast the raw seismic data of the Hindu Kush region.

  15. Model-free aftershock forecasts constructed from similar sequences in the past

    Science.gov (United States)

    van der Elst, N.; Page, M. T.

    2017-12-01

    The basic premise behind aftershock forecasting is that sequences in the future will be similar to those in the past. Forecast models typically use empirically tuned parametric distributions to approximate past sequences, and project those distributions into the future to make a forecast. While parametric models do a good job of describing average outcomes, they are not explicitly designed to capture the full range of variability between sequences, and can suffer from over-tuning of the parameters. In particular, parametric forecasts may produce a high rate of "surprises" - sequences that land outside the forecast range. Here we present a non-parametric forecast method that cuts out the parametric "middleman" between training data and forecast. The method is based on finding past sequences that are similar to the target sequence, and evaluating their outcomes. We quantify similarity as the Poisson probability that the observed event count in a past sequence reflects the same underlying intensity as the observed event count in the target sequence. Event counts are defined in terms of differential magnitude relative to the mainshock. The forecast is then constructed from the distribution of past sequences outcomes, weighted by their similarity. We compare the similarity forecast with the Reasenberg and Jones (RJ95) method, for a set of 2807 global aftershock sequences of M≥6 mainshocks. We implement a sequence-specific RJ95 forecast using a global average prior and Bayesian updating, but do not propagate epistemic uncertainty. The RJ95 forecast is somewhat more precise than the similarity forecast: 90% of observed sequences fall within a factor of two of the median RJ95 forecast value, whereas the fraction is 85% for the similarity forecast. However, the surprise rate is much higher for the RJ95 forecast; 10% of observed sequences fall in the upper 2.5% of the (Poissonian) forecast range. The surprise rate is less than 3% for the similarity forecast. The similarity

  16. Forecasting demand for single-period products : A case study in the apparel industry

    NARCIS (Netherlands)

    Mostard, Julien; Teunter, Ruud; de Koster, Rene

    2011-01-01

    The problem considered is that of forecasting demand for single-period products before the period starts. We study this problem for the case of a mail order apparel company that needs to order its products pre-season. The lack of historical demand data implies that other sources of data are needed.

  17. Advanced productivity forecast using petrophysical wireline data calibrated with MDT tests and numerical reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Andre, Carlos de [PETROBRAS, Rio de Janeiro, RJ (Brazil); Canas, Jesus A.; Low, Steven; Barreto, Wesley [Schlumberger, Houston, TX (United States)

    2004-07-01

    This paper describes an integrated and rigorous approach for viscous and middle oil reservoir productivity evaluation using petrophysical models calibrated with permeability derived from mini tests (Dual Packer) and Vertical Interference Tests (VIT) from open hole wire line testers (MDT SLB TM). It describes the process from Dual Packer Test and VIT pre-job design, evaluation via analytical and inverse simulation modeling, calibration and up scaling of petrophysical data into a numerical model, history matching of Dual Packer Tests and VIT with numerical simulation modeling. Finally, after developing a dynamic calibrated model, we perform productivity forecasts of different well configurations (vertical, horizontal and multilateral wells) for several deep offshore oil reservoirs in order to support well testing activities and future development strategies. The objective was to characterize formation static and dynamic properties early in the field development process to optimize well testing design, extended well test (EWT) and support the development strategies in deep offshore viscous oil reservoirs. This type of oil has limitations to flow naturally to surface and special lifting equipment is required for smooth optimum well testing/production. The integrated analysis gave a good overall picture of the formation, including permeability anisotropy and fluid dynamics. Subsequent analysis of different well configurations and lifting schemes allows maximizing formation productivity. The simulation and calibration results are compared to measured well test data. Results from this work shows that if the various petrophysical and fluid properties sources are integrated properly an accurate well productivity model can be achieved. If done early in the field development program, this time/knowledge gain could reduce the risk and maximize the development profitability of new blocks (value of the information). (author)

  18. Application of SARIMA model to forecasting monthly flows in Waterval River, South Africa

    Directory of Open Access Journals (Sweden)

    Tadesse Kassahun Birhanu

    2017-12-01

    Full Text Available Knowledge of future river flow information is fundamental for development and management of a river system. In this study, Waterval River flow was forecasted by SARIMA model using GRETL statistical software. Mean monthly flows from 1960 to 2016 were used for modelling and forecasting. Different unit root and Mann–Kendall trend analysis proved the stationarity of the observed flow time series. Based on seasonally differenced correlogram characteristics, different SARIMA models were evaluated; their parameters were optimized, and diagnostic check up of forecasts was made using white noise and heteroscedasticity tests. Finally, based on minimum Akaike Information (AI and Hannan–Quinn (HQ criteria, SARIMA (3, 0, 2 x (3, 1, 312 model was selected for Waterval River flow forecasting. Comparison of forecast performance of SARIMA models with that of computational intelligent forecasting techniques was recommended for future study.

  19. A high resolution WRF model for wind energy forecasting

    Science.gov (United States)

    Vincent, Claire Louise; Liu, Yubao

    2010-05-01

    The increasing penetration of wind energy into national electricity markets has increased the demand for accurate surface layer wind forecasts. There has recently been a focus on forecasting the wind at wind farm sites using both statistical models and numerical weather prediction (NWP) models. Recent advances in computing capacity and non-hydrostatic NWP models means that it is possible to nest mesoscale models down to Large Eddy Simulation (LES) scales over the spatial area of a typical wind farm. For example, the WRF model (Skamarock 2008) has been run at a resolution of 123 m over a wind farm site in complex terrain in Colorado (Liu et al. 2009). Although these modelling attempts indicate a great hope for applying such models for detailed wind forecasts over wind farms, one of the obvious challenges of running the model at this resolution is that while some boundary layer structures are expected to be modelled explicitly, boundary layer eddies into the inertial sub-range can only be partly captured. Therefore, the amount and nature of sub-grid-scale mixing that is required is uncertain. Analysis of Liu et al. (2009) modelling results in comparison to wind farm observations indicates that unrealistic wind speed fluctuations with a period of around 1 hour occasionally occurred during the two day modelling period. The problem was addressed by re-running the same modelling system with a) a modified diffusion constant and b) two-way nesting between the high resolution model and its parent domain. The model, which was run with horizontal grid spacing of 370 m, had dimensions of 505 grid points in the east-west direction and 490 points in the north-south direction. It received boundary conditions from a mesoscale model of resolution 1111 m. Both models had 37 levels in the vertical. The mesoscale model was run with a non-local-mixing planetary boundary layer scheme, while the 370 m model was run with no planetary boundary layer scheme. It was found that increasing the

  20. Daily air quality index forecasting with hybrid models: A case in China

    International Nuclear Information System (INIS)

    Zhu, Suling; Lian, Xiuyuan; Liu, Haixia; Hu, Jianming; Wang, Yuanyuan; Che, Jinxing

    2017-01-01

    Air quality is closely related to quality of life. Air pollution forecasting plays a vital role in air pollution warnings and controlling. However, it is difficult to attain accurate forecasts for air pollution indexes because the original data are non-stationary and chaotic. The existing forecasting methods, such as multiple linear models, autoregressive integrated moving average (ARIMA) and support vector regression (SVR), cannot fully capture the information from series of pollution indexes. Therefore, new effective techniques need to be proposed to forecast air pollution indexes. The main purpose of this research is to develop effective forecasting models for regional air quality indexes (AQI) to address the problems above and enhance forecasting accuracy. Therefore, two hybrid models (EMD-SVR-Hybrid and EMD-IMFs-Hybrid) are proposed to forecast AQI data. The main steps of the EMD-SVR-Hybrid model are as follows: the data preprocessing technique EMD (empirical mode decomposition) is utilized to sift the original AQI data to obtain one group of smoother IMFs (intrinsic mode functions) and a noise series, where the IMFs contain the important information (level, fluctuations and others) from the original AQI series. LS-SVR is applied to forecast the sum of the IMFs, and then, S-ARIMA (seasonal ARIMA) is employed to forecast the residual sequence of LS-SVR. In addition, EMD-IMFs-Hybrid first separately forecasts the IMFs via statistical models and sums the forecasting results of the IMFs as EMD-IMFs. Then, S-ARIMA is employed to forecast the residuals of EMD-IMFs. To certify the proposed hybrid model, AQI data from June 2014 to August 2015 collected from Xingtai in China are utilized as a test case to investigate the empirical research. In terms of some of the forecasting assessment measures, the AQI forecasting results of Xingtai show that the two proposed hybrid models are superior to ARIMA, SVR, GRNN, EMD-GRNN, Wavelet-GRNN and Wavelet-SVR. Therefore, the

  1. Initialization and Predictability of a Coupled ENSO Forecast Model

    Science.gov (United States)

    Chen, Dake; Zebiak, Stephen E.; Cane, Mark A.; Busalacchi, Antonio J.

    1997-01-01

    The skill of a coupled ocean-atmosphere model in predicting ENSO has recently been improved using a new initialization procedure in which initial conditions are obtained from the coupled model, nudged toward observations of wind stress. The previous procedure involved direct insertion of wind stress observations, ignoring model feedback from ocean to atmosphere. The success of the new scheme is attributed to its explicit consideration of ocean-atmosphere coupling and the associated reduction of "initialization shock" and random noise. The so-called spring predictability barrier is eliminated, suggesting that such a barrier is not intrinsic to the real climate system. Initial attempts to generalize the nudging procedure to include SST were not successful; possible explanations are offered. In all experiments forecast skill is found to be much higher for the 1980s than for the 1970s and 1990s, suggesting decadal variations in predictability.

  2. THE ACCURACY OF DEMAND FORECAST MODELS AS A CRITICAL FACTOR IN THE FINANCIAL PERFORMANCE OF THE FOOD INDUSTRY

    Directory of Open Access Journals (Sweden)

    Cássia Rita Pereira Da Veiga

    2010-11-01

    Full Text Available Every organization needs to balance their production capacities with demand. The role of demand forecasting is to assist in the organization's strategic planning; this process allows administrators to anticipate the future and plot an appropriate course of action. On its own, however, a system of demand forecasting is not enough. It is the quality of information obtained by this system which enables the organization to achieve better operational planning. In this context, this paper presents case study research to: (a define the quantitative model to forecast demand with greater accuracy; and (b to verify the influence of accuracy in demand forecasting on financial performance. This is an ex-post facto descriptive inquiry with a time series in which we made use of historical data from five groups of products over the period 2004–2008. The results suggest that if a company employs the ARIMA model for groups A, B, and E; the Holt model for group D; and the Winter model for group C, revenues will increase by approximately $1,600,000 annually. Key-words: Accuracy. Demand forecasting. Financial performance. 

  3. Forecasting wheat and barley crop production in arid and semi-arid regions using remotely sensed primary productivity and crop phenology: A case study in Iraq.

    Science.gov (United States)

    Qader, Sarchil Hama; Dash, Jadunandan; Atkinson, Peter M

    2018-02-01

    Crop production and yield estimation using remotely sensed data have been studied widely, but such information is generally scarce in arid and semi-arid regions. In these regions, inter-annual variation in climatic factors (such as rainfall) combined with anthropogenic factors (such as civil war) pose major risks to food security. Thus, an operational crop production estimation and forecasting system is required to help decision-makers to make early estimates of potential food availability. Data from NASA's MODIS with official crop statistics were combined to develop an empirical regression-based model to forecast winter wheat and barley production in Iraq. The study explores remotely sensed indices representing crop productivity over the crop growing season to find the optimal correlation with crop production. The potential of three different remotely sensed indices, and information related to the phenology of crops, for forecasting crop production at the governorate level was tested and their results were validated using the leave-one-year-out approach. Despite testing several methodological approaches, and extensive spatio-temporal analysis, this paper depicts the difficulty in estimating crop yield on an annual base using current satellite low-resolution data. However, more precise estimates of crop production were possible. The result of the current research implies that the date of the maximum vegetation index (VI) offered the most accurate forecast of crop production with an average R 2 =0.70 compared to the date of MODIS EVI (Avg R 2 =0.68) and a NPP (Avg R 2 =0.66). When winter wheat and barley production were forecasted using NDVI, EVI and NPP and compared to official statistics, the relative error ranged from -20 to 20%, -45 to 28% and -48 to 22%, respectively. The research indicated that remotely sensed indices could characterize and forecast crop production more accurately than simple cropping area, which was treated as a null model against which to

  4. Artificial Neural Network versus Linear Models Forecasting Doha Stock Market

    Science.gov (United States)

    Yousif, Adil; Elfaki, Faiz

    2017-12-01

    The purpose of this study is to determine the instability of Doha stock market and develop forecasting models. Linear time series models are used and compared with a nonlinear Artificial Neural Network (ANN) namely Multilayer Perceptron (MLP) Technique. It aims to establish the best useful model based on daily and monthly data which are collected from Qatar exchange for the period starting from January 2007 to January 2015. Proposed models are for the general index of Qatar stock exchange and also for the usages in other several sectors. With the help of these models, Doha stock market index and other various sectors were predicted. The study was conducted by using various time series techniques to study and analyze data trend in producing appropriate results. After applying several models, such as: Quadratic trend model, double exponential smoothing model, and ARIMA, it was concluded that ARIMA (2,2) was the most suitable linear model for the daily general index. However, ANN model was found to be more accurate than time series models.

  5. A Novel Approach for Forecasting Crop Production and Yield Using Remotely Sensed Satellite Images

    Science.gov (United States)

    Singh, R. K.; Budde, M. E.; Senay, G. B.; Rowland, J.

    2017-12-01

    Forecasting crop production in advance of crop harvest plays a significant role in drought impact management, improved food security, stabilizing food grain market prices, and poverty reduction. This becomes essential, particularly in Sub-Saharan Africa, where agriculture is a critical source of livelihoods, but lacks good quality agricultural statistical data. With increasing availability of low cost satellite data, faster computing power, and development of modeling algorithms, remotely sensed images are becoming a common source for deriving information for agricultural, drought, and water management. Many researchers have shown that the Normalized Difference Vegetation Index (NDVI), based on red and near-infrared reflectance, can be effectively used for estimating crop production and yield. Similarly, crop production and yield have been closely related to evapotranspiration (ET) also as there are strong linkages between production/yield and transpiration based on plant physiology. Thus, we combined NDVI and ET information from remotely sensed images for estimating total production and crop yield prior to crop harvest for Niger and Burkina Faso in West Africa. We identified the optimum time (dekads 23-29) for cumulating NDVI and ET and developed a new algorithm for estimating crop production and yield. We used the crop data from 2003 to 2008 to calibrate our model and the data from 2009 to 2013 for validation. Our results showed that total crop production can be estimated within 5% of actual production (R2 = 0.98) about 30-45 days before end of the harvest season. This novel approach can be operationalized to provide a valuable tool to decision makers for better drought impact management in drought-prone regions of the world.

  6. Early Transition and Use of VIIRS and GOES-R Products by NWS Forecast Offices

    Science.gov (United States)

    Fuell, Kevin K.; Smith, Mathew; Jedlovec, Gary

    2012-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on the NPOESS Preparatory Project (NPP) satellite, part of the Joint Polar Satellite System (JPSS), and the ABI and GLM sensors scheduled for the GOES-R geostationary satellite will bring advanced observing capabilities to the operational weather community. The NASA Short-term Prediction Research and Transition (SPoRT) project at Marshall Space Flight Center has been facilitating the use of real-time experimental and research satellite data by NWS Weather Forecast Offices (WFOs) for a number of years to demonstrate the planned capabilities of future sensors to address particular forecast challenges through improve situational awareness and short-term weather forecasts. For the NOAA GOES-R Proving Ground (PG) activity, SPoRT is developing and disseminating selected GOES-R proxy products to collaborating WFOs and National Centers. SPoRT developed the a pseudo-Geostationary Lightning Mapper product and helped in the transition of the Algorithm Working Group (AWG) Convective Initiation (CI) proxy product for the Hazardous Weather Testbed (HWT) Spring Experiment,. Along with its partner WFOs, SPoRT is evaluating MODIS/GOES Hybrid products, which brings ABI-like data sets from existing NASA instrumentation in front of the forecaster for everyday use. The Hybrid uses near real-time MODIS imagery to demonstrate future ABI capabilities, while utilizing standard GOES imagery to provide the temporal frequency of geostationary imagery expected by operational forecasters. In addition, SPoRT is collaborating with the GOES-R hydrology AWG to transition a baseline proxy product for rainfall rate / quantitative precipitation estimate (QPE) to the OCONUS regions. For VIIRS, SPoRT is demonstrating multispectral observing capabilities and the utility of low-light channels not previously available on operational weather satellites to address a variety of weather forecast challenges. This presentation will discuss the results of

  7. WRF-Fire: coupled weather-wildland fire modeling with the weather research and forecasting model

    Science.gov (United States)

    Janice L. Coen; Marques Cameron; John Michalakes; Edward G. Patton; Philip J. Riggan; Kara M. Yedinak

    2012-01-01

    A wildland fire behavior module (WRF-Fire) was integrated into the Weather Research and Forecasting (WRF) public domain numerical weather prediction model. The fire module is a surface fire behavior model that is two-way coupled with the atmospheric model. Near-surface winds from the atmospheric model are interpolated to a finer fire grid and used, with fuel properties...

  8. An analysis of seasonal predictability in coupled model forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Peng, P.; Wang, W. [NOAA, Climate Prediction Center, Washington, DC (United States); Kumar, A. [NOAA, Climate Prediction Center, Washington, DC (United States); NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States)

    2011-02-15

    In the recent decade, operational seasonal prediction systems based on initialized coupled models have been developed. An analysis of how the predictability of seasonal means in the initialized coupled predictions evolves with lead-time is presented. Because of the short lead-time, such an analysis for the temporal behavior of seasonal predictability involves a mix of both the predictability of the first and the second kind. The analysis focuses on the lead-time dependence of ensemble mean variance, and the forecast spread. Further, the analysis is for a fixed target season of December-January-February, and is for sea surface temperature, rainfall, and 200-mb height. The analysis is based on a large set of hindcasts from an initialized coupled seasonal prediction system. Various aspects of predictability of the first and the second kind are highlighted for variables with long (for example, SST), and fast (for example, atmospheric) adjustment time scale. An additional focus of the analysis is how the predictability in the initialized coupled seasonal predictions compares with estimates based on the AMIP simulations. The results indicate that differences in the set up of AMIP simulations and coupled predictions, for example, representation of air-sea interactions, and evolution of forecast spread from initial conditions do not change fundamental conclusion about the seasonal predictability. A discussion of the analysis presented herein, and its implications for the use of AMIP simulations for climate attribution, and for time-slice experiments to provide regional information, is also included. (orig.)

  9. A Simple and Effective Approach for the Prediction of Turbine Power Production From Wind Speed Forecast

    Directory of Open Access Journals (Sweden)

    Marino Marrocu

    2017-11-01

    Full Text Available An accurate forecast of the power generated by a wind turbine is of paramount importance for its optimal exploitation. Several forecasting methods have been proposed either based on a physical modeling or using a statistical approach. All of them rely on the availability of high quality measures of local wind speed, corresponding generated power and on numerical weather forecasts. In this paper, a simple and effective wind power forecast technique, based on the probability distribution mapping of wind speed forecast and observed power data, is presented and it is applied to two turbines located on the island of Borkum (Germany in the North Sea. The wind speed forecast of the ECMWF model at 100 m from the ground is used as the prognostic meteorological parameter. Training procedures are based entirely on relatively short time series of power measurements. Results show that our approach has skills that are similar or better than those obtained using more standard methods when measured with mean absolute error.

  10. Novel effects of demand side management data on accuracy of electrical energy consumption modeling and long-term forecasting

    International Nuclear Information System (INIS)

    Ardakani, F.J.; Ardehali, M.M.

    2014-01-01

    Highlights: • Novel effects of DSM data on electricity consumption forecasting is examined. • Optimal ANN models based on IPSO and SFL algorithms are developed. • Addition of DSM data to socio-economic indicators data reduces MAPE by 36%. - Abstract: Worldwide implementation of demand side management (DSM) programs has had positive impacts on electrical energy consumption (EEC) and the examination of their effects on long-term forecasting is warranted. The objective of this study is to investigate the effects of historical DSM data on accuracy of EEC modeling and long-term forecasting. To achieve the objective, optimal artificial neural network (ANN) models based on improved particle swarm optimization (IPSO) and shuffled frog-leaping (SFL) algorithms are developed for EEC forecasting. For long-term EEC modeling and forecasting for the U.S. for 2010–2030, two historical data types used in conjunction with developed models include (i) EEC and (ii) socio-economic indicators, namely, gross domestic product, energy imports, energy exports, and population for 1967–2009 period. Simulation results from IPSO-ANN and SFL-ANN models show that using socio-economic indicators as input data achieves lower mean absolute percentage error (MAPE) for long-term EEC forecasting, as compared with EEC data. Based on IPSO-ANN, it is found that, for the U.S. EEC long-term forecasting, the addition of DSM data to socio-economic indicators data reduces MAPE by 36% and results in the estimated difference of 3592.8 MBOE (5849.9 TW h) in EEC for 2010–2030

  11. An artificial neural network model for rainfall forecasting in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    N. Q. Hung

    2009-08-01

    Full Text Available This paper presents a new approach using an Artificial Neural Network technique to improve rainfall forecast performance. A real world case study was set up in Bangkok; 4 years of hourly data from 75 rain gauge stations in the area were used to develop the ANN model. The developed ANN model is being applied for real time rainfall forecasting and flood management in Bangkok, Thailand. Aimed at providing forecasts in a near real time schedule, different network types were tested with different kinds of input information. Preliminary tests showed that a generalized feedforward ANN model using hyperbolic tangent transfer function achieved the best generalization of rainfall. Especially, the use of a combination of meteorological parameters (relative humidity, air pressure, wet bulb temperature and cloudiness, the rainfall at the point of forecasting and rainfall at the surrounding stations, as an input data, advanced ANN model to apply with continuous data containing rainy and non-rainy period, allowed model to issue forecast at any moment. Additionally, forecasts by ANN model were compared to the convenient approach namely simple persistent method. Results show that ANN forecasts have superiority over the ones obtained by the persistent model. Rainfall forecasts for Bangkok from 1 to 3 h ahead were highly satisfactory. Sensitivity analysis indicated that the most important input parameter besides rainfall itself is the wet bulb temperature in forecasting rainfall.

  12. USDA Foreign Agricultural Service overview for operational monitoring of current crop conditions and production forecasts.

    Science.gov (United States)

    Crutchfield, J.

    2016-12-01

    The presentation will discuss the current status of the International Production Assessment Division of the USDA ForeignAgricultural Service for operational monitoring and forecasting of current crop conditions, and anticipated productionchanges to produce monthly, multi-source consensus reports on global crop conditions including the use of Earthobservations (EO) from satellite and in situ sources.United States Department of Agriculture (USDA) Foreign Agricultural Service (FAS) International Production AssessmentDivision (IPAD) deals exclusively with global crop production forecasting and agricultural analysis in support of the USDAWorld Agricultural Outlook Board (WAOB) lockup process and contributions to the World Agricultural Supply DemandEstimates (WASE) report. Analysts are responsible for discrete regions or countries and conduct in-depth long-termresearch into national agricultural statistics, farming systems, climatic, environmental, and economic factors affectingcrop production. IPAD analysts become highly valued cross-commodity specialists over time, and are routinely soughtout for specialized analyses to support governmental studies. IPAD is responsible for grain, oilseed, and cotton analysison a global basis. IPAD is unique in the tools it uses to analyze crop conditions around the world, including customweather analysis software and databases, satellite imagery and value-added image interpretation products. It alsoincorporates all traditional agricultural intelligence resources into its forecasting program, to make the fullest use ofavailable information in its operational commodity forecasts and analysis. International travel and training play animportant role in learning about foreign agricultural production systems and in developing analyst knowledge andcapabilities.

  13. Multi-model forecast skill for mid-summer rainfall over southern Africa

    CSIR Research Space (South Africa)

    Landman, WA

    2012-02-01

    Full Text Available -model forecasts outperform the single 17 model forecasts, that the two multi-model schemes produce about equally skilful 18 forecasts, and that the forecasts perform better during El Ni?o and La Ni?a 19 seasons than during neutral years. 20 21 22 3 1... to be 19 anomalously dry during El Ni?o years and anomalously wet during La Ni?a years, 20 although wet El Ni?o seasons and dry La Ni?a seasons are not uncommon. 21 Indian and Atlantic Ocean SST also have a statistically detectable influence on 22 South...

  14. EU pharmaceutical expenditure forecast

    OpenAIRE

    Urbinati, Duccio; Rémuzat, Cécile; Kornfeld, Åsa; Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Mzoughi, Olfa; Toumi, Mondher

    2014-01-01

    Background and Objectives: With constant incentives for healthcare payers to contain their pharmaceutical budgets, forecasting has become critically important. Some countries have, for instance, developed pharmaceutical horizon scanning units. The objective of this project was to build a model to assess the net effect of the entrance of new patented medicinal products versus medicinal products going off-patent, with a defined forecast horizon, on selected European Union (EU) Member States’ ph...

  15. Deep Learning Based Solar Flare Forecasting Model. I. Results for Line-of-sight Magnetograms

    Science.gov (United States)

    Huang, Xin; Wang, Huaning; Xu, Long; Liu, Jinfu; Li, Rong; Dai, Xinghua

    2018-03-01

    Solar flares originate from the release of the energy stored in the magnetic field of solar active regions, the triggering mechanism for these flares, however, remains unknown. For this reason, the conventional solar flare forecast is essentially based on the statistic relationship between solar flares and measures extracted from observational data. In the current work, the deep learning method is applied to set up the solar flare forecasting model, in which forecasting patterns can be learned from line-of-sight magnetograms of solar active regions. In order to obtain a large amount of observational data to train the forecasting model and test its performance, a data set is created from line-of-sight magnetogarms of active regions observed by SOHO/MDI and SDO/HMI from 1996 April to 2015 October and corresponding soft X-ray solar flares observed by GOES. The testing results of the forecasting model indicate that (1) the forecasting patterns can be automatically reached with the MDI data and they can also be applied to the HMI data; furthermore, these forecasting patterns are robust to the noise in the observational data; (2) the performance of the deep learning forecasting model is not sensitive to the given forecasting periods (6, 12, 24, or 48 hr); (3) the performance of the proposed forecasting model is comparable to that of the state-of-the-art flare forecasting models, even if the duration of the total magnetograms continuously spans 19.5 years. Case analyses demonstrate that the deep learning based solar flare forecasting model pays attention to areas with the magnetic polarity-inversion line or the strong magnetic field in magnetograms of active regions.

  16. Evaluating the Contribution of NASA Remotely-Sensed Data Sets on a Convection-Allowing Forecast Model

    Science.gov (United States)

    Zavodsky, Bradley T.; Case, Jonathan L.; Molthan, Andrew L.

    2012-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service forecast offices. SPoRT provides real-time NASA products and capabilities to help its partners address specific operational forecast challenges. One challenge that forecasters face is using guidance from local and regional deterministic numerical models configured at convection-allowing resolution to help assess a variety of mesoscale/convective-scale phenomena such as sea-breezes, local wind circulations, and mesoscale convective weather potential on a given day. While guidance from convection-allowing models has proven valuable in many circumstances, the potential exists for model improvements by incorporating more representative land-water surface datasets, and by assimilating retrieved temperature and moisture profiles from hyper-spectral sounders. In order to help increase the accuracy of deterministic convection-allowing models, SPoRT produces real-time, 4-km CONUS forecasts using a configuration of the Weather Research and Forecasting (WRF) model (hereafter SPoRT-WRF) that includes unique NASA products and capabilities including 4-km resolution soil initialization data from the Land Information System (LIS), 2-km resolution SPoRT SST composites over oceans and large water bodies, high-resolution real-time Green Vegetation Fraction (GVF) composites derived from the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and retrieved temperature and moisture profiles from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI). NCAR's Model Evaluation Tools (MET) verification package is used to generate statistics of model performance compared to in situ observations and rainfall analyses for three months during the summer of 2012 (June-August). Detailed analyses of specific severe weather outbreaks during the summer

  17. Insights from a history of seasonal inflow forecasting with a conceptual hydrologic model

    Science.gov (United States)

    Druce, Donald J.

    2001-08-01

    BC Hydro has used a conceptual hydrologic model for forecasting the seasonal inflows to its Mica project, on the Columbia River, for more than 20 years. The model estimates the snowpack on the forecast date using recently observed weather data and then calculates the runoff response to approximately 30 historical weather sequences over the remainder of the year. The ensemble of equally likely seasonal inflows makes up the forecast. Forecasts are issued as of the first of each month from January to August. The same model and modeller have made all of such forecasts for the Mica project. While some may see this as a failure to progress, others may see it as an unique opportunity to learn how well an older hydrologic model has performed, in practice, over the long term. Comments on both perspectives are offered, after the analyses of the forecasts have been presented. The forecasts have been analysed, as of each of the monthly forecast dates, to determine the accuracy of the mean and to establish any differences between ex post and ex ante measures of uncertainty. Results are then compared with those from a regression model that has also been used for forecasting the seasonal inflows to the Mica project over the same period of record.

  18. A stochastic HMM-based forecasting model for fuzzy time series.

    Science.gov (United States)

    Li, Sheng-Tun; Cheng, Yi-Chung

    2010-10-01

    Recently, fuzzy time series have attracted more academic attention than traditional time series due to their capability of dealing with the uncertainty and vagueness inherent in the data collected. The formulation of fuzzy relations is one of the key issues affecting forecasting results. Most of the present works adopt IF-THEN rules for relationship representation, which leads to higher computational overhead and rule redundancy. Sullivan and Woodall proposed a Markov-based formulation and a forecasting model to reduce computational overhead; however, its applicability is limited to handling one-factor problems. In this paper, we propose a novel forecasting model based on the hidden Markov model by enhancing Sullivan and Woodall's work to allow handling of two-factor forecasting problems. Moreover, in order to make the nature of conjecture and randomness of forecasting more realistic, the Monte Carlo method is adopted to estimate the outcome. To test the effectiveness of the resulting stochastic model, we conduct two experiments and compare the results with those from other models. The first experiment consists of forecasting the daily average temperature and cloud density in Taipei, Taiwan, and the second experiment is based on the Taiwan Weighted Stock Index by forecasting the exchange rate of the New Taiwan dollar against the U.S. dollar. In addition to improving forecasting accuracy, the proposed model adheres to the central limit theorem, and thus, the result statistically approximates to the real mean of the target value being forecast.

  19. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method.

    Science.gov (United States)

    Yang, Jun-He; Cheng, Ching-Hsue; Chan, Chia-Pan

    2017-01-01

    Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir's water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  20. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method

    Directory of Open Access Journals (Sweden)

    Jun-He Yang

    2017-01-01

    Full Text Available Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir’s water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir’s water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  1. Forecasting Energy CO2 Emissions Using a Quantum Harmony Search Algorithm-Based DMSFE Combination Model

    Directory of Open Access Journals (Sweden)

    Xingsheng Gu

    2013-03-01

    Full Text Available he accurate forecasting of carbon dioxide (CO2 emissions from fossil fuel energy consumption is a key requirement for making energy policy and environmental strategy. In this paper, a novel quantum harmony search (QHS algorithm-based discounted mean square forecast error (DMSFE combination model is proposed. In the DMSFE combination forecasting model, almost all investigations assign the discounting factor (β arbitrarily since β varies between 0 and 1 and adopt one value for all individual models and forecasting periods. The original method doesn’t consider the influences of the individual model and the forecasting period. This work contributes by changing β from one value to a matrix taking the different model and the forecasting period into consideration and presenting a way of searching for the optimal β values by using the QHS algorithm through optimizing the mean absolute percent error (MAPE objective function. The QHS algorithm-based optimization DMSFE combination forecasting model is established and tested by forecasting CO2 emission of the World top‒5 CO2 emitters. The evaluation indexes such as MAPE, root mean squared error (RMSE and mean absolute error (MAE are employed to test the performance of the presented approach. The empirical analyses confirm the validity of the presented method and the forecasting accuracy can be increased in a certain degree.

  2. Hospital daily outpatient visits forecasting using a combinatorial model based on ARIMA and SES models.

    Science.gov (United States)

    Luo, Li; Luo, Le; Zhang, Xinli; He, Xiaoli

    2017-07-10

    Accurate forecasting of hospital outpatient visits is beneficial for the reasonable planning and allocation of healthcare resource to meet the medical demands. In terms of the multiple attributes of daily outpatient visits, such as randomness, cyclicity and trend, time series methods, ARIMA, can be a good choice for outpatient visits forecasting. On the other hand, the hospital outpatient visits are also affected by the doctors' scheduling and the effects are not pure random. Thinking about the impure specialty, this paper presents a new forecasting model that takes cyclicity and the day of the week effect into consideration. We formulate a seasonal ARIMA (SARIMA) model on a daily time series and then a single exponential smoothing (SES) model on the day of the week time series, and finally establish a combinatorial model by modifying them. The models are applied to 1 year of daily visits data of urban outpatients in two internal medicine departments of a large hospital in Chengdu, for forecasting the daily outpatient visits about 1 week ahead. The proposed model is applied to forecast the cross-sectional data for 7 consecutive days of daily outpatient visits over an 8-weeks period based on 43 weeks of observation data during 1 year. The results show that the two single traditional models and the combinatorial model are simplicity of implementation and low computational intensiveness, whilst being appropriate for short-term forecast horizons. Furthermore, the combinatorial model can capture the comprehensive features of the time series data better. Combinatorial model can achieve better prediction performance than the single model, with lower residuals variance and small mean of residual errors which needs to be optimized deeply on the next research step.

  3. Discharge data assimilation in a distributed hydrologic model for flood forecasting purposes

    Science.gov (United States)

    Ercolani, G.; Castelli, F.

    2017-12-01

    Flood early warning systems benefit from accurate river flow forecasts, and data assimilation may improve their reliability. However, the actual enhancement that can be obtained in the operational practice should be investigated in detail and quantified. In this work we assess the benefits that the simultaneous assimilation of discharge observations at multiple locations can bring to flow forecasting through a distributed hydrologic model. The distributed model, MOBIDIC, is part of the operational flood forecasting chain of Tuscany Region in Central Italy. The assimilation system adopts a mixed variational-Monte Carlo approach to update efficiently initial river flow, soil moisture, and a parameter related to runoff production. The evaluation of the system is based on numerous hindcast experiments of real events. The events are characterized by significant rainfall that resulted in both high and relatively low flow in the river network. The area of study is the main basin of Tuscany Region, i.e. Arno river basin, which extends over about 8300 km2 and whose mean annual precipitation is around 800 mm. Arno's mainstream, with its nearly 240 km length, passes through major Tuscan cities, as Florence and Pisa, that are vulnerable to floods (e.g. flood of November 1966). The assimilation tests follow the usage of the model in the forecasting chain, employing the operational resolution in both space and time (500 m and 15 minutes respectively) and releasing new flow forecasts every 6 hours. The assimilation strategy is evaluated in respect to open loop simulations, i.e. runs that do not exploit discharge observations through data assimilation. We compare hydrographs in their entirety, as well as classical performance indexes, as error on peak flow and Nash-Sutcliffe efficiency. The dependence of performances on lead time and location is assessed. Results indicate that the operational forecasting chain can benefit from the developed assimilation system, although with a

  4. Retrospective forecast of ETAS model with daily parameters estimate

    Science.gov (United States)

    Falcone, Giuseppe; Murru, Maura; Console, Rodolfo; Marzocchi, Warner; Zhuang, Jiancang

    2016-04-01

    We present a retrospective ETAS (Epidemic Type of Aftershock Sequence) model based on the daily updating of free parameters during the background, the learning and the test phase of a seismic sequence. The idea was born after the 2011 Tohoku-Oki earthquake. The CSEP (Collaboratory for the Study of Earthquake Predictability) Center in Japan provided an appropriate testing benchmark for the five 1-day submitted models. Of all the models, only one was able to successfully predict the number of events that really happened. This result was verified using both the real time and the revised catalogs. The main cause of the failure was in the underestimation of the forecasted events, due to model parameters maintained fixed during the test. Moreover, the absence in the learning catalog of an event similar to the magnitude of the mainshock (M9.0), which drastically changed the seismicity in the area, made the learning parameters not suitable to describe the real seismicity. As an example of this methodological development we show the evolution of the model parameters during the last two strong seismic sequences in Italy: the 2009 L'Aquila and the 2012 Reggio Emilia episodes. The achievement of the model with daily updated parameters is compared with that of same model where the parameters remain fixed during the test time.

  5. Model Forecast Skill and Sensitivity to Initial Conditions in the Seasonal Sea Ice Outlook

    Science.gov (United States)

    Blanchard-Wrigglesworth, E.; Cullather, R. I.; Wang, W.; Zhang, J.; Bitz, C. M.

    2015-01-01

    We explore the skill of predictions of September Arctic sea ice extent from dynamical models participating in the Sea Ice Outlook (SIO). Forecasts submitted in August, at roughly 2 month lead times, are skillful. However, skill is lower in forecasts submitted to SIO, which began in 2008, than in hindcasts (retrospective forecasts) of the last few decades. The multimodel mean SIO predictions offer slightly higher skill than the single-model SIO predictions, but neither beats a damped persistence forecast at longer than 2 month lead times. The models are largely unsuccessful at predicting each other, indicating a large difference in model physics and/or initial conditions. Motivated by this, we perform an initial condition sensitivity experiment with four SIO models, applying a fixed -1 m perturbation to the initial sea ice thickness. The significant range of the response among the models suggests that different model physics make a significant contribution to forecast uncertainty.

  6. Use of medium-range numerical weather prediction model output to produce forecasts of streamflow

    Science.gov (United States)

    Clark, M.P.; Hay, L.E.

    2004-01-01

    This paper examines an archive containing over 40 years of 8-day atmospheric forecasts over the contiguous United States from the NCEP reanalysis project to assess the possibilities for using medium-range numerical weather prediction model output for predictions of streamflow. This analysis shows the biases in the NCEP forecasts to be quite extreme. In many regions, systematic precipitation biases exceed 100% of the mean, with temperature biases exceeding 3??C. In some locations, biases are even higher. The accuracy of NCEP precipitation and 2-m maximum temperature forecasts is computed by interpolating the NCEP model output for each forecast day to the location of each station in the NWS cooperative network and computing the correlation with station observations. Results show that the accuracy of the NCEP forecasts is rather low in many areas of the country. Most apparent is the generally low skill in precipitation forecasts (particularly in July) and low skill in temperature forecasts in the western United States, the eastern seaboard, and the southern tier of states. These results outline a clear need for additional processing of the NCEP Medium-Range Forecast Model (MRF) output before it is used for hydrologic predictions. Techniques of model output statistics (MOS) are used in this paper to downscale the NCEP forecasts to station locations. Forecasted atmospheric variables (e.g., total column precipitable water, 2-m air temperature) are used as predictors in a forward screening multiple linear regression model to improve forecasts of precipitation and temperature for stations in the National Weather Service cooperative network. This procedure effectively removes all systematic biases in the raw NCEP precipitation and temperature forecasts. MOS guidance also results in substantial improvements in the accuracy of maximum and minimum temperature forecasts throughout the country. For precipitation, forecast improvements were less impressive. MOS guidance increases

  7. Evaluating Forecasting Models for Unemployment Rates by Gender in Selected European Countries

    Directory of Open Access Journals (Sweden)

    Ksenija Dumičić

    2017-03-01

    Full Text Available The unemployment can be considered as one of the main economic problems. The aim of this article is to examine the differences in male and female unemployment rates in selected European countries and to predict their future trends by using different statistical forecasting models. Furthermore, the impact of adding a new data point on the selection of the most appropriate statistical forecasting model and on the overall forecasting errors values is also evaluated. Male and female unemployment rates are observed for twelve European countries in the period from 1991 to 2014. Four statistical forecasting models have been selected and applied and the most appropriate model is considered to be the one with the lowest overall forecasting errors values. The analysis has shown that in the period from 1991 to 2014 the decreasing trend of unemployment rates in the short-run is forecasted for more Eastern Balkan than the EU-28 countries. An additional data point for male and female unemployment rates in 2014 led to somewhat smaller forecasting errors in more than half of the observed countries. However, the additional data point does not necessarily improve forecasting performances of the used statistical forecasting models.

  8. Probabilistic Price Forecasting for Day-Ahead and Intraday Markets: Beyond the Statistical Model

    Directory of Open Access Journals (Sweden)

    José R. Andrade

    2017-10-01

    Full Text Available Forecasting the hourly spot price of day-ahead and intraday markets is particularly challenging in electric power systems characterized by high installed capacity of renewable energy technologies. In particular, periods with low and high price levels are difficult to predict due to a limited number of representative cases in the historical dataset, which leads to forecast bias problems and wide forecast intervals. Moreover, these markets also require the inclusion of multiple explanatory variables, which increases the complexity of the model without guaranteeing a forecasting skill improvement. This paper explores information from daily futures contract trading and forecast of the daily average spot price to correct point and probabilistic forecasting bias. It also shows that an adequate choice of explanatory variables and use of simple models like linear quantile regression can lead to highly accurate spot price point and probabilistic forecasts. In terms of point forecast, the mean absolute error was 3.03 €/MWh for day-ahead market and a maximum value of 2.53 €/MWh was obtained for intraday session 6. The probabilistic forecast results show sharp forecast intervals and deviations from perfect calibration below 7% for all market sessions.

  9. Electricity Demand Forecasting Using a Functional State Space Model

    OpenAIRE

    Nagbe , Komi; Cugliari , Jairo; Jacques , Julien

    2018-01-01

    In the last past years the liberalization of the electricity supply, the increase variability of electric appliances and their use, and the need to respond to the electricity demand in the real time had made electricity demand forecasting a challenge. To this challenge, many solutions are being proposed. The electricity demand involves many sources such as economic activities, household need and weather sources. All this sources make hard electricity demand forecasting. To forecast the electr...

  10. A Novel Wind Speed Forecasting Model for Wind Farms of Northwest China

    Science.gov (United States)

    Wang, Jian-Zhou; Wang, Yun

    2017-01-01

    Wind resources are becoming increasingly significant due to their clean and renewable characteristics, and the integration of wind power into existing electricity systems is imminent. To maintain a stable power supply system that takes into account the stochastic nature of wind speed, accurate wind speed forecasting is pivotal. However, no single model can be applied to all cases. Recent studies show that wind speed forecasting errors are approximately 25% to 40% in Chinese wind farms. Presently, hybrid wind speed forecasting models are widely used and have been verified to perform better than conventional single forecasting models, not only in short-term wind speed forecasting but also in long-term forecasting. In this paper, a hybrid forecasting model is developed, the Similar Coefficient Sum (SCS) and Hermite Interpolation are exploited to process the original wind speed data, and the SVM model whose parameters are tuned by an artificial intelligence model is built to make forecast. The results of case studies show that the MAPE value of the hybrid model varies from 22.96% to 28.87 %, and the MAE value varies from 0.47 m/s to 1.30 m/s. Generally, Sign test, Wilcoxon's Signed-Rank test, and Morgan-Granger-Newbold test tell us that the proposed model is different from the compared models.

  11. Forecasting Foreign Institutional Investment Flows towards India Using ARIMA Modelling

    Directory of Open Access Journals (Sweden)

    Vaishali S. Dhingra

    2015-05-01

    Full Text Available India has witnessed substantial increase in capital flows, particularly Foreign Institutional Investment in equity as well as derivatives segment since the 1990s. However, FII flows are sighted as ‘hot money’- more volatile than other type of flows, which gets affected by the domestic and global- macro economic factors, thereby raising questions about the need to encourage FII flows in narrow and shallow (in terms of absorption capacity capital market such as India. This paper attempts to forecast daily Aggregate FII flow in Indian Capital market and particularly in Futures Market (Derivative Segment using Auto Regressive Integrated Moving Average (ARIMA model.The paper tries to examine FII flows in India towards futures market along with spot market by tracing which AR terms and/or MA terms influence the current inflow or outflow.

  12. Forecasting Energy-Related CO2 Emissions Employing a Novel SSA-LSSVM Model: Considering Structural Factors in China

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2018-03-01

    Full Text Available Carbon dioxide (CO2 emissions forecasting is becoming more important due to increasing climatic problems, which contributes to developing scientific climate policies and making reasonable energy plans. Considering that the influential factors of CO2 emissions are multiplex and the relationships between factors and CO2 emissions are complex and non-linear, a novel CO2 forecasting model called SSA-LSSVM, which utilizes the Salp Swarm Algorithm (SSA to optimize the two parameters of the least squares support sector machine (LSSVM model, is proposed in this paper. The influential factors of CO2 emissions, including the gross domestic product (GDP, population, energy consumption, economic structure, energy structure, urbanization rate, and energy intensity, are regarded as the input variables of the SSA-LSSVM model. The proposed model is verified to show a better forecasting performance compared with the selected models, including the single LSSVM model, the LSSVM model optimized by the particle swarm optimization algorithm (PSO-LSSVM, and the back propagation (BP neural network model, on CO2 emissions in China from 2014 to 2016. The comparative analysis indicates the SSA-LSSVM model is greatly superior and has the potential to improve the accuracy and reliability of CO2 emissions forecasting. CO2 emissions in China from 2017 to 2020 are forecast combined with the 13th Five-Year Plan for social, economic and energy development. The comparison of CO2 emissions of China in 2020 shows that structural factors significantly affect CO2 emission forecasting results. The average annual growth of CO2 emissions slows down significantly due to a series of policies and actions taken by the Chinese government, which means China can keep the promise that greenhouse gas emissions will start to drop after 2030.

  13. A fuzzy inference model for short-term load forecasting

    International Nuclear Information System (INIS)

    Mamlook, Rustum; Badran, Omar; Abdulhadi, Emad

    2009-01-01

    This paper is concerned with the short-term load forecasting (STLF) in power system operations. It provides load prediction for generation scheduling and unit commitment decisions, and therefore precise load forecasting plays an important role in reducing the generation cost and the spinning reserve capacity. Short-term electricity demand forecasting (i.e., the prediction of hourly loads (demand)) is one of the most important tools by which an electric utility/company plans, dispatches the loading of generating units in order to meet system demand. The accuracy of the dispatching system, which is derived from the accuracy of the forecasting algorithm used, will determine the economics of the operation of the power system. The inaccuracy or large error in the forecast simply means that load matching is not optimized and consequently the generation and transmission systems are not being operated in an efficient manner. In the present study, a proposed methodology has been introduced to decrease the forecasted error and the processing time by using fuzzy logic controller on an hourly base. Therefore, it predicts the effect of different conditional parameters (i.e., weather, time, historical data, and random disturbances) on load forecasting in terms of fuzzy sets during the generation process. These parameters are chosen with respect to their priority and importance. The forecasted values obtained by fuzzy method were compared with the conventionally forecasted ones. The results showed that the STLF of the fuzzy implementation have more accuracy and better outcomes

  14. A system-theory-based model for monthly river runoff forecasting: model calibration and optimization

    Directory of Open Access Journals (Sweden)

    Wu Jianhua

    2014-03-01

    Full Text Available River runoff is not only a crucial part of the global water cycle, but it is also an important source for hydropower and an essential element of water balance. This study presents a system-theory-based model for river runoff forecasting taking the Hailiutu River as a case study. The forecasting model, designed for the Hailiutu watershed, was calibrated and verified by long-term precipitation observation data and groundwater exploitation data from the study area. Additionally, frequency analysis, taken as an optimization technique, was applied to improve prediction accuracy. Following model optimization, the overall relative prediction errors are below 10%. The system-theory-based prediction model is applicable to river runoff forecasting, and following optimization by frequency analysis, the prediction error is acceptable.

  15. How informative are slip models for aftershock forecasting?

    Science.gov (United States)

    Bach, Christoph; Hainzl, Sebastian

    2013-04-01

    Coulomb stress changes (ΔCFS) have been recognized as a major trigger mechanism for earthquakes, in particular aftershock distributions and the spatial patterns of ΔCFS are often found to be correlated. However, the Coulomb stress calculations are based on slip inversions and the receiver fault mechanisms which both contain large uncertainties. In particular, slip inversions are usually non-unique and often differ strongly for the same earthquakes. Here we want to address the information content of those inversions with respect to aftershock forecasting. Therefore we compare the slip models to randomized fractal slip models which are only constrained by fault information and moment magnitude. The uncertainty of the aftershock mechanisms is considered by using many receiver fault orientations, and by calculating ΔCFS at several depth layers. The stress change is then converted into an aftershock probability map utilizing a clock advance model. To estimate the information content of the slip models, we use an Epidemic Type Aftershock Sequence (ETAS) model approach introduced by Bach and Hainzl (2012), where the spatial probability density of direct aftershocks is related to the ΔCFS calculations. Besides the directly triggered aftershocks, this approach also takes secondary aftershock triggering into account. We quantify our results by calculating the information gain of the randomized slip models relative to the corresponding published slip model. As case studies, we investigate the aftershock sequences of several well-known main shocks such as 1992 Landers, 1999 Hector Mine, 2004 Parkfield, 2002 Denali. First results show a huge difference in the information content of slip models. For some of the cases up to 90% of the random slip models are found to perform better than the originally published model, for some other cases only few random models are found performing better than the published slip model.

  16. The importance of the reference populations for coherent mortality forecasting models

    DEFF Research Database (Denmark)

    Kjærgaard, Søren; Canudas-Romo, Vladimir; Vaupel, James W.

    -population mortality models aiming to find the optimal of the set of countries to use as reference population and analyse the importance of the selection of countries. The two multi-population mortality models used are the Li-Lee model and the Double-Gap life expectancy forecasting model. The reference populations......Coherent forecasting models that take into consideration mortality changes observed in different countries are today among the essential tools for demographers, actuaries and other researchers interested in forecasts. Medium and long term life expectancy forecasts are compared for two multi...... is calculated taking into account all the possible combinations of a set of 20 industrialized countries. The different reference populations possibilities are compared by their forecast performance. The results show that the selection of countries for multi-population mortality models has a significant effect...

  17. A multivariate time series approach to modeling and forecasting demand in the emergency department.

    Science.gov (United States)

    Jones, Spencer S; Evans, R Scott; Allen, Todd L; Thomas, Alun; Haug, Peter J; Welch, Shari J; Snow, Gregory L

    2009-02-01

    The goals of this investigation were to study the temporal relationships between the demands for key resources in the emergency department (ED) and the inpatient hospital, and to develop multivariate forecasting models. Hourly data were collected from three diverse hospitals for the year 2006. Descriptive analysis and model fitting were carried out using graphical and multivariate time series methods. Multivariate models were compared to a univariate benchmark model in terms of their ability to provide out-of-sample forecasts of ED census and the demands for diagnostic resources. Descriptive analyses revealed little temporal interaction between the demand for inpatient resources and the demand for ED resources at the facilities considered. Multivariate models provided more accurate forecasts of ED census and of the demands for diagnostic resources. Our results suggest that multivariate time series models can be used to reliably forecast ED patient census; however, forecasts of the demands for diagnostic resources were not sufficiently reliable to be useful in the clinical setting.

  18. Real-Time Analysis and Forecasting of Multisite River Flow Using a Distributed Hydrological Model

    Directory of Open Access Journals (Sweden)

    Mingdong Sun

    2014-01-01

    Full Text Available A spatial distributed hydrological forecasting system was developed to promote the analysis of river flow dynamic state in a large basin. The research presented the real-time analysis and forecasting of multisite river flow in the Nakdong River Basin using a distributed hydrological model with radar rainfall forecast data. A real-time calibration algorithm of hydrological distributed model was proposed to investigate the particular relationship between the water storage and basin discharge. Demonstrate the approach of simulating multisite river flow using a distributed hydrological model couple with real-time calibration and forecasting of multisite river flow with radar rainfall forecasts data. The hydrographs and results exhibit that calibrated flow simulations are very approximate to the flow observation at all sites and the accuracy of forecasting flow is gradually decreased with lead times extending from 1 hr to 3 hrs. The flow forecasts are lower than the flow observation which is likely caused by the low estimation of radar rainfall forecasts. The research has well demonstrated that the distributed hydrological model is readily applicable for multisite real-time river flow analysis and forecasting in a large basin.

  19. Quantile Forecasting for Credit Risk Management Using Possibly Mis-specified Hidden Markov Models

    NARCIS (Netherlands)

    Banachewicz, K.P.; Lucas, A.

    2008-01-01

    Recent models for credit risk management make use of hidden Markov models (HMMs). HMMs are used to forecast quantiles of corporate default rates. Little research has been done on the quality of such forecasts if the underlying HMM is potentially misspecified. In this paper, we focus on

  20. A Practical Model for Forecasting New Freshman Enrollment during the Application Period.

    Science.gov (United States)

    Paulsen, Michael B.

    1989-01-01

    A simple and effective model for forecasting freshman enrollment during the application period is presented step by step. The model requires minimal and readily available information, uses a simple linear regression analysis on a personal computer, and provides updated monthly forecasts. (MSE)