WorldWideScience

Sample records for production support flight

  1. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  2. Production Support Flight Control Computers: Research Capability for F/A-18 Aircraft at Dryden Flight Research Center

    Science.gov (United States)

    Carter, John F.

    1997-01-01

    NASA Dryden Flight Research Center (DFRC) is working with the United States Navy to complete ground testing and initiate flight testing of a modified set of F/A-18 flight control computers. The Production Support Flight Control Computers (PSFCC) can give any fleet F/A-18 airplane an in-flight, pilot-selectable research control law capability. NASA DFRC can efficiently flight test the PSFCC for the following four reasons: (1) Six F/A-18 chase aircraft are available which could be used with the PSFCC; (2) An F/A-18 processor-in-the-loop simulation exists for validation testing; (3) The expertise has been developed in programming the research processor in the PSFCC; and (4) A well-defined process has been established for clearing flight control research projects for flight. This report presents a functional description of the PSFCC. Descriptions of the NASA DFRC facilities, PSFCC verification and validation process, and planned PSFCC projects are also provided.

  3. Production and quality assurance automation in the Goddard Space Flight Center Flight Dynamics Facility

    Science.gov (United States)

    Chapman, K. B.; Cox, C. M.; Thomas, C. W.; Cuevas, O. O.; Beckman, R. M.

    1994-01-01

    The Flight Dynamics Facility (FDF) at the NASA Goddard Space Flight Center (GSFC) generates numerous products for NASA-supported spacecraft, including the Tracking and Data Relay Satellites (TDRS's), the Hubble Space Telescope (HST), the Extreme Ultraviolet Explorer (EUVE), and the space shuttle. These products include orbit determination data, acquisition data, event scheduling data, and attitude data. In most cases, product generation involves repetitive execution of many programs. The increasing number of missions supported by the FDF has necessitated the use of automated systems to schedule, execute, and quality assure these products. This automation allows the delivery of accurate products in a timely and cost-efficient manner. To be effective, these systems must automate as many repetitive operations as possible and must be flexible enough to meet changing support requirements. The FDF Orbit Determination Task (ODT) has implemented several systems that automate product generation and quality assurance (QA). These systems include the Orbit Production Automation System (OPAS), the New Enhanced Operations Log (NEOLOG), and the Quality Assurance Automation Software (QA Tool). Implementation of these systems has resulted in a significant reduction in required manpower, elimination of shift work and most weekend support, and improved support quality, while incurring minimal development cost. This paper will present an overview of the concepts used and experiences gained from the implementation of these automation systems.

  4. NASA Aerosciences Activities to Support Human Space Flight

    Science.gov (United States)

    LeBeau, Gerald J.

    2011-01-01

    The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State's human space flight program for over 50 years. It is the home to NASA s Mission Control Center, the astronaut corps, and many major programs and projects including the Space Shuttle Program, International Space Station Program, and the Orion Project. As part of JSC's Engineering Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to provide aerosciences support to all human spacecraft designs and missions for all phases of flight, including ascent, exo-atmospheric, and entry. The presentation will review past and current aeroscience applications and how NASA works to apply a balanced philosophy that leverages ground testing, computational modeling and simulation, and flight testing, to develop and validate related products. The speaker will address associated aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems, involving both spacecraft vehicle design and analysis, and operational mission support. From these examples some of NASA leading aerosciences challenges will be identified. These challenges will be used to provide foundational motivation for the development of specific advanced modeling and simulation capabilities, and will also be used to highlight how development activities are increasing becoming more aligned with flight projects. NASA s efforts to apply principles of innovation and inclusion towards improving its ability to support the myriad of vehicle design and operational challenges will also be briefly reviewed.

  5. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    Science.gov (United States)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  6. Passengers waste production during flights.

    Science.gov (United States)

    Tofalli, Niki; Loizia, Pantelitsa; Zorpas, Antonis A

    2017-12-20

    We assume that during flights the amount of waste that is produced is limited. However, daily, approximately 8000 commercial airplanes fly above Europe's airspace while at the same time, more than 17,000 commercial flights exist in the entire world. Using primary data from airlines, which use the Larnaca's International Airport (LIA) in Cyprus, we have tried to understand why wastes are produced during a typical flight such as food waste, paper, and plastics, as well as how passengers affect the production of those wastes. The compositional analysis took place on 27 flights of 4 different airlines which used LIA as final destination. The evaluation indicated that the passenger's habits and ethics, and the policy of each airline produced different kinds of waste during the flights and especially food waste (FW). Furthermore, it was observed that the only waste management strategy that exists in place in the airport is the collection and the transportation of all those wastes from aircrafts and from the airport in the central unit for further treatment. Hence, this research indicated extremely difficulties to implement any specific waste minimization, or prevention practice or other sorting methods during the flights due to the limited time of the most flights (less than 3 h), the limited available space within the aircrafts, and the strictly safety roles that exist during the flights.

  7. Management of Operational Support Requirements for Manned Flight Missions

    Science.gov (United States)

    1991-01-01

    This Instruction establishes responsibilities for managing the system whereby operational support requirements are levied for support of manned flight missions including associated payloads. This management system will ensure that support requirements are properly requested and responses are properly obtained to meet operational objectives.

  8. Efficiency of Lift Production in Flapping and Gliding Flight of Swifts

    Science.gov (United States)

    Henningsson, Per; Hedenström, Anders; Bomphrey, Richard J.

    2014-01-01

    Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord) and/or twist from root to tip (reducing local angle of attack). We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag. PMID:24587260

  9. Efficiency of lift production in flapping and gliding flight of swifts.

    Directory of Open Access Journals (Sweden)

    Per Henningsson

    Full Text Available Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord and/or twist from root to tip (reducing local angle of attack. We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag.

  10. Distributing flight dynamics products via the World Wide Web

    Science.gov (United States)

    Woodard, Mark; Matusow, David

    1996-01-01

    The NASA Flight Dynamics Products Center (FDPC), which make available selected operations products via the World Wide Web, is reported on. The FDPC can be accessed from any host machine connected to the Internet. It is a multi-mission service which provides Internet users with unrestricted access to the following standard products: antenna contact predictions; ground tracks; orbit ephemerides; mean and osculating orbital elements; earth sensor sun and moon interference predictions; space flight tracking data network summaries; and Shuttle transport system predictions. Several scientific data bases are available through the service.

  11. Intelligent Flight Support System (IFSS): A Real-time Intelligent Decision Support Prototype, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The integration of the analysis tools with the advanced visualization capabilities in The Intelligent Flight Support System (IFSS) can provide a unique method for...

  12. Configuration management issues and objectives for a real-time research flight test support facility

    Science.gov (United States)

    Yergensen, Stephen; Rhea, Donald C.

    1988-01-01

    Presented are some of the critical issues and objectives pertaining to configuration management for the NASA Western Aeronautical Test Range (WATR) of Ames Research Center. The primary mission of the WATR is to provide a capability for the conduct of aeronautical research flight test through real-time processing and display, tracking, and communications systems. In providing this capability, the WATR must maintain and enforce a configuration management plan which is independent of, but complimentary to, various research flight test project configuration management systems. A primary WATR objective is the continued development of generic research flight test project support capability, wherein the reliability of WATR support provided to all project users is a constant priority. Therefore, the processing of configuration change requests for specific research flight test project requirements must be evaluated within a perspective that maintains this primary objective.

  13. Touching for attention: How flight instructors support a pilot wearing a view-limiting device

    DEFF Research Database (Denmark)

    Nevile, Maurice Richard; Tuccio, William A.

    2018-01-01

    We use video recordings from pilot training flights to show how instructors support attention of a student wearing ‘foggles’, a view-limiting device designed to train pilots to fly by reference only to the cockpit flight instruments. The instructors touch cockpit displays with a pointing finger...... demonstrates a technique for controlling descent. The data examples are taken from a corpus of almost 100 hours of video recordings of actual in-flight instruction. We consider how our analyses can inform flight instructor training and improve instructor effectiveness, for example by revealing possible...

  14. An analysis of unit tests of a flight software product line

    NARCIS (Netherlands)

    Ganesan, D.; Lindvall, M.; McComas, D.; Bartholomew, M.; Slegel, S.; Medina, B.; Krikhaar, R.; Verhoef, C.; Dharmalingam, G.; Montgomery, L.P.

    2013-01-01

    This paper presents an analysis of the unit testing approach developed and used by the Core Flight Software System (CFS) product line team at the NASA Goddard Space Flight Center (GSFC). The goal of the analysis is to understand, review, and recommend strategies for improving the CFS' existing unit

  15. FLYSAFE, nowcasting of in flight icing supporting aircrew decision making process

    Science.gov (United States)

    Drouin, A.; Le Bot, C.

    2009-09-01

    FLYSAFE is an Integrated Project of the 6th framework of the European Commission with the aim to improve flight safety through the development of a Next Generation Integrated Surveillance System (NGISS). The NGISS provides information to the flight crew on the three major external hazards for aviation: weather, air traffic and terrain. The NGISS has the capability of displaying data about all three hazards on a single display screen, facilitating rapid pilot appreciation of the situation by the flight crew. Weather Information Management Systems (WIMS) were developed to provide the NGISS and the flight crew with weather related information on in-flight icing, thunderstorms, wake-vortex and clear-air turbulence. These products are generated on the ground from observations and model forecasts. WIMS supply relevant information on three different scales: global, regional and local (over airport Terminal Manoeuvring Area). Within the flysafe program, around 120 hours of flight trials were performed during February 2008 and August 2008. Two aircraft were involved each with separate objectives : - to assess FLYSAFE's innovative solutions for the data-link, on-board data fusion, data-display, and data-updates during flight; - to evaluate the new weather information management systems (in flight icing and thunderstorms) using in-situ measurements recorded on board the test aircraft. In this presentation we will focus on the in-flight icing nowcasting system developed at Météo France in the framework of FLYSAFE: the local ICE WIMS. The local ICE WIMS is based on data fusion. The most relevant information for icing detection is extracted from the numerical weather prediction model, the infra-red and visible satellite imagery and the ground weather radar reflectivities. After a presentation of the local ICE WIMS, we detail the evaluation of the local ICE WIMS performed using the winter and summer flight trial data.

  16. Supporting Development of Satellite's Guidance Navigation and Control Software: A Product Line Approach

    Science.gov (United States)

    McComas, David; Stark, Michael; Leake, Stephen; White, Michael; Morisio, Maurizio; Travassos, Guilherme H.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The NASA Goddard Space Flight Center Flight Software Branch (FSB) is developing a Guidance, Navigation, and Control (GNC) Flight Software (FSW) product line. The demand for increasingly more complex flight software in less time while maintaining the same level of quality has motivated us to look for better FSW development strategies. The GNC FSW product line has been planned to address the core GNC FSW functionality very similar on many recent low/near Earth missions in the last ten years. Unfortunately these missions have not accomplished significant drops in development cost since a systematic approach towards reuse has not been adopted. In addition, new demands are continually being placed upon the FSW which means the FSB must become more adept at providing GNC FSW functionality's core so it can accommodate additional requirements. These domain features together with engineering concepts are influencing the specification, description and evaluation of FSW product line. Domain engineering is the foundation for emerging product line software development approaches. A product line is 'A family of products designed to take advantage of their common aspects and predicted variabilities'. In our product line approach, domain engineering includes the engineering activities needed to produce reusable artifacts for a domain. Application engineering refers to developing an application in the domain starting from reusable artifacts. The focus of this paper is regarding the software process, lessons learned and on how the GNC FSW product line manages variability. Existing domain engineering approaches do not enforce any specific notation for domain analysis or commonality and variability analysis. Usually, natural language text is the preferred tool. The advantage is the flexibility and adapt ability of natural language. However, one has to be ready to accept also its well-known drawbacks, such as ambiguity, inconsistency, and contradictions. While most domain analysis

  17. Increased root production in soybeans grown under space flight conditions.

    Science.gov (United States)

    Levine, H. G.; Piastuch, W. C.

    The GENEX ({Gen}e {Ex}pression) spaceflight experiment (flown on STS-87) was developed to investigate whether direct and/or indirect effects of microgravity are perceived as an external stimulus for soybean seedling response. Protocols were designed to optimize root and shoot formation, gas exchange and moisture uniformity. Six surface sterilized soybean seeds (Glycine max cv McCall) were inserted into each of 32 autoclaved plastic seed growth pouches containing an inner germination paper sleeve (for a total of 192 seeds). The pouches were stowed within a mid-deck locker until Mission Flight Day 10, at which time an astronaut added water to each pouch (thereby initiating the process of seed germination on-orbit), and subsequently transferred them to four passive, light-tight aluminum canisters called BRIC-60s (Biological Research In Canisters). We report here on the morphological characteristics of: (1) the recovered flight material, (2) the corresponding ground control population, plus (3) additional controls grown on the ground under clinostat conditions. No significant growth differences were found between the flight, ground control and clinorotated treatments for either the cotyledons or hypocotyls. There were, however, significantly longer primary roots produced in the flight population relative to the ground control population, which in turn had significantly longer primary roots than the clinorotated population. This same pattern was observed relative to the production of lateral roots (flight > control > clinorotated). Taken together with previous literature reports, we believe that there is now sufficient evidence to conclude that plants grown under conditions of microgravity will generally exhibit enhanced root production relative to their ground control counterparts. The mechanism underlying this phenomenon is open to speculation. Funded under NASA Contract NAS10-12180.

  18. Recent progress of in-flight separators and rare isotope beam production

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Toshiyuki, E-mail: kubo@ribf.riken.jp

    2016-06-01

    New-generation in-flight separators are being developed worldwide, including the Super-FRS separator at the GSI Facility for Antiproton and Ion Research (FAIR), the ARIS separator at the Michigan State University (MSU) Facility for Rare Isotopes Beams (FRIB), and the BigRIPS separator at the RIKEN RI Beam Factory (RIBF), each of which is aimed at expanding the frontiers of rare isotope (RI) production and advancing experimental studies on exotic nuclei far from stability. Here, the recent progress of in-flight separators is reviewed, focusing on the advanced features of these three representative separators. The RI beam production that we have conducted using the BigRIPS separator at RIKEN RIBF is also outlined.

  19. Aircraft interrogation and display system: A ground support equipment for digital flight systems

    Science.gov (United States)

    Glover, R. D.

    1982-01-01

    A microprocessor-based general purpose ground support equipment for electronic systems was developed. The hardware and software are designed to permit diverse applications in support of aircraft flight systems and simulation facilities. The implementation of the hardware, the structure of the software, describes the application of the system to an ongoing research aircraft project are described.

  20. Automation Framework for Flight Dynamics Products Generation

    Science.gov (United States)

    Wiegand, Robert E.; Esposito, Timothy C.; Watson, John S.; Jun, Linda; Shoan, Wendy; Matusow, Carla

    2010-01-01

    XFDS provides an easily adaptable automation platform. To date it has been used to support flight dynamics operations. It coordinates the execution of other applications such as Satellite TookKit, FreeFlyer, MATLAB, and Perl code. It provides a mechanism for passing messages among a collection of XFDS processes, and allows sending and receiving of GMSEC messages. A unified and consistent graphical user interface (GUI) is used for the various tools. Its automation configuration is stored in text files, and can be edited either directly or using the GUI.

  1. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    Science.gov (United States)

    Kerstman, Eric L.; Minard, Charles; FreiredeCarvalho, Mary H.; Walton, Marlei E.; Myers, Jerry G., Jr.; Saile, Lynn G.; Lopez, Vilma; Butler, Douglas J.; Johnson-Throop, Kathy A.

    2011-01-01

    This slide presentation reviews the Integrated Medical Model (IMM) and its use as a risk assessment and decision support tool for human space flight missions. The IMM is an integrated, quantified, evidence-based decision support tool useful to NASA crew health and mission planners. It is intended to assist in optimizing crew health, safety and mission success within the constraints of the space flight environment for in-flight operations. It uses ISS data to assist in planning for the Exploration Program and it is not intended to assist in post flight research. The IMM was used to update Probability Risk Assessment (PRA) for the purpose of updating forecasts for the conditions requiring evacuation (EVAC) or Loss of Crew Life (LOC) for the ISS. The IMM validation approach includes comparison with actual events and involves both qualitative and quantitaive approaches. The results of these comparisons are reviewed. Another use of the IMM is to optimize the medical kits taking into consideration the specific mission and the crew profile. An example of the use of the IMM to optimize the medical kits is reviewed.

  2. United States Army Aeromedical Support to African Fliers, 1941 - 1949: The Tuskegee Flight Suregons

    National Research Council Canada - National Science Library

    Jones, David R; Gross, Leroy P; Marchbanks-Robinson, Roslyn

    2007-01-01

    .... Segregation policies in early 1941 required a few African American flight surgeons to support black student pilots at Tuskegee, Alabama from cadet training in preflight ground school until graduation with pilot wings...

  3. Flight Test Results for the F-16XL With a Digital Flight Control System

    Science.gov (United States)

    Stachowiak, Susan J.; Bosworth, John T.

    2004-01-01

    In the early 1980s, two F-16 airplanes were modified to extend the fuselage length and incorporate a large area delta wing planform. These two airplanes, designated the F-16XL, were designed by the General Dynamics Corporation (now Lockheed Martin Tactical Aircraft Systems) (Fort Worth, Texas) and were prototypes for a derivative fighter evaluation program conducted by the United States Air Force. Although the concept was never put into production, the F-16XL prototypes provided a unique planform for testing concepts in support of future high-speed supersonic transport aircraft. To extend the capabilities of this testbed vehicle the F-16XL ship 1 aircraft was upgraded with a digital flight control system. The added flexibility of a digital flight control system increases the versatility of this airplane as a testbed for aerodynamic research and investigation of advanced technologies. This report presents the handling qualities flight test results covering the envelope expansion of the F-16XL with the digital flight control system.

  4. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Space Flight Medical Systems

    Science.gov (United States)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; deCarvalho, Mary Freire; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to mission planners and medical system designers in assessing risks and designing medical systems for space flight missions. The IMM provides an evidence based approach for optimizing medical resources and minimizing risks within space flight operational constraints. The mathematical relationships among mission and crew profiles, medical condition incidence data, in-flight medical resources, potential crew functional impairments, and clinical end-states are established to determine probable mission outcomes. Stochastic computational methods are used to forecast probability distributions of crew health and medical resource utilization, as well as estimates of medical evacuation and loss of crew life. The IMM has been used in support of the International Space Station (ISS) medical kit redesign, the medical component of the ISS Probabilistic Risk Assessment, and the development of the Constellation Medical Conditions List. The IMM also will be used to refine medical requirements for the Constellation program. The IMM outputs for ISS and Constellation design reference missions will be presented to demonstrate the potential of the IMM in assessing risks, planning missions, and designing medical systems. The implementation of the IMM verification and validation plan will be reviewed. Additional planned capabilities of the IMM, including optimization techniques and the inclusion of a mission timeline, will be discussed. Given the space flight constraints of mass, volume, and crew medical training, the IMM is a valuable risk assessment and decision support tool for medical system design and mission planning.

  5. Flight Tests of a Ministick Controller in an F/A-18 Airplane

    Science.gov (United States)

    Stoliker, Patrick C.; Carter, John

    2003-01-01

    In March of 1999, five pilots performed flight tests to evaluate the handling qualities of an F/A-18 research airplane equipped with a small-displacement center stick (ministick) controller that had been developed for the JAS 39 Gripen airplane (a fighter/attack/ reconnaissance airplane used by the Swedish air force). For these tests, the ministick was installed in the aft cockpit (see figure) and production support flight control computers (PSFCCs) were used as interfaces between the controller hardware and the standard F/A-18 flight-control laws. The primary objective of the flight tests was to assess any changes in handling qualities of the F/A-18 airplane attributable to the mechanical characteristics of the ministick. The secondary objective was to demonstrate the capability of the PSFCCs to support flight-test experiments.

  6. Environmental control and life support testing at the Marshall Space Flight Center

    Science.gov (United States)

    Schunk, Richard G.; Humphries, William R.

    1987-01-01

    The Space Station Environmental Control and Life Support System (ECLSS) test program at the Marshall Space Flight Center (MSFC) is addressed. The immediate goals and current activities of the test program are discussed. Also described are the Core Module Integration Facility (CMIF) and the initial ECLSS test configuration. Future plans for the ECLSS test program and the CMIF are summarized.

  7. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight

    Science.gov (United States)

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for

  8. Space flight research leading to the development of enhanced plant products: Results from STS-94

    Science.gov (United States)

    Stodieck, Louis S.; Hoehn, Alex; Heyenga, A. Gerard

    1998-01-01

    Products derived from plants, such as foods, pharmaceuticals, lumber, paper, oils, etc., are pervasive in everyday life and generate revenues in the hundreds of billions of dollars. Research on space-grown plants has the potential to alter quantities, properties and types of plant-derived products in beneficial ways. Research on space grown plants may help expand the utilization of this resource for Earth based benefit to an even greater extent. The use of space flight conditions may help provide a greater understanding and ultimate manipulation of the metabolic and genetic control of commercially important plant products. Companies that derive and sell plant products could significantly benefit from investing in space research and development. A flight investigation was conducted on the Shuttle mission STS-94 to establish the initial experimental conditions necessary to test the hypothesis that the exposure of certain plant forms to an adequate period of microgravity may divert the cell metabolic expenditure on structural compounds such as lignin to alternative secondary metabolic compounds which are of commercial interest. Nine species of plants were grown for 16 days in the Astro/Plant Generic Bioprocessing Apparatus (Astro/PGBA) under well-controlled environmental conditions. Approximately half of the plant species exhibited significant growth comparable with synchronous ground controls. The other flight plant species were stunted and showed signs of stress with the cause still under investigation. For the plants that grew well, analyses are underway and are expected to demonstrate the potential for space flight biotechnology research.

  9. Centennial of Flight Educational Outreach

    Science.gov (United States)

    McCarthy, Marianne (Technical Monitor); Miller, Susan (Technical Monitor); Vanderpool, Celia

    2003-01-01

    The Centennial of Flight Education Outreach project worked with community partners to disseminate NASA Education materials and the Centennial of Flight CD-ROM as a vehicle to increase national awareness of NASA's Aerospace Education products, services and programs. The Azimuth Education Foundation and the Ninety Nines, an International Women Pilots Association, Inc. were chartered to conduct education outreach to the formal and informal educational community. The Dryden Education Office supported the development of a training and information distribution program that established a national group of prepared Centennial of Flight Ambassadors, with a mission of community education outreach. These Ambassadors are members of the Ninety Nines and through the Azimuth Foundation, they assisted the AECC on the national level to promote and disseminate Centennial of Flight and other educational products. Our objectives were to explore partnership outreach growth opportunities with consortium efforts between organizations. This project directly responded to the highlights of NASA s Implementation Plan for Education. It was structured to network, involve the community, and provide a solid link to active educators and current students with NASA education information. Licensed female pilots who live and work in local communities across the nation carried the link. This partnership has been extremely gratifying to all of those Ninety-Nines involved, and they eagerly look forward to further work opportunities.

  10. Comparing future options for human space flight

    Science.gov (United States)

    Sherwood, Brent

    2011-09-01

    The paper analyzes the "value proposition" for government-funded human space flight, a vexing question that persistently dogs efforts to justify its $10 10/year expense in the US. The original Mercury/Gemini/Apollo value proposition is not valid today. Neither was it the value proposition actually promoted by von Braun, which the post-Apollo 80% of human space flight history has persistently attempted to fulfill. Divergent potential objectives for human space flight are captured in four strategic options— Explore Mars; accelerate Space Passenger Travel; enable Space Power for Earth; and Settle the Moon—which are then analyzed for their purpose, societal myth, legacy benefits, core needs, and result as measured by the number and type of humans they would fly in space. This simple framework is proposed as a way to support productive dialog with public and other stakeholders, to determine a sustainable value proposition for human space flight.

  11. Eclipse takeoff and flight

    Science.gov (United States)

    1998-01-01

    made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system; and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft; validation of simulation models of the towed aircraft systems; and development of ground and flight procedures for towing and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes. The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable launch vehicles, in particular to gain experience towing delta-wing aircraft having high wing loading, and in general to demonstrate various operational procedures such as ground processing and abort scenarios. The first successful

  12. The Generalized Support Software (GSS) Domain Engineering Process: An Object-Oriented Implementation and Reuse Success at Goddard Space Flight Center

    Science.gov (United States)

    Condon, Steven; Hendrick, Robert; Stark, Michael E.; Steger, Warren

    1997-01-01

    The Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center (GSFC) recently embarked on a far-reaching revision of its process for developing and maintaining satellite support software. The new process relies on an object-oriented software development method supported by a domain specific library of generalized components. This Generalized Support Software (GSS) Domain Engineering Process is currently in use at the NASA GSFC Software Engineering Laboratory (SEL). The key facets of the GSS process are (1) an architecture for rapid deployment of FDD applications, (2) a reuse asset library for FDD classes, and (3) a paradigm shift from developing software to configuring software for mission support. This paper describes the GSS architecture and process, results of fielding the first applications, lessons learned, and future directions

  13. Verifying Architectural Design Rules of the Flight Software Product Line

    Science.gov (United States)

    Ganesan, Dharmalingam; Lindvall, Mikael; Ackermann, Chris; McComas, David; Bartholomew, Maureen

    2009-01-01

    This paper presents experiences of verifying architectural design rules of the NASA Core Flight Software (CFS) product line implementation. The goal of the verification is to check whether the implementation is consistent with the CFS architectural rules derived from the developer's guide. The results indicate that consistency checking helps a) identifying architecturally significant deviations that were eluded during code reviews, b) clarifying the design rules to the team, and c) assessing the overall implementation quality. Furthermore, it helps connecting business goals to architectural principles, and to the implementation. This paper is the first step in the definition of a method for analyzing and evaluating product line implementations from an architecture-centric perspective.

  14. Flight dynamics facility operational orbit determination support for the ocean topography experiment

    Science.gov (United States)

    Bolvin, D. T.; Schanzle, A. F.; Samii, M. V.; Doll, C. E.

    1991-01-01

    The Ocean Topography Experiment (TOPEX/POSEIDON) mission is designed to determine the topography of the Earth's sea surface across a 3 yr period, beginning with launch in June 1992. The Goddard Space Flight Center Dynamics Facility has the capability to operationally receive and process Tracking and Data Relay Satellite System (TDRSS) tracking data. Because these data will be used to support orbit determination (OD) aspects of the TOPEX mission, the Dynamics Facility was designated to perform TOPEX operational OD. The scientific data require stringent OD accuracy in navigating the TOPEX spacecraft. The OD accuracy requirements fall into two categories: (1) on orbit free flight; and (2) maneuver. The maneuver OD accuracy requirements are of two types; premaneuver planning and postmaneuver evaluation. Analysis using the Orbit Determination Error Analysis System (ODEAS) covariance software has shown that, during the first postlaunch mission phase of the TOPEX mission, some postmaneuver evaluation OD accuracy requirements cannot be met. ODEAS results also show that the most difficult requirements to meet are those that determine the change in the components of velocity for postmaneuver evaluation.

  15. Insulin secretion and sensitivity in space flight: diabetogenic effects

    Science.gov (United States)

    Tobin, Brian W.; Uchakin, Peter N.; Leeper-Woodford, Sandra K.

    2002-01-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  16. Computational modeling of aerodynamics in the fast forward flight of hummingbirds

    Science.gov (United States)

    Song, Jialei; Luo, Haoxiang; Tobalske, Bret; Hedrick, Tyson

    2015-11-01

    Computational models of the hummingbird at flight speed 8.3 m/s is built based on high-speed imaging of the real bird flight in the wind tunnel. The goal is to understand the lift and thrust production of the wings at the high advance ratio (flight speed to the average wingtip speed) around 1. Both the full 3D CFD model based on an immersed-boundary method and the blade-element model based on quasi-steady flow assumption were adopted to analyze the aerodynamics. The result shows that while the weight support is generated during downstroke, little negative weight support is produced during upstroke. On the other hand, thrust is generated during both downstroke and upstroke, which allows the bird to overcome drag induced at fast flight. The lift and thrust characteristics are closely related to the instantaneous wing position and motion. In addition, the flow visualization shows that the leading-edge vortex is stable during most of the wing-beat, which may have contributed to the lift and thrust enhancement. NSF CBET-0954381.

  17. Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group

    Science.gov (United States)

    Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance

    2009-01-01

    The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.

  18. Design of a Multi-mode Flight Deck Decision Support System for Airborne Conflict Management

    Science.gov (United States)

    Barhydt, Richard; Krishnamurthy, Karthik

    2004-01-01

    NASA Langley has developed a multi-mode decision support system for pilots operating in a Distributed Air-Ground Traffic Management (DAG-TM) environment. An Autonomous Operations Planner (AOP) assists pilots in performing separation assurance functions, including conflict detection, prevention, and resolution. Ongoing AOP design has been based on a comprehensive human factors analysis and evaluation results from previous human-in-the-loop experiments with airline pilot test subjects. AOP considers complex flight mode interactions and provides flight guidance to pilots consistent with the current aircraft control state. Pilots communicate goals to AOP by setting system preferences and actively probing potential trajectories for conflicts. To minimize training requirements and improve operational use, AOP design leverages existing alerting philosophies, displays, and crew interfaces common on commercial aircraft. Future work will consider trajectory prediction uncertainties, integration with the TCAS collision avoidance system, and will incorporate enhancements based on an upcoming air-ground coordination experiment.

  19. The Dubna double-arm time-of-flight spectrometer for heavy-ion reaction products

    International Nuclear Information System (INIS)

    Schilling, K.D.; Gippner, P.; Seidel, W.; Stary, F.; Will, E.; Heidel, K.; Lukyanov, S.M.; Penionzhkevich, Yu.E.; Salamatin, V.S.; Sodan, H.; Chubarian, G.G.

    1986-05-01

    The double-arm time-of-flight spectrometer DEMAS designed for the detection and identification of heavy-ion reaction products at incident energies below 10 MeV/amu is presented. Based on the kinematic coincidence method, the relevant physical information is obtained from the measurement of the two correlated velocity vectors of the binary fragments. Construction and performance of the different detector systems applied to measure the time-of-flight values, the position coordinates and the kinetic energies of both fragments are presented in detail. The description of the data acquisition and analysing procedures is followed by the discussion of some experimental examples to demonstrate the spectrometer performance. A mass resolution of typically 4 - 5 amu (fwhm) is routinely achieved. (author)

  20. Flapping wing flight can save aerodynamic power compared to steady flight.

    Science.gov (United States)

    Pesavento, Umberto; Wang, Z Jane

    2009-09-11

    Flapping flight is more maneuverable than steady flight. It is debated whether this advantage is necessarily accompanied by a trade-off in the flight efficiency. Here we ask if any flapping motion exists that is aerodynamically more efficient than the optimal steady motion. We solve the Navier-Stokes equation governing the fluid dynamics around a 2D flapping wing, and determine the minimal aerodynamic power needed to support a specified weight. While most flapping wing motions are more costly than the optimal steady wing motion, we find that optimized flapping wing motions can save up to 27% of the aerodynamic power required by the optimal steady flight. We explain the cause of this energetic advantage.

  1. Eclipse - tow flight closeup and release

    Science.gov (United States)

    1998-01-01

    flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight-measured values of tow rope tension were well within predictions made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system; and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft; validation of simulation models of the towed aircraft systems; and development of ground and flight procedures for towing and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes.The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable

  2. Challenges for Life Support Systems in Space Environments, Including Food Production

    Science.gov (United States)

    Wheeler, Raymond M.

    2012-01-01

    Environmental Control and Life Support Systems (ECLSS) refer to the technologies needed to sustain human life in space environments. Histor ically these technologies have focused on providing a breathable atmo sphere, clean water, food, managing wastes, and the associated monitoring capabilities. Depending on the space agency or program, ELCSS has sometimes expanded to include other aspects of managing space enviro nments, such as thermal control, radiation protection, fire detection I suppression, and habitat design. Other times, testing and providing these latter technologies have been associated with the vehicle engi neering. The choice of ECLSS technologies is typically driven by the mission profile and their associated costs and reliabilities. These co sts are largely defined by the mass, volume, power, and crew time req uirements. For missions close to Earth, e.g., low-Earth orbit flights, stowage and resupply of food, some 0 2, and some water are often the most cost effective option. But as missions venture further into spa ce, e.g., transit missions to Mars or asteroids, or surface missions to Moon or Mars, the supply line economics change and the need to clos e the loop on life support consumables increases. These are often ref erred to as closed loop or regenerative life support systems. Regardless of the technologies, the systems must be capable of operating in a space environment, which could include micro to fractional g setting s, high radiation levels, and tightly closed atmospheres, including perhaps reduced cabin pressures. Food production using photosynthetic o rganisms such as plants by nature also provides atmospheric regenerat ion (e.g., CO2 removal and reduction, and 0 2 production), yet to date such "bioregenerative" technologies have not been used due largely t o the high power requirements for lighting. A likely first step in te sting bioregenerative capabilities will involve production of small a mounts of fresh foods to supplement to crew

  3. Analysis of phosphatidylcholine oxidation products in human plasma using quadrupole time-of flight mass spectrometry

    OpenAIRE

    Adachi, Junko; Asano, Migiwa; Yoshioka, Naoki; Nushida, Hideyuki; Ueno, Yasuhiro

    2006-01-01

    We report here an application of the previous method for the analysis ofphosphatidylcholine (PC) and lysophosphatidylcholine (lysoPC) oxidation products inhuman plasma using quadrupole time of flight (Q-TOF) mass spectrometry withelectrospray ionization. We separated these products using an HPLC C8 column witha gradient of methanol and 10 mM aqueous ammonium acetate. Monohydroperoxides,epoxyhydroxy derivatives, oxo derivatives, and trihydroxides of palmitoyl-linoleoyl(C16:0/C18:2) PC and stea...

  4. Experiences in Interagency and International Interfaces for Mission Support

    Science.gov (United States)

    Dell, G. T.; Mitchell, W. J.; Thompson, T. W.; Cappellari, J. O., Jr.; Flores-Amaya, F.

    1996-01-01

    The Flight Dynamics Division (FDD) of the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GFSC) provides extensive support and products for Space Shuttle missions, expendable launch vehicle launches, and routine on-orbit operations for a variety of spacecraft. A major challenge in providing support for these missions is defining and generating the products required for mission support and developing the method by which these products are exchanged between supporting agencies. As interagency and international cooperation has increased in the space community, the FDD customer base has grown and with it the number and variety of external interfaces and product definitions. Currently, the FDD has working interfaces with the NASA Space and Ground Networks, the Johnson Space Center, the White Sands Complex, the Jet propulsion Laboratory (including the Deep Space Network), the United States Air Force, the Centre National d'Etudes Spatiales, the German Spaceflight Operations Center, the European Space Agency, and the National Space Development Agency of Japan. With the increasing spectrum of possible data product definitions and delivery methods, the FDD is using its extensive interagency experience to improve its support of established customers and to provide leadership in adapting/developing new interfaces. This paper describes the evolution of the interfaces between the FDD and its customers, discusses many of the joint activities ith these customers, and summarizes key lessons learned that can be applied to current and future support.

  5. L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition

    Science.gov (United States)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu

    2010-01-01

    Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.

  6. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.

  7. PLM system support for modular product development

    DEFF Research Database (Denmark)

    Bruun, Hans Peter Lomholt; Mortensen, Niels Henrik; Harlou, Ulf

    2015-01-01

    A modular design strategy both enables, but also demands, parallelism in design activities and collaboration between a diversity of disciplines in companies, which often involves supporting computer-based tools for enhancing interaction, design management, and communication. Product data management...... (PDM) and product lifecycle management (PLM) systems offer support by automating and managing some of the operational complexity of modular design activities. PLM system tools are used for handling a variety of product definitions, to manage workflow of development activities, and to measure relational...... properties such as cost and performance. Companies often use a PLM tool for management of CAD files, documents, and drawings, but they do not take advantage of the full potential of the PLM system to support the development activities of modular product designs. The key result of this paper...

  8. A Unique Software System For Simulation-to-Flight Research

    Science.gov (United States)

    Chung, Victoria I.; Hutchinson, Brian K.

    2001-01-01

    "Simulation-to-Flight" is a research development concept to reduce costs and increase testing efficiency of future major aeronautical research efforts at NASA. The simulation-to-flight concept is achieved by using common software and hardware, procedures, and processes for both piloted-simulation and flight testing. This concept was applied to the design and development of two full-size transport simulators, a research system installed on a NASA B-757 airplane, and two supporting laboratories. This paper describes the software system that supports the simulation-to-flight facilities. Examples of various simulation-to-flight experimental applications were also provided.

  9. Flight Dynamics Analysis Branch 2005 Technical Highlights

    Science.gov (United States)

    2005-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2005. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based); spacecraft trajectory design and maneuver planning; attitude analysis; attitude determination and sensor calibration; and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.

  10. State Support of Domestic Production

    Energy Technology Data Exchange (ETDEWEB)

    Amy Wright

    2007-12-30

    This project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under the State Support of Domestic Production DE-FC26-04NT15456. The Interstate Oil and Gas Compact Commission (IOGCC) performed efforts in support of State programs related to the security, reliability and growth if our nation's domestic production of oil and natural gas. The project objectives were to improve the States ability to monitor the security of oil and gas operations; to maximize the production of domestic oil and natural gas thereby minimizing the threat to national security posed by interruptions in energy imports; to assist States in developing and maintaining high standards of environmental protection; to assist in addressing issues that limit the capacity of the industry; to promote the deployment of the appropriate application of technology for regulatory efficiency; and to inform the public about emerging energy issues.

  11. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    Science.gov (United States)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  12. Perceived workplace health support is associated with employee productivity.

    Science.gov (United States)

    Chen, Lu; Hannon, Peggy A; Laing, Sharon S; Kohn, Marlana J; Clark, Kathleen; Pritchard, Scott; Harris, Jeffrey R

    2015-01-01

    To examine the relationship between perceived workplace health support and employee productivity. A quantitative cross-sectional study. Washington State agencies. A total of 3528 employees from six state agencies were included in this analysis. Perceived workplace health support was assessed by two questions that queried respondents on how often they felt supported by the workplace for healthy living and physical activity. The Work Productivity and Activity Impairment Questionnaire was used to measure health-related absenteeism and presenteeism in the past 7 days. Multivariate linear regression was used to estimate the mean differences in productivity by levels of perceived health support. Most participants were between 45 and 64 years of age and were predominantly non-Hispanic white. Presenteeism varied significantly by the level of perceived workplace health support, with those who felt least supported having higher presenteeism than those who felt most supported. The difference in presenteeism by perceived workplace support remained significant in models adjusting for sociodemographic and health characteristics (mean difference: 7.1% for support for healthy living, 95% confidence interval: 3.7%, 10.4%; 4.3% for support for physical activity, 95% confidence interval: 1.7%, 6.8%). Absenteeism was not associated with perceived workplace health support. Higher perceived workplace health support is independently associated with higher work productivity. Employers may see productivity benefit from wellness programs through improved perceptions of workplace health support.

  13. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    Science.gov (United States)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  14. Design and utilization of a Flight Test Engineering Database Management System at the NASA Dryden Flight Research Facility

    Science.gov (United States)

    Knighton, Donna L.

    1992-01-01

    A Flight Test Engineering Database Management System (FTE DBMS) was designed and implemented at the NASA Dryden Flight Research Facility. The X-29 Forward Swept Wing Advanced Technology Demonstrator flight research program was chosen for the initial system development and implementation. The FTE DBMS greatly assisted in planning and 'mass production' card preparation for an accelerated X-29 research program. Improved Test Plan tracking and maneuver management for a high flight-rate program were proven, and flight rates of up to three flights per day, two times per week were maintained.

  15. Hovering and intermittent flight in birds

    International Nuclear Information System (INIS)

    Tobalske, Bret W

    2010-01-01

    Two styles of bird locomotion, hovering and intermittent flight, have great potential to inform future development of autonomous flying vehicles. Hummingbirds are the smallest flying vertebrates, and they are the only birds that can sustain hovering. Their ability to hover is due to their small size, high wingbeat frequency, relatively large margin of mass-specific power available for flight and a suite of anatomical features that include proportionally massive major flight muscles (pectoralis and supracoracoideus) and wing anatomy that enables them to leave their wings extended yet turned over (supinated) during upstroke so that they can generate lift to support their weight. Hummingbirds generate three times more lift during downstroke compared with upstroke, with the disparity due to wing twist during upstroke. Much like insects, hummingbirds exploit unsteady mechanisms during hovering including delayed stall during wing translation that is manifest as a leading-edge vortex (LEV) on the wing and rotational circulation at the end of each half stroke. Intermittent flight is common in small- and medium-sized birds and consists of pauses during which the wings are flexed (bound) or extended (glide). Flap-bounding appears to be an energy-saving style when flying relatively fast, with the production of lift by the body and tail critical to this saving. Flap-gliding is thought to be less costly than continuous flapping during flight at most speeds. Some species are known to shift from flap-gliding at slow speeds to flap-bounding at fast speeds, but there is an upper size limit for the ability to bound (∼0.3 kg) and small birds with rounded wings do not use intermittent glides.

  16. Hovering and intermittent flight in birds

    Energy Technology Data Exchange (ETDEWEB)

    Tobalske, Bret W, E-mail: bret.tobalske@mso.umt.ed [Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812 (United States)

    2010-12-15

    Two styles of bird locomotion, hovering and intermittent flight, have great potential to inform future development of autonomous flying vehicles. Hummingbirds are the smallest flying vertebrates, and they are the only birds that can sustain hovering. Their ability to hover is due to their small size, high wingbeat frequency, relatively large margin of mass-specific power available for flight and a suite of anatomical features that include proportionally massive major flight muscles (pectoralis and supracoracoideus) and wing anatomy that enables them to leave their wings extended yet turned over (supinated) during upstroke so that they can generate lift to support their weight. Hummingbirds generate three times more lift during downstroke compared with upstroke, with the disparity due to wing twist during upstroke. Much like insects, hummingbirds exploit unsteady mechanisms during hovering including delayed stall during wing translation that is manifest as a leading-edge vortex (LEV) on the wing and rotational circulation at the end of each half stroke. Intermittent flight is common in small- and medium-sized birds and consists of pauses during which the wings are flexed (bound) or extended (glide). Flap-bounding appears to be an energy-saving style when flying relatively fast, with the production of lift by the body and tail critical to this saving. Flap-gliding is thought to be less costly than continuous flapping during flight at most speeds. Some species are known to shift from flap-gliding at slow speeds to flap-bounding at fast speeds, but there is an upper size limit for the ability to bound ({approx}0.3 kg) and small birds with rounded wings do not use intermittent glides.

  17. Flight Planning in the Cloud

    Science.gov (United States)

    Flores, Sarah L.; Chapman, Bruce D.; Tung, Waye W.; Zheng, Yang

    2011-01-01

    This new interface will enable Principal Investigators (PIs), as well as UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) members to do their own flight planning and time estimation without having to request flight lines through the science coordinator. It uses an all-in-one Google Maps interface, a JPL hosted database, and PI flight requirements to design an airborne flight plan. The application will enable users to see their own flight plan being constructed interactively through a map interface, and then the flight planning software will generate all the files necessary for the flight. Afterward, the UAVSAR team can then complete the flight request, including calendaring and supplying requisite flight request files in the expected format for processing by NASA s airborne science program. Some of the main features of the interface include drawing flight lines on the map, nudging them, adding them to the current flight plan, and reordering them. The user can also search and select takeoff, landing, and intermediate airports. As the flight plan is constructed, all of its components are constantly being saved to the database, and the estimated flight times are updated. Another feature is the ability to import flight lines from previously saved flight plans. One of the main motivations was to make this Web application as simple and intuitive as possible, while also being dynamic and robust. This Web application can easily be extended to support other airborne instruments.

  18. Ares I-X Flight Test Philosophy

    Science.gov (United States)

    Davis, S. R.; Tuma, M. L.; Heitzman, K.

    2007-01-01

    In response to the Vision for Space Exploration, the National Aeronautics and Space Administration (NASA) has defined a new space exploration architecture to return humans to the Moon and prepare for human exploration of Mars. One of the first new developments will be the Ares I Crew Launch Vehicle (CLV), which will carry the Orion Crew Exploration Vehicle (CEV), into Low Earth Orbit (LEO) to support International Space Station (ISS) missions and, later, support lunar missions. As part of Ares I development, NASA will perform a series of Ares I flight tests. The tests will provide data that will inform the engineering and design process and verify the flight hardware and software. The data gained from the flight tests will be used to certify the new Ares/Orion vehicle for human space flight. The primary objectives of this first flight test (Ares I-X) are the following: Demonstrate control of a dynamically similar integrated Ares CLV/Orion CEV using Ares CLV ascent control algorithms; Perform an in-flight separation/staging event between an Ares I-similar First Stage and a representative Upper Stage; Demonstrate assembly and recovery of a new Ares CLV-like First Stage element at Kennedy Space Center (KSC); Demonstrate First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics and parachute performance; and Characterize the magnitude of the integrated vehicle roll torque throughout the First Stage (powered) flight. This paper will provide an overview of the Ares I-X flight test process and details of the individual flight tests.

  19. Free Flight Ground Testing of ADEPT in Advance of the Sounding Rocket One Flight Experiment

    Science.gov (United States)

    Smith, B. P.; Dutta, S.

    2017-01-01

    The Adaptable Deployable Entry and Placement Technology (ADEPT) project will be conducting the first flight test of ADEPT, titled Sounding Rocket One (SR-1), in just two months. The need for this flight test stems from the fact that ADEPT's supersonic dynamic stability has not yet been characterized. The SR-1 flight test will provide critical data describing the flight mechanics of ADEPT in ballistic flight. These data will feed decision making on future ADEPT mission designs. This presentation will describe the SR-1 scientific data products, possible flight test outcomes, and the implications of those outcomes on future ADEPT development. In addition, this presentation will describe free-flight ground testing performed in advance of the flight test. A subsonic flight dynamics test conducted at the Vertical Spin Tunnel located at NASA Langley Research Center provided subsonic flight dynamics data at high and low altitudes for multiple center of mass (CoM) locations. A ballistic range test at the Hypervelocity Free Flight Aerodynamics Facility (HFFAF) located at NASA Ames Research Center provided supersonic flight dynamics data at low supersonic Mach numbers. Execution and outcomes of these tests will be discussed. Finally, a hypothesized trajectory estimate for the SR-1 flight will be presented.

  20. Cockpit Displays to Support Hazard Awareness in Free Flight

    Science.gov (United States)

    Wickens, Christopher D.; Carbonari, Ron; Merwin, Dave; Morphew, Ephimia; OBrien, Janelle V.

    1997-01-01

    Three experiments are described which each examine different aspects of the formatting and integration of cockpit displays of traffic information to support pilots in traffic avoidance planning. The first two experiments compared two-dimensional (coplanar) with three-dimensional (perspective) versions of a cockpit display of traffic information. In Experiment 1, 30 certified flight instructors flew a series of traffic conflict detection and avoidance maneuvers around an intruder aircraft, sometimes in the presence of a second intruder. The results revealed an advantage for the coplanar display, particularly when there was vertical intruder behavior. In Experiment 2, 17 instructors flew with the coplanar and perspective formats when weather information was either overlaid or displayed separately. Again performance was best with the coplanar display, particularly when the weather data were overlaid. The results of both experiments are also discussed in ten-ns of the traffic maneuver stereotypes exhibited by the pilots. Experiment 3 examined the benefits of the two different predictor elements used in the coplanar displays of Experiments 1 and 2. The study was carried out in a multitask context. These elements were both found to improve safety (reduce actual and predicted conflicts) and to reduce workload, although the different elements affected workload in different ways. Neither predictor element imposed a cost to concurrent task performance.

  1. STS payloads mission control study. Volume 2-A, Task 1: Joint products and functions for preflight planning of flight operations, training and simulations

    Science.gov (United States)

    1976-01-01

    Specific products and functions, and associated facility availability, applicable to preflight planning of flight operations were studied. Training and simulation activities involving joint participation of STS and payload operations organizations, are defined. The prelaunch activities required to prepare for the payload flight operations are emphasized.

  2. Theseus in Flight

    Science.gov (United States)

    1996-01-01

    The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  3. NASA Glenn Research Center Support of the Advanced Stirling Radioisotope Generator Project

    Science.gov (United States)

    Wilson, Scott D.; Wong, Wayne A.

    2015-01-01

    A high-efficiency radioisotope power system was being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center. DOE initiated termination of that contract in late 2013, primarily due to budget constraints. Sunpower, Inc., held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with Lockheed Martin to produce ASC-F flight units, and one with Glenn for the production of ASC-E3 engineering unit "pathfinders" that are built to the flight design. In support of those contracts, Glenn provided testing, materials expertise, Government-furnished equipment, inspection capabilities, and related data products to Lockheed Martin and Sunpower. The technical support included material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests were performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests were conducted to characterize performance under operating conditions that are representative of various mission conditions. Despite termination of the ASRG flight development contract, NASA continues to recognize the importance of high-efficiency ASC power conversion for Radioisotope Power Systems (RPS) and continues investment in the technology, including the continuation of the ASC-E3 contract. This paper describes key Government support for the ASRG project and future tests to be used to provide data for ongoing reliability assessments.

  4. An innovative energy-saving in-flight melting technology and its application to glass production

    Directory of Open Access Journals (Sweden)

    Yaochun Yao et al

    2008-01-01

    Full Text Available The conventional method used for glass melting is air-fuel firing, which is inefficient, energy-intensive and time-consuming. In this study, an innovative in-flight melting technology was developed and applied to glass production for the purposes of energy conservation and environmental protection. Three types of heating sources, radio-frequency (RF plasma, a 12-phase alternating current (ac arc and an oxygen burner, were used to investigate the in-flight melting behavior of granulated powders. Results show that the melted particles are spherical with a smooth surface and compact structure. The diameter of the melted particles is about 50% of that of the original powders. The decomposition and vitrification degrees of the prepared powders decrease in the order of powders prepared by RF plasma, the 12-phase ac arc and the oxygen burner. The largest heat transfer is from RF plasma to particles, which results in the highest particle temperature (1810 °C and the greatest vitrification degree of the raw material. The high decomposition and vitrification degrees, which are achieved in milliseconds, shorten the melting and fining times of the glass considerably. Our results indicate that the proposed in-flight melting technology is a promising method for use in the glass industry.

  5. How Insects Initiate Flight: Computational Analysis of a Damselfly in Takeoff Flight

    Science.gov (United States)

    Bode-Oke, Ayodeji; Zeyghami, Samane; Dong, Haibo; Flow Simulation Research Group Team

    2017-11-01

    Flight initiation is essential for survival in biological fliers and can be classified into jumping and non-jumping takeoffs. During jumping takeoffs, the legs generate most of the initial impulse. Whereas the wings generate most of the forces in non-jumping takeoffs, which are usually voluntary, slow, and stable. It is of interest to understand how non-jumping takeoffs occur and what strategies insects use to generate the required forces. Using a high fidelity computational fluid dynamics simulation, we identify the flow features and compute the wing aerodynamic forces to elucidate how flight forces are generated by a damselfly performing a non-jumping takeoff. Our results show that a damselfly generates about three times its bodyweight during the first half-stroke for liftoff while flapping through a steeply inclined stroke plane and slicing the air at high angles of attack. Consequently, a Leading Edge Vortex (LEV) is formed during both the downstroke and upstroke on all the four wings. The formation of the LEV, however, is inhibited in the subsequent upstrokes following takeoff. Accordingly, we observe a drastic reduction in the magnitude of the aerodynamic force, signifying the importance of LEV in augmenting force production. This work was supported by National Science Foundation [CBET-1313217] and Air Force Research Laboratory [FA9550-12-1-007].

  6. Measuring Strategic Firm Interaction in Product-Quality Choices: The Case of Airline Flight Frequency

    OpenAIRE

    Jan K. Brueckner; Dan Luo

    2013-01-01

    This paper investigates strategic interaction among airlines in product-quality choices. Using an instrumental variables approach, the paper estimates flight-frequency reaction functions, which relate an airline’s frequency on a route to its own characteristics and to the frequencies of competing airlines. A positive reaction function slope is found in some cases, indicating the presence of strategic interaction in the choice of frequencies. The paper also asks whether multimarket contact g...

  7. Automation and decision support in interactive consumer products.

    OpenAIRE

    Sauer, J.; Rüttinger, B.

    2007-01-01

    This article presents two empirical studies (n=30, n=48) that are concerned with different forms of automation in interactive consumer products. The goal of the studies was to evaluate the effectiveness of two types of automation: perceptual augmentation (i.e. supporting users' action selection and implementation). Furthermore, the effectiveness of non-product information (i.e. labels attached to product) in supporting automation design was evaluated. The findings suggested greater benefits f...

  8. Flight Standards Automation System -

    Data.gov (United States)

    Department of Transportation — FAVSIS supports Flight Standards Service (AFS) by maintaining their information on entities such as air carriers, air agencies, designated airmen, and check airmen....

  9. 14 CFR 21.37 - Flight test pilot.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight test pilot. 21.37 Section 21.37... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.37 Flight test pilot. Each applicant for a normal... holding an appropriate pilot certificate to make the flight tests required by this part. [Doc. No. 5085...

  10. NASA Langley's AirSTAR Testbed: A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments

    Science.gov (United States)

    Jordan, Thomas L.; Bailey, Roger M.

    2008-01-01

    As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The

  11. Purification of liquid products of cotton wipes biotransformation with the aid of Trichoderma viridae in orbital flight

    Science.gov (United States)

    Viacheslav, Ilyin; Korshunov, Denis

    Recovery of various organic wastes in space flight is an actual problem of modern astronautics and future interplanetary missions. Currently, organic waste are incinerated in the dense layers of the Earth's atmosphere in cargo containers. However, this method of anthropogenic waste treatment is not environmentally compatible with future interplanetary missions, and is not suitable due to planetary quarantine requirements. Furthermore, the maintaining of a closed ecosystem in spaceship is considered as one of the main ways of ensuring the food and air crew in the long term fully autonomous space expedition. Such isolated ecosystem is not conceivable without biotransformation of organic waste. In this regard, currently new ways of recycling organic waste are currently developed. The most promising method is a method for processing organic waste using thermophilic anaerobic microbial communities.However, the products of anaerobic fermentation of solid organic materials contain significant amounts of organic impurities, which often give them sour pH. This presents a significant problem because it does not allow to use this fluid as process water without pretreatment. Fermentation products - alcohols, volatile fatty acids other carbonaceous substances must be withdrawn.One way to solve this problem may be the use of microorganisms biodestructors for recycling organic impurities in the products of anaerobic biodegradation Under the proposed approach, the metabolic products (having acidic pH) of primary biotransformation of solid organic materials are used as media for the cultivation of fungi. Thus, cellulosic wastes are recycled in two successive stages. The aim of this work was to test the effectiveness of post-treatment liquid products of biodegradation of hygienic cotton wipes (common type of waste on the ISS) by the fungus Trichoderma viridae under orbital flight. The study was conducted onboard biosatellite Bion -M1, where was placed a bioreactor, designed to carry

  12. Space Life-Support Engineering Program

    Science.gov (United States)

    Seagrave, Richard C. (Principal Investigator)

    1995-01-01

    This report covers the seventeen months of work performed under an extended one year NASA University Grant awarded to Iowa State University to perform research on topics relating to the development of closed-loop long-term life support systems with the initial principal focus on space water management. In the first phase of the program, investigators from chemistry and chemical engineering with demonstrated expertise in systems analysis, thermodynamics, analytical chemistry and instrumentation, performed research and development in two major related areas; the development of low-cost, accurate, and durable sensors for trace chemical and biological species, and the development of unsteady-state simulation packages for use in the development and optimization of control systems for life support systems. In the second year of the program, emphasis was redirected towards concentrating on the development of dynamic simulation techniques and software and on performing a thermodynamic systems analysis, centered on availability or energy analysis, in an effort to begin optimizing the systems needed for water purification. The third year of the program, the subject of this report, was devoted to the analysis of the water balance for the interaction between humans and the life support system during space flight and exercise, to analysis of the cardiopulmonary systems of humans during space flight, and to analysis of entropy production during operation of the air recovery system during space flight.

  13. 14 CFR 417.307 - Support systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Support systems. 417.307 Section 417.307... TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.307 Support systems. (a) General. (1) A flight safety system must include the systems required by this section to support the functions of the flight...

  14. Future Flight Opportunities and Calibration Protocols for CERES: Continuation of Observations in Support of the Long-Term Earth Radiation Budget Climate Data Record

    Science.gov (United States)

    Priestley, Kory J.; Smith, George L.

    2010-01-01

    The goal of the Clouds and the Earth s Radiant Energy System (CERES) project is to provide a long-term record of radiation budget at the top-of-atmosphere (TOA), within the atmosphere, and at the surface with consistent cloud and aerosol properties at climate accuracy. CERES consists of an integrated instrument-algorithm validation science team that provides development of higher-level products (Levels 1-3) and investigations. It involves a high level of data fusion, merging inputs from 25 unique input data sources to produce 18 CERES data products. Over 90% of the CERES data product volume involves two or more instruments. Continuation of the Earth Radiation Budget (ERB) Climate Data Record (CDR) has been identified as critical in the 2007 NRC Decadal Survey, the Global Climate Observing System WCRP report, and in an assessment titled Impacts of NPOESS Nunn-McCurdy Certification on Joint NASA-NOAA Climate Goals . Five CERES instruments have flown on three different spacecraft: TRMM, EOS-Terra and EOS-Aqua. In response, NASA, NOAA and NPOESS have agreed to fly the existing CERES Flight Model (FM-5) on the NPP spacecraft in 2011 and to procure an additional CERES Sensor with modest upgrades for flight on the JPSS C1 spacecraft in 2014, followed by a CERES follow-on sensor for flight in 2018. CERES is a scanning broadband radiometer that measures filtered radiance in the SW (0.3-5 m), total (TOT) (0.3-200 m) and WN (8-12 m) regions. Pre-launch calibration is performed on each Flight Model to meet accuracy requirements of 1% for SW and 0.5% for outgoing LW observations. Ground to flight or in-flight changes are monitored using protocols employing onboard and vicarious calibration sources. Studies of flight data show that SW response can change dramatically due to optical contamination. with greatest impact in blue-to UV radiance, where tungsten lamps are largely devoid of output. While science goals remain unchanged for ERB Climate Data Record, it is now understood

  15. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    Science.gov (United States)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  16. Immune resistance of man in space flights

    Science.gov (United States)

    Irina, V.; Konstantinova, M. D.

    The immune system of 72 cosmonauts was studied after their flights on board Salyut 6, 7 and Mir orbital stations. PHA lymphocyte reactivity, T helper activity and NK capacity to recognize and kill the target were decreased on 1-7 days after prolonged (3-11 months) space flights. Certain alterations were found in the ultrastructure of the NK secretory and locomotor apparatuses. Decrement of IL 2 production was shown using the biological test. However immunoenzymatic analysis did not reveal a decrease in IL 2 synthesis. Production of α-interferon remained unchanged while that of γ-interferon either rose or was diminished. Several cosmonanauts displayed a trend towards increased OAF production. The observed decrease in immune system functioning may increase the risk of various diseases during prolonged space flights.

  17. WFIRST: User and mission support at ISOC - IPAC Science Operations Center

    Science.gov (United States)

    Akeson, Rachel; Armus, Lee; Bennett, Lee; Colbert, James; Helou, George; Kirkpatrick, J. Davy; Laine, Seppo; Meshkat, Tiffany; Paladini, Roberta; Ramirez, Solange; Wang, Yun; Xie, Joan; Yan, Lin

    2018-01-01

    The science center for WFIRST is distributed between the Goddard Space Flight Center, the Infrared Processing and Analysis Center (IPAC) and the Space Telescope Science Institute (STScI). The main functions of the IPAC Science Operations Center (ISOC) are:* Conduct the GO, archival and theory proposal submission and evaluation process* Support the coronagraph instrument, including observation planning, calibration and data processing pipeline, generation of data products, and user support* Microlensing survey data processing pipeline, generation of data products, and user support* Community engagement including conferences, workshops and general support of the WFIRST exoplanet communityWe will describe the components planned to support these functions and the community of WFIRST users.

  18. Advanced aircraft service life monitoring method via flight-by-flight load spectra

    Science.gov (United States)

    Lee, Hongchul

    This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From

  19. Annunciation - building product team capabilities to support utility operational improvement

    International Nuclear Information System (INIS)

    Doucet, R.; Brown, R.; Trask, D.; Leger, R.; Mitchel, G.; Judd, R.; Davey, E.

    2003-01-01

    The purpose of this paper is to describe an AECL initiative to enhance the capabilities to assist utilities with undertaking annunciation improvement. This initiative was undertaken to complement a recent annunciation product upgrade, and in anticipation of developing commercial opportunities to assist Canadian and foreign utilities with control room annunciation improvement. Utilities are relying more and more on external engineering product and service providers to meet their plant support needs as they reduce in-house staffing to lower ongoing support costs. This evolving commercial environment places new demands on product and service providers, and provides new opportunities for increasing the proportion of product and service provider participation in plant improvement projects. This paper outlines recent AECL experience in the annunciation product area. The paper discusses the rationale for product support capability improvement, discusses the approaches undertaken, describes lessons learned, and outlines a proposed utility support model for assisting with future annunciation improvements. (author)

  20. Flight Test of L1 Adaptive Control Law: Offset Landings and Large Flight Envelope Modeling Work

    Science.gov (United States)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2011-01-01

    This paper presents new results of a flight test of the L1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented include control law evaluation for piloted offset landing tasks as well as results in support of nonlinear aerodynamic modeling and real-time dynamic modeling of the departure-prone edges of the flight envelope.

  1. RADIO-TECHNICAL FLIGHT SUPPORT MILITARY AND CIVIL AVIATION – THE STRATEGIC PROBLEM OF RUSSIA ARCTIC ZONE

    Directory of Open Access Journals (Sweden)

    N. I. Didenko

    2017-01-01

    Full Text Available It should be noted that a number of countries consider that the Arctic is the property of all mankind and therefore the legal regime of the usage of this region territory is necessary to be reconsidered. The intensification of the armed forces activities on the northern borders is caused by aggravated international disagreements on the issues of territorial influence in this region, by the need to ensure the safety of increasing freight traffic through the Northern Sea Route and also by an increase in production capacities of domestic extractive enterprises on the shelf. The article deals with the challenge of the accelerated development in the Arctic region of Russia. It is noted that the major role in the solution of this problem belongs to an air-transport complex which is almost the only means to provide the operational availability to objects in the region. For the effective usage of the air-transport complex the approach based on the concept of radio-technical flight support, founded on the technologies of global navigation satellite systems and automatic dependent observation is offered. The existence of readymade technical solutions for these technologies implementation allows to accelerate the solvation of social and economic development problems of the Arctic region in general, alongside with the problems of national security of Russia.

  2. THE FORMATION OF THE CONTOUR OF THE DOCUMENTED AND REAL FLIGHT SAFETY IN THE SYSTEM OF THE INFORMATION PROVISION OF SAFETY OF FLIGHTS

    Directory of Open Access Journals (Sweden)

    B. I. Bachkalo

    2015-01-01

    Full Text Available The article discusses the principles and mechanisms of formation of the contour of the real safety of flights and contour of the documented safety, allowing us to obtain information to control fligh safety. The proposed approach can be used in the algorithms of active on-board flight safety management system for the implementation of information support to the crew in flight and automatic control of flight safety.

  3. Agent Technology in Agile Multiparallel Manufacturing and Product Support

    NARCIS (Netherlands)

    van Moergestel, L.J.M.

    2014-01-01

    The thesis describes the application of agent technology in product manufacturing and product support. Important issues in the requirements of modern production are short time to market, requirement-driven production and low cost small quantity production. To meet these requirements special low cost

  4. Collaborative Development Planning Model of Supporting Product in Platform Innovation Ecosystem

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available In order to improve the market value of the product, the platform enterprise often participates in the development process of supporting product of emerging industry’s platform innovation ecosystem. This paper puts forward a revenue sharing contract between the platform company and the supporting company by creating a collaborative development model of the supporting product in the ecosystem, and this paper studies the platform enterprise investment resource property's (complementary or substitution impact on the supporting enterprise R&D efforts and the revenue sharing factor and analyzes collaborative development mechanism of supporting product of emerging industry platform innovation ecosystem. The research indicates that when platform enterprise and supporting enterprise's resources are complementary, the supporting enterprise R&D effort level and revenue sharing coefficient increase as the platform company’s investment increases. When platform enterprise and supporting enterprise's resources are substitutive, the supporting enterprise’s R&D effort level and revenue sharing coefficient decrease as the platform company’s investment increases.

  5. Design and Parametric Sizing of Deep Space Habitats Supporting NASA'S Human Space Flight Architecture Team

    Science.gov (United States)

    Toups, Larry; Simon, Matthew; Smitherman, David; Spexarth, Gary

    2012-01-01

    NASA's Human Space Flight Architecture Team (HAT) is a multi-disciplinary, cross-agency study team that conducts strategic analysis of integrated development approaches for human and robotic space exploration architectures. During each analysis cycle, HAT iterates and refines the definition of design reference missions (DRMs), which inform the definition of a set of integrated capabilities required to explore multiple destinations. An important capability identified in this capability-driven approach is habitation, which is necessary for crewmembers to live and work effectively during long duration transits to and operations at exploration destinations beyond Low Earth Orbit (LEO). This capability is captured by an element referred to as the Deep Space Habitat (DSH), which provides all equipment and resources for the functions required to support crew safety, health, and work including: life support, food preparation, waste management, sleep quarters, and housekeeping.The purpose of this paper is to describe the design of the DSH capable of supporting crew during exploration missions. First, the paper describes the functionality required in a DSH to support the HAT defined exploration missions, the parameters affecting its design, and the assumptions used in the sizing of the habitat. Then, the process used for arriving at parametric sizing estimates to support additional HAT analyses is detailed. Finally, results from the HAT Cycle C DSH sizing are presented followed by a brief description of the remaining design trades and technological advancements necessary to enable the exploration habitation capability.

  6. Upgrade of the facility EXOTIC for the in-flight production of light Radioactive Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Mazzocco, M., E-mail: marco.mazzocco@pd.infn.it [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Torresi, D.; Strano, E. [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Boiano, A. [INFN-Sezione di Napoli, Via Cinthia, I-80126 Napoli (Italy); Boiano, C. [INFN-Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Costa, L. [INFN-LNL, Viale dell’Università 2, I-35020 Legnaro, PD (Italy); Glodariu, T. [NIPNE, 407 Atomistilor Street, 077125 Magurele (Romania); Guglielmetti, A. [INFN-Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Dipartimento di Fisica,Università di Milano, Via Celoria 16, I-20133 Milano (Italy); La Commara, M. [INFN-Sezione di Napoli, Via Cinthia, I-80126 Napoli (Italy); Dipartimento di Scienze Fisiche, Università di Napoli, Via Cinthia, I-80126 Napoli (Italy); Parascandolo, C. [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Pierroutsakou, D. [INFN-Sezione di Napoli, Via Cinthia, I-80126 Napoli (Italy); Signorini, C.; Soramel, F. [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Stroe, L. [NIPNE, 407 Atomistilor Street, 077125 Magurele (Romania)

    2013-12-15

    Highlights: • Production of in-flight Radioactive Ion Beams via two-body reactions. • Development of a cryogenic gas target. • Event-by-event tracking via Parallel Plate Avalanche Counters (PPACs). -- Abstract: The facility EXOTIC for the in-flight production of light weakly-bound Radioactive Ion Beams (RIBs) has been operating at INFN-LNL since 2004. RIBs are produced via two-body reactions induced by high intensity heavy-ion beams impinging on light gas targets and selected by means of a 30°-dipole bending magnet and a 1-m long Wien filter. The facility has been recently upgraded (i) by developing a cryogenic gas target, (ii) by replacing the power supplies of the middle lenses of the two quadrupole triplets, (iii) by installing two y-steerers and (iv) by placing two Parallel Plate Avalanche Counters upstream the secondary target to provide an event-by-event reconstruction of the position hit on the target. So far, RIBs of {sup 7}Be, {sup 8}B and {sup 17}F in the energy range 3–5 MeV/u have been produced with intensities about 3 × 10{sup 5}, 1.6 × 10{sup 3} and 10{sup 5} pps, respectively. Possible light RIBs (up to Z = 10) deliverable by the facility EXOTIC are also reviewed.

  7. Aerospace Medical Support in Russia

    Science.gov (United States)

    Castleberry, Tara; Chamberlin, Blake; Cole, Richard; Dowell, Gene; Savage, Scott

    2011-01-01

    This slide presentation reviews the role of the flight surgeon in support of aerospace medical support operations at the Gagarin Cosmonaut Training Center (GCTC), also known as Star City, in Russia. The flight surgeon in this role is the medical advocate for non-russian astronauts, and also provides medical care for illness and injury for astronauts, family members, and guests as well as civil servants and contractors. The flight surgeon also provides support for hazardous training. There are various photos of the area, and the office, and some of the equipment that is used.

  8. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft that was not type certificated with an Airplane or Rotorcraft Flight Manual...

  9. [Introduction of hazard analysis and critical control points (HACCP) principles at the flight catering food production plant].

    Science.gov (United States)

    Popova, A Yu; Trukhina, G M; Mikailova, O M

    In the article there is considered the quality control and safety system implemented in the one of the largest flight catering food production plant for airline passengers and flying squad. The system for the control was based on the Hazard Analysis And Critical Control Points (HACCP) principles and developed hygienic and antiepidemic measures. There is considered the identification of hazard factors at stages of the technical process. There are presented results of the analysis data of monitoring for 6 critical control points over the five-year period. The quality control and safety system permit to decline food contamination risk during acceptance, preparation and supplying of in-flight meal. There was proved the efficiency of the implemented system. There are determined further ways of harmonization and implementation for HACCP principles in the plant.

  10. Flight Qualification of the NASA's Super Pressure Balloon

    Science.gov (United States)

    Cathey, Henry; Said, Magdi; Fairbrother, Debora

    Designs of new balloons to support space science require a number of actual flights under various flight conditions to qualify them to as standard balloon flight offerings to the science community. Development of the new Super Pressure Balloon for the National Aeronautics and Space Administration’s Balloon Program Office has entailed employing new design, analysis, and production techniques to advance the state of the art. Some of these advances have been evolutionary steps and some have been revolutionary steps requiring a maturing understanding of the materials, designs, and manufacturing approaches. The NASA Super Pressure Balloon development end goal is to produce a flight vehicle that is qualified to carry a ton of science instrumentation, at an altitude greater than 33 km while maintaining a near constant pressure altitude for extended periods of up to 100 days, and at any latitude on the globe. The NASA’s Balloon Program Office has pursued this development in a carefully executed incremental approach by gradually increasing payload carrying capability and increasing balloon volume to reach these end goal. A very successful test flight of a ~200,700 m3 balloon was launch in late 2008 from Antarctica. This balloon flew for over 54 days at a constant altitude and circled the Antarctic continent almost three times. A larger balloon was flown from Antarctica in early 2011. This ~422,400 m3 flew at a constant altitude for 22 days making one circuit around Antarctica. Although the performance was nominal, the flight was terminated via command to recover high valued assets from the payload. The balloon designed to reach the program goals is a ~532,200 m3 pumpkin shaped Super Pressure Balloon. A test flight of this balloon was launched from the Swedish Space Corporation’s Esrange Balloon Launch Facilities near Kiruna, Sweden on 14 August, 2012. This flight was another success for this development program. Valuable information was gained from this short test

  11. Shuttle operations era planning for flight operations

    Science.gov (United States)

    Holt, J. D.; Beckman, D. A.

    1984-01-01

    The Space Transportation System (STS) provides routine access to space for a wide range of customers in which cargos vary from single payloads on dedicated flights to multiple payloads that share Shuttle resources. This paper describes the flight operations planning process from payload introduction through flight assignment to execution of the payload objectives and the changes that have been introduced to improve that process. Particular attention is given to the factors that influence the amount of preflight preparation necessary to satisfy customer requirements. The partnership between the STS operations team and the customer is described in terms of their functions and responsibilities in the development of a flight plan. A description of the Mission Control Center (MCC) and payload support capabilities completes the overview of Shuttle flight operations.

  12. Cost-Effectiveness of Flight Simulators for Military Training. Volume 1. Use and Effectiveness of Flight Simulators

    Science.gov (United States)

    1977-08-01

    Training Division DCS for Personnel LCOL Ralph H. Lauder Aviation Systems Division DCS, RDA CAPT James LeBlanc Aviation Manpower and Training...Since. a commercial flight brings in money to the airlines, their pilots are encouraged to fly up to the limit supported by the market. A military...by 17 percent in FY 1981. Thus, while flight simulators may save money by reducing flying hours, it is also necessary to demonstrate that they are

  13. The Transition from Spacecraft Development Ot Flight Operation: Human Factor Considerations

    Science.gov (United States)

    Basilio, Ralph R.

    2000-01-01

    In the field of aeronautics and astronautics, a paradigm shift has been witnessed by those in academia, research and development, and private industry. Long development life cycles and the budgets to support such programs and projects has given way to aggressive task schedules and leaner resources to draw from all the while challenging assigned individuals to create and produce improved products of processes. however, this "faster, better, cheaper" concept cannot merely be applied to the design, development, and test of complex systems such as earth-orbiting of interplanetary robotic spacecraft. Full advantage is not possible without due consideration and application to mission operations planning and flight operations, Equally as important as the flight system, the mission operations system consisting of qualified personnel, ground hardware and software tools, and verified and validated operational processes, should also be regarded as a complex system requiring personnel to draw upon formal education, training, related experiences, and heuristic reasoning in engineering an effective and efficient system. Unquestionably, qualified personnel are the most important elements of a mission operations system. This paper examines the experiences of the Deep Space I Project, the first in a series of new technology in-flight validation missions sponsored by the United States National Aeronautics and Space Administration (NASA), specifically, in developing a subsystems analysis and technology validation team comprised of former spacecraft development personnel. Human factor considerations are investigated from initial concept/vision formulation; through operational process development; personnel test and training; to initial uplink product development and test support. Emphasis has been placed on challenges and applied or recommended solutions, so as to provide opportunities for future programs and projects to address and disposition potential issues and concerns as early

  14. ANALYSIS OF THE SPECIAL CASE IN FLIGHT BY MEANS OF THE PROJECT NETWORK

    Directory of Open Access Journals (Sweden)

    Т. Шмельова

    2011-02-01

    Full Text Available Reasons of aviation events the last decade does  not change practically: 70-80% failures and  catastrophes take a place through fault of human factor and only 15-20 % – from the structurally production lacks of aviation technique . For the timely diagnosing of hit of air ship (AS in  supernumerary flight situations,  operatively to render  prognostication of their development and  possibility the proper help the operator of the aviation  ергатичної system the model of  decision-making P-O of AES is developed. Supernumerary situation most rationally, in opinion of authors, to give as the network graph the analysis of which makes basis for the construction of the system of support of making a decision P-O in case of occurring of supernumerary situation on wing. On the basis of analysis of printing sources the most widespread reasons of aviation engine failure and possible consequences  of it are evidently given. Work of crew is described from a  moment an engine failure on flight and to the decision-making about continuation/breaking of flight by the construction of fragment of the network graph. The practical value of the conducted  researches consists in that application of the given method in the system of support of making a  decision aviation operator at an action in special case on wing will enable high-quality and in  number to analyse supernumerary flight situations with the purpose of increase of safety of flights

  15. In-flight cabin smoke control.

    Science.gov (United States)

    Eklund, T I

    1996-12-31

    Fatal accidents originating from in-flight cabin fires comprise only about 1% of all fatal accidents in the civil jet transport fleet. Nevertheless, the impossibility of escape during flight accentuates the hazards resulting from low visibility and toxic gases. Control of combustion products in an aircraft cabin is affected by several characteristics that make the aircraft cabin environment unique. The aircraft fuselage is pressurized in flight and has an air distribution system which provides ventilation jets from the ceiling level air inlets running along the cabin length. A fixed quantity of ventilation air is metered into the cabin and air discharge is handled primarily by pressure controlling outflow valves in the rear lower part of the fuselage. Earlier airplane flight tests on cabin smoke control used generators producing minimally buoyant smoke products that moved with and served as a telltales for overall cabin ventilation flows. Analytical studies were done with localized smoke production to predict the percent of cabin length that would remain smoke-free during continuous generation. Development of a buoyant smoke generator allowed simulation of a fire plume with controllable simulated temperature and heat release rates. Tests on a Boeing 757, modified to allow smoke venting out through the top of the cabin, showed that the buoyant smoke front moved at 0.46m/s (1.5ft/sec) with and 0.27m/sec (0.9ft/sec) against, the axial ventilation airflow. Flight tests in a modified Boeing 727 showed that a ceiling level counterflow of about 0.55m/sec (1.8ft/sec) was required to arrest the forward movement of buoyant smoke. A design goal of 0.61m/s (2ft/sec) axial cabin flow would require a flow rate of 99m3/min (3500ft3/min) in a furnished Boeing 757. The current maximum fresh air cabin ventilation flow is 78m3/min (2756 ft3/min). Experimental results indicate that buoyancy effects cause smoke movement behaviour that is not predicted by traditional design analyses and

  16. Pathfinding the Flight Advanced Stirling Convertor Design with the ASC-E3

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Kyle; Smith, Eddie; Collins, Josh

    2012-01-01

    The Advanced Stirling Convertor (ASC) was initially developed by Sunpower, Inc. under contract to NASA Glenn Research Center (GRC) as a technology development project. The ASC technology fulfills NASA's need for high efficiency power convertors for future Radioisotope Power Systems (RPS). Early successful technology demonstrations between 2003 to 2005 eventually led to the expansion of the project including the decision in 2006 to use the ASC technology on the Advanced Stirling Radioisotope Generator (ASRG). Sunpower has delivered 22 ASC convertors of progressively mature designs to date to GRC. Currently, Sunpower with support from GRC, Lockheed Martin Space System Company (LMSSC), and the Department of Energy (DOE) is developing the flight ASC-F in parallel with the ASC-E3 pathfinders. Sunpower will deliver four pairs of ASC-E3 convertors to GRC which will be used for extended operation reliability assessment, independent validation and verification testing, system interaction tests, and to support LMSSC controller verification. The ASC-E3 and -F convertors are being built to the same design and processing documentation and the same product specification. The initial two pairs of ASC-E3 are built before the flight units and will validate design and processing changes prior to implementation on the ASC-F flight convertors. This paper provides a summary on development of the ASC technology and the status of the ASC-E3 build and how they serve the vital pathfinder role ahead of the flight build for ASRG. The ASRG is part of two of the three candidate missions being considered for selection for the Discovery 12 mission.

  17. Real-Time Reliability Verification for UAV Flight Control System Supporting Airworthiness Certification.

    Science.gov (United States)

    Xu, Haiyang; Wang, Ping

    2016-01-01

    In order to verify the real-time reliability of unmanned aerial vehicle (UAV) flight control system and comply with the airworthiness certification standard, we proposed a model-based integration framework for modeling and verification of time property. Combining with the advantages of MARTE, this framework uses class diagram to create the static model of software system, and utilizes state chart to create the dynamic model. In term of the defined transformation rules, the MARTE model could be transformed to formal integrated model, and the different part of the model could also be verified by using existing formal tools. For the real-time specifications of software system, we also proposed a generating algorithm for temporal logic formula, which could automatically extract real-time property from time-sensitive live sequence chart (TLSC). Finally, we modeled the simplified flight control system of UAV to check its real-time property. The results showed that the framework could be used to create the system model, as well as precisely analyze and verify the real-time reliability of UAV flight control system.

  18. Enriching step-based product information models to support product life-cycle activities

    Science.gov (United States)

    Sarigecili, Mehmet Ilteris

    The representation and management of product information in its life-cycle requires standardized data exchange protocols. Standard for Exchange of Product Model Data (STEP) is such a standard that has been used widely by the industries. Even though STEP-based product models are well defined and syntactically correct, populating product data according to these models is not easy because they are too big and disorganized. Data exchange specifications (DEXs) and templates provide re-organized information models required in data exchange of specific activities for various businesses. DEXs show us it would be possible to organize STEP-based product models in order to support different engineering activities at various stages of product life-cycle. In this study, STEP-based models are enriched and organized to support two engineering activities: materials information declaration and tolerance analysis. Due to new environmental regulations, the substance and materials information in products have to be screened closely by manufacturing industries. This requires a fast, unambiguous and complete product information exchange between the members of a supply chain. Tolerance analysis activity, on the other hand, is used to verify the functional requirements of an assembly considering the worst case (i.e., maximum and minimum) conditions for the part/assembly dimensions. Another issue with STEP-based product models is that the semantics of product data are represented implicitly. Hence, it is difficult to interpret the semantics of data for different product life-cycle phases for various application domains. OntoSTEP, developed at NIST, provides semantically enriched product models in OWL. In this thesis, we would like to present how to interpret the GD & T specifications in STEP for tolerance analysis by utilizing OntoSTEP.

  19. Group decision support system for customer-driven product design

    Science.gov (United States)

    Lin, Zhihang; Chen, Hang; Chen, Kuen; Che, Ada

    2000-10-01

    This paper describes the work on the development of a group decision support system for customer driven product design. The customer driven is to develop products, which meet all customer requirements in whole life cycle of products. A process model of decision during product primary design is proposed to formulate the structured, semi-structured and unstructured decision problems. The framework for the decision support system is presented that integrated both advances in the group decision making and distributed artificial intelligent. The system consists of the product primary design tool kit and the collaborative platform with multi-agent structure. The collaborative platform of the system and the product primary design tool kit, including the VOC (Voice of Customer) tool, QFD (Quality Function Deployment) tool, the Conceptual design tool, Reliability analysis tool and the cost and profit forecasting tool, are indicated.

  20. Effects of social support at work on depression and organizational productivity.

    Science.gov (United States)

    Park, Kyoung-Ok; Wilson, Mark G; Lee, Myung Sun

    2004-01-01

    To examine how social support at work affects depression and organizational productivity in a work-stress framework. A self-administered survey for 240 workers in a public hospital in the southeastern United States. Social support at work was directly related to high job control, low depression, and high job performance. Social support did not buffer the negative effects of work factors on depression and organizational productivity. Social support at work had a direct and beneficial effect on workers' psychological well-being and organizational productivity without any interaction effect on the work-stress framework.

  1. Modeling Flight: The Role of Dynamically Scaled Free-Flight Models in Support of NASA's Aerospace Programs

    Science.gov (United States)

    Chambers, Joseph

    2010-01-01

    The state of the art in aeronautical engineering has been continually accelerated by the development of advanced analysis and design tools. Used in the early design stages for aircraft and spacecraft, these methods have provided a fundamental understanding of physical phenomena and enabled designers to predict and analyze critical characteristics of new vehicles, including the capability to control or modify unsatisfactory behavior. For example, the relatively recent emergence and routine use of extremely powerful digital computer hardware and software has had a major impact on design capabilities and procedures. Sophisticated new airflow measurement and visualization systems permit the analyst to conduct micro- and macro-studies of properties within flow fields on and off the surfaces of models in advanced wind tunnels. Trade studies of the most efficient geometrical shapes for aircraft can be conducted with blazing speed within a broad scope of integrated technical disciplines, and the use of sophisticated piloted simulators in the vehicle development process permits the most important segment of operations the human pilot to make early assessments of the acceptability of the vehicle for its intended mission. Knowledgeable applications of these tools of the trade dramatically reduce risk and redesign, and increase the marketability and safety of new aerospace vehicles. Arguably, one of the more viable and valuable design tools since the advent of flight has been testing of subscale models. As used herein, the term "model" refers to a physical article used in experimental analyses of a larger full-scale vehicle. The reader is probably aware that many other forms of mathematical and computer-based models are also used in aerospace design; however, such topics are beyond the intended scope of this document. Model aircraft have always been a source of fascination, inspiration, and recreation for humans since the earliest days of flight. Within the scientific

  2. Theseus Landing Following Maiden Flight

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing as it comes in for a landing on Rogers Dry Lake after its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able

  3. Strategy of Trade-Reliable Featured Product Supporting Regional Innovation Systems

    Science.gov (United States)

    Riskiawan, H. Y.; Purnomo, B. H.; Abdurahman, A.; Hariono, B.; Puspitasari, T. D.

    2018-01-01

    Pacitan, Ponorogo, and Magetan had planned the development of featured products as contained in the Medium Term Development Plan (MTDP) until 2020. The focus of development is almost similar to featured products derived from agribusiness, food processing, handycrafts, and tourism. The geographical proximity results characteristics of natural resources and social culture have similarities, including the type of featured products, constraints, problems, and opportunities for development. Given the characteristics and the support system of some featured products contained in these three regions have a lot in common and their functional interactions involving actors from across the region, it is necessary to develop cross-jurisdictional policy. The resulting strategy should be able to support the development of Regional Innovation System (RIS). The purpose of this research is 1) Determining featured product cross-regional between Pacitan regency; Ponorogo and Magetan districts in support of RIS development; and 2) Designing a featured product development strategy using supply chain management in order to drive the local economy. Based on the results of research conducted, featured products across the region that have potentiality to be developed are: processed products of “janggelan” leather products, and woven bamboo.

  4. Writing executable assertions to test flight software

    Science.gov (United States)

    Mahmood, A.; Andrews, D. M.; Mccluskey, E. J.

    1984-01-01

    An executable assertion is a logical statement about the variables or a block of code. If there is no error during execution, the assertion statement results in a true value. Executable assertions can be used for dynamic testing of software. They can be employed for validation during the design phase, and exception and error detection during the operation phase. The present investigation is concerned with the problem of writing executable assertions, taking into account the use of assertions for testing flight software. They can be employed for validation during the design phase, and for exception handling and error detection during the operation phase The digital flight control system and the flight control software are discussed. The considered system provides autopilot and flight director modes of operation for automatic and manual control of the aircraft during all phases of flight. Attention is given to techniques for writing and using assertions to test flight software, an experimental setup to test flight software, and language features to support efficient use of assertions.

  5. Framework for product knowledge and product related knowledge which supports product modelling for mass customization

    DEFF Research Database (Denmark)

    Riis, Jesper; Hansen, Benjamin Loer; Hvam, Lars

    2003-01-01

    on experience from product modelling projects in several companies. Among them for example companies manufacturing electronic switchboards, spray dryer systems and air conditioning equipment. The framework is divided into three views: the product knowledge view, the life phase system view and the transformation...... and personalization. The framework for product knowledge and product related knowledge is based on the following theories: axiomatic design, technical systems, theory of domains, theory of structuring, theory of properties and the framework for the content of product and product related models. The framework is built......The article presents a framework for product knowledge and product related knowledge which can be used to support the product modelling process which is needed for developing IT systems. These IT systems are important tools for many companies when they aim at achieving mass customization...

  6. Synergistic Allocation of Flight Expertise on the Flight Deck (SAFEdeck): A Design Concept to Combat Mode Confusion, Complacency, and Skill Loss in the Flight Deck

    Science.gov (United States)

    Schutte, Paul; Goodrich, Kenneth; Williams, Ralph

    2016-01-01

    This paper presents a new design and function allocation philosophy between pilots and automation that seeks to support the human in mitigating innate weaknesses (e.g., memory, vigilance) while enhancing their strengths (e.g., adaptability, resourcefulness). In this new allocation strategy, called Synergistic Allocation of Flight Expertise in the Flight Deck (SAFEdeck), the automation and the human provide complementary support and backup for each other. Automation is designed to be compliant with the practices of Crew Resource Management. The human takes a more active role in the normal operation of the aircraft without adversely increasing workload over the current automation paradigm. This designed involvement encourages the pilot to be engaged and ready to respond to unexpected situations. As such, the human may be less prone to error than the current automation paradigm.

  7. PREFER: a European service providing forest fire management support products

    Science.gov (United States)

    Eftychidis, George; Laneve, Giovanni; Ferrucci, Fabrizio; Sebastian Lopez, Ana; Lourenco, Louciano; Clandillon, Stephen; Tampellini, Lucia; Hirn, Barbara; Diagourtas, Dimitris; Leventakis, George

    2015-06-01

    PREFER is a Copernicus project of the EC-FP7 program which aims developing spatial information products that may support fire prevention and burned areas restoration decisions and establish a relevant web-based regional service for making these products available to fire management stakeholders. The service focuses to the Mediterranean region, where fire risk is high and damages from wildfires are quite important, and develop its products for pilot areas located in Spain, Portugal, Italy, France and Greece. PREFER aims to allow fire managers to have access to online resources, which shall facilitate fire prevention measures, fire hazard and risk assessment, estimation of fire impact and damages caused by wildfire as well as support monitoring of post-fire regeneration and vegetation recovery. It makes use of a variety of products delivered by space borne sensors and develop seasonal and daily products using multi-payload, multi-scale and multi-temporal analysis of EO data. The PREFER Service portfolio consists of two main suite of products. The first refers to mapping products for supporting decisions concerning the Preparedness/Prevention Phase (ISP Service). The service delivers Fuel, Hazard and Fire risk maps for this purpose. Furthermore the PREFER portfolio includes Post-fire vegetation recovery, burn scar maps, damage severity and 3D fire damage assessment products in order to support relative assessments required in context of the Recovery/Reconstruction Phase (ISR Service) of fire management.

  8. Software for Managing Inventory of Flight Hardware

    Science.gov (United States)

    Salisbury, John; Savage, Scott; Thomas, Shirman

    2003-01-01

    The Flight Hardware Support Request System (FHSRS) is a computer program that relieves engineers at Marshall Space Flight Center (MSFC) of most of the non-engineering administrative burden of managing an inventory of flight hardware. The FHSRS can also be adapted to perform similar functions for other organizations. The FHSRS affords a combination of capabilities, including those formerly provided by three separate programs in purchasing, inventorying, and inspecting hardware. The FHSRS provides a Web-based interface with a server computer that supports a relational database of inventory; electronic routing of requests and approvals; and electronic documentation from initial request through implementation of quality criteria, acquisition, receipt, inspection, storage, and final issue of flight materials and components. The database lists both hardware acquired for current projects and residual hardware from previous projects. The increased visibility of residual flight components provided by the FHSRS has dramatically improved the re-utilization of materials in lieu of new procurements, resulting in a cost savings of over $1.7 million. The FHSRS includes subprograms for manipulating the data in the database, informing of the status of a request or an item of hardware, and searching the database on any physical or other technical characteristic of a component or material. The software structure forces normalization of the data to facilitate inquiries and searches for which users have entered mixed or inconsistent values.

  9. [Habitability and life support systems].

    Science.gov (United States)

    Nefedov, Iu G; Adamovich, B A

    1988-01-01

    This paper discusses various aspects of space vehicle habitability and life support systems. It describes variations in the chemical and microbial composition of an enclosed atmosphere during prolonged real and simulated flights. The paper gives a detailed description of life support systems and environmental investigations onboard the Mir station. It also outlines the development of space vehicle habitability and life support systems as related to future flights.

  10. Quantifying Pilot Contribution to Flight Safety During an In-Flight Airspeed Failure

    Science.gov (United States)

    Etherington, Timothy J.; Kramer, Lynda J.; Bailey, Randall E.; Kennedey, Kellie D.

    2017-01-01

    Accident statistics cite the flight crew as a causal factor in over 60% of large transport fatal accidents. Yet a well-trained and well-qualified crew is acknowledged as the critical center point of aircraft systems safety and an integral component of the entire commercial aviation system. A human-in-the-loop test was conducted using a Level D certified Boeing 737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to system failures. To quantify the human's contribution, crew complement was used as an independent variable in a between-subjects design. This paper details the crew's actions and responses while dealing with an in-flight airspeed failure. Accident statistics often cite flight crew error (Baker, 2001) as the primary contributor in accidents and incidents in transport category aircraft. However, the Air Line Pilots Association (2011) suggests "a well-trained and well-qualified pilot is acknowledged as the critical center point of the aircraft systems safety and an integral safety component of the entire commercial aviation system." This is generally acknowledged but cannot be verified because little or no quantitative data exists on how or how many accidents/incidents are averted by crew actions. Anecdotal evidence suggest crews handle failures on a daily basis and Aviation Safety Action Program data generally supports this assertion, even if the data is not released to the public. However without hard evidence, the contribution and means by which pilots achieve safety of flight is difficult to define. Thus, ways to improve the human ability to contribute or overcome deficiencies are ill-defined.

  11. Using software metrics and software reliability models to attain acceptable quality software for flight and ground support software for avionic systems

    Science.gov (United States)

    Lawrence, Stella

    1992-01-01

    This paper is concerned with methods of measuring and developing quality software. Reliable flight and ground support software is a highly important factor in the successful operation of the space shuttle program. Reliability is probably the most important of the characteristics inherent in the concept of 'software quality'. It is the probability of failure free operation of a computer program for a specified time and environment.

  12. It Systems Supporting the Management of Production Capacity

    Science.gov (United States)

    Milewska, Elżbieta

    2017-03-01

    The paper presents the problem of manufacturing process flexibility in view of a company's material and information flow stream management. The author of the article has described the functions of a production process control system and presented the characteristics of production capacity intensive and extensive reserves. The MRP II/ERP, MES and APS class IT tools supporting the process of production planning, organization and control have also been discussed.

  13. IT SYSTEMS SUPPORTING THE MANAGEMENT OF PRODUCTION CAPACITY

    OpenAIRE

    Elżbieta MILEWSKA

    2017-01-01

    The paper presents the problem of manufacturing process flexibility in view of a company’s material and information flow stream management. The author of the article has described the functions of a production process control system and presented the characteristics of production capacity intensive and extensive reserves. The MRP II/ERP, MES and APS class IT tools supporting the process of production planning, organization and control have also been discussed.

  14. Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation

    Science.gov (United States)

    Daniels, Taumi S.; Schaffner, Philip R.; Evans, Emory T.; Neece, Robert T.; Young, Steve D.

    2012-01-01

    A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements

  15. [Structure identification of contaminants in a beverage product by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry].

    Science.gov (United States)

    Miyamoto, Yasuhisa; Washida, Kazuto; Uyama, Atsuo; Mochizuki, Naoki

    2014-01-01

    The contaminants in a beverage product that had been reported to have a strange taste were identified. By comparative analysis with the normal product using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS), six unknown compounds were detected in the total ion current chromatograms of the product in question. Detailed analysis of the mass spectra and product ion spectra of these compounds strongly suggested that the compounds were capric acid diethanolamide, lauric acid diethanolamide, myristic acid diethanolamide, lauryl dimethylaminoacetic acid, lauryl sulfate, and lauric acid, all of which are surfactants commonly used as ingredients of household detergents and shampoos. We searched commercially available detergent products to check for the presence of these six surfactants, and identified products that might have been intentionally or unintentionally mixed into the beverage product after opening.

  16. When do ruling elites support productive sectors?

    DEFF Research Database (Denmark)

    Kjær, Anne Mette

    that the ruling elite initially supported the fishing industry because of industry pressure. They have failed to enforce fisheries management because there are big political costs associated with such enforcement. The dairy sector in the southwestern milk region was initially supported because the ruling elite......This paper explains the differences in ruling elite support for the fisheries and dairy sectors in Uganda. Although production in Uganda has not generally been promoted in any sustained way, ruling elites have to varying degrees supported the dairy and fisheries sectors. The paper shows...... wanted to build a coalition of support in this region. Coming from the region himself, the president had a keen interest in dairy cattle. The sector was subsequently regulated because the biggest processor put pressure on the ruling elite to do so. Even when the ruling coalition is fragmented, promoting...

  17. Flight demonstration of flight termination system and solid rocket motor ignition using semiconductor laser initiated ordnance

    Science.gov (United States)

    Schulze, Norman R.; Maxfield, B.; Boucher, C.

    1995-01-01

    Solid State Laser Initiated Ordnance (LIO) offers new technology having potential for enhanced safety, reduced costs, and improved operational efficiency. Concerns over the absence of programmatic applications of the technology, which has prevented acceptance by flight programs, should be abated since LIO has now been operationally implemented by the Laser Initiated Ordnance Sounding Rocket Demonstration (LOSRD) Program. The first launch of solid state laser diode LIO at the NASA Wallops Flight Facility (WFF) occurred on March 15, 1995 with all mission objectives accomplished. This project, Phase 3 of a series of three NASA Headquarters LIO demonstration initiatives, accomplished its objective by the flight of a dedicated, all-LIO sounding rocket mission using a two-stage Nike-Orion launch vehicle. LIO flight hardware, made by The Ensign-Bickford Company under NASA's first Cooperative Agreement with Profit Making Organizations, safely initiated three demanding pyrotechnic sequence events, namely, solid rocket motor ignition from the ground and in flight, and flight termination, i.e., as a Flight Termination System (FTS). A flight LIO system was designed, built, tested, and flown to support the objectives of quickly and inexpensively putting LIO through ground and flight operational paces. The hardware was fully qualified for this mission, including component testing as well as a full-scale system test. The launch accomplished all mission objectives in less than 11 months from proposal receipt. This paper concentrates on accomplishments of the ordnance aspects of the program and on the program's implementation and results. While this program does not generically qualify LIO for all applications, it demonstrated the safety, technical, and operational feasibility of those two most demanding applications, using an all solid state safe and arm system in critical flight applications.

  18. IT SYSTEMS SUPPORTING THE MANAGEMENT OF PRODUCTION CAPACITY

    Directory of Open Access Journals (Sweden)

    Elżbieta MILEWSKA

    2017-01-01

    Full Text Available The paper presents the problem of manufacturing process flexibility in view of a company’s material and information flow stream management. The author of the article has described the functions of a production process control system and presented the characteristics of production capacity intensive and extensive reserves. The MRP II/ERP, MES and APS class IT tools supporting the process of production planning, organization and control have also been discussed.

  19. Mentoring SFRM: A New Approach to International Space Station Flight Control Training

    Science.gov (United States)

    Huning, Therese; Barshi, Immanuel; Schmidt, Lacey

    2009-01-01

    The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (Operator) to a basic level of effectiveness in 1 year. SFRM training uses a twopronged approach to expediting operator certification: 1) imbed SFRM skills training into all Operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills.

  20. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    Science.gov (United States)

    Molthan, Andrew L.; Limaye, Ashutosh S.; Srikishen, Jayanthi

    2011-01-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula s "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA s National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA s SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT s experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by

  1. Towards a Tool for Computer Supported Structuring of Products

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp

    1997-01-01

    . However, a product possesses not only a component structure but also various organ structures which are superimposed on the component structure. The organ structures carry behaviour and make the product suited for its life phases.Our long-term research goal is to develop a computer-based system...... that is capable of supporting synthesis activities in engineering design, and thereby also support handling of various organ structures. Such a system must contain a product model, in which it is possible to describe and manipulate both various organ structures and the component structure.In this paper we focus...... on the relationships between organ structures and the component structure. By an analysis of an existing product it is shown that a component may contribute to more than one organ. A set of organ structures is identified and their influence on the component strucute is illustrated....

  2. Remotely Piloted Vehicles for Experimental Flight Control Testing

    Science.gov (United States)

    Motter, Mark A.; High, James W.

    2009-01-01

    A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division

  3. Range Flight Safety Requirements

    Science.gov (United States)

    Loftin, Charles E.; Hudson, Sandra M.

    2018-01-01

    The purpose of this NASA Technical Standard is to provide the technical requirements for the NPR 8715.5, Range Flight Safety Program, in regards to protection of the public, the NASA workforce, and property as it pertains to risk analysis, Flight Safety Systems (FSS), and range flight operations. This standard is approved for use by NASA Headquarters and NASA Centers, including Component Facilities and Technical and Service Support Centers, and may be cited in contract, program, and other Agency documents as a technical requirement. This standard may also apply to the Jet Propulsion Laboratory or to other contractors, grant recipients, or parties to agreements to the extent specified or referenced in their contracts, grants, or agreements, when these organizations conduct or participate in missions that involve range flight operations as defined by NPR 8715.5.1.2.2 In this standard, all mandatory actions (i.e., requirements) are denoted by statements containing the term “shall.”1.3 TailoringTailoring of this standard for application to a specific program or project shall be formally documented as part of program or project requirements and approved by the responsible Technical Authority in accordance with NPR 8715.3, NASA General Safety Program Requirements.

  4. Some Aspects of Psychophysiological Support of Crew Member's Performance Reliability in Space Flight

    Science.gov (United States)

    Nechaev, A. P.; Myasnikov, V. I.; Stepanova, S. I.; Isaev, G. F.; Bronnikov, S. V.

    The history of cosmonautics demonstrates many instances in which only crewmembers' intervention allowed critical situations to be resolved, or catastrophes to be prevented. However, during "crew-spacecraft" system operation human is exposed by influence of numerous flight factors, and beforehand it is very difficult to predict their effects on his functional state and work capacity. So, the incidents are known when unfavorable alterations of crewmember's psychophysiological state (PPS) provoked errors in task performance. The objective of the present investigation was to substantiate the methodological approach directed to increase reliability of a crewmember performance (human error prevention) by means of management of his/her PPS. The specific aims of the investigation were: 1) to evaluate the statistical significance of the interrelation between crew errors (CE) and crewmember's PPS, and 2) to develop the way of PPS management. At present, there is no conventional method to assess combined effect of flight conditions (microgravity, confinement, psychosocial factors, etc.) on crewmembers' PPS. For this purpose experts of the Medical Support Group (psychoneurologists and psychologists) at the Moscow Mission Control Center analyze information received during radio and TV contacts with crew. Peculiarities of behavior, motor activity, sleep, speech, mood, emotional reactions, well-being and sensory sphere, trend of dominant interests and volitional acts, signs of deprivation phenomena are considered as separate indicators of crewmember's PPS. The set of qualitative symptoms reflecting PPS alterations and corresponding to them ratings (in arbitrary units) was empirically stated for each indicator. It is important to emphasize that symptoms characterizing more powerful PPS alterations have higher ratings. Quantitative value of PPS integral parameter is calculating by adding up the ratings of all separate indicators over a day, a week, or other temporal interval (in

  5. Liability and Insurance for Suborbital Flights

    Science.gov (United States)

    Masson-Zwaan, T.

    2012-01-01

    This paper analyzes and compares liability and liability insurance in the fields of aviation and spaceflight in order to propose solutions for a liability regime and insurance options for suborbital flights. Suborbital flights can be said to take place in the grey zone between air and space, between air law and space law, as well as between aviation insurance and space insurance. In terms of liability, the paper discusses air law and space law provisions in the fields of second and third party liability for damage to passengers and 'innocent bystanders' respectively, touching upon international treaties, national law and EU law, and on insurance to cover those risks. Although the insurance market is currently not ready to provide tailor-made products for operators of suborbital flights, it is expected to adapt rapidly once such flights will become reality. A hybrid approach will provide the best solution in the medium term.

  6. Theseus First Flight - May 24, 1996

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing as it lifts off from Rogers Dry Lake during its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to

  7. Optimal Aerodynamic Design of Conventional and Coaxial Helicopter Rotors in Hover and Forward Flight

    Science.gov (United States)

    2015-12-28

    graduate career a fun and (at times) productive pursuit. I owe a great deal to my parents , Kevin and Lisa, for their unconditional support. Finally...forward flight. Orchard and Newman [6] investigated fundamental design features of compound helicopters using a wing, a single rotor, and a propul- sor... style compound. For the case considered here, the coaxial rotors are unconstrained in lift offset. If a wing were used in a case that also included a lift

  8. The hybrid bio-inspired aerial vehicle: Concept and SIMSCAPE flight simulation.

    Science.gov (United States)

    Tao Zhang; Su, Steven; Nguyen, Hung T

    2016-08-01

    This paper introduces a Silver Gull-inspired hybrid aerial vehicle, the Super Sydney Silver Gull (SSSG), which is able to vary its structure, under different manoeuvre requirements, to implement three flight modes: the flapping wing flight, the fixed wing flight, and the quadcopter flight (the rotary wing flight of Unmanned Air Vehicle). Specifically, through proper mechanism design and flight mode transition, the SSSG can imitate the Silver Gull's flight gesture during flapping flight, save power consuming by switching to the fixed wing flight mode during long-range cruising, and hover at targeted area when transferring to quadcopter flight mode. Based on the aerodynamic models, the Simscape, a product of MathWorks, is used to simulate and analyse the performance of the SSSG's flight modes. The entity simulation results indicate that the created SSSG's 3D model is feasible and ready to be manufactured for further flight tests.

  9. International Space Station Sustaining Engineering: A Ground-Based Test Bed for Evaluating Integrated Environmental Control and Life Support System and Internal Thermal Control System Flight Performance

    Science.gov (United States)

    Ray, Charles D.; Perry, Jay L.; Callahan, David M.

    2000-01-01

    As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.

  10. Developing a Support Tool for Global Product Development Decisions

    DEFF Research Database (Denmark)

    Søndergaard, Erik Stefan; Ahmed-Kristensen, Saeema

    2016-01-01

    This paper investigates how global product development decisions are made through a multiple-case study in three Danish engineering. The paper identifies which information and methods are applied for making decisions and how decision-making can be supported based on previous experience. The paper...... presents results from 51 decisions made in the three companies, and based on the results of the studies a framework for a decision-support tool is outlined and discussed. The paper rounds off with an identification of future research opportunities in the area of global product development and decision-making....

  11. Effects of Space Flight, Clinorotation, and Centrifugation on the Growth and Metabolism of Escherichia Coli

    Science.gov (United States)

    Brown, Robert B.

    1999-01-01

    Previous experiments have shown that space flight stimulates bacterial growth and metabolism. An explanation for these results is proposed, which may eventually lead to improved terrestrial pharmaceutical production efficiency. It is hypothesized that inertial acceleration affects bacterial growth and metabolism by altering the transport phenomena in the cells external fluid environment. It is believed that this occurs indirectly through changes in the sedimentation rate acting on the bacteria and buoyancy-driven convection acting on their excreted by-products. Experiments over a broad range of accelerations consistently supported this theory. Experiments at I g indicated that higher concentrations of excreted by products surrounding bacterial cells result in a shorter lag phase. Nineteen additional experiments simulated 0 g and 0.5 g using a clinostat, and achieved 50 g, 180 g, and 400 g using a centrifuge. These experiments showed that final cell density is inversely related to the level of acceleration. The experiments also consistently showed that acceleration affects the length of the lag phase in a non-monotonic, yet predictable, manner. Additional data indicated that E. coli metabolize glucose less efficiently at hypergravity, and more efficiently at hypogravity. A space-flight experiment was also performed. Samples on orbit had a statistically significant higher final cell density and more efficient metabolism than did ground controls. These results. which were similar to simulations of 0 g using a clinostat, support the theory that gravity only affects bacterial growth and metabolism indirectly, through changes in the bacteria's fluid environment.

  12. Fatalities above 30,000 feet: characterizing pediatric deaths on commercial airline flights worldwide.

    Science.gov (United States)

    Rotta, Alexandre T; Alves, Paulo M; Mason, Katherine E; Nerwich, Neil; Speicher, Richard H; Allareddy, Veerasathpurush; Allareddy, Veerajalandhar

    2014-10-01

    We conducted this study to characterize in-flight pediatric fatalities onboard commercial airline flights worldwide and identify patterns that would have been unnoticed through single case analysis of these relative rare events. Retrospective cohort study of pediatric in-flight medical emergencies resulting in fatalities between January 2010 and June 2013. A ground-based medical support center providing remote medical support to commercial airlines worldwide. Children (age 0-18 yr) who experienced a medical emergency resulting in death during a commercial airline flight. None. There were a total of 7,573 in-flight medical emergencies involving children reported to the ground-based medical support center, resulting in 10 deaths (0.13% of all pediatric in-flight emergencies). The median subject age was 3.5 months with 90% being younger than 2 years, the age until which children are allowed to travel sharing a seat with an adult passenger, also known as lap infants. Six patients had no previous medical history, with one suffering cardiorespiratory arrest after developing acute respiratory distress during flight and five found asystolic (including four lap infants). Four subjects had preflight medical conditions, including two children traveling for the purpose of accessing advanced medical care. Pediatric in-flight fatalities are rare, but death occurs most commonly in infants and in subjects with a preexisting medical condition. The number of fatalities involving seemingly previously healthy children under the age of 2 years (lap infants) is intriguing and could indicate a vulnerable population at increased risk of death related to in-flight environmental factors, sleeping arrangements, or yet another unrecognized factor.

  13. Solar Cell to Support Perpetual Flight of High Altitude Long Endurance UAV ITB

    Science.gov (United States)

    Luqmanul Hakim, Muhammad; Silitonga, Faber Y.; Rosid, Nurhayyan H.; Mochammad Agoes Moelyadi, Ing., Dr.

    2018-04-01

    Research on a High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) is currently being conducted at Bandung Institute of Technology to reach the flight duration needed and to get the solution of today’s challenges, minimizing pollution. Besides the good aerodynamic efficiency needed, energy resource is now becoming important. The energy resource must have a good endurance, easy to get, and of course, less pollution. Discussion in this paper is about the analysis of power needed by HALE UAV while takeoff and cruise flight conditions, and then determine the amount of solar cell and battery needed by the UAV.

  14. Analysis of Return and Forward Links from STARS' Flight Demonstration 1

    Science.gov (United States)

    Gering, James A.

    2003-01-01

    Space-based Telemetry And Range Safety (STARS) is a Kennedy Space Center (KSC) led proof-of-concept demonstration, which utilizes NASA's space network of Tracking and Data Relay Satellites (TDRS) as a pathway for launch and mission related information streams. Flight Demonstration 1 concluded on July 15,2003 with the seventh flight of a Low Power Transmitter (LPT) a Command and Data Handler (C&DH), a twelve channel GPS receiver and associated power supplies and amplifiers. The equipment flew on NASA's F-I5 aircraft at the Dryden Flight Research Center located at Edwards Air Force Base in California. During this NASA-ASEE Faculty Fellowship, the author participated in the collection and analysis of data from the seven flights comprising Flight Demonstration 1. Specifically, the author examined the forward and return links bit energy E(sub B) (in Watt-seconds) divided by the ambient radio frequency noise N(sub 0) (in Watts / Hertz). E(sub b)/N(sub 0) is commonly thought of as a signal-to-noise parameter, which characterizes a particular received radio frequency (RF) link. Outputs from the data analysis include the construction of time lines for all flights, production of graphs of range safety values for all seven flights, histograms of range safety E(sub b)/N(sub 0) values in five dB increments, calculation of associated averages and standard deviations, production of graphs of range user E(sub b)/N(sub 0) values for the all flights, production of graphs of AGC's and E(sub b)/N(sub 0) estimates for flight 1, recorded onboard, transmitted directly to the launch head and transmitted through TDRS. The data and graphs are being used to draw conclusions related to a lower than expected signal strength seen in the range safety return link.

  15. Supporting Sustainability and Personalization with Product Architecture

    DEFF Research Database (Denmark)

    Nielsen, Kjeld; Jørgensen, Kaj Asbjørn; Taps, Stig B.

    2011-01-01

    Mass Customization, Personalization and Co-creation (MCPC) are continuously being adopted as a competitive business strategy. Consumers as well as governments are at the same time applying pressure on companies to adopt a more sustainable strategy, consumers request greener products and governments...... is a driver for MCPC and earlier research within product architecture has indicated that modularization could support sustainability. In this paper, work on the drivers for modularization with focus on sustainability and MCPC, will be presented. Several modularization methods and drivers are analyzed...

  16. Theseus on Take-off for First Flight

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft takes off for its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden

  17. Flight telerobotic servicer legacy

    Science.gov (United States)

    Shattuck, Paul L.; Lowrie, James W.

    1992-11-01

    The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include

  18. Microgravity Flight - Accommodating Non-Human Primates

    Science.gov (United States)

    Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis

    1994-01-01

    Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of

  19. A large-scale multi-objective flights conflict avoidance approach supporting 4D trajectory operation

    OpenAIRE

    Guan, Xiangmin; Zhang, Xuejun; Lv, Renli; Chen, Jun; Weiszer, Michal

    2017-01-01

    Recently, the long-term conflict avoidance approaches based on large-scale flights scheduling have attracted much attention due to their ability to provide solutions from a global point of view. However, the current approaches which focus only on a single objective with the aim of minimizing the total delay and the number of conflicts, cannot provide the controllers with variety of optional solutions, representing different trade-offs. Furthermore, the flight track error is often overlooked i...

  20. Flight Control of the High Altitude Wind Power System

    NARCIS (Netherlands)

    Podgaets, A.R.; Ockels, W.J.

    2007-01-01

    Closed loop Laddermill flight control problem is considered in this paper. Laddermill is a high altitude kites system for energy production. The kites have been simulated as rigid bodies and the cable as a thin elastic line. Euler angles and cable speed are controls. Flight control is written as a

  1. Energy Production from Biogas: Competitiveness and Support Instruments in Latvia

    Science.gov (United States)

    Klāvs, G.; Kundziņa, A.; Kudrenickis, I.

    2016-10-01

    Use of renewable energy sources (RES) might be one of the key factors for the triple win-win: improving energy supply security, promoting local economic development, and reducing greenhouse gas emissions. The authors ex-post evaluate the impact of two main support instruments applied in 2010-2014 - the investment support (IS) and the feed-in tariff (FIT) - on the economic viability of small scale (up to 2MWel) biogas unit. The results indicate that the electricity production cost in biogas utility roughly corresponds to the historical FIT regarding electricity production using RES. However, if in addition to the FIT the IS is provided, the analysis shows that the practice of combining both the above-mentioned instruments is not optimal because too high total support (overcompensation) is provided for a biogas utility developer. In a long-term perspective, the latter gives wrong signals for investments in new technologies and also creates unequal competition in the RES electricity market. To provide optimal biogas utilisation, it is necessary to consider several options. Both on-site production of electricity and upgrading to biomethane for use in a low pressure gas distribution network are simulated by the cost estimation model. The authors' estimates show that upgrading for use in a gas distribution network should be particularly considered taking into account the already existing infrastructure and technologies. This option requires lower support compared to support for electricity production in small-scale biogas utilities.

  2. Energy Production from Biogas: Competitiveness and Support Instruments in Latvia

    Directory of Open Access Journals (Sweden)

    Klāvs G.

    2016-10-01

    Full Text Available Use of renewable energy sources (RES might be one of the key factors for the triple win-win: improving energy supply security, promoting local economic development, and reducing greenhouse gas emissions. The authors ex-post evaluate the impact of two main support instruments applied in 2010-2014 – the investment support (IS and the feed-in tariff (FIT – on the economic viability of small scale (up to 2MWel biogas unit. The results indicate that the electricity production cost in biogas utility roughly corresponds to the historical FIT regarding electricity production using RES. However, if in addition to the FIT the IS is provided, the analysis shows that the practice of combining both the above-mentioned instruments is not optimal because too high total support (overcompensation is provided for a biogas utility developer. In a long-term perspective, the latter gives wrong signals for investments in new technologies and also creates unequal competition in the RES electricity market. To provide optimal biogas utilisation, it is necessary to consider several options. Both on-site production of electricity and upgrading to biomethane for use in a low pressure gas distribution network are simulated by the cost estimation model. The authors’ estimates show that upgrading for use in a gas distribution network should be particularly considered taking into account the already existing infrastructure and technologies. This option requires lower support compared to support for electricity production in small-scale biogas utilities.

  3. Lessons Learned: Mechanical Component and Tribology Activities in Support of Return to Flight

    Science.gov (United States)

    Handschuh, Robert F.; Zaretsky, Erwin V.

    2017-01-01

    The February 2003 loss of the Space Shuttle Columbia resulted in NASA Management revisiting every critical system onboard this very complex, reusable space vehicle in a an effort to Return to Flight. Many months after the disaster, contact between NASA Johnson Space Center and NASA Glenn Research Center evolved into an in-depth assessment of the actuator drive systems for the Rudder Speed Brake and Body Flap Systems. The actuators are CRIT 1-1 systems that classifies them as failure of any of the actuators could result in loss of crew and vehicle. Upon further evaluation of these actuator systems and the resulting issues uncovered, several research activities were initiated, conducted, and reported to the NASA Space Shuttle Program Management. The papers contained in this document are the contributions of many researchers from NASA Glenn Research Center and Marshall Space Flight Center as part of a Lessons Learned on mechanical actuation systems as used in space applications. Many of the findings contained in this document were used as a basis to safely Return to Flight for the remaining Space Shuttle Fleet until their retirement.

  4. What Supports an Aeroplane? Force, Momentum, Energy and Power in Flight

    Science.gov (United States)

    Robertson, David

    2014-01-01

    Some apparently confusing aspects of Newton's laws as applied to an aircraft in normal horizontal flight are neatly resolved by a careful analysis of force, momentum, energy and power. A number of related phenomena are explained at the same time, including the lift and induced drag coefficients, used empirically in the aviation industry.

  5. Microgravity Flight: Accommodating Non-Human Primates

    Science.gov (United States)

    Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis

    1995-01-01

    Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of

  6. Capital Flight and the Economic Growth: Evidence from Nigeria

    Directory of Open Access Journals (Sweden)

    Adedoyin I. Lawal

    2017-08-01

    Full Text Available This research examined the impact of capital flight and its determinants on the Nigerian economy using the Autoregressive Distributed Lag (ARDL model to analyze data source from the period of 1981 to 2015. The variables included current account balance, capital flight, foreign direct investments, foreign reserve, inflation rate, external debt, and the real gross domestic product. It was to examine the existence of a long run relationship among the variables studied. The result indicates that capital flight has a negative impact on the economic growth of Nigeria. Therefore, there is a need for government to implement policies that will promote domestic investment and discourage capital flight from Nigeria.

  7. A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V.; Veldhuizen, E.J. van; Westerberg, L.; Lyapin, V.G.; Aleklett, K.; Loveland, W.; Bondorf, J.; Jakobsson, B.; Whitlow, H.J.; El Bouanani, M

    2000-10-01

    A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate (MCP) time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of {approx}35 keV/nucleon from the interactions of 400 MeV/nucleon {sup 16}O with {sup nat}Xe gas targets.

  8. A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Loveland, W.; Jakobsson, B.; Whitlow, H.J.; Bouanani, M. El; Univ. of North Texas, Denton, TX

    2000-01-01

    A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of ∼ 35 keV/nucleon from the interactions of 400 MeV/nucleon 16 O with nat Xe gas targets

  9. A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Uppsala Univ. (Sweden). The Svedberg Lab.; Veldhuizen, E.J. van; Aleklett, K. [Uppsala Univ., (Sweden). Dept. of Radiation Sciences; Westerberg, L. [Uppsala University (Sweden). The Svedberg Lab.; Lyapin, V.G. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Loveland, W. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry; Bondorf, J. [Niels Bohr Inst., Copenhagen (Denmark); Jakobsson, B. [Lund Univ. (Sweden). Dept. of Physics; Whitlow, H.J. [Lund Univ. (Sweden). Dept. of Nuclear Physics; Bouanani, M. El [Lund Univ. (Sweden). Dept. of Nuclear Physics; Univ. of North Texas, Denton, TX (United States). Dept. of Physics

    2000-07-01

    A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of {approx} 35 keV/nucleon from the interactions of 400 MeV/nucleon {sup 16}O with {sup nat} Xe gas targets.

  10. A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Veldhuizen, E.J. van; Westerberg, L.; Lyapin, V.G.; Aleklett, K.; Loveland, W.; Bondorf, J.; Jakobsson, B.; Whitlow, H.J.; El Bouanani, M.

    2000-01-01

    A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate (MCP) time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of ∼35 keV/nucleon from the interactions of 400 MeV/nucleon 16 O with nat Xe gas targets

  11. Human tolerance to space flight

    Science.gov (United States)

    Huntoon, C. L.

    1989-01-01

    Medical studies of astronauts and cosmonauts before, during, and after space missions have identified several effects of weightlessness and other factors that influence the ability of humans to tolerate space flight. Weightlessness effects include space motion sickness, cardiovascular abnormalities, reduction in immune system function, loss of red blood cells, loss of bone mass, and muscle atrophy. Extravehicular activity (EVA) increases the likelihood that decompression sickness may occur. Radiation also gives reason for concern about health of crewmembers, and psychological factors are important on long-term flights. Countermeasures that have been used include sensory preadaptation, prebreathing and use of various air mixtures for EVA, loading with water and electrolytes, exercise, use of pharmacological agents and special diets, and psychological support. It appears that humans can tolerate and recover satisfactorily from at least one year of space flight, but a number of conditions must be further ameliorated before long-duration missions can be considered routine.

  12. Development of an Exploration-Class Cascade Distillation System: Flight Like Prototype Preliminary Design

    Science.gov (United States)

    Callahan, Michael R.; Sargusingh, Miriam J.

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. Its rotating cascading distiller operates similarly to the state of the art (SOA) vapor compressor distiller (VCD), but its control scheme and ancillary components are judged to be straightforward and simpler to implement into a successful design. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). The key objectives for the CDS 2.0 design task is to provide a flight forward ground prototype that demonstrates improvements over the SOA system in the areas of increased reliability and robustness, and reduced mass, power and volume. It will also incorporate exploration-class automation. The products of this task are a preliminary flight system design and a high fidelity prototype of an exploration class CDS. These products will inform the design and development of the third generation CDS which is targeted for on-orbit DTO. This paper details the preliminary design of the CDS 2.0.

  13. Cosmonaut Dezhurov Talks With Flight Controllers

    Science.gov (United States)

    2001-01-01

    Aboard the International Space Station (ISS), Cosmonaut and Expedition Three flight engineer Vladimir N. Dezhurov, representing Rosaviakosmos, talks with flight controllers from the Zvezda Service Module. Russian-built Zvezda is linked to the Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  14. Flight Test of an Intelligent Flight-Control System

    Science.gov (United States)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  15. Respiratory Evolution Facilitated the Origin of Pterosaur Flight and Aerial Gigantism

    OpenAIRE

    Claessens, Leon P. A. M.; O'Connor, Patrick M.; Unwin, David M.

    2009-01-01

    Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct arch...

  16. Crew Factors in Flight Operations X: Alertness Management in Flight Operations

    Science.gov (United States)

    Rosekind, Mark R.; Gander, Philippa H.; Connell, Linda J.; Co, Elizabeth L.

    2001-01-01

    In response to a 1980 congressional request, NASA Ames Research Center initiated a Fatigue/Jet Lag Program to examine fatigue, sleep loss, and circadian disruption in aviation. Research has examined fatigue in a variety of flight environments using a range of measures (from self-report to performance to physiological). In 1991, the program evolved into the Fatigue Countermeasures Program, emphasizing the development and evaluation of strategies to maintain alertness and performance in operational settings. Over the years, the Federal Aviation Administration (FAA) has become a collaborative partner in support of fatigue research and other Program activities. From the inception of the Program, a principal goal was to return the information learned from research and other Program activities to the operational community. The objectives of this Education and Training Module are to explain what has been learned about the physiological mechanisms that underlie fatigue, demonstrate the application of this information in flight operations, and offer some specific fatigue countermeasure recommendations. It is intended for all segments of the aeronautics industry, including pilots, flight attendants, managers, schedulers, safety and policy personnel, maintenance crews, and others involved in an operational environment that challenges human physiological capabilities because of fatigue, sleep loss, and circadian disruption.

  17. Spatial support of knowledge production in higher education

    OpenAIRE

    Groen, B.H. (Brenda); Sprang, van, H. (Hester); Voordt, van der, T.J.M. (Theo)

    2014-01-01

    This paper explores the impact of the physical and social dimensions of the work environment on  satisfaction and perceived productivity of knowledge workers in Dutch universities of applied sciences. The approach took the form of a literature review, multiple case study of six research centres using interviews and logbook analysis, and web-based survey (N = 188). Optimally facilitating knowledge production requires both space for concentration (to support internalisation of knowledge) a...

  18. Spatial support of knowlegde production in higher education

    OpenAIRE

    Groen, B. (Brenda); Sprang, van, H. (Hester); Voordt, van der, T.J.M. (Theo)

    2013-01-01

    This paper explores the impact of the physical and social dimensions of the work environment on satisfaction and perceived productivity of knowledge workers in Dutch universities of applied sciences. The approach took the form of a literature review, multiple case study of six research centres using interviews and logbook analysis, and web-based survey (N = 188). Optimally facilitating knowledge production requires both space for concentration (to support internalisation of knowledge) and spa...

  19. F-14 in banked flight

    Science.gov (United States)

    1979-01-01

    NASA 991, an F-14 Navy Tomcat designated the F-14 (1X), is seen here in banked flight over the desert on a research flight at NASA's Dryden Flight Research Center, Edwards, California. The F-14 was used at Dryden between 1979 and 1985 in extensive high-angle-of-attack and spin-control-and-recovery tests. The NASA/Navy program, which included 212 total flights, acheived considerable improvement in the F-14 high-angle-of-attack flying qualities, improved departure and spin resistance, and contributed to substantial improvements in reducing 'wing rock,' (i.e., tilting from one side to another), at high angles of attack. The Navy had been experiencing inadvertant spin entries caused by the F-14's aileron rudder interconnect. The NASA/Navy/Grumman team developed and tested 4 different configurations of the aileron rudder interconnect to address the spin problem. These problems prompted the Navy to ask the manufacturer, Grumman, and NASA to investigate the issue. NASA 991 had numerous special additions for high-angle-of-attack and spin-recovery research. These included a battery-powered auxiliary power unit, a flight test nose boom, and a special spin recovery system, consisting of forward mounted, hydraulically actuated canards and an emergency spin chute. NASA's F-14 was first flown by NASA research pilots, but was later flown by Grumman, and by Navy test pilots from Patuxent River Naval Air Station (NAS). The Navy test flights with the spin research vehicle constituted the first program that incorporated air combat maneuvering in its test flights at Dryden. The Navy brought F-14s from Point Mugu and Miramar NAS in San Diego to test the new spin control laws in combat situations. Although the new control laws proved valuable, the Navy did not incorporate them into production F-14s until the F-14D, nearly 15 years later.

  20. Overview of the Radiation Dosimetry Experiment (RaD-X) Flight Mission

    Science.gov (United States)

    Mertens, Christopher J.

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5 N, 104.2 W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.

  1. Working in the sky: a diary study on work engagement among flight attendants.

    Science.gov (United States)

    Xanthopoulou, Despoina; Bakker, Arnold B; Heuven, Ellen; Demerouti, Evangelia; Schaufeli, Wilmar B

    2008-10-01

    This study aims to gain insight in the motivational process of the Job Demands-Resources (JD-R) model by examining whether daily fluctuations in colleague support (i.e., a typical job resource) predict day-levels of job performance through self-efficacy and work engagement. Forty-four flight attendants filled in a questionnaire and a diary booklet before and after consecutive flights to three intercontinental destinations. Results of multilevel analyses revealed that colleague support had unique positive effects on self-efficacy and work engagement. Self-efficacy did not mediate the relationship between support and engagement, but work engagement mediated the relationship between self-efficacy and (in-role and extra-role) performance. In addition, colleague support had an indirect effect on in-role performance through work engagement. These findings shed light on the motivational process as outlined in the JD-R model, and suggest that colleague support is an important job resource for flight attendants helping them reach their work-related goals.

  2. Using the analytic hierarchy process to support teams in defining new product objectives

    NARCIS (Netherlands)

    Hummel, J.M.; Verkerke, G.J.; van Rossum, W.; Rakhorst, G.; Hummel, J.M.

    2001-01-01

    Defining new product objectives is a critical problem solving activity to new product success. The analytic hierarchy process appears to be an adequate technique for multi-criteria decision analysis to support the definition of new product objectives. To illustrate this support, we applied this

  3. Physician Order Entry Clerical Support Improves Physician Satisfaction and Productivity.

    Science.gov (United States)

    Contratto, Erin; Romp, Katherine; Estrada, Carlos A; Agne, April; Willett, Lisa L

    2017-05-01

    To examine the impact of clerical support personnel for physician order entry on physician satisfaction, productivity, timeliness with electronic health record (EHR) documentation, and physician attitudes. All seven part-time physicians at an academic general internal medicine practice were included in this quasi-experimental (single group, pre- and postintervention) mixed-methods study. One full-time clerical support staff member was trained and hired to enter physician orders in the EHR and conduct previsit planning. Physician satisfaction, productivity, timeliness with EHR documentation, and physician attitudes toward the intervention were measured. Four months after the intervention, physicians reported improvements in overall quality of life (good quality, 71%-100%), personal balance (43%-71%), and burnout (weekly, 43%-14%; callousness, 14%-0%). Matched for quarter, productivity increased: work relative value unit (wRVU) per session increased by 20.5% (before, April-June 2014; after, April-June 2015; range -9.2% to 27.5%). Physicians reported feeling more supported, more focused on patient care, and less stressed and fatigued after the intervention. This study supports the use of physician order entry clerical personnel as a simple, cost-effective intervention to improve the work lives of primary care physicians.

  4. In-Flight Sleep of Flight Crew During a 7-hour Rest Break: Implications for Research and Flight Safety

    Science.gov (United States)

    Signal, T. Leigh; Gander, Philippa H.; van den Berg, Margo J.; Graeber, R. Curtis

    2013-01-01

    Study Objectives: To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Design: Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Setting: Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Participants: Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). Interventions: N/A. Measurements and Results: Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. Conclusions: This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated. Citation: Signal TL; Gander PH; van den Berg MJ; Graeber RC. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety. SLEEP 2013;36(1):109–115. PMID:23288977

  5. Theseus Waits on Lakebed for First Flight

    Science.gov (United States)

    1996-01-01

    The Theseus prototype remotely-piloted aircraft (RPA) waits on the lakebed before its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental

  6. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    Science.gov (United States)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  7. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety.

    Science.gov (United States)

    Signal, T Leigh; Gander, Philippa H; van den Berg, Margo J; Graeber, R Curtis

    2013-01-01

    To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). N/A. Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated.

  8. Biochemical and hematologic changes after short-term space flight

    Science.gov (United States)

    Leach, C. S.

    1992-01-01

    Clinical laboratory data from blood samples obtained from astronauts before and after 28 flights (average duration = 6 days) of the Space Shuttle were analyzed by the paired t-test and the Wilcoxon signed-rank test and compared with data from the Skylab flights (duration approximately 28, 59, and 84 days). Angiotensin I and aldosterone were elevated immediately after short-term space flights, but the response of angiotensin I was delayed after Skylab flights. Serum calcium was not elevated after Shuttle flights, but magnesium and uric acid decreased after both Shuttle and Skylab. Creatine phosphokinase in serum was reduced after Shuttle but not Skylab flights, probably because exercises to prevent deconditioning were not performed on the Shuttle. Total cholesterol was unchanged after Shuttle flights, but low density lipoprotein cholesterol increased and high density lipoprotein cholesterol decreased. The concentration of red blood cells was elevated after Shuttle flights and reduced after Skylab flights. Reticulocyte count was decreased after both short- and long-term flights, indicating that a reduction in red blood cell mass is probably more closely related to suppression of red cell production than to an increase in destruction of erythrocytes. Serum ferritin and number of platelets were also elevated after Shuttle flights. In determining the reasons for postflight differences between the shorter and longer flights, it is important to consider not only duration but also countermeasures, differences between spacecraft, and procedures for landing and egress.

  9. Simulation to Flight Test for a UAV Controls Testbed

    Science.gov (United States)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.

    2006-01-01

    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  10. Collaborative networks in support of service-enhanced products

    NARCIS (Netherlands)

    Camarinha-Matos, L.M.; Afsarmanesh, H.; Koelmel, B.

    2011-01-01

    The development and support of highly customized and service-enhanced products requires new organizational structures, involving the manufacturers, customers and local suppliers in a process of co-creation. This requires the implementation of the glocal enterprise notion with value creation from

  11. Hummingbirds fuel hovering flight with newly ingested sugar.

    Science.gov (United States)

    Welch, Kenneth C; Bakken, Bradley Hartman; Martinez del Rio, Carlos; Suarez, Raul K

    2006-01-01

    We sought to characterize the ability of hummingbirds to fuel their energetically expensive hovering flight using dietary sugar by a combination of respirometry and stable carbon isotope techniques. Broadtailed hummingbirds (Selasphorus platycercus) were maintained on a diet containing beet sugar with an isotopic composition characteristic of C3 plants. Hummingbirds were fasted and then offered a solution containing cane sugar with an isotopic composition characteristic of C4 plants. By monitoring the rates of CO2 production and O2 consumption, as well as the stable carbon isotope composition of expired CO2, we were able to estimate the relative contributions of carbohydrate and fat, as well as the absolute rate at which dietary sucrose was oxidized during hovering. The combination of respirometry and carbon isotope analysis revealed that hummingbirds initially oxidized endogenous fat following a fast and then progressively oxidized proportionately more carbohydrates. The contribution from dietary sources increased with each feeding bout, and by 20 min after the first meal, dietary sugar supported approximately 74% of hovering metabolism. The ability of hummingbirds to satisfy the energetic requirements of hovering flight mainly with recently ingested sugar is unique among vertebrates. Our finding provides an example of evolutionary convergence in physiological and biochemical traits among unrelated nectar-feeding animals.

  12. A web-based system for supporting global land cover data production

    Science.gov (United States)

    Han, Gang; Chen, Jun; He, Chaoying; Li, Songnian; Wu, Hao; Liao, Anping; Peng, Shu

    2015-05-01

    Global land cover (GLC) data production and verification process is very complicated, time consuming and labor intensive, requiring huge amount of imagery data and ancillary data and involving many people, often from different geographic locations. The efficient integration of various kinds of ancillary data and effective collaborative classification in large area land cover mapping requires advanced supporting tools. This paper presents the design and development of a web-based system for supporting 30-m resolution GLC data production by combining geo-spatial web-service and Computer Support Collaborative Work (CSCW) technology. Based on the analysis of the functional and non-functional requirements from GLC mapping, a three tiers system model is proposed with four major parts, i.e., multisource data resources, data and function services, interactive mapping and production management. The prototyping and implementation of the system have been realised by a combination of Open Source Software (OSS) and commercially available off-the-shelf system. This web-based system not only facilitates the integration of heterogeneous data and services required by GLC data production, but also provides online access, visualization and analysis of the images, ancillary data and interim 30 m global land-cover maps. The system further supports online collaborative quality check and verification workflows. It has been successfully applied to China's 30-m resolution GLC mapping project, and has improved significantly the efficiency of GLC data production and verification. The concepts developed through this study should also benefit other GLC or regional land-cover data production efforts.

  13. An Integrated Decision-Making Model for Categorizing Weather Products and Decision Aids

    Science.gov (United States)

    Elgin, Peter D.; Thomas, Rickey P.

    2004-01-01

    The National Airspace System s capacity will experience considerable growth in the next few decades. Weather adversely affects safe air travel. The FAA and NASA are working to develop new technologies that display weather information to support situation awareness and optimize pilot decision-making in avoiding hazardous weather. Understanding situation awareness and naturalistic decision-making is an important step in achieving this goal. Information representation and situation time stress greatly influence attentional resource allocation and working memory capacity, potentially obstructing accurate situation awareness assessments. Three naturalistic decision-making theories were integrated to provide an understanding of the levels of decision making incorporated in three operational situations and two conditions. The task characteristics associated with each phase of flight govern the level of situation awareness attained and the decision making processes utilized. Weather product s attributes and situation task characteristics combine to classify weather products according to the decision-making processes best supported. In addition, a graphical interface is described that affords intuitive selection of the appropriate weather product relative to the pilot s current flight situation.

  14. Cognitive Assessment During Long-Duration Space Flight

    Science.gov (United States)

    Seaton, Kimberly; Kane, R. L.; Sipes, Walter

    2010-01-01

    The Space Flight Cognitive Assessment Tool for Windows (WinSCAT) is a computer-based, self-administered battery of five cognitive assessment tests developed for medical operations at NASA's Johnson Space Center in Houston, Texas. WinSCAT is a medical requirement for U.S. long-duration astronauts and has been implemented with U.S. astronauts from one NASA/Mir mission (NASA-7 mission) and all expeditions to date on the International Space Station (ISS). Its purpose is to provide ISS crew surgeons with an objective clinical tool after an unexpected traumatic event, a medical condition, or the cumulative effects of space flight that could negatively affect an astronaut's cognitive status and threaten mission success. WinSCAT was recently updated to add network capability to support a 6-person crew on the station support computers. Additionally, WinSCAT Version 2.0.28 has increased difficulty of items in Mathematics, increased number of items in Match-to-Sample, incorporates a moving rather than a fixed baseline, and implements stricter interpretation rules. ISS performance data were assessed to compare initial to modified interpretation rules for detecting potential changes in cognitive functioning during space flight. WinSCAT tests are routinely taken monthly during an ISS mission. Performance data from these ISS missions do not indicate significant cognitive decrements due to microgravity/space flight alone but have shown decrements. Applying the newly derived rules to ISS data results in a number of off-nominal performances at various times during and after flight.. Correlation to actual events is needed, but possible explanations for off-nominal performances could include actual physical factors such as toxic exposure, medication effects, or fatigue; emotional factors including stress from the mission or life events; or failure to exert adequate effort on the tests.

  15. ALICE Time of Flight Module

    CERN Multimedia

    The Time-Of-Flight system of ALICE consists of 90 such modules, each containing 15 or 19 Multigap Resistive Plate Chamber (MRPC) strips. This detector is used for identification of charged particles. It measures with high precision (50 ps) the time of flight of charged particles and therefore their velocity. The curvature of the particle trajectory inside the magnetic field gives the momentum, thus the particle mass is calculated and the particle is identified The MRPC is a stack of resistive glass plates, separated from each other by nylon fishing line. The mass production of the chambers (~1600, covering a surface of 150 m2) was done at INFN Bologna, while the first prototypes were bult at CERN.

  16. Jet Engines - The New Masters of Advanced Flight Control

    Science.gov (United States)

    Gal-Or, Benjamin

    2018-05-01

    ANTICIPATED UNITED STATES CONGRESS ACT should lead to reversing a neglected duty to the people by supporting FAA induced bill to civilize classified military air combat technology to maximize flight safety of airliners and cargo jet transports, in addition to FAA certifying pilots to master Jet-Engine Steering ("JES") as automatic or pilot recovery when Traditional Aerodynamic-only Flight Control ("TAFC") fails to prevent a crash and other related damages

  17. First Middle East Aircraft Parabolic Flights for ISU Participant Experiments

    Science.gov (United States)

    Pletser, Vladimir; Frischauf, Norbert; Cohen, Dan; Foster, Matthew; Spannagel, Ruven; Szeszko, Adam; Laufer, Rene

    2017-06-01

    Aircraft parabolic flights are widely used throughout the world to create microgravity environment for scientific and technology research, experiment rehearsal for space missions, and for astronaut training before space flights. As part of the Space Studies Program 2016 of the International Space University summer session at the Technion - Israel Institute of Technology, Haifa, Israel, a series of aircraft parabolic flights were organized with a glider in support of departmental activities on `Artificial and Micro-gravity' within the Space Sciences Department. Five flights were organized with manoeuvres including several parabolas with 5 to 6 s of weightlessness, bank turns with acceleration up to 2 g and disorientation inducing manoeuvres. Four demonstration experiments and two experiments proposed by SSP16 participants were performed during the flights by on board operators. This paper reports on the microgravity experiments conducted during these parabolic flights, the first conducted in the Middle East for science and pedagogical experiments.

  18. Cuckoo Search Algorithm with Lévy Flights for Global-Support Parametric Surface Approximation in Reverse Engineering

    Directory of Open Access Journals (Sweden)

    Andrés Iglesias

    2018-03-01

    Full Text Available This paper concerns several important topics of the Symmetry journal, namely, computer-aided design, computational geometry, computer graphics, visualization, and pattern recognition. We also take advantage of the symmetric structure of the tensor-product surfaces, where the parametric variables u and v play a symmetric role in shape reconstruction. In this paper we address the general problem of global-support parametric surface approximation from clouds of data points for reverse engineering applications. Given a set of measured data points, the approximation is formulated as a nonlinear continuous least-squares optimization problem. Then, a recent metaheuristics called Cuckoo Search Algorithm (CSA is applied to compute all relevant free variables of this minimization problem (namely, the data parameters and the surface poles. The method includes the iterative generation of new solutions by using the Lévy flights to promote the diversity of solutions and prevent stagnation. A critical advantage of this method is its simplicity: the CSA requires only two parameters, many fewer than any other metaheuristic approach, so the parameter tuning becomes a very easy task. The method is also simple to understand and easy to implement. Our approach has been applied to a benchmark of three illustrative sets of noisy data points corresponding to surfaces exhibiting several challenging features. Our experimental results show that the method performs very well even for the cases of noisy and unorganized data points. Therefore, the method can be directly used for real-world applications for reverse engineering without further pre/post-processing. Comparative work with the most classical mathematical techniques for this problem as well as a recent modification of the CSA called Improved CSA (ICSA is also reported. Two nonparametric statistical tests show that our method outperforms the classical mathematical techniques and provides equivalent results to ICSA

  19. Solar and Heliospheric Observatory (SOHO) Flight Dynamics Simulations Using MATLAB (R)

    Science.gov (United States)

    Headrick, R. D.; Rowe, J. N.

    1996-01-01

    This paper describes a study to verify onboard attitude control laws in the coarse Sun-pointing (CSP) mode by simulation and to develop procedures for operational support for the Solar and Heliospheric Observatory (SOHO) mission. SOHO was launched on December 2, 1995, and the predictions of the simulation were verified with the flight data. This study used a commercial off the shelf product MATLAB(tm) to do the following: Develop procedures for computing the parasitic torques for orbital maneuvers; Simulate onboard attitude control of roll, pitch, and yaw during orbital maneuvers; Develop procedures for predicting firing time for both on- and off-modulated thrusters during orbital maneuvers; Investigate the use of feed forward or pre-bias torques to reduce the attitude handoff during orbit maneuvers - in particular, determine how to use the flight data to improve the feed forward torque estimates for use on future maneuvers. The study verified the stability of the attitude control during orbital maneuvers and the proposed use of feed forward torques to compensate for the attitude handoff. Comparison of the simulations with flight data showed: Parasitic torques provided a good estimate of the on- and off-modulation for attitude control; The feed forward torque compensation scheme worked well to reduce attitude handoff during the orbital maneuvers. The work has been extended to prototype calibration of thrusters from observed firing time and observed reaction wheel speed changes.

  20. The efficiency of aerodynamic force production in Drosophila.

    Science.gov (United States)

    Lehmann, F O

    2001-12-01

    Total efficiency of aerodynamic force production in insect flight depends on both the efficiency with which flight muscles turn metabolic energy into muscle mechanical power and the efficiency with which this power is converted into aerodynamic flight force by the flapping wings. Total efficiency has been estimated in tethered flying fruit flies Drosophila by modulating their power expenditures in a virtual reality flight simulator while simultaneously measuring stroke kinematics, locomotor performance and metabolic costs. During flight, muscle efficiency increases with increasing flight force production, whereas aerodynamic efficiency of lift production decreases with increasing forces. As a consequence of these opposite trends, total flight efficiency in Drosophila remains approximately constant within the kinematic working range of the flight motor. Total efficiency is broadly independent of different profile power estimates and typically amounts to 2-3%. The animal achieves maximum total efficiency near hovering flight conditions, when the beating wings produce flight forces that are equal to the body weight of the insect. It remains uncertain whether this small advantage in total efficiency during hovering flight was shaped by evolutionary factors or results from functional constraints on both the production of mechanical power by the indirect flight muscles and the unsteady aerodynamic mechanisms in flapping flight.

  1. A dynamic human water and electrolyte balance model for verification and optimization of life support systems in space flight applications

    Science.gov (United States)

    Hager, P.; Czupalla, M.; Walter, U.

    2010-11-01

    In this paper we report on the development of a dynamic MATLAB SIMULINK® model for the water and electrolyte balance inside the human body. This model is part of an environmentally sensitive dynamic human model for the optimization and verification of environmental control and life support systems (ECLSS) in space flight applications. An ECLSS provides all vital supplies for supporting human life on board a spacecraft. As human space flight today focuses on medium- to long-term missions, the strategy in ECLSS is shifting to closed loop systems. For these systems the dynamic stability and function over long duration are essential. However, the only evaluation and rating methods for ECLSS up to now are either expensive trial and error breadboarding strategies or static and semi-dynamic simulations. In order to overcome this mismatch the Exploration Group at Technische Universität München (TUM) is developing a dynamic environmental simulation, the "Virtual Habitat" (V-HAB). The central element of this simulation is the dynamic and environmentally sensitive human model. The water subsystem simulation of the human model discussed in this paper is of vital importance for the efficiency of possible ECLSS optimizations, as an over- or under-scaled water subsystem would have an adverse effect on the overall mass budget. On the other hand water has a pivotal role in the human organism. Water accounts for about 60% of the total body mass and is educt and product of numerous metabolic reactions. It is a transport medium for solutes and, due to its high evaporation enthalpy, provides the most potent medium for heat load dissipation. In a system engineering approach the human water balance was worked out by simulating the human body's subsystems and their interactions. The body fluids were assumed to reside in three compartments: blood plasma, interstitial fluid and intracellular fluid. In addition, the active and passive transport of water and solutes between those

  2. Collaborative Development Planning Model of Supporting Product in Platform Innovation Ecosystem

    OpenAIRE

    Wei Zhang; Hamid Reza Karimi; Qingpu Zhang; Shaobo Wu

    2014-01-01

    Published version of an article in the journal: Mathematical Problems in Engineering. Also available from the publisher at: http://10.1155/2014/690589 In order to improve the market value of the product, the platform enterprise often participates in the development process of supporting product of emerging industry's platform innovation ecosystem. This paper puts forward a revenue sharing contract between the platform company and the supporting company by creating a collaborative developme...

  3. Shuttle Ground Support Equipment (GSE) T-0 Umbilical to Space Shuttle Program (SSP) Flight Elements Consultation

    Science.gov (United States)

    Wilson, Timmy R.; Kichak, Robert A.; McManamen, John P.; Kramer-White, Julie; Raju, Ivatury S.; Beil, Robert J.; Weeks, John F.; Elliott, Kenny B.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) was tasked with assessing the validity of an alternate opinion that surfaced during the investigation of recurrent failures at the Space Shuttle T-0 umbilical interface. The most visible problem occurred during the Space Transportation System (STS)-112 launch when pyrotechnics used to separate Solid Rocket Booster (SRB) Hold-Down Post (HDP) frangible nuts failed to fire. Subsequent investigations recommended several improvements to the Ground Support Equipment (GSE) and processing changes were implemented, including replacement of ground-half cables and connectors between flights, along with wiring modifications to make critical circuits quad-redundant across the interface. The alternate opinions maintained that insufficient data existed to exonerate the design, that additional data needed to be gathered under launch conditions, and that the interface should be further modified to ensure additional margin existed to preclude failure. The results of the assessment are contained in this report.

  4. Summary results of the first United States manned orbital space flight

    Science.gov (United States)

    Glenn, J. H. Jr

    1963-01-01

    This paper describes the principal findings of the first United States manned orbital space flight in light of the flight mission. Consideration is given to the coordinated tracking network, recovery forces and to the spacecraft and its several functional systems. These include mechanisms for heat protection, escape maneuvers, spacecraft control, power supply, communications, life support and landing. A few difficulties encountered in the flight and deviations from the planned sequence are described. Craft preparation, aeromedical studies, flight plan and particularly flight observations--including the color, light, horizon visibility by day and by night, cloud formations and sunrise and sunset effects are given in some detail. The general conclusion from the MA-6 flight is that man can adapt well to new conditions encountered in space flight and that man can contribute importantly to mission reliability and toward mission achievement through his capacities to control the spacecraft and its multiple systems contribute to decision making and adaptation of programming as well as to direct exploratory and experimental observations.

  5. Anatomy and histochemistry of hindlimb flight posture in birds. I. The extended hindlimb posture of shorebirds.

    Science.gov (United States)

    McFarland, Joshua C; Meyers, Ron A

    2008-08-01

    Birds utilize one of two hindlimb postures during flight: an extended posture (with the hip and knee joints flexed, while the ankle joint is extended caudally) or a flexed posture (with the hip, knee, and ankle joints flexed beneath the body). American Avocets (Recurvirostra americana) and Black-necked Stilts (Himantopus mexicanus) extend their legs caudally during flight and support them for extended periods. Slow tonic and slow twitch muscle fibers are typically found in muscles functioning in postural support due to the fatigue resistance of these fibers. We hypothesized that a set of small muscles composed of high percentages of slow fibers and thus dedicated to postural support would function in securing the legs in the extended posture during flight. This study examined the anatomy and histochemical profile of eleven hindlimb muscles to gain insight into their functional roles during flight. Contrary to our hypothesis, all muscles possessed both fast twitch and slow twitch or slow tonic fibers. We believe this finding is due to the versatility of dynamic and postural functions the leg muscles must facilitate, including standing, walking, running, swimming, and hindlimb support during flight. Whether birds use an extended or flexed hindlimb flight posture may be related to the aerodynamic effect of leg position or may reflect evolutionary history. (c) 2008 Wiley-Liss, Inc.

  6. WORK ALLOCATION IN COMPLEX PRODUCTION PROCESSES: A METHODOLOGY FOR DECISION SUPPORT

    OpenAIRE

    de Mello, Adriana Marotti; School of Economics, Business and Accounting at the University of São Paulo; Marx, Roberto; Polytechnic School, University of São Paulo; Zilbovicius, Mauro; Polytechnic School – University of São Paulo

    2013-01-01

    This article presents the development of a Methodology of Decision Support for Work Allocation in complex production processes. It is known that this decision is frequently taken empirically and that the methodologies available to support it are few and restricted in terms of its conceptual basis. The study of Times and Motion is one of these methodologies, but its applicability is restricted in cases of more complex production processes. The method presented here was developed as a result of...

  7. Assessing Optimal Flight Parameters for Generating Accurate Multispectral Orthomosaicks by UAV to Support Site-Specific Crop Management

    Directory of Open Access Journals (Sweden)

    Francisco-Javier Mesas-Carrascosa

    2015-09-01

    Full Text Available This article describes the technical specifications and configuration of a multirotor unmanned aerial vehicle (UAV to acquire remote images using a six-band multispectral sensor. Several flight missions were programmed as follows: three flight altitudes (60, 80 and 100 m, two flight modes (stop and cruising modes and two ground control point (GCP settings were considered to analyze the influence of these parameters on the spatial resolution and spectral discrimination of multispectral orthomosaicked images obtained using Pix4Dmapper. Moreover, it is also necessary to consider the area to be covered or the flight duration according to any flight mission programmed. The effect of the combination of all these parameters on the spatial resolution and spectral discrimination of the orthomosaicks is presented. Spectral discrimination has been evaluated for a specific agronomical purpose: to use the UAV remote images for the detection of bare soil and vegetation (crop and weeds for in-season site-specific weed management. These results show that a balance between spatial resolution and spectral discrimination is needed to optimize the mission planning and image processing to achieve   every agronomic objective. In this way, users do not have to sacrifice flying at low altitudes to cover the whole area of interest completely.

  8. SCI 236 AGARDograph. Part Two; National Aeronautics and Space Administration Armstrong Flight Research Center Annex

    Science.gov (United States)

    Neal, Bradford A.; Stoliker, Patrick C.

    2018-01-01

    NASA AFRC is a United States government entity that conducts the integration and operation of new and unproven technologies into proven flight vehicles as well as the flight test of one-of-a-kind experimental aircraft. AFRC also maintains and operates several platform aircraft that allow the integration of a wide range of sensors to conduct airborne remote sensing, science observations and airborne infrared astronomy. To support these types of operations AFRC has the organization, facilities and tools to support the experimental flight test of unique vehicles and conduct airborne sensing/observing.

  9. Specification and Design of Electrical Flight System Architectures with SysML

    Science.gov (United States)

    McKelvin, Mark L., Jr.; Jimenez, Alejandro

    2012-01-01

    Modern space flight systems are required to perform more complex functions than previous generations to support space missions. This demand is driving the trend to deploy more electronics to realize system functionality. The traditional approach for the specification, design, and deployment of electrical system architectures in space flight systems includes the use of informal definitions and descriptions that are often embedded within loosely coupled but highly interdependent design documents. Traditional methods become inefficient to cope with increasing system complexity, evolving requirements, and the ability to meet project budget and time constraints. Thus, there is a need for more rigorous methods to capture the relevant information about the electrical system architecture as the design evolves. In this work, we propose a model-centric approach to support the specification and design of electrical flight system architectures using the System Modeling Language (SysML). In our approach, we develop a domain specific language for specifying electrical system architectures, and we propose a design flow for the specification and design of electrical interfaces. Our approach is applied to a practical flight system.

  10. Miracle Flights

    Science.gov (United States)

    ... a Flight Get Involved Events Shop Miles Contact Miracle Flights Blog Giving Tuesday 800-359-1711 Thousands of children have been saved, but we still have miles to go. Request a Flight Click Here to Donate - Your ...

  11. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    Science.gov (United States)

    Molthan, A.; Limaye, A. S.

    2011-12-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula's "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA's National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA's SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT's experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by

  12. R and T report: Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor)

    1993-01-01

    The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.

  13. Metabolic 'engines' of flight drive genome size reduction in birds.

    Science.gov (United States)

    Wright, Natalie A; Gregory, T Ryan; Witt, Christopher C

    2014-03-22

    The tendency for flying organisms to possess small genomes has been interpreted as evidence of natural selection acting on the physical size of the genome. Nonetheless, the flight-genome link and its mechanistic basis have yet to be well established by comparative studies within a volant clade. Is there a particular functional aspect of flight such as brisk metabolism, lift production or maneuverability that impinges on the physical genome? We measured genome sizes, wing dimensions and heart, flight muscle and body masses from a phylogenetically diverse set of bird species. In phylogenetically controlled analyses, we found that genome size was negatively correlated with relative flight muscle size and heart index (i.e. ratio of heart to body mass), but positively correlated with body mass and wing loading. The proportional masses of the flight muscles and heart were the most important parameters explaining variation in genome size in multivariate models. Hence, the metabolic intensity of powered flight appears to have driven genome size reduction in birds.

  14. Technology and Products Supporting E-learning by Knowledge Management - A Review

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2014-06-01

    Full Text Available Abstract—Knowledge management is supported by many strategies such as business intelligence, collaboration, document management and e-learning. With the development of modern information technology and the increases of demand for building and maintaining dynamic capabilities, E-learning has played more and more important role of all the technologies in the supporting knowledge management. A successful e-learning system is supported by many critical success factors and technology has become the key factor among these factors. Consequently, the review of basic technologies and corresponding products that support e-learning will be in favor of further study on e-learning. From perspective of knowledge management, this paper makes a review about the relationship between e-learning and knowledge management and advanced technologies and corresponding products that support the design and operation of e-learning system. At the end of this paper, we analyze the main trends of the development direction of e-learning technology.

  15. Supporting the production of quality livestock vaccines for ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The project will support technology transfer and establishment of product formulation and quality systems that will enable the Kenyan Institute to produce and register three new vaccines of international quality standards. This project will also pilot a model for bulk antigen processing for other vaccine types in Africa that can ...

  16. AN EXPERT SYSTEM FOR SUPPORTING THE PRODUCTION OF PLEASURE BOATS

    Directory of Open Access Journals (Sweden)

    Tomasz GONCIARZ

    2013-07-01

    Full Text Available Expert systems can be defined as computer programs, whose main task is to simulate a human expert, usually in a narrow field of expertise. Possible applications of modern information technology are very extensive, ranging from medicine, geology and technology to applications in the field of economic and financial decision support. The purpose of this paper is to present the practical application of an expert system that supports the process of managing the production of yachts and has a high suitability for use in this application. Using the expert system described in the paper reduces the time during the design and production preparation process.

  17. How to Boost Engineering Support Via Web 2.0 - Seeds for the Ares Project...and/or Yours?

    Science.gov (United States)

    Scott, David W.

    2010-01-01

    The Mission Operations Laboratory (MOL) at Marshall Space Flight Center (MSFC) is responsible for Engineering Support capability for NASA s Ares launch system development. In pursuit of this, MOL is building the Ares Engineering and Operations Network (AEON), a web-based portal intended to provide a seamless interface to support and simplify two critical activities: a) Access and analyze Ares manufacturing, test, and flight performance data, with access to Shuttle data for comparison. b) Provide archive storage for engineering instrumentation data to support engineering design, development, and test. A mix of NASA-written and COTS software provides engineering analysis tools. A by-product of using a data portal to access and display data is access to collaborative tools inherent in a Web 2.0 environment. This paper discusses how Web 2.0 techniques, particularly social media, might be applied to the traditionally conservative and formal engineering support arena. A related paper by the author [1] considers use

  18. Lunar Flight Study Series: Volume 4. Preliminary Investigation of the Astronautics of Earth - Moon Transits

    Science.gov (United States)

    Braud, Nolan J.

    1963-01-01

    Preliminary information on flight profiles, velocity budgets and launch windows for Apollo and Support Vehicle flights is presented in this report. A newly conceived method of establishing a flight mechanical classification of the earth-moon transits is discussed. The results are empirical and are designed to contribute to the mission mode selection.

  19. Reliability Block Diagram (RBD) Analysis of NASA Dryden Flight Research Center (DFRC) Flight Termination System and Power Supply

    Science.gov (United States)

    Morehouse, Dennis V.

    2006-01-01

    In order to perform public risk analyses for vehicles containing Flight Termination Systems (FTS), it is necessary for the analyst to know the reliability of each of the components of the FTS. These systems are typically divided into two segments; a transmitter system and associated equipment, typically in a ground station or on a support aircraft, and a receiver system and associated equipment on the target vehicle. This analysis attempts to analyze the reliability of the NASA DFRC flight termination system ground transmitter segment for use in the larger risk analysis and to compare the results against two established Department of Defense availability standards for such equipment.

  20. Supporting Product Line Evolution with Framed Aspects

    DEFF Research Database (Denmark)

    Loughran, Neil; Rashid, Awais; Zhang, Weishan

    2004-01-01

    , but there will eventually come a time when a certain feature or scenario appears which could not have been foreseen in the early stages of development. We argue that frames and aspects when used in isolation cannot overcome these weaknesses effectively. However, they can be addressed by using the respective strengths......This paper discusses how evolution in software product lines can be supported using framed aspects: a combination of aspect-oriented programming and frame technology. Product line architectures and assets are subject to maintenance and evolution throughout their lifetime due to the emergence of new...... of both technologies in combination. The amalgamation of framing and aspect-oriented techniques can help in the integration of new features and thus reduce the risk of architectural erosion....

  1. Environmental Friendly Coatings and Corrosion Prevention For Flight Hardware Project

    Science.gov (United States)

    Calle, Luz

    2014-01-01

    Identify, test and develop qualification criteria for environmentally friendly corrosion protective coatings and corrosion preventative compounds (CPC's) for flight hardware an ground support equipment.

  2. Evaluating Flight Crew Performance by a Bayesian Network Model

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2018-03-01

    Full Text Available Flight crew performance is of great significance in keeping flights safe and sound. When evaluating the crew performance, quantitative detailed behavior information may not be available. The present paper introduces the Bayesian Network to perform flight crew performance evaluation, which permits the utilization of multidisciplinary sources of objective and subjective information, despite sparse behavioral data. In this paper, the causal factors are selected based on the analysis of 484 aviation accidents caused by human factors. Then, a network termed Flight Crew Performance Model is constructed. The Delphi technique helps to gather subjective data as a supplement to objective data from accident reports. The conditional probabilities are elicited by the leaky noisy MAX model. Two ways of inference for the BN—probability prediction and probabilistic diagnosis are used and some interesting conclusions are drawn, which could provide data support to make interventions for human error management in aviation safety.

  3. Spot: A Programming Language for Verified Flight Software

    Science.gov (United States)

    Bocchino, Robert L., Jr.; Gamble, Edward; Gostelow, Kim P.; Some, Raphael R.

    2014-01-01

    The C programming language is widely used for programming space flight software and other safety-critical real time systems. C, however, is far from ideal for this purpose: as is well known, it is both low-level and unsafe. This paper describes Spot, a language derived from C for programming space flight systems. Spot aims to maintain compatibility with existing C code while improving the language and supporting verification with the SPIN model checker. The major features of Spot include actor-based concurrency, distributed state with message passing and transactional updates, and annotations for testing and verification. Spot also supports domain-specific annotations for managing spacecraft state, e.g., communicating telemetry information to the ground. We describe the motivation and design rationale for Spot, give an overview of the design, provide examples of Spot's capabilities, and discuss the current status of the implementation.

  4. Ares I-X: First Flight of a New Generation

    Science.gov (United States)

    Davis, Stephan R.; Askins, Bruce R.

    2010-01-01

    The Ares I-X suborbital development flight test demonstrated NASA s ability to design, develop, launch and control a new human-rated launch vehicle (Figure 14). This hands-on missions experience will provide the agency with necessary skills and insights regardless of the future direction of space exploration. The Ares I-X team, having executed a successful launch, will now focus on analyzing the flight data and extracting lessons learned that will be used to support the development of future vehicles.

  5. Operational Overview for UAS Integration in the NAS Project Flight Test Series 3

    Science.gov (United States)

    Valkov, Steffi B.; Sternberg, Daniel; Marston, Michael

    2018-01-01

    The National Aeronautics and Space Administration Unmanned Aircraft Systems Integration in the National Airspace System Project has conducted a series of flight tests intended to support the reduction of barriers that prevent unmanned aircraft from flying without the required waivers from the Federal Aviation Administration. The 2015 Flight Test Series 3, supported two separate test configurations. The first configuration investigated the timing of Detect and Avoid alerting thresholds using a radar equipped unmanned vehicle and multiple live intruders flown at varying encounter geometries.

  6. Space Launch System Ascent Flight Control Design

    Science.gov (United States)

    Orr, Jeb S.; Wall, John H.; VanZwieten, Tannen S.; Hall, Charles E.

    2014-01-01

    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. The SLS configurations represent a potentially significant increase in complexity and performance capability when compared with other manned launch vehicles. It was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight disturbance compensation through the use of nonlinear observers driven by acceleration measurements. Envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  7. STS-111 Flight Day 7 Highlights

    Science.gov (United States)

    2002-06-01

    On Flight Day 7 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), this video opens with answers to questions asked by the public via e-mail about the altitude of the space station, the length of its orbit, how astronauts differentiate between up and down in the microgravity environment, and whether they hear wind noise during the shuttle's reentry. In video footage shot from inside the Quest airlock, Perrin is shown exiting the station to perform an extravehicular activity (EVA) with Chang-Diaz. Chang-Diaz is shown, in helmet mounted camera footage, attaching cable protection booties to a fish-stringer device with multiple hooks, and Perrin is seen loosening bolts that hold the replacement unit accomodation in launch position atop the Mobile Base System (MBS). Perrin then mounts a camera atop the mast of the MBS. During this EVA, the astronauts installed the MBS on the Mobile Transporter (MT) to support the Canadarm 2 robotic arm. A camera in the Endeavour's payload bay provides footage of the Pacific Ocean, the Baja Peninsula, and Midwestern United States. Plumes from wildfires in Nevada, Idaho, Yellowstone National Park, Wyoming, and Montana are visible. The station continues over the Great Lakes and the Eastern Provinces of Canada.

  8. Testing Microgravity Flight Hardware Concepts on the NASA KC-135

    Science.gov (United States)

    Motil, Susan M.; Harrivel, Angela R.; Zimmerli, Gregory A.

    2001-01-01

    This paper provides an overview of utilizing the NASA KC-135 Reduced Gravity Aircraft for the Foam Optics and Mechanics (FOAM) microgravity flight project. The FOAM science requirements are summarized, and the KC-135 test-rig used to test hardware concepts designed to meet the requirements are described. Preliminary results regarding foam dispensing, foam/surface slip tests, and dynamic light scattering data are discussed in support of the flight hardware development for the FOAM experiment.

  9. Storage ion trap of an 'In-Flight Capture' type for precise mass measurement of radioactive nuclear reaction products and fission fragments

    International Nuclear Information System (INIS)

    Tarantin, N.I.

    2001-01-01

    Data on nuclear masses provide a basis for creating and testing various nuclear models. A tandem system of FLNR comprised of the U-400M cyclotron, the COMBAS magnetic separator and the mass-spectrometric ion trap of an 'in-flight capture' type is considered as a possible complex for producing of the short-lived nuclei in fragmentation reactions by heavy ions and for precise mass measurement of these nuclei. The plan of scientific and technical FLNR research includes a project DRIBs for producing beams of accelerated radioactive nuclear reaction products and photofission fragments. This project proposes also precise mass measurements of the fission fragment with the help of the ion trap. The in-flight entrance of the ions and their capture in the mass-spectrometric ion trap using the monochromatizing degrader, the static electric and magnetic fields and a new invention, a magnetic unidirectional transporting ventil, is considered

  10. Senior management support in the new product development process

    NARCIS (Netherlands)

    Gomes, J.F.; Gomes, Jorge; de Weerd-Nederhof, Petronella C.; Pearson, Alan; Fisscher, O.A.M.

    2001-01-01

    This paper studies the relationship between senior management support to new product development activities by means of a quantitative and qualitative analysis of questionnaire and interview data collected in the United Kingdom and the Netherlands. The quantitative analysis showed that there is a

  11. Automation of Commanding at NASA: Reducing Human Error in Space Flight

    Science.gov (United States)

    Dorn, Sarah J.

    2010-01-01

    Automation has been implemented in many different industries to improve efficiency and reduce human error. Reducing or eliminating the human interaction in tasks has been proven to increase productivity in manufacturing and lessen the risk of mistakes by humans in the airline industry. Human space flight requires the flight controllers to monitor multiple systems and react quickly when failures occur so NASA is interested in implementing techniques that can assist in these tasks. Using automation to control some of these responsibilities could reduce the number of errors the flight controllers encounter due to standard human error characteristics. This paper will investigate the possibility of reducing human error in the critical area of manned space flight at NASA.

  12. Vertical flight training: An overview of training and flight simulator technology with emphasis on rotary-wing requirements

    Science.gov (United States)

    Alderete, Thomas S.; Ascencio-Lee, Carmen E.; Bray, Richard; Carlton, John; Dohme, Jack; Eshow, Michelle M.; Francis, Stephen; Lee, Owen M.; Lintern, Gavan; Lombardo, David A.

    1994-01-01

    The principal purpose of this publication is to provide a broad overview of the technology that is relevant to the design of aviation training systems and of the techniques applicable to the development, use, and evaluation of those systems. The issues addressed in our 11 chapters are, for the most part, those that would be expected to surface in any informed discussion of the major characterizing elements of aviation training systems. Indeed, many of the same facets of vertical-flight training discussed were recognized and, to some extent, dealt with at the 1991 NASA/FAA Helicopter Simulator Workshop. These generic topics are essential to a sound understanding of training and training systems, and they quite properly form the basis of any attempt to systematize the development and evaluation of more effective, more efficient, more productive, and more economical approaches to aircrew training. Individual chapters address the following topics: an overview of the vertical flight industry: the source of training requirements; training and training schools: meeting current requirements; training systems design and development; transfer of training and cost-effectiveness; the military quest for flight training effectiveness; alternative training systems; training device manufacturing; simulator aero model implementation; simulation validation in the frequency domain; cockpit motion in helicopter simulation; and visual space perception in flight simulators.

  13. Flight Test Implementation of a Second Generation Intelligent Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2005-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team was to develop and flight-test control systems that use neural network technology, to optimize the performance of the aircraft under nominal conditions, and to stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. The Intelligent Flight Control System team is currently in the process of implementing a second generation control scheme, collectively known as Generation 2 or Gen 2, for flight testing on the NASA F-15 aircraft. This report describes the Gen 2 system as implemented by the team for flight test evaluation. Simulation results are shown which describe the experiment to be performed in flight and highlight the ways in which the Gen 2 system meets the defined objectives.

  14. Product Quality Modelling Based on Incremental Support Vector Machine

    International Nuclear Information System (INIS)

    Wang, J; Zhang, W; Qin, B; Shi, W

    2012-01-01

    Incremental Support vector machine (ISVM) is a new learning method developed in recent years based on the foundations of statistical learning theory. It is suitable for the problem of sequentially arriving field data and has been widely used for product quality prediction and production process optimization. However, the traditional ISVM learning does not consider the quality of the incremental data which may contain noise and redundant data; it will affect the learning speed and accuracy to a great extent. In order to improve SVM training speed and accuracy, a modified incremental support vector machine (MISVM) is proposed in this paper. Firstly, the margin vectors are extracted according to the Karush-Kuhn-Tucker (KKT) condition; then the distance from the margin vectors to the final decision hyperplane is calculated to evaluate the importance of margin vectors, where the margin vectors are removed while their distance exceed the specified value; finally, the original SVs and remaining margin vectors are used to update the SVM. The proposed MISVM can not only eliminate the unimportant samples such as noise samples, but also can preserve the important samples. The MISVM has been experimented on two public data and one field data of zinc coating weight in strip hot-dip galvanizing, and the results shows that the proposed method can improve the prediction accuracy and the training speed effectively. Furthermore, it can provide the necessary decision supports and analysis tools for auto control of product quality, and also can extend to other process industries, such as chemical process and manufacturing process.

  15. NASA-LaRc Flight-Critical Digital Systems Technology Workshop

    Science.gov (United States)

    Meissner, C. W., Jr. (Editor); Dunham, J. R. (Editor); Crim, G. (Editor)

    1989-01-01

    The outcome is documented of a Flight-Critical Digital Systems Technology Workshop held at NASA-Langley December 13 to 15 1988. The purpose of the workshop was to elicit the aerospace industry's view of the issues which must be addressed for the practical realization of flight-critical digital systems. The workshop was divided into three parts: an overview session; three half-day meetings of seven working groups addressing aeronautical and space requirements, system design for validation, failure modes, system modeling, reliable software, and flight test; and a half-day summary of the research issues presented by the working group chairmen. Issues that generated the most consensus across the workshop were: (1) the lack of effective design and validation methods with support tools to enable engineering of highly-integrated, flight-critical digital systems, and (2) the lack of high quality laboratory and field data on system failures especially due to electromagnetic environment (EME).

  16. Software Support for Optimizing Layout Solution in Lean Production

    Directory of Open Access Journals (Sweden)

    Naqib Daneshjo

    2018-02-01

    Full Text Available As progressive managerial styles, the techniques based on "lean thinking" are being increasingly promoted. They are focused on applying lean production concepts to all phases of product lifecycle and also to business environment. This innovative approach strives to eliminate any wasting of resources and shortens the time to respond to customer requirements, including redesigning the structure of the organization’ supply chain. A lean organization is created mainly by employees, their creative potential, knowledge, self-realization and motivation for continuous improvement of the processes and the production systems. A set of tools, techniques and methods of lean production is basically always very similar. Only a form of their presentation or classification into individual phases of the product lifecycle may differ. The authors present the results of their research from the designing phases of production systems to optimize their dispositional solution with software support and 3D simulation and visualization. Modelling is based on use of Tecnomatix's and Photomodeler's progressive software tools and a dynamic model for capacitive dimensioning of more intelligent production system

  17. [On-board medical support system (MSS) of flights of promising aerospace sets (design)].

    Science.gov (United States)

    Ushakov, I B; Bednenko, V S

    2010-01-01

    It was suggested as the main compositive fractions MSS to consider the base system of automated evaluation of blood redistribution (BR) in body means of crew members protection and prophylaxis (CMPP) of unfavourable effects of flight factors to organism and also the automated circuit of CMPP' control. The advanced MSS includes 4 original measuring channels for registration of the base physiologic indices (electrocardiogram, venous-arterial pulsegram of neck vessels, reogram of head, earlap vessels pulsegram) the dynamic of which allows to determine with the help of computer the BR-integral parameter. The CMPP automated control circuit unites the separate protecting means in common system and executes the individual selection of regimes and CM PP-composition in accord with, first of all, body reactions manifestation and, secondly, individual physiologic status of spaceman. As CMPP was selected the negative pressure production around lower body part. Approlation of constructed active laboratory engineering mock-up MSS has performed investigations with participation of 29 subjects (Volunteers) under the modeling of hemodynamic shifts, developing in human body in short-term antiorthostatic hypokinesia (-10 degrees), as well as, in combined effect of antiorthostatic hypokinesia (-10 degrees), Coriolis acceleration and optokinetic stimulation. Results of investigations have showed, that the use of advanced MSS gives the indices of operator professional activity on the average of 17-32% under the decrease of hemodynamic stressful.

  18. Space Station flight telerobotic servicer functional requirements development

    Science.gov (United States)

    Oberright, John; Mccain, Harry; Whitman, Ruth I.

    1987-01-01

    The Space Station flight telerobotic servicer (FTS), a flight robotic system for use on the first Space Station launch, is described. The objectives of the FTS program include: (1) the provision of an alternative crew EVA by supporting the crew in assembly, maintenance, and servicing activities, and (2) the improvement of crew safety by performing hazardous tasks such as spacecraft refueling or thermal and power system maintenance. The NASA/NBS Standard Reference Model provides the generic, hierarchical, structured functional control definition for the system. It is capable of accommodating additional degrees of machine intelligence in the future.

  19. Data processing and in-flight calibration systems for OMI-EOS-Aura

    Science.gov (United States)

    van den Oord, G. H. J.; Dobber, M.; van de Vegte, J.; van der Neut, I.; Som de Cerff, W.; Rozemeijer, N. C.; Schenkelaars, V.; ter Linden, M.

    2006-08-01

    The OMI instrument that flies on the EOS Aura mission was launched in July 2004. OMI is a UV-VIS imaging spectrometer that measures in the 270 - 500 nm wavelength range. OMI provides daily global coverage with high spatial resolution. Every orbit of 100 minutes OMI generates about 0.5 GB of Level 0 data and 1.2 GB of Level 1 data. About half of the Level 1 data consists of in-flight calibration measurements. These data rates make it necessary to automate the process of in-flight calibration. For that purpose two facilities have been developed at KNMI in the Netherlands: the OMI Dutch Processing System (ODPS) and the Trend Monitoring and In-flight Calibration Facility (TMCF). A description of these systems is provided with emphasis on the use for radiometric, spectral and detector calibration and characterization. With the advance of detector technology and the need for higher spatial resolution, data rates will become even higher for future missions. To make effective use of automated systems like the TMCF, it is of paramount importance to integrate the instrument operations concept, the information contained in the Level 1 (meta-)data products and the inflight calibration software and system databases. In this way a robust but also flexible end-to-end system can be developed that serves the needs of the calibration staff, the scientific data users and the processing staff. The way this has been implemented for OMI may serve as an example of a cost-effective and user friendly solution for future missions. The basic system requirements for in-flight calibration are discussed and examples are given how these requirements have been implemented for OMI. Special attention is paid to the aspect of supporting the Level 0 - 1 processing with timely and accurate calibration constants.

  20. Return and profitability of space programs. Information - the main product of flights in space

    Science.gov (United States)

    Nikolova, Irena

    The basic branch providing global information, as a product on the market, is astronautics and in particular aero and space flights. Nowadays economic categories like profitability, return, and self-financing are added to space information. The activity in the space information service market niche is an opportunity for realization of high economic efficiency and profitability. The present report aims at examining the possibilities for return and profitability of space programs. Specialists in economics from different countries strive for defining the economic effect of implementing space technologies in the technical branches on earth. Still the priorities here belong to government and insufficient market organization and orientation is apparent. Attracting private investors and searching for new mechanisms of financing are the factors for increasing economic efficiency and return of capital invested in the mentioned sphere. Return of utilized means is an economically justified goal, a motive for a bigger enlargement of efforts and directions for implementing the achievements of astronautics in the branches of economy on earth.

  1. Neutron Time-Of-Flight (n_TOF) experiment

    CERN Multimedia

    Brugger, M; Kaeppeler, F K; Jericha, E; Cortes rossell, G P; Riego perez, A; Baccomi, R; Laurent, B G; Griesmayer, E; Leeb, H; Dressler, M; Cano ott, D; Variale, V; Ventura, A; Carrillo de albornoz trillo, A; Andrzejewski, J J; Pavlik, A F; Kadi, Y; Zanni vlastou, R; Krticka, M; Kokkoris, M; Praena rodriguez, A J; Cortes giraldo, M A; Perkowski, J; Losito, R; Audouin, L; Weiss, C; Tagliente, G; Wallner, A; Woods, P J; Mengoni, A; Guerrero sanchez, C G; Tain enriquez, J L; Vlachoudis, V; Calviani, M; Junghans, A R; Reifarth, R; Mendoza cembranos, E; Quesada molina, J M; Babiano suarez, V; Schumann, M D; Tsinganis, A; Rauscher, T; Calvino tavares, F; Mingrone, F; Gonzalez romero, E M; Colonna, N; Negret, A L; Chiaveri, E; Milazzo, P M; De almeida carrapico, C A; Castelluccio, D M

    The neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.

  2. Aqua AIRS Level 3 Support Daily Product (AIRS+AMSU+HSB) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The L3 support products are similar to the L3 standard products but contain fields which are not fully validated, or are inputs or intermediary values. Because no...

  3. Application of identification techniques to remote manipulator system flight data

    Science.gov (United States)

    Shepard, G. D.; Lepanto, J. A.; Metzinger, R. W.; Fogel, E.

    1983-01-01

    This paper addresses the application of identification techniques to flight data from the Space Shuttle Remote Manipulator System (RMS). A description of the remote manipulator, including structural and control system characteristics, sensors, and actuators is given. A brief overview of system identification procedures is presented, and the practical aspects of implementing system identification algorithms are discussed. In particular, the problems posed by desampling rate, numerical error, and system nonlinearities are considered. Simulation predictions of damping, frequency, and system order are compared with values identified from flight data to support an evaluation of RMS structural and control system models. Finally, conclusions are drawn regarding the application of identification techniques to flight data obtained from a flexible space structure.

  4. Skin surface hydration decreases rapidly during long distance flights.

    Science.gov (United States)

    Guéhenneux, Sabine; Gardinier, Sophie; Morizot, Frederique; Le Fur, Isabelle; Tschachler, Erwin

    2012-05-01

    Dehydration of the stratum corneum leads to sensations and symptoms of 'dry skin' such as skin tightness and itchiness. As these complaints are frequently experienced by airline travellers, the aim of this study was to investigate the changes in skin surface hydration during long distance flights. The study was performed on four healthy Caucasian, and on four Japanese women aged 29-39 years, travelling on long distance flights. They had stopped using skin care products at least 12 h before, and did not apply them during the flights. The air temperature and relative humidity inside the cabin, as well as skin capacitance of the face and forearm of participants, were registered at several time points before and during the flights. Relative humidity of the aircraft cabin dropped to levels below 10% within 2 h after take-off and stayed at this value throughout the flight. Skin capacitance decreased rapidly on both the face and forearms with most pronounced changes on the cheeks where it decreased by up to 37%. Our results demonstrate that during long distance flights, the aircraft cabin environment leads to a rapid decrease in stratum corneum hydration, an alteration, which probably accounts for the discomfort experienced by long distance aircraft travellers. © 2011 John Wiley & Sons A/S.

  5. Design, construction, test and field support of a containerless payload package for rocket flight. [electromagnetic heating and confinement

    Science.gov (United States)

    1977-01-01

    The performance of a device for electromagnetically heating and positioning containerless melts during space processing was evaluated during a 360 second 0-g suborbital sounding rocket flight. Components of the electromagnetic containerless processing package (ECPP), its operation, and interface with the rocket are described along with flight and qualification tests results.

  6. Ares I Flight Control System Overview

    Science.gov (United States)

    Hall, Charles; Lee, Chong; Jackson, Mark; Whorton, Mark; West, mark; Brandon, Jay; Hall, Rob A.; Jang, Jimmy; Bedrossian, Naz; Compton, Jimmy; hide

    2008-01-01

    This paper describes the control challenges posed by the Ares I vehicle, the flight control system design and performance analyses used to test and verify the design. The major challenges in developing the control system are structural dynamics, dynamic effects from the powerful first stage booster, aerodynamics, first stage separation and large uncertainties in the dynamic models for all these. Classical control techniques were employed using innovative methods for structural mode filter design and an anti-drift feature to compensate for translational and rotational disturbances. This design was coded into an integrated vehicle flight simulation and tested by Monte Carlo methods. The product of this effort is a linear, robust controller design that is easy to implement, verify and test.

  7. A Survey of Open-Source UAV Flight Controllers and Flight Simulators

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Skriver, Martin; Terkildsen, Kristian Husum

    2018-01-01

    , which are all tightly linked to the UAV flight controller hardware and software. The lack of standardization of flight controller architectures and the use of proprietary closed-source flight controllers on many UAV platforms, however, complicates this work: solutions developed for one flight controller...... may be difficult to port to another without substantial extra development and testing. Using open-source flight controllers mitigates some of these challenges and enables other researchers to validate and build upon existing research. This paper presents a survey of the publicly available open...

  8. Wet catalyst-support films for production of vertically aligned carbon nanotubes.

    Science.gov (United States)

    Alvarez, Noe T; Hamilton, Christopher E; Pint, Cary L; Orbaek, Alvin; Yao, Jun; Frosinini, Aldo L; Barron, Andrew R; Tour, James M; Hauge, Robert H

    2010-07-01

    A procedure for vertically aligned carbon nanotube (VA-CNT) production has been developed through liquid-phase deposition of alumoxanes (aluminum oxide hydroxides, boehmite) as a catalyst support. Through a simple spin-coating of alumoxane nanoparticles, uniform centimer-square thin film surfaces were coated and used as supports for subsequent deposition of metal catalyst. Uniform VA-CNTs are observed to grow from this film following deposition of both conventional evaporated Fe catalyst, as well as premade Fe nanoparticles drop-dried from the liquid phase. The quality and uniformity of the VA-CNTs are comparable to growth from conventional evaporated layers of Al(2)O(3). The combined use of alumoxane and Fe nanoparticles to coat surfaces represents an inexpensive and scalable approach to large-scale VA-CNT production that makes chemical vapor deposition significantly more competitive when compared to other CNT production techniques.

  9. The role of situation assessment and flight experience in pilots' decisions to continue visual flight rules flight into adverse weather.

    Science.gov (United States)

    Wiegmann, Douglas A; Goh, Juliana; O'Hare, David

    2002-01-01

    Visual flight rules (VFR) flight into instrument meteorological conditions (IMC) is a major safety hazard in general aviation. In this study we examined pilots' decisions to continue or divert from a VFR flight into IMC during a dynamic simulation of a cross-country flight. Pilots encountered IMC either early or later into the flight, and the amount of time and distance pilots flew into the adverse weather prior to diverting was recorded. Results revealed that pilots who encountered the deteriorating weather earlier in the flight flew longer into the weather prior to diverting and had more optimistic estimates of weather conditions than did pilots who encountered the deteriorating weather later in the flight. Both the time and distance traveled into the weather prior to diverting were negatively correlated with pilots' previous flight experience. These findings suggest that VFR flight into IMC may be attributable, at least in part, to poor situation assessment and experience rather than to motivational judgment that induces risk-taking behavior as more time and effort are invested in a flight. Actual or potential applications of this research include the design of interventions that focus on improving weather evaluation skills in addition to addressing risk-taking attitudes.

  10. Plant diversity to support humans in a CELSS ground based demonstrator

    Science.gov (United States)

    Howe, J. M.; Hoff, J. E.

    1981-01-01

    A controlled ecological life support system (CELSS) for human habitation in preparation for future long duration space flights is considered. The success of such a system depends upon the feasibility of revitalization of food resources and the human nutritional needs which are to be met by these food resources. Edible higher plants are prime candidates for the photoautotrophic components of this system if nutritionally adequate diets can be derived from these plant sources to support humans. Human nutritional requirements information based on current knowledge are developed for inhabitants envisioned in the CELSS ground based demonstrator. Groups of plant products that can provide the nutrients are identified.

  11. Peer production & peer support at the Free Technology Academy

    NARCIS (Netherlands)

    Potters, Hanneke; Berlanga, Adriana; Bijlsma, Lex

    2012-01-01

    Potters, H., Berlanga, A. J., & Lex, B. (2011). Peer Production & Peer Support at the Free Technology Academy. In G. van de Veer, P. B. Sloep, & M. van Eekelen (Eds.), Proceedings Computer Science Education Research Conference (CSERC '11) (pp. 49-58). April, 7-8, 2011, Heerlen, The Netherlands: ACM.

  12. A Simple Flight Mill for the Study of Tethered Flight in Insects.

    Science.gov (United States)

    Attisano, Alfredo; Murphy, James T; Vickers, Andrew; Moore, Patricia J

    2015-12-10

    Flight in insects can be long-range migratory flights, intermediate-range dispersal flights, or short-range host-seeking flights. Previous studies have shown that flight mills are valuable tools for the experimental study of insect flight behavior, allowing researchers to examine how factors such as age, host plants, or population source can influence an insects' propensity to disperse. Flight mills allow researchers to measure components of flight such as speed and distance flown. Lack of detailed information about how to build such a device can make their construction appear to be prohibitively complex. We present a simple and relatively inexpensive flight mill for the study of tethered flight in insects. Experimental insects can be tethered with non-toxic adhesives and revolve around an axis by means of a very low friction magnetic bearing. The mill is designed for the study of flight in controlled conditions as it can be used inside an incubator or environmental chamber. The strongest points are the very simple electronic circuitry, the design that allows sixteen insects to fly simultaneously allowing the collection and analysis of a large number of samples in a short time and the potential to use the device in a very limited workspace. This design is extremely flexible, and we have adjusted the mill to accommodate different species of insects of various sizes.

  13. Integration of a satellite ground support system based on analysis of the satellite ground support domain

    Science.gov (United States)

    Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.

    1994-11-01

    This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.

  14. Isolation and characterization of avian influenza viruses from raw poultry products illegally imported to Japan by international flight passengers.

    Science.gov (United States)

    Shibata, A; Hiono, T; Fukuhara, H; Sumiyoshi, R; Ohkawara, A; Matsuno, K; Okamatsu, M; Osaka, H; Sakoda, Y

    2018-04-01

    The transportation of poultry and related products for international trade contributes to transboundary pathogen spread and disease outbreaks worldwide. To prevent pathogen incursion through poultry products, many countries have regulations about animal health and poultry product quarantine. However, in Japan, animal products have been illegally introduced into the country in baggage and confiscated at the airport. Lately, the number of illegally imported poultry and the incursion risk of transboundary pathogens through poultry products have been increasing. In this study, we isolated avian influenza viruses (AIVs) from raw poultry products illegally imported to Japan by international passengers. Highly (H5N1 and H5N6) and low (H9N2 and H1N2) pathogenic AIVs were isolated from raw chicken and duck products carried by flight passengers. H5 and H9 isolates were phylogenetically closely related to viruses isolated from poultry in China, and haemagglutinin genes of H5N1 and H5N6 isolates belonged to clades 2.3.2.1c and 2.3.4.4, respectively. Experimental infections of H5 and H9 isolates in chickens and ducks demonstrated pathogenicity and tissue tropism to skeletal muscles. To prevent virus incursion by poultry products, it is important to encourage the phased cleaning based on the disease control and eradication and promote the reduction in contamination risk in animal products. © 2017 Blackwell Verlag GmbH.

  15. The Max Launch Abort System - Concept, Flight Test, and Evolution

    Science.gov (United States)

    Gilbert, Michael G.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) is an independent engineering analysis and test organization providing support across the range of NASA programs. In 2007 NASA was developing the launch escape system for the Orion spacecraft that was evolved from the traditional tower-configuration escape systems used for the historic Mercury and Apollo spacecraft. The NESC was tasked, as a programmatic risk-reduction effort to develop and flight test an alternative to the Orion baseline escape system concept. This project became known as the Max Launch Abort System (MLAS), named in honor of Maxime Faget, the developer of the original Mercury escape system. Over the course of approximately two years the NESC performed conceptual and tradeoff analyses, designed and built full-scale flight test hardware, and conducted a flight test demonstration in July 2009. Since the flight test, the NESC has continued to further develop and refine the MLAS concept.

  16. Daedalus - Last Dryden flight

    Science.gov (United States)

    1988-01-01

    The Daedalus 88, with Glenn Tremml piloting, is seen here on its last flight for the NASA Dryden Flight Research Center, Edwards, California. The Light Eagle and Daedalus human powered aircraft were testbeds for flight research conducted at Dryden between January 1987 and March 1988. These unique aircraft were designed and constructed by a group of students, professors, and alumni of the Massachusetts Institute of Technology within the context of the Daedalus project. The construction of the Light Eagle and Daedalus aircraft was funded primarily by the Anheuser Busch and United Technologies Corporations, respectively, with additional support from the Smithsonian Air and Space Museum, MIT, and a number of other sponsors. To celebrate the Greek myth of Daedalus, the man who constructed wings of wax and feathers to escape King Minos, the Daedalus project began with the goal of designing, building and testing a human-powered aircraft that could fly the mythical distance, 115 km. To achieve this goal, three aircraft were constructed. The Light Eagle was the prototype aircraft, weighing 92 pounds. On January 22, 1987, it set a closed course distance record of 59 km, which still stands. Also in January of 1987, the Light Eagle was powered by Lois McCallin to set the straight distance, the distance around a closed circuit, and the duration world records for the female division in human powered vehicles. Following this success, two more aircraft were built, the Daedalus 87 and Daedalus 88. Each aircraft weighed approximately 69 pounds. The Daedalus 88 aircraft was the ship that flew the 199 km from the Iraklion Air Force Base on Crete in the Mediterranean Sea, to the island of Santorini in 3 hours, 54 minutes. In the process, the aircraft set new records in distance and endurance for a human powered aircraft. The specific areas of flight research conducted at Dryden included characterizing the rigid body and flexible dynamics of the Light Eagle, investigating sensors for an

  17. The endocrine system in space flight

    Science.gov (United States)

    Leach, C. S.; Johnson, P. C.; Cintron, N. M.

    Hormones are important effectors of the body's response to microgravity in the areas of fluid and electrolyte metabolism, erythropoiesis, and calcium metabolism. For many years antidiuretic hormone, cortisol and aldosterone have been considered the hormones most important for regulation of body fluid volume and blood levels of electrolytes, but they cannot account totally for losses of fluid and electrolytes during space flight. We have now measured atrial natriuretic factor (ANF), a hormone recently shown to regulate sodium and water excretion, in blood specimens obtained during flight. After 30 or 42 h of weightlessness, mean ANF was elevated. After 175 or 180 h, ANF had decreased by 59%, and it changed little between that time and soon after landing. There is probably an increase in ANF early inflight associated with the fluid shift, followed by a compensatory decrease in blood volume. Increased renal blood flow may cause the later ANF decrease. Erythropoietin (Ep), a hormone involved in the control of red blood cell production, was measured in blood samples taken during the first Spacelab mission and was significantly decreased on the second day of flight, suggesting also an increase in renal blood flow. Spacelab-2 investigators report that the active vitamin D metabolite 1α, 25-dihydroxyvitamin D 3 increased early in the flight, indicating that a stimulus for increased bone resorption occurs by 30 h after launch.

  18. A Configuration System for Supportive Purposes in the Middle of a Product Lifecycle

    DEFF Research Database (Denmark)

    Christensen, Tim Teglgaard; Hvam, Lars

    2006-01-01

    for supportive purposes in the middle of a product lifecycle. By doing so a product in operation (including maintenance) could be administrated more effectively. At the same time it is a good opportunity to hand over important runtime information and thereby create a basis for general improvements......This paper presents a new way of using configuration systems. Traditionally, these systems have been use for decision support for sales. The aim is now to support "Middle-Of-Lifecycle" (MOL) processes, which means that the decision support system is targeted for the customers and the manufacturer...... (field services, technical support and after sales). This is especially interesting, as manufacturing companies are increasingly focusing their operations on service operations. The background for this idea is that companies often experience a lack of information between the initial sale...

  19. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  20. Flight muscle enzymes and metabolic flux rates during hovering flight of the nectar bat, Glossophaga soricina: further evidence of convergence with hummingbirds.

    Science.gov (United States)

    Suarez, R K; Welch, K C; Hanna, S K; Herrera M, L G

    2009-06-01

    Given their high metabolic rates, nectarivorous diet, and ability to directly fuel their energetically-expensive flight using recently-ingested sugar, we tested the hypothesis that Pallas long tongued nectar bats (Glossophaga soricina) possess flight muscles similar to those of hummingbirds with respect to enzymatic flux capacities in bioenergetic pathways. In addition, we compared these biochemical capacities with flux rates achieved in vivo during hovering flight. Rates of oxygen consumption (V(O(2))) were measured during hover-feeding and used to estimate rates of ATP turnover, glucose and long-chain fatty acid oxidation per unit mass of flight muscle. Enzyme V(max) values at key steps in glucose and fatty acid oxidation obtained in vitro from pectoralis muscle samples exceed those found in the locomotory muscles of other species of small mammals and resemble data obtained from hummingbird flight muscles. The ability of nectar bats and hummingbirds to hover in fed and fasted states, fueled almost exclusively by carbohydrate or fat, respectively, allowed the estimation of fractional velocities (v/V(max)) at both the hexokinase and carnitine palmitoyltransferase-2 steps in glucose and fatty acid oxidation, respectively. The results further support the hypothesis of convergent evolution in biochemical and physiological traits in nectar bats and hummingbirds.

  1. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Science.gov (United States)

    2010-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  2. Spatial support of knowledge production in higher education: Research paper

    OpenAIRE

    van Sprang, H; Groen, BH; van der Voordt, Theo

    2013-01-01

    This paper explores the impact of the physical and social dimensions of the work environment on satisfaction and perceived productivity of knowledge workers in Dutch universities of applied sciences. The approach took the form of a literature review, multiple case study of six research centres using interviews and logbook analysis, and web-based survey (N = 188). Optimally facilitating knowledge production requires both space for concentration (to support internalisation of knowledge) and spa...

  3. XML Flight/Ground Data Dictionary Management

    Science.gov (United States)

    Wright, Jesse; Wiklow, Colette

    2007-01-01

    A computer program generates Extensible Markup Language (XML) files that effect coupling between the command- and telemetry-handling software running aboard a spacecraft and the corresponding software running in ground support systems. The XML files are produced by use of information from the flight software and from flight-system engineering. The XML files are converted to legacy ground-system data formats for command and telemetry, transformed into Web-based and printed documentation, and used in developing new ground-system data-handling software. Previously, the information about telemetry and command was scattered in various paper documents that were not synchronized. The process of searching and reading the documents was time-consuming and introduced errors. In contrast, the XML files contain all of the information in one place. XML structures can evolve in such a manner as to enable the addition, to the XML files, of the metadata necessary to track the changes and the associated documentation. The use of this software has reduced the extent of manual operations in developing a ground data system, thereby saving considerable time and removing errors that previously arose in the translation and transcription of software information from the flight to the ground system.

  4. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    Science.gov (United States)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  5. Beyond product innovation; improving innovation policy support for SMEs in traditional industries

    NARCIS (Netherlands)

    Wintjes, R.J.M.; Douglas, D.; Fairburn, J.; Hollanders, H.J.G.M.; Pugh, G.

    2014-01-01

    Innovation support measures in the EU are mostly designed to support product innovation in R&D intensive sectors. To increase the still considerable contribution to regional employment and competitiveness from SMEs in traditional manufacturing industries a broader innovation (policy) mix is more

  6. Some Unknown Pages of the Living Organisms' First Orbital Flight

    Science.gov (United States)

    Malashenkov, D. C.

    2002-01-01

    the "Object D", the Soviet Government set a new term of start in the end of 1956 - April, 1958. However, owing to the widely advertised program of launch of the first Earth's artificial satellite "Vanguard" in the USA, S. Korolev pressed in February 1957 for the Government regulation about anticipated launches of two light unrecoverable satellites in April-May, 1957 before the International geophysical year. But, according to this regulation, the launch of the satellite was permitted only after one or two successful test flights of a rocket -7. The first successful test of a rocket -7 was held only in August, 1957. The successful launch of the Earth's first artificial satellite in October 4, 1957 has made stunning influence on all the world. To continue this success, N. Khrushzev in October 10 1957 stated to launch the second satellite with an animal onboard till November 7 (40 years of October Revolution). The level of complexity of forthcoming tasks was much higher. Tightness of a cabin and the systems of life-support of the satellite should provide considerably large duration of flight under previous dimensions and power consumption. The research equipment should also ensure long uninterrupted registration of the scientific data and their transfer on ground stations. At last, the realization of additional training and special preparation of dogs was required. O. Gazenko, A. Genin, A. Seryapin, A. Gurdjian, . Petrova and other researchers carried out these works in laboratory of V. Yazdovsky. Less than one month remained for realization of this very difficult experiment with dog onboard. For preparation of experiments with dogs the experience of high-altitude rocket flights was taken. The cycles of step-by-step training of dogs for forthcoming flight have allowed to select the steadiest dogs and to receive the necessary initial data for design of the life-support systems. As a result of these works, a hermetic cabin with life-support systems and research equipment

  7. Approach for Structurally Clearing an Adaptive Compliant Trailing Edge Flap for Flight

    Science.gov (United States)

    Miller, Eric J.; Lokos, William A.; Cruz, Josue; Crampton, Glen; Stephens, Craig A.; Kota, Sridhar; Ervin, Gregory; Flick, Pete

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) flap was flown on the National Aeronautics and Space Administration (NASA) Gulfstream GIII testbed at the NASA Armstrong Flight Research Center. This smoothly curving flap replaced the existing Fowler flaps creating a seamless control surface. This compliant structure, developed by FlexSys Inc. in partnership with the Air Force Research Laboratory, supported NASA objectives for airframe structural noise reduction, aerodynamic efficiency, and wing weight reduction through gust load alleviation. A thorough structures airworthiness approach was developed to move this project safely to flight. A combination of industry and NASA standard practice require various structural analyses, ground testing, and health monitoring techniques for showing an airworthy structure. This paper provides an overview of compliant structures design, the structural ground testing leading up to flight, and the flight envelope expansion and monitoring strategy. Flight data will be presented, and lessons learned along the way will be highlighted.

  8. A real-time neutron-gamma discriminator based on the support vector machine method for the time-of-flight neutron spectrometer

    Science.gov (United States)

    Wei, ZHANG; Tongyu, WU; Bowen, ZHENG; Shiping, LI; Yipo, ZHANG; Zejie, YIN

    2018-04-01

    A new neutron-gamma discriminator based on the support vector machine (SVM) method is proposed to improve the performance of the time-of-flight neutron spectrometer. The neutron detector is an EJ-299-33 plastic scintillator with pulse-shape discrimination (PSD) property. The SVM algorithm is implemented in field programmable gate array (FPGA) to carry out the real-time sifting of neutrons in neutron-gamma mixed radiation fields. This study compares the ability of the pulse gradient analysis method and the SVM method. The results show that this SVM discriminator can provide a better discrimination accuracy of 99.1%. The accuracy and performance of the SVM discriminator based on FPGA have been evaluated in the experiments. It can get a figure of merit of 1.30.

  9. Speech Recognition Interfaces Improve Flight Safety

    Science.gov (United States)

    2013-01-01

    "Alpha, Golf, November, Echo, Zulu." "Sierra, Alpha, Golf, Echo, Sierra." "Lima, Hotel, Yankee." It looks like some strange word game, but the combinations of words above actually communicate the first three points of a flight plan from Albany, New York to Florence, South Carolina. Spoken by air traffic controllers and pilots, the aviation industry s standard International Civil Aviation Organization phonetic alphabet uses words to represent letters. The first letter of each word in the series is combined to spell waypoints, or reference points, used in flight navigation. The first waypoint above is AGNEZ (alpha for A, golf for G, etc.). The second is SAGES, and the third is LHY. For pilots of general aviation aircraft, the traditional method of entering the letters of each waypoint into a GPS device is a time-consuming process. For each of the 16 waypoints required for the complete flight plan from Albany to Florence, the pilot uses a knob to scroll through each letter of the alphabet. It takes approximately 5 minutes of the pilot s focused attention to complete this particular plan. Entering such a long flight plan into a GPS can pose a safety hazard because it can take the pilot s attention from other critical tasks like scanning gauges or avoiding other aircraft. For more than five decades, NASA has supported research and development in aviation safety, including through its Vehicle Systems Safety Technology (VSST) program, which works to advance safer and more capable flight decks (cockpits) in aircraft. Randy Bailey, a lead aerospace engineer in the VSST program at Langley Research Center, says the technology in cockpits is directly related to flight safety. For example, "GPS navigation systems are wonderful as far as improving a pilot s ability to navigate, but if you can find ways to reduce the draw of the pilot s attention into the cockpit while using the GPS, it could potentially improve safety," he says.

  10. Integrated Test and Evaluation (ITE) Flight Test Series 4

    Science.gov (United States)

    Marston, Michael

    2016-01-01

    The integrated Flight Test 4 (FT4) will gather data for the UAS researchers Sense and Avoid systems (referred to as Detect and Avoid in the RTCA SC 228 ToR) algorithms and pilot displays for candidate UAS systems in a relevant environment. The technical goals of FT4 are to: 1) perform end-to-end traffic encounter test of pilot guidance generated by DAA algorithms; 2) collect data to inform the initial Minimum Operational Performance Standards (MOPS) for Detect and Avoid systems. FT4 objectives and test infrastructure builds from previous UAS project simulations and flight tests. NASA Ames (ARC), NASA Armstrong (AFRC), and NASA Langley (LaRC) Research Centers will share responsibility for conducting the tests, each providing a test lab and critical functionality. UAS-NAS project support and participation on the 2014 flight test of ACAS Xu and DAA Self Separation (SS) significantly contributed to building up infrastructure and procedures for FT3 as well. The DAA Scripted flight test (FT4) will be conducted out of NASA Armstrong over an eight-week period beginning in April 2016.

  11. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    Science.gov (United States)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  12. Development of a Boundary Layer Property Interpolation Tool in Support of Orbiter Return To Flight

    Science.gov (United States)

    Greene, Francis A.; Hamilton, H. Harris

    2006-01-01

    A new tool was developed to predict the boundary layer quantities required by several physics-based predictive/analytic methods that assess damaged Orbiter tile. This new tool, the Boundary Layer Property Prediction (BLPROP) tool, supplies boundary layer values used in correlations that determine boundary layer transition onset and surface heating-rate augmentation/attenuation factors inside tile gouges (i.e. cavities). BLPROP interpolates through a database of computed solutions and provides boundary layer and wall data (delta, theta, Re(sub theta)/M(sub e), Re(sub theta)/M(sub e), Re(sub theta), P(sub w), and q(sub w)) based on user input surface location and free stream conditions. Surface locations are limited to the Orbiter s windward surface. Constructed using predictions from an inviscid w/boundary-layer method and benchmark viscous CFD, the computed database covers the hypersonic continuum flight regime based on two reference flight trajectories. First-order one-dimensional Lagrange interpolation accounts for Mach number and angle-of-attack variations, whereas non-dimensional normalization accounts for differences between the reference and input Reynolds number. Employing the same computational methods used to construct the database, solutions at other trajectory points taken from previous STS flights were computed: these results validate the BLPROP algorithm. Percentage differences between interpolated and computed values are presented and are used to establish the level of uncertainty of the new tool.

  13. Renewable electricity production costs-A framework to assist policy-makers' decisions on price support

    International Nuclear Information System (INIS)

    Dinica, Valentina

    2011-01-01

    Despite recent progress, the production costs for renewable electricity remain above those for conventional power. Expectations of continuous reductions in production costs, typically underpin governments' policies for financial support. They often draw on the technology-focused versions of the Experience Curve model. This paper discusses how national-contextual factors also have a strong influence on production costs, such as geographic, infrastructural, institutional, and resource factors. As technologies mature, and as they reach significant levels of diffusion nationally, sustained increases in production costs might be recorded, due to these nationally contextual factors, poorly accounted for in policy-making decisions for price support. The paper suggests an analytical framework for a more comprehensive understanding of production costs. Based on this, it recommends that the evolution of specific cost levels and factors be monitored to locate 'sources of changes'. The paper also suggests policy instruments that governments may use to facilitate cost decreases, whenever possible. The application of the framework is illustrated for the diffusion of wind power in Spain during the past three decades. - Highlights: → Models, frameworks for policy-making on price support for renewable electricity production costs. → Policy instruments to help reduce production costs. → Limits to the influence of policies of production costs reductions.

  14. Hippocampal declarative memory supports gesture production: Evidence from amnesia.

    Science.gov (United States)

    Hilverman, Caitlin; Cook, Susan Wagner; Duff, Melissa C

    2016-12-01

    Spontaneous co-speech hand gestures provide a visuospatial representation of what is being communicated in spoken language. Although it is clear that gestures emerge from representations in memory for what is being communicated (De Ruiter, 1998; Wesp, Hesse, Keutmann, & Wheaton, 2001), the mechanism supporting the relationship between gesture and memory is unknown. Current theories of gesture production posit that action - supported by motor areas of the brain - is key in determining whether gestures are produced. We propose that when and how gestures are produced is determined in part by hippocampally-mediated declarative memory. We examined the speech and gesture of healthy older adults and of memory-impaired patients with hippocampal amnesia during four discourse tasks that required accessing episodes and information from the remote past. Consistent with previous reports of impoverished spoken language in patients with hippocampal amnesia, we predicted that these patients, who have difficulty generating multifaceted declarative memory representations, may in turn have impoverished gesture production. We found that patients gestured less overall relative to healthy comparison participants, and that this was particularly evident in tasks that may rely more heavily on declarative memory. Thus, gestures do not just emerge from the motor representation activated for speaking, but are also sensitive to the representation available in hippocampal declarative memory, suggesting a direct link between memory and gesture production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The economic context for the development of "blind flight".

    Science.gov (United States)

    Temme, Leonard A; Rupert, Angus

    2003-07-01

    On 24 September 1929, at Mitchel Field, Long Island, NY, Jimmy Doolittle performed the first so-called "blind flight." He executed a flight plan and landed using only cockpit instruments, a feat that culminated a research program supported by the Daniel Guggenheim Fund for the Promotion of Aeronautics. Contemporary aviation medicine, with its understanding of the challenges of spatial (dis)orientation, has a special understanding and appreciation of the complex human performance, medical and technical problems that had to be overcome to make instrument flight possible. It is likely that the problems would not have been solved unless a socioeconomic context provoked a sufficient motivation to address them. This paper outlines some of the economic factors that motivated the research and development necessary for instrument flight. These factors were the direct consequence of the sudden, huge explosion of the aviation industry caused by World War I, and with the Armistice, the equally sudden loss of the industry's primary customer, the military. Finding a civilian role for aviation awaited the development of air mail, which, in turn, depended on the ability to fly according to a reliable schedule. The need to reliably adhere to a schedule forced the scientific and technological research needed to develop all-weather, blind flight.

  16. IT support of commercial-production companies

    International Nuclear Information System (INIS)

    Hroch, A.

    2004-01-01

    Slovak electricity sector was built from sixties like common entity what can use synergic effects. In the 2002 reorganisation was done, there were created independent joint stock company. There were published new legislative acts, which opened Slovak electricity market for competition. The companies have to change their mine because a business is priority No. 1. Slovenske elektrarne, joint-stock company is under transformation process to build procedural guided trade-production company. As joint project is prepared a new system to control business in to a trading floor, including a risk management, which have to be supported by technological and information tools together with planing, scheduling, directing and controlling of the operation. The all system includes standard modules that fulfil their specific functions. (author)

  17. Energy Production from Biogas: Competitiveness and Support Instruments in Latvia

    OpenAIRE

    Klāvs G.; Kundziņa A.; Kudrenickis I.

    2016-01-01

    Use of renewable energy sources (RES) might be one of the key factors for the triple win-win: improving energy supply security, promoting local economic development, and reducing greenhouse gas emissions. The authors ex-post evaluate the impact of two main support instruments applied in 2010-2014 – the investment support (IS) and the feed-in tariff (FIT) – on the economic viability of small scale (up to 2MWel) biogas unit. The results indicate that the electricity production cost in biogas ut...

  18. Analysis of Eye-Tracking Data with Regards to the Complexity of Flight Deck Information Automation and Management - Inattentional Blindness, System State Awareness, and EFB Usage

    Science.gov (United States)

    Dill, Evan T.; Young, Steven D.

    2015-01-01

    In the constant drive to further the safety and efficiency of air travel, the complexity of avionics-related systems, and the procedures for interacting with these systems, appear to be on an ever-increasing trend. While this growing complexity often yields productive results with respect to system capabilities and flight efficiency, it can place a larger burden on pilots to manage increasing amounts of information and to understand intricate system designs. Evidence supporting this observation is becoming widespread, yet has been largely anecdotal or the result of subjective analysis. One way to gain more insight into this issue is through experimentation using more objective measures or indicators. This study utilizes and analyzes eye-tracking data obtained during a high-fidelity flight simulation study wherein many of the complexities of current flight decks, as well as those planned for the next generation air transportation system (NextGen), were emulated. The following paper presents the findings of this study with a focus on electronic flight bag (EFB) usage, system state awareness (SSA) and events involving suspected inattentional blindness (IB).

  19. Library orientation on videotape: production planning and administrative support.

    Science.gov (United States)

    Shedlock, J; Tawyea, E W

    1989-01-01

    New student-faculty-staff orientation is an important public service in a medical library and demands creativity, imagination, teaching skill, coordination, and cooperation on the part of public services staff. The Northwestern University Medical Library (NUML) implemented a video production service in the spring of 1986 and used the new service to produce an orientation videotape for incoming students, new faculty, and medical center staff. Planning is an important function in video production, and the various phases of outlining topics, drafting scripts, matching video sequences, and actual taping of video, voice, and music are described. The NUML orientation videotape demonstrates how reference and audiovisual services merge talent and skills to benefit the library user. Videotape production, however, cannot happen in a vacuum of good intentions and high ideals. This paper also presents the management support and cost analysis needed to make video production services a reality for use by public service departments.

  20. NASA Marshall Space Flight Center Controls Systems Design and Analysis Branch

    Science.gov (United States)

    Gilligan, Eric

    2014-01-01

    Marshall Space Flight Center maintains a critical national capability in the analysis of launch vehicle flight dynamics and flight certification of GN&C algorithms. MSFC analysts are domain experts in the areas of flexible-body dynamics and control-structure interaction, thrust vector control, sloshing propellant dynamics, and advanced statistical methods. Marshall's modeling and simulation expertise has supported manned spaceflight for over 50 years. Marshall's unparalleled capability in launch vehicle guidance, navigation, and control technology stems from its rich heritage in developing, integrating, and testing launch vehicle GN&C systems dating to the early Mercury-Redstone and Saturn vehicles. The Marshall team is continuously developing novel methods for design, including advanced techniques for large-scale optimization and analysis.

  1. Supporting product-servicing networks

    NARCIS (Netherlands)

    Camarihna-Matos, L.M.; Ferrada, F.; Oliveira, A.I.; Afsarmanesh, H.; Aboutajdine, D.; Skalli, A.; Benchekroun, B.; Artiba, A.

    2013-01-01

    Service-based enhancement of products represents a growing trend, particularly in the context of complex products. A service-enhanced product can be seen as a market proposition that extends the traditional functionality of a product by incorporating additional business services, which not only

  2. Consolidation and What it Could Mean to Military Helicopter Flight Training

    Science.gov (United States)

    2013-05-22

    met? 3. What is the impact or deficiencies in a consolidated syllabus? 4. If unable to productively create a Joint syllabus, can the possibility of...instrument flight rules ( IFR ) flight plan 2. Perform instrument takeoff (ITO) 26U.S, Army. Initial Entry Rotary Wing (IERW) Aviator Course Common...Recommendations will be made by the author and covered later in this chapter. 65 What is the impact or deficiencies in a consolidated syllabus

  3. Operational computer graphics in the flight dynamics environment

    Science.gov (United States)

    Jeletic, James F.

    1989-01-01

    Over the past five years, the Flight Dynamics Division of the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center has incorporated computer graphics technology into its operational environment. In an attempt to increase the effectiveness and productivity of the Division, computer graphics software systems have been developed that display spacecraft tracking and telemetry data in 2-d and 3-d graphic formats that are more comprehensible than the alphanumeric tables of the past. These systems vary in functionality from real-time mission monitoring system, to mission planning utilities, to system development tools. Here, the capabilities and architecture of these systems are discussed.

  4. Flight-vehicle structures education in the US: Assessment and recommendations

    Science.gov (United States)

    Noor, Ahmed K.

    1987-01-01

    An assessment is made of the technical contents of flight-vehicle structures curricula at 41 U.S. universities with accredited aerospace engineering programs. The assessment is based on the technical needs for new and projected aeronautical and space systems as well as on the likely characteristics of the aerospace engineering work environment. A number of deficiencies and areas of concern are identified and recommendations are presented for enhancing the effectiveness of flight-vehicle structures education. A number of government supported programs that can help aerospace engineering education are listed in the appendix.

  5. Flight Planning

    Science.gov (United States)

    1991-01-01

    Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.

  6. Controlled production of droplets by in-flight electrospraying.

    Science.gov (United States)

    Kim, Oleg V; Dunn, Patrick F

    2010-10-19

    Diameter, velocity, and charge measurements of progeny droplets produced in-flight by a millimeter-size parent drop subjected to electric and ionic fields are reported. Different drop breakup modes were studied using phase doppler anemometry and high-speed digital photography. Drop breakup occurred in applied electric (∼1 kV/cm to ∼10 kV/cm) and ionic (∼10(13)/m(3) to ∼10(15)/m(3)) fields that were generated using a DC-corona discharge in a needle-plate configuration. Effects of the external electric field and the diameter of the parent drop are considered. Several models are summarized, including simulations of the electrohydrodynamics of the corona discharge, electrocapillary stability analysis of the jet, and progeny droplets mobility analysis. Using experimental and model results, the charge of progeny drops is shown to vary as the three-halves power of their diameter.

  7. FlyAR: augmented reality supported micro aerial vehicle navigation.

    Science.gov (United States)

    Zollmann, Stefanie; Hoppe, Christof; Langlotz, Tobias; Reitmayr, Gerhard

    2014-04-01

    Micro aerial vehicles equipped with high-resolution cameras can be used to create aerial reconstructions of an area of interest. In that context automatic flight path planning and autonomous flying is often applied but so far cannot fully replace the human in the loop, supervising the flight on-site to assure that there are no collisions with obstacles. Unfortunately, this workflow yields several issues, such as the need to mentally transfer the aerial vehicle’s position between 2D map positions and the physical environment, and the complicated depth perception of objects flying in the distance. Augmented Reality can address these issues by bringing the flight planning process on-site and visualizing the spatial relationship between the planned or current positions of the vehicle and the physical environment. In this paper, we present Augmented Reality supported navigation and flight planning of micro aerial vehicles by augmenting the user’s view with relevant information for flight planning and live feedback for flight supervision. Furthermore, we introduce additional depth hints supporting the user in understanding the spatial relationship of virtual waypoints in the physical world and investigate the effect of these visualization techniques on the spatial understanding.

  8. Flight Software Math Library

    Science.gov (United States)

    McComas, David

    2013-01-01

    The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.

  9. Methodology to Support Dynamic Function Allocation Policies Between Humans and Flight Deck Automation

    Science.gov (United States)

    Johnson, Eric N.

    2012-01-01

    Function allocation assigns work functions to all agents in a team, both human and automation. Efforts to guide function allocation systematically have been studied in many fields such as engineering, human factors, team and organization design, management science, cognitive systems engineering. Each field focuses on certain aspects of function allocation, but not all; thus, an independent discussion of each does not address all necessary aspects of function allocation. Four distinctive perspectives have emerged from this comprehensive review of literature on those fields: the technology-centered, human-centered, team-oriented, and work-oriented perspectives. Each perspective focuses on different aspects of function allocation: capabilities and characteristics of agents (automation or human), structure and strategy of a team, and work structure and environment. This report offers eight issues with function allocation that can be used to assess the extent to which each of issues exist on a given function allocation. A modeling framework using formal models and simulation was developed to model work as described by the environment, agents, their inherent dynamics, and relationships among them. Finally, to validate the framework and metrics, a case study modeled four different function allocations between a pilot and flight deck automation during the arrival and approach phases of flight.

  10. Flying the Needles: Flight Deck Automation Erodes Fine-Motor Flying Skills Among Airline Pilots.

    Science.gov (United States)

    Haslbeck, Andreas; Hoermann, Hans-Juergen

    2016-06-01

    The aim of this study was to evaluate the influence of practice and training on fine-motor flying skills during a manual instrument landing system (ILS) approach. There is an ongoing debate that manual flying skills of long-haul crews suffer from a lack of flight practice due to conducting only a few flights per month and the intensive use of automation. However, objective evidence is rare. One hundred twenty-six randomly selected airline pilots had to perform a manual flight scenario with a raw data precision approach. Pilots were assigned to four equal groups according to their level of practice and training by fleet (short-haul, long-haul) and rank (first officer, captain). Average ILS deviation scores differed significantly in relation to the group assignments. The strongest predictor variable was fleet, indicating degraded performance among long-haul pilots. Manual flying skills are subject to erosion due to a lack of practice on long-haul fleets: All results support the conclusion that recent flight practice is a significantly stronger predictor for fine-motor flying performance than the time period since flight school or even the total or type-specific flight experience. Long-haul crews have to be supported in a timely manner by adequate training tailored to address manual skills or by operational provisions like mixed-fleet flying or more frequent transitions between short-haul and long-haul operation. © 2016, Human Factors and Ergonomics Society.

  11. Combining control input with flight path data to evaluate pilot performance in transport aircraft.

    Science.gov (United States)

    Ebbatson, Matt; Harris, Don; Huddlestone, John; Sears, Rodney

    2008-11-01

    When deriving an objective assessment of piloting performance from flight data records, it is common to employ metrics which purely evaluate errors in flight path parameters. The adequacy of pilot performance is evaluated from the flight path of the aircraft. However, in large jet transport aircraft these measures may be insensitive and require supplementing with frequency-based measures of control input parameters. Flight path and control input data were collected from pilots undertaking a jet transport aircraft conversion course during a series of symmetric and asymmetric approaches in a flight simulator. The flight path data were analyzed for deviations around the optimum flight path while flying an instrument landing approach. Manipulation of the flight controls was subject to analysis using a series of power spectral density measures. The flight path metrics showed no significant differences in performance between the symmetric and asymmetric approaches. However, control input frequency domain measures revealed that the pilots employed highly different control strategies in the pitch and yaw axes. The results demonstrate that to evaluate pilot performance fully in large aircraft, it is necessary to employ performance metrics targeted at both the outer control loop (flight path) and the inner control loop (flight control) parameters in parallel, evaluating both the product and process of a pilot's performance.

  12. A review of the habitability aspects of prior space flights from the flight crew perspective with an orientation toward designing Space Station Freedom

    Science.gov (United States)

    Stramler, J. H.

    1990-01-01

    Habitability is a very important issue in long-duration spaceflight. With this concern, a review of much of the existing U.S. Skylab, Spacelab, and some Soviet literature on habitability aspects of long-duratioin space flight was completed for the Astronaut Space Station Support Office. The data were organized to follow as closely as possible the SSF distributed systems, such as Life Support, Data Management, etc. A new definition of habitability is proposed.

  13. Plant Production Systems for Microgravity: Critical Issues in Water, Air, and Solute Transport Through Unsaturated Porous Media

    Science.gov (United States)

    Steinberg, Susan L. (Editor); Ming, Doug W. (Editor); Henninger, Don (Editor)

    2002-01-01

    This NASA Technical Memorandum is a compilation of presentations and discussions in the form of minutes from a workshop entitled 'Plant Production Systems for Microgravity: Critical Issues in Water, Air, and Solute Transport Through Unsaturated Porous Media' held at NASA's Johnson Space Center, July 24-25, 2000. This workshop arose from the growing belief within NASA's Advanced Life Support Program that further advances and improvements in plant production systems for microgravity would benefit from additional knowledge of fundamental processes occurring in the root zone. The objective of the workshop was to bring together individuals who had expertise in various areas of fluid physics, soil physics, plant physiology, hardware development, and flight tests to identify, discuss, and prioritize critical issues of water and air flow through porous media in microgravity. Participants of the workshop included representatives from private companies involved in flight hardware development and scientists from universities and NASA Centers with expertise in plant flight tests, plant physiology, fluid physics, and soil physics.

  14. Advanced transport operating system software upgrade: Flight management/flight controls software description

    Science.gov (United States)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  15. Mars Science Laboratory Flight Software Boot Robustness Testing Project Report

    Science.gov (United States)

    Roth, Brian

    2011-01-01

    On the surface of Mars, the Mars Science Laboratory will boot up its flight computers every morning, having charged the batteries through the night. This boot process is complicated, critical, and affected by numerous hardware states that can be difficult to test. The hardware test beds do not facilitate testing a long duration of back-to-back unmanned automated tests, and although the software simulation has provided the necessary functionality and fidelity for this boot testing, there has not been support for the full flexibility necessary for this task. Therefore to perform this testing a framework has been build around the software simulation that supports running automated tests loading a variety of starting configurations for software and hardware states. This implementation has been tested against the nominal cases to validate the methodology, and support for configuring off-nominal cases is ongoing. The implication of this testing is that the introduction of input configurations that have yet proved difficult to test may reveal boot scenarios worth higher fidelity investigation, and in other cases increase confidence in the robustness of the flight software boot process.

  16. Flight control actuation system

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  17. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    Science.gov (United States)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  18. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    Science.gov (United States)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  19. Developing a Model for Solving the Flight Perturbation Problem

    Directory of Open Access Journals (Sweden)

    Amirreza Nickkar

    2015-02-01

    Full Text Available Purpose: In the aviation and airline industry, crew costs are the second largest direct operating cost next to the fuel costs. But unlike the fuel costs, a considerable portion of the crew costs can be saved through optimized utilization of the internal resources of an airline company. Therefore, solving the flight perturbation scheduling problem, in order to provide an optimized schedule in a comprehensive manner that covered all problem dimensions simultaneously, is very important. In this paper, we defined an integrated recovery model as that which is able to recover aircraft and crew dimensions simultaneously in order to produce more economical solutions and create fewer incompatibilities between the decisions. Design/methodology/approach: Current research is performed based on the development of one of the flight rescheduling models with disruption management approach wherein two solution strategies for flight perturbation problem are presented: Dantzig-Wolfe decomposition and Lagrangian heuristic. Findings: According to the results of this research, Lagrangian heuristic approach for the DW-MP solved the problem optimally in all known cases. Also, this strategy based on the Dantig-Wolfe decomposition manage to produce a solution within an acceptable time (Under 1 Sec. Originality/value: This model will support the decisions of the flight controllers in the operation centers for the airlines. When the flight network faces a problem the flight controllers achieve a set of ranked answers using this model thus, applying crew’s conditions in the proposed model caused this model to be closer to actual conditions.

  20. Flight research and testing

    Science.gov (United States)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  1. Mentoring SFRM: A New Approach to International Space Station Flight Controller Training

    Science.gov (United States)

    Huning, Therese; Barshi, Immanuel; Schmidt, Lacey

    2008-01-01

    The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (operator) to a basic level of effectiveness in 1 year. SFRM training uses a two-pronged approach to expediting operator certification: 1) imbed SFRM skills training into all operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills. Methods: A mentor works with an operator throughout the training flow. Inserted into the training flow are guided-discussion sessions and on-the-job observation opportunities focusing on specific SFRM skills, including: situational leadership, conflict management, stress management, cross-cultural awareness, self care and team care while on-console, communication, workload management, and situation awareness. The mentor and operator discuss the science and art behind the skills, cultural effects on skills applications, recognition of good and bad skills applications, recognition of how skills application changes subtly in different situations, and individual goals and techniques for improving skills. Discussion: This mentoring program provides an additional means of transferring SFRM knowledge compared to traditional CRM training programs. Our future endeavors in training SFRM skills (as well as other organization s) may benefit from adding team performance skills mentoring. This paper

  2. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in...

  3. Defined media and inert supports : their potential as solid-state fermentation production systems

    NARCIS (Netherlands)

    Ooijkaas, L.P.; Weber, F.J.; Buitelaar, R.M.; Tramper, J.; Rinzema, A.

    2000-01-01

    Solid-state fermentation (SSF) using inert supports impregnated with chemically defined liquid media has several potential applications in both scientific studies and in the industrial production of high-value products, such as metabolites, biological control agents and enzymes. As a result of its

  4. Digital Tools to Support Knowledge Sharing and Cooperation in High-Investment Product-Services

    NARCIS (Netherlands)

    Aromaa, S.; Leino, S.P.; Reyes-Lecuona, A.; Frangakis, N.; Berglund, J.; Bosch, T.; Rhijn, G. van; Granholm, G.

    2018-01-01

    The manufacturing industry needs to adapt their product-services to meet customer requirements in today’s rapidly changing markets. This paper presents how technologies can support knowledge sharing and collaboration during product-service processes. This work was part of the European Union

  5. Perseus Post-flight

    Science.gov (United States)

    1991-01-01

    Crew members check out the Perseus proof-of-concept vehicle on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, after a test flight in 1991. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved

  6. Measuring the impact of computer resource quality on the software development process and product

    Science.gov (United States)

    Mcgarry, Frank; Valett, Jon; Hall, Dana

    1985-01-01

    The availability and quality of computer resources during the software development process was speculated to have measurable, significant impact on the efficiency of the development process and the quality of the resulting product. Environment components such as the types of tools, machine responsiveness, and quantity of direct access storage may play a major role in the effort to produce the product and in its subsequent quality as measured by factors such as reliability and ease of maintenance. During the past six years, the NASA Goddard Space Flight Center has conducted experiments with software projects in an attempt to better understand the impact of software development methodologies, environments, and general technologies on the software process and product. Data was extracted and examined from nearly 50 software development projects. All were related to support of satellite flight dynamics ground-based computations. The relationship between computer resources and the software development process and product as exemplified by the subject NASA data was examined. Based upon the results, a number of computer resource-related implications are provided.

  7. Guidance concepts for time-based flight operations

    Science.gov (United States)

    Vicroy, Dan D.

    1990-01-01

    Airport congestion and the associated delays are severe in today's airspace system and are expected to increase. NASA and the FAA is investigating various methods of alleviating this problem through new technology and operational procedures. One concept for improving airspace productivity is time-based control of aircraft. Research to date has focused primarily on the development of time-based flight management systems and Air Traffic Control operational procedures. Flight operations may, however, require special onboard guidance in order to satisfy the Air Traffic Control imposed time constraints. The results are presented of a simulation study aimed at evaluating several time-based guidance concepts in terms of tracking performance, pilot workload, and subjective preference. The guidance concepts tested varied in complexity from simple digital time-error feedback to an advanced time-referenced-energy guidance scheme.

  8. Wind and Wake Sensing with UAV Formation Flight: System Development and Flight Testing

    Science.gov (United States)

    Larrabee, Trenton Jameson

    Wind turbulence including atmospheric turbulence and wake turbulence have been widely investigated; however, only recently it become possible to use Unmanned Aerial Vehicles (UAVs) as a validation tool for research in this area. Wind can be a major contributing factor of adverse weather for aircraft. More importantly, it is an even greater risk towards UAVs because of their small size and weight. Being able to estimate wind fields and gusts can potentially provide substantial benefits for both unmanned and manned aviation. Possible applications include gust suppression for improving handling qualities, a better warning system for high wind encounters, and enhanced control for small UAVs during flight. On the other hand, the existence of wind can be advantageous since it can lead to fuel savings and longer duration flights through dynamic soaring or thermal soaring. Wakes are an effect of the lift distribution across an aircraft's wing or tail. Wakes can cause substantial disturbances when multiple aircraft are moving through the same airspace. In fact, the perils from an aircraft flying through the wake of another aircraft is a leading cause of the delay between takeoff times at airports. Similar to wind, though, wakes can be useful for energy harvesting and increasing an aircraft's endurance when flying in formation which can be a great advantage to UAVs because they are often limited in flight time due to small payload capacity. Formation flight can most often be seen in manned aircraft but can be adopted for use with unmanned systems. Autonomous flight is needed for flying in the "sweet spot" of the generated wakes for energy harvesting as well as for thermal soaring during long duration flights. For the research presented here formation flight was implemented for the study of wake sensing and gust alleviation. The major contributions of this research are in the areas of a novel technique to estimate wind using an Unscented Kalman filter and experimental wake

  9. CDDIS: NASA's Archive of Space Geodesy Data and Products Supporting GGOS

    Science.gov (United States)

    Noll, Carey; Michael, Patrick

    2016-01-01

    The Crustal Dynamics Data Information System (CDDIS) supports data archiving and distribution activities for the space geodesy and geodynamics community. The main objectives of the system are to store space geodesy and geodynamics related data and products in a central archive, to maintain information about the archival of these data,to disseminate these data and information in a timely manner to a global scientific research community, and provide user based tools for the exploration and use of the archive. The CDDIS data system and its archive is a key component in several of the geometric services within the International Association of Geodesy (IAG) and its observing systemthe Global Geodetic Observing System (GGOS), including the IGS, the International DORIS Service (IDS), the International Laser Ranging Service (ILRS), the International VLBI Service for Geodesy and Astrometry (IVS), and the International Earth Rotation and Reference Systems Service (IERS). The CDDIS provides on-line access to over 17 Tbytes of dataand derived products in support of the IAG services and GGOS. The systems archive continues to grow and improve as new activities are supported and enhancements are implemented. Recently, the CDDIS has established a real-time streaming capability for GNSS data and products. Furthermore, enhancements to metadata describing the contents ofthe archive have been developed to facilitate data discovery. This poster will provide a review of the improvements in the system infrastructure that CDDIS has made over the past year for the geodetic community and describe future plans for the system.

  10. Do international flights promote FDI? : the role of face-to-face communication

    OpenAIRE

    Tanaka, Kiyoyasu

    2016-01-01

    Air transportation facilitates face-to-face interactions across borders for the spatial expansion of manufacturing production. I investigate the impact of international flights on FDI entry by Japanese firms. I find that FDI entry significantly increases with the weekly frequency of flights from Japan, and the positive impact increases with a proxy for an intensity of face-to-face communication between the parent firm and foreign affiliate. The results are robust to estimation methods, additi...

  11. X-43A Flight Controls

    Science.gov (United States)

    Baumann, Ethan

    2006-01-01

    A viewgraph presentation detailing X-43A Flight controls at NASA Dryden Flight Research Center is shown. The topics include: 1) NASA Dryden, Overview and current and recent flight test programs; 2) Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Program, Program Overview and Platform Precision Autopilot; and 3) Hyper-X Program, Program Overview, X-43A Flight Controls and Flight Results.

  12. Importance of Decision Support Systems About Food Safety in Raw Milk Production

    Directory of Open Access Journals (Sweden)

    Ecem Akan

    2015-12-01

    Full Text Available In raw milk production decision support systems for control of food safety hazards has not been developed but main points of this system are available. The decision support systems’ elements include data identification at critical points in the milk supply chain, an information management system and data exchange. Decision supports systems has been developed on the basis of these elements. In dairy sector decision support systems are significant for controlling of food safety hazards and preferred by producers. When these systems are implemented in the milk supply chain, it can be prevented unnecessary sampling and analysis. In this article it will be underlined effects of decision support system elements on food safety of raw milk.

  13. F-16XL ship #1 (#849) during first flight of the Digital Flight Control System (DFCS)

    Science.gov (United States)

    1997-01-01

    After completing its first flight with the Digital Flight Control System on December 16, 1997, the F-16XL #1 aircraft began a series of envelope expansion flights. On January 27 and 29, 1998, it successfully completed structural clearance tests, as well as most of the load testing Only flights at Mach 1.05 at 10,000 feet, Mach 1.1 at 15,000 feet, and Mach 1.2 at 20,000 feet remained. During the next flight, on February 4, an instrumentation problem cut short the planned envelope expansion tests. After the problem was corrected, the F-16XL returned to flight status, and on February 18 and 20, flight control and evaluation flights were made. Two more research flights were planned for the following week, but another problem appeared. During the ground start up, project personnel noticed that the leading edge flap moved without being commanded. The Digital Flight Control Computer was sent to the Lockheed-Martin facility at Fort Worth, where the problem was traced to a defective chip in the computer. After it was replaced, the F-16XL #1 flew a highly successful flight controls and handling qualities evaluation flight on March 26, clearing the way for the final tests. The final limited loads expansion flight occurred on March 31, and was fully successful. As a result, the on-site Lockheed-Martin loads engineer cleared the aircraft to Mach 1.8. The remaining two handling qualities and flight control evaluation flights were both made on April 3, 1998. These three flights concluded the flight test portion of the DFCS upgrade.

  14. The Effect of Multimedia Writing Support Software on Written Productivity

    Science.gov (United States)

    Racicot, Rose

    2016-01-01

    The purpose of this study was to explore the effects of multimedia writing support software on the quality and quantity of writing productivity and self-perception for students who have mild to moderate developmental delays. Participants in this study included 22 special education students in grades kindergarten through 6. Methodology included a…

  15. Management of Service Projects in Support of Space Flight Research

    Science.gov (United States)

    Love, J.

    2009-01-01

    Goal:To provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration . [HRP-47051] Specific Objectives: 1) Develop capabilities, necessary countermeasures, and technologies in support of human space exploration, focusing on mitigating the highest risks to human health and performance. 2) Define and improve human spaceflight medical, environmental, and human factors standards. 3) Develop technologies that serve to reduce medical and environmental risks, to reduce human systems resource requirements (mass, volume, power, data, etc.) and to ensure effective human-system integration across exploration systems. 4) Ensure maintenance of Agency core competencies necessary to enable risk reduction in the following areas: A. Space medicine B. Physiological and behavioral effects of long duration spaceflight on the human body C. Space environmental effects, including radiation, on human health and performance D. Space "human factors" [HRP-47051]. Service projects can form integral parts of research-based project-focused programs to provide specialized functions. Traditional/classic project management methodologies and agile approaches are not mutually exclusive paradigms. Agile strategies can be combined with traditional methods and applied in the management of service projects functioning in changing environments. Creative collaborations afford a mechanism for mitigation of constrained resource limitations.

  16. DAST in Flight

    Science.gov (United States)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of

  17. Virtual decoupling flight control via real-time trajectory synthesis and tracking

    Science.gov (United States)

    Zhang, Xuefu

    The production of the General Aviation industry has declined in the past 25 years. Ironically, however, the increasing demand for air travel as a fast, safe, and high-quality mode of transportation has been far from satisfied. Addressing this demand shortfall with personal air transportation necessitates advanced systems for navigation, guidance, control, flight management, and flight traffic control. Among them, an effective decoupling flight control system will not only improve flight quality, safety, and simplicity, and increase air space usage, but also reduce expenses on pilot initial and current training, and thus expand the current market and explore new markets. Because of the formidable difficulties encountered in the actual decoupling of non-linear, time-variant, and highly coupled flight control systems through traditional approaches, a new approach, which essentially converts the decoupling problem into a real-time trajectory synthesis and tracking problem, is employed. Then, the converted problem is solved and a virtual decoupling effect is achieved. In this approach, a trajectory in inertial space can be predefined and dynamically modified based on the flight mission and the pilot's commands. A feedforward-feedback control architecture is constructed to guide the airplane along the trajectory as precisely as possible. Through this approach, the pilot has much simpler, virtually decoupled control of the airplane in terms of speed, flight path angle and horizontal radius of curvature. To verify and evaluate this approach, extensive computer simulation is performed. A great deal of test cases are designed for the flight control under different flight conditions. The simulation results show that our decoupling strategy is satisfactory and promising, and therefore the research can serve as a consolidated foundation for future practical applications.

  18. Long Term Perspective On Interstellar Flight

    Science.gov (United States)

    Millis, M. G.

    2017-12-01

    The process and interim findings of a broad interstellar flight assessment is presented. In contrast to precursor mission studies, this assessment takes a longer view and also considers factors that have been underrepresented in prior studies. The goal is to chart a conceptual roadmap for interstellar flight development that takes all the factors into account and ultimately identifies which research options, today, might have the greatest overall impact on future progress. Three envisioned flight eras are examined, the "era of precursors," the "era of infrastructure," and the "unforeseeable future." Several influential factors have typically been missing from prior studies that will now be assessed; a) the impact of different, often implicit, motivations, b) the interdependency of infrastructure with vehicle design, c) the pace of different developments, and d) the enormous energy required for any interstellar mission. Regarding motivations for example, if the driving motivation is to launch soon, then the emphasis is on existing technologies. In contrast, if the motivation is the survival of humanity, then the emphasis would be on 'world ships.' Infrastructure considerations are included in a broader system-level context. Future infrastructure will support multiple in-space activities, not just one mission-vehicle development. Though it may be too difficult to successfully assess, the study will attempt to compare the rates of different developments, such as the pace of Earth-based astronomy, miniaturization, artificial intelligence, infrastructure development, transhumanism, and others. For example, what new information could be acquired after 30 years of further advances in astronomy compared to a space probe with current technology and a 30 year flight time? The final factor of the study is to assess the pace and risks of the enormous energy levels required for interstellar flight. To compare disparate methods, a set of 'meta measures' will be defined and

  19. Eco label and integrated product policies. Supporting companies by networking

    International Nuclear Information System (INIS)

    Frey, M.; Iraldo, F.

    1999-01-01

    In 1998 IEFE Bocconi University (Italy) carried out a project for the diffusion of the European Commission Eco label, the certification of the environmental quality of products. What clearly emerges from this experience is that some Italian SMEs, among the most innovative and market-oriented, are prone and ready to grasp the opportunities connected with the Eco label adoption. The more these enterprises are capable of starting up a network of socio-institutional actors eager to support them in promoting the environmental quality of their products, the more they succeed in exploiting the above mentioned opportunities [it

  20. On-Board File Management and Its Application in Flight Operations

    Science.gov (United States)

    Kuo, N.

    1998-01-01

    In this paper, the author presents the minimum functions required for an on-board file management system. We explore file manipulation processes and demonstrate how the file transfer along with the file management system will be utilized to support flight operations and data delivery.

  1. Flight code validation simulator

    Science.gov (United States)

    Sims, Brent A.

    1996-05-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer and reads and writes actual hardware sensor locations in which Inertial Measurement Unit data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System in January of 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  2. Ion optics of a time-of-flight mass spectrometer with electrostatic sector analyzers

    International Nuclear Information System (INIS)

    Sakurai, T.; Ito, H.; Matsuo, T.

    1995-01-01

    The ion optics for a high resolution time-of-flight mass spectrometer with electrostatic sector analyzers have been investigated. The multiple focusing (triple isochronous focusing and triple spacial focusing) conditions can be achieved by using a symmetrical arrangement of the sectors in a mass spectrometer. Both high mass resolution and high ion transmission can be accomplished simultaneously. The principles of MS/MS and MS/MS/MS analyses using a TOF mass spectrometer with electrostatic sector analyzers have been proposed. Product ion spectra can be obtained by measuring the total flight times and the kinetic energy of the products without any additional separation processes, any coincidence techniques or any special timing circuits. In an experiment, MS/MS and MS/MS/MS mass spectra have been obtained. The first generation product ions have been produced by a metastable decay, and the second generation products have been produced by a sequential decay. (orig.)

  3. The NASA Human Space Flight Supply Chain, Current and Future

    Science.gov (United States)

    Zapata, Edgar

    2007-01-01

    The current NASA Human Space Flight transportation system, the Space Shuttle, is scheduled for final flight in 2010. The Exploration initiative will create a new capability with a combination of existing systems and new flight and ground elements. To fully understand and act on the implications of such change it is necessary to understand what, how, when and where such changes occur and more importantly, how all these interact. This paper presents Human Space Flight, with an emphasis on KSC Launch and Landing, as a Supply Chain of both information and materials. A supply chain methodology for understanding the flow of information and materials is presented. Further, modeling and simulation projects funded by the Exploration initiative to understand the NASA Exploration Supply Chain are explained. Key concepts and their purpose, including the Enterprise, Locations, Physical and Organizational Functional Units, Products, and Resources, are explained. It is shown that the art, science and perspective of Supply Chain Management is not only applicable to such a government & contractor operation, it is also an invaluable approach for understanding, focusing improvement and growth. It is shown that such commercial practice applies to Human Space Flight and is invaluable towards one day creating routine, affordable access to and from space.

  4. Perseus in Flight

    Science.gov (United States)

    1991-01-01

    The Perseus proof-of-concept vehicle flies over Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, to test basic design concepts for the remotely-piloted, high-altitude vehicle. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA

  5. Sprint: The first flight demonstration of the external work system robots

    Science.gov (United States)

    Price, Charles R.; Grimm, Keith

    1995-01-01

    The External Works Systems (EWS) 'X Program' is a new NASA initiative that will, in the next ten years, develop a new generation of space robots for active and participative support of zero g external operations. The robotic development will center on three areas: the assistant robot, the associate robot, and the surrogate robot that will support external vehicular activities (EVA) prior to and after, during, and instead of space-suited human external activities respectively. The EWS robotics program will be a combination of technology developments and flight demonstrations for operational proof of concept. The first EWS flight will be a flying camera called 'Sprint' that will seek to demonstrate operationally flexible, remote viewing capability for EVA operations, inspections, and contingencies for the space shuttle and space station. This paper describes the need for Sprint and its characteristics.

  6. Environmental and genetic influences on flight metabolic rate in the honey bee, Apis mellifera.

    Science.gov (United States)

    Harrison, Jon F; Fewell, Jennifer H

    2002-10-01

    Flying honey bees demonstrate highly variable metabolic rates. The lowest reported values (approximately 0.3 Wg(-1)) occur in tethered bees generating the minimum lift to support their body weight, free-flying 2-day old bees, winter bees, or bees flying at high air temperatures (45 degrees C). The highest values (approximately 0.8 Wg(-1)) occur in foragers that are heavily loaded or flying in low-density air. In different studies, flight metabolic rate has increased, decreased, or remained constant with air temperature. Current research collectively suggests that this variation occurs because flight metabolic rates decrease at thorax temperatures above or below 38 degrees C. At 30 degrees C, approximately 30% of colonial energy is spent during typical foraging, so variation in flight metabolic rate can strongly affect colony-level energy balance. Higher air temperatures tend to increase colonial net gain rates, efficiencies and honey storage rates due to lower metabolic rates during flight and in the hive. Variation in flight metabolism has a clear genetic basis. Different genetic strains of honey bees often differ in flight metabolic rate, and these differences in flight physiology can be correlated with foraging effort, suggesting a possible pathway for selection effects on flight metabolism.

  7. Orion Exploration Flight Test Post-Flight Inspection and Analysis

    Science.gov (United States)

    Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.

    2017-01-01

    The principal mechanism for developing orbital debris environment models, is to make observations of larger pieces of debris in the range of several centimeters and greater using radar and optical techniques. For particles that are smaller than this threshold, breakup and migration models of particles to returned surfaces in lower orbit are relied upon to quantify the flux. This reliance on models to derive spatial densities of particles that are of critical importance to spacecraft make the unique nature of the EFT-1's return surface a valuable metric. To this end detailed post-flight inspections have been performed of the returned EFT-1 backshell, and the inspections identified six candidate impact sites that were not present during the pre-flight inspections. This paper describes the post-flight analysis efforts to characterize the EFT-1 mission craters. This effort included ground based testing to understand small particle impact craters in the thermal protection material, the pre- and post-flight inspection, the crater analysis using optical, X-ray computed tomography (CT) and scanning electron microscope (SEM) techniques, and numerical simulations.

  8. Capital Flight and Economic Performance

    OpenAIRE

    Beja, Edsel Jr.

    2007-01-01

    Capital flight aggravates resource constraints and contributes to undermine long-term economic growth. Counterfactual calculations on the Philippines suggest that capital flight contributed to lower the quality of long-term economic growth. Sustained capital flight over three decades means that capital flight had a role for the Philippines to lose the opportunities to achieve economic takeoff. Unless decisive policy actions are taken up to address enduring capital flight and manage the macroe...

  9. Recent estimates of capital flight

    OpenAIRE

    Claessens, Stijn; Naude, David

    1993-01-01

    Researchers and policymakers have in recent years paid considerable attention to the phenomenon of capital flight. Researchers have focused on four questions: What concept should be used to measure capital flight? What figure for capital flight will emerge, using this measure? Can the occurrence and magnitude of capital flight be explained by certain (economic) variables? What policy changes can be useful to reverse capital flight? The authors focus strictly on presenting estimates of capital...

  10. A new approach to collaborative creativity support of new product designers

    NARCIS (Netherlands)

    Bitter-Rijpkema, Marlies; Sloep, Peter; Sie, Rory; Van Rosmalen, Peter; Retalis, Simos; Katsamani, Mary

    2010-01-01

    Bitter-Rijpkema, M., Sloep, P. B., Sie, R., Van Rosmalen, P., Retalis, S., & Katsamani, M. (2011). A new approach to collaborative creativity support of new product designers. International Journal of Web Based Communities, 7(4), 478-492. DOI: 10.1504/IJWBC.2011.042992

  11. The relationship of certified flight instructors' emotional intelligence levels on flight student advancement

    Science.gov (United States)

    Hokeness, Mark Merrill

    Aviation researchers estimate airline companies will require nearly 500,000 pilots in the next 20 years. The role of a Certified Flight Instructor (CFI) is to move student pilots to professional pilots with training typically conducted in one-on-one student and instructor sessions. The knowledge of aviation, professionalism as a teacher, and the CFI’s interpersonal skills can directly affect the successes and advancement of a student pilot. A new and emerging assessment of people skills is known as emotional intelligence (EI). The EI of the CFI can and will affect a flight students’ learning experiences. With knowledge of emotional intelligence and its effect on flight training, student pilot dropouts from aviation may be reduced, thus helping to ensure an adequate supply of pilots. Without pilots, the growth of the commercial aviation industry will be restricted. This mixed method research study established the correlation between a CFI’s measured EI levels and the advancement of flight students. The elements contributing to a CFI’s EI level were not found to be teaching or flight-related experiences, suggesting other life factors are drawn upon by the CFI and are reflected in their emotional intelligence levels presented to flight students. Students respond positively to CFIs with higher levels of emotional intelligence. Awareness of EI skills by both the CFI and flight student contribute to flight student successes and advancement.

  12. Insect flight muscle metabolism

    NARCIS (Netherlands)

    Horst, D.J. van der; Beenakkers, A.M.Th.; Marrewijk, W.J.A. van

    1984-01-01

    The flight of an insect is of a very complicated and extremely energy-demanding nature. Wingbeat frequency may differ between various species but values up to 1000 Hz have been measured. Consequently metabolic activity may be very high during flight and the transition from rest to flight is

  13. FLIGHT SAFETY MANAGEMENT PROBLEMS AND EVALUATION OF FLIGHT SAFETY LEVEL OF AN AVIATION ENTERPRISE

    Directory of Open Access Journals (Sweden)

    B. V. Zubkov

    2017-01-01

    Full Text Available This article is devoted to studying the problem of safety management system (SMS and evaluating safety level of an aviation enterprise.This article discusses the problems of SMS, presented at the 41st meeting of the Russian Aviation Production Commanders Club in June 2014 in St. Petersburg in connection with the verification of the status of the CA of the Russian Federation by the International Civil Aviation Organization (ICAO in the same year, a set of urgent measures to eliminate the deficiencies identified in the current safety management system by participants of this meeting were proposed.In addition, the problems of evaluating flight safety level based on operation data of an aviation enterprise were analyzed. This analysis made it possible to take into account the problems listed in this article as a tool for a comprehensive study of SMS parameters and allows to analyze the quantitative indicators of the flights safety level.The concepts of Acceptable Safety Level (ASL indicators are interpreted differently depending on the available/applicable methods of their evaluation and how to implement them in SMS. However, the indicators for assessing ASL under operational condition at the aviation enterprise should become universal. Currently, defined safety levels and safety indicators are not yet established functionally and often with distorted underrepresented models describing their contextual contents, as well as ways of integrating them into SMS aviation enterprise.The results obtained can be used for better implementation of SMS and solving problems determining the aviation enterprise technical level of flight safety.

  14. 14 CFR 63.23 - Special purpose flight engineer and flight navigator certificates: Operation of U.S.-registered...

    Science.gov (United States)

    2010-01-01

    ... purpose flight engineer and flight navigator certificates: Operation of U.S.-registered civil airplanes... flight engineer or flight navigator duties on a civil airplane of U.S. registry, leased to a person not a... certificate holder is performing flight engineer or flight navigator duties on the U.S.-registered civil...

  15. Optimization models for flight test scheduling

    Science.gov (United States)

    Holian, Derreck

    As threats around the world increase with nations developing new generations of warfare technology, the Unites States is keen on maintaining its position on top of the defense technology curve. This in return indicates that the U.S. military/government must research, develop, procure, and sustain new systems in the defense sector to safeguard this position. Currently, the Lockheed Martin F-35 Joint Strike Fighter (JSF) Lightning II is being developed, tested, and deployed to the U.S. military at Low Rate Initial Production (LRIP). The simultaneous act of testing and deployment is due to the contracted procurement process intended to provide a rapid Initial Operating Capability (IOC) release of the 5th Generation fighter. For this reason, many factors go into the determination of what is to be tested, in what order, and at which time due to the military requirements. A certain system or envelope of the aircraft must be assessed prior to releasing that capability into service. The objective of this praxis is to aide in the determination of what testing can be achieved on an aircraft at a point in time. Furthermore, it will define the optimum allocation of test points to aircraft and determine a prioritization of restrictions to be mitigated so that the test program can be best supported. The system described in this praxis has been deployed across the F-35 test program and testing sites. It has discovered hundreds of available test points for an aircraft to fly when it was thought none existed thus preventing an aircraft from being grounded. Additionally, it has saved hundreds of labor hours and greatly reduced the occurrence of test point reflight. Due to the proprietary nature of the JSF program, details regarding the actual test points, test plans, and all other program specific information have not been presented. Generic, representative data is used for example and proof-of-concept purposes. Apart from the data correlation algorithms, the optimization associated

  16. Is all support equal? The moderating effects of supervisor, coworker, and organizational support on the link between emotional labor and job performance

    Directory of Open Access Journals (Sweden)

    Hyun Jeong Kim

    2017-04-01

    Full Text Available This study was designed to examine the moderating roles of perceived supervisor, coworker, and organizational support in the relationship between emotional labor and job performance in the airline service context. A sample of flight attendants working for one major airline company in South Korea participated in this study. The flight attendants’ official job performance data were provided by the airline company. For data analyses, a series of hierarchical moderated regression analyses were employed. The results showed differential moderation effects of the three sources of support at work. Specifically, the positive relationship between deep acting and job performance was strengthened by perceived supervisor and coworker support. The negative relationship between surface acting and job performance was exacerbated by perceived supervisor support, indicating the reverse buffering effect. Perceived organizational support showed only main effects on employee performance with no moderation effects.

  17. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... they are capable of withstanding the effects of a fire. Engine vibration isolators must incorporate...

  18. Navigation and flight director guidance for the NASA/FAA helicopter MLS curved approach flight test program

    Science.gov (United States)

    Phatak, A. V.; Lee, M. G.

    1985-01-01

    The navigation and flight director guidance systems implemented in the NASA/FAA helicopter microwave landing system (MLS) curved approach flight test program is described. Flight test were conducted at the U.S. Navy's Crows Landing facility, using the NASA Ames UH-lH helicopter equipped with the V/STOLAND avionics system. The purpose of these tests was to investigate the feasibility of flying complex, curved and descending approaches to a landing using MLS flight director guidance. A description of the navigation aids used, the avionics system, cockpit instrumentation and on-board navigation equipment used for the flight test is provided. Three generic reference flight paths were developed and flown during the test. They were as follows: U-Turn, S-turn and Straight-In flight profiles. These profiles and their geometries are described in detail. A 3-cue flight director was implemented on the helicopter. A description of the formulation and implementation of the flight director laws is also presented. Performance data and analysis is presented for one pilot conducting the flight director approaches.

  19. AirSTAR Hardware and Software Design for Beyond Visual Range Flight Research

    Science.gov (United States)

    Laughter, Sean; Cox, David

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Airborne Subscale Transport Aircraft Research (AirSTAR) Unmanned Aerial System (UAS) is a facility developed to study the flight dynamics of vehicles in emergency conditions, in support of aviation safety research. The system was upgraded to have its operational range significantly expanded, going beyond the line of sight of a ground-based pilot. A redesign of the airborne flight hardware was undertaken, as well as significant changes to the software base, in order to provide appropriate autonomous behavior in response to a number of potential failures and hazards. Ground hardware and system monitors were also upgraded to include redundant communication links, including ADS-B based position displays and an independent flight termination system. The design included both custom and commercially available avionics, combined to allow flexibility in flight experiment design while still benefiting from tested configurations in reversionary flight modes. A similar hierarchy was employed in the software architecture, to allow research codes to be tested, with a fallback to more thoroughly validated flight controls. As a remotely piloted facility, ground systems were also developed to ensure the flight modes and system state were communicated to ground operations personnel in real-time. Presented in this paper is a general overview of the concept of operations for beyond visual range flight, and a detailed review of the airborne hardware and software design. This discussion is held in the context of the safety and procedural requirements that drove many of the design decisions for the AirSTAR UAS Beyond Visual Range capability.

  20. Aviator's Fluid Balance During Military Flight.

    Science.gov (United States)

    Levkovsky, Anna; Abot-Barkan, Sivan; Chapnik, Leah; Doron, Omer; Levy, Yuval; Heled, Yuval; Gordon, Barak

    2018-02-01

    A loss of 1% or more of bodyweight due to dehydration has a negative effect on cognitive performance, which could critically affect flight safety. There is no mention in the literature concerning the amounts of military pilots' fluid loss during flight. The aim of this study was to quantify fluid loss of pilots during military flight. There were 48 aviators (mean age 23.9) from the Israeli Air Force who participated in the study, which included 104 training flights in various flight platforms. Bodyweight, urine specific gravity, and environmental heat strain were measured before and after each flight. Fluid loss was calculated as the weight differences before and after the flight. We used a univariate and one-way ANOVA to analyze the effect of different variables on the fluid loss. The mean fluid loss rate was 462 ml · h-1. The results varied among different aircraft platforms and depended on flight duration. Blackhawk pilots lost the highest amount of fluids per flight, albeit had longer flights (mean 108 min compared to 35.5 in fighter jets). Jet fighter pilots had the highest rate of fluid loss per hour of flight (up to 692 ml, extrapolated). Overall, at 11 flights (11%) aircrew completed their flight with a meaningful fluid loss. We conclude that military flights may be associated with significant amount of fluid loss among aircrew.Levkovsky A, Abot-Barkan S, Chapnik L, Doron O, Levy Y, Heled Y, Gordon B. Aviator's fluid balance during military flight. Aerosp Med Hum Perform. 2018; 89(2):9498.

  1. Ares I-X Flight Test Validation of Control Design Tools in the Frequency-Domain

    Science.gov (United States)

    Johnson, Matthew; Hannan, Mike; Brandon, Jay; Derry, Stephen

    2011-01-01

    A major motivation of the Ares I-X flight test program was to Design for Data, in order to maximize the usefulness of the data recorded in support of Ares I modeling and validation of design and analysis tools. The Design for Data effort was intended to enable good post-flight characterizations of the flight control system, the vehicle structural dynamics, and also the aerodynamic characteristics of the vehicle. To extract the necessary data from the system during flight, a set of small predetermined Programmed Test Inputs (PTIs) was injected directly into the TVC signal. These PTIs were designed to excite the necessary vehicle dynamics while exhibiting a minimal impact on loads. The method is similar to common approaches in aircraft flight test programs, but with unique launch vehicle challenges due to rapidly changing states, short duration of flight, a tight flight envelope, and an inability to repeat any test. This paper documents the validation effort of the stability analysis tools to the flight data which was performed by comparing the post-flight calculated frequency response of the vehicle to the frequency response calculated by the stability analysis tools used to design and analyze the preflight models during the control design effort. The comparison between flight day frequency response and stability tool analysis for flight of the simulated vehicle shows good agreement and provides a high level of confidence in the stability analysis tools for use in any future program. This is true for both a nominal model as well as for dispersed analysis, which shows that the flight day frequency response is enveloped by the vehicle s preflight uncertainty models.

  2. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    Science.gov (United States)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  3. How birds direct impulse to minimize the energetic cost of foraging flight

    Science.gov (United States)

    Chin, Diana; Lentink, David

    2017-11-01

    Foraging arboreal birds frequently hop and fly between branches by extending long-jumps with a few wingbeats. Their legs transfer impulse to the branch during takeoff and landing, and their wings transfer impulse to the air to support their bodyweight during flight. To determine the mechanical energy tradeoffs of this bimodal locomotion, we studied how Pacific parrotlets transfer impulse during voluntary perch-to-perch flights. We tested five foraging flight variations by varying the inclination and distance between instrumented perches inside a novel aerodynamic force platform. This setup enables direct, time-resolved in vivo measurements of both leg and wing forces, which we combined with high-speed kinematics to develop a new bimodal long-jump and flight model. The model demonstrates how parrotlets direct their leg impulse to minimize the mechanical energy needed for each flight, and further shows how even a single proto-wingbeat would have significantly lengthened the long-jump of foraging arboreal dinosaurs. By directing jumps and flapping their wings, both extant and ancestral birds could thus improve foraging effectiveness. Similarly, bimodal robots could also employ these locomotion strategies to traverse cluttered environments more effectively.

  4. System security in the space flight operations center

    Science.gov (United States)

    Wagner, David A.

    1988-01-01

    The Space Flight Operations Center is a networked system of workstation-class computers that will provide ground support for NASA's next generation of deep-space missions. The author recounts the development of the SFOC system security policy and discusses the various management and technology issues involved. Particular attention is given to risk assessment, security plan development, security implications of design requirements, automatic safeguards, and procedural safeguards.

  5. On the Transition and Migration of Flight Functions in the Airspace System

    Science.gov (United States)

    Morris, Allan Terry; Young, Steve D.

    2012-01-01

    Since 400 BC, when man first replicated flying behavior with kites, up until the turn of the 20th century, when the Wright brothers performed the first successful powered human flight, flight functions have become available to man via significant support from man-made structures and devices. Over the past 100 years or so, technology has enabled several flight functions to migrate to automation and/or decision support systems. This migration continues with the United States NextGen and Europe s Single European Sky (a.k.a. SESAR) initiatives. These overhauls of the airspace system will be accomplished by accommodating the functional capabilities, benefits, and limitations of technology and automation together with the unique and sometimes overlapping functional capabilities, benefits, and limitations of humans. This paper will discuss how a safe and effective migration of any flight function must consider several interrelated issues, including, for example, shared situation awareness, and automation addiction, or over-reliance on automation. A long-term philosophical perspective is presented that considers all of these issues by primarily asking the following questions: How does one find an acceptable level of risk tolerance when allocating functions to automation versus humans? How does one measure or predict with confidence what the risks will be? These two questions and others will be considered from the two most-discussed paradigms involving the use of increasingly complex systems in the future: humans as operators and humans as monitors.

  6. Simpler ISS Flight Control Communications and Log Keeping via Social Tools and Techniques

    Science.gov (United States)

    Scott, David W.; Cowart, Hugh; Stevens, Dan

    2012-01-01

    The heart of flight operations control involves a) communicating effectively in real time with other controllers in the room and/or in remote locations and b) tracking significant events, decisions, and rationale to support the next set of decisions, provide a thorough shift handover, and troubleshoot/improve operations. International Space Station (ISS) flight controllers speak with each other via multiple voice circuits or loops, each with a particular purpose and constituency. Controllers monitor and/or respond to several loops concurrently. The primary tracking tools are console logs, typically kept by a single operator and not visible to others in real-time. Information from telemetry, commanding, and planning systems also plays into decision-making. Email is very secondary/tertiary due to timing and archival considerations. Voice communications and log entries supporting ISS operations have increased by orders of magnitude because the number of control centers, flight crew, and payload operations have grown. This paper explores three developmental ground system concepts under development at Johnson Space Center s (JSC) Mission Control Center Houston (MCC-H) and Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC). These concepts could reduce ISS control center voice traffic and console logging yet increase the efficiency and effectiveness of both. The goal of this paper is to kindle further discussion, exploration, and tool development.

  7. IRVE-II Post-Flight Trajectory Reconstruction

    Science.gov (United States)

    O'Keefe, Stephen A.; Bose, David M.

    2010-01-01

    NASA s Inflatable Re-entry Vehicle Experiment (IRVE) II successfully demonstrated an inflatable aerodynamic decelerator after being launched aboard a sounding rocket from Wallops Flight Facility (WFF). Preliminary day of flight data compared well with pre-flight Monte Carlo analysis, and a more complete trajectory reconstruction performed with an Extended Kalman Filter (EKF) approach followed. The reconstructed trajectory and comparisons to an attitude solution provided by NASA Sounding Rocket Operations Contract (NSROC) personnel at WFF are presented. Additional comparisons are made between the reconstructed trajectory and pre and post-flight Monte Carlo trajectory predictions. Alternative observations of the trajectory are summarized which leverage flight accelerometer measurements, the pre-flight aerodynamic database, and on-board flight video. Finally, analysis of the payload separation and aeroshell deployment events are presented. The flight trajectory is reconstructed to fidelity sufficient to assess overall project objectives related to flight dynamics and overall, IRVE-II flight dynamics are in line with expectations

  8. Crew Factors in Flight Operations XIV: Alertness Management in Regional Flight Operations Education Module

    Science.gov (United States)

    Rosekind, Mark R.; Co, Elizabeth L.; Neri, David F.; Oyung, Raymond L.; Mallis, Melissa M.

    2002-01-01

    Regional operations encompass a broad range of pilots and equipment. This module is intended to help all those involved in regional aviation, including pilots, schedulers, dispatchers, maintenance technicians, policy makers, and others, to understand the physiological factors underlying fatigue, how flight operations affect fatigue, and what can be done to counteract fatigue and maximize alertness and performance in their operations. The overall purpose of this module is to promote aviation safety, performance, and productivity. It is intended to meet three specific objectives: (1) to explain the current state of knowledge about the physiological mechanisms underlying fatigue; (2) to demonstrate how this knowledge can be applied to improving flight crew sleep, performance, and alertness; and (3) to offer strategies for alertness management. Aviation Safety Reporting System (ASRS) and National Transportation Safety Board (NISH) reports are used throughout this module to demonstrate that fatigue is a safety issue in the regional operations community. The appendices at the end of this module include the ASRS reports used for the examples contained in this publication, brief introductions to sleep disorders and relaxation techniques, summaries of relevant NASA publications, and a list of general readings on sleep, sleep disorders, and circadian rhythms.

  9. Orion Powered Flight Guidance Burn Options for Near Term Exploration

    Science.gov (United States)

    Fill, Tom; Goodman, John; Robinson, Shane

    2018-01-01

    NASA's Orion exploration spacecraft will fly more demanding mission profiles than previous NASA human flight spacecraft. Missions currently under development are destined for cislunar space. The EM-1 mission will fly unmanned to a Distant Retrograde Orbit (DRO) around the Moon. EM-2 will fly astronauts on a mission to the lunar vicinity. To fly these missions, Orion requires powered flight guidance that is more sophisticated than the orbital guidance flown on Apollo and the Space Shuttle. Orion's powered flight guidance software contains five burn guidance options. These five options are integrated into an architecture based on a proven shuttle heritage design, with a simple closed-loop guidance strategy. The architecture provides modularity, simplicity, versatility, and adaptability to future, yet-to-be-defined, exploration mission profiles. This paper provides a summary of the executive guidance architecture and details the five burn options to support both the nominal and abort profiles for the EM-1 and EM-2 missions.

  10. Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators

    Science.gov (United States)

    2017-07-07

    IFR ) IFR Instrument Flight Rules LED Light Emitting Diode LEP Laser Eye Protection MAPP Model Assessing Pilot Performance OD Optical Density...LEP and then use them to assess the impact of wearing LEP in a flight simulator environment. 2 Pending Distribution, A: Approved for public...2005). LEP has the potential to alter distinct characteristics of the visual environment, giving rise to concerns over the impact on flight tasks and

  11. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    Science.gov (United States)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  12. International Space Station Aeromedical Support in Star City, Russia

    Science.gov (United States)

    Cole, Richard; Chamberlin, Blake; Dowell, Gene; Castleberry, Tarah; Savage, Scott

    2010-01-01

    The Space Medicine Division at Johnson Space Center works with the International Space Station s international partners (IP) to accomplish assigned health care tasks. Each IP may assign a flight surgeon to support their assigned crewmembers during all phases of training, in-flight operations, and postflight activities. Because of the extensive amount of astronaut training conducted in Star City; NASA, in collaboration with its IPs, has elected to keep a flight surgeon assigned to NASA s Star City office to provide support to the U.S., Canadian, Japanese, and European astronauts during hazardous training activities and provide support for any contingency landings of Soyuz spacecraft in Kazakhstan. The physician also provides support as necessary to the Mission Control Center in Moscow for non-Russian crew-related activities. In addition, the physician in Star City provides ambulatory medical care to the non-Russian-assigned personnel in Star City and visiting dependents. Additional work involves all medical supplies, administration, and inventory. The Star City physician assists in medical evacuation and/or in obtaining support from western clinics in Moscow when required care exceeds local resources. Overall, the Russians are responsible for operations and the medical care of the entire crew when training in Star City and during launch/landing operations. However, they allow international partner flight surgeons to care for their crewmembers as agreed to in the ISS Medical Operations Requirements Document. Medical support focuses on pressurized, monitored, and other hazardous training activities. One of the most important jobs is to act as a medical advocate for the astronauts and to reduce the threat that these hazardous activities pose. Although the Russians have a robust medical system, evacuation may be needed to facilitate ongoing medical care. There are several international medical evacuation companies that provide this care.

  13. IceBridge Mission Flight Reports

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge Mission Flight Reports data set contains flight reports from NASA Operation IceBridge Greenland, Arctic, Antarctic, and Alaska missions. Flight reports...

  14. Armstrong Flight Research Center Research Technology and Engineering 2017

    Science.gov (United States)

    Voracek, David F. (Editor)

    2018-01-01

    I am delighted to present this report of accomplishments at NASA's Armstrong Flight Research Center. Our dedicated innovators possess a wealth of performance, safety, and technical capabilities spanning a wide variety of research areas involving aircraft, electronic sensors, instrumentation, environmental and earth science, celestial observations, and much more. They not only perform tasks necessary to safely and successfully accomplish Armstrong's flight research and test missions but also support NASA missions across the entire Agency. Armstrong's project teams have successfully accomplished many of the nation's most complex flight research projects by crafting creative solutions that advance emerging technologies from concept development and experimental formulation to final testing. We are developing and refining technologies for ultra-efficient aircraft, electric propulsion vehicles, a low boom flight demonstrator, air launch systems, and experimental x-planes, to name a few. Additionally, with our unique location and airborne research laboratories, we are testing and validating new research concepts. Summaries of each project highlighting key results and benefits of the effort are provided in the following pages. Technology areas for the projects include electric propulsion, vehicle efficiency, supersonics, space and hypersonics, autonomous systems, flight and ground experimental test technologies, and much more. Additional technical information is available in the appendix, as well as contact information for the Principal Investigator of each project. I am proud of the work we do here at Armstrong and am pleased to share these details with you. We welcome opportunities for partnership and collaboration, so please contact us to learn more about these cutting-edge innovations and how they might align with your needs.

  15. Integrated flight path planning system and flight control system for unmanned helicopters.

    Science.gov (United States)

    Jan, Shau Shiun; Lin, Yu Hsiang

    2011-01-01

    This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM).

  16. Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters

    Science.gov (United States)

    Jan, Shau Shiun; Lin, Yu Hsiang

    2011-01-01

    This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029

  17. The flights before the flight - An overview of shuttle astronaut training

    Science.gov (United States)

    Sims, John T.; Sterling, Michael R.

    1989-01-01

    Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.

  18. Orion Exploration Flight Test 1 (EFT-1) Best Estimated Trajectory Development

    Science.gov (United States)

    Holt, Greg N.; Brown, Aaron

    2016-01-01

    The Orion Exploration Flight Test 1 (EFT-1) mission successfully flew on Dec 5, 2014 atop a Delta IV Heavy launch vehicle. The goal of Orions maiden flight was to stress the system by placing an uncrewed vehicle on a high-energy trajectory replicating conditions similar to those that would be experienced when returning from an asteroid or a lunar mission. The Orion navigation team combined all trajectory data from the mission into a Best Estimated Trajectory (BET) product. There were significant challenges in data reconstruction and many lessons were learned for future missions. The team used an estimation filter incorporating radar tracking, onboard sensors (Global Positioning System and Inertial Measurement Unit), and day-of-flight weather balloons to evaluate the true trajectory flown by Orion. Data was published for the entire Orion EFT-1 flight, plus objects jettisoned during entry such as the Forward Bay Cover. The BET customers include approximately 20 disciplines within Orion who will use the information for evaluating vehicle performance and influencing future design decisions.

  19. Anesthesia and critical-care delivery in weightlessness: A challenge for research in parabolic flight analogue space surgery studies

    Science.gov (United States)

    Ball, Chad G.; Keaney, Marilyn A.; Chun, Rosaleen; Groleau, Michelle; Tyssen, Michelle; Keyte, Jennifer; Broderick, Timothy J.; Kirkpatrick, Andrew W.

    2010-03-01

    BackgroundMultiple nations are actively pursuing manned exploration of space beyond low-earth orbit. The responsibility to improve surgical care for spaceflight is substantial. Although the use of parabolic flight as a terrestrial analogue to study surgery in weightlessness (0 g) is well described, minimal data is available to guide the appropriate delivery of anesthesia. After studying anesthetized pigs in a 0 g parabolic flight environment, our group developed a comprehensive protocol describing prolonged anesthesia in a parabolic flight analogue space surgery study (PFASSS). Novel challenges included a physically remote vivarium, prolonged (>10 h) anesthetic requirements, and the provision of veterinary operating room/intensive care unit (ICU) equivalency on-board an aircraft with physical dimensions of ethical approval, multiple ground laboratory sessions were conducted with combinations of anesthetic, pre-medication, and induction protocols on Yorkshire-cross specific pathogen-free (SPF) pigs. Several constant rate infusion (CRI) intravenous anesthetic combinations were tested. In each regimen, opioids were administered to ensure analgesia. Ventilation was supported mechanically with blended gradients of oxygen. The best performing terrestrial 1 g regime was flight tested in parabolic flight for its effectiveness in sustaining optimal and prolonged anesthesia, analgesia, and maintaining hemodynamic stability. Each flight day, a fully anesthetized, ventilated, and surgically instrumented pig was transported to the Flight Research Laboratory (FRL) in a temperature-controlled animal ambulance. A modular on-board surgical/ICU suite with appropriate anesthesia/ICU and surgical support capabilities was employed. ResultsThe mean duration of anesthesia (per flight day) was 10.28 h over four consecutive days. A barbiturate and ketamine-based CRI anesthetic regimen supplemented with narcotic analgesia by bolus administration offered the greatest prolonged hemodynamic

  20. Automation of Flight Software Regression Testing

    Science.gov (United States)

    Tashakkor, Scott B.

    2016-01-01

    NASA is developing the Space Launch System (SLS) to be a heavy lift launch vehicle supporting human and scientific exploration beyond earth orbit. SLS will have a common core stage, an upper stage, and different permutations of boosters and fairings to perform various crewed or cargo missions. Marshall Space Flight Center (MSFC) is writing the Flight Software (FSW) that will operate the SLS launch vehicle. The FSW is developed in an incremental manner based on "Agile" software techniques. As the FSW is incrementally developed, testing the functionality of the code needs to be performed continually to ensure that the integrity of the software is maintained. Manually testing the functionality on an ever-growing set of requirements and features is not an efficient solution and therefore needs to be done automatically to ensure testing is comprehensive. To support test automation, a framework for a regression test harness has been developed and used on SLS FSW. The test harness provides a modular design approach that can compile or read in the required information specified by the developer of the test. The modularity provides independence between groups of tests and the ability to add and remove tests without disturbing others. This provides the SLS FSW team a time saving feature that is essential to meeting SLS Program technical and programmatic requirements. During development of SLS FSW, this technique has proved to be a useful tool to ensure all requirements have been tested, and that desired functionality is maintained, as changes occur. It also provides a mechanism for developers to check functionality of the code that they have developed. With this system, automation of regression testing is accomplished through a scheduling tool and/or commit hooks. Key advantages of this test harness capability includes execution support for multiple independent test cases, the ability for developers to specify precisely what they are testing and how, the ability to add

  1. Application of Telemedicine Technologies to Long Term Spaceflight Support

    Science.gov (United States)

    Orlov, O. I.; Grigoriev, A. I.

    Space medicine passed a long way of search for informative methods of medical data collection and analysis and worked out a complex of effective means of countermeasures and medical support. These methods and means aimed at optimization of the habitation conditions and professional activity of space crews enabled space medicine specialists to create a background for the consecutive prolongation of manned space flights and providing their safety and effectiveness. To define support systems perspectives we should consider those projects on which bases the systems are implemented. According to the set opinion manned spaceflights programs will develop in two main directions. The first one is connected with the near space exploration, first of all with the growing interest in scientific-applied and in prospect industrial employment of large size orbit manned complexes, further development of transport systems and in long-run prospect - reclamation of Lunar surface. The second direction is connected with the perspectives of interplanetary missions. There's no doubt that the priority project of the near-earth space exploration in the coming decenaries will be building up of the International Space Station. This trend characteristics prove the necessity to provide crews whose members may differ in health with individual approach to the schedule of work, rest, nutrition and training, to the medical control and therapeutic-prophylactic procedures. In these conditions the importance of remote monitoring and distance support of crew members activities by the earth- based medical control services will increase. The response efficiency in such cases can only be maintained by means of advanced telemedicine systems. The international character of the International Space Station (ISS) gives a special importance to the current activities on integrating medical support systems of the participating countries. Creation of such a system will allow to coordinate international research

  2. Implementation and flight tests for the Digital Integrated Automatic Landing System (DIALS). Part 1: Flight software equations, flight test description and selected flight test data

    Science.gov (United States)

    Hueschen, R. M.

    1986-01-01

    Five flight tests of the Digital Automated Landing System (DIALS) were conducted on the Advanced Transport Operating Systems (ATOPS) Transportation Research Vehicle (TSRV) -- a modified Boeing 737 aircraft for advanced controls and displays research. These flight tests were conducted at NASA's Wallops Flight Center using the microwave landing system (MLS) installation on runway 22. This report describes the flight software equations of the DIALS which was designed using modern control theory direct-digital design methods and employed a constant gain Kalman filter. Selected flight test performance data is presented for localizer (runway centerline) capture and track at various intercept angles, for glideslope capture and track of 3, 4.5, and 5 degree glideslopes, for the decrab maneuver, and for the flare maneuver. Data is also presented to illustrate the system performance in the presence of cross, gust, and shear winds. The mean and standard deviation of the peak position errors for localizer capture were, respectively, 24 feet and 26 feet. For mild wind conditions, glideslope and localizer tracking position errors did not exceed, respectively, 5 and 20 feet. For gusty wind conditions (8 to 10 knots), these errors were, respectively, 10 and 30 feet. Ten hands off automatic lands were performed. The standard deviation of the touchdown position and velocity errors from the mean values were, respectively, 244 feet and 0.7 feet/sec.

  3. A Vision of Quantitative Imaging Technology for Validation of Advanced Flight Technologies

    Science.gov (United States)

    Horvath, Thomas J.; Kerns, Robert V.; Jones, Kenneth M.; Grinstead, Jay H.; Schwartz, Richard J.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Dantowitz, Ronald F.

    2011-01-01

    Flight-testing is traditionally an expensive but critical element in the development and ultimate validation and certification of technologies destined for future operational capabilities. Measurements obtained in relevant flight environments also provide unique opportunities to observe flow phenomenon that are often beyond the capabilities of ground testing facilities and computational tools to simulate or duplicate. However, the challenges of minimizing vehicle weight and internal complexity as well as instrumentation bandwidth limitations often restrict the ability to make high-density, in-situ measurements with discrete sensors. Remote imaging offers a potential opportunity to noninvasively obtain such flight data in a complementary fashion. The NASA Hypersonic Thermodynamic Infrared Measurements Project has demonstrated such a capability to obtain calibrated thermal imagery on a hypersonic vehicle in flight. Through the application of existing and accessible technologies, the acreage surface temperature of the Shuttle lower surface was measured during reentry. Future hypersonic cruise vehicles, launcher configurations and reentry vehicles will, however, challenge current remote imaging capability. As NASA embarks on the design and deployment of a new Space Launch System architecture for access beyond earth orbit (and the commercial sector focused on low earth orbit), an opportunity exists to implement an imagery system and its supporting infrastructure that provides sufficient flexibility to incorporate changing technology to address the future needs of the flight test community. A long term vision is offered that supports the application of advanced multi-waveband sensing technology to aid in the development of future aerospace systems and critical technologies to enable highly responsive vehicle operations across the aerospace continuum, spanning launch, reusable space access and global reach. Motivations for development of an Agency level imagery

  4. Emergency medical support for a manned stratospheric balloon test program.

    Science.gov (United States)

    Blue, Rebecca S; Norton, Sean C; Law, Jennifer; Pattarini, James M; Antonsen, Erik L; Garbino, Alejandro; Clark, Jonathan B; Turney, Matthew W

    2014-10-01

    Red Bull Stratos was a commercial program that brought a test parachutist, protected by a full-pressure suit, in a stratospheric balloon with pressurized capsule to over 127,582 ft (38,969 m), from which he free fell and subsequently parachuted to the ground. Given that the major risks to the parachutist included ebullism, negative Gz (toe-to-head) acceleration exposure from an uncontrolled flat spin, and trauma, a comprehensive plan was developed to recover the parachutist under nominal conditions and to respond to any medical contingencies that might have arisen. In this report, the project medical team describes the experience of providing emergency medical support and crew recovery for the manned balloon flights of the program. The phases of flight, associated risks, and available resources were systematically evaluated. Six distinct phases of flight from an Emergency Medical Services (EMS) standpoint were identified. A Medical Support Plan was developed to address the risks associated with each phase, encompassing personnel, equipment, procedures, and communications. Despite geographical, communications, and resource limitations, the medical team was able to implement the Medical Support Plan, enabling multiple successful manned balloon flights to 71,615 ft (21,828 m), 97,221 ft (29,610 m), and 127,582 ft (38,969 m). The experience allowed refinement of the EMS and crew recovery procedures for each successive flight and could be applied to other high altitude or commercial space ventures.

  5. How is research evidence used to support claims made in advertisements for wound care products?

    Science.gov (United States)

    Dumville, Jo C; Petherick, Emily S; O'Meara, Susan; Raynor, Pauline; Cullum, Nicky

    2009-05-01

    To investigate the amount, type and accuracy of citations use in support of product related claims from advertisements of wound care products. Although articles submitted to most medical journals are subjected to peer review, such scrutiny is often not required for the content of advertisements. A contents survey of advertisements from two wound care journals (Journal of Wound Care and Ostomy Wound Management) from 2002-2003 and the British Medical Journal, 2002-2003. Data collected from advertisements included identification of product related claims made and any corresponding citations. Where journal articles were cited to support claims, the articles were obtained. Where data on file were cited, this material was requested. In each case the accuracy of claims in relation to the content of the supporting citation was assessed. The use of citations to support product related claims was infrequent in advertisements from wound care journals, where 35% of advertisements containing a product related claim also contained at least one citation, compared with 63% of advertisements from the British Medical Journal. Of citations that were supplied, journal articles were less common in the wound journals (40% vs. 73% in the British Medical Journal) and data on file more common (38% vs. 6% in the British Medical Journal). Where journal articles were obtained, 56% of claims in the wound care journals advertisements were not supported by the cited article, compared with 12% of claims in the British Medical Journal. The wound journals advertised predominantly medical devices. The use and accuracy of referencing in advertisements from wound care journals was poor. Nurses have increasing responsibilities for the prescribing of both drugs and devices, which must be accompanied by the ability to interpret marketing materials and research evidence critically. Nurse educators must ensure that nurse education generally and nurse prescriber training particularly, builds skills of

  6. MODELING OF BEHAVIORAL ACTIVITY OF AIR NAVIGATION SYSTEM'S HUMAN-OPERATOR IN FLIGHT EMERGENCIES

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2012-09-01

    Full Text Available  The Air Navigation System is presented as a complex socio-technical system. The influence on decision-making by Air Navigation System's human-operator of the professional factors as well as the factors of non-professional nature has been defined. Logic determined and stochastic models of decision-making by the Air Navigation System's human-operator in flight emergencies have been developed. The scenarios of developing a flight situation in case of selecting either the positive or negative pole in accordance with the reflexive theory have been obtained. The informational support system of the operator in the unusual situations on the basis of Neural Network model of evaluating the efficiency of the potential alternative of flight completion has been built.

  7. Cooperative random Levy flight searches and the flight patterns of honeybees

    International Nuclear Information System (INIS)

    Reynolds, A.M.

    2006-01-01

    The most efficient Levy flight (scale-free) searching strategy for N independent searchers to adopt when target sites are randomly and sparsely distributed is identified. For N=1, it is well known that the optimal searching strategy is attained when μ=2, where the exponent μ characterizes the Levy distribution, P(l)=l -μ , of flight-lengths. For N>1, the optimal searching strategy is attained as μ->1. It is suggested that the orientation flights of honeybees can be understood within the context of such an optimal cooperative random Levy flight searching strategy. Upon returning to their hive after surveying a landscape honeybees can exchange information about the locations of target sites through the waggle dance. In accordance with observations it is predicted that the waggle dance can be disrupted without noticeable influence on a hive's ability to maintain weight when forage is plentiful

  8. Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences

    Science.gov (United States)

    Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.

    2003-01-01

    The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.

  9. Consort 1 sounding rocket flight

    Science.gov (United States)

    Wessling, Francis C.; Maybee, George W.

    1989-01-01

    This paper describes a payload of six experiments developed for a 7-min microgravity flight aboard a sounding rocket Consort 1, in order to investigate the effects of low gravity on certain material processes. The experiments in question were designed to test the effect of microgravity on the demixing of aqueous polymer two-phase systems, the electrodeposition process, the production of elastomer-modified epoxy resins, the foam formation process and the characteristics of foam, the material dispersion, and metal sintering. The apparatuses designed for these experiments are examined, and the rocket-payload integration and operations are discussed.

  10. X-36 in Flight over Mojave Desert during 5th Flight

    Science.gov (United States)

    1997-01-01

    The unusual lines of the X-36 Tailless Fighter Agility Research Aircraft contrast sharply with the desert floor as the remotely-piloted aircraft flies over the Mojave Desert on a June 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of

  11. NASA Goddard Space Flight Center Supply Chain Management Program

    Science.gov (United States)

    Kelly, Michael P.

    2011-01-01

    This slide presentation reviews the working of the Supplier Assessment Program at NASA Goddard Space Flight Center. The program supports many GSFC projects to ensure suppliers are aware of and are following the contractual requirements, to provide an independent assessment of the suppliers' processes, and provide suppliers' safety and mission assurance organizations information to make the changes within their organization.

  12. Orion EFT-1 Catalytic Tile Experiment Overview and Flight Measurements

    Science.gov (United States)

    Salazar, Giovanni; Amar, Adam; Hyatt, Andrew; Rezin, Marc D.

    2016-01-01

    This paper describes the design and results of a surface catalysis flight experiment flown on the Orion Multipurpose Crew Vehicle during Exploration Flight Test 1 (EFT1). Similar to previous Space Shuttle catalytic tile experiments, the present test consisted of a highly catalytic coating applied to an instrumented TPS tile. However, the present catalytic tile experiment contained significantly more instrumentation in order to better resolve the heating overshoot caused by the change in surface catalytic efficiency at the interface between two distinct materials. In addition to collecting data with unprecedented spatial resolution of the "overshoot" phenomenon, the experiment was also designed to prove if such a catalytic overshoot would be seen in turbulent flow in high enthalpy regimes. A detailed discussion of the results obtained during EFT1 is presented, as well as the challenges associated with data interpretation of this experiment. Results of material testing carried out in support of this flight experiment are also shown. Finally, an inverse heat conduction technique is employed to reconstruct the flight environments at locations upstream and along the catalytic coating. The data and analysis presented in this work will greatly contribute to our understanding of the catalytic "overshoot" phenomenon, and have a significant impact on the design of future spacecraft.

  13. In-flight sleep, pilot fatigue and Psychomotor Vigilance Task performance on ultra-long range versus long range flights.

    Science.gov (United States)

    Gander, Philippa H; Signal, T Leigh; van den Berg, Margo J; Mulrine, Hannah M; Jay, Sarah M; Jim Mangie, Captain

    2013-12-01

    This study evaluated whether pilot fatigue was greater on ultra-long range (ULR) trips (flights >16 h on 10% of trips in a 90-day period) than on long range (LR) trips. The within-subjects design controlled for crew complement, pattern of in-flight breaks, flight direction and departure time. Thirty male Captains (mean age = 54.5 years) and 40 male First officers (mean age = 48.0 years) were monitored on commercial passenger flights (Boeing 777 aircraft). Sleep was monitored (actigraphy, duty/sleep diaries) from 3 days before the first study trip to 3 days after the second study trip. Karolinska Sleepiness Scale, Samn-Perelli fatigue ratings and a 5-min Psychomotor Vigilance Task were completed before, during and after every flight. Total sleep in the 24 h before outbound flights and before inbound flights after 2-day layovers was comparable for ULR and LR flights. All pilots slept on all flights. For each additional hour of flight time, they obtained an estimated additional 12.3 min of sleep. Estimated mean total sleep was longer on ULR flights (3 h 53 min) than LR flights (3 h 15 min; P(F) = 0.0004). Sleepiness ratings were lower and mean reaction speed was faster at the end of ULR flights. Findings suggest that additional in-flight sleep mitigated fatigue effectively on longer flights. Further research is needed to clarify the contributions to fatigue of in-flight sleep versus time awake at top of descent. The study design was limited to eastward outbound flights with two Captains and two First Officers. Caution must be exercised when extrapolating to different operations. © 2013 European Sleep Research Society.

  14. Flight Test of a Technology Transparent Light Concentration Panel on SMEX/WIRE

    Science.gov (United States)

    Stern, Theodore G.; Lyons, John

    2000-01-01

    A flight experiment has demonstrated a modular solar concentrator that can be used as a direct substitute replacement for planar photovoltaic panels in spacecraft solar arrays. The Light Concentrating Panel (LCP) uses an orthogrid arrangement of composite mirror strips to form an array of rectangular mirror troughs that reflect light onto standard, high-efficiency solar cells at a concentration ratio of approximately 3:1. The panel area, mass, thickness, and pointing tolerance has been shown to be similar to a planar array using the same cells. Concentration reduces the panel's cell area by 2/3, which significantly reduces the cost of the panel. An opportunity for a flight experiment module arose on NASA's Small Explorer / Wide-Field Infrared Explorer (SMEX/WIRE) spacecraft, which uses modular solar panel modules integrated into a solar panel frame structure. The design and analysis that supported implementation of the LCP as a flight experiment module is described. Easy integration into the existing SMEX-LITE wing demonstrated the benefits of technology transparency. Flight data shows the stability of the LCP module after nearly one year in Low Earth Orbit.

  15. The Orion Exploration Flight Test Post Flight Solid Particle Flight Environment Inspection and Analysis

    Science.gov (United States)

    Miller, Joshua E.

    2016-01-01

    Orbital debris in the millimeter size range can pose a hazard to current and planned spacecraft due to the high relative impact speeds in Earth orbit. Fortunately, orbital debris has a relatively short life at lower altitudes due to atmospheric effects; however, at higher altitudes orbital debris can survive much longer and has resulted in a band of high flux around 700 to 1,500 km above the surface of the Earth. While large orbital debris objects are tracked via ground based observation, little information can be gathered about small particles except by returned surfaces, which until the Orion Exploration Flight Test number one (EFT-1), has only been possible for lower altitudes (400 to 500 km). The EFT-1 crew module backshell, which used a porous, ceramic tile system with surface coatings, has been inspected post-flight for potential micrometeoroid and orbital debris (MMOD) damage. This paper describes the pre- and post-flight activities of inspection, identification and analysis of six candidate MMOD impact craters from the EFT-1 mission.

  16. UAS-NAS Flight Test Series 3: Test Environment Report

    Science.gov (United States)

    Hoang, Ty; Murphy, Jim; Otto, Neil

    2016-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration in the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability (SSI), Human Systems Integration (HSI), and Communications (Comm), and Certification to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Detect and Avoid (DAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project is conducting a series of human-in-the-loop (HITL) and flight test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity, and

  17. Manned Flight Simulator (MFS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...

  18. The International Telecommunications Satellite (INTELSAT) Solar Array Coupon (ISAC) atomic oxgyen flight experiment: Techniques, results and summary

    Science.gov (United States)

    Koontz, S.; King, G.; Dunnet, A.; Kirkendahl, T.; Linton, R.; Vaughn, J.

    1993-01-01

    Techniques and results of the ISAC flight experiment are presented, and comparisons between flight tests results and ground based testing are made. The ISAC flight experiment, one component of a larger INTELSAT 6 rescue program, tested solar array configurations and individual silver connects in ground based facilities and during STS-41 (Space Shuttle Discovery). In addition to the INTELSAT specimens, several materials, for which little or no flight data exist, were also tested for atomic oxygen reactivity. Dry lubricants, elastomers, polymeric materials, and inorganic materials were exposed to an oxygen atom fluence of 1.2 x 10(exp 20) atoms. Many of the samples were selected to support Space Station Freedom design and decision-making.

  19. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research: Summary of Winter 1996-1997 Flight Operations

    Science.gov (United States)

    Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter

    1998-01-01

    During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.

  20. Using wide area differential GPS to improve total system error for precision flight operations

    Science.gov (United States)

    Alter, Keith Warren

    Total System Error (TSE) refers to an aircraft's total deviation from the desired flight path. TSE can be divided into Navigational System Error (NSE), the error attributable to the aircraft's navigation system, and Flight Technical Error (FTE), the error attributable to pilot or autopilot control. Improvement in either NSE or FTE reduces TSE and leads to the capability to fly more precise flight trajectories. The Federal Aviation Administration's Wide Area Augmentation System (WAAS) became operational for non-safety critical applications in 2000 and will become operational for safety critical applications in 2002. This navigation service will provide precise 3-D positioning (demonstrated to better than 5 meters horizontal and vertical accuracy) for civil aircraft in the United States. Perhaps more importantly, this navigation system, which provides continuous operation across large regions, enables new flight instrumentation concepts which allow pilots to fly aircraft significantly more precisely, both for straight and curved flight paths. This research investigates the capabilities of some of these new concepts, including the Highway-In-The Sky (HITS) display, which not only improves FTE but also reduces pilot workload when compared to conventional flight instrumentation. Augmentation to the HITS display, including perspective terrain and terrain alerting, improves pilot situational awareness. Flight test results from demonstrations in Juneau, AK, and Lake Tahoe, CA, provide evidence of the overall feasibility of integrated, low-cost flight navigation systems based on these concepts. These systems, requiring no more computational power than current-generation low-end desktop computers, have immediate applicability to general aviation flight from Cessnas to business jets and can support safer and ultimately more economical flight operations. Commercial airlines may also, over time, benefit from these new technologies.

  1. In-flight Assessment of Lower Body Negative Pressure as a Countermeasure for Post-flight Orthostatic Intolerance

    Science.gov (United States)

    Charles, J. B.; Stenger, M. B.; Phillips, T. R.; Arzeno, N. M.; Lee, S. M. C.

    2009-01-01

    Introduction. We investigated the efficacy of combining fluid loading with sustained lower body negative pressure (LBNP) to reverse orthostatic intolerance associated with weightlessness during and immediately after Space Shuttle missions. Methods. Shuttle astronauts (n=13) underwent 4 hours of LBNP at -30 mm(Hg) and ingested water and salt ( soak treatment) during flight in two complementary studies. In the first study (n=8), pre-flight heart rate (HR) and blood pressure (BP) responses to an LBNP ramp (5-min stages of -10 mm(Hg) steps to -50 mm(Hg) were compared to responses in-flight one and two days after LBNP soak treatment. In the second study (n=5), the soak was performed 24 hr before landing, and post-flight stand test results of soak subjects were compared with those of an untreated cohort (n=7). In both studies, the soak was scheduled late in the mission and was preceded by LBNP ramp tests at approximately 3-day intervals to document the in-flight loss of orthostatic tolerance. Results. Increased HR and decreased BP responses to LBNP were evident early in-flight. In-flight, one day after LBNP soak, HR and BP responses to LBNP were not different from pre-flight, but the effect was absent the second day after treatment. Post-flight there were no between-group differences in HR and BP responses to standing, but all 5 treatment subjects completed the 5-minute stand test whereas 2 of 7 untreated cohort subjects did not. Discussion. Exaggerated HR and BP responses to LBNP were evident within the first few days of space flight, extending results from Skylab. The combined LBNP and fluid ingestion countermeasure restored in-flight LBNP HR and BP responses to pre-flight levels and provided protection of post-landing orthostatic function. Unfortunately, any benefits of the combined countermeasure were offset by the complexity of its implementation, making it inappropriate for routine application during Shuttle flights.

  2. Vision based flight procedure stereo display system

    Science.gov (United States)

    Shen, Xiaoyun; Wan, Di; Ma, Lan; He, Yuncheng

    2008-03-01

    A virtual reality flight procedure vision system is introduced in this paper. The digital flight map database is established based on the Geographic Information System (GIS) and high definitions satellite remote sensing photos. The flight approaching area database is established through computer 3D modeling system and GIS. The area texture is generated from the remote sensing photos and aerial photographs in various level of detail. According to the flight approaching procedure, the flight navigation information is linked to the database. The flight approaching area vision can be dynamic displayed according to the designed flight procedure. The flight approaching area images are rendered in 2 channels, one for left eye images and the others for right eye images. Through the polarized stereoscopic projection system, the pilots and aircrew can get the vivid 3D vision of the flight destination approaching area. Take the use of this system in pilots preflight preparation procedure, the aircrew can get more vivid information along the flight destination approaching area. This system can improve the aviator's self-confidence before he carries out the flight mission, accordingly, the flight safety is improved. This system is also useful in validate the visual flight procedure design, and it helps to the flight procedure design.

  3. Review on flight simulators (today and tomorrow); Flight simulatior no genjo to kongo

    Energy Technology Data Exchange (ETDEWEB)

    Komura, T. [Mitsubishi Precision Company Limited, Tokyo (Japan)

    2000-04-05

    This paper presents various flight simulators. A flight simulator is classified into that for R and D on aircraft and that for flight training according to its usage. As an example of the former, the general-purpose flight simulation test facility of National Aerospace Laboratory, Science and Technology Agency is in use for development of the STOL experimental aircraft 'Asuka' and simulation experiments for space development. A civil aircraft simulator simulating the interior of a cockpit, operation feeling of piloting devices, flight performance, dynamic characteristics, an engine system and a hydraulic system like a real aircraft is in wide use for training pilots. A fighter simulator for air force is used for training detection of enemy's aircraft by radar, and missile shooting. An antisubmarine patrol aircraft simulator is used for training detection of submarines by sonic detector and magnetic detector, and torpedo air-launching. For both simulators, real simulation of detection sensors or battle environment is required. (NEDO)

  4. Flight Muscle Dimorphism and Heterogeneity in Flight Initiation of Field-Collected Triatoma infestans (Hemiptera: Reduviidae)

    OpenAIRE

    Gurevitz, Juan M.; Kitron, Uriel; Gürtler, Ricardo E.

    2007-01-01

    Recent experiments demonstrated that most field-collected Triatoma infestans (Klug) (Hemiptera: Reduviidae) adults from northern Argentina either never initiated flight or did so repeatedly in both sexes. This pattern could not be explained by sex, adult age, weight, weight-to-length ratio (W/L), or chance. We examined whether bugs that never initiated flight possessed developed flight muscles, and whether flight muscle mass relative to total body mass (FMR) was related to the probability of ...

  5. Design Specification for a Thrust-Vectoring, Actuated-Nose-Strake Flight Control Law for the High-Alpha Research Vehicle

    Science.gov (United States)

    Bacon, Barton J.; Carzoo, Susan W.; Davidson, John B.; Hoffler, Keith D.; Lallman, Frederick J.; Messina, Michael D.; Murphy, Patrick C.; Ostroff, Aaron J.; Proffitt, Melissa S.; Yeager, Jessie C.; hide

    1996-01-01

    Specifications for a flight control law are delineated in sufficient detail to support coding the control law in flight software. This control law was designed for implementation and flight test on the High-Alpha Research Vehicle (HARV), which is an F/A-18 aircraft modified to include an experimental multi-axis thrust-vectoring system and actuated nose strakes for enhanced rolling (ANSER). The control law, known as the HARV ANSER Control Law, was designed to utilize a blend of conventional aerodynamic control effectors, thrust vectoring, and actuated nose strakes to provide increased agility and good handling qualities throughout the HARV flight envelope, including angles of attack up to 70 degrees.

  6. 14 CFR 27.151 - Flight controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight controls. 27.151 Section 27.151... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Flight Characteristics § 27.151 Flight controls. (a) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...

  7. 14 CFR 29.151 - Flight controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight controls. 29.151 Section 29.151... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Flight Characteristics § 29.151 Flight controls. (a) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...

  8. Capital Flight from Russia

    OpenAIRE

    Prakash Loungani; Paolo Mauro

    2000-01-01

    This paper documents the scale of capital flight from Russia, compares it with that observed in other countries, and reviews policy options. The evidence from other countries suggests that capital flight can be reversed once reforms take hold. The paper argues that capital flight from Russia can only be curbed through a medium-term reform strategy aimed at improving governance and macroeconomic performance, and strengthening the banking system. Capital controls result in costly distortions an...

  9. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    Science.gov (United States)

    2003-01-01

    This photo (a frontal view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  10. Agricultural Production. Numeracy. Level 1. Level 2. Level 3. Support Materials for Agricultural Training.

    Science.gov (United States)

    Batman, Kangan; Tully, Chris

    This publication contains the three numeracy units of the three levels of Support Materials for Agricultural Training (SMAT) in agricultural production: Level 1 (starting), 2 (continuing), and 3 (completing). The units are designed to help the learner improve his or her numeracy skills needed to deal with agricultural production. SMAT materials…

  11. The Building Blocks for JWST I and T (Integrations and Test) to Operations - From Simulator to Flight Units

    Science.gov (United States)

    Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace

    2012-01-01

    The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.

  12. Flight Deck Display Technologies for 4DT and Surface Equivalent Visual Operations

    Science.gov (United States)

    Prinzel, Lawrence J., III; Jones, Denis R.; Shelton, Kevin J.; Arthur, Jarvis J., III; Bailey, Randall E.; Allamandola, Angela S.; Foyle, David C.; Hooey, Becky L.

    2009-01-01

    NASA research is focused on flight deck display technologies that may significantly enhance situation awareness, enable new operating concepts, and reduce the potential for incidents/accidents for terminal area and surface operations. The display technologies include surface map, head-up, and head-worn displays; 4DT guidance algorithms; synthetic and enhanced vision technologies; and terminal maneuvering area traffic conflict detection and alerting systems. This work is critical to ensure that the flight deck interface technologies and the role of the human participants can support the full realization of the Next Generation Air Transportation System (NextGen) and its novel operating concepts.

  13. A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure

    Science.gov (United States)

    Murch, Austin M.

    2008-01-01

    A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.

  14. Production and repair of metal supports as an indispensable activity of the Georgi Dimitrov mining and power combine

    Energy Technology Data Exchange (ETDEWEB)

    Mladenov, O

    1979-07-01

    Georgi Dimitrov underground mines have favoured metal supports over concrete slabs and timber since 1972 because of their well known advantages and because metal supports lend themselves to easy handling by 4-PU combines and 1PNB-2 loading machines. To eliminate bottlenecks and high costs of procurement from a central base individual mines were charged with production of their own metal supports. This resulted in some new developments, for example, in the production of supports with a 3.16 times greater capacity in the Marshall Tolbukhin and Al. Milenov mines in 1978. Hydraulic presses are generally used to produce conventional arch and ring type supports, and the Polish make PHPG-100 press is used for repairs. Decentralization also caused problems: different length timber and metal supports often necessitate additional cutting operations, a multitude of machines cause increased manual handling, and equipment is too often adapted to special requirements of individual shifts. However, costs of metal supports have dropped about 15%. Further improvement would require that the production of metal supports be centralized for the entire combine, supports be used according to their strength, and screw joinings be replaced with cotter type fastenings.

  15. Free Flight Rotorcraft Flight Test Vehicle Technology Development

    Science.gov (United States)

    Hodges, W. Todd; Walker, Gregory W.

    1994-01-01

    A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.

  16. Flight Simulation of ARES in the Mars Environment

    Science.gov (United States)

    Kenney, P. Sean; Croom, Mark A.

    2011-01-01

    A report discusses using the Aerial Regional- scale Environmental Survey (ARES) light airplane as an observation platform on Mars in order to gather data. It would have to survive insertion into the atmosphere, fly long enough to meet science objectives, and provide a stable platform. The feasibility of such a platform was tested using the Langley Standard Real- Time Simulation in C++. The unique features of LaSRS++ are: full, six-degrees- of-freedom flight simulation that can be used to evaluate the performance of the aircraft in the Martian environment; capability of flight analysis from start to finish; support of Monte Carlo analysis of aircraft performance; and accepting initial conditions from POST results for the entry and deployment of the entry body. Starting with a general aviation model, the design was tweaked to maintain a stable aircraft under expected Martian conditions. Outer mold lines were adjusted based on experience with the Martian atmosphere. Flight control was modified from a vertical acceleration control law to an angle-of-attack control law. Navigation was modified from a vertical acceleration control system to an alpha control system. In general, a pattern of starting with simple models with well-understood behaviors was selected and modified during testing.

  17. 76 FR 16236 - Prohibition Against Certain Flights Within the Tripoli (HLLL) Flight Information Region (FIR)

    Science.gov (United States)

    2011-03-23

    ... Tripoli (HLLL) Flight Information Region (FIR) AGENCY: Federal Aviation Administration (FAA), Department... the Tripoli (HLLL) Flight Information Region (FIR) by all U.S. air carriers; U.S. commercial operators...) Flight Information Region (FIR). (a) Applicability. This section applies to the following persons: (1...

  18. 78 FR 66261 - Certified Flight Instructor Flight Reviews; Recent Pilot in Command Experience; Airmen Online...

    Science.gov (United States)

    2013-11-05

    ...-0780; Amdt. No. 61-131] RIN 2120-AK23 Certified Flight Instructor Flight Reviews; Recent Pilot in Command Experience; Airmen Online Services; Confirmation of Effective Date AGENCY: Federal Aviation...-calendar month flight review requirements. This rule also clarifies that the generally applicable recent...

  19. 78 FR 56822 - Certified Flight Instructor Flight Reviews; Recent Pilot in Command Experience; Airmen Online...

    Science.gov (United States)

    2013-09-16

    ...-0780; Amdt. No. 61-131] RIN 2120-AK23 Certified Flight Instructor Flight Reviews; Recent Pilot in Command Experience; Airmen Online Services AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... review requirements. This rule also clarifies that the generally applicable recent flight experience...

  20. Flight to Safety from European Stock Markets

    DEFF Research Database (Denmark)

    Aslanidis, Nektarios; Christiansen, Charlotte

    -return trade-off is positive and during flight-to-safety episodes it is negative. The effects of flight-to-safety episodes on the risk-return trade-off are qualitatively similar for own country flight-to-safety episodes, for flight from own country stock market to the US bond market, and for US flight......This paper investigates flight-to-safety from stocks to bonds in seven European markets. We use quantile regressions to identify flight-to-safety episodes. The simple risk-return trade-off on the stock markets is negative which is caused by flight-to-safety episodes: During normal periods, the risk...

  1. Asset Analysis and Operational Concepts for Separation Assurance Flight Testing at Dryden Flight Research Center

    Science.gov (United States)

    Costa, Guillermo J.; Arteaga, Ricardo A.

    2011-01-01

    A preliminary survey of existing separation assurance and collision avoidance advancements, technologies, and efforts has been conducted in order to develop a concept of operations for flight testing autonomous separation assurance at Dryden Flight Research Center. This effort was part of the Unmanned Aerial Systems in the National Airspace System project. The survey focused primarily on separation assurance projects validated through flight testing (including lessons learned), however current forays into the field were also examined. Comparisons between current Dryden flight and range assets were conducted using House of Quality matrices in order to allow project management to make determinations regarding asset utilization for future flight tests. This was conducted in order to establish a body of knowledge of the current collision avoidance landscape, and thus focus Dryden s efforts more effectively towards the providing of assets and test ranges for future flight testing within this research field.

  2. Orion's Powered Flight Guidance Burn Options for Near Term Exploration Missions

    Science.gov (United States)

    Fill, Thomas; Goodman, John; Robinson, Shane

    2018-01-01

    NASA's Orion exploration spacecraft will fly more demanding mission profiles than previous NASA human flight spacecraft. Missions currently under development are destined for cislunar space. The EM-1 mission will fly unmanned to a Distant Retrograde Orbit (DRO) around the Moon. EM-2 will fly astronauts on a mission to the lunar vicinity. To fly these missions, Orion requires powered flight guidance that is more sophisticated than the orbital guidance flown on Apollo and the Space Shuttle. Orion's powered flight guidance software contains five burn guidance options. These five options are integrated into an architecture based on a proven shuttle heritage design, with a simple closed-loop guidance strategy. The architecture provides modularity, simplicity, versatility, and adaptability to future, yet-to-be-defined, exploration mission profiles. This paper provides a summary of the executive guidance architecture and details the five burn options to support both the nominal and abort profiles for the EM-1 and EM-2 missions.

  3. NASA Space Flight Program and Project Management Handbook

    Science.gov (United States)

    Blythe, Michael P.; Saunders, Mark P.; Pye, David B.; Voss, Linda D.; Moreland, Robert J.; Symons, Kathleen E.; Bromley, Linda K.

    2014-01-01

    This handbook is a companion to NPR 7120.5E, NASA Space Flight Program and Project Management Requirements and supports the implementation of the requirements by which NASA formulates and implements space flight programs and projects. Its focus is on what the program or project manager needs to know to accomplish the mission, but it also contains guidance that enhances the understanding of the high-level procedural requirements. (See Appendix C for NPR 7120.5E requirements with rationale.) As such, it starts with the same basic concepts but provides context, rationale, guidance, and a greater depth of detail for the fundamental principles of program and project management. This handbook also explores some of the nuances and implications of applying the procedural requirements, for example, how the Agency Baseline Commitment agreement evolves over time as a program or project moves through its life cycle.

  4. Solar array flight dynamic experiment

    Science.gov (United States)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  5. Research on knowledge support technology for product innovation design based on quality function knowledge deployment

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    2016-06-01

    Full Text Available Based on the analysis of the relationship between the process of product innovation design and knowledge, this article proposes a theoretical model of quality function knowledge deployment. In order to link up the product innovation design and the knowledge required by the designer, the iterative method of quality function knowledge deployment is refined, as well as the knowledge retrieval model and knowledge support model based on quality function knowledge deployment are established. In the whole life cycle of product design, in view of the different requirements for knowledge in conceptual design stage, components’ configuration stage, process planning stage, and production planning stage, the quality function knowledge deployment model could link up the required knowledge with the engineering characteristics, component characteristics, process characteristics, and production characteristics in the four stages using the mapping relationship between the function characteristics and the knowledge and help the designer to track the required knowledge for realizing product innovation design. In this article, an instance about rewinding machine is given to demonstrate the practicability and validity of product innovation design knowledge support technology based on quality function knowledge deployment.

  6. A THEORETICAL MODEL OF SOCIO-PSYCHOLOGICAL SUPPORT WORK PROCESSES FOR MANAGEMENT OF PRODUCTION TEAM

    Directory of Open Access Journals (Sweden)

    Tatyana Gennadevna Pronyushkina

    2015-10-01

    Full Text Available This article discusses the management of production team, in particular the developed theoretical model of socio-psychological support work processes for management of production team. The author of the research are formulated the purpose and objectives of social-psychological work on management of the production team. Developed in the study a theoretical model aimed at determining the conditions and the identification of features of effective management of the enterprise taking into account the socio-psychological characteristics of its staff. Tasks include: definition of the main characteristics of the production team and their severity, the analysis of these characteristics and identifying opportunities for their transformation, development of recommendations for management of social-psychological work on effects on the characteristics of the collective enterprise.Practical study of the activities of a number of businesses have shown the need to improve socio-psychological support of management processes production team: introducing a social and psychological planning team and develop the practice of sociological research on the state of the team, to ensure the smoothing of relations between workers and management through periodic meetings, creations of conditions for feedback, maintaining healthy competition among team members.

  7. From damselflies to pterosaurs: how burst and sustainable flight performance scale with size.

    Science.gov (United States)

    Marden, J H

    1994-04-01

    Recent empirical data for short-burst lift and power production of flying animals indicate that mass-specific lift and power output scale independently (lift) or slightly positively (power) with increasing size. These results contradict previous theory, as well as simple observation, which argues for degradation of flight performance with increasing size. Here, empirical measures of lift and power during short-burst exertion are combined with empirically based estimates of maximum muscle power output in order to predict how burst and sustainable performance scale with body size. The resulting model is used to estimate performance of the largest extant flying birds and insects, along with the largest flying animals known from fossils. These estimates indicate that burst flight performance capacities of even the largest extinct fliers (estimated mass 250 kg) would allow takeoff from the ground; however, limitations on sustainable power output should constrain capacity for continuous flight at body sizes exceeding 0.003-1.0 kg, depending on relative wing length and flight muscle mass.

  8. System Identification of Flight Mechanical Characteristics

    OpenAIRE

    Larsson, Roger

    2013-01-01

    With the demand for more advanced fighter aircraft, relying on relaxed stability or even unstable flight mechanical characteristics to gain flight performance, more focus has been put on model-based system engineering to help with the design work. The flight control system design is one important part that relies on this modeling. Therefore it has become more important to develop flight mechanical models that are highly accurate in the whole flight envelop. For today’s newly developed fighter...

  9. Artificial neural network decision support systems for new product development project selection

    NARCIS (Netherlands)

    Thieme, R.J.; Song, Michael; Calantone, R.J.

    2000-01-01

    The authors extend and develop an artificial neural network decision support system and demonstrate how it can guide managers when they make complex new product development decisions. The authors use data from 612 projects to compare this new method with traditional methods for predicting various

  10. Life support for aquatic species - past; present; future

    Science.gov (United States)

    Slenzka, K.

    Life Support is a basic issue since manned space flight began. Not only to support astronauts and cosmonauts with the essential things to live, however, also animals which were carried for research to space etc together with men need support systems to survive under space conditions. Most of the animals transported to space participate at the life support system of the spacecraft. However, aquatic species live in water as environment and thus need special developments. Research with aquatic animals has a long tradition in manned space flight resulting in numerous life support systems for them starting with simple plastic bags up to complex support hardware. Most of the recent developments have to be identified as part of a technological oriented system and can be described as small technospheres. As the importance arose to study our Earth as the extraordinary Biosphere we live in, the modeling of small ecosystems began as part of ecophysiological research. In parallel the investigations of Bioregenerative Life Support Systems were launched and identified as necessity for long-term space missions or traveling to Moon and Mars and beyond. This paper focus on previous developments of Life Support Systems for aquatic animals and will show future potential developments towards Bioregenerative Life Support which additionally strongly benefits to our Earth's basic understanding.

  11. Aerodynamics of bird flight

    Directory of Open Access Journals (Sweden)

    Dvořák Rudolf

    2016-01-01

    Full Text Available Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird. Only such wings can produce both lift and thrust – two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc., and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  12. Flow structures around a beetle in a tethered flight

    Science.gov (United States)

    Lee, Boogeon; Oh, Sehyeong; Park, Hyungmin; Choi, Haecheon

    2017-11-01

    In the present study, through a wind-tunnel experiment, we visualize the flow in a tethered flight of a rhinoceros beetle using a smoke-wire visualization technique. Measurements are done at five side planes along the wind span while varying the body angle (angle between the horizontal and the body axis) to investigate the influence of the stroke plane angle that was observed to change depending on the flight mode such as hovering, forward and takeoff flights so on. Observing that a large attached leading-edge vortex is only found on the hindwing, it is inferred that most of the aerodynamic forces would be generated by hindwings (flexible inner wings) compared to the elytra (hard outer wings). In addition, it is observed to use unsteady lift-generating mechanisms such as clap-and-fling, wing-wing interaction and wake capture. Finally, we discuss the relation between the advance ratio and Strouhal number by adjusting free-stream velocity and the body angle (i.e., angle of wake-induced flow). Supported by a Grant to Bio-Mimetic Robot Research Center Funded by Defense Acquisition Program Administration, and by ADD, Korea (UD130070ID).

  13. Compact Environmental Anomaly Sensor (CEASE) Flight Integration Support Contract

    National Research Council Canada - National Science Library

    Redus, Robert

    2001-01-01

    .... Under the current contract, Amptek Inc, supported the successful spacecraft specific design work, final calibration, and the delivery, integration, and launch of two CEASE instruments - S/N 001 onto...

  14. Orion Exploration Flight Test Reaction Control System Jet Interaction Heating Environment from Flight Data

    Science.gov (United States)

    White, Molly E.; Hyatt, Andrew J.

    2016-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) Reaction Control System (RCS) is critical to guide the vehicle along the desired trajectory during re-­-entry. However, this system has a significant impact on the convective heating environment to the spacecraft. Heating augmentation from the jet interaction (JI) drives thermal protection system (TPS) material selection and thickness requirements for the spacecraft. This paper describes the heating environment from the RCS on the afterbody of the Orion MPCV during Orion's first flight test, Exploration Flight Test 1 (EFT-1). These jet plumes interact with the wake of the crew capsule and cause an increase in the convective heating environment. Not only is there widespread influence from the jet banks, there may also be very localized effects. The firing history during EFT-1 will be summarized to assess which jet bank interaction was measured during flight. Heating augmentation factors derived from the reconstructed flight data will be presented. Furthermore, flight instrumentation across the afterbody provides the highest spatial resolution of the region of influence of the individual jet banks of any spacecraft yet flown. This distribution of heating augmentation across the afterbody will be derived from the flight data. Additionally, trends with possible correlating parameters will be investigated to assist future designs and ground testing programs. Finally, the challenges of measuring JI, applying this data to future flights and lessons learned will be discussed.

  15. The Story of 520 days on a Simulated Flight to Mars

    Czech Academy of Sciences Publication Activity Database

    Poláčková Šolcová, Iva; Šolcová, Iva; Stuchlíková, I.; Mazehóová, Y.

    2016-01-01

    Roč. 126, č. 10 (2016), s. 178-189 ISSN 0094-5765 Grant - others:AV ČR(CZ) StrategieAV21/14 Program:StrategieAV Institutional support: RVO:68081740 Keywords : Mars -500 * Narrative * Peak experience * Nadir experience * Isolation * Flight Story Interview Subject RIV: AN - Psychology Impact factor: 1.536, year: 2016

  16. The Story of 520 days on a Simulated Flight to Mars

    Czech Academy of Sciences Publication Activity Database

    Poláčková Šolcová, Iva; Šolcová, Iva; Stuchlíková, I.; Mazehóová, Y.

    2016-01-01

    Roč. 126, č. 10 (2016), s. 178-189 ISSN 0094-5765 Grant - others:AV ČR(CZ) StrategieAV21/14 Program:StrategieAV Institutional support: RVO:68081740 Keywords : Mars-500 * Narrative * Peak experience * Nadir experience * Isolation * Flight Story Interview Subject RIV: AN - Psychology Impact factor: 1.536, year: 2016

  17. Design Process of Flight Vehicle Structures for a Common Bulkhead and an MPCV Spacecraft Adapter

    Science.gov (United States)

    Aggarwal, Pravin; Hull, Patrick V.

    2015-01-01

    Design and manufacturing space flight vehicle structures is a skillset that has grown considerably at NASA during that last several years. Beginning with the Ares program and followed by the Space Launch System (SLS); in-house designs were produced for both the Upper Stage and the SLS Multipurpose crew vehicle (MPCV) spacecraft adapter. Specifically, critical design review (CDR) level analysis and flight production drawing were produced for the above mentioned hardware. In particular, the experience of this in-house design work led to increased manufacturing infrastructure for both Marshal Space Flight Center (MSFC) and Michoud Assembly Facility (MAF), improved skillsets in both analysis and design, and hands on experience in building and testing (MSA) full scale hardware. The hardware design and development processes from initiation to CDR and finally flight; resulted in many challenges and experiences that produced valuable lessons. This paper builds on these experiences of NASA in recent years on designing and fabricating flight hardware and examines the design/development processes used, as well as the challenges and lessons learned, i.e. from the initial design, loads estimation and mass constraints to structural optimization/affordability to release of production drawing to hardware manufacturing. While there are many documented design processes which a design engineer can follow, these unique experiences can offer insight into designing hardware in current program environments and present solutions to many of the challenges experienced by the engineering team.

  18. Metabolic profile of long-distance migratory flight and stopover in a shorebird

    NARCIS (Netherlands)

    Landys, MM; Piersma, T; Guglielmo, CG; Jukema, J; Ramenofsky, M; Wingfield, JC; Guglielmo, Christopher G.; Wingfield, John C.

    2005-01-01

    Migrating birds often complete long non-stop flights during which body energy stores exclusively support energetic demands. The metabolic correlates of such long-distance travel in free-living migrants are as yet poorly studied. Bar-tailed godwits, Limosa lapponica taymyrensis, undertake a 4500 km

  19. An alternate and reversible method for flight restraint of cranes.

    Science.gov (United States)

    Zhang, Sen Lin; Yang, Shu Hui; Li, Bing; Xu, Yan Chun; Ma, Jian Hua; Xu, Jian Feng; Zhang, Xian Guang

    2011-01-01

    Flight restraint is important for zoos, safaris, and breeding centers for large birds. Currently used techniques for flight restraint include both surgical and non-surgical approaches. Surgical approaches usually cause permanent change to or removal of tendon, patagial membrane, or wing bones, and can cause pain and inflammation. Non-surgical approaches such as clipping or trimming feathers often alter the bird's appearance, and can damage growing blood feathers in fledglings or cause joint stiffness. We observed microstructure of primary feathers of the red-crowned crane (Grus japonensis) and found that the width of barbs is a determinative factor influencing vane stiffness and geometric parameters. We hypothesized that partial longitudinal excision of barbs on the ventral surface of the primary feathers would reduce the stiffness of the vane and render the feathers unable to support the crane's body weight during flight. Furthermore, we hypothesized that this modification of barbs would also change the aerodynamic performance of feathers such that they could not generate sufficient lift and thrust during flapping to enable the bird to fly. We tested this hypothesis on a red-crowned crane that had normal flight capability by excising the ventral margin of barbs on all 10 primaries on the left wing. The bird was unable to take off until the modified feathers were replaced by new ones. Removal of barbs proved to be a simple, non-invasive, low-cost and reversible method for flight restraint. It is potentially applicable to other large birds with similar structural characteristics of primary feathers. © 2010 Wiley-Liss, Inc.

  20. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    Science.gov (United States)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  1. Investigation of controlled flight into terrain : descriptions of flight paths for selected controlled flight into terrain (CFIT) aircraft accidents, 1985-1997

    Science.gov (United States)

    1999-03-01

    This report documents an investigation of the flight paths of 13 selected controlled flight into terrain (CFIT) aircraft accidents that occurred between 1985 and 1997. The Operations Assessment Division (DTS-43) and the Aviation Safety Division (DTS-...

  2. Full-scale flight tests of aircraft morphing structures using SMA actuators

    Science.gov (United States)

    Mabe, James H.; Calkins, Frederick T.; Ruggeri, Robert T.

    2007-04-01

    In August of 2005 The Boeing Company conducted a full-scale flight test utilizing Shape Memory Alloy (SMA) actuators to morph an engine's fan exhaust to correlate exhaust geometry with jet noise reduction. The test was conducted on a 777-300ER with GE-115B engines. The presence of chevrons, serrated aerodynamic surfaces mounted at the trailing edge of the thrust reverser, have been shown to greatly reduce jet noise by encouraging advantageous mixing of the free, and fan streams. The morphing, or Variable Geometry Chevrons (VGC), utilized compact, light weight, and robust SMA actuators to morph the chevron shape to optimize the noise reduction or meet acoustic test objectives. The VGC system was designed for two modes of operation. The entirely autonomous operation utilized changes in the ambient temperature from take-off to cruise to activate the chevron shape change. It required no internal heaters, wiring, control system, or sensing. By design this provided one tip immersion at the warmer take-off temperatures to reduce community noise and another during the cooler cruise state for more efficient engine operation, i.e. reduced specific fuel consumption. For the flight tests a powered mode was added where internal heaters were used to individually control the VGC temperatures. This enabled us to vary the immersions and test a variety of chevron configurations. The flight test demonstrated the value of SMA actuators to solve a real world aerospace problem, validated that the technology could be safely integrated into the airplane's structure and flight system, and represented a large step forward in the realization of SMA actuators for production applications. In this paper the authors describe the development of the actuator system, the steps required to integrate the morphing structure into the thrust reverser, and the analysis and testing that was required to gain approval for flight. Issues related to material strength, thermal environment, vibration

  3. Heat dissipation during hovering and forward flight in hummingbirds.

    Science.gov (United States)

    Powers, Donald R; Tobalske, Bret W; Wilson, J Keaton; Woods, H Arthur; Corder, Keely R

    2015-12-01

    Flying animals generate large amounts of heat, which must be dissipated to avoid overheating. In birds, heat dissipation is complicated by feathers, which cover most body surfaces and retard heat loss. To understand how birds manage heat budgets during flight, it is critical to know how heat moves from the skin to the external environment. Hummingbirds are instructive because they fly at speeds from 0 to more than 12 m s(-1), during which they transit from radiative to convective heat loss. We used infrared thermography and particle image velocimetry to test the effects of flight speed on heat loss from specific body regions in flying calliope hummingbirds (Selasphorus calliope). We measured heat flux in a carcass with and without plumage to test the effectiveness of the insulation layer. In flying hummingbirds, the highest thermal gradients occurred in key heat dissipation areas (HDAs) around the eyes, axial region and feet. Eye and axial surface temperatures were 8°C or more above air temperature, and remained relatively constant across speeds suggesting physiological regulation of skin surface temperature. During hovering, birds dangled their feet, which enhanced radiative heat loss. In addition, during hovering, near-body induced airflows from the wings were low except around the feet (approx. 2.5 m s(-1)), which probably enhanced convective heat loss. Axial HDA and maximum surface temperature exhibited a shallow U-shaped pattern across speeds, revealing a localized relationship with power production in flight in the HDA closest to the primary flight muscles. We conclude that hummingbirds actively alter routes of heat dissipation as a function of flight speed.

  4. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    Directory of Open Access Journals (Sweden)

    Huixia Zhao

    Full Text Available The insect-machine interface (IMI is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L. via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe, ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  5. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    Science.gov (United States)

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect-machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  6. Neuromechanism Study of Insect–Machine Interface: Flight Control by Neural Electrical Stimulation

    Science.gov (United States)

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A.; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect–machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee–machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control. PMID:25409523

  7. Assessing Arboreal Adaptations of Bird Antecedents: Testing the Ecological Setting of the Origin of the Avian Flight Stroke

    Science.gov (United States)

    Dececchi, T. Alexander; Larsson, Hans C. E.

    2011-01-01

    The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding. PMID:21857918

  8. Assessing arboreal adaptations of bird antecedents: testing the ecological setting of the origin of the avian flight stroke.

    Directory of Open Access Journals (Sweden)

    T Alexander Dececchi

    Full Text Available The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding.

  9. Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation.

    Science.gov (United States)

    Bigelis, Ramunas; He, Haiyin; Yang, Hui Y; Chang, Li-Ping; Greenstein, Michael

    2006-10-01

    The use of inert absorbent polymeric supports for cellular attachment in solid-state fungal fermentation influenced growth, morphology, and production of bioactive secondary metabolites. Two filamentous fungi exemplified the utility of this approach to facilitate the discovery of new antimicrobial compounds. Cylindrocarpon sp. LL-Cyan426 produced pyrrocidines A and B and Acremonium sp. LL-Cyan416 produced acremonidins A-E when grown on agar bearing moist polyester-cellulose paper and generated distinctly different metabolite profiles than the conventional shaken or stationary liquid fermentations. Differences were also apparent when tenfold concentrated methanol extracts from these fermentations were tested against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria, and zones of inhibition were compared. Shaken broth cultures of Acremonium sp. or Cylindrocarpon sp. showed complex HPLC patterns, lower levels of target compounds, and high levels of unwanted compounds and medium components, while agar/solid support cultures showed significantly increased yields of pyrrocidines A and B and acremonidins A-E, respectively. This method, mixed-phase fermentation (fermentation with an inert solid support bearing liquid medium), exploited the increase in surface area available for fungal growth on the supports and the tendency of some microorganisms to adhere to solid surfaces, possibly mimicking their natural growth habits. The production of dimeric anthraquinones by Penicillium sp. LL-WF159 was investigated in liquid fermentation using various inert polymeric immobilization supports composed of polypropylene, polypropylene cellulose, polyester-cellulose, or polyurethane. This culture produced rugulosin, skyrin, flavomannin, and a new bisanthracene, WF159-A, after fermentation in the presence and absence of polymeric supports for mycelial attachment. The physical nature of the different support systems influenced culture morphology and relative

  10. The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System

    Science.gov (United States)

    Tartt, David M.; Hewett, Marle D.; Duke, Eugene L.; Cooper, James A.; Brumbaugh, Randal W.

    1989-01-01

    The Automated Flight Test Management System (ATMS) is being developed as part of the NASA Aircraft Automation Program. This program focuses on the application of interdisciplinary state-of-the-art technology in artificial intelligence, control theory, and systems methodology to problems of operating and flight testing high-performance aircraft. The development of a Flight Test Engineer's Workstation (FTEWS) is presented, with a detailed description of the system, technical details, and future planned developments. The goal of the FTEWS is to provide flight test engineers and project officers with an automated computer environment for planning, scheduling, and performing flight test programs. The FTEWS system is an outgrowth of the development of ATMS and is an implementation of a component of ATMS on SUN workstations.

  11. Perspectives on Spatial Decision Support Concerning Location of Biogas Production

    DEFF Research Database (Denmark)

    Bojesen, Mikkel

    in biogas production. This ambition requires that more than 20 new large scale centralised biogas plants are built. The location of these plants is associated with a number of externalities and uncertainties and the existing biogas sector struggles to establish itself as a viable energy producing sector....... Meanwhile planners and decision makers struggle to find sustainable locations that comprehensively balance the multiple concerns the location of biogas facilities includes. This PhD project examines how spatial decision support models can be used to ensure sustainable locations of future biogas plants......, understand the industrial economic aspects of such a role. Through the use of spatial multi-criteria evaluation models stakeholder preferences to decision criteria are included in a sustainable biogas facility location analysis. By the use of these models it is demonstrated how overall biogas production...

  12. Rapid fabrication of flight worthy composite parts

    Science.gov (United States)

    Jouin, Pierre H.; Heigl, John C.; Youtsey, Timothy L.

    A 3D surfaced-model representation of aircraft composite structural components can be used to generate machining paths in a system which reduces paperwork and errors, and enhances accuracy and speed. Illustrative cases are presented for the use of such a system in the design and production of the Longbow radar housing, the fabrication of the flight test hardware for the 'no tail-rotor' helicopter control system, and the machining of a honeycomb core structure for a composite helicopter rotor blade.

  13. 14 CFR 141.41 - Flight simulators, flight training devices, and training aids.

    Science.gov (United States)

    2010-01-01

    ..., and training aids. 141.41 Section 141.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... aids. An applicant for a pilot school certificate or a provisional pilot school certificate must show that its flight simulators, flight training devices, training aids, and equipment meet the following...

  14. The use of an automated flight test management system in the development of a rapid-prototyping flight research facility

    Science.gov (United States)

    Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.

    1988-01-01

    An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.

  15. X-2 on ramp with B-50 mothership and support crew

    Science.gov (United States)

    1956-01-01

    Air Force test pilot Capt. Iven Kincheloe stands in front of the Bell X-2 (46-674) on the ramp at Edwards Air Force Base, California. Behind the X-2 are ground support personnel, the B-50 launch aircraft and crew, chase planes, and support vehicles. Kincheloe had flown nearly 100 combat missions in Korea in an F-86 and was credited with shooting down 10 enemy aircraft. He then graduated from the Empire Test Pilot's School in Great Britain in December 1954, whereupon he was assigned to Edwards Air Force Base. He made four powered flights in the X-2. On September 7, 1956, he reached an altitude of 126,200 feet. After the death of Capt. Mel Apt and the loss of the X-2 #1 on September 27, 1956, in the first Mach 3 flight, Kincheloe was assigned as the Air Force project pilot for the X-15. Before he had a chance to fly that rocket-powered aircraft, Kincheloe himself lost his life on July 26, 1958, in an F-104 accident. The X-2 was a swept-wing, rocket-powered aircraft designed to fly faster than Mach 3 (three times the speed of sound). It was built for the U.S. Air Force by the Bell Aircraft Company, Buffalo, New York. The X-2 was flown to investigate the problems of aerodynamic heating as well as stability and control effectiveness at high altitudes and high speeds (in excess of Mach 3). Bell aircraft built two X-2 aircraft. These were constructed of K-monel (a copper and nickel alloy) for the fuselage and stainless steel for the swept wings and control surfaces. The aircraft had ejectable nose capsules instead of ejection seats because the development of ejection seats had not reached maturity at the time the X-2 was conceived. The X-2 ejection canopy was successfully tested using a German V-2 rocket. The X-2 used a skid-type landing gear to make room for more fuel. The airplane was air launched from a modified Boeing B-50 Superfortress Bomber. X-2 Number 1 made its first unpowered glide flight on Aug. 5, 1954, and made a total of 17 (4 glide and 13 powered) flights

  16. X-1A in flight with flight data superimposed

    Science.gov (United States)

    1953-01-01

    This photo of the X-1A includes graphs of the flight data from Maj. Charles E. Yeager's Mach 2.44 flight on December 12, 1953. (This was only a few days short of the 50th anniversary of the Wright brothers' first powered flight.) After reaching Mach 2.44, then the highest speed ever reached by a piloted aircraft, the X-1A tumbled completely out of control. The motions were so violent that Yeager cracked the plastic canopy with his helmet. He finally recovered from a inverted spin and landed on Rogers Dry Lakebed. Among the data shown are Mach number and altitude (the two top graphs). The speed and altitude changes due to the tumble are visible as jagged lines. The third graph from the bottom shows the G-forces on the airplane. During the tumble, these twice reached 8 Gs or 8 times the normal pull of gravity at sea level. (At these G forces, a 200-pound human would, in effect, weigh 1,600 pounds if a scale were placed under him in the direction of the force vector.) Producing these graphs was a slow, difficult process. The raw data from on-board instrumentation recorded on oscillograph film. Human computers then reduced the data and recorded it on data sheets, correcting for such factors as temperature and instrument errors. They used adding machines or slide rules for their calculations, pocket calculators being 20 years in the future. Three second generation Bell Aircraft Corporations X-1s were built, though four were requested. They were the X-1A (48-1384); X-1B (48-1385); X-1C (canceled and never built); X-1D (48-1386). These aircraft were similar to the X-1s, except they were five feet longer, had conventional canopies, and were powered by Reaction Motors, Inc. XLR11-RM-5 rocket engines. The RM-5, like the previous engines, had no throttle and was controlled by igniting one or more of the four thrust chambers at will. The original program outline called for the X-1A and X-1B to be used for dynamic stability and air loads investigations. The X-1D was to be used

  17. A Multi-mission Event-Driven Component-Based System for Support of Flight Software Development, ATLO, and Operations first used by the Mars Science Laboratory (MSL) Project

    Science.gov (United States)

    Dehghani, Navid; Tankenson, Michael

    2006-01-01

    This viewgraph presentation reviews the architectural description of the Mission Data Processing and Control System (MPCS). MPCS is an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is designed with these factors (1) Enabling plug and play architecture (2) MPCS has strong inheritance from GDS components that have been developed for other Flight Projects (MER, MRO, DAWN, MSAP), and are currently being used in operations and ATLO, and (3) MPCS components are Java-based, platform independent, and are designed to consume and produce XML-formatted data

  18. 14 CFR 63.43 - Flight engineer courses.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer courses. 63.43 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.43 Flight engineer courses. An applicant for approval of a flight engineer course must submit a letter to the Administrator...

  19. The Global Positioning System (GPS) and attitude determination: Applications and activities in the Flight Dynamics Division

    Science.gov (United States)

    Ketchum, Eleanor; Garrick, Joe

    1995-01-01

    The application of GPS to spacecraft attitude determination is a new and growing field. Although the theoretical literature is extensive, space flight testing is currently sparse and inadequate. As an operations organization, the Flight Dynamics Division (FDD) has the responsibility to investigate this new technology, and determine how best to implement the innovation to provide adequate support for future missions. This paper presents some of the current efforts within FDD with regard to GPS attitude determination. This effort specifically addresses institutional capabilities to accommodate a new type of sensor, critically evaluating the literature for recent advancements, and in examining some available -albeit crude- flight data.

  20. The utilization of hydroxyapatite-supported CaO-CeO_2 catalyst for biodiesel production

    International Nuclear Information System (INIS)

    Yan, Beibei; Zhang, Ying; Chen, Guanyi; Shan, Rui; Ma, Wenchao; Liu, Changye

    2016-01-01

    Highlights: • Hydroxyapatite derived from waste animal bones was served as the support for bimetallic CaO-CeO_2 catalyst. • The 30%CaO-CeO_2/HAP-650 catalyst exhibited excellent performance on biodiesel production. • The yield of FAME was 84.4 % after eight cycles. • Minor leaching concentrations of cerium and calcium species were detected in the product. - Abstract: The study investigated the effect of a bimetallic supported catalyst in biodiesel production. Calcined waste bone derived hydroxyapatite (HAP), a solid waste from animal, was served as the support for CaO-CeO_2 catalyst. Various characterization techniques such as FT-IR, BET, SEM-EDS, CO_2-TPD and XRD analysis were used to analyse the activity of this heterogeneous catalyst. The effect of main parameters in preparation process such as calcination temperature and active component loading on catalyst performance were discussed to obtain the optimal preparation conditions. Under the optimal reaction conditions (11 wt.% dosage of 30%CaO-CeO_2/HAP-650 catalyst and 9:1 methanol to oil molar ratio at 65 °C for 3 h) the highest biodiesel yield of 91.84% was obtained. Stability test indicated that the yield (84.4%) of fatty acid methyl ester was produced after 8 re-used cycles due to the low leaching of catalyst components. The experimental results showed that biodiesel production cost might be lowered while producing relatively high yield at the present of long life-span catalyst.

  1. The importance of being top-heavy: Intrinsic stability of flapping flight

    Science.gov (United States)

    Ristroph, Leif; Liu, Bin; Zhang, Jun

    2011-11-01

    We explore the stability of flapping flight in a model system that consists of a pyramid-shaped object that freely hovers in a vertically oscillating airflow. Such a ``bug'' not only generates sufficient aerodynamic force to keep aloft but also robustly maintains balance during free-flight. Flow visualization reveals that both weight support and intrinsic stability result from the periodic shedding of dipolar vortices. Counter-intuitively, the observed pattern of vortex shedding suggests that stability requires a high center-of-mass, which we verify by comparing the performance of top- and bottom-heavy bugs. Finally, we visit a zoo of other flapping flyers, including Mary Poppins' umbrella, a flying saucer or UFO, and Da Vinci's helicopter.

  2. Human engineering analysis for the high speed civil transport flight deck

    Science.gov (United States)

    Regal, David M.; Alter, Keith W.

    1993-01-01

    The Boeing Company is investigating the feasibility of building a second generation supersonic transport. If current studies support its viability, this airplane, known as the High Speed Civil Transport (HSCT), could be launched early in the next century. The HSCT will cruise at Mach 2.4, be over 300 feet long, have an initial range of between 5000 and 6000 NM, and carry approximately 300 passengers. We are presently involved in developing an advanced flight deck for the HSCT. As part of this effort we are undertaking a human engineering analysis that involves a top-down, mission driven approach that will allow a systematic determination of flight deck functional and information requirements. The present paper describes this work.

  3. The Controlled Ecological Life Support System Antarctic Analog Project: Prototype Crop Production and Water Treatment System Performance

    Science.gov (United States)

    Bubenheim, David L.; Flynn, Michael T.; Bates, Maynard; Schlick, Greg; Kliss, Mark (Technical Monitor)

    1997-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP), is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the NASA. The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for sewage treatment, water recycle and crop production are being evaluated at Ames Research Center. The product water from sewage treatment using a Wiped-Film Rotating Disk is suitable for input to the crop production system. The crop production system has provided an enhanced level of performance compared with projected performance for plant-based life support: an approximate 50% increase in productivity per unit area, more than a 65% decrease in power for plant lighting, and more than a 75% decrease in the total power requirement to produce an equivalent mass of edible biomass.

  4. Products for geoinformation support for spatial planning and management within the framework of the project ONIX

    Directory of Open Access Journals (Sweden)

    Franc J. Zakrajšek

    2000-01-01

    Full Text Available The article gives a brief description of four products in the subproject Geoinformation support for physical planning and spatial management on the local level in the framework of the Onix project. The products are a result of a comprehensive approach to the development of information support, whose main features are unified dealing with planning acts, from the statutory plan and development plans to permitting procedures, multi-disciplinary approach and object oriented information approach.

  5. X-Ray Optics at NASA Marshall Space Flight Center

    Science.gov (United States)

    O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.; hide

    2015-01-01

    NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce high-strength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications-namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.

  6. Fast neutron measurements at the nELBE time-of-flight facility

    Directory of Open Access Journals (Sweden)

    Junghansa A. R.

    2015-01-01

    Full Text Available The compact neutron-time-of-flight facility nELBE at the superconducting electron accelerator ELBE of Helmholtz-Zentrum Dresden-Rossendorf has been rebuilt. A new enlarged experimental hall with a flight path of up to 10 m is available for neutron time-of-flight experiments in the fast energy range from about 50 keV to 10 MeV. nELBE is intended to deliver nuclear data of fast neutron nuclear interactions e.g. for the transmutation of nuclear waste and improvement of neutron physical simulations of innovative nuclear systems. The experimental programme consists of transmission measurements of neutron total cross sections, elastic and inelastic scattering cross section measurements, and neutron induced fission cross sections. The inelastic scattering to the first few excited states in 56Fe was investigated by measuring the gamma production cross section with an HPGe detector. The neutron induced fission of 242Pu was studied using fast ionisation chambers with large homogeneous actinide deposits.

  7. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  8. Magnesium and Space Flight

    Directory of Open Access Journals (Sweden)

    Scott M. Smith

    2015-12-01

    Full Text Available Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female, 35 ± 7 years old. We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions.

  9. Time coder for slow neutron time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Grashilin, V.A.; Ofengenden, R.G.

    1988-01-01

    Time coder for slow neutron time-of-flight spectrometer is described. The time coder is of modular structure, is performed in the CAMAC standard and operates on line with DVK-2 computer. The main coder units include supporting generator, timers, time-to-digital converter, memory unit and crate controller. Method for measuring background symmetrically to the effect is proposed for a more correct background accounting. 4 refs.; 1 fig

  10. Flight Technical Error Analysis of the SATS Higher Volume Operations Simulation and Flight Experiments

    Science.gov (United States)

    Williams, Daniel M.; Consiglio, Maria C.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides an analysis of Flight Technical Error (FTE) from recent SATS experiments, called the Higher Volume Operations (HVO) Simulation and Flight experiments, which NASA conducted to determine pilot acceptability of the HVO concept for normal operating conditions. Reported are FTE results from simulation and flight experiment data indicating the SATS HVO concept is viable and acceptable to low-time instrument rated pilots when compared with today s system (baseline). Described is the comparative FTE analysis of lateral, vertical, and airspeed deviations from the baseline and SATS HVO experimental flight procedures. Based on FTE analysis, all evaluation subjects, low-time instrument-rated pilots, flew the HVO procedures safely and proficiently in comparison to today s system. In all cases, the results of the flight experiment validated the results of the simulation experiment and confirm the utility of the simulation platform for comparative Human in the Loop (HITL) studies of SATS HVO and Baseline operations.

  11. Respiratory evolution facilitated the origin of pterosaur flight and aerial gigantism.

    Directory of Open Access Journals (Sweden)

    Leon P A M Claessens

    Full Text Available Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct archosaurs, using computer-assisted tomographic (CT scanning of pterosaur and bird skeletal remains, cineradiographic (X-ray film studies of the skeletal breathing pump in extant birds and alligators, and study of skeletal structure in historic fossil specimens. In this report we present various lines of skeletal evidence that indicate that pterosaurs had a highly effective flow-through respiratory system, capable of sustaining powered flight, predating the appearance of an analogous breathing system in birds by approximately seventy million years. Convergent evolution of gigantism in several Cretaceous pterosaur lineages was made possible through body density reduction by expansion of the pulmonary air sac system throughout the trunk and the distal limb girdle skeleton, highlighting the importance of respiratory adaptations in pterosaur evolution, and the dramatic effect of the release of physical constraints on morphological diversification and evolutionary radiation.

  12. Respiratory evolution facilitated the origin of pterosaur flight and aerial gigantism.

    Science.gov (United States)

    Claessens, Leon P A M; O'Connor, Patrick M; Unwin, David M

    2009-01-01

    Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct archosaurs, using computer-assisted tomographic (CT) scanning of pterosaur and bird skeletal remains, cineradiographic (X-ray film) studies of the skeletal breathing pump in extant birds and alligators, and study of skeletal structure in historic fossil specimens. In this report we present various lines of skeletal evidence that indicate that pterosaurs had a highly effective flow-through respiratory system, capable of sustaining powered flight, predating the appearance of an analogous breathing system in birds by approximately seventy million years. Convergent evolution of gigantism in several Cretaceous pterosaur lineages was made possible through body density reduction by expansion of the pulmonary air sac system throughout the trunk and the distal limb girdle skeleton, highlighting the importance of respiratory adaptations in pterosaur evolution, and the dramatic effect of the release of physical constraints on morphological diversification and evolutionary radiation.

  13. Increasing Flight Software Reuse with OpenSatKit

    Science.gov (United States)

    McComas, David C.

    2018-01-01

    In January 2015 the NASA Goddard Space Flight Center (GSFC) released the Core Flight System (cFS) as open source under the NASA Open Source Agreement (NOSA) license. The cFS is based on flight software (FSW) developed for 12 spacecraft spanning nearly two decades of effort and it can provide about a third of the FSW functionality for a low-earth orbiting scientific spacecraft. The cFS is a FSW framework that is portable, configurable, and extendable using a product line deployment model. However, the components are maintained separately so the user must configure, integrate, and deploy them as a cohesive functional system. This can be very challenging especially for organizations such as universities building cubesats that have minimal experience developing FSW. Supporting universities was one of the primary motivators for releasing the cFS under NOSA. This paper describes the OpenSatKit that was developed to address the cFS deployment challenges and to serve as a cFS training platform for new users. It provides a fully functional out-of-the box software system that includes NASA's cFS, Ball Aerospace's command and control system COSMOS, and a NASA dynamic simulator called 42. The kit is freely available since all of the components have been released as open source. The kit runs on a Linux platform, includes 8 cFS applications, several kit-specific applications, and built in demos illustrating how to use key application features. It also includes the software necessary to port the cFS to a Raspberry Pi and instructions for configuring COSMOS to communicate with the target. All of the demos and test scripts can be rerun unchanged with the cFS running on the Raspberry Pi. The cFS uses a 3-tiered layered architecture including a platform abstraction layer, a Core Flight Executive (cFE) middle layer, and an application layer. Similar to smart phones, the cFS application layer is the key architectural feature for users to extend the FSW functionality to meet their

  14. Advanced in-flight measurement techniques

    CERN Document Server

    Lawson, Nicholas; Jentink, Henk; Kompenhans, Jürgen

    2013-01-01

    The book presents a synopsis of the main results achieved during the 3 year EU-project "Advanced Inflight Measurement Techniques (AIM)" which applied advanced image based measurement techniques to industrial flight testing. The book is intended to be not only an overview on the AIM activities but also a guide on the application of advanced optical measurement techniques for future flight testing. Furthermore it is a useful guide for engineers in the field of experimental methods and flight testing who face the challenge of a future requirement for the development of highly accurate non-intrusive in-flight measurement techniques.

  15. Biological life support systems for a Mars mission planetary base: Problems and prospects

    Science.gov (United States)

    Tikhomirov, A. A.; Ushakova, S. A.; Kovaleva, N. P.; Lamaze, B.; Lobo, M.; Lasseur, Ch.

    The study develops approaches to designing biological life support systems for the Mars mission - for the flight conditions and for a planetary base - using experience of the Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences (IBP SB RAS) with the Bios-3 system and ESA's experience with the MELISSA program. Variants of a BLSS based on using Chlorella and/or Spirulina and higher plants for the flight period of the Mars mission are analyzed. It is proposed constructing a BLSS with a closed-loop material cycle for gas and water and for part of human waste. A higher-plant-based BLSS with the mass exchange loop closed to various degrees is proposed for a Mars planetary base. Various versions of BLSS configuration and degree of closure of mass exchange are considered, depending on the duration of the Mars mission, the diet of the crew, and some other conditions. Special consideration is given to problems of reliability and sustainability of material cycling in BLSS, which are related to production of additional oxygen inside the system. Technologies of constructing BLSS of various configurations are proposed and substantiated. Reasons are given for using physicochemical methods in BLSS as secondary tools both during the flight and the stay on Mars.

  16. Multi-board concept - a scenario based approach for supporting product quality and life cycle oriented design

    DEFF Research Database (Denmark)

    Robotham, Antony John; Hertzum, Morten

    2000-01-01

    This paper will describe the multi-board concept, which is a working approach for supporting life cycle oriented design and product quality. Aspects of this concept include construction of a common working environment where multiple display boards depict scenarios of the product life cycle...... to believe that the multi-board concept promises to be a useful means of communication amongst the design team. We be-lieve that it fosters a thorough understanding of life cycle events, which, in turn, inspires the design of innovative products of the highest quality......., creating a shared quality mindset amongst design-ers, and developing creativity and synthesis in product design. The appropriateness of scenarios for supporting life cycle oriented design will be ar-gued and preliminary results from early experi-mentation will be presented.Initial results lead us...

  17. Armstrong Flight Research Center Flight Test Capabilities and Opportunities for the Applications of Wireless Data Acquisition Systems

    Science.gov (United States)

    Hang, Richard

    2015-01-01

    The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.

  18. The LHC Cryomagnet Supports in Glass-Fiber Reinforced Epoxy A Large Scale Industrial Production with High Reproducibility in Performance

    CERN Document Server

    Poncet, A; Trigo, J; Parma, V

    2008-01-01

    The about 1700 LHC main ring super-conducting magnets are supported within their cryostats on 4700 low heat in leak column-type supports. The supports were designed to ensure a precise and stable positioning of the heavy dipole and quadrupole magnets while keeping thermal conduction heat loads within budget. A trade-off between mechanical and thermal properties, as well as cost considerations, led to the choice of glass fibre reinforced epoxy (GFRE). Resin Transfer Moulding (RTM), featuring a high level of automation and control, was the manufacturing process retained to ensure the reproducibility of the performance of the supports throughout the large production. The Spanish aerospace company EADS-CASA Espacio developed the specific RTM process, and produced the total quantity of supports between 2001 and 2004. This paper describes the development and the production of the supports, and presents the production experience and the achieved performance.

  19. THE LHC CRYOMAGNET SUPPORTS IN GLASS-FIBER REINFORCED EPOXY: A LARGE SCALE INDUSTRIAL PRODUCTION WITH HIGH REPRODUCIBILITY IN PERFORMANCE

    International Nuclear Information System (INIS)

    Poncet, A.; Struik, M.; Parma, V.; Trigo, J.

    2008-01-01

    The about 1700 LHC main ring super-conducting magnets are supported within their cryostats on 4700 low heat in leak column-type supports. The supports were designed to ensure a precise and stable positioning of the heavy dipole and quadrupole magnets while keeping thermal conduction heat loads within budget. A trade-off between mechanical and thermal properties, as well as cost considerations, led to the choice of glass fibre reinforced epoxy (GFRE). Resin Transfer Moulding (RTM), featuring a high level of automation and control, was the manufacturing process retained to ensure the reproducibility of the performance of the supports throughout the large production.The Spanish aerospace company EADS-CASA Espacio developed the specific RTM process, and produced the total quantity of supports between 2001 and 2004.This paper describes the development and the production of the supports, and presents the production experience and the achieved performance

  20. A Description of the Software Element of the NASA EME Flight Tests

    Science.gov (United States)

    Koppen, Sandra V.

    1996-01-01

    In support of NASA's Fly-By-Light/Power-By-Wire (FBL/PBW) program, a series of flight tests were conducted by NASA Langley Research Center in February, 1995. The NASA Boeing 757 was flown past known RF transmitters to measure both external and internal radiated fields. The aircraft was instrumented with strategically located sensors for acquiring data on shielding effectiveness and internal coupling. The data are intended to support computational and statistical modeling codes used to predict internal field levels of an electromagnetic environment (EME) on aircraft. The software was an integral part of the flight tests, as well as the data reduction process. The software, which provided flight test instrument control, data acquisition, and a user interface, executes on a Hewlett Packard (HP) 300 series workstation and uses BP VEEtest development software and the C programming language. Software tools were developed for data processing and analysis, and to provide a database organized by frequency bands, test runs, and sensors. This paper describes the data acquisition system on board the aircraft and concentrates on the software portion. Hardware and software interfaces are illustrated and discussed. Particular attention is given to data acquisition and data format. The data reduction process is discussed in detail to provide insight into the characteristics, quality, and limitations of the data. An analysis of obstacles encountered during the data reduction process is presented.

  1. Large urban projects and social actors : Forces supporting and opposing the production

    NARCIS (Netherlands)

    Cuenya, B.E.

    2006-01-01

    This research studies, by means of the analysis of a paradigmatic large urban project in Buenos Aires, the production process of a large urban project furthered by the State and directed to create a new centrality. The analysis is focused on the forces supporting and opposition the project that were

  2. Regulatory/Scientific Supports for Micro-, Small-, and Medium-Sized Enterprises (SMEs) With Medicinal Products Provided by the PMDA and EMA.

    Science.gov (United States)

    Kondo, Hideyuki; Shibatsuji, Masayoshi; Yasuda, Naoyuki

    2018-01-01

    Micro-, small-, and medium-sized enterprises (SMEs) have been considered as key players who can bring innovative medicinal products and/or technologies into the field. However, they may need much regulatory/scientific supports to provide their products, technologies, or services to the market in a timely way. Both the Pharmaceuticals and Medical Devices Agency (PMDA) and the European Medicines Agency (EMA), regulatory authorities for medicinal products in Japan and the EU, respectively, have prepared supportive measures for SMEs from the early phase of product/technology development to the postmarketing phase. With respect to supports for SMEs, both agencies have provided similar SME-specific supportive activities, including routine administrative assistance, consultations about product development strategy from an early phase, as well as specific regulatory/scientific issues and fee incentives. In addition, there is a system to register SME status in the EU, which can be a tool for regulators to know how much potential SME-driven activities have and with whom they should communicate to provide necessary supports. Furthermore, as new technologies and novel products from SMEs are not limited to the region where they are developed, close communication about these topics between the PMDA and the EMA will contribute to advancing patients' access to necessary medicinal products.

  3. Altitude exposures during commercial flight: a reappraisal.

    Science.gov (United States)

    Hampson, Neil B; Kregenow, David A; Mahoney, Anne M; Kirtland, Steven H; Horan, Kathleen L; Holm, James R; Gerbino, Anthony J

    2013-01-01

    Hypobaric hypoxia during commercial air travel has the potential to cause or worsen hypoxemia in individuals with pre-existing cardiopulmonary compromise. Knowledge of cabin altitude pressures aboard contemporary flights is essential to counseling patients accurately about flying safety. The objective of the study was to measure peak cabin altitudes during U.S. domestic commercial flights on a variety of aircraft. A handheld mountaineering altimeter was carried by the investigators in the plane cabin during commercial air travel and peak cabin altitude measured. The values were then compared between aircraft models, aircraft classes, and distances flown. The average peak cabin altitude on 207 flights aboard 17 different aircraft was 6341 +/- 1813 ft (1933 m +/- 553 m), significantly higher than when measured in a similar fashion in 1988. Peak cabin altitude was significantly higher for flights longer than 750 mi (7085 +/- 801 ft) compared to shorter flights (5160 +/- 2290 ft/1573 +/- 698 m). Cabin altitude increased linearly with flight distance for flights up to 750 mi in length, but was independent of flight distance for flights exceeding 750 mi. Peak cabin altitude was less than 5000 ft (1524 m) in 70% of flights shorter than 500 mi. Peak cabin altitudes greater than 8000 ft (2438 m) were measured on approximately 10% of the total flights. Peak cabin altitude on commercial aircraft flights has risen over time. Cabin altitude is lower with flights of shorter distance. Physicians should take these factors into account when determining an individual's need for supplemental oxygen during commercial air travel.

  4. Poor flight performance in deep-diving cormorants.

    Science.gov (United States)

    Watanabe, Yuuki Y; Takahashi, Akinori; Sato, Katsufumi; Viviant, Morgane; Bost, Charles-André

    2011-02-01

    Aerial flight and breath-hold diving present conflicting morphological and physiological demands, and hence diving seabirds capable of flight are expected to face evolutionary trade-offs regarding locomotory performances. We tested whether Kerguelen shags Phalacrocorax verrucosus, which are remarkable divers, have poor flight capability using newly developed tags that recorded their flight air speed (the first direct measurement for wild birds) with propeller sensors, flight duration, GPS position and depth during foraging trips. Flight air speed (mean 12.7 m s(-1)) was close to the speed that minimizes power requirement, rather than energy expenditure per distance, when existing aerodynamic models were applied. Flights were short (mean 92 s), with a mean summed duration of only 24 min day(-1). Shags sometimes stayed at the sea surface without diving between flights, even on the way back to the colony, and surface durations increased with the preceding flight durations; these observations suggest that shags rested after flights. Our results indicate that their flight performance is physiologically limited, presumably compromised by their great diving capability (max. depth 94 m, duration 306 s) through their morphological adaptations for diving, including large body mass (enabling a large oxygen store), small flight muscles (to allow for large leg muscles for underwater propulsion) and short wings (to decrease air volume in the feathers and hence buoyancy). The compromise between flight and diving, as well as the local bathymetry, shape the three-dimensional foraging range (<26 km horizontally, <94 m vertically) in this bottom-feeding cormorant.

  5. An automated calibration laboratory for flight research instrumentation: Requirements and a proposed design approach

    Science.gov (United States)

    Oneill-Rood, Nora; Glover, Richard D.

    1990-01-01

    NASA's Dryden Flight Research Facility (Ames-Dryden), operates a diverse fleet of research aircraft which are heavily instrumented to provide both real time data for in-flight monitoring and recorded data for postflight analysis. Ames-Dryden's existing automated calibration (AUTOCAL) laboratory is a computerized facility which tests aircraft sensors to certify accuracy for anticipated harsh flight environments. Recently, a major AUTOCAL lab upgrade was initiated; the goal of this modernization is to enhance productivity and improve configuration management for both software and test data. The new system will have multiple testing stations employing distributed processing linked by a local area network to a centralized database. The baseline requirements for the new AUTOCAL lab and the design approach being taken for its mechanization are described.

  6. Commercial Airline In-Flight Emergency: Medical Student Response and Review of Medicolegal Issues.

    Science.gov (United States)

    Bukowski, Josh H; Richards, John R

    2016-01-01

    As the prevalence of air travel increases, in-flight medical emergencies occur more frequently. A significant percentage of these emergencies occur when there is no certified physician, nurse, or paramedic onboard. During these situations, flight crews might enlist the help of noncertified passengers, such as medical students, dentists, or emergency medical technicians in training. Although Good Samaritan laws exist, many health care providers are unfamiliar with the limited legal protections and resources provided to them after responding to an in-flight emergency. A 78-year-old woman lost consciousness and became pulseless onboard a commercial aircraft. No physician was available. A medical student responded and coordinated care with the flight crew, ground support physician, and other passengers. After receiving a packet (4 g) of sublingual sucrose and 1 L i.v. crystalloid, the patient regained pulses and consciousness. The medical student made the decision not to divert the aircraft based on the patient's initial response to therapy and, 45 min later, the patient had normal vital signs. Upon landing, she was met and taken by paramedics to the nearest emergency department for evaluation of her collapse. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Emergency physicians are the most qualified to assist in-flight emergencies, but they might not be aware of the medicolegal risks involved with in-flight care, the resources available, and the role of the flight crew in liability and decision making. This case, which involved a medical student who was not given explicit protection under Good Samaritan laws, illustrates the authority of the flight crew during these events and highlights areas of uncertainty in the legislation for volunteer medical professionals. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Concordance between hypoxic challenge testing and predictive equations for hypoxic flight assessment in chronic obstructive pulmonary disease patients prior to air travel

    Directory of Open Access Journals (Sweden)

    Mohie Aldeen Abd Alzaher Khalifa

    2016-10-01

    Conclusions: The present study supports on-HCT as a reliable, on-invasive and continuous methods determining the requirement for in-flight O2 are relatively constant. Predictive equations considerably overestimate the need for in-flight O2 compared to hypoxic inhalation test. Predictive equations are cheap, readily available methods of flight assessment, but this study shows poor agreement between their predictions and the measured individual hypoxic responses during HCT.

  8. Development and Flight Test of an Augmented Thrust-Only Flight Control System on an MD-11 Transport Airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Pappas, Drew

    1996-01-01

    An emergency flight control system using only engine thrust, called Propulsion-Controlled Aircraft (PCA), has been developed and flight tested on an MD-11 airplane. In this thrust-only control system, pilot flight path and track commands and aircraft feedback parameters are used to control the throttles. The PCA system was installed on the MD-11 airplane using software modifications to existing computers. Flight test results show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds and altitudes. The PCA approaches, go-arounds, and three landings without the use of any non-nal flight controls have been demonstrated, including instrument landing system-coupled hands-off landings. The PCA operation was used to recover from an upset condition. In addition, PCA was tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control; describes the MD-11 airplane and systems; and discusses PCA system development, operation, flight testing, and pilot comments.

  9. CCSDS telemetry systems experience at the Goddard Space Flight Center

    Science.gov (United States)

    Carper, Richard D.; Stallings, William H., III

    1990-01-01

    NASA Goddard Space Flight Center (GSFC) designs, builds, manages, and operates science and applications spacecraft in near-earth orbit, and provides data capture, data processing, and flight control services for these spacecraft. In addition, GSFC has the responsibility of providing space-ground and ground-ground communications for near-earth orbiting spacecraft, including those of the manned spaceflight programs. The goal of reducing both the developmental and operating costs of the end-to-end information system has led the GSFC to support and participate in the standardization activities of the Consultative Committee for Space Data Systems (CCSDS), including those for packet telemetry. The environment in which such systems function is described, and the GSFC experience with CCSDS packet telemetry in the context of the Gamma-Ray Observatory project is discussed.

  10. Oceanic Flights and Airspace: Improving Efficiency by Trajectory-Based Operations

    Science.gov (United States)

    Fernandes, Alicia Borgman; Rebollo, Juan; Koch, Michael

    2016-01-01

    Oceanic operations suffer from multiple inefficiencies, including pre-departure planning that does not adequately consider uncertainty in the proposed trajectory, restrictions on the routes that a flight operator can choose for an oceanic crossing, time-consuming processes and procedures for amending en route trajectories, and difficulties exchanging data between Flight Information Regions (FIRs). These inefficiencies cause aircraft to fly suboptimal trajectories, burning fuel and time that could be conserved. A concept to support integration of existing and emerging capabilities and concepts is needed to transition to an airspace system that employs Trajectory Based Operations (TBO) to improve efficiency and safety in oceanic operations. This paper describes such a concept and the results of preliminary activities to evaluate the concept, including a stakeholder feedback activity, user needs analysis, and high level benefits analysis.

  11. The trans-Himalayan flights of bar-headed geese (Anser indicus)

    Science.gov (United States)

    Hawkes, L.A.; Balachandran, S.; Batbayar, N.; Butler, P.J.; Frappell, P.B.; Milsom, W.K.; Tseveenmyadag, N.; Newman, S.H.; Scott, G.R.; Sathiyaselvam, P.; Takekawa, John Y.; Wikelski, M.; Bishop, C.M.

    2011-01-01

    Birds that fly over mountain barriers must be capable of meeting the increased energetic cost of climbing in low-density air, even though less oxygen may be available to support their metabolism. This challenge is magnified by the reduction in maximum sustained climbing rates in large birds. Bar-headed geese (Anser indicus) make one of the highest and most iconic transmountain migrations in the world. We show that those populations of geese that winter at sea level in India are capable of passing over the Himalayas in 1 d, typically climbing between 4,000 and 6,000min 7-8 h. Surprisingly, these birds do not rely on the assistance of upslope tailwinds that usually occur during the day and can support minimum climb rates of 0.8-2.2 km??h-1, even in the relative stillness of the night. They appear to strategically avoid higher speed winds during the afternoon, thus maximizing safety and control during flight. It would seem, therefore, that bar-headed geese are capable of sustained climbing flight over the passes of the Himalaya under their own aerobic power.

  12. Advanced Stirling Convertor (ASC) Technology Maturation in Preparation for Flight

    Science.gov (United States)

    Wong, Wayne A.; Cornell, Peggy A.

    2012-01-01

    The Advanced Stirling Convertor (ASC) is being developed by an integrated team of Sunpower and National Aeronautics and Space Administration s (NASA s) Glenn Research Center (GRC). The ASC development, funded by NASA s Science Mission Directorate, started as a technology development effort in 2003 and has since evolved through progressive convertor builds and successful testing to demonstrate high conversion efficiency, low mass, and capability to meet long-life Radioisotope Power System (RPS) requirements. The technology has been adopted by the Department of Energy and Lockheed Martin Space Systems Company s Advanced Stirling Radioisotope Generator (ASRG), which has been selected for potential flight demonstration on Discovery 12. This paper provides an overview of the status of ASC development including the most recent ASC-E2 convertors that have been delivered to GRC and an introduction to the ASC-E3 and ASC flight convertors that Sunpower will build next. The paper also describes the technology maturation and support tasks being conducted at GRC to support ASC and ASRG development in the areas of convertor and generator extended operation, high-temperature materials, heater head life assessment, organics, nondestructive inspection, spring fatigue testing, and other reliability verification tasks.

  13. Grumman OV-1C in flight

    Science.gov (United States)

    1983-01-01

    Grumman OV-1C in flight. This OV-1C Mohawk, serial #67-15932, was used in a joint NASA/US Army Aviation Engineering Flight Activity (USAAEFA) program to study a stall-speed warning system in the early 1980s. NASA designed and built an automated stall-speed warning system which presented both airspeed and stall speed to the pilot. Visual indication of impending stall would be displayed to the pilot as a cursor or pointer located on a conventional airspeed indicator. In addition, an aural warning at predetermined stall margins was presented to the pilot through a voice synthesizer. The Mohawk was developed by Grumman Aircraft as a photo observation and reconnaissance aircraft for the US Marines and the US Army. The OV-1 entered production in October 1959 and served the US Army in Europe, Korea, the Viet Nam War, Central and South America, Alaska, and during Desert Shield/Desert Storm in the Middle East. The Mohawk was retired from service in September 1996. 133 OV-1Cs were built, the 'C' designating the model which used an IR (infrared) imaging system to provide reconnaissance.

  14. LH2 on-orbit storage tank support trunnion design and verification

    Science.gov (United States)

    Bailey, W. J.; Fester, D. A.; Toth, J. M., Jr.

    1985-01-01

    A detailed fatigue analysis was conducted to provide verification of the trunnion design in the reusable Cryogenic Fluid Management Facility for Shuttle flights and to assess the performance capability of the trunnion E-glass/S-glass epoxy composite material. Basic material property data at ambient and liquid hydrogen temperatures support the adequacy of the epoxy composite for seven-mission requirement. Testing of trunnions fabricated to the flight design has verified adequate strength and fatigue properties of the design to meet the requirements of seven Shuttle flights.

  15. Information support of decision-making in the early stages of new product development when approaching marketing management

    Directory of Open Access Journals (Sweden)

    A. A. Tishhenko

    2017-01-01

    Full Text Available Goal. To create theoretical and practical approaches to information support of the decision making procedure at the initial stages of developing a new product with a marketing management approach that allows to improve the quality of management decisions on the product. Material and methods. The projected software package on the basis of expert assessments and fuzzy sets, allows to automate the decision to implement innovation at an early stage. The work used such scientific methods as generalization of scientific literature in the field of shaping and taking into account the features of innovation, Solutions in the initial stages of development, methods of expert evaluation and elements of fuzzy sets. Results and its discussion. The article presents the rationale and possibilities for informational support of the decision-making procedure for innovative products. The authors also proposed a methodology for making a decision when developing a new product based on expert and predictive assessments of innovation at the initial stages of its creation. A software package has been developed that automates the decision to manufacture a new product at the initial stages of production. Conclusion. Despite a large number of theoretical developments in innovative management, the risk associated with the release of new products remains quite high. The developed methodology of information support for decision-making at the initial stages of the development of a new product will reduce the risk of the lack of demand for innovation.

  16. Nutritional Biochemistry of Space Flight

    Science.gov (United States)

    Smith, Scott M.

    2000-01-01

    Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, mtabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng

  17. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    Science.gov (United States)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  18. High performance real-time flight simulation at NASA Langley

    Science.gov (United States)

    Cleveland, Jeff I., II

    1994-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be deterministic and be completed in as short a time as possible. This includes simulation mathematical model computational and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, personnel at NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to a standard input/output system to provide for high bandwidth, low latency data acquisition and distribution. The Computer Automated Measurement and Control technology (IEEE standard 595) was extended to meet the performance requirements for real-time simulation. This technology extension increased the effective bandwidth by a factor of ten and increased the performance of modules necessary for simulator communications. This technology is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications of this technology are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC have completed the development of the use of supercomputers for simulation mathematical model computational to support real-time flight simulation. This includes the development of a real-time operating system and the development of specialized software and hardware for the CAMAC simulator network. This work, coupled with the use of an open systems software architecture, has advanced the state of the art in real time flight simulation. The data acquisition technology innovation and experience with recent developments in this technology are described.

  19. The IAEA activities supporting implementation of best practice in uranium production cycle

    International Nuclear Information System (INIS)

    Slezak, J.

    2010-01-01

    'Full text:' Since the International Atomic Energy Agency's foundation in 1957, the Agency has had an increasing interest in uranium production cycle (UPC) developments. Recent activities cover tasks on uranium geology & deposits, exploration, mining & processing including environmental issues. The two projects titles are (1) Updating uranium resources, supply and demand and nuclear fuel cycle databases and (2) Supporting good practices in the UPC in particular for new countries. Based o the recent experience, one of the new activities is focused at human resources development to improve application of best practice called Uranium Production Cycle Network (UPNet). (author)

  20. Gamma Ray Large Area Space Telescope (GLAST) Balloon Flight Engineering Model: Overview

    Science.gov (United States)

    Thompson, D. J.; Godfrey, G.; Williams, S. M.; Grove, J. E.; Mizuno, T.; Sadrozinski, H. F.-W.; Kamae, T.; Ampe, J.; Briber, Stuart; Dann, James; hide

    2001-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) is a pair-production high-energy (greater than 20 MeV) gamma-ray telescope being built by an international partnership of astrophysicists and particle physicists for a satellite launch in 2006, designed to study a wide variety of high-energy astrophysical phenomena. As part of the development effort, the collaboration has built a Balloon Flight Engineering Model (BFEM) for flight on a high-altitude scientific balloon. The BFEM is approximately the size of one of the 16 GLAST-LAT towers and contains all the components of the full instrument: plastic scintillator anticoincidence system (ACD), high-Z foil/Si strip pair-conversion tracker (TKR), CsI hodoscopic calorimeter (CAL), triggering and data acquisition electronics (DAQ), commanding system, power distribution, telemetry, real-time data display, and ground data processing system. The principal goal of the balloon flight was to demonstrate the performance of this instrument configuration under conditions similar to those expected in orbit. Results from a balloon flight from Palestine, Texas, on August 4, 2001, show that the BFEM successfully obtained gamma-ray data in this high-background environment.

  1. Identification of antimycotic drugs transformation products upon UV exposure

    Energy Technology Data Exchange (ETDEWEB)

    Casado, Jorge; Rodríguez, Isaac, E-mail: isaac.rodriguez@usc.es; Ramil, María; Cela, Rafael

    2015-05-30

    Highlights: • Evaluation of antimycotic drugs UV stabilities in model supports. • Simultaneous detection of precursor drugs and transformation products. • Transformation products identification from their scan, accurate MS/MS spectra. • Directed search of identified transformation products in sand and soil samples. • Preliminary toxicity estimations. - Abstract: The reactivity of three imidazolic, environmental persistent antimycotic drugs (clotrimazole, CTZ; ketoconazole, KTZ; and miconazole, MCZ) upon exposure to ultraviolet (UV) radiation is discussed. First, precursor compounds were immobilized in a silicone support which was further exposed to UV light at two different wavelengths: 254 and 365 nm. After solvent desorption, degradation kinetics of the precursor pharmaceuticals, identification of the arising transformation products (TPs) and evaluation of their time-course were investigated by liquid chromatography (LC) with quadrupole time-of-flight (QTOF) mass spectrometry (MS) detection. The three antimycotics displayed similar stabilities when exposed to 254 nm light; however, CTZ was significantly more stable than MCZ and KTZ when irradiated with the 365 nm lamp. TPs identified in silicone supports resulted from de-chlorination, cleavage, intra-molecular cyclization and hydroxylation reactions. Many of these species were also detected when exposing other solid matrices, such as sand and agricultural soil, previously spiked with target compounds, to UV light. The 50% estimated lethal concentration, calculated using the 48-h Daphnia magna test, for the two main TPs of CTZ and MCZ, at both wavelengths, were lower than those corresponding to the precursor drugs.

  2. Identification of antimycotic drugs transformation products upon UV exposure

    International Nuclear Information System (INIS)

    Casado, Jorge; Rodríguez, Isaac; Ramil, María; Cela, Rafael

    2015-01-01

    Highlights: • Evaluation of antimycotic drugs UV stabilities in model supports. • Simultaneous detection of precursor drugs and transformation products. • Transformation products identification from their scan, accurate MS/MS spectra. • Directed search of identified transformation products in sand and soil samples. • Preliminary toxicity estimations. - Abstract: The reactivity of three imidazolic, environmental persistent antimycotic drugs (clotrimazole, CTZ; ketoconazole, KTZ; and miconazole, MCZ) upon exposure to ultraviolet (UV) radiation is discussed. First, precursor compounds were immobilized in a silicone support which was further exposed to UV light at two different wavelengths: 254 and 365 nm. After solvent desorption, degradation kinetics of the precursor pharmaceuticals, identification of the arising transformation products (TPs) and evaluation of their time-course were investigated by liquid chromatography (LC) with quadrupole time-of-flight (QTOF) mass spectrometry (MS) detection. The three antimycotics displayed similar stabilities when exposed to 254 nm light; however, CTZ was significantly more stable than MCZ and KTZ when irradiated with the 365 nm lamp. TPs identified in silicone supports resulted from de-chlorination, cleavage, intra-molecular cyclization and hydroxylation reactions. Many of these species were also detected when exposing other solid matrices, such as sand and agricultural soil, previously spiked with target compounds, to UV light. The 50% estimated lethal concentration, calculated using the 48-h Daphnia magna test, for the two main TPs of CTZ and MCZ, at both wavelengths, were lower than those corresponding to the precursor drugs

  3. Capabilities of the Environmental Effects Branch at Marshall Space Flight Cente

    Science.gov (United States)

    Rogers, Jan; Finckenor, Miria; Nehls, Mary

    2016-01-01

    The Environmental Effects Branch at the Marshall Space Flight Center supports a myriad array of programs for NASA, DoD, and commercial space including human exploration, advanced space propulsion, improving life on Earth, and the study of the Sun, the Earth, and the solar system. The branch provides testing, evaluation, and qualification of materials for use on external spacecraft surfaces and in contamination-sensitive systems. Space environment capabilities include charged particle radiation, ultraviolet radiation, atomic oxygen, impact, plasma, and thermal vacuum, anchored by flight experiments and analysis of returned space hardware. These environmental components can be combined for solar wind or planetary surface environment studies or to evaluate synergistic effects. The Impact Testing Facility allows simulation of impacts ranging from sand and rain to micrometeoroids and orbital debris in order to evaluate materials and components for flight and ground-based systems. The Contamination Control Team is involved in the evaluation of environmentally-friendly replacements for HCFC-225 for use in propulsion oxygen systems, developing cleaning methods for additively manufactured hardware, and reducing risk for the Space Launch System.

  4. Digital virtual flight testing and evaluation method for flight characteristics airworthiness compliance of civil aircraft based on HQRM

    Directory of Open Access Journals (Sweden)

    Fan Liu

    2015-02-01

    Full Text Available In order to incorporate airworthiness requirements for flight characteristics into the entire development cycle of electronic flight control system (EFCS equipped civil aircraft, digital virtual flight testing and evaluation method based on handling qualities rating method (HQRM is proposed. First, according to HQRM, flight characteristics airworthiness requirements of civil aircraft in EFCS failure states are determined. On this basis, digital virtual flight testing model, comprising flight task digitized model, pilot controlling model, aircraft motion and atmospheric turbulence model, is used to simulate the realistic process of a pilot controlling an airplane to perform assigned flight tasks. According to the simulation results, flight characteristics airworthiness compliance of the airplane can be evaluated relying on the relevant regulations for handling qualities (HQ rating. Finally, this method is applied to a type of passenger airplane in a typical EFCS failure state, and preliminary conclusions concerning airworthiness compliance are derived quickly. The research results of this manuscript can provide important theoretical reference for EFCS design and actual airworthiness compliance verification of civil aircraft.

  5. Supersonic Retropropulsion Flight Test Concepts

    Science.gov (United States)

    Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.

    2011-01-01

    NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.

  6. 14 CFR 91.1061 - Augmented flight crews.

    Science.gov (United States)

    2010-01-01

    ...) Minimum After Duty Rest Period for Multi-Time Zone Flights 18 hours 24 hours ...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership... crewmember, and no flight crewmember may accept an assignment, for flight time as a member of an augmented...

  7. Getting started with Twitter Flight

    CERN Document Server

    Hamshere, Tom

    2013-01-01

    Getting Started with Twitter Flight is written with the intention to educate the readers, helping them learn how to build modular powerful applications with Flight, Twitter's cutting-edge JavaScript framework.This book is for anyone with a foundation in JavaScript who wants to build web applications. Flight is quick and easy to learn, built on technologies you already understand such as the DOM, events, and jQuery.

  8. Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement.

    Science.gov (United States)

    Harne, R L; Wang, K W

    2015-03-06

    Insects are a prime source of inspiration towards the development of small-scale, engineered, flapping wing flight systems. To help interpret the possible energy transformation strategies observed in Diptera as inspiration for mechanical flapping flight systems, we revisit the perspective of the dipteran wing motor as a bistable click mechanism and take a new, and more flexible, outlook to the architectural composition previously considered. Using a representative structural model alongside biological insights and cues from nonlinear dynamics, our analyses and experimental results reveal that a flight mechanism able to adjust motor axial support stiffness and compression characteristics may dramatically modulate the amplitude range and type of wing stroke dynamics achievable. This corresponds to significantly more versatile aerodynamic force generation without otherwise changing flapping frequency or driving force amplitude. Whether monostable or bistable, the axial stiffness is key to enhance compressed motor load bearing ability and aerodynamic efficiency, particularly compared with uncompressed linear motors. These findings provide new foundation to guide future development of bioinspired, flapping wing mechanisms for micro air vehicle applications, and may be used to provide insight to the dipteran muscle-to-wing interface. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. The Core Flight System (cFS) Community: Providing Low Cost Solutions for Small Spacecraft

    Science.gov (United States)

    McComas, David; Wilmot, Jonathan; Cudmore, Alan

    2016-01-01

    In February 2015 the NASA Goddard Space Flight Center (GSFC) completed the open source release of the entire Core Flight Software (cFS) suite. After the open source release a multi-NASA center Configuration Control Board (CCB) was established that has managed multiple cFS product releases. The cFS was developed and is being maintained in compliance with the NASA Class B software development process requirements and the open source release includes all Class B artifacts. The cFS is currently running on three operational science spacecraft and is being used on multiple spacecraft and instrument development efforts. While the cFS itself is a viable flight software (FSW) solution, we have discovered that the cFS community is a continuous source of innovation and growth that provides products and tools that serve the entire FSW lifecycle and future mission needs. This paper summarizes the current state of the cFS community, the key FSW technologies being pursued, the development/verification tools and opportunities for the small satellite community to become engaged. The cFS is a proven high quality and cost-effective solution for small satellites with constrained budgets.

  10. CALS and the Product State Model - Methodology and Supporting Schools and Paradigms

    DEFF Research Database (Denmark)

    Larsen, Michael Holm

    1998-01-01

    incorporates relevant information about each stage of the production process.The paper will describe the research object, the model object and discuss a part of the methodology in developing a Product State Model. The project is primarily technological, however, organisational and human aspects......This paper address the preliminary considerations in a research project, initiated February 1997, regarding Continuous Acquisition and Life-cycle Support (CALS) which is a part of the activities in CALS Center Denmark. The CALS concept is presented focusing on the Product State Model (PSM). The PSM...... will be developed upon, will be discussed. Also, the parameters for evaluating the PSM will be considered. In establishing the theoretical body of knowledge with respect to CALS, an identification of schools and paradigms within the research area of applying information technology in a manufacturing environment...

  11. Selecting Products Considering the Regret Behavior of Consumer: A Decision Support Model Based on Online Ratings

    Directory of Open Access Journals (Sweden)

    Xia Liang

    2018-05-01

    Full Text Available With the remarkable promotion of e-commerce platforms, consumers increasingly prefer to purchase products online. Online ratings facilitate consumers to choose among products. Thus, to help consumers effectively select products, it is necessary to provide decision support methods for consumers to trade online. Considering the decision makers are bounded rational, this paper proposes a novel decision support model for product selection based on online ratings, in which the regret aversion behavior of consumers is formulated. Massive online ratings provided by experienced consumers for alternative products associated with several evaluation attributes are obtained by software finders. Then, the evaluations of alternative products in format of stochastic variables are conducted. To select a desirable alternative product, a novel method is introduced to calculate gain and loss degrees of each alternative over others. Considering the regret behavior of consumers in the product selection process, the regret and rejoice values of alternative products for consumer are computed to obtain the perceived utility values of alternative products. According to the prior order of the evaluation attributes provided by the consumer, the prior weights of attributes are determined based on the perceived utility values of alternative products. Furthermore, the overall perceived utility values of alternative products are obtained to generate a ranking result. Finally, a practical example from Zol.com.cn for tablet computer selection is used to demonstrate the feasibility and practically of the proposed model.

  12. Low Density Supersonic Decelerator Flight Dynamics Test-1 Flight Design and Targeting

    Science.gov (United States)

    Ivanov, Mark

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) program was established to identify, develop, and eventually qualify to Test [i.e. Technology] Readiness Level (TRL) - 6 aerodynamic decelerators for eventual use on Mars. Through comprehensive Mars application studies, two distinct Supersonic Inflatable Aerodynamic Decelerator (SIAD) designs were chosen that afforded the optimum balance of benefit, cost, and development risk. In addition, a Supersonic Disk Sail (SSDS) parachute design was chosen that satisfied the same criteria. The final phase of the multi-tiered qualification process involves Earth Supersonic Flight Dynamics Tests (SFDTs) within environmental conditions similar to those that would be experienced during a Mars Entry, Descent, and Landing (EDL) mission. The first of these flight tests (i.e. SFDT-1) was completed on June 28, 2014 with two more tests scheduled for the summer of 2015 and 2016, respectively. The basic flight design for all the SFDT flights is for the SFDT test vehicle to be ferried to a float altitude of 120 kilo-feet by a 34 thousand cubic feet (Mcf) heavy lift helium balloon. Once float altitude is reached, the test vehicle is released from the balloon, spun-up for stability, and accelerated to supersonic speeds using a Star48 solid rocket motor. After burnout of the Star48 motor the vehicle decelerates to pre-flight selected test conditions for the deployment of the SIAD system. After further deceleration with the SIAD deployed, the SSDS parachute is then deployed stressing the performance of the parachute in the wake of the SIAD augmented blunt body. The test vehicle/SIAD/parachute system then descends to splashdown in the Pacific Ocean for eventual recovery. This paper will discuss the development of both the test vehicle and the trajectory sequence including design trade-offs resulting from the interaction of both engineering efforts. In addition, the SFDT-1 nominal trajectory design and associated sensitivities will be discussed

  13. Aging Enhances Indirect Flight Muscle Fiber Performance yet Decreases Flight Ability in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mark S.; Lekkas, Panagiotis; Braddock, Joan M.; Farman, Gerrie P.; Ballif, Bryan A.; Irving, Thomas C.; Maughan, David W.; Vigoreaux, Jim O. (IIT); (Vermont)

    2008-10-02

    We investigated the effects of aging on Drosophila melanogaster indirect flight muscle from the whole organism to the actomyosin cross-bridge. Median-aged (49-day-old) flies were flight impaired, had normal myofilament number and packing, barely longer sarcomeres, and slight mitochondrial deterioration compared with young (3-day-old) flies. Old (56-day-old) flies were unable to beat their wings, had deteriorated ultrastructure with severe mitochondrial damage, and their skinned fibers failed to activate with calcium. Small-amplitude sinusoidal length perturbation analysis showed median-aged indirect flight muscle fibers developed greater than twice the isometric force and power output of young fibers, yet cross-bridge kinetics were similar. Large increases in elastic and viscous moduli amplitude under active, passive, and rigor conditions suggest that median-aged fibers become stiffer longitudinally. Small-angle x-ray diffraction indicates that myosin heads move increasingly toward the thin filament with age, accounting for the increased transverse stiffness via cross-bridge formation. We propose that the observed protein composition changes in the connecting filaments, which anchor the thick filaments to the Z-disk, produce compensatory increases in longitudinal stiffness, isometric tension, power and actomyosin interaction in aging indirect flight muscle. We also speculate that a lack of MgATP due to damaged mitochondria accounts for the decreased flight performance.

  14. A Stochastic Model for the Landing Dispersion of Hazard Detection and Avoidance Capable Flight Systems

    Science.gov (United States)

    Witte, L.

    2014-06-01

    To support landing site assessments for HDA-capable flight systems and to facilitate trade studies between the potential HDA architectures versus the yielded probability of safe landing a stochastic landing dispersion model has been developed.

  15. Remote radio control of insect flight

    Directory of Open Access Journals (Sweden)

    Hirotaka Sato

    2009-10-01

    Full Text Available We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely-controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses.

  16. Remote radio control of insect flight.

    Science.gov (United States)

    Sato, Hirotaka; Berry, Christopher W; Peeri, Yoav; Baghoomian, Emen; Casey, Brendan E; Lavella, Gabriel; Vandenbrooks, John M; Harrison, Jon F; Maharbiz, Michel M

    2009-01-01

    We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses.

  17. A decision support system for planning biomass-based energy production

    Energy Technology Data Exchange (ETDEWEB)

    Frombo, Francesco; Robba, Michela [DIST, Department of Communication, Computer and System Sciences, University of Genoa, Via Opera Pia 13, 16145 Genova (Italy); Renewable Energy Laboratory, Modelling and Optimization, Via A. Magliotto 2, 17100 Savona (Italy); Minciardi, Riccardo; Sacile, Roberto [DIST, Department of Communication, Computer and System Sciences, University of Genoa, Via Opera Pia 13, 16145 Genova (Italy)

    2009-03-15

    Environmental decision support systems (EDSS) are recognized as valuable tools for environmental planning and management. In this paper, a geographic information system (GIS)-based EDSS for the optimal planning of forest biomass use for energy production is presented. A user-friendly interface allows the creation of Scenarios and the running of the developed decision and environmental models. In particular, the optimization model regards decisions over a long-term period (e.g. years) and includes decision variables related to plant locations, conversion processes (pyrolisis, gasification, combustion), harvested biomass. Moreover, different energy products and different definitions of the harvesting and pre-treatment operations are taken into account. The correct management of the forest is considered through specific constraints, security factors, and procedures for parcel selection. The EDSS features and capabilities are described in detail, with specific reference to a case study. Discussion and further research are reported. (author)

  18. Flight Management System Execution of Idle-Thrust Descents in Operations

    Science.gov (United States)

    Stell, Laurel L.

    2011-01-01

    To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the trajectory predictor and its error models, commercial flights executed idle-thrust descents, and the recorded data includes the target speed profile and FMS intent trajectories. The FMS computes the intended descent path assuming idle thrust after top of descent (TOD), and any intervention by the controllers that alters the FMS execution of the descent is recorded so that such flights are discarded from the analysis. The horizontal flight path, cruise and meter fix altitudes, and actual TOD location are extracted from the radar data. Using more than 60 descents in Boeing 777 aircraft, the actual speeds are compared to the intended descent speed profile. In addition, three aspects of the accuracy of the FMS intent trajectory are analyzed: the meter fix crossing time, the TOD location, and the altitude at the meter fix. The actual TOD location is within 5 nmi of the intent location for over 95% of the descents. Roughly 90% of the time, the airspeed is within 0.01 of the target Mach number and within 10 KCAS of the target descent CAS, but the meter fix crossing time is only within 50 sec of the time computed by the FMS. Overall, the aircraft seem to be executing the descents as intended by the designers of the onboard automation.

  19. Testing the time-of-flight model for flagellar length sensing.

    Science.gov (United States)

    Ishikawa, Hiroaki; Marshall, Wallace F

    2017-11-07

    Cilia and flagella are microtubule-based organelles that protrude from the surface of most cells, are important to the sensing of extracellular signals, and make a driving force for fluid flow. Maintenance of flagellar length requires an active transport process known as intraflagellar transport (IFT). Recent studies reveal that the amount of IFT injection negatively correlates with the length of flagella. These observations suggest that a length-dependent feedback regulates IFT. However, it is unknown how cells recognize the length of flagella and control IFT. Several theoretical models try to explain this feedback system. We focused on one of the models, the "time-of-flight" model, which measures the length of flagella on the basis of the travel time of IFT protein in the flagellar compartment. We tested the time-of-flight model using Chlamydomonas dynein mutant cells, which show slower retrograde transport speed. The amount of IFT injection in dynein mutant cells was higher than that in control cells. This observation does not support the prediction of the time-of-flight model and suggests that Chlamydomonas uses another length-control feedback system rather than that described by the time-of-flight model. © 2017 Ishikawa and Marshall. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Role of Meteorology in Flights of a Solar-Powered Airplane

    Science.gov (United States)

    Donohue, Casey

    2004-01-01

    In the summer of 2001, the Helios prototype solar-powered uninhabited aerial vehicle (UAV) [a lightweight, remotely piloted airplane] was deployed to the Pacific Missile Range Facility (PMRF), at Kauai, Hawaii, in an attempt to fly to altitudes above 100,000 ft (30.48 km). The goal of flying a UAV to such high altitudes has been designated a level-I milestone of the NASA Environmental Research Aircraft and Sensor Technology (ERAST) program. In support of this goal, meteorologists from NASA Dryden Flight Research Center were sent to PMRF, as part of the flight crew, to provide current and forecast weather information to the pilots, mission directors, and planners. Information of this kind is needed to optimize flight conditions for peak aircraft performance and to enable avoidance of weather conditions that could adversely affect safety. In general, the primary weather data of concern for ground and flight operations are wind speeds (see Figure 1). Because of its long wing span [247 ft (.75 m)] and low weight [1,500 to 1,600 lb (about 680 to 726 kg)], the Helios airplane is sensitive to wind speeds exceeding 7 kn (3.6 m/s) at the surface. Also, clouds are of concern because they can block sunlight needed to energize an array of solar photovoltaic cells that provide power to the airplane. Vertical wind shear is very closely monitored in order to prevent damage or loss of control due to turbulence.

  1. Peer support of a faculty "writers' circle" increases confidence and productivity in generating scholarship.

    Science.gov (United States)

    Brandon, Catherine; Jamadar, David; Girish, Gandikota; Dong, Qian; Morag, Yoav; Mullan, Patricia

    2015-04-01

    Publishing is critical for academic medicine career advancement. Rejection of manuscripts can be demoralizing. Obstacles faced by clinical faculty may include lack of time, confidence, and optimal writing practices. This study describes the development and evaluation of a peer-writing group, informed by theory and research on faculty development and writing. Five clinical-track radiology faculty members formed a "Writers' Circle" to promote scholarly productivity and reflection on writing practices. Members decided to work with previously rejected manuscripts. After members' initial meeting, interactions were informal, face to face during clinical work, and online. After the first 6 months, an anonymous survey asked members about the status of articles and evaluations of the writing group. Ten previously rejected articles, at least one from each member, were submitted to the Circle. In 6 months, four manuscripts were accepted for publication, five were in active revision, and one was withdrawn. All participants (100%) characterized the program as worth their time, increasing their motivation to write, their opportunities to support scholarly productivity of colleagues, and their confidence in generating scholarship. Peer-support writing groups can facilitate the pooling of expertise and the exchange of recommended writing practices. Our peer-support group increased scholarly productivity and provided a collegial approach to academic writing. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  2. Flight Test Maneuvers for Efficient Aerodynamic Modeling

    Science.gov (United States)

    Morelli, Eugene A.

    2011-01-01

    Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.

  3. Qualification and issues with space flight laser systems and components

    Science.gov (United States)

    Ott, Melanie N.; Coyle, D. B.; Canham, John S.; Leidecker, Henning W., Jr.

    2006-02-01

    The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 1990's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.

  4. NASA's Astronant Family Support Office

    Science.gov (United States)

    Beven, Gary; Curtis, Kelly D.; Holland, Al W.; Sipes, Walter; VanderArk, Steve

    2014-01-01

    During the NASA-Mir program of the 1990s and due to the challenges inherent in the International Space Station training schedule and operations tempo, it was clear that a special focus on supporting families was a key to overall mission success for the ISS crewmembers pre-, in- and post-flight. To that end, in January 2001 the first Family Services Coordinator was hired by the Behavioral Health and Performance group at NASA JSC and matrixed from Medical Operations into the Astronaut Office's organization. The initial roles and responsibilities were driven by critical needs, including facilitating family communication during training deployments, providing mission-specific and other relevant trainings for spouses, serving as liaison for families with NASA organizations such as Medical Operations, NASA management and the Astronaut Office, and providing assistance to ensure success of an Astronaut Spouses Group. The role of the Family Support Office (FSO) has modified as the ISS Program matured and the needs of families changed. The FSO is currently an integral part of the Astronaut Office's ISS Operations Branch. It still serves the critical function of providing information to families, as well as being the primary contact for US and international partner families with resources at JSC. Since crews launch and return on Russian vehicles, the FSO has the added responsibility for coordinating with Flight Crew Operations, the families, and their guests for Soyuz launches, landings, and Direct Return to Houston post-flight. This presentation will provide a summary of the family support services provided for astronauts, and how they have changed with the Program and families the FSO serves. Considerations for future FSO services will be discussed briefly as NASA proposes one year missions and beyond ISS missions. Learning Objective: 1) Obtain an understanding of the reasons a Family Support Office was important for NASA. 2) Become familiar with the services provided for

  5. Decision Analysis with Value-Focused Thinking as a Methodology in Structuring the Civil Engineer Operations Flight

    National Research Council Canada - National Science Library

    Katzer, Dee

    2002-01-01

    .... To provide insight and defensible support for an operations flight commander faced with this decision, a value-focused thinking process was used to create a value model that aids in evaluating...

  6. Comparison of Commercial Aircraft Fuel Requirements in Regards to FAR, Flight Profile Simulation, and Flight Operational Techniques

    Science.gov (United States)

    Heitzman, Nicholas

    There are significant fuel consumption consequences for non-optimal flight operations. This study is intended to analyze and highlight areas of interest that affect fuel consumption in typical flight operations. By gathering information from actual flight operators (pilots, dispatch, performance engineers, and air traffic controllers), real performance issues can be addressed and analyzed. A series of interviews were performed with various individuals in the industry and organizations. The wide range of insight directed this study to focus on FAA regulations, airline policy, the ATC system, weather, and flight planning. The goal is to highlight where operational performance differs from design intent in order to better connect optimization with actual flight operations. After further investigation and consensus from the experienced participants, the FAA regulations do not need any serious attention until newer technologies and capabilities are implemented. The ATC system is severely out of date and is one of the largest limiting factors in current flight operations. Although participants are pessimistic about its timely implementation, the FAA's NextGen program for a future National Airspace System should help improve the efficiency of flight operations. This includes situational awareness, weather monitoring, communication, information management, optimized routing, and cleaner flight profiles like Required Navigation Performance (RNP) and Continuous Descent Approach (CDA). Working off the interview results, trade-studies were performed using an in-house flight profile simulation of a Boeing 737-300, integrating NASA legacy codes EDET and NPSS with a custom written mission performance and point-performance "Skymap" calculator. From these trade-studies, it was found that certain flight conditions affect flight operations more than others. With weather, traffic, and unforeseeable risks, flight planning is still limited by its high level of precaution. From this

  7. Sustainable Foods and Medicines Support Vitality, Sex and Longevity for a 100-Year Starship Expedition

    Science.gov (United States)

    Edwards, M. R.

    Extended space flight requires foods and medicines that sustain crew health and vitality. The health and therapeutic needs for the entire crew and their children for a 100-year space flight must be sustainable. The starship cannot depend on resupply or carry a large cargo of pharmaceuticals. Everything in the starship must be completely recyclable and reconstructable, including food, feed, textiles, building materials, pharmaceuticals, vaccines, and medicines. Smart microfarms will produce functional foods with superior nutrition and sensory attributes. These foods provide high-quality protein and nutralence (nutrient density), that avoids obesity, diabetes, and other Western diseases. The combination of functional foods, lifestyle actions, and medicines will support crew immunity, energy, vitality, sustained strong health, and longevity. Smart microfarms enable the production of fresh medicines in hours or days, eliminating the need for a large dispensary, which eliminates concern over drug shelf life. Smart microfarms are adaptable to the extreme growing area, resource, and environmental constraints associated with an extended starship expedition.

  8. Cost Decision Support in Product Design

    NARCIS (Netherlands)

    Liebers, A.; Kals, H.J.J.

    1997-01-01

    The constraints addressed in decision making during product design, process planning and production planning determine the admissible solution space for the manufacture of products. The solution space determines largely the costs that are incurred in the production process. In order to be able to

  9. Geographic proximity to coal plants and U.S. public support for extending the Production Tax Credit

    International Nuclear Information System (INIS)

    Goldfarb, Jillian L.; Buessing, Marric; Kriner, Douglas L.

    2016-01-01

    The Production Tax Credit (PTC) is an important policy instrument through which the federal government promotes renewable energy development in the United States. However, the efficacy of the PTC is hampered by repeated expirations and short-term extensions, and by the general uncertainty surrounding its future status. We examine the factors driving variation in public support for the extension of the PTC using a nationally representative, internet-based survey. Americans living near a coal-fired power plant are significantly more likely to support extending the PTC than are their peers who are more insulated from the externalities of burning coal. The evidence for this dynamic was strongest and most statistically significant among subjects experimentally primed to think about the adverse health effects of burning coal. Raising awareness of the public health ramifications of generating electricity from fossil fuels holds the potential to increase support for renewable energy policies among those living in proximity to coal plants, even in a highly politicized policy debate. - Highlights: • Proximity to coal power plant increases support for Production Tax Credit. • Attitudes toward global warming influence support for PTC. • Raising awareness of health threat increases PTC support if living near coal plant.

  10. 14 CFR 125.265 - Flight engineer requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a flight engineer is required by the type certification requirements without a flight crewmember holding a current...

  11. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    Science.gov (United States)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  12. 14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.

    Science.gov (United States)

    2010-01-01

    ... section, may have a flight engineer certificate issued to him for the operation of civil aircraft of U.S... engineer certificate issued under this section may act as a flight engineer of a civil aircraft of U.S... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer certificate issued on basis...

  13. In search of standards to support circularity in product policies: A systematic approach.

    Science.gov (United States)

    Tecchio, Paolo; McAlister, Catriona; Mathieux, Fabrice; Ardente, Fulvio

    2017-12-01

    The aspiration of a circular economy is to shift material flows toward a zero waste and pollution production system. The process of shifting to a circular economy has been initiated by the European Commission in their action plan for the circular economy. The EU Ecodesign Directive is a key policy in this transition. However, to date the focus of access to market requirements on products has primarily been upon energy efficiency. The absence of adequate metrics and standards has been a key barrier to the inclusion of resource efficiency requirements. This paper proposes a framework to boost sustainable engineering and resource use by systematically identifying standardization needs and features. Standards can then support the setting of appropriate material efficiency requirements in EU product policy. Three high-level policy goals concerning material efficiency of products were identified: embodied impact reduction, lifetime extension and residual waste reduction. Through a lifecycle perspective, a matrix of interactions among material efficiency topics (recycled content, re-used content, relevant material content, durability, upgradability, reparability, re-manufacturability, reusability, recyclability, recoverability, relevant material separability) and policy goals was created. The framework was tested on case studies for electronic displays and washing machines. For potential material efficiency requirements, specific standardization needs were identified, such as adequate metrics for performance measurements, reliable and repeatable tests, and calculation procedures. The proposed novel framework aims to provide a method by which to identify key material efficiency considerations within the policy context, and to map out the generic and product-specific standardisation needs to support ecodesign. Via such an approach, many different stakeholders (industry, academics, policy makers, non-governmental organizations etc.) can be involved in material efficiency

  14. 14 CFR 91.1095 - Initial and transition training and checking: Flight instructors (aircraft), flight instructors...

    Science.gov (United States)

    2010-01-01

    ... instructor certificate— (i) The fundamental principles of the teaching-learning process; (ii) Teaching... Management § 91.1095 Initial and transition training and checking: Flight instructors (aircraft), flight...

  15. Concept of an immersive assistance system with augmented reality for the support of manual activities in radioactive production environments

    International Nuclear Information System (INIS)

    Eursch, Andreas A.

    2010-01-01

    The thesis on an immersive assistance system concept with augmented reality for the support of manual activities in radioactive production environments covers the following topics: analysis of the situation: production and use of radioactive materials, problem analysis of the work in the production facilities, necessity of manual activities, automation, prediction in hot cells; status of research and development; assistance system concept, immersive camera system; augmented reality support in hot cells; economic evaluation and generalization.

  16. U.S. Centennial of Flight Commision: Born of Dreams - Inspired by Freedom

    Science.gov (United States)

    2004-01-01

    The U.S. Centennial of Flight Commission developed and maintained a public web site that included activities related to the centennial of flight celebration and the history of aviation. The web site, www.centennialofflight.gov, was continually updated with educational and historical information, events, sights and sounds, and Commission information from its inception to June 2004. This DVD contains a 'snap shot' of the web site as of April 2004. The Web site on this DVD can be enjoyed without an Internet connection although in some places, you will be given links to online content. DVD content includes: 1) About the Commission - Information on the legislation, the Commissioners and Advisory Board members, news, the National Plans, meeting minutes and status reports; 2) Calendar of Events - A comprehensive list of activities, symposiums, exhibits, air shows, educational activities and more that took place through March 2004; 3) Wright Brothers History - The Library of Congress bibliography of Wright-related resources as well as the Chronology and Flight Log; the Brunsman articles; interactive learning modules from The Wright Experience; short informative essays and a series of links to other Wright brothers information sources. 4) History of Flight - Essays and images on the history of flight; 5) Sights and Sounds - Images, movies and special collections that capture the accomplishments of the Wright brothers and others who made significant contributions throughout the history of aviation and aerospace. As part of the NASA Art Program, a centennial song, 'Way Up There,' was commissioned; 6) Licensed Products - View collections of souvenirs and gift items to commemorate the 100th anniversary of the first powered flight; 7) Education - Resources that will help educators and their students celebrate 100 years of flight. Teachers can download Wright brothers posters and a Centennial of Flight bookmark, view live Web casts, and access an Educational Resources Center

  17. Future Challenges in Managing Human Health and Performance Risks for Space Flight

    Science.gov (United States)

    Corbin, Barbara J.; Barratt, Michael

    2013-01-01

    The global economy forces many nations to consider their national investments and make difficult decisions regarding their investment in future exploration. To enable safe, reliable, and productive human space exploration, we must pool global resources to understand and mitigate human health & performance risks prior to embarking on human exploration of deep space destinations. Consensus on the largest risks to humans during exploration is required to develop an integrated approach to mitigating risks. International collaboration in human space flight research will focus research on characterizing the effects of spaceflight on humans and the development of countermeasures or systems. Sharing existing data internationally will facilitate high quality research and sufficient power to make sound recommendations. Efficient utilization of ISS and unique ground-based analog facilities allows greater progress. Finally, a means to share results of human research in time to influence decisions for follow-on research, system design, new countermeasures and medical practices should be developed. Although formidable barriers to overcome, International working groups are working to define the risks, establish international research opportunities, share data among partners, share flight hardware and unique analog facilities, and establish forums for timely exchange of results. Representatives from the ISS partnership research and medical communities developed a list of the top ten human health & performance risks and their impact on exploration missions. They also drafted a multilateral data sharing plan to establish guidelines and principles for sharing human spaceflight data. Other working groups are also developing methods to promote international research solicitations. Collaborative use of analog facilities and shared development of space flight research and medical hardware continues. Establishing a forum for exchange of results between researchers, aerospace physicians

  18. Use of high performance networks and supercomputers for real-time flight simulation

    Science.gov (United States)

    Cleveland, Jeff I., II

    1993-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.

  19. 14 CFR 121.387 - Flight engineer.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineer. 121.387 Section 121.387..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.387 Flight engineer. No... holding a current flight engineer certificate. For each airplane type certificated after January 1, 1964...

  20. Storage Information Management System (SIMS) Spaceflight Hardware Warehousing at Goddard Space Flight Center

    Science.gov (United States)

    Kubicko, Richard M.; Bingham, Lindy

    1995-01-01

    Goddard Space Flight Center (GSFC) on site and leased warehouses contain thousands of items of ground support equipment (GSE) and flight hardware including spacecraft, scaffolding, computer racks, stands, holding fixtures, test equipment, spares, etc. The control of these warehouses, and the management, accountability, and control of the items within them, is accomplished by the Logistics Management Division. To facilitate this management and tracking effort, the Logistics and Transportation Management Branch, is developing a system to provide warehouse personnel, property owners, and managers with storage and inventory information. This paper will describe that PC-based system and address how it will improve GSFC warehouse and storage management.