WorldWideScience

Sample records for producing energy integrating

  1. Novel concept for producing energy integrating a solar collector with a man made mountain hollow

    International Nuclear Information System (INIS)

    Zhou Xinping; Yang Jiakuan; Wang Jinbo; Xiao Bo

    2009-01-01

    The concept of the solar chimney thermal power technology was proven with the successful operation of the Manzanares prototype built in the 1980s. However, all previous attempts at producing energy from a commercial solar chimney thermal power plant on a large scale have failed because of bad engineering and safety. A novel concept for producing energy by integrating a solar collector with a mountain hollow is presented and described. Solar energy is collected in the collector and heats the ground, which is used to store heat energy and heat the indoor air. Then, the hot air is forced by the pressure difference between it and the ambient air to move along the tilted segment and up the vertical segment of the 'chimney', driving the turbine generators to generate electricity. The mountain hollow, formed by excavation in a large-elevation mountain, can avoid the safety issues of erecting a gigantic concrete chimney, which is needed for commercial solar chimney thermal power plants. Furthermore, it can also save a great amount of construction materials for constructing a robust chimney structure and reduce the energy cost to a level less than that of a clean coal power plant, providing a good solution to the reclamation and utilization of undeveloped mountains, especially in mountainous countries

  2. Novel concept for producing energy integrating a solar collector with a man made mountain hollow

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Xinping [School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China)], E-mail: zhxpmark@hotmail.com; Yang Jiakuan; Wang Jinbo; Xiao Bo [School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road Wuhan, Hubei 430074 (China)

    2009-03-15

    The concept of the solar chimney thermal power technology was proven with the successful operation of the Manzanares prototype built in the 1980s. However, all previous attempts at producing energy from a commercial solar chimney thermal power plant on a large scale have failed because of bad engineering and safety. A novel concept for producing energy by integrating a solar collector with a mountain hollow is presented and described. Solar energy is collected in the collector and heats the ground, which is used to store heat energy and heat the indoor air. Then, the hot air is forced by the pressure difference between it and the ambient air to move along the tilted segment and up the vertical segment of the 'chimney', driving the turbine generators to generate electricity. The mountain hollow, formed by excavation in a large-elevation mountain, can avoid the safety issues of erecting a gigantic concrete chimney, which is needed for commercial solar chimney thermal power plants. Furthermore, it can also save a great amount of construction materials for constructing a robust chimney structure and reduce the energy cost to a level less than that of a clean coal power plant, providing a good solution to the reclamation and utilization of undeveloped mountains, especially in mountainous countries.

  3. Novel concept for producing energy integrating a solar collector with a man made mountain hollow

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinping [School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China); Yang, Jiakuan; Wang, Jinbo; Xiao, Bo [School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road Wuhan, Hubei 430074 (China)

    2009-03-15

    The concept of the solar chimney thermal power technology was proven with the successful operation of the Manzanares prototype built in the 1980s. However, all previous attempts at producing energy from a commercial solar chimney thermal power plant on a large scale have failed because of bad engineering and safety. A novel concept for producing energy by integrating a solar collector with a mountain hollow is presented and described. Solar energy is collected in the collector and heats the ground, which is used to store heat energy and heat the indoor air. Then, the hot air is forced by the pressure difference between it and the ambient air to move along the tilted segment and up the vertical segment of the 'chimney', driving the turbine generators to generate electricity. The mountain hollow, formed by excavation in a large-elevation mountain, can avoid the safety issues of erecting a gigantic concrete chimney, which is needed for commercial solar chimney thermal power plants. Furthermore, it can also save a great amount of construction materials for constructing a robust chimney structure and reduce the energy cost to a level less than that of a clean coal power plant, providing a good solution to the reclamation and utilization of undeveloped mountains, especially in mountainous countries. (author)

  4. Analysis of integrated energy systems

    International Nuclear Information System (INIS)

    Matsuhashi, Takaharu; Kaya, Yoichi; Komiyama, Hiroshi; Hayashi, Taketo; Yasukawa, Shigeru.

    1988-01-01

    World attention is now attracted to the concept of Novel Horizontally Integrated Energy System (NHIES). In NHIES, all fossil fuels are fist converted into CO and H 2 . Potential environmental contaminants such as sulfur are removed during this process. CO turbines are mainly used to generate electric power. Combustion is performed in pure oxygen produced through air separation, making it possible to completely prevent the formation of thermal NOx. Thus, NHIES would release very little amount of such substances that would contribute to acid rain. In this system, the intermediate energy sources of CO, H 2 and O 2 are integrated horizontally. They are combined appropriately to produce a specific form of final energy source. The integration of intermediate energy sources can provide a wide variety of final energy sources, allowing any type of fossil fuel to serve as an alternative to other types of fossil fuel. Another feature of NHIES is the positive use of nuclear fuel to reduce the formation of CO 2 . Studies are under way in Japan to develop a new concept of integrated energy system. These studies are especially aimed at decreased overall efficiency and introduction of new liquid fuels that are high in conversion efficiency. Considerations are made on the final form of energy source, robust control, acid fallout, and CO 2 reduction. (Nogami, K.)

  5. Pulp mill as an energy producer

    International Nuclear Information System (INIS)

    Kaulamo, O.

    1998-01-01

    The recovery boilers of pulp mills are today the most significant producers of wood energy. The power-to-heat ratio of the power plant process, i.e., power yield, is poor in existing applications. In the study, an alternative of improving the power yield of conventional pulp mills significantly was studied by applying solutions used in power plants to a pulp mill. Extensive conversion of wood energy into electricity is possible only in the recovery boiler of the pulp mill and in a large combustion boiler of bark, wood waste and wood chips integrated to this boiler. Hence, the harvest and transports of wood raw materials, i.e. pulp wood and energy wood, are integrated, and the fraction going to cook and the energy wood fraction are separated at the pulp mill. The method guarantees competitive supply of energy wood. As a result a SELLUPOWER mill was designed, where the recovery boiler combusting black liquor and the large power plant boiler combusting energy wood are integrated to one unit and constructed to a power plant process with a high power-to-heat ratio. Necessary technical solutions, project costs and economical feasibility compared to a conventional pulp mill were determined, and the effect of different production-economical parameters was also studied. (orig.)

  6. Energy Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Integration Laboratory Energy Systems Integration Laboratory Research in the Energy Systems Integration Laboratory is advancing engineering knowledge and market deployment of hydrogen technologies. Applications include microgrids, energy storage for renewables integration, and home- and station

  7. What Is Energy Systems Integration? | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL What Is Energy Systems Integration? What Is Energy Systems Integration? Energy systems integration (ESI) is an approach to solving big energy challenges that explores ways for energy systems to Research Community NREL is a founding member of the International Institute for Energy Systems Integration

  8. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  9. Energy Systems Integration Facility News | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility News Energy Systems Integration Facility Energy Dataset A massive amount of wind data was recently made accessible online, greatly expanding the Energy's National Renewable Energy Laboratory (NREL) has completed technology validation testing for Go

  10. NREL Leads Energy Systems Integration, Continuum Magazine: Issue 4 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2013-04-01

    Continuum Magazine showcases NREL's latest and most impactful clean energy innovations. This issue, 'NREL Leads Energy Systems Integration' explores the discipline of energy systems integration, in particular the role of the laboratory's new, one-of-a-kind Energy System Integration Facility. NREL scientists, engineers, and analysts deeply understand the fundamental science and technologies underpinning major energy producing and consuming systems, as well as the transmission infrastructure and communications and data networks required to integrate energy systems at all scales.

  11. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    the Energy Systems Integration Facility as part of NREL's work with SolarCity and the Hawaiian Electric Companies. Photo by Amy Glickson, NREL Welcome to Energy Systems Integration News, NREL's monthly date on the latest energy systems integration (ESI) developments at NREL and worldwide. Have an item

  12. Energy Systems Integration Partnerships: NREL + Cogent Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Berdahl, Sonja E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-09

    NREL is collaborating with Cogent Energy Systems (Cogent) to introduce small-scale waste-to-energy technology in microgrids.The focus of the project is to test and demonstrate the feasibility, reliability, and usefulness of integrating electricity generated using a simulated syngas composition matching the syngas stream to be produced by a HelioStorm-based WTE gasifier to power a microgrid as a means of addressing and complementing the intermittency of other sources of electricity.

  13. Energy Systems Integration News - October 2016 | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL October 2016 Energy Systems Integration News A monthly recap of the latest energy systems integration (ESI) developments at NREL and around the world. Subscribe Archives October Integration Facility's main control room. OMNETRIC Group Demonstrates a Distributed Control Hierarchy for

  14. Myth of energy competitiveness in energy producing countries

    International Nuclear Information System (INIS)

    Watanabe, Chihiro; Widayanti, Tjahya

    1992-01-01

    This paper examines the relative comparative advantage, focusing on energy prices, of an energy producing developing country (Indonesia) and a non-energy producing developed country (Japan). For energy producing developing countries, it is strategically important to increase the competitiveness of energy dependent industries, and encourage the development of value-added industries. Much work has been done on relative advantage analysis, but the effects of the energy price formation mechanisms on price competitiveness have not been analysed. In this paper a comprehensive approach, using production and cost functions and synchronized price formation by means of principal component analysis, is introduced. (Author)

  15. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zinaman, Owen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Forsberg, Charles [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Collins, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for

  16. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    International Nuclear Information System (INIS)

    2014-01-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a ''hybrid system'' that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear - Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to

  17. Evaluating municipal energy efficiency in biorefinery integration

    International Nuclear Information System (INIS)

    Haikonen, Turo; Tuomaala, Mari; Holmberg, Henrik; Ahtila, Pekka

    2013-01-01

    In this study biomass-based energy production was introduced to an urban city area of Helsinki, Finland. The study compared two cases in integration with a municipality: (1) biomass fuelled small-scale CHP (combined heat and power)-plant and (2) a biorefinery. The comparison was made according to primary energy consumption, primary energy factors, CO 2 (carbon dioxide) emissions and the price of produced biowax. It was also studied how results are influenced by different assumptions. The results showed that the primary energy consumption and CO 2 emissions were higher in the biorefinery case in absolute amounts as more products i.e. biowax was produced. The results indicated the primary energy factors were almost the same for both cases. Additionally, the primary energy use was very low for district heat and electricity produced in the biorefinery, when the primary energy use of the biorefinery was allocated only to the biowax. The sensitivity analysis of biowax pricing showed that a biorefinery is a competitive alternative for a CHP-plant if the prices of biomass and market electricity are low and the price of CO 2 allowance is high. In terms of overall energy efficiency comparison, the comparison cannot be properly completed, because of the different end-products of the plants. - Highlights: • Primary energy consumption and CO 2 emissions in a municipality are studied. • Energy production in a biorefinery is compared to a conventional CHP-plant. • In the biorefinery CO 2 emission per produced energy unit (CO 2 /MWh) is the lowest. • The CHP-case benefits from low primary energy consumption and electricity demand. • More than one energy efficiency figure needs to be considered in analyses

  18. Fostering renewable energy integration in the industry

    International Nuclear Information System (INIS)

    Galichon, Ines; Dennery, Pierre; Julien, Emmanuel; Wiedmer, Damien; Brochier, Jean Baptiste; Martin, Etienne; Touokong, Benoit; Paunescu, Michael; Philibert, Cedric; ); Gerbaud, Manon; Streiff, Frederic; Petrick, Kristian; Bucquet, Coraline; Jager, David de; )

    2017-03-01

    Renewable energy (RE) integration in the industry is already widespread worldwide. Beyond GHG emissions reduction, it brings direct operational, economical and non-financial benefits to industrial players in a changing energy environment. ENEA Consulting published the results of a study on the integration of RE in the industry conducted in partnership with Kerdos Energy for the International Energy Agency Renewable Energy Technology Deployment (IEA-RETD) who operates under the legal framework of the International Energy Agency. This study aims to provide inspiration and state-of-the-art applications of RE in the industry (identification of more than 200 projects worldwide), present best practices and key developments of such projects for industrial players (21 detailed case studies); and formulate policy recommendations for policy makers and provide lessons learned for industrial actors to make RE integration a widespread practice in the industry globally. Different integration schemes are possible, from simple and investment-light projects to more complex integration projects which can lead to core production processes adaptation. RE integration in industrial assets brings direct benefits to industrial players to better operate their assets, such as energy costs reduction and energy prices hedging, and improved energy supply reliability. Nevertheless, various barriers still hinder full RE development in the industry. However, industrial players and policy makers have a wide array of options to overcome them. Eight issues have been identified that can tilt an industrial actor towards or away from deploying RE production assets in its facilities. Thus, third party energy production schemes represent a significant opportunity for industrial players who lack the equity capital / cash needed to develop RE projects. Similarly, new shorter-term contractual schemes that fit better with industrial players' and third party energy producers' constraints are being developed

  19. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    , utilities can operate more efficiently and profitably. That can increase the use of renewable energy sources challenge to utility companies, grid operators, and other stakeholders involved in wind energy integration recording is available from the July 16 webinar "Smart Grid Research at NREL's Energy Systems

  20. Storage Integration in Energy Systems: A New Perspective

    International Nuclear Information System (INIS)

    Faure-Schuyer, Aurelie

    2016-06-01

    Energy storage is partly an 'old story' and a new one. Energy storage is an essential stabilizing factor in existing electrical systems. Looking forward, energy storage is being considered as a key element of the transformation of energy systems, given the higher shares of renewable generation integrating the systems and demand-side management offered to end-customers. Today, the cost of electricity produced from battery storage is approaching parity with electricity bought from the grid. For this trend to gain strength and energy storage to be part of new business models, energy policies and regulatory frameworks need to be adapted. (author)

  1. The economics of producing energy crops

    International Nuclear Information System (INIS)

    Shapouri, H.; Duffield, J.

    1993-01-01

    The US agricultural sector has an immense supply of natural resources which can be used to product energy. Production of energy from these resources could stimulate economic growth, improve environmental quality, and enhance energy security. However, producing feedstocks and converting biomass to energy require large amounts of capital, equipment, labor, and processing facilities. This paper looks at the costs and benefits of producing energy crops for fuel conversion. A review of studies and crop data show that the cost of growing and converting various feedstocks with current technology is greater than the cost of producing conventional fuels. Conventional motor fuels have a price advantage over biofuels, but market prices don't always reflect the cost of negative externalities imposed on society. Government decisions to invest in alternative energy sources should be based on research that includes the environmental costs and benefits of energy production. The future of biofuels will depend on the continuation of government research and incentive programs. As new technologies advance, the costs of processing energy crops and residues will fall, making biofuels more competitive in energy markets

  2. Does energy integrate?

    International Nuclear Information System (INIS)

    Hira, Anil; Amaya, Libardo

    2003-01-01

    Amidst the international movement to privatize and deregulate electricity and gas sectors of economies, the question of the integration of those sectors has been somewhat underestimated. In fact, the integration of energy markets across boundaries is occurring. We examine this process in three regions: Europe, Central America, and South America. We analyze the forces driving integration in each area, and estimate the prospects for progress. We take a close look at Nordpool, which is now the most integrated market in the world, to see if it can serve as a model for other regions. We close with a set of conditions that we suggest are necessary for a successful international integration of energy markets

  3. Does energy integrate?

    International Nuclear Information System (INIS)

    Hira, A.; Amaya, L.

    2003-01-01

    Amidst the international movement to privatize and deregulate electricity and gas sectors of economics, the question of the integration of those sectors has been somewhat underestimated. In fact, the integration of energy markets across boundaries is occurring. We examine this process in three regions: Europe, Central America, and South America. We analyze the forces driving integration in each area, and estimate the prospects for progress. We take a close look at Nordpool, which is now the most integrated market in the world, to see if it can serve as a model for other regions. We close with a set of conditions that we suggest are necessary for a successful international integration of energy markets. (author)

  4. Stakeholder consultations in the energy directorate : can they help integrate climate change?

    NARCIS (Netherlands)

    Vasileiadou, E.; Tuinstra, W.

    2013-01-01

    Investigation of the conditions under which formal stakeholder consultations of the Directorate General Energy of the European Commission can help integrate climate change policy in energy policy in the European Union suggests that stakeholder consultations that aim at producing soft law and binding

  5. Distributed asynchronous supply coordination for energy producers embedded in the energy grids

    NARCIS (Netherlands)

    Alkano, Desti; Scherpen, Jacquelien M.A.; Cao, Ming

    2015-01-01

    This paper studies the congestion control and energy flow allocation of renewable energy producers equipped with local energy storage devices and energy converters. The producers are embedded in the existing energy grids. Based on the producers’ own measurements and some coordination with the grid

  6. Integrating uncertainty into public energy research and development decisions

    Science.gov (United States)

    Anadón, Laura Díaz; Baker, Erin; Bosetti, Valentina

    2017-05-01

    Public energy research and development (R&D) is recognized as a key policy tool for transforming the world's energy system in a cost-effective way. However, managing the uncertainty surrounding technological change is a critical challenge for designing robust and cost-effective energy policies. The design of such policies is particularly important if countries are going to both meet the ambitious greenhouse-gas emissions reductions goals set by the Paris Agreement and achieve the required harmonization with the broader set of objectives dictated by the Sustainable Development Goals. The complexity of informing energy technology policy requires, and is producing, a growing collaboration between different academic disciplines and practitioners. Three analytical components have emerged to support the integration of technological uncertainty into energy policy: expert elicitations, integrated assessment models, and decision frameworks. Here we review efforts to incorporate all three approaches to facilitate public energy R&D decision-making under uncertainty. We highlight emerging insights that are robust across elicitations, models, and frameworks, relating to the allocation of public R&D investments, and identify gaps and challenges that remain.

  7. Forest management strategies for producing wood for energy from conventional forestry systems

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, M.; Puttock, G.D. (Silv-Econ Ltd., Newmarket, ON (CA)); Richardson, J. (Forestry Canada, Science and Sustainable Development, Ottowa, ON (CA))

    1992-01-01

    The report reviews the current developments in forest management planning and practices to integrate the production of biomass for energy along with more conventional forest management goals. Efforts are under way to adapt management practices and silvicultural treatments to biomass production. These begin at the planning stage with the development of management tools and more accurate forest inventory data. They include silvicultural treatments such as shelterwood thinning in mixed wood stands and the interplanting of various tree species with the dual purpose of producing energy wood and conventional forest products. Three systems are available for recovering residues at time of final harvesting. The postharvest recovery of residues area is commonly used in Europe but is generally uneconomic in North America where the harvesting of small stems and integrated harvesting are favoured. (author).

  8. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  9. Integration of energy-efficient empty fruit bunch drying with gasification/combined cycle systems

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Prawisudha, Pandji; Prabowo, Bayu; Budiman, Bentang Arief

    2015-01-01

    Highlights: • Novel integrated drying, gasification and combined cycle for empty fruit bunch. • Application of enhanced process integration to achieve high total energy efficiency. • The technology covers exergy recovery and process integration. • High overall energy efficiency can be achieved (about 44% including drying). - Abstract: A high-energy-efficient process for empty fruit bunch drying with integration to gasification and combined cycle processes is proposed. The enhancement is due to greater exergy recovery and more efficient process integration. Basically, the energy/heat involved in a single process is recovered as much as possible, leading to minimization of exergy destruction. In addition, the unrecoverable energy/heat is utilized for other processes through process integration. During drying, a fluidized bed dryer with superheated steam is used as the main evaporator. Exergy recovery is performed through exergy elevation via compression and effective heat coupling in a dryer and heat exchangers. The dried empty fruit bunches are gasified in a fluidized bed gasifier using air as the fluidizing gas. Furthermore, the produced syngas is utilized as fuel in the combined cycle module. From process analysis, the proposed integrated processes can achieve a relatively high energy efficiency. Compared to a standalone drying process employing exergy recovery, the proposed integrated drying can reduce consumed energy by about 1/3. In addition, the overall integrated processes can reach a total power generation efficiency of about 44%

  10. A gateless charge integrator for Borexino energy measurement

    International Nuclear Information System (INIS)

    Lagomarsino, V.; Testera, G.

    1999-01-01

    A gateless charge integrator designed for the energy measurement in the Borexino experiment is described and the results of various tests performed on prototypes are shown. The circuit integrates always its input taking advantage of the AC coupling to the photomultipliers that equalizes to zero the charge associated with each event signal. A double sampling of the integrator output allows to perform a charge measurement in principle without dead time, avoiding the use of gate signals and baseline restoration networks and permitting a precise detection of the fast correlated events (delayed coincidences due to the decay of a nuclide producing a daughter having a lifetime in the tens of ns time range). The precision of the charge measurement is discussed together with the performances of the front end Borexino board where the integrator is mounted

  11. AAVS1-Targeted Plasmid Integration in AAV Producer Cell Lines.

    Science.gov (United States)

    Luo, Yuxia; Frederick, Amy; Martin, John M; Scaria, Abraham; Cheng, Seng H; Armentano, Donna; Wadsworth, Samuel C; Vincent, Karen A

    2017-06-01

    Adeno-associated virus (AAV) producer cell lines are created via transfection of HeLaS3 cells with a single plasmid containing three components (the vector sequence, the AAV rep and cap genes, and a selectable marker gene). As this plasmid contains both the cis (Rep binding sites) and trans (Rep protein encoded by the rep gene) elements required for site-specific integration, it was predicted that plasmid integration might occur within the AAVS1 locus on human chromosome 19 (chr19). The objective of this study was to investigate whether integration in AAVS1 might be correlated with vector yield. Plasmid integration sites within several independent cell lines were assessed via Southern, fluorescence in situ hybridization (FISH) and PCR analyses. In the Southern analyses, the presence of fragments detected by both rep- and AAVS1-specific probes suggested that for several mid- and high-producing lines, plasmid DNA had integrated into the AAVS1 locus. Analysis with puroR and AAVS1-specific probes suggested that integration in AAVS1 was a more widespread phenomenon. High-producing AAV2-secreted alkaline phosphatase (SEAP) lines (masterwell 82 [MW82] and MW278) were evaluated via FISH using probes specific for the plasmid, AAVS1, and a chr19 marker. FISH analysis detected two plasmid integration sites in MW278 (neither in AAVS1), while a total of three sites were identified in MW82 (two in AAVS1). An inverse PCR assay confirmed integration within AAVS1 for several mid- and high-producing lines. In summary, the FISH, Southern, and PCR data provide evidence of site-specific integration of the plasmid within AAVS1 in several AAV producer cell lines. The data also suggest that integration in AAVS1 is a general phenomenon that is not necessarily restricted to high producers. The results also suggest that plasmid integration within the AAVS1 locus is not an absolute requirement for a high vector yield.

  12. Integrating Microbial Electrochemical Technology with Forward Osmosis and Membrane Bioreactors: Low-Energy Wastewater Treatment, Energy Recovery and Water Reuse

    KAUST Repository

    Werner, Craig M.

    2014-06-01

    Wastewater treatment is energy intensive, with modern wastewater treatment processes consuming 0.6 kWh/m3 of water treated, half of which is required for aeration. Considering that wastewater contains approximately 2 kWh/m3 of energy and represents a reliable alternative water resource, capturing part of this energy and reclaiming the water would offset or even eliminate energy requirements for wastewater treatment and provide a means to augment traditional water supplies. Microbial electrochemical technology is a novel technology platform that uses bacteria capable of producing an electric current outside of the cell to recover energy from wastewater. These bacteria do not require oxygen to respire but instead use an insoluble electrode as their terminal electron acceptor. Two types of microbial electrochemical technologies were investigated in this dissertation: 1) a microbial fuel cell that produces electricity; and 2) a microbial electrolysis cell that produces hydrogen with the addition of external power. On their own, microbial electrochemical technologies do not achieve sufficiently high treatment levels. Innovative approaches that integrate microbial electrochemical technologies with emerging and established membrane-based treatment processes may improve the overall extent of wastewater treatment and reclaim treated water. Forward osmosis is an emerging low-energy membrane-based technology for seawater desalination. In forward osmosis water is transported across a semipermeable membrane driven by an osmotic gradient. The microbial osmotic fuel cell described in this dissertation integrates a microbial fuel cell with forward osmosis to achieve wastewater treatment, energy recovery and partial desalination. This system required no aeration and generated more power than conventional microbial fuel cells using ion exchange membranes by minimizing electrochemical losses. Membrane bioreactors incorporate semipermeable membranes within a biological wastewater

  13. The Integration of Gasification Systems with Gas Engine to Produce Electrical Energy from Biomass

    Science.gov (United States)

    Siregar, K.; Alamsyah, R.; Ichwana; Sholihati; Tou, S. B.; Siregar, N. C.

    2018-05-01

    The need for energy especially biomass-based renewable energy continues to increase in Indonesia. The objective of this research was to design downdraft gasifier machine with high content of combustible gas on gas engine. Downdraft gasifier machine was adjusted with the synthetic gas produced from biomass. Besides that, the net energy ratio, net energy balance, renewable index, economic analysis, and impact assessment also been conducted. Gas engine that was designed in this research had been installed with capacity of 25 kW with diameter and height of reactor were 900 mm and 1000 mm respectively. The method used here were the design the Detailed Engineering Design (DED), assembly, and performance test of gas engine. The result showed that gas engine for biomass can be operated for 8 hours with performance engine of 84% and capacity of 25 kW. Net energy balance, net energy ratio, and renewable index was 30 MJ/kWh-electric; 0.89; 0.76 respectively. The value of GHG emission of Biomass Power Generation is 0.03 kg-CO2eq/MJ. Electrical production cost for Biomass Power Generation is about Rp.1.500,/kWh which is cheaper than Solar Power Generation which is about of Rp. 3.300,-/kWh.

  14. Decision support for integrated water-energy planning.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Kobos, Peter Holmes; Castillo, Cesar; Hart, William Eugene; Klise, Geoffrey T.

    2009-10-01

    Currently, electrical power generation uses about 140 billion gallons of water per day accounting for over 39% of all freshwater withdrawals thus competing with irrigated agriculture as the leading user of water. Coupled to this water use is the required pumping, conveyance, treatment, storage and distribution of the water which requires on average 3% of all electric power generated. While water and energy use are tightly coupled, planning and management of these fundamental resources are rarely treated in an integrated fashion. Toward this need, a decision support framework has been developed that targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. The framework integrates analysis and optimization capabilities to identify trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., national, state, county, watershed, NERC region). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. Ultimately, this open and interactive modeling framework provides a tool for evaluating competing policy and technical options relevant to the energy-water nexus.

  15. The value of producing food, energy, and ecosystem services within an agro-ecosystem

    DEFF Research Database (Denmark)

    Porter, John Roy; Constanza, Robert; Sandhu, Harpinder

    2009-01-01

    Ecosystem Services within an Agro- Ecosystem Agricultural ecosystems produce food, fiber, and nonmarketed ecosystem services (ES). Agriculture also typically involves high negative external costs associated with, for example, fossil fuel use. We estimated, via fieldscale ecological monitoring...... and economic value-transfer methods, the market and nonmarket ES value of a combined food and energy (CFE) agro-ecosystem that simultaneously produces food, fodder, and bioenergy. Such novel CFE agro-ecosystems can provide a significantly increased net crop, energy, and nonmarketed ES compared...... with conventional agriculture, and require markedly less fossil-based inputs. Extrapolated to the European scale, the value of nonmarket ES from the CFE system exceeds current European farm subsidy payments. Such integrated food and bioenergy systems can thus provide environmental value for money for European Union...

  16. Sapphire Energy - Integrated Algal Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    White, Rebecca L. [Sapphire Energy, Inc., Columbus, NM (United States). Columbus Algal Biomass Farm; Tyler, Mike [Sapphire Energy, Inc., San Diego, CA (United States)

    2015-07-22

    Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil.. SEI’s technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI’s commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass production facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the IABR

  17. Alternative energy sources or integrated alternative energy systems? Oil as a modern lance of Peleus for the energy transition

    International Nuclear Information System (INIS)

    Szklo, Alexandre; Schaeffer, Roberto

    2006-01-01

    In this viewpoint, we discuss the importance of consorting alternative energy sources with oil, and not of opposing them. That is why we introduce the concept of alternative energy systems, which we feel is broader-ranging and more effective than alternative energy sources, as this deals with the actual transformation process of the global energy system. Alternative energy systems integrate oil with other energy sources and pave the way for new systems, which will benefit from what we call the 'virtues of oil'. They produce energy carriers for multi-fuel and multi-product strategies, where flexibility is a key target, allied to other co-benefits, especially those related to the increased use of renewable energy sources. The concept of alternative energy systems can bring a new light to the oil transition era discussion and might also influence energy policies for promoting renewables

  18. Integrating Nuclear Energy to Oilfield Operations - Two Case Studies

    International Nuclear Information System (INIS)

    Robertson, Eric P.; Nelson, Lee O.; McKellar, Michael G.; Gandrik, Anastasia M.; Patterson, Mike W.

    2011-01-01

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases were based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming

  19. Performance analysis of solar energy integrated with natural-gas-to-methanol process

    International Nuclear Information System (INIS)

    Yang, Sheng; Liu, Zhiqiang; Tang, Zhiyong; Wang, Yifan; Chen, Qianqian; Sun, Yuhan

    2017-01-01

    Highlights: • Solar energy integrated with natural-gas-to-methanol process is proposed. • The two processes are modeled and simulated. • Performance analysis of the two processes are conducted. • The proposed process can cut down the greenhouse gas emission. • The proposed process can save natural gas consumption. - Abstract: Methanol is an important platform chemical. Methanol production using natural gas as raw material has short processing route and well developed equipment and technology. However, natural gas reserves are not large in China. Solar energy power generation system integrated with natural-gas-to-methanol (NGTM) process is developed, which may provide a technical routine for methanol production in the future. The solar energy power generation produces electricity for reforming unit and system consumption in solar energy integrated natural-gas-to-methanol system (SGTM). Performance analysis of conventional natural-gas-to-methanol process and solar energy integrated with natural-gas-to-methanol process are presented based on simulation results. Performance analysis was conducted considering carbon efficiency, production cost, solar energy price, natural gas price, and carbon tax. Results indicate that solar energy integrated with natural-gas-to-methanol process is able to cut down the greenhouse gas (GHG) emission. In addition, solar energy can replace natural gas as fuel. This can reduce the consumption of natural gas, which equals to 9.2% of the total consumed natural gas. However, it is not economical considering the current technology readiness level, compared with conventional natural-gas-to-methanol process.

  20. Energy saving and recovery measures in integrated urban water systems

    Science.gov (United States)

    Freni, Gabriele; Sambito, Mariacrocetta

    2017-11-01

    The present paper describes different energy production, recovery and saving measures which can be applied in an integrated urban water system. Production measures are often based on the installation of photovoltaic systems; the recovery measures are commonly based on hydraulic turbines, exploiting the available pressure potential to produce energy; saving measures are based on substitution of old pumps with higher efficiency ones. The possibility of substituting some of the pipes of the water supply system can be also considered in a recovery scenario in order to reduce leakages and recovery part of the energy needed for water transport and treatment. The reduction of water losses can be obtained through the Active Leakage Control (ALC) strategies resulting in a reduction in energy consumption and in environmental impact. Measures were applied to a real case study to tested it the efficiency, i.e., the integrated urban water system of the Palermo metropolitan area in Sicily (Italy).

  1. Energy Systems Integration: Demonstrating Distributed Resource Communications

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    Overview fact sheet about the Electric Power Research Institute (EPRI) and Schneider Electric Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  2. Energy Efficiency of Biogas Produced from Different Biomass Sources

    International Nuclear Information System (INIS)

    Begum, Shahida; Nazri, A H

    2013-01-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  3. Integrating recycling, renewable energy and agriculture for commercial waste to wealth businesses

    International Nuclear Information System (INIS)

    Gan Khai Chung; Angeline Pang

    2010-01-01

    Recycling organic material to produce renewable energy and organic fertilizer is an attractive business model in waste to wealth business proposition. Azed Bina Sdn Bhd has developed an integrated recycling facility to recycle solid organic materials into energy and organic fertilizer, a project partially funded by MOSTI TechnoFund in 2008. The novel and innovative aspect is the water disassociation technology which separates the water into hydrogen gas and oxygen gas economically using thermal heat from the burning of biomass which is a waste material. This system is modular, scalable, economical and environmental friendly. It has many applications in the field of, Environment and Solid Waste Management - recycling organic waste into energy and organic fertilizer rather than disposal at the landfill, hence preserving our environment. Green technology - economical biogas production consists of 50% hydrogen gas which is a clean and renewable energy source. The biogas has many applications in the food industry, manufacturing industry and agriculture sector. Agro-based industry - production of clean heat energy is useful for the drying of agriculture crops. Agriculture Sector - production of ash can be used to produce organic fertilizer by incorporating effective microbes. Reduce the dependence on chemical fertilizer which is bad for the environment Rural Development - developing rural area by integrating small scale industries, agro based industry, agriculture and rural area. The company commercial applications of recycling organic materials to produce energy for companies such as laundry business, agro based food drying and waste management recycling. The next project is to provide chilled water using organic waste. (author)

  4. Continuous-Integration Laser Energy Lidar Monitor

    Science.gov (United States)

    Karsh, Jeremy

    2011-01-01

    This circuit design implements an integrator intended to allow digitization of the energy output of a pulsed laser, or the energy of a received pulse of laser light. It integrates the output of a detector upon which the laser light is incident. The integration is performed constantly, either by means of an active integrator, or by passive components.

  5. Integration of the North American energy market; Integration du marche Nord-Americain de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    Lapointe, A

    2002-07-01

    The US energy policy of President Bush administration proposes to develop a North American energy framework with a greater energy integration between Canada, the USA and Mexico in the respect of the sovereignty of each country. This article tries to evaluate the integration status of the energy sector in Northern America with respect to the North American free-exchange agreement and to the deregulation process observed in the natural gas and electric power sectors. The commercial energy fluxes between Canada, Mexico and the US show that the integration is a reality and that it is in constant progress. This integration is particularly important in the case of Canada and the USA while major constraints remain in Mexico where the property and exploitation of natural resources is a government monopoly. For this reason, Mexico could never exploit the full potentialities of its resources and suffers from a chronical under-investment in its energy infrastructures which limits the energy trade. Despite this, there is a strong will from the Mexican authorities to ensure the modernization of its energy sector and to contribute more to the integration process of the north American energy market. A series of reforms, and in particular the fiscal reform started by the government should reduce the excessive dependence of the government incomes with the dividends from the energy sector. This should allow the different government companies to reinvest more its benefits in order to improve the existing infrastructures and to increase the capacities (in particular in the gas and electricity sectors). Finally, the recent will of the government to open the gas sector should allow the development of this energy source. (J.S.)

  6. Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting

    International Nuclear Information System (INIS)

    Moure, A.; Izquierdo Rodríguez, M.A.; Rueda, S. Hernández; Gonzalo, A.; Rubio-Marcos, F.; Cuadros, D. Urquiza; Pérez-Lepe, A.; Fernández, J.F.

    2016-01-01

    Graphical abstract: A system based on piezoelectric cymbals embedded in asphalt for the first time is used as harvester for wasted vibrational energy produced by traffic. Energy density in the range of other alternative sources is achieved, with an estimated projected cost that shows the feasibility of this harvesting energy system. - Highlights: • Piezoelectric cymbals have been directly integrated in asphalt for the first time. • Harvesting from wasted vibrational energy caused by vehicles is demonstrated to be feasible by this integration. • Energy density and cost are estimated to be competitive with other sources as photovoltaic. • A 10% of the energy generated in the Region of Madrid can be obtained by covering only the 0.6% of its roads. - Abstract: Piezoelectric cymbals with 29-mm diameter and different configurations are fabricated and tested to determine the best conditions to optimize the conversion of mechanical to electric energy. Then, the ones with the best results are integrated directly in asphalt to evaluate their performance as vibration energy harvesters in roads, in a test bench designed to characterize these parameters. The main cymbal parameters and their integration in the asphalt are determined. For the first time, the electrical energy that can be obtained with the embedment of cymbals in asphalt is evaluated. Each single piezoceramic cymbal recovers up to 16 μW for the pass of one heavy vehicle wheel. An extrapolation of the energy transformed by the integrated cymbals in roads with high vehicle densities, such as in a peri-urban motorway, is approached. Energy densities in the range of 40–50 MW h/m"2 can be obtained at 100 m of road (use of 30,000 cymbals), which could account for more than 65 MW h in a year. All this with a relatively low cost for an emerging technology (less than 2 €/kW h). The conversion of wasted and unused vibrational energy in roads by piezoelectric cymbals is thus proved as a real possibility of

  7. Energy transport in laser produced plasmas

    International Nuclear Information System (INIS)

    Key, M.H.

    1989-06-01

    The study of energy transport in laser produced plasmas is of great interest both because it tests and develops understanding of several aspects of basic plasma physics and also because it is of central importance in major applications of laser produced plasmas including laser fusion, the production of intense X-ray sources, and X-ray lasers. The three sections cover thermal electrons (energy transport in one dimension, plane targets and lateral transport from a focal spot, thermal smoothing, thermal instabilities), hot electrons (preheating in one dimension, lateral transport from a focal spot) and radiation (preheating in one dimension, lateral transport and smoothing, instabilities). (author)

  8. Sounds energetic: the radio producer's energy minibook

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The Minibook will be expanded into the final Radio Producer's Energy Sourcebook. Radio producers and broadcasters are asked to contribute ideas for presenting energy knowledge to the public and to be included in the Sourcebook. Chapter One presents a case study suggesting programming and promotion ideas and sample scripts for a radio campaign that revolves around no-cost or low-cost steps listeners can take to increase their home energy efficiency and save money. A variety of other energy topics and suggestions on ways to approach them are addressed in Chapter Two. Chapter Three contains energy directories for Baltimore, Philadelphia, Pittsburg, and Washington, DC. The directories will be expanded in the Sourcebook and will consist of a selection of local public and private sector energy-related organizations and list local experts and organizations and the best Federal, state, and local government programs that can provide consumers and citizens groups with information, technical assistance, and financial support. (MCW)

  9. Energy Systems Integration: Demonstrating Distribution Feeder Voltage Control

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    Overview fact sheet about the Smarter Grid Solutions Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  10. Economical investigation of an integrated boiler-solar energy saving system in Jordan

    International Nuclear Information System (INIS)

    Al-Salaymeh, A.; Al-Rawabdeh, I.; Emran, S.

    2010-01-01

    Jordan is relatively poor in conventional energy resources and is basically a non-oil producing country, i.e. its energy supply relies to a very large extent on imports. It is therefore unlikely that any future energy scenario for Jordan will not include a significant proportion of its energy to come from renewable sources such as solar energy. The lack of an integrated energy saving system which utilizes the solar energy for domestic hot water as well as for building space heating was the main motivation for the present study. In Jordan, there is no existing system can provide the integration mechanisms of solar energy and fuel combustion with electrical ones. Also adding new and related products increases sales of current boilers products and can be offered at competitive prices. During our investigations, it has been found that the market demand for boiler-solar integration system in terms of the system acceptability, system feasibility, and system values is very high especially after the increased in oil prices during the last 3 years, i.e. 2006-2008. The market trend shows that even though solar collector is not attractive as an energy source for domestic hot water, but the combined system for space heating and domestic hot water is fully accepted. However, the market demand for such a system is not completely identified yet but the awareness and the discussion of the idea shows a good potential. The economical study about the integration system of boiler and solar energy shows that using solar water heaters to heat space and for domestic water is cost-effective. Payback can be as low as 3 years, and utility bills are much lower than they would be using a conventional heating system. The initial draft and design of a prototype for the boiler-solar-electrical integration system has been carried out.

  11. Biorefineries to integrate fuel, energy and chemical production processes

    Directory of Open Access Journals (Sweden)

    Enrica Bargiacchi

    2007-12-01

    Full Text Available The world of renewable energies is in fast evolution and arouses political and public interests, especially as an opportunity to boost environmental sustainability by mitigation of greenhouse gas emissions. This work aims at examining the possibilities related to the development of biorefineries, where biomass conversion processes to produce biofuels, electricity and biochemicals are integrated. Particular interest is given to the production processes of biodiesel, bioethanol and biogas, for which present world situation, problems, and perspectives are drawn. Potential areas for agronomic and biotech researches are also discussed. Producing biomass for biorefinery processing will eventually lead to maximize yields, in the non food agriculture.

  12. Recycling of aluminum to produce green energy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Lopez Benites, Wendy; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos C.P. 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico)

    2005-07-15

    High-purity hydrogen gas was generated from the chemical reaction of aluminum with sodium hydroxide. Several molar relations of sodium hydroxide/aluminum were investigated in this study. The experimental results showed that hydrogen yields are acceptable and its purity was good enough to be used in a proton exchange membrane (PEM) fuel cell to produce electricity. An estimation of the amount of energy produced from the reaction of 100 aluminum cans with caustic soda showed that the hydrogen production is feasible to be scaled up to reach up to 5kWh in a few hours. This study is environmentally friendly and also shows that green energy can be produced from aluminum waste at a low cost.

  13. Communities as co-producers in integrated care

    Directory of Open Access Journals (Sweden)

    Henk Nies

    2014-06-01

    Full Text Available Integrated care has become too much a professionals' concept, in research and theory development, as well as in practice, especially in high-income countries. The current debate on integrated care is dominated by norms and values of professionals, while most of the care is provided by non-professionals. The paradigms of integrated care for people with complex needs need to be reconsidered. It is argued that non-professional care and care by local communities need to be incorporated as a resource and a co-producer of care. It seems fair to assume that the community as such can take a more prominent role in organising and delivering health and long-term care. This implies redefining professional and non-professional responsibilities and boundaries. The boundary between public and private space is losing its significance, as is the distinction between formal and non-formal care. It also requires renegotiating and transforming organisational boundaries. This has consequences for legislation, funding and professional qualifications, as well as for management and governance. It challenges current professional identities as well as identities of service users, their informal carers and citizens. It may also require new types of funding, including non-monetary currencies, time-sharing and social impact bonds. The challenge is that big, that it needs to be addressed at its smallest scale: the citizen in his social network and local community, being co-producer of really integrated care. 

  14. The technical and economic implications of integrating fluctuating renewable energy using energy storage

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2012-01-01

    This paper investigates how large-scale energystorage can assist the integration of fluctuatingrenewableenergy by using the Irish energy system, pumped hydroelectric energystorage (PHES), and wind power as a case study. In total three key aspects were investigated in relation to PHES: its operation...... are sensitive to changes in the PHES capacities used, fuel prices, interest rates, and the total annual wind energy produced. Finally, the optimum capacities of PHES identified for Ireland in 2020 were compared to two other alternatives which required the same investment: domestic heat pumps and district......, size, and cost. From the results it was evident that PHES can increase the wind penetration feasible on the Irish energy system and also reduce its operating costs. However, under predicted 2020 fuel prices and a conventional 6% interest rate, these savings may not be sufficient since the savings...

  15. Integrated transport and renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, B.V.; Lund, H.; Nørgård, Per Bromand

    2007-01-01

    Governments worldwide aim at reducing CO2 emissions and expanding renewable energy. A key element in achieving such a goal is to use renewable energy in transport such as biofuels. However, efforts to promote single transport technologies and single fuels only represent a partial solution...... transport. It is concluded that a 100 per cent renewable energy transport system is possible but is connected to significant challenges in the path towards it. Biomass is a limited resource and it is important to avoid effecting the production. The integration of the transport with the remaining energy....... No single technology can solve the problem of ever increasing CO2 emissions from transport. Transport must be integrated into energy planning, as electricity and heating. In this paper, a coherent effort to integrate transport into energy planning is proposed, using multiple means promoting sustainable...

  16. The energy innovation network : fuelling an integrated energy future

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Inst., Edmonton, AB (Canada)

    2005-07-01

    Global primary energy demand is expected to increase by 1.7 per cent annually from 2000 to 2030, reaching an annual level of 15.3 billion tonnes of oil equivalent. Fossil fuels are expected to supply over 90 per cent of global incremental energy demand through 2030, while gas consumption is estimated to double between 2000 and 2030 due to its cost competitiveness, high availability and environmental advantages. Oil will remain the largest fuel source with demand increasing by 1.6 per cent annually. In order to tap the vast Canadian resource potential, innovative new technologies are needed to unlock the remaining conventional oil and gas reserves. It was argued that no single source of energy will be sufficient to meet world or Canadian demand. Therefore, there is also a need for a collaborative initiative to facilitate a long-term effort to implement an integrated energy innovation strategy. The Energy Innovation Network (EnergyINet) was created help industry, governments, and the research community address the challenges of ensuring an abundant supply of environmentally responsible energy. Given the right technologies, bitumen, coal, and coalbed methane have hundreds of years of production remaining. Production of those reserves depends on finding effective solutions to production costs, cost and availability of feedstocks needed to produce higher valued products, market limitations, and land, water, air, and greenhouse gas issues. The main challenge is to finance the development of such technologies into reliable, large-scale commercial applications. It was concluded that Canada's ability to maintain competitive energy supplies from conventional and non-conventional energy systems will be severely limited as the need to protect the environment, reduce greenhouse gas emissions, and conserve water moves higher on the public agenda. 13 refs.

  17. Aero-MINE (Motionless INtegrated Energy) for Distributed Scalable Wind Power.

    Energy Technology Data Exchange (ETDEWEB)

    Houchens, Brent C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blaylock, Myra L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-01

    The proposed Aero-MINE technology will extract energy from wind without any exterior moving parts. Aero-MINEs can be integrated into buildings or function stand-alone, and are scalable. This gives them advantages similar to solar panels, but with the added benefit of operation in cloudy or dark conditions. Furthermore, compared to solar panels, Aero-MINEs can be manufactured at lower cost and with less environmental impact. Power generation is isolated internally by the pneumatic transmission of air and the outlet air-jet nozzles amplify the effectiveness. Multiple units can be connected to one centrally located electric generator. Aero-MINEs are ideal for the built-environment, with numerous possible configurations ranging from architectural integration to modular bolt-on products. Traditional wind turbines suffer from many fundamental challenges. The fast-moving blades produce significant aero-acoustic noise, visual disturbances, light-induced flickering and impose wildlife mortality risks. The conversion of massive mechanical torque to electricity is a challenge for gears, generators and power conversion electronics. In addition, the installation, operation and maintenance of wind turbines is required at significant height. Furthermore, wind farms are often in remote locations far from dense regions of electricity customers. These technical and logistical challenges add significantly to the cost of the electricity produced by utility-scale wind farms. In contrast, distributed wind energy eliminates many of the logistical challenges. However, solutions such as micro-turbines produce relatively small amounts of energy due to the reduction in swept area and still suffer from the motion-related disadvantages of utility-scale turbines. Aero-MINEs combine the best features of distributed generation, while eliminating the disadvantages.

  18. Climate-smart technologies. Integrating renewable energy and energy efficiency in mitigation and adaptation responses

    Energy Technology Data Exchange (ETDEWEB)

    Leal Filho, Walter; Mannke, Franziska; Schulte, Veronika [Hamburg Univ. of Applied Sciences (Germany). Faculty of Life Sciences; Mohee, Romeela; Surroop, Dinesh (eds.) [Mauritius Univ., Reduit (Mauritius). Chemical and Environmental Engineering Dept.

    2013-11-01

    Explores the links between climate change and technologies. Relates to the links between renewable energy and climate change. Documents and promotes a collection of experiences from island nations. Has a strong international focus and value to developing countries. The book addresses the perceived need for a publication with looks at both, climate smart technologies and the integration of renewable energy and energy efficiency in mitigation and adaptation responses. Based on a set of papers submitted as part of the fifth on-line climate conference (CLIMATE 2012) and a major conference on renewable energy on island States held in Mauritius in 2012, the book provides a wealth of information on climate change strategies and the role of smart technologies. The book has been produced in the context of the project ''Small Developing Island Renewable Energy Knowledge and Technology Transfer Network'' (DIREKT), funded by the ACP Science and Technology Programme, an EU programme for cooperation between the European Union and the ACP region.

  19. Local Alternative for Energy Supply : Performance Assessment of Integrated Community Energy Systems

    NARCIS (Netherlands)

    Koirala, B.P.; Chaves Avila, J.P.; Gomez, T.; Hakvoort, R.A.; Herder, P.M.

    2016-01-01

    Integrated community energy systems (ICESs) are emerging as a modern development to re-organize local energy systems allowing simultaneous integration of distributed energy resources (DERs) and engagement of local communities. Although local energy initiatives, such as ICESs are rapidly emerging due

  20. Energy and behavioral impacts of integrative retrofits for residential buildings: What is at stake for building energy policy reforms in northern China?

    International Nuclear Information System (INIS)

    Xu, Peng; Xu, Tengfang; Shen, Pengyuan

    2013-01-01

    Based upon the results from extensive building monitoring and surveys on occupant’s behaviors in a representative nine-story apartment building in northern China, building energy simulations were performed to evaluate the impacts of integrative retrofits implemented. Integrative retrofits required by the newer building energy standard produced significant heating-energy savings (i.e., 53%) when compared with baseline buildings commonly built in early 1980s. Taking into account district-heating-system upgrades as part of integrative retrofit measures, a representative apartment building was 66% more efficient than the baseline building. Contrary to expectation, little behavioral change was found in response to the provisions of monetary incentive, billing-method reform, or metering of heating energy use in individual apartment units. Yet this paper identified sizable energy savings potential if occupants’ behavioral changes were to actually happen. This indicates that provisions of financial incentives or individual metering were insufficient for triggering substantial behavioral changes leading toward more energy savings in the current buildings. It is recommended that innovative energy policies, technology upgrades, and education would be needed to promote behavioral changes toward additional energy savings. Finally, measures and strategies to further enhance thermal integrity criteria (e.g., insulations of roof and balcony) are recommended in China’s future building energy policy reforms. - Highlights: ► Integrative retrofits significantly reduce residential heating energy in north China. ► Energy effects of retrofits, incentive, billing and behavioral changes were studied. ► Monetary incentive, control or metering technologies did not lead to behavior change. ► Potential energy savings due to occupants’ behavioral changes are sizable. ► Thermal integrity needs to be enhanced in future building standards and policies.

  1. Integrating Renewable Energy Requirements Into Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, John R.; Hand, James R.; Halverson, Mark A.

    2011-07-01

    This report evaluates how and when to best integrate renewable energy requirements into building energy codes. The basic goals were to: (1) provide a rough guide of where we’re going and how to get there; (2) identify key issues that need to be considered, including a discussion of various options with pros and cons, to help inform code deliberations; and (3) to help foster alignment among energy code-development organizations. The authors researched current approaches nationally and internationally, conducted a survey of key stakeholders to solicit input on various approaches, and evaluated the key issues related to integration of renewable energy requirements and various options to address those issues. The report concludes with recommendations and a plan to engage stakeholders. This report does not evaluate whether the use of renewable energy should be required on buildings; that question involves a political decision that is beyond the scope of this report.

  2. The interrelationship between environmental goals, productivity improvement, and increased energy efficiency in integrated paper and steel plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This report presents the results of an investigation into the interrelationships between plant-level productivity, energy efficiency, and environmental improvements for integrated pulp and paper mills and integrated steel mills in the US. Integrated paper and steel plants are defined as those facilities that use some form of onsite raw material to produce final products (for example, paper and paperboard or finished steel). Fully integrated pulp and paper mills produce onsite the pulp used to manufacture paper from virgin wood fiber, secondary fiber, or nonwood fiber. Fully integrated steel mills process steel from coal, iron ore, and scrap inputs and have onsite coke oven facilities.

  3. Demand Response and Energy Storage Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ookie; Cheung, Kerry; Olsen, Daniel J.; Matson, Nance; Sohn, Michael D.; Rose, Cody M.; Dudley, Junqiao Han; Goli, Sasank; Kiliccote, Sila; Cappers, Peter; MacDonald, Jason; Denholm, Paul; Hummon, Marissa; Jorgenson, Jennie; Palchak, David; Starke, Michael; Alkadi, Nasr; Bhatnagar, Dhruv; Currier, Aileen; Hernandez, Jaci; Kirby, Brendan; O' Malley, Mark

    2016-03-01

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational value in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.

  4. Optimal planning of integrated multi-energy systems

    DEFF Research Database (Denmark)

    van Beuzekom, I.; Gibescu, M.; Pinson, Pierre

    2017-01-01

    In this paper, a mathematical approach for the optimal planning of integrated energy systems is proposed. In order to address the challenges of future, RES-dominated energy systems, the model deliberates between the expansion of traditional energy infrastructures, the integration...... and sustainability goals for 2030 and 2045. Optimal green- and brownfield designs for a district's future integrated energy system are compared using a one-step, as well as a two-step planning approach. As expected, the greenfield designs are more cost efficient, as their results are not constrained by the existing...

  5. Wind energy integration in the Spanish electrical system

    Energy Technology Data Exchange (ETDEWEB)

    Alonso Garcia, Olivia; Torre Rodriguez, Miguel de la; Prieto Garcia, Eduardo; Martinez Villanueva, Sergio; Rodriguez Garcia, Juan Manuel [Red Electrica de Espana s.a. (Spain)

    2009-07-01

    Integration of significant amounts of wind power in electrical systems represents a challenge for TSOs, due to the technological and distributed particularities of wind generators and to the variability of its primary resource. The proposed paper describes the implications of massive wind power integration in the Spanish system in terms of technical requirements and operation measures. Concerning technical specifications for wind producers, the former criteria are nowadays being reviewed and the new requirements under discussion right now (grid code) are here introduced. Stability studies for the horizon 2016 (about 29 GW of wind power installed) and beyond have been performed and the obtrained results for the considered scenarios have led to a series of necessary criteria which relate to the next topics: - increased fault ride-though capabilities, - voltage maintenance and support in static and dynamic, - restoration of primary regulation reserves to the system, - active power and ramp controlling. Innovative solutions for wind power control, already operative in Spain, such as the dedicated control centre for renewable energies and other special producers (CECRE) will still provide the necessary tools and infrastructure to optimise integration limits in real time, maximizing renewable energy production and assuring security, as well as the communication with the renewable control centres. Regarding system balancing, while currently being able to appropriately deliver demand coverage, the main concern is the dispacement by wind power of conventional generation that will be required shortly afterwards to cover peak demand. Further concerns are the need to keep appropriate sizing of downward reserves during off-peak hours. This is normally dealt with market mechanisms leading combined cycle units to daily shut-down and start-up. When wind forecast errors occur and wind production is higher than expected, the system may run out of downward reserve and combined cycle

  6. Wind energy integration in the Spanish electrical system

    International Nuclear Information System (INIS)

    Alonso Garcia, Olivia; Torre Rodriguez, Miguel de la; Prieto Garcia, Eduardo; Martinez Villanueva, Sergio; Rodriguez Garcia, Juan Manuel

    2009-01-01

    Integration of significant amounts of wind power in electrical systems represents a challenge for TSOs, due to the technological and distributed particularities of wind generators and to the variability of its primary resource. The proposed paper describes the implications of massive wind power integration in the Spanish system in terms of technical requirements and operation measures. Concerning technical specifications for wind producers, the former criteria are nowadays being reviewed and the new requirements under discussion right now (grid code) are here introduced. Stability studies for the horizon 2016 (about 29 GW of wind power installed) and beyond have been performed and the obtrained results for the considered scenarios have led to a series of necessary criteria which relate to the next topics: - increased fault ride-though capabilities, - voltage maintenance and support in static and dynamic, - restoration of primary regulation reserves to the system, - active power and ramp controlling. Innovative solutions for wind power control, already operative in Spain, such as the dedicated control centre for renewable energies and other special producers (CECRE) will still provide the necessary tools and infrastructure to optimise integration limits in real time, maximizing renewable energy production and assuring security, as well as the communication with the renewable control centres. Regarding system balancing, while currently being able to appropriately deliver demand coverage, the main concern is the dispacement by wind power of conventional generation that will be required shortly afterwards to cover peak demand. Further concerns are the need to keep appropriate sizing of downward reserves during off-peak hours. This is normally dealt with market mechanisms leading combined cycle units to daily shut-down and start-up. When wind forecast errors occur and wind production is higher than expected, the system may run out of downward reserve and combined cycle

  7. Integrated energy systems for hydrogen and electricity supply

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N. [Univ. of Central Florida, Cocoa, FL (United States). Florida Solar Energy Center; Manikowski, A.; Noland, G. [Procyon Power Systems Inc., Alameda, CA (United States)

    2002-07-01

    The United States will soon need an increase in electric generating capacity along with an increase in the distribution capacity of the electricity grid. The cost and time required to build additional electrical distribution and transmission systems can be avoided by using distributed power generation. This paper examines the development of an integrated stand-alone energy system that can produce hydrogen, electricity and heat. The concept is based on integrated operation of a thermocatalytic pyrolysis (TCP) reactor and a solid oxide fuel cell (SOFC). The benefits include high overall energy efficiency, the production of high quality hydrogen (90 to 95 per cent free of carbon oxides), low emissions, and fuel flexibility. Experimental data is presented regarding the thermocatalytic pyrolysis of methane compared with an iron-based catalyst (which is sulfur resistant) and gasification of the resulting carbon with steam and carbon dioxide. With distributed generation, additional electrical generating capacity can be added in small increments distributed over the grid. An integrated energy system will be applicable to any type of hydrocarbon fuel, such as natural gas, liquid propane gas, gasoline, kerosene, jet fuel, diesel fuel and sulfurous residual oils. The suitable range of operating parameters needed to decoke a catalyst bed using steam and carbon dioxide as a degasifying agent was also determined. The Fe-catalyst was efficient in both methane pyrolysis and steam/CO{sub 2} gasification of carbon. It was shown that the TCP and SOFC complement each other in may ways. With the IES, high quality hydrogen is delivered to the end user. IES can also operate as either a hydrogen production unit or as an electrical power generator. The energy efficiency of the IES is estimated at 45-55 per cent. 6 refs., 8 figs.

  8. Integrated alternative energy systems for use in small communities

    Science.gov (United States)

    Thornton, J.

    1982-01-01

    This paper summarizes the principles and conceptual design of an integrated alternative energy system for use in typical farming communities in developing countries. A system is described that, utilizing the Sun and methane produced from crop waste, would supply sufficient electric and thermal energy to meet the basic needs of villagers for water pumping, lighting, and cooking. The system is sized to supply enough pumping capacity to irrigate 101 ha (249 acres) sufficiently to optimize annual crop yields for the community. Three economic scenarios were developed, showing net benefits to the community of $3,578 to $15,547 anually, payback periods of 9.5 to 20 years, and benefit-to-cost ratios of 1.1 to 1.9.

  9. Producing software by integration: challenges and research directions (keynote)

    OpenAIRE

    Inverardi , Paola; Autili , Marco; Di Ruscio , Davide; Pelliccione , Patrizio; Tivoli , Massimo

    2013-01-01

    International audience; Software is increasingly produced according to a certain goal and by integrating existing software produced by third-parties, typically black-box, and often provided without a machine readable documentation. This implies that development processes of the next future have to explicitly deal with an inherent incompleteness of information about existing software, notably on its behaviour. Therefore, on one side a software producer will less and less know the precise behav...

  10. Integrated biomass energy systems and emissions of carbon dioxide

    International Nuclear Information System (INIS)

    Boman, U.R.; Turnbull, J.H.

    1997-01-01

    Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) have been funding a number of case studies under the initiative entitled ''Economic Development through Biomass Systems Integration'', with the objective of investigating the feasibility of integrated biomass energy systems utilizing a dedicated feedstock supply system (DFSS) for energy production. This paper deals with the full fuel cycle for four of these case studies, which have been examined with regard to the emissions of carbon dioxide., CO 2 . Although the conversion of biomass to electricity in itself does not emit more CO 2 than is captured by the biomass through photosynthesis, there will be some CO 2 emissions from the DFSS. External energy is required for the production and transportation of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO 2 and other greenhouse gases are emitted. However, by utilizing biomass with fossil fuels as external input fuels, we would get about 10-15 times more electric energy per unit fossil fuel, compared with a 100% coal power system. By introducing a DFSS on former farmland the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved and a significant amount of energy will be produced compared with an ordinary farm crop. Compared with traditional coal-based electricity production, the CO 2 emissions are in the most cases reduced significantly by as much as 95%. The important conclusion is the great potential for reducing greenhouse gas emissions through the offset of coal by biomass. (author)

  11. Integrated biomass energy systems and emissions of carbon dioxide

    International Nuclear Information System (INIS)

    Boman, U.R.; Turnbull, J.H.

    1996-01-01

    Electric Power Research Institute (EPRI) and US Department of Energy (DOE) have been funding a number of case studies under the initiative entitled 'Economic Development through Biomass Systems Integration', with the objective to investigate the feasibility of integrated biomass energy systems, utilizing a dedicated feedstock supply system (DFSS) for energy production. This paper deals with the full cycle for four of these case studies, which have been examined with regard to the emissions of greenhouse gases, especially CO 2 . Although the conversion of biomass to electricity in itself does not emit more CO 2 than is captured by the biomass through photosynthesis, there will be some CO 2 -emissions from DFSS. External energy is required for the production and transportation of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO 2 and other greenhouse gases are emitted. But, by utilizing biomass with fossil fuels as external input fuels, we would get about 10-15 times more electric energy per unit fossil fuel, compared to a 100% coal power system. By introducing a DFSS on former farmland, the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved, and a significant amount of energy will be produced, compared to an ordinary farm crop. Compared to traditional coal based electricity production, the CO 2 -emissions are in most cases reduced significantly, as much as 95%. The important conclusion is the great potential of reducing greenhouse gas emissions through the offset of coal by biomass. 23 refs,, 8 figs, 2 tabs

  12. Regional Integration of Renewable Energies

    International Nuclear Information System (INIS)

    Amador Guerra, J.; Dominguez Bravo, J.

    2000-01-01

    The aim of this report is to show how Energetic Planning and Territorial Policy should be working together for a better integration of Renewable Energies into Region. This Integration should to contemplate social, economic and environmental aspects of the territory. The report has been classified into 7 items: planning, energetic scenarios, technology transfer for Renewable Energies dissemination, barriers for this dissemination, environmental aspects, European Union Policy and Decision Support Systems (and specially GIS). (Author) 54 refs

  13. Modern energy access to all in rural India: An integrated implementation strategy

    International Nuclear Information System (INIS)

    Balachandra, P.

    2011-01-01

    Expanding energy access to the rural population of India presents a critical challenge for its government. The presence of 364 million people without access to electricity and 726 million who rely on biomass for cooking indicate both the failure of past policies and programs, and the need for a radical redesign of the current system. We propose an integrated implementation framework with recommendations for adopting business principles with innovative institutional, regulatory, financing and delivery mechanisms. The framework entails establishment of rural energy access authorities and energy access funds, both at the national and regional levels, to be empowered with enabling regulatory policies, capital resources and the support of multi-stakeholder partnership. These institutions are expected to design, lead, manage and monitor the rural energy interventions. At the other end, trained entrepreneurs would be expected to establish bioenergy-based micro-enterprises that will produce and distribute energy carriers to rural households at an affordable cost. The ESCOs will function as intermediaries between these enterprises and the international carbon market both in aggregating carbon credits and in trading them under CDM. If implemented, such a program could address the challenges of rural energy empowerment by creating access to modern energy carriers and climate change mitigation. - Highlights: ► Expanding rural energy access in India is critical with majority lacking access to modern energy. ► Innovative and integrated implementation strategy for achieving universal rural energy access. ► Design of an integrated rural energy policy and proposal for new institutional mechanism. ► Establishing rural energy access authorities and energy access funds as supporting mechanisms. ► Bioenergy-based micro-enterprises for delivering energy services at an affordable cost.

  14. Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage

    DEFF Research Database (Denmark)

    Zheng, Yingying; Jenkins, Bryan M.; Kornbluth, Kurt

    2018-01-01

    Deterministic constrained optimization and stochastic optimization approaches were used to evaluate uncertainties in biomass-integrated microgrids supplying both electricity and heat. An economic linear programming model with a sliding time window was developed to assess design and scheduling...... of biomass combined heat and power (BCHP) based microgrid systems. Other available technologies considered within the microgrid were small-scale wind turbines, photovoltaic modules (PV), producer gas storage, battery storage, thermal energy storage and heat-only boilers. As an illustrative example, a case...... study was examined for a conceptual utility grid-connected microgrid application in Davis, California. The results show that for the assumptions used, a BCHP/PV with battery storage combination is the most cost effective design based on the assumed energy load profile, local climate data, utility tariff...

  15. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  16. Energy Systems Integration: Demonstrating Distributed Grid-Edge Control Hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    Overview fact sheet about the OMNETRIC Group Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  17. Comparative Studies of Traditional (Non-Energy Integration and Energy Integration of Catalytic Reforming Unit using Pinch Analysis

    Directory of Open Access Journals (Sweden)

    M. Alta

    2012-12-01

    Full Text Available Energy Integration of Catalytic Reforming Unit (CRU of Kaduna Refinery and petrochemicals Company Kaduna Nigeria was carried out using Pinch Technology. The pinch analysis was carried out using Maple. Optimum minimum approach temperature of 20 °C was used to determine the energy target. The pinch point temperature was found to be 278 °C. The utilities targets for the minimum approach temperature were found to be 72711839.47 kJ/hr and 87105834.43 kJ/hr for hot and cold utilities respectively. Pinch analysis as an energy integration technique was found to save more energy and utilities cost than the traditional energy technique. Key words: Pinch point, CRU, Energy Target, Maple

  18. Battery energy storage systems: Assessment for small-scale renewable energy integration

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Nirmal-Kumar C.; Garimella, Niraj [Power Systems Group, Department of Electrical and Computer Engineering, The University of Auckland, 38 Princes Street, Science Centre, Auckland 1142 (New Zealand)

    2010-11-15

    Concerns arising due to the variability and intermittency of renewable energy sources while integrating with the power grid can be mitigated to an extent by incorporating a storage element within the renewable energy harnessing system. Thus, battery energy storage systems (BESS) are likely to have a significant impact in the small-scale integration of renewable energy sources into commercial building and residential dwelling. These storage technologies not only enable improvements in consumption levels from renewable energy sources but also provide a range of technical and monetary benefits. This paper provides a modelling framework to be able to quantify the associated benefits of renewable resource integration followed by an overview of various small-scale energy storage technologies. A simple, practical and comprehensive assessment of battery energy storage technologies for small-scale renewable applications based on their technical merit and economic feasibility is presented. Software such as Simulink and HOMER provides the platforms for technical and economic assessments of the battery technologies respectively. (author)

  19. Energy deposition at the bone-tissue interface from nuclear fragments produced by high-energy nucleons

    Science.gov (United States)

    Cucinotta, Francis A.; Hajnal, Ferenc; Wilson, John W.

    1990-01-01

    The transport of nuclear fragmentation recoils produced by high-energy nucleons in the region of the bone-tissue interface is considered. Results for the different flux and absorbed dose for recoils produced by 1 GeV protons are presented in a bidirectional transport model. The energy deposition in marrow cavities is seen to be enhanced by recoils produced in bone. Approximate analytic formulae for absorbed dose near the interface region are also presented for a simplified range-energy model.

  20. Dynamic integration of residential building design and green energies : the Bireth approach : building integrated renewable energy total harvest approach

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, K.P. [Hong Kong Univ., Hong Kong (China). Dept. of Architecture; Luk, C.L.P. [Chu Hai College of Higher Education, Hong Kong (China). Dept. of Architecture; Wong, S.T. [Hong Kong Univ., Hong Kong (China). Div. of Arts and Humanities, SPACE; Chung, S.L.; Fung, K.S.; Leung, M.F. [Hong Kong Inst. of Vocational Education, Hong Kong (China)

    2006-07-01

    Renewable energy sources that are commonly used in buildings include solar energy, wind energy and rainwater collection. High quality environmentally responsive residential buildings are designed to provide good insulation in winter and solar shading in summer. However, this study demonstrated that the green energy design in residential buildings is not usually well integrated. For example, windows with clear double or triple glazed glass, allow good penetration of sunlight during the day in winter, but are not further dynamically insulated for when the sun goes down to avoid heat loss from the building. Additionally, good solar static shading devices often block much needed daylight on cloudy winter days. These examples emphasize the lack of an integrated approach to gain the best advantage of green energies and to minimize energy costs in residential buildings. This study addressed issues facing the integrated approach with particular reference to the design of a small residential building in rural Beijing. The design included a new approach for interpreting a traditional Beijing court yard house in the modern Beijing rural context, while integrating multi-responding innovative green energy applications derived from first principles. This paper also presented a proposal for a village house in Hong Kong to harvest as much renewable energies as possible, primarily wind energy and solar energy, that come into contact with the building. The purpose was to work towards a renewable energy approach for buildings, namely the Bireth approach, which will benefit practically all houses by making them zero energy houses. The paper described the feasibility of integrating renewable energies in buildings to fulfill performance requirements such improving ventilation, providing warm interiors, drying clothes, or storing solar and wind energies into power batteries. The challenges facing the development of a proposed micro solar hot air turbine were also presented. 15 refs., 6

  1. Integration of the North American energy market

    International Nuclear Information System (INIS)

    Lapointe, A.

    2002-07-01

    The US energy policy of President Bush administration proposes to develop a North American energy framework with a greater energy integration between Canada, the USA and Mexico in the respect of the sovereignty of each country. This article tries to evaluate the integration status of the energy sector in Northern America with respect to the North American free-exchange agreement and to the deregulation process observed in the natural gas and electric power sectors. The commercial energy fluxes between Canada, Mexico and the US show that the integration is a reality and that it is in constant progress. This integration is particularly important in the case of Canada and the USA while major constraints remain in Mexico where the property and exploitation of natural resources is a government monopoly. For this reason, Mexico could never exploit the full potentialities of its resources and suffers from a chronical under-investment in its energy infrastructures which limits the energy trade. Despite this, there is a strong will from the Mexican authorities to ensure the modernization of its energy sector and to contribute more to the integration process of the north American energy market. A series of reforms, and in particular the fiscal reform started by the government should reduce the excessive dependence of the government incomes with the dividends from the energy sector. This should allow the different government companies to reinvest more its benefits in order to improve the existing infrastructures and to increase the capacities (in particular in the gas and electricity sectors). Finally, the recent will of the government to open the gas sector should allow the development of this energy source. (J.S.)

  2. Performance profiles of major energy producers 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Performance Profiles of Major Energy Producers 1994 is the eighteenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 24 major U.S. energy companies required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the United States and abroad.

  3. Performance profiles of major energy producers, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    Performance Profiles of Major Energy Producers 1991 is the fifteenth annual report of the Energy Information Administration's (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 23 major energy companies (the FRS companies) required to report annually on Form EIA-28. It also traces key developments affecting the financial performance of major energy companies in 1991, as well as reviews important trends. Financial information is reported by major lines of business including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report

  4. Integrating Wind And Solar With Hydrogen Producing Fuel Cells

    NARCIS (Netherlands)

    Hemmes, K.

    2007-01-01

    The often proposed solution for the fluctuating wind energy supply is the conversion of the surplus of wind energy into hydrogen by means of electrolysis. In this paper a patented alternative is proposed consisting of the integration of wind turbines with internal reforming fuel-cells, capable of

  5. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.

    Science.gov (United States)

    Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin

    2005-09-01

    Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization.

  6. Energy System Analysis of Large-Scale Integration of Wind Power

    International Nuclear Information System (INIS)

    Lund, Henrik

    2003-11-01

    The paper presents the results of two research projects conducted by Aalborg University and financed by the Danish Energy Research Programme. Both projects include the development of models and system analysis with focus on large-scale integration of wind power into different energy systems. Market reactions and ability to exploit exchange on the international market for electricity by locating exports in hours of high prices are included in the analyses. This paper focuses on results which are valid for energy systems in general. The paper presents the ability of different energy systems and regulation strategies to integrate wind power, The ability is expressed by three factors: One factor is the degree of electricity excess production caused by fluctuations in wind and CHP heat demands. The other factor is the ability to utilise wind power to reduce CO 2 emission in the system. And the third factor is the ability to benefit from exchange of electricity on the market. Energy systems and regulation strategies are analysed in the range of a wind power input from 0 to 100% of the electricity demand. Based on the Danish energy system, in which 50 per cent of the electricity demand is produced in CHP, a number of future energy systems with CO 2 reduction potentials are analysed, i.e. systems with more CHP, systems using electricity for transportation (battery or hydrogen vehicles) and systems with fuel-cell technologies. For the present and such potential future energy systems different regulation strategies have been analysed, i.e. the inclusion of small CHP plants into the regulation task of electricity balancing and grid stability and investments in electric heating, heat pumps and heat storage capacity. Also the potential of energy management has been analysed. The results of the analyses make it possible to compare short-term and long-term potentials of different strategies of large-scale integration of wind power

  7. Performance profiles of major energy producers 1989

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-23

    Performance Profiles of Major Energy Producers 1989 is the thirteenth annual report of the Energy Information Administration's (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 23 major energy companies (the FRS companies'') required to report annually on Form EIA-28. Financial information is reported by major lines of business including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. It also traces key developments affecting the financial performance of major energy companies in 1989, as well as review of important trends.

  8. An innovative and very promising use of tidal turbines. Tidal turbines can produce twenty per cent of the French electricity. An economic solution can produce 500 GW of tide energy. An innovative use of tidal turbines can produce 10 per cent of the World energy

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2013-01-01

    A set of articles outlines and describes the opportunities of energy production associated with the use of tidal turbines. Such a technological principle is very efficient in terms of costs but very few natural sea or river sites present favourable conditions, notably in terms of current speed. A first article addresses the peculiarities of sea tide energy, presents the different concepts and components of a sea tide power plant (tanks or basins, plants), describes the present use of tidal turbines, proposes a new solution (the 'Marelienne'), describes and assesses the integration into the grid and the energy storage, evokes the production gain obtained by pumping and the association with wind turbines, describes the construction mode, discusses the various impacts (visual impact, impacts on the environment, direct and indirect socio-economic impacts), discusses issues related to navigation, presents an example of production, costs and impacts (case of the Bay of Somme), evokes other potential areas in France (about the Chausey island and about the Re island), discusses the world potential, evokes other examples in Europe, in Asia, in America, Africa and Australia), indicates the global cost for the main sites, outlines technical and economic uncertainties. The same aspects and issues can be found in the other articles which outline that tidal turbines can produce twenty per cent of the French electricity, that an economic solution can produce 500 GW of tide energy, and that an innovative use of tidal turbines can produce 10 per cent of the World energy

  9. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    International Nuclear Information System (INIS)

    Latkowski, J.F.; Kramer, K.J.; Abbott, R.P.; Morris, K.R.; DeMuth, J.; Divol, L.; El-Dasher, B.; Lafuente, A.; Loosmore, G.; Reyes, S.; Moses, G.A.; Fratoni, M.; Flowers, D.; Aceves, S.; Rhodes, M.; Kane, J.; Scott, H.; Kramer, R.; Pantano, C.; Scullard, C.; Sawicki, R.; Wilks, S.; Mehl, M.

    2010-01-01

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  10. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  11. Storing the Electric Energy Produced by an AC Generator

    Science.gov (United States)

    Carvalho, P. Simeao; Lima, Ana Paula; Carvalho, Pedro Simeao

    2010-01-01

    Producing energy from renewable energy sources is nowadays a priority in our society. In many cases this energy comes as electric energy, and when we think about electric energy generators, one major issue is how we can store that energy. In this paper we discuss how this can be done and give some ideas for applications that can serve as a…

  12. An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications

    Science.gov (United States)

    Hagh, Nader; Skandan, Ganesh

    2012-01-01

    At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation

  13. Performance profiles of major energy producers 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-13

    Performance Profiles of Major Energy Producers 1992 is the sixteenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 25 major energy companies (the FRS companies) required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. The data are presented in the context of key energy market developments with a view toward identifying changing strategies of corporate development and measuring the apparent success of current ongoing operations.

  14. Performance profiles of major energy producers 1992

    International Nuclear Information System (INIS)

    1994-01-01

    Performance Profiles of Major Energy Producers 1992 is the sixteenth annual report of the Energy Information Administration's (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 25 major energy companies (the FRS companies) required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. The data are presented in the context of key energy market developments with a view toward identifying changing strategies of corporate development and measuring the apparent success of current ongoing operations

  15. Energy market integration and regional institutions in east Asia

    International Nuclear Information System (INIS)

    Aalto, Pami

    2014-01-01

    This article assesses the case made for energy market integration in East Asia by comparing the role of institutions in South East Asia and North East Asia. The types and functions of institutions and their overall structure are examined in light of global energy market trends. In South East Asia, the shift attempted by ASEAN towards more competitive markets is hampered by the remaining statist variants of the trade institution and bilateral energy diplomacy, which, as regards transaction cost functions, are sub-optimal. As for institutions with order-creating functions, the unresolved status of sovereignty within ASEAN hampers regulatory harmonisation; the great power management institution has since ASEAN's establishment reduced conflicts without providing decisive leadership conducive to integration. North East Asia's dependence on global energy markets overshadows the regional integration potential of the diverse liberalisation efforts and interconnection projects. Bilateral energy diplomacies, new trilateral institutions combined with ‘Track Two’ institutions and remaining great power competition co-exist. In both regions the institutional structure allows for step-wise, technical infrastructure integration. The environmental stewardship institution co-exists with statist energy security and development objectives while it supports cooperation on green energy. The overall structure of informal institutions constrains deeper energy market integration in several ways. - Highlights: • The structures of institutions explain East Asian energy market integration. • Transaction costs are increased by statist trade institutions and bilateralism. • Order-creating institutions are sub-optimal for energy market integration. • Multi-level great power management offers limited leadership for integration. • The environmental stewardship institution supports cooperation on green energy

  16. Dose equivalent near the bone-soft tissue interface from nuclear fragments produced by high-energy protons

    Science.gov (United States)

    Shavers, M. R.; Poston, J. W.; Cucinotta, F. A.; Wilson, J. W.

    1996-01-01

    During manned space missions, high-energy nucleons of cosmic and solar origin collide with atomic nuclei of the human body and produce a broad linear energy transfer spectrum of secondary particles, called target fragments. These nuclear fragments are often more biologically harmful than the direct ionization of the incident nucleon. That these secondary particles increase tissue absorbed dose in regions adjacent to the bone-soft tissue interface was demonstrated in a previous publication. To assess radiological risks to tissue near the bone-soft tissue interface, a computer transport model for nuclear fragments produced by high energy nucleons was used in this study to calculate integral linear energy transfer spectra and dose equivalents resulting from nuclear collisions of 1-GeV protons transversing bone and red bone marrow. In terms of dose equivalent averaged over trabecular bone marrow, target fragments emitted from interactions in both tissues are predicted to be at least as important as the direct ionization of the primary protons-twice as important, if recently recommended radiation weighting factors and "worst-case" geometry are used. The use of conventional dosimetry (absorbed dose weighted by aa linear energy transfer-dependent quality factor) as an appropriate framework for predicting risk from low fluences of high-linear energy transfer target fragments is discussed.

  17. Energy integration: Regional economic integration lever and possible insertion factor in the global economy

    International Nuclear Information System (INIS)

    Lokolo, M.C.

    2001-01-01

    In the 1920s, just after the War, an idea began taking root in the Old Continent, to build what could be described as the United States of Europe. Thirty years later, in 1951, a new source of energy, coal, paved the way for the economic integration of Europe. It culminated into monetary integration in January 2002. Economic integration makes sense in the context of the relatively small size of some national economies and markets, and the judicious utilization of rare resources and their unequal distribution. In this document, the author elaborated on the principles at play in economic integration and argued that the integration of the national energy markets could be the lever for economic integration through the gradual elimination of the various obstacles to trade. The author first presented a brief historical overview of economic integration from the perspective of global economic relationships, covering the period between the two world wars to the General Agreement on Tariffs and Trade (GATT) to the World Trade Organization (WTO). The concept and the forms of economic integration were reviewed. Energy integration as a lever of regional economic integration and as a factor in global economic insertion were discussed. Energy integration is a tool for the improvement of the human condition. 15 refs

  18. Role of nuclear produced hydrogen for global environment and energy

    International Nuclear Information System (INIS)

    Tashimo, M.; Kurosawa, A.; Ikeda, K.

    2004-01-01

    Sustainability on economical growth, energy supply and environment are major issues for the 21. century. Within this context, one of the promising concepts is the possibility of nuclear-produced hydrogen. In this study, the effect of nuclear-produced hydrogen on the environment is discussed, based on the output of the computer code 'Grape', which simulates the effects of the energy, environment and economy in 21. century. Five cases are assumed in this study. The first case is 'Business as usual by Internal Combustion Engine (ICE)', the second 'CO 2 limited to 550 ppm by ICE', the third 'CO 2 limited to 550 ppm by Hybrid Car', the fourth 'CO 2 limited to 550 ppm by Fuel Cell Vehicle (FCV) with Hydrogen produced by conventional Steam Methane Reforming (SMR)' and the fifth 'CO 2 limited to 550 ppm by FCV with Nuclear Produced-Hydrogen'. The energy used for transportation is at present about 25% of the total energy consumption in the world and is expected to be the same in the future, if there is no improvement of energy efficiency for transportation. On this point, the hybrid car shows the much better efficiency, about 2 times better than traditional internal combustion engines. Fuel Cell powered Vehicles are expected to be a key to resolving the combined issue of the environment and energy in this century. The nuclear-produced hydrogen is a better solution than conventional hydrogen production method using steam methane reforming. (author)

  19. Optimal Real-time Dispatch for Integrated Energy Systems

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Guerrero, Josep M.; Rahimi-Kian, Ashkan

    2016-01-01

    With the emerging of small-scale integrated energy systems (IESs), there are significant potentials to increase the functionality of a typical demand-side management (DSM) strategy and typical implementation of building-level distributed energy resources (DERs). By integrating DSM and DERs...... into a cohesive, networked package that fully utilizes smart energy-efficient end-use devices, advanced building control/automation systems, and integrated communications architectures, it is possible to efficiently manage energy and comfort at the end-use location. In this paper, an ontology-driven multi......-agent control system with intelligent optimizers is proposed for optimal real-time dispatch of an integrated building and microgrid system considering coordinated demand response (DR) and DERs management. The optimal dispatch problem is formulated as a mixed integer nonlinear programing problem (MINLP...

  20. Regional energy integration in Africa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-15

    This report is the first publication produced within the framework of the WEC's Africa Regional Action Plan as part of the 2005-2007 Work Programme. Presently, over 80% of the total energy consumption in Africa is based on traditional biomass used mostly for cooking. This lack of access to modern energy is holding back economic and social development for 1.6 billion people around the world. The situation is particularly grave in sub-Sahara Africa where over 80% of the population lives in rural areas and the average electrification rate is less than 5%. At least 50 million new connections are needed to provide electricity to supply the non-connected areas in Africa. The over 700 million potential customers represented by these new connections provide a major business opportunity. It is now widely recognised that development assistance, bilateral aid, multilateral financing institutions, a multitude of international aid agencies, NGOs and others have failed to make a significant difference. A new approach is required, otherwise the number of people without access to electricity will continue to grow, and none of the Millennium Development Goals set by the United Nations will be achieved. This regional report highlights key factors that affect cooperative energy projects. The geopolitical context, investment climate and appropriate regulation are just as important as the institutional and technical capacity required to execute many of these projects. The report identifies four key benefits of regional integration: improved security of supply and accessibility; increased economic efficiency; enhanced environmental quality and broader development of renewable resources.

  1. Regional energy integration in Africa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-15

    This report is the first publication produced within the framework of the WEC's Africa Regional Action Plan as part of the 2005-2007 Work Programme. Presently, over 80% of the total energy consumption in Africa is based on traditional biomass used mostly for cooking. This lack of access to modern energy is holding back economic and social development for 1.6 billion people around the world. The situation is particularly grave in sub-Sahara Africa where over 80% of the population lives in rural areas and the average electrification rate is less than 5%. At least 50 million new connections are needed to provide electricity to supply the non-connected areas in Africa. The over 700 million potential customers represented by these new connections provide a major business opportunity. It is now widely recognised that development assistance, bilateral aid, multilateral financing institutions, a multitude of international aid agencies, NGOs and others have failed to make a significant difference. A new approach is required, otherwise the number of people without access to electricity will continue to grow, and none of the Millennium Development Goals set by the United Nations will be achieved. This regional report highlights key factors that affect cooperative energy projects. The geopolitical context, investment climate and appropriate regulation are just as important as the institutional and technical capacity required to execute many of these projects. The report identifies four key benefits of regional integration: improved security of supply and accessibility; increased economic efficiency; enhanced environmental quality and broader development of renewable resources.

  2. Energy Systems Integration: A Convergence of Ideas

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Garrett, B.; MacMillan, S.; Rice, B.; Komomua, C.; O' Malley, M.; Zimmerle, D.

    2012-07-01

    Energy systems integration (ESI) enables the effective analysis, design, and control of these interactions and interdependencies along technical, economic, regulatory, and social dimensions. By focusing on the optimization of energy from all systems, across all pathways, and at all scales, we can better understand and make use of the co-benefits that result to increase reliability and performance, reduce cost, and minimize environmental impacts. This white paper discusses systems integration and the research in new control architectures that are optimized at smaller scales but can be aggregated to optimize energy systems at any scale and would allow replicable energy solutions across boundaries of existing and new energy pathways.

  3. WINS. Market Simulation Tool for Facilitating Wind Energy Integration

    Energy Technology Data Exchange (ETDEWEB)

    Shahidehpour, Mohammad [Illinois Inst. of Technology, Chicago, IL (United States)

    2012-10-30

    Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practices can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities; (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC); (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision

  4. Renewable energy integration challenges and solutions

    CERN Document Server

    Hossain, Jahangir

    2014-01-01

    This book examines challenges involved in the integration of renewable energy into existing electricity grids. It provides models of power systems to show how the integration will effect conventional grids and various solutions to minimize the impacts.

  5. Energy management and grid stability aspects of wind energy integration

    International Nuclear Information System (INIS)

    Saulnier, B.; Krau, S.; Gagnon, R.

    2002-01-01

    Wind energy management on power grids was discussed with reference to a wind integration study in Vermont and new projects at Hydro-Quebec's electricity research institute (IREQ (Recherche en Electricite du Quebec)). Modeling concepts for wind integration were presented for hydro/wind systems and for thermal/wind systems. A large scale wind power integration study for the Quebec/Labrador area has shown that large wind power capacity can be integrated in the existing power system without special investment. The Canadian Wind Energy Association's goal of integrating 10,000 MW of wind in Canadian grids appears realistic from a technical point of view. The Vermont thermal system type project involves the integration of wind and biomass. The project objective is to evaluate the impacts, by 2010, of high penetration levels of renewable energy on the Vermont grid. The study showed that wind power can represent a large portion of Vermont's total generation because transmission capacities to get to other regions are large, plus Vermont has ties with other power systems. The Hydro-Quebec load and Vermont wind are well correlated, meaning that Hydro-Quebec's peak is driven by winter electric space heating demand, and Vermont's best wind resource period is also in the winter. Model results show an economic benefit of adding wind power in the Vermont Power system when it is managed with Quebec's generation assets. The impact that this would have on the transmission system was also discussed. 1 tab., 13 figs

  6. Integrated energy wood and pulpwood harvesting in first-thinning stands

    Energy Technology Data Exchange (ETDEWEB)

    Kaerhae, K.; Pajuoja, H. (Metsaeteho Oy, Helsinki (Finland)), Email: kalle.karha@metsateho.fi, Email: heikki.pajuoja@metsateho.fi; Hoegnaes, T. (Metsaehallitus, Kajaani (Finland)), Email: tore.hognas@metsa.fi; Mutikainen, A. (TTS Research, Rajamaeki (Finland)), Email: arto.mutikainen@tts.fi

    2009-07-01

    The integrated harvesting of industrial roundwood and energy wood by the so-called 'two-pile cutting method' has increased strongly in young forests in Finland during the last two years. The studies carried out by Metsaeteho Oy, Metsaehallitus and TTS Research (I) determined the time consumption and productivity in cutting work when using the integrated cutting of first-thinning wood, (II) clarified the development of the total removal in integrated harvesting operation, and (III) investigated the quality of pulpwood poles when using integrated the quality of pulpwood poles when using integrated cutting with multi-tree handling. The studies indicated that the total removal in integrated wood harvesting increases significantly compared to that of conventional, separate roundwood harvesting. When the total removal from the harvesting site increased considerably, there was a significant increase in the productivity of cutting work in integrated wood harvesting compared to the situation in separate pulpwood harvesting. In addition, the delimbing quality and bucking accuracy of the pulpwood poles obtained in multi-tree processing were comparable to those produced in single-tree handling. There were no problems with measuring the work output by a grapple scale attached to the boom of the forwarder. As the studies indicated very promising experiences in integrated wood cutting, integrated harvesting is likely to continue to increase in both first and later thinning in Finland. (orig.)

  7. Performance profiles of major energy producers 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This publication examines developments in the operations of the major US e energy-producing companies on a corporate level, by major line of business, by major function within each line of business, and by geographic area. In 1996, 24 companies filed Form EIA-28. The analysis and data presented in this report represents the operations of the Financial Reporting System companies in the context of their worldwide operations and in the context of the major energy markets which they serve. Both energy and nonenergy developments of these companies are analyzed. Although the focus is on developments in 1996, important trends prior to that time are also featured. Sections address energy markets in 1996; key financial developments; oil and gas exploration, development, and production; downstream petroleum in 1996; coal and alternative energy; and foreign direct investment in US energy. 30 figs., 104 tabs.

  8. Performance profiles of major energy producers 1996

    International Nuclear Information System (INIS)

    1998-01-01

    This publication examines developments in the operations of the major US e energy-producing companies on a corporate level, by major line of business, by major function within each line of business, and by geographic area. In 1996, 24 companies filed Form EIA-28. The analysis and data presented in this report represents the operations of the Financial Reporting System companies in the context of their worldwide operations and in the context of the major energy markets which they serve. Both energy and nonenergy developments of these companies are analyzed. Although the focus is on developments in 1996, important trends prior to that time are also featured. Sections address energy markets in 1996; key financial developments; oil and gas exploration, development, and production; downstream petroleum in 1996; coal and alternative energy; and foreign direct investment in US energy. 30 figs., 104 tabs

  9. On the average luminosity of electron positron collider and positron-producing energy

    International Nuclear Information System (INIS)

    Xie Jialin

    1985-01-01

    In this paper, the average luminosity of linac injected electron positron collider is investigated from the positron-producing energy point of view. When the energy of the linac injector is fixed to be less than the operating energy of the storage ring, it has been found that there exists a positron-producing energy to give optimum average luminosity. Two cases have been studied, one for an ideal storage ring with no single-beam instability and the other for practical storage ring with fast head-tail instability. The result indicates that there is a positron-producing energy corresponding to the minimum injection time, but this does not correspond to the optimum average luminosity for the practical storage rings. For Beijing Electron Positron Collider (BEPC), the positron-producing energy corresponding to the optimum average luminosity is about one tenth of the total injector energy

  10. Modeling energy-economy interactions using integrated models

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.

    1994-06-01

    Integrated models are defined as economic energy models that consist of several submodels, either coupled by an interface module, or embedded in one large model. These models can be used for energy policy analysis. Using integrated models yields the following benefits. They provide a framework in which energy-economy interactions can be better analyzed than in stand-alone models. Integrated models can represent both energy sector technological details, as well as the behaviour of the market and the role of prices. Furthermore, the combination of modeling methodologies in one model can compensate weaknesses of one approach with strengths of another. These advantages motivated this survey of the class of integrated models. The purpose of this literature survey therefore was to collect and to present information on integrated models. To carry out this task, several goals were identified. The first goal was to give an overview of what is reported on these models in general. The second one was to find and describe examples of such models. Other goals were to find out what kinds of models were used as component models, and to examine the linkage methodology. Solution methods and their convergence properties were also a subject of interest. The report has the following structure. In chapter 2, a 'conceptual framework' is given. In chapter 3 a number of integrated models is described. In a table, a complete overview is presented of all described models. Finally, in chapter 4, the report is summarized, and conclusions are drawn regarding the advantages and drawbacks of integrated models. 8 figs., 29 refs

  11. The energy trilogy: An integrated sustainability model to bridge wastewater treatment plant energy and emissions gaps

    Science.gov (United States)

    Al-Talibi, A. Adhim

    An estimated 4% of national energy consumption is used for drinking water and wastewater services. Despite the awareness and optimization initiatives for energy conservation, energy consumption is on the rise owing to population and urbanization expansion and to commercial and industrial business advancement. The principal concern is since energy consumption grows, the higher will be the energy production demand, leading to an increase in CO2 footprints and the contribution to global warming potential. This research is in the area of energy-water nexus, focusing on wastewater treatment plant (WWTP) energy trilogy -- the group of three related entities, which includes processes: (1) consuming energy, (2) producing energy, and (3) the resulting -- CO2 equivalents. Detailed and measurable energy information is not readily obtained for wastewater facilities, specifically during facility preliminary design phases. These limitations call for data-intensive research approach on GHG emissions quantification, plant efficiencies and source reduction techniques. To achieve these goals, this research introduced a model integrating all plant processes and their pertinent energy sources. In a comprehensive and "Energy Source-to-Effluent Discharge" pattern, this model is capable of bridging the gaps of WWTP energy, facilitating plant designers' decision-making for meeting energy assessment, sustainability and the environmental regulatory compliance. Protocols for estimating common emissions sources are available such as for fuels, whereas, site-specific emissions for other sources have to be developed and are captured in this research. The dissertation objectives were met through an extensive study of the relevant literature, models and tools, originating comprehensive lists of processes and energy sources for WWTPs, locating estimation formulas for each source, identifying site specific emissions factors, and linking the sources in a mathematical model for site specific CO2 e

  12. Conference on grid integration of renewable energies

    International Nuclear Information System (INIS)

    Fontaine, Pierre; Goeke, Berthold; Mignon, Herve; Brakelmann, Heinrich; Huebner, Gundula; Tanja Schmedes; Remy Garaude Verdier; Pierre-Guy Therond; Werner Diwald

    2012-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on grid integration of renewable energies. In the framework of this French-German exchange of experience, about a hundred of participants exchanged views on the similarities and differences between the French and German approaches of renewable energies integration to grids. This document brings together the available presentations (slides) made during this event: 1 - Power grid development - Policy and challenges (Pierre Fontaine); 2 - Grid Development: German Strategy (Berthold Goeke); 3 - Power grids development: situational analysis (Herve Mignon); 4 - Traditional Power Lines, Partial Underground Cabling and HVDC lines: Costs, Benefits and Acceptance (Heinrich Brakelmann); 5 - Transmission Lines - Local Acceptance (Gundula Huebner); 6 - eTelligence- energy meets Intelligence: experience feedback from the grid operator EWe on smart grids and the integration of renewable energies (Tanja Schmedes); 7 - Nice Grid, The French Smart Grid Project within Grid4eU (Remy Garaude Verdier); 8 - Economical Analysis Of energy Storage For Renewable energy Farms - experience of EDF en on the basis of 3 call for tender issued by the French Government in 01/2010, 11/2010, and 09/2011: what conditions for a real deployment (Pierre-Guy Therond); 9 - Hydrogen as a renewable energies storage mean (Werner Diwald)

  13. Integrated topology optimisation of multi-energy networks

    NARCIS (Netherlands)

    Mazairac, L.A.J.; Salenbien, R.; Vanhoudt, D.; Desmedt, J.; Vries, de B.

    2015-01-01

    Multi-carrier hybrid energy distribution net- works provide flexibility in case of network malfunctions, energy shortages and price fluctuations through energy conversion and storage. Therefore hybrid networks can cope with large-scale integration of distributed and intermittent renewable energy

  14. Performance profiles of major energy producers 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    Performance Profiles of Major Energy Producers 1993 is the seventeenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 25 major US energy companies required to report annually on Form EIA-28. Financial information is reported by major liens of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the US and abroad. This year`s report analyzes financial and operating developments for 1993 (Part 1: Developments in 1993) and also reviews key developments during the 20 years following the Arab Oil Embargo of 1973--1974 (Part 2: Major Energy Company Strategies Since the Arab Oil Embargo). 49 figs., 104 tabs.

  15. Energy Production System Management - Renewable energy power supply integration with Building Automation System

    International Nuclear Information System (INIS)

    Figueiredo, Joao; Martins, Joao

    2010-01-01

    Intelligent buildings, historically and technologically, refers to the integration of four distinctive systems: Building Automation Systems (BAS), Telecommunication Systems, Office Automation Systems and Computer Building Management Systems. The increasing sophisticated BAS has become the 'heart and soul' of modern intelligent buildings. Integrating energy supply and demand elements - often known as Demand-Side Management (DSM) - has became an important energy efficiency policy concept. Nowadays, European countries have diversified their power supplies, reducing the dependence on OPEC, and developing a broader mix of energy sources maximizing the use of renewable energy domestic sources. In this way it makes sense to include a fifth system into the intelligent building group: Energy Production System Management (EPSM). This paper presents a Building Automation System where the Demand-Side Management is fully integrated with the building's Energy Production System, which incorporates a complete set of renewable energy production and storage systems.

  16. Integration of distributed energy resources into low voltage grid: A market-based multiperiod optimization model

    Energy Technology Data Exchange (ETDEWEB)

    Mashhour, Elahe; Moghaddas-Tafreshi, S.M. [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyd Khandan, P.O. Box 16315-1355, Shariati, Tehran (Iran)

    2010-04-15

    This paper develops a multiperiod optimization model for an interconnected micro grid with hierarchical control that participates in wholesale energy market to maximize its benefit (i.e. revenues-costs). In addition to the operational constraints of distributed energy resources (DER) including both inter-temporal and non-inter-temporal types, the adequacy and steady-state security constraints of micro grid and its power losses are incorporated in the optimization model. In the presented model, DER are integrated into low voltage grid considering both technical and economical aspects. This integration as a micro grid can participate in wholesale energy market as an entity with dual role including producer and consumer based on the direction of exchanged power. The developed model is evaluated by testing on a micro grid considering different cases and the results are analyzed. (author)

  17. Energy market integration in South America

    International Nuclear Information System (INIS)

    Hammons, T.J.; Franco, N. de; Sbertoli, L.V.; Khelil, C.; Rudnick, H.; Clerici, A.; Longhi, A.

    1997-01-01

    This article is a summary of presentations made during the 1997 Winter Meeting panel session on Power and Natural Gas in Latin America: Towards an Integrated Market. Reregulation and demand for energy resources to support economic growth are driving international natural gas and electricity exchange initiatives. Panelists focused on the gas and electric power industry in Latin America in terms of the: transport of gas or transmission of electricity; energy market integration in the southern cone of South America; and issues on gas use for electricity generation in South America countries. Countries such as Argentina, Bolivia, and Peru will export natural gas to Brazil, Uruguay, Paraguay and Chile, an the energy matrices of these countries will change

  18. Integrated energy and climate program without nuclear power

    International Nuclear Information System (INIS)

    Haller, W.

    2007-01-01

    Under the German EU Council presidency, the European Union adopted an ambitious climate protection program in spring this year which has consequences for the entire energy sector. A fair system of burden sharing is currently being sought on the level of the European Union. However, the German federal government does not wait for that agreement to be reached, but has added to the clearcut EU plans in order to achieve more climate protection. At the closed meeting of the federal cabinet in Meseberg on August 23-24, 2007, the key points of an integrated energy and climate program were adopted. The unprecedented set of measures comprises 30 points. In many cases, legal measures are required for implementation, which implies a heavy workload facing the federal government and parliament. A major step forward is seen in the federal government's intention to preserve the international competitiveness of the producing sector and energy-intensive industries also under changed framework conditions. The imperative guiding principle must be that care should take precedence over speed. European or worldwide solutions must be found for all measures, be it energy efficiency or climate protection, and all countries must be involved because, otherwise, specific measures taken by individual states will be ineffective. (orig.)

  19. Assessing District Energy Systems Performance Integrated with Multiple Thermal Energy Storages

    Science.gov (United States)

    Rezaie, Behnaz

    The goal of this study is to examine various energy resources in district energy (DE) systems and then DE system performance development by means of multiple thermal energy storages (TES) application. This study sheds light on areas not yet investigated precisely in detail. Throughout the research, major components of the heat plant, energy suppliers of the DE systems, and TES characteristics are separately examined; integration of various configurations of the multiple TESs in the DE system is then analysed. In the first part of the study, various sources of energy are compared, in a consistent manner, financially and environmentally. The TES performance is then assessed from various aspects. Then, TES(s) and DE systems with several sources of energy are integrated, and are investigated as a heat process centre. The most efficient configurations of the multiple TESs integrated with the DE system are investigated. Some of the findings of this study are applied on an actual DE system. The outcomes of this study provide insight for researchers and engineers who work in this field, as well as policy makers and project managers who are decision-makers. The accomplishments of the study are original developments TESs and DE systems. As an original development the Enviro-Economic Function, to balance the economic and environmental aspects of energy resources technologies in DE systems, is developed; various configurations of multiple TESs, including series, parallel, and general grid, are developed. The developed related functions are discharge temperature and energy of the TES, and energy and exergy efficiencies of the TES. The TES charging and discharging behavior of TES instantaneously is also investigated to obtain the charging temperature, the maximum charging temperature, the charging energy flow, maximum heat flow capacity, the discharging temperature, the minimum charging temperature, the discharging energy flow, the maximum heat flow capacity, and performance

  20. Energy Level Composite Curves-a new graphical methodology for the integration of energy intensive processes

    International Nuclear Information System (INIS)

    Anantharaman, Rahul; Abbas, Own Syed; Gundersen, Truls

    2006-01-01

    Pinch Analysis, Exergy Analysis and Optimization have all been used independently or in combination for the energy integration of process plants. In order to address the issue of energy integration, taking into account composition and pressure effects, the concept of energy level as proposed by [X. Feng, X.X. Zhu, Combining pinch and exergy analysis for process modifications, Appl. Therm. Eng. 17 (1997) 249] has been modified and expanded in this work. We have developed a strategy for energy integration that uses process simulation tools to define the interaction between the various subsystems in the plant and a graphical technique to help the engineer interpret the results of the simulation with physical insights that point towards exploring possible integration schemes to increase energy efficiency. The proposed graphical representation of energy levels of processes is very similar to the Composite Curves of Pinch Analysis-the interpretation of the Energy Level Composite Curves reduces to the Pinch Analysis case when dealing with heat transfer. Other similarities and differences are detailed in this work. Energy integration of a methanol plant is taken as a case study to test the efficacy of this methodology. Potential integration schemes are identified that would have been difficult to visualize without the help of the new graphical representation

  1. Integrating global energy and climate governance: The changing role of the International Energy Agency

    International Nuclear Information System (INIS)

    Heubaum, Harald; Biermann, Frank

    2015-01-01

    Despite the long-recognized interlinkages between global energy consumption and climate change, there has historically been only limited policy interaction, let alone integration, between the two fields. This compartmentalization is mirrored in scholarship, where much research has focused on the fragmentation of, respectively, global energy and global climate governance, but only little has been said about how these fields might be integrated. Our analysis of the International Energy Agency’s (IEA) changing activities in recent years shows that governance integration – both within global energy governance and between global energy and climate governance – is now happening. The IEA has broadened its portfolio to embrace the full spectrum of energy issues, including renewable energy and climate change; it has built and is expanding key partnerships with both the UN climate convention and the International Renewable Energy Agency (IRENA); and it has become an authoritative advocate for the inter-related goals of a low-carbon transition and climate change mitigation. We show that these developments are not the result of a top-down plan, but have rather emerged through the Agency’s various efforts to pursue its energy-centric mandate in a fast-changing global policy environment. - Highlights: • Assesses integration between global energy and global climate governance. • Analyzes organizational change in the IEA and its impact on governance integration. • Discusses recent activities and advocacy by the IEA in relation to climate change.

  2. Grid connected integrated community energy system. Phase II: final stage 2 report. Preliminary design of cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-22

    The preliminary design of a dual-purpose power plant to be located on the University of Minnesota is described. This coal-fired plant will produce steam and electric power for a grid-connected Integrated Community Energy System. (LCL)

  3. Energy efficiency analysis of styrene production by adiabatic ethylbenzene dehydrogenation using exergy analysis and heat integration

    Directory of Open Access Journals (Sweden)

    Ali Emad

    2018-03-01

    Full Text Available Styrene is a valuable commodity for polymer industries. The main route for producing styrene by dehydrogenation of ethylbenzene consumes a substantial amount of energy because of the use of high-temperature steam. In this work, the process energy requirements and recovery are studied using Exergy analysis and Heat Integration (HI based on Pinch design method. The amount of steam plays a key role in the trade-off between Styrene yield and energy savings. Therefore, optimizing the operating conditions for energy reduction is infeasible. Heat integration indicated an insignificant reduction in the net energy demand and exergy losses, but 24% and 34% saving in external heating and cooling duties, respectively. When the required steam is generated by recovering the heat of the hot reactor effluent, a considerable saving in the net energy demand, as well as the heating and cooling utilities, can be achieved. Moreover, around 68% reduction in the exergy destruction is observed.

  4. Energy drift in reversible time integration

    International Nuclear Information System (INIS)

    McLachlan, R I; Perlmutter, M

    2004-01-01

    Energy drift is commonly observed in reversible integrations of systems of molecular dynamics. We show that this drift can be modelled as a diffusion and that the typical energy error after time T is O(√T). (letter to the editor)

  5. Thermal Distribution System | Energy Systems Integration Facility | NREL

    Science.gov (United States)

    Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows low as 10% of its full load level). The 60-ton chiller cools water with continuous thermal control

  6. Integration with Energy Harvesting Technology

    Directory of Open Access Journals (Sweden)

    S. Williams

    2012-11-01

    Full Text Available This paper reports on the design and implementation of a wireless sensor communication system with a low power consumption that allows it to be integrated with the energy harvesting technology. The system design and implementation focus on reducing the power consumption at three levels: hardware, software and data transmission. The reduction in power consumption, at hardware level in particular, is mainly achieved through the introduction of an energy-aware interface (EAI that ensures a smart inter-correlated management of the energy flow. The resulted system satisfies the requirements of a wireless sensor structure that possesses the energy autonomous capability.

  7. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Bradley Bolt [Univ. of California, San Diego, CA (United States)

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  8. Integrated energy system for a high performance building

    Science.gov (United States)

    Jaczko, Kristen

    Integrated energy systems have the potential to reduce of the energy consumption of residential buildings in Canada. These systems incorporate components to meet the building heating, cooling and domestic hot water load into a single system in order to reduce energy losses. An integrated energy system, consisting of a variable speed heat pump, cold and hot thermal storage tanks, a photovoltaic/thermal (PV/T) collector array and a battery bank, was designed for the Queen's Solar Design Team's (QSDT) test house. The system uses a radiant floor to provide space- heating and sensible cooling and a dedicated outdoor air system provides ventilation and dehumidifies the incoming fresh air. The test house, the Queen's Solar Education Centre (QSEC), and the integrated energy system were both modelled in TRNSYS. Additionally, a new TRNSYS Type was developed to model the PV/T collectors, enabling the modeling of the collection of energy from the ambient air. A parametric study was carried out in TRNSYS to investigate the effect of various parameters on the overall energy performance of the system. These parameters included the PV/T array size and the slope of the collectors, the heat pump source and load-side inlet temperature setpoints, the compressor speed control and the size of the thermal storage tanks and the battery bank. The controls of the heat pump were found to have a large impact on the performance of the integrated energy system. For example, a low evaporator setpoint improved the overall free energy ratio (FER) of the system but the heat pump performance was lowered. Reducing the heat loss of the PV/T panels was not found to have a large effect on the system performance however, as the heat pump is able to lower the inlet collector fluid temperature, thus reducing thermal losses. From the results of the sensitivity study, a recommended system model was created and this system had a predicted FER of 77.9% in Kingston, Ontario, neglecting the energy consumption of

  9. Assessment of building integrated energy supply and energy saving schemes on a national level in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Muenster, M.; Morthorst, P.E.; Birkl, C.

    2011-06-15

    In the future, buildings will not only act as consumers of energy but as producers as well. For these ''prosumers'', energy production by use of solar panels, photovoltaics and heat pumps etc will be essential. The objective of this project was to find the most optimal combinations of building insulation and use of renewable energy sources in existing buildings in terms of economics and climate impacts. Five houses were analyzed based on different personal load, consumption profiles, solar orientation and proposed building envelope improvements and use of combinations of renewable energy systems. The results of these analyses were integrated in five scenarios to examine the consequences at national level of implementing insulation together with solar panels, photovoltaics and heat pumps in single-family houses. The simulations focused on the building period between 1961 and 1972 characterised by high building activity and low energy performance. The five scenarios - a baseline scenario, a maximum savings scenario, a maximum production scenario, and a combination scenario - showed that regardless of scenario, a consequent use of individual heat pumps leads to the greatest energy savings and CO{sub 2} reductions. (ln)

  10. Energy conservation in Newmark based time integration algorithms

    DEFF Research Database (Denmark)

    Krenk, Steen

    2006-01-01

    Energy balance equations are established for the Newmark time integration algorithm, and for the derived algorithms with algorithmic damping introduced via averaging, the so-called a-methods. The energy balance equations form a sequence applicable to: Newmark integration of the undamped equations...... of motion, an extended form including structural damping, and finally the generalized form including structural as well as algorithmic damping. In all three cases the expression for energy, appearing in the balance equation, is the mechanical energy plus some additional terms generated by the discretization...

  11. Macro-level integrated renewable energy production schemes for sustainable development

    International Nuclear Information System (INIS)

    Subhadra, Bobban G.

    2011-01-01

    The production of renewable clean energy is a prime necessity for the sustainable future existence of our planet. However, because of the resource-intensive nature, and other challenges associated with these new generation renewable energy sources, novel industrial frameworks need to be co-developed. Integrated renewable energy production schemes with foundations on resource sharing, carbon neutrality, energy-efficient design, source reduction, green processing plan, anthropogenic use of waste resources for the production green energy along with the production of raw material for allied food and chemical industries is imperative for the sustainable development of this sector especially in an emission-constrained future industrial scenario. To attain these objectives, the scope of hybrid renewable production systems and integrated renewable energy industrial ecology is briefly described. Further, the principles of Integrated Renewable Energy Park (IREP) approach, an example for macro-level energy production, and its benefits and global applications are also explored. - Research highlights: → Discusses the need for macro-level renewable energy production schemes. → Scope of hybrid and integrated industrial ecology for renewable energy production. → Integrated Renewable Energy Parks (IREPs): A macro-level energy production scheme. → Discusses the principle foundations and global applications of IREPs. → Describes the significance of IREPs in the carbon-neutral future business arena.

  12. Energy Systems Integration Newsletter - December 2016 | Energy Systems

    Science.gov (United States)

    system makes renewable energy integration easier. ESIF Research Shows That Connected Residential Devices and business intelligence. Baggu also noted the opportunity to harness next-generation graphical -through, ramp rate control, soft-start reconnection, and voltage-watt control. NREL then conducted power

  13. Integrated Community Energy Systems: engineering analysis and design bibliography. [368 citations

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.; Sapienza, G.R.

    1979-05-01

    This bibliography cites 368 documents that may be helpful in the planning, analysis, and design of Integrated Community Energy Systems. It has been prepared for use primarily by engineers and others involved in the development and implementation of ICES concepts. These documents include products of a number of Government research, development, demonstration, and commercialization programs; selected studies and references from the literature of various technical societies and institutions; and other selected material. The key programs which have produced cited reports are the Department of Energy Community Systems Program (DOE/CSP), the Department of Housing and Urban Development Modular Integrated Utility Systems Program (HUD/MIUS), and the Department of Health, Education, and Welfare Integrated Utility Systems Program (HEW/IUS). The cited documents address experience gained both in the U.S. and in other countries. Several general engineering references and bibliographies pertaining to technologies or analytical methods that may be helpful in the analysis and design of ICES are also included. The body of relevant literature is rapidly growing and future updates are therefore planned. Each citation includes identifying information, a source, descriptive information, and an abstract. The citations are indexed both by subjects and authors, and the subject index is extensively cross-referenced to simplify its use.

  14. Producing an integrated climate-land-energy-water (CLEW) model for glaciated regions in the developing world

    Science.gov (United States)

    Delman, E. M.; Thomas, B. F.; Famiglietti, J. S.

    2013-12-01

    Growing concern over the impact of climate change on global freshwater resources has spurred a demand for practical, basin-specific adaptation tools. The potential for water stress is particularly inflated in the glaciated watersheds of the developing world; widespread and rapid glacial retreat has forced regional resource managers to reconcile the reality of a diminishing supply with an overall increase in demand, while accounting for the underlying geopolitical and cultural context. An integrated approach, such as the development of a Climate-Land-Energy-Water (CLEW) model that examines relationships among climate, land-use, and the energy and water sectors, can be used to assess the impact of different climate change scenarios on basin sustainability and vulnerability. This study will first constrain the hydrologic budget in the Río Santa Watershed of Peru using satellite imagery, historical and contemporary stream discharge data, hydrologic modeling, climatic data analysis, and isotopic and chemical tracers. Ultimately, glacier retreat will be examined at the watershed scale and be used as an input in the CLEW model framework to assess hydrologic budget scenarios and the subsequent impact on regional economic and environmental sustainability.

  15. SIMULTANEOUS INTEGRATION OF WATER AND ENERGY: ACHIEVEMENTS AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    Junior Lorenzo Llanes

    2016-01-01

    Full Text Available Process Integration (PI is a tool that for over forty years has demonstrated its strength to provide optimal solutions to complex problems. The interaction of exchange systems of energy and water networks is a typical case of such problems. The gradual increase in the consumption of water and energy has determined the development of methodologies that take into account the simultaneous integration of these resources. This paper aims to present a literature review related to the simultaneous integration of water and energy. First, general items related to this research field are presented, emphasizing the approaches to simultaneous integration (Pinch Analysis and Mathematical Programming. Some recent cases of studies, demonstrating the strength of these tools mainly focus to sugar industry, are also presented. Finally some of the challenges to be faced by the simultaneous integration of water and energy for the diversification of the Cuban sugar industry are presented.

  16. Integrated transport and renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Nørgaard, P.

    2008-01-01

    No single technology can solve the problem of ever increasing CO2 emissions from transport. Here, a coherent effort to integrate transport into energyplanning is proposed, using multiple means promoting sustainable transport. It is concluded that a 100 per cent renewable energy transport system...... is possible but is connected to significant challenges in the path towards it. Biomass is a limited resource and it is important to avoid effecting the production of food. The integration of the transport with the energy system is crucial as is a multi-pronged strategy. Short term solutions have to consider...

  17. Technology innovation in an integrated energy economy

    International Nuclear Information System (INIS)

    Isaacs, E.

    2006-01-01

    A discussion on technology innovation in an integrated energy economy was presented. The mission, mandate and strategy of the Alberta Research Institute was first presented, followed by a discussion on oil supply needs based on historic demand. The presentation then addressed what might happen as oil demand and supply peak. A comparison of conventional versus unconventional resources was included along with a chart illustrating Alberta's contribution to total global reserves. Other topics addressed in the presentation in chart format included: natural gas requirements and natural gas use in oil sands; marketable gas production and the number of producing gas wells; Alberta's natural gas situation; and net United States imports of natural gas. Options for reducing natural gas consumption in oil sand production processes were also identified. These included steam assisted gravity drainage; solvent processes, electrical heating, combustion, nuclear, geothermal, and gasification processes. Advantages and disadvantages of replacing natural gas through gasification were presented. Last, the presentation provided an unconventional gas technology roadmap and discussed an innovative energy technology program. It was concluded that there are no clear cut options for replacing the huge amount of natural gas needed in the expanding oil sands sector. tabs., figs

  18. Building-integrated renewable energy policy analysis in China

    Institute of Scientific and Technical Information of China (English)

    姚春妮; 郝斌

    2009-01-01

    With the dramatic development of renewable energy all over the world,and for purpose of adjusting energy structure,the Ministry of Construction of China plans to promote the large scale application of renewable energy in buildings. In order to ensure the validity of policy-making,this work firstly exerts a method to do cost-benefit analysis for three kinds of technologies such as building-integrated solar hot water (BISHW) system,building-integrated photovoltaic (BIPV) technology and ground water heat pump (GWHP). Through selecting a representative city of every climate region,the analysis comes into different results for different climate regions in China and respectively different suggestion for policy-making. On the analysis basis,the Ministry of Construction (MOC) and the Ministry of Finance of China (MOF) united to start-up Building-integrated Renewable Energy Demonstration Projects (BIREDP) in 2006. In the demonstration projects,renewable energy takes place of traditional energy to supply the domestic hot water,electricity,air-conditioning and heating. Through carrying out the demonstration projects,renewable energy related market has been expanded. More and more relative companies and local governments take the opportunity to promote the large scale application of renewable energy in buildings.

  19. Foreign energy conservation integrated programs

    International Nuclear Information System (INIS)

    Lisboa, Maria Luiza Viana; Bajay, Sergio Valdir

    1999-01-01

    The promotion of energy economy and efficiency is recognized as the single most cost-effective and least controversial component of any strategy of matching energy demand and supply with resource and environmental constraints. Historically such efficiency gains are not out of reach for the industrialized market economy countries, but are unlikely to be reached under present conditions by developing countries and economics in transition. The aim of the work was to analyze the main characteristics of United Kingdom, France, Japan, Canada, Australia and Denmark energy conservation integrated programs

  20. Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass

    International Nuclear Information System (INIS)

    Cardona Alzate, C.A.; Sanchez Toro, O.J.

    2006-01-01

    Fuel ethanol is considered one of the most important renewable fuels due to the economic and environmental benefits of its use. Lignocellulosic biomass is the most promising feedstock for producing bioethanol due to its global availability and to the energy gain that can be obtained when non-fermentable materials from biomass are used for cogeneration of heat and power. In this work, several process configurations for fuel ethanol production from lignocellulosic biomass were studied through process simulation using Aspen Plus. Some flowsheets considering the possibilities of reaction-reaction integration were taken into account among the studied process routes. The flowsheet variants were analyzed from the energy point of view utilizing as comparison criterion the energy consumption needed to produce 1 L of anhydrous ethanol. Simultaneous saccharification and cofermentation process with water recycling showed the best results accounting an energy consumption of 41.96 MJ/L EtOH. If pervaporation is used as dehydration method instead of azeotropic distillation, further energy savings can be obtained. In addition, energy balance was estimated using the results from the simulation and literature data. A net energy value of 17.65-18.93 MJ/L EtOH was calculated indicating the energy efficiency of the lignocellulosic ethanol

  1. Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Cardona Alzate, C.A. [Department of Chemical Engineering, National University of Colombia at Manizales, Cra. 27 No. 64-60, Manizales (Colombia)]. E-mail: ccardonaal@unal.edu.co; Sanchez Toro, O.J. [Department of Chemical Engineering, National University of Colombia at Manizales, Cra. 27 No. 64-60, Manizales (Colombia); Department of Engineering, University of Caldas, Calle 65 No. 26-10, Manizales (Colombia)

    2006-10-15

    Fuel ethanol is considered one of the most important renewable fuels due to the economic and environmental benefits of its use. Lignocellulosic biomass is the most promising feedstock for producing bioethanol due to its global availability and to the energy gain that can be obtained when non-fermentable materials from biomass are used for cogeneration of heat and power. In this work, several process configurations for fuel ethanol production from lignocellulosic biomass were studied through process simulation using Aspen Plus. Some flowsheets considering the possibilities of reaction-reaction integration were taken into account among the studied process routes. The flowsheet variants were analyzed from the energy point of view utilizing as comparison criterion the energy consumption needed to produce 1 L of anhydrous ethanol. Simultaneous saccharification and cofermentation process with water recycling showed the best results accounting an energy consumption of 41.96 MJ/L EtOH. If pervaporation is used as dehydration method instead of azeotropic distillation, further energy savings can be obtained. In addition, energy balance was estimated using the results from the simulation and literature data. A net energy value of 17.65-18.93 MJ/L EtOH was calculated indicating the energy efficiency of the lignocellulosic ethanol.

  2. RENEWABLE ENERGY, A KEY TO INTEGRATING COMPETITIVE POLICIES WITH ADVANCED ENVIRONMENT PROTECTION STRATEGIES

    Directory of Open Access Journals (Sweden)

    Cinade Lucian Ovidiu

    2011-12-01

    Full Text Available Development of competitive policies and improvement of environment protection strategies are two basic trends of the development of the European Unique Market. Energy, also known as 'industry bread', is basic product and strategic resource, where energy industry plays an obvious role in the economic and social development of any community. Traditional energy production is marred by three major drawbacks: it generates negative externalities by polluting; it is totally in the hands of the producers; hence, prices rise at their will, of fossil fuels such as oil and gas. Present study focuses on electric energy industry, yet bearing over the whole length of the chain producer-to-end-consumer, thus revealed as particularly complex. The question is do alternative energy sources meet the prerequisite of market being competitive meanwhile environment protection being highly observed. We identify limits in point, of the energy market; effects of market liberalization; entry barriers; interchangeability level of energy sources; active forces on the energy market. Competitive rivalry has been expressed as per market micro-economic analysis, based on Michael Porter's 5-forces model. It will thus be noticed that, morphologically, competition evolution depends firstly on the market type. For the time being, the consumer on the energy market stays captive, for various reasons such as: legislation; limits of energy transfer infrastructure; scarcity of resources; resources availability imbalance; no integrative strategy available, of renewable energy resources usage. Energy availability is vital for human society to function. Comparative advantages of renewable energy resources are twofold, as manifested: in terms of economics, i.e. improving competition by substitute products entered at the same time as new producers enter market; and in terms of ecology, by reducing CO2 emissions. As to energy production technology and transfer, the complementary nature will

  3. Performance profiles of major energy producers, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    The energy industry generally and petroleum and natural gas operations in particular are frequently reacting to a variety of unsettling forces. Falling oil prices, economic upswings, currency devaluations, increasingly rigorous environmental quality standards, deregulation of electricity markets, and continued advances in exploration and production technology were among the challenges and opportunities to the industry in 1997. To analyze the extent to which these and other developments have affected energy industry financial and operating performance, strategies, and industry structure, the Energy Information Administration (EIA) maintains the Financial Reporting Systems (FRS). Through Form EIA-28, major US energy companies annually report to the FRS. Financial and operating information is reported by major lines of business, including oil and gas production (upstream), petroleum refining and marketing (downstream), other energy operations, and nonenergy business. Performance Profiles of Major Producers 1997 examines the interplays of energy markets, companies` strategies, and government policies (in 1997 and in historical context) that gave rise to the results given here. The report also analyzes other key aspects of energy company financial performance as seen through the multifaceted lens provided by the FRS data and complementary data for industry overall. 41 figs., 77 tabs.

  4. Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications

    Directory of Open Access Journals (Sweden)

    Julia Marín-Sáez

    2016-07-01

    Full Text Available A building integrated holographic concentrating photovoltaic-thermal system has been optically and energetically simulated. The system has been designed to be superimposed into a solar shading louvre; in this way the concentrating unit takes profit of the solar altitude tracking, which the shading blinds already have, to increase system performance. A dynamic energy simulation has been conducted in two different locations—Sde Boker (Israel and Avignon (France—both with adequate annual irradiances for solar applications, but with different weather and energy demand characteristics. The simulation engine utilized has been TRNSYS, coupled with MATLAB (where the ray-tracing algorithm to simulate the holographic optical performance has been implemented. The concentrator achieves annual mean optical efficiencies of 30.3% for Sde Boker and 43.0% for the case of Avignon. Regarding the energy production, in both locations the thermal energy produced meets almost 100% of the domestic hot water demand as this has been considered a priority in the system control. On the other hand, the space heating demands are covered by a percentage ranging from 15% (Avignon to 20% (Sde Boker. Finally, the electricity produced in both places covers 7.4% of the electrical demand profile for Sde Boker and 9.1% for Avignon.

  5. Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology

    International Nuclear Information System (INIS)

    Ortega-Fernández, Iñigo; Zavattoni, Simone A.; Rodríguez-Aseguinolaza, Javier; D'Aguanno, Bruno; Barbato, Maurizio C.

    2017-01-01

    Highlights: •A packed bed TES system is proposed for heat recovery in CAES technology. •A CFD-based approach has been developed to evaluate the behaviour of the TES unit. •TES system enhancement and improvement alternatives are also demonstrated. •TES performance evaluated according to the first and second law of thermodynamics. -- Abstract: Compressed air energy storage (CAES) represents a very attracting option to grid electric energy storage. Although this technology is mature and well established, its overall electricity-to-electricity cycle efficiency is lower with respect to other alternatives such as pumped hydroelectric energy storage. A meager heat management strategy in the CAES technology is among the main reasons of this gap of efficiency. In current CAES plants, during the compression stage, a large amount of thermal energy is produced and wasted. On the other hand, during the electricity generation stage, an extensive heat supply is required, currently provided by burning natural gas. In this work, the coupling of both CAES stages through a thermal energy storage (TES) unit is introduced as an effective solution to achieve a noticeable increase of the overall CAES cycle efficiency. In this frame, the thermal energy produced in the compression stage is stored in a TES unit for its subsequent deployment during the expansion stage, realizing an Adiabatic-CAES plant. The present study addresses the conceptual design of a TES system based on a packed bed of gravel to be integrated in an Adiabatic-CAES plant. With this objective, a complete thermo-fluid dynamics model has been developed, including the implications derived from the TES operating under variable-pressure conditions. The formulation and treatment of the high pressure conditions were found being particularly relevant issues. Finally, the model provided a detailed performance and efficiency analysis of the TES system under charge/discharge cyclic conditions including a realistic operative

  6. Optimal Scheduling of an Regional Integrated Energy System with Energy Storage Systems for Service Regulation

    Directory of Open Access Journals (Sweden)

    Hengrui Ma

    2018-01-01

    Full Text Available Ancillary services are critical to maintaining the safe and stable operation of power systems that contain a high penetration level of renewable energy resources. As a high-quality regulation resource, the regional integrated energy system (RIES with energy storage system (ESS can effectively adjust the non-negligible frequency offset caused by the renewable energy integration into the power system, and help solve the problem of power system frequency stability. In this paper, the optimization model aiming at regional integrated energy system as a participant in the regulation market based on pay-for-performance is established. Meanwhile YALMIP + CPLEX is used to simulate and analyze the total operating cost under different dispatch modes. This paper uses the actual operation model of the PJM regulation market to guide the optimal allocation of regulation resource in the regional integrated energy system, and provides a balance between the power trading revenue and regulation market revenue in order to achieve the maximum profit.

  7. Wallowa County Integrated Biomass Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Christoffersen, Nils [Wallowa Resources Community Solutions Inc., Wallowa, OR (United States)

    2014-05-02

    The Integrated Biomass Energy Center (IBEC) is an approximately 0.1 MW CHP integrated biorefinery in Northeastern Oregon which will demonstrate and validate small-scale combined heat and power from lignin intermediates/residues. IBEC will be co-located with feedstock suppliers and thermal and power customers for distributed generation. The project was developed by Wallowa Resources Community Solutions Inc.

  8. Efficiency improvement for vehicle powertrains using energy integration techniques

    OpenAIRE

    Dimitrova, Zlatina; Maréchal, François

    2016-01-01

    The main design criteria for the modern sustainable development of vehicle powertrains are the high energy efficiency of the conversion system, the competitive cost and the lowest possible environmental impacts. The need for efficiency improvement of the vehicle energy system induces the search for an innovative methodology during the design process. In this article the energy services for mobility and comfort are integrated. The energy integration of the mobility and the comfort service is a...

  9. Optimized integration of T-DNA in the taxol-producing fungus ...

    African Journals Online (AJOL)

    We previously reported a taxol-producing fungus Pestalotiopsis malicola. There, we described the transformation of the fungus mediated by Agrobacterium tumefaciens. T-DNA carrying the selection marker was transferred into the fungus and randomly integrated into the genome as shown by Southern blotting.

  10. An integrated energy policy for Korea

    International Nuclear Information System (INIS)

    Kim, Tai-Yoo; Kim, Seung-Rae

    1993-01-01

    Economic theory defines a market failure when competitive markets cannot reach an equilibrium maximizing social welfare. One of its most typical examples has proved to be the energy market. Exhaustible energy resources provide the limits to economic growth, at least in the short term. Thus an energy policy for energy importing countries like Korea has been focused on minimizing the negative influences of external energy price shocks to the domestic economy. This study suggests one of the possible directions for an integrated energy policy which seeks to present a flow of policy rules which lead government policy to attain equilibrium, maximizing the national economic benefits by offsetting the market failure

  11. Locally Integrated Energy Sectors supported by renewable network management within municipalities

    International Nuclear Information System (INIS)

    Kostevšek, Anja; Petek, Janez; Čuček, Lidija; Klemeš, Jiří Jaromír; Varbanov, Petar Sabev

    2015-01-01

    The decarbonisation of energy systems is one of the important issues of the present energy policies. One of the ways of achieving this is to focus on local energy systems, thus ensuring as much as possible their heat and power self-sufficiency by applying local renewable resource integration and transformation of the renewable energy. Increasing the share of renewables within the local energy balance could be accomplished by using a variety of approaches. One possibility is combining the Locally Integrated Energy Sectors' concept with the novel management and organisation of a renewables-based network. As a first priority, the proposed comprehensive approach focuses on increasing the energy efficiency of municipal heat and power systems using the Locally Integrated Energy Sectors' concept, which is followed by the integration of renewable energy sources with the establishment of a renewable-based network. The proposed approach is illustrated by a case study of district heating based on wood biomass for the municipality Ormož, Slovenia by integrating various end-users from different sectors. - Highlights: • The paper presents a new approach for accelerated inception of RES in municipalities. • LIES with RES network increases energy efficiency and accelerates RES integration. • A demonstration case of district heating on wood biomass within Ormož was performed.

  12. The regional energy integration: the latin-american experiences

    International Nuclear Information System (INIS)

    2003-01-01

    The ways of the regional economic integrations are not identical and generate different repercussions on the markets and the energy industries evolution. The example of the Latin America proposes many various experiences to evaluate the stakes and the limits of each regional integrations. These limits lead to solution researches including indisputable convergencies. The first part of this document presents the genesis of these regional economic integrations experiences in Latina America, to study in the second part the energy consequences of the liberal ALENA and of the more political MERCOSUR. (A.L.B.)

  13. Promotion of electricity produced from renewable energy sources - Strategic objective of the Romania energy policy

    International Nuclear Information System (INIS)

    Sandulescu, Alexandru; Stanciulescu, Georgeta; Jisa, Mihaela; Stanciu, Nadina

    2006-01-01

    The paper presents different types of support schemes for promoting electricity produced from renewable energy sources in some countries from European Union and details concerning the primary and secondary legislation developed in Romania in the field of promotion of electricity produced from renewable energy sources, making a rehearse of the acts issued. Romania has a clear regulatory framework in the field of promoting E-RES, the green certificates market becoming operational from November 2005, when the first green certificates transaction session organised by SC OPCOM SA took place. With hydro energy being exception from the rule, the Romanian RES potential is almost unused, existing the possibility for promotion some efficient investments in units which produce E-RES, turning to good account to the best emplacements. Although the achievements in using RES are still modest, taking into consideration the attention of numerous investors and the way that the support scheme worked until now, with advantages for the existing E-RES producers, it is expected an acceleration of the rhythm of appearance of new investments. In order to actuate the investors attention, a stronger involvement of the local authorities is necessary, for identifying and promoting the most efficient RES using projects

  14. Excess electricity diagrams and the integration of renewable energy

    DEFF Research Database (Denmark)

    Lund, Henrik

    2004-01-01

    The article presents a methodology of showing the rate of integration off specific renewable energy sources into the electricity supply system.......The article presents a methodology of showing the rate of integration off specific renewable energy sources into the electricity supply system....

  15. Energy demand analysis via small scale hydroponic systems in suburban areas - An integrated energy-food nexus solution.

    Science.gov (United States)

    Xydis, George A; Liaros, Stelios; Botsis, Konstantinos

    2017-09-01

    The study is a qualitative approach and looks into new ways for the effective energy management of a wind farm (WF) operation in a suburban or near-urban environment in order the generated electricity to be utilised for hydroponic farming purposes as well. Since soilless hydroponic indoor systems gain more and more attention one basic goal, among others, is to take advantage of this not typical electricity demand and by managing it, offering to the grid a less fluctuating electricity generation signal. In this paper, a hybrid business model is presented where the Distributed Energy Resources (DER) producer is participating in the electricity markets under competitive processes (spot market, real-time markets etc.) and at the same time acts as a retailer offering - based on the demand - to the hydroponic units for their mass deployment in an area, putting forward an integrated energy-food nexus approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Reduction of environmental and energy footprint of microalgal biodiesel production through material and energy integration.

    Science.gov (United States)

    Chowdhury, Raja; Viamajala, Sridhar; Gerlach, Robin

    2012-03-01

    The life cycle impacts were assessed for an integrated microalgal biodiesel production system that facilitates energy- and nutrient- recovery through anaerobic digestion, and utilizes glycerol generated within the facility for additional heterotrophic biodiesel production. Results show that when external fossil energy inputs are lowered through process integration, the energy demand, global warming potential (GWP), and process water demand decrease significantly and become less sensitive to algal lipid content. When substitution allocation is used to assign additional credit for avoidance of fossil energy use (through utilization of recycled nutrients and biogas), GWP and water demand can, in fact, increase with increase in lipid content. Relative to stand-alone algal biofuel facilities, energy demand can be lowered by 3-14 GJ per ton of biodiesel through process integration. GWP of biodiesel from the integrated system can be lowered by up to 71% compared to petroleum fuel. Evaporative water loss was the primary water demand driver. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Conference on wind energy and grid integration

    International Nuclear Information System (INIS)

    Laffaille, Didier; Boemer, Jens; Fraisse, Jean-Luc; Mignon, Herve; Gonot, Jean-Pierre; Rohrig, Kurt; Lange, Matthias; Bagusche, Daniel; Wagner, Stefan; Schiel, Johannes

    2008-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the grid integration of wind farms. In the framework of this French-German exchange of experience, more than 80 participants exchanged views on the evolutions of tariffs and licensing procedures, and on grid capacity improvements and production forecasts. This document brings together the available presentations (slides) made during this event: 1 - The necessary evolution of billing and procedures for wind turbines connection to the grid in France (Didier Laffaille); 2 - Improvement of wind turbines integration to the grid in the framework of the EEG 2009 law (Jens Boemer); 3 - Decentralized power generation on the French power grids - 15, 20 kV and low voltage (Jean-Luc Fraisse); 4 - GOTTESWIND? Solution for the future: towards a grid evolution (Herve Mignon); 5 - Production forecasts in Germany - State-of-the-art and challenges for the grid exploitation (Kurt Rohrig); 6 - High-voltage lines capacity evaluation in meteorological situations with high wind energy production (Matthias Lange); 7 - The IPES project for the integration of wind energy production in the exploitation of the French power system (Jean-Pierre Gonot); 8 - Experience feedback from a wind turbine manufacturer in France and in Germany (Daniel Bagusche); 9 - Solutions for grid security improvement and capacity enhancement: cooperation between grid and power plant operators (Stefan Wagner); 10 - Open questions on wind energy integration to French and German grids (Johannes Schiel)

  18. Technology innovation in an integrated energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Inst., Edmonton, AB (Canada)

    2006-07-01

    A discussion on technology innovation in an integrated energy economy was presented. The mission, mandate and strategy of the Alberta Research Institute was first presented, followed by a discussion on oil supply needs based on historic demand. The presentation then addressed what might happen as oil demand and supply peak. A comparison of conventional versus unconventional resources was included along with a chart illustrating Alberta's contribution to total global reserves. Other topics addressed in the presentation in chart format included: natural gas requirements and natural gas use in oil sands; marketable gas production and the number of producing gas wells; Alberta's natural gas situation; and net United States imports of natural gas. Options for reducing natural gas consumption in oil sand production processes were also identified. These included steam assisted gravity drainage; solvent processes, electrical heating, combustion, nuclear, geothermal, and gasification processes. Advantages and disadvantages of replacing natural gas through gasification were presented. Last, the presentation provided an unconventional gas technology roadmap and discussed an innovative energy technology program. It was concluded that there are no clear cut options for replacing the huge amount of natural gas needed in the expanding oil sands sector. tabs., figs.

  19. Political economy of energy in Europe. Forces of integration and fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Fermann, Gunnar (ed.)

    2009-07-01

    The political economy of energy in Europe is defined by a large majority of states being heavily dependent upon the import of energy from a limited number of energy-producing countries located mainly outside Europe or the EU, and the relative failure of the EU to develop strong common energy policies capable of effectively counteracting the sensitivities and vulnerabilities arising from oil and gas import dependence. The eleven contributions to the Political Economy of Energy in Europe investigate unique research questions, engage in different lines of reasoning, and apply diverse sets of data fitting their particular purposes. However, the chapters of the present anthology share several common denominators defining the volume as a coherent whole: First, energy is part of the fabric of modern society and thus qualifies as a political issue of the first order. Second, political and economical aspects of the European energy condition need to be analysed in conjunction. Finally, issues of energy security need to be addressed at different levels and from several angles in order to better understand the interaction between the contradictory dynamics of integration and fragmentation pervading the political economy of energy in Europe. This volume elaborates on several lectures given at the conference ''Political Economy of Energy in Europe'', October 12-13, 2007, arranged by E.ON Ruhrgas scholarship program for Political Science at Oslo Militaere Samfund, Norway. (orig.)

  20. Thermodynamic performance assessment of a novel environmentally-benign solar energy based integrated system

    International Nuclear Information System (INIS)

    Yuksel, Yunus Emre; Ozturk, Murat; Dincer, Ibrahim

    2016-01-01

    Highlights: • Development of a novel solar energy based system for multigenaration applications. • Evaluation of the exergy efficiency and destruction rate in each system component. • Investigation of the varying operating conditions on the system performance. • Evaluation of complete parametric studies and performance analysis of the system. - Abstract: In this paper, a novel solar energy based multigeneration system for producing electricity, hydrogen, hot water, heating and cooling is presented and analyzed thermodynamically for potential applications. The energy and exergy analyses are conducted for entire system and its sub-systems, which are a parabolic trough collector system, a double-stage organic Rankine cycle, a proton exchange membrane electrolyzer, a PEM fuel cycle and a quadruple effect absorption cooling system. The parametric studies are performed in order to indicate the impacts of some key indicators on the integrated system performance. These analyses are simulated by using the Engineering Equation Solver software. The results show that the increase in ambient temperature increases the exergetic coefficient performance of the Quadruple Effect Absorption Cooling System. In addition, the increase in solar intensity, temperature of absorber pipes inner surface and concentration of ammonia in working fluid mixture has the positive effect on produced electricity from the expanders and turbine, and hydrogen from the PEM electrolyzer. According to exergy analyses, the largest exergy destruction rates are obtained in the parabolic trough collector, PEM fuel cell and turbine. Therefore, any improvements in these components would lead to a better efficiency of the integrated system.

  1. Producing titanium-niobium alloy by high energy beam

    Energy Technology Data Exchange (ETDEWEB)

    Sharkeev, Yu. P., E-mail: sharkeev@ispms.tsc.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4 Akademicheski Prosp., Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Golkovski, M. G., E-mail: golkoski@mail.ru [Budker Institute of Nuclear Physics, 11 Akademika Lavrentiev Prosp., Novosibirsk, 630090 (Russian Federation); Glukhov, I. A., E-mail: gia@ispms.tsc.ru; Eroshenko, A. Yu., E-mail: eroshenko@ispms.tsc.ru; Fortuna, S. V., E-mail: s-fortuna@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4 Akademicheski Prosp., Tomsk, 634055 (Russian Federation); Bataev, V. A., E-mail: bataev@vadm.ustu.ru [Novosibirsk State Technical University, 20 K. Marx Prosp., Novosibirsk, 630073 (Russian Federation)

    2016-01-15

    The research is involved in producing a Ti-Nb alloy surface layer on titanium substrate by high energy beam method, as well as in examining their structures and mechanical properties. Applying electron-beam cladding it was possible to produce a Ti-Nb alloy surface layer of several millimeters, where the niobium concentration was up to 40% at. and the structure itself could be related to martensite quenching structure. At the same time, a significant microhardness increase of 3200-3400 MPa was observed, which, in its turn, is connected with the formation of martensite structure. Cladding material of Ti-Nb composition could be the source in producing alloys of homogeneous microhardness and desired concentration of alloying niobium element.

  2. 78 FR 43870 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project; Preliminary Staff...

    Science.gov (United States)

    2013-07-22

    ... DEPARTMENT OF ENERGY Notice of Availability Hydrogen Energy California's Integrated Gasification... Energy (DOE) announces the availability of the Hydrogen Energy California's Integrated Gasification... potential environmental impacts associated with the Hydrogen Energy California's (HECA) Integrated...

  3. Income tax credits and incentives available for producing energy from biomass

    International Nuclear Information System (INIS)

    Sanderson, G.A.

    1993-01-01

    In the 1970's the US became interested in the development of energy from biomass and other alternative sources. While this interest was stimulated primarily by the oil embargoes of the 1970's, the need for environmentally friendly alternative fuels was also enhanced by the Clean Water Act and the Clean Air Act, two prominent pieces of environmental legislation. As a result, Congress created several tax benefits and subsidies for the production of energy for biomass. Congress enacted biomass energy incentives in 1978 with the creation of excise tax exemptions for alcohol fuels, in 1980 with the enactment of the IRC section 29 nonconventional fuel credit provisions and the IRC section 40 alcohol fuel credits, and recently with the addition of favorable biomass energy provisions as part of the Comprehensive National energy Policy Act of 1992. This article focuses on the following specific tax credits, tax benefits and subsidies for biomass energy: (1) IRC section 29 credit for producing gas from biomass, (2) IRC section 45 credit for producing electricity from biomass, (3) Incentive payments for electricity produced from biomass, (4) Excise tax exemptions for alcohol fuels, (5) IRC section 40 alcohol fuels credits, and (6) IRC section 179A special deduction for alcohol fuels property

  4. Department of Energy's Virtual Lab Infrastructure for Integrated Earth System Science Data

    Science.gov (United States)

    Williams, D. N.; Palanisamy, G.; Shipman, G.; Boden, T.; Voyles, J.

    2014-12-01

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) produces a diversity of data, information, software, and model codes across its research and informatics programs and facilities. This information includes raw and reduced observational and instrumentation data, model codes, model-generated results, and integrated data products. Currently, most of this data and information are prepared and shared for program specific activities, corresponding to CESD organization research. A major challenge facing BER CESD is how best to inventory, integrate, and deliver these vast and diverse resources for the purpose of accelerating Earth system science research. This talk provides a concept for a CESD Integrated Data Ecosystem and an initial roadmap for its implementation to address this integration challenge in the "Big Data" domain. Towards this end, a new BER Virtual Laboratory Infrastructure will be presented, which will include services and software connecting the heterogeneous CESD data holdings, and constructed with open source software based on industry standards, protocols, and state-of-the-art technology.

  5. Integrated Energy System with Beneficial Carbon Dioxide (CO2) Use - Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaolei; Rink, Nancy T

    2011-04-29

    This report presents an integrated energy system that combines the production of substitute natural gas through coal hydrogasification with an algae process for beneficial carbon dioxide (CO2) use and biofuel production (funded under Department of Energy (DOE) contract DE-FE0001099). The project planned to develop, test, operate and evaluate a 2 ton-per-day coal hydrogasification plant and 25-acre algae farm at the Arizona Public Service (APS) 1000 Megawatt (MW) Cholla coal-fired power plant in Joseph City, Arizona. Conceptual design of the integrated system was undertaken with APS partners Air Liquide (AL) and Parsons. The process engineering was separated into five major areas: flue gas preparation and CO2 delivery, algae farming, water management, hydrogasification, and biofuel production. The process flow diagrams, energy and material balances, and preliminary major equipment needs for each major area were prepared to reflect integrated process considerations and site infrastructure design basis. The total project also included research and development on a bench-scale hydrogasifier, one-dimensional (1-D) kinetic-model simulation, extensive algae stressing, oil extraction, lipid analysis and a half-acre algae farm demonstration at APS?s Redhawk testing facility. During the project, a two-acre algae testing facility with a half-acre algae cultivation area was built at the APS Redhawk 1000 MW natural gas combined cycle power plant located 55 miles west of Phoenix. The test site integrated flue gas delivery, CO2 capture and distribution, algae cultivation, algae nursery, algae harvesting, dewatering and onsite storage as well as water treatment. The site environmental, engineering, and biological parameters for the cultivators were monitored remotely. Direct biodiesel production from biomass through an acid-catalyzed transesterification reaction and a supercritical methanol transesterification reaction were evaluated. The highest oil-to-biodiesel conversion of 79

  6. Functional integration of vertical flight path and speed control using energy principles

    Science.gov (United States)

    Lambregts, A. A.

    1984-01-01

    A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.

  7. A review of computer tools for analysing the integration of renewable energy into various energy systems

    DEFF Research Database (Denmark)

    Connolly, D.; Lund, Henrik; Mathiesen, Brian Vad

    2010-01-01

    to integrating renewable energy, but instead the ‘ideal’ energy tool is highly dependent on the specific objectives that must be fulfilled. The typical applications for the 37 tools reviewed (from analysing single-building systems to national energy-systems), combined with numerous other factors......This paper includes a review of the different computer tools that can be used to analyse the integration of renewable energy. Initially 68 tools were considered, but 37 were included in the final analysis which was carried out in collaboration with the tool developers or recommended points...... of contact. The results in this paper provide the information necessary to identify a suitable energy tool for analysing the integration of renewable energy into various energy-systems under different objectives. It is evident from this paper that there is no energy tool that addresses all issues related...

  8. 77 FR 41481 - Integration of Variable Energy Resources

    Science.gov (United States)

    2012-07-13

    ... point to the importance of the Proposed Rule in removing market barriers to VER integration. NextEra... Commission's initiative to remove market and operational barriers to VERs integration and eliminate undue... Commission 18 CFR Part 35 Integration of Variable Energy Resources; Final Rule #0;#0;Federal Register / Vol...

  9. Towards integrated solutions for water, energy, and land using an integrated nexus modeling framework

    Science.gov (United States)

    Wada, Y.

    2017-12-01

    Humanity has already reached or even exceeded the Earth's carrying capacity. Growing needs for food, energy and water will only exacerbate existing challenges over the next decades. Consequently, the acceptance of "business as usual" is eroding and we are being challenged to adopt new, more integrated, and more inclusive development pathways that avoid dangerous interference with the local environment and global planetary boundaries. This challenge is embodied in the United Nation's Sustainable Development Goals (SDGs), which endeavor to set a global agenda for moving towards more sustainable development strategies. To improve and sustain human welfare, it is critical that access to modern, reliable, and affordable water, energy, and food is expanded and maintained. The Integrated Solutions for Water, Energy, and Land (IS-WEL) project has been launched by IIASA, together with the Global Environment Facility (GEF) and the United Nations Industrial Development Organization (UNIDO). This project focuses on the water-energy-land nexus in the context of other major global challenges such as urbanization, environmental degradation, and equitable and sustainable futures. It develops a consistent framework for looking at the water-energy-land nexus and identify strategies for achieving the needed transformational outcomes through an advanced assessment framework. A multi-scalar approach are being developed that aims to combine global and regional integrated assessment tools with local stakeholder knowledge in order to identify robust solutions to energy, water, food, and ecosystem security in selected regions of the world. These are regions facing multiple energy, water and land use challenges and rapid demographic and economic changes, and are hardest hit by increasing climate variability and change. This project combines the global integrated assessment model (MESSAGE) with the global land (GLOBIOM) and water (Community Water Model) model respectively, and the integrated

  10. Conference on renewable energies integration to power grids

    International Nuclear Information System (INIS)

    Laffaille, Didier; Bischoff, Torsten; Merkel, Marcus; Rohrig, Kurt; Glatigny, Alain; Quitmann, Eckard; Lehec, Guillaume; Teirlynck, Thierry; Stahl, Oliver

    2014-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on renewable energies integration to power grids. In the framework of this French-German exchange of experience, more than 150 participants exchanged views on the perspectives and possible solutions of this integration in order to warrant the security of supplies and the grid stability in a context of increasing injection and decentralization of renewable power sources. This document brings together the available presentations (slides) made during this event: 1 - French distribution grids - Overview and perspectives (Didier Laffaille); 2 - Distribution Grids in Germany - Overview and Perspective (Torsten Bischoff); 3 - Integration of renewable energies into distribution grids - a case example from Germany (Marcus Merkel); 4 - Regeneratives Kombikraftwerk Deutschland: System Services with 100 % Renewable energies (Kurt Rohrig); 5 - Overview of the different grid instrumentation-control and automation tools (Alain Glatigny); 6 - Which Ancillary Services needs the Power System? The contribution from Wind Power Plants (Eckard Quitmann); 7 - The Flexibility Aggregator - the example of the GreenLys Project (Guillaume Lehec); 8 - Energy Pool - Providing flexibility to the electric system. Consumption cut-off solutions in France (Thierry Teirlynck); 9 - Demand Response experiences from Germany (Oliver Stahl)

  11. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    Science.gov (United States)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  12. European conferences. Integration of renewable energies in buildings; Conferences europeennes. Integration des energies renouvelables dans le batiment

    Energy Technology Data Exchange (ETDEWEB)

    Bal, J.L. [ADEME, Agence de l' Environnement et de la Maitrise de l' Energie, 75 - Paris (France); Letz, T. [Asder, 73 - Saint Alban Leysse (France); Tuille, F. [Observ' er, 75 - Paris (France)] [and others

    2001-07-01

    This document comprises 2 parts. First part is a detailed program of the exhibition with a press dossier which presents the different topics discussed during conferences and round tables, the market of renewable energies, and a list of agencies and companies involved in renewable energies development and products. The second part is the abstracts of the lectures presented during the European conferences on the integration of renewable energies in buildings (solar-thermal and photovoltaic systems, wood fuel and biomass). (J.S.)

  13. Integrated light in direct excitation and energy transfer luminescence

    OpenAIRE

    Chimczak, Eugeniusz

    2007-01-01

    Integrated light in direct excitation and energy transfer luminescence has been investigated. In the investigations reported here, monomolecular centers were taken into account. It was found that the integrated light is equal to the product of generation rate and time of duration of excitation pulse for both direct excitation and energy transfer luminescence.

  14. Energy and climate impacts of producing synthetic hydrocarbon fuels from CO(2).

    Science.gov (United States)

    van der Giesen, Coen; Kleijn, René; Kramer, Gert Jan

    2014-06-17

    Within the context of carbon dioxide (CO2) utilization there is an increasing interest in using CO2 as a resource to produce sustainable liquid hydrocarbon fuels. When these fuels are produced by solely using solar energy they are labeled as solar fuels. In the recent discourse on solar fuels intuitive arguments are used to support the prospects of these fuels. This paper takes a quantitative approach to investigate some of the claims made in this discussion. We analyze the life cycle performance of various classes of solar fuel processes using different primary energy and CO2 sources. We compare their efficacy with respect to carbon mitigation with ubiquitous fossil-based fuels and conclude that producing liquid hydrocarbon fuels starting from CO2 by using existing technologies requires much more energy than existing fuels. An improvement in life cycle CO2 emissions is only found when solar energy and atmospheric CO2 are used. Producing fuels from CO2 is a very long-term niche at best, not the panacea suggested in the recent public discourse.

  15. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor.

    Science.gov (United States)

    Xia, Xinhui; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Zhang, Yongqi; Tu, Jiangping; Zhang, Hua; Fan, Hong Jin

    2012-01-01

    Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO(2)/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseudocapacitance is clearly demonstrated, and the charge/discharge is indicated by reversible color changes (photochromism). In such an integrated device, the photogenerated electrons are utilized for H(2) generation and holes for pseudocapacitive charging, so that both the reductive and oxidative energies are captured and converted. Specific capacitances of 482 F g(-1) at 0.5 A g(-1) and 287 F g(-1) at 1 A g(-1) are obtained with TiO(2)/Ni(OH)(2) nanorod arrays. This study provides a new research strategy for integrated pseudocapacitor and solar energy application.

  16. Energy efficiency through integrated environmental management.

    Science.gov (United States)

    Benromdhane, Souad Ahmed

    2015-05-01

    Integrated environmental management became an economic necessity after industrial development proved to be unsustainable without consideration of environmental direct and indirect impacts. Energy dependency and air pollution along with climate change grew into major challenges facing developed and developing countries alike. Thus, a new global market structure emerged and changed the way we do trade. The search intensified for alternatives to petroleum. However, scientists, policy makers, and environmental activists agreed to focus on strategic conservation and optimization of energy use. Environmental concerns will remain partially unaddressed with the current pace of consumption because greenhouse gas emissions will continue to rise with economic growth. This paper discusses energy efficiency, steady integration of alternative sources, and increased use of best available technologies. Energy criteria developed for environmental labeling certification are presented. Our intention is to encourage manufacturers and service providers to supply consumers with less polluting and energy-consuming goods and services, inform consumers of the environmental and energy impacts, and thereby instill sustainable and responsible consumption. As several programs were initiated in developed countries, environmental labeling requirements created barriers to many exports manufactured in developing countries, affecting current world trade and putting more pressure on countries to meet those requirements. Defining an institutional and legal framework of environmental labeling is a key challenge in implementing such programs for critical economic sectors like tourism, textiles, and food production where energy needs are the most important aspect to control. A case study of Tunisia and its experience with eco-labeling is presented.

  17. An Integrated Hybrid Energy Harvester for Autonomous Wireless Sensor Network Nodes

    Directory of Open Access Journals (Sweden)

    Mukter Zaman

    2014-01-01

    Full Text Available Profiling environmental parameter using a large number of spatially distributed wireless sensor network (WSN NODEs is an extensive illustration of advanced modern technologies, but high power requirement for WSN NODEs limits the widespread deployment of these technologies. Currently, WSN NODEs are extensively powered up using batteries, but the battery has limitation of lifetime, power density, and environmental concerns. To overcome this issue, energy harvester (EH is developed and presented in this paper. Solar-based EH has been identified as the most viable source of energy to be harvested for autonomous WSN NODEs. Besides, a novel chemical-based EH is reported as the potential secondary source for harvesting energy because of its uninterrupted availability. By integrating both solar-based EH and chemical-based EH, a hybrid energy harvester (HEH is developed to power up WSN NODEs. Experimental results from the real-time deployment shows that, besides supporting the daily operation of WSN NODE and Router, the developed HEH is capable of producing a surplus of 971 mA·hr equivalent energy to be stored inside the storage for NODE and 528.24 mA·hr equivalent energy for Router, which is significantly enough for perpetual operation of autonomous WSN NODEs used in environmental parameter profiling.

  18. Integrated solar capacitors for energy conversion and storage

    Institute of Scientific and Technical Information of China (English)

    Ruiyuan Liu; Yuqiang Liu; Haiyang Zou; Tao Song; Baoquan Sun

    2017-01-01

    Solar energy is one of the most popular clean energy sources and is a promising alternative to fulfill the increasing energy demands of modern society.Solar cells have long been under intensive research attention for harvesting energy from sunlight with a high power-conversion efficiency and low cost.However,the power outputs of photovoltaic devices suffer from fluctuations due to the intermittent instinct of the solar radiation.Integrating solar cells and energystorage devices as self-powering systems may solve this problem through the simultaneous storage of the electricity and manipulation of the energy output.This review summarizes the research progress in the integration of new-generation solar cells with supercapacitors,with emphasis on the structures,materials,performance,and new design features.The current challenges and future prospects are discussed with the aim of expanding research and development in this field.

  19. Smart thermal grid with integration of distributed and centralized solar energy systems

    International Nuclear Information System (INIS)

    Yang, Libing; Entchev, Evgueniy; Rosato, Antonio; Sibilio, Sergio

    2017-01-01

    Smart thermal grids (STGs) are able to perform the same function as classical grids, but are developed in order to make better use of distributed, possibly intermittent, thermal energy resources and to provide the required energy when needed through efficient resources utilization and intelligent management. District heating (DH) plays a significant role in the implementation of future smart energy systems. To fulfil its role, DH technologies must be further developed to integrate renewable resources, create low-temperature networks, and consequently to make existing or new DH networks ready for integration into future STGs. Solar heating is a promising option for low-temperature DH systems. Thermal energy storage (TES) can make the availability of the energy supply match the demand. An integration of centralized seasonal and distributed short-term thermal storages would facilitate an efficient recovery of the solar energy. This study, through modelling and simulation, investigates the impacts of such integration on the overall performance of a community-level solar DH system. The performance analysis results show that the solar DH system with integration of distributed and centralized seasonal TESs improves system overall efficiency, and reduces DH network heat losses, primary energy consumption and greenhouse gas emissions, in comparison to the one without integration. - Highlights: • STG should be designed to store energy in the most efficient way at the most effective location. • Integration of centralized seasonal and distributed TESs in a solar DH system is proposed. • Performance of such integrated solar DH system is evaluated and compared to the one without. • The integration results in reduction of primary energy consumption and GHG emission. • The integration improves the overall efficiency of the total solar energy system.

  20. Potential of photosynthetically produced organic matter as an energy feedstock. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spedding, C.R.W.; Walsingham, J.M.; McDougall, V.D.; Shiels, L.A.; Carruthers, S.P.

    1982-01-01

    The following aspects of biomass as an energy source are discussed: fuel supplies, land resources, sources of biomass for fuel, utilization processes, energy cost of producing energy, and potential energy savings. Included in an appendix are fossil fuel energy budgets for crops grown in the United Kingdom.

  1. NEMS integrating module documentation report

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-14

    The National Energy Modeling System (NEMS) is a computer modeling system that produces a general equilibrium solution for energy supply and demand in the US energy markets. The model achieves a supply and demand balance in the end-use demand regions, defined as the nine Census Divisions, by solving for the prices of each energy type such that the quantities producers are willing to supply equal the quantities consumers wish to consume. The system reflects market economics, industry structure, and energy policies and regulations that influence market behavior. The NEMS Integrating Module is the central integrating component of a complex modeling system. As such, a thorough understanding of its role in the modeling process can only be achieved by placing it in the proper context with respect to the other modules. To that end, this document provides an overview of the complete NEMS model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

  2. Toward semantic interoperability of energy using and producing appliances in residential environments

    NARCIS (Netherlands)

    Hartog, F.T.H. den; Daniele, L.M.; Roes, J.B.M.

    2015-01-01

    About two thirds of the energy consumed in buildings originates household appliances. Nowadays, appliances are often intelligent and networked devices that form complete energy consuming, producing, and managing systems. Reducing energy is therefore a matter of managing and optimizing the energy

  3. Facilitating energy transition through energy commons : An application of socio-ecological systems framework for integrated community energy systems

    NARCIS (Netherlands)

    Acosta, Cristina; Ortega, Mariana; Bunsen, Till; Koirala, B.P.; Ghorbani, A.

    2018-01-01

    Integrated Community Energy Systems (ICES) are an emerging local energy system focusing on the collective use of distributed energy resources (DER). These socio-technical systems (STSs) have a high potential to advance the transition towards socially inclusive, environmentally-friendly energy

  4. Facilitating energy transition through energy commons : An application of socio-ecological systems framework for integrated community energy systems

    NARCIS (Netherlands)

    Acosta, Cristina; Ortega, Mariana; Bunsen, Till; Koirala, Binod Prasad; Ghorbani, Amineh

    2018-01-01

    Integrated Community Energy Systems (ICES) are an emerging local energy system focusing on the collective use of distributed energy resources (DER). These socio-technical systems (STSs) have a high potential to advance the transition towards socially inclusive, environmentally-friendly energy

  5. Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems

    KAUST Repository

    Ghaffour, Noreddine

    2015-01-01

    Despite the tremendous improvements in conventional desalination technologies, its wide use is still limited due primarily to high energy requirements which are currently met with expensive fossil fuels. The use of alternative energy sources is essential to meet the growing demand for water desalination. In the last few decades a lot of effort has being directed in the use of different renewable energy (RE) sources to run desalination processes. However, the expansion of these efforts towards larger scale plants is hampered by several techno-economic challenges. Several medium-scale RE-driven desalination plants have been installed worldwide. Nevertheless, most of these plants are connected to the electrical grid to assure a continuous energy supply for stable operation. Furthermore, RE is mostly used to produce electric power which can be used to run desalination systems. This review paper focuses on an integrated approach in using RE-driven with an emphasis on solar and geothermal desalination technologies. Innovative and sustainable desalination processes which are suitable for integrated RE systems are presented. An assessment of the benefits of these technologies and their limitations are also discussed.

  6. Energy implications of integrated solid waste management systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  7. Sizing of integrated energy systems in rural areas; Dimensionamento de sistemas integrados de energia em areas rurais

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Carlos Eduardo Camargo [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil). Centro de Ciencias Exatas e Tecnologicas], e-mail: cecn@correios.net.br; Zuern, Hans Helmut [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Energia Eletrica], e-mail: hans@labspot.ufsc.br

    2004-07-01

    The purpose of this work was to develop a new model for sizing integrated energy systems in rural areas, based on simulation techniques and linear programming, producing a system with minimum cost and high reliability level. The used reliability level was the loss of power supply probability (LPSP), for periods of consecutive hours. With the developed model, many simulations are accomplished with the parameters and sizing variables, making possible the analysis of different scenarios for the optimized energy systems. (author)

  8. Technical and Economic Potential of Distributed Energy Storages for the Integration of Renewable Energy

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Trier, Daniel; Hansen, Kenneth

    Very high penetration of fluctuating renewable energy sources can lead to new challenges in balancing energy supply and demand in future energy systems. This work, carried out as a part of Annex 28 of the IEA ECES programme, addresses this. The aim of the study is to identify which role decentral...... indicate that sector coupling along with an intelligent choice of distributed energy storage technologies can enable the integration of large shares of fluctuating renewable energy in an energy efficient and cost-effective way.......Very high penetration of fluctuating renewable energy sources can lead to new challenges in balancing energy supply and demand in future energy systems. This work, carried out as a part of Annex 28 of the IEA ECES programme, addresses this. The aim of the study is to identify which role...... decentralised energy storages (DES) should play in integrating fluctuating renewable energy sources. The technical and economic potential for DES solutions is quantified using energy system modelling, and it is identified which DES technologies have the largest total (technical and economic) potential. For this...

  9. Dynamic management of integrated residential energy systems

    Science.gov (United States)

    Muratori, Matteo

    This study combines principles of energy systems engineering and statistics to develop integrated models of residential energy use in the United States, to include residential recharging of electric vehicles. These models can be used by government, policymakers, and the utility industry to provide answers and guidance regarding the future of the U.S. energy system. Currently, electric power generation must match the total demand at each instant, following seasonal patterns and instantaneous fluctuations. Thus, one of the biggest drivers of costs and capacity requirement is the electricity demand that occurs during peak periods. These peak periods require utility companies to maintain operational capacity that often is underutilized, outdated, expensive, and inefficient. In light of this, flattening the demand curve has long been recognized as an effective way of cutting the cost of producing electricity and increasing overall efficiency. The problem is exacerbated by expected widespread adoption of non-dispatchable renewable power generation. The intermittent nature of renewable resources and their non-dispatchability substantially limit the ability of electric power generation of adapting to the fluctuating demand. Smart grid technologies and demand response programs are proposed as a technical solution to make the electric power demand more flexible and able to adapt to power generation. Residential demand response programs offer different incentives and benefits to consumers in response to their flexibility in the timing of their electricity consumption. Understanding interactions between new and existing energy technologies, and policy impacts therein, is key to driving sustainable energy use and economic growth. Comprehensive and accurate models of the next-generation power system allow for understanding the effects of new energy technologies on the power system infrastructure, and can be used to guide policy, technology, and economic decisions. This

  10. Integration of renewable energies into the power supply system; Integration erneuerbarer Energien in das Stromversorgungssystem

    Energy Technology Data Exchange (ETDEWEB)

    Neubarth, Juergen [e3 consult, Innsbruck (Austria)

    2011-08-15

    In contrast to the record breaking speed with which the German government presented its new energy concept in response to the Fukushima reactor disaster, the practical task of transforming our energy supply system will take decades. One of the greatest challenges involved in the energy turnaround will be that of integrating renewable energies into the power supply system. A holistic analysis and assessment of all aspects involved in this is therefore of utmost importance. Under the focal topic of its new publication ''Energie fuer Deutschland 2011'', Weltenergierat Deutschland e.V. presents a detailed summary of this challenge, thus providing a basis for further discussion. It shows that efficient integration of renewable energies must necessarily involve a combination of systems engineering and organisational measures.

  11. Southern Africa’s Water–Energy Nexus: Towards Regional Integration and Development

    Directory of Open Access Journals (Sweden)

    Tafadzwanashe Mabhaudhi

    2016-06-01

    Full Text Available The Southern African Development Community’s (SADC water and energy sectors are under increasing pressure due to population growth and agricultural and industrial development. Climate change is also negatively impacting on the region’s water and energy resources. As the majority of SADC’s population lives in poverty, regional development and integration are underpinned by water and energy security as the watercourses in the region are transboundary in nature. This paper reviews the region’s water and energy resources and recommends policies based on the water–energy nexus approach. This is achieved by reviewing literature on water and energy resources as well as policy issues. Water resources governance provides a strong case to create a water–energy nexus platform to support regional planning and integration as SADC countries share similar climatic and hydrological conditions. However, there has been a gap between water and energy sector planning in terms of policy alignment and technical convergence. These challenges hinder national policies on delivering economic and social development goals, as well as constraining the regional goal of greater integration. Regional objectives on sustainable energy and access to clean water for all can only be achieved through the recognition of the water–energy nexus, championed in an integrated and sustainable manner. A coordinated regional water–energy nexus approach stimulates economic growth, alleviates poverty and reduces high unemployment rates. The shared nature of water and energy resources requires far more transboundary water–energy nexus studies to be done in the context of regional integration and policy formulation.

  12. Carbon dioxide from integrated biomass energy systems - examples from case studies in USA

    International Nuclear Information System (INIS)

    Boman, U.

    1996-04-01

    This report is a result of a work by Vattenfall and Electric Power Research Institute (EPRI) to study a number of integrated biomass energy systems. The emphasis of this paper will be on the energy systems of the projects in Minnesota and New York. By introducing the dedicated feedstock supply system (DFSS), the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved, and a significant amount of energy will be produced, compared to an ordinary farm crop. Although the conversion of biomass to electricity in itself does not emit more CO 2 than is captured by the biomass through photosynthesis, there will be some CO 2 -emissions from the DFSS. External energy is required for the production of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO 2 and other greenhouse gases are emitted. But, by utilizing fossil fuels as external input fuels for production of biomass, we would get about 10-15 times more electric energy per unit fossil fuel, than we would get if the fossil fuel was utilized in a power directly. Compared to traditional coal based electricity production, the CO 2 -emissions are in most cases reduced significantly. But the reduction rate is related to the process and the whole integrated system. The reduction could possibly be increased further, by introducing more efficient methods in farming, transportation, and handling, and by selecting the best methods or technologies for conversion of biomass fuel to electricity. 25 refs, 8 figs, 8 tabs

  13. Ontology based integration of heterogeneous structures in the energy industry; Ontologiebasierte Integration heterogener Standards in der Energiewirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Uslar, Mathias

    2010-07-01

    Today, utilities face a constant change to their business which is mainly driven by two factors. On the one hand, resources like oil and charcoal which deliver most of the energy for producing electricity become more and more scarce and, therefore, more expensive. This forces utilities to look for alternatives to those resources in order to avoid the price pressure. New renewable energy resources like wind turbines, photovoltaic, bio mass or geothermals become more and more popular. On the other hand, the regulation done by the European Commission has a strong impact on the utilities because of the liberalization of the energy markets. The market was opened by the so called unbundling which is, in fact, the separation of the distribution grid from the capability of producing energy which was common before leading to the fact, that the producers of energy also were the only ones which could sell and distribute the energy which lead to monopolistic structures on the market. Nowadays, we have a market where the customers can choose between the offers from different utilities. Those changes to the utility domain have a direct impact on the IT-landscape of the utility who has to deal with new processes which have to be supported by changes like new systems or services and new interfaces between the existing systems in order to support the new requirements. In general, the utility has to deal with standards and norms for the domain in this described setting in order to exchange data with other market participants or in order to integrate their own systems in an appropriate manner. In the electric utility domain, the Common Information Model CIM has spread for the scope of SCADA (supervisory Control and Data Acquisition) and market communications. It is standardized by the IEC (International Electrotechnical Commission) as the IEC 61970 family of standards. The second important family is the IEC 61850 family which deals with communication networks and systems in

  14. EnerGis: A geographical information based system for the evaluation of integrated energy conversion systems in urban areas

    International Nuclear Information System (INIS)

    Girardin, Luc; Marechal, Francois; Dubuis, Matthias; Calame-Darbellay, Nicole; Favrat, Daniel

    2010-01-01

    A geographical information system has been developed to model the energy requirements of an urban area. The purpose of the platform is to model with sufficient detail the energy services requirements of a given geographical area in order to allow the evaluation of the integration of advanced integrated energy conversion systems. This tool is used to study the emergence of more efficient cities that realize energy efficiency measures, integrate energy efficient conversion technologies and promote the use of endogenous renewable energy. The model is illustrated with case studies for the energetic planning of the Geneva district (Switzerland).

  15. Performance profiles of major energy producers 1995, January 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This publication examines developments in the operations of the major U.S. energy-producing companies on a corporate level, by major line of business, by major function within each line of business, and by geographic area.

  16. Performance profiles of major energy producers 1995, January 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This publication examines developments in the operations of the major U.S. energy-producing companies on a corporate level, by major line of business, by major function within each line of business, and by geographic area

  17. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    Science.gov (United States)

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  18. Surface free energy for systems with integrable boundary conditions

    International Nuclear Information System (INIS)

    Goehmann, Frank; Bortz, Michael; Frahm, Holger

    2005-01-01

    The surface free energy is the difference between the free energies for a system with open boundary conditions and the same system with periodic boundary conditions. We use the quantum transfer matrix formalism to express the surface free energy in the thermodynamic limit of systems with integrable boundary conditions as a matrix element of certain projection operators. Specializing to the XXZ spin-1/2 chain we introduce a novel 'finite temperature boundary operator' which characterizes the thermodynamical properties of surfaces related to integrable boundary conditions

  19. Integrating renewable energy into general practice : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-01

    This feasibility study was conducted to determine the viability of integrating solar thermal residential domestic hot water systems and community ground source heating and air conditioning within low-income housing projects in Toronto. The study examined the organizational changes needed to incorporate renewable energy systems for small-scale district and individual homes. The study was conducted on behalf of Habitat for Humanity (HFHT). Results of the study showed that the most significant benefits of integrating renewable energy systems will be the elimination of fossil fuel usage; reductions in home operating costs for partner families; and the potential for leveraging increased sponsorship funds. A geoexchange heating, ventilation and air conditioning (HVAC) system was recommended for the new HFHT headquarters as well as for future housing projects. It was concluded that HFHT should prepare for increased integration of renewable energy technologies as capital costs decrease and greater financial incentives become available. 15 tabs., 3 figs.

  20. Neutrino fluxes produced by high energy solar flare particles

    International Nuclear Information System (INIS)

    Kolomeets, E.V.; Shmonin, V.L.

    1975-01-01

    In this work the calculated differential energy spectra of neutrinos poduced by high energy protons accelerated during 'small' solar flares are presented. The muon flux produced by neutrino interactions with the matter at large depths under the ground is calculated. The obtained flux of muons for the total number of solar flare accelerated protons of 10 28 - 10 32 is within 10 9 - 10 13 particles/cm 2 X s x ster. (orig.) [de

  1. Energy-producing electro-flocculation for harvest of Dunaliella salina.

    Science.gov (United States)

    Liu, Qing; Zhang, Meng; Lv, Tao; Chen, Hongjun; Chika, Anthony Okonkwo; Xiang, Changli; Guo, Minxue; Wu, Minghui; Li, Jianjun; Jia, Lishan

    2017-10-01

    In this study, an efficient electro-flocculation process for Dunaliella salina with energy production by aluminum-air battery has been successfully applied. The formed aluminum hydroxide hydrates during discharging of battery were positively charged, which have a great potential for microalgae flocculation. The precipitation of aluminum hydroxide hydrates by algae also could improve the performance of aluminum-air battery. The harvesting efficiency could reach 97% in 20mins with energy production of 0.11kWh/kg. This discharging electro-flocculation (DEF) technology provides a new energy producing process to effectively harvest microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Integrated energy optimisation for the cement industry: A case study perspective

    International Nuclear Information System (INIS)

    Swanepoel, Jan Adriaan; Mathews, Edward Henry; Vosloo, Jan; Liebenberg, Leon

    2014-01-01

    Highlights: • Integration of all energy-intensive components of a cement plant production process in a simulation package. • Uniquely, the simulation model incorporates constraints such as maintenance, production and dynamic energy costs. • The system was implemented on four different cement plants and a total energy cost saving of 7.1% was achieved. - Abstract: Energy costs play a major role in the cement production process. As much as 60% of total cost is allocated to energy and 18% to the consumption of electrical energy. Historically, energy cost savings were achieved by large infrastructure upgrades. These upgrades are often costly and lead to interruptions in production. In this paper the operation of all the energy intensive components of the cement production process are identified, modelled, integrated and optimised for minimum operational costs while meeting production targets. This integrated approach allows for simulation of the collective effect of individual production components. The system incorporates constraints such as maintenance, production and dynamic energy costs. No published research could be found where these constraints are incorporated into a single operational solution. The system was implemented on four cement plants and a total energy cost saving of 7% was achieved. This highlights the practical significance of an integrated approach to energy cost savings

  3. Integrated societal risk assessment framework for nuclear power and renewable energy sources

    International Nuclear Information System (INIS)

    Lee, Sang Hun; Kang, Hyun Gook

    2015-01-01

    Recently, the estimation of the social cost of energy sources has been emphasized as various novel energy options become feasible in addition to conventional ones. In particular, the social cost of introducing measures to protect power-distribution systems from power-source instability and the cost of accident-risk response for various power sources must be investigated. To account for these risk factors, an integrated societal risk assessment framework, based on power-uncertainty analysis and accident-consequence analysis, is proposed. In this study, we applied the proposed framework to nuclear power plants, solar photovoltaic systems, and wind-turbine generators. The required capacity of gas-turbine power plants to be used as backup power facilities to compensate for fluctuations in the power output from the main power source was estimated based on the performance indicators of each power source. The average individual health risk per terawatt-hours (TWh) of electricity produced by each power source was quantitatively estimated by assessing accident frequency and the consequences of specific accident scenarios based on the probabilistic risk assessment methodology. This study is expected to provide insight into integrated societal risk analysis, and can be used to estimate the social cost of various power sources

  4. Integrated societal risk assessment framework for nuclear power and renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hun; Kang, Hyun Gook [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of)

    2015-06-15

    Recently, the estimation of the social cost of energy sources has been emphasized as various novel energy options become feasible in addition to conventional ones. In particular, the social cost of introducing measures to protect power-distribution systems from power-source instability and the cost of accident-risk response for various power sources must be investigated. To account for these risk factors, an integrated societal risk assessment framework, based on power-uncertainty analysis and accident-consequence analysis, is proposed. In this study, we applied the proposed framework to nuclear power plants, solar photovoltaic systems, and wind-turbine generators. The required capacity of gas-turbine power plants to be used as backup power facilities to compensate for fluctuations in the power output from the main power source was estimated based on the performance indicators of each power source. The average individual health risk per terawatt-hours (TWh) of electricity produced by each power source was quantitatively estimated by assessing accident frequency and the consequences of specific accident scenarios based on the probabilistic risk assessment methodology. This study is expected to provide insight into integrated societal risk analysis, and can be used to estimate the social cost of various power sources.

  5. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor

    Science.gov (United States)

    Xia, Xinhui; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Zhang, Yongqi; Tu, Jiangping; Zhang, Hua; Fan, Hong Jin

    2012-01-01

    Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO2/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseudocapacitance is clearly demonstrated, and the charge/discharge is indicated by reversible color changes (photochromism). In such an integrated device, the photogenerated electrons are utilized for H2 generation and holes for pseudocapacitive charging, so that both the reductive and oxidative energies are captured and converted. Specific capacitances of 482 F g−1 at 0.5 A g−1 and 287 F g−1 at 1 A g−1 are obtained with TiO2/Ni(OH)2 nanorod arrays. This study provides a new research strategy for integrated pseudocapacitor and solar energy application. PMID:23248745

  6. The Integration of Energy Efficiency, Renewable Energy, DemandResponse and Climate Change: Challenges and Opportunities for Evaluatorsand Planners

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Edward

    2007-05-29

    This paper explores the feasibility of integrating energyefficiency program evaluation with the emerging need for the evaluationof programs from different "energy cultures" (demand response, renewableenergy, and climate change). The paper reviews key features andinformation needs of the energy cultures and critically reviews theopportunities and challenges associated with integrating these withenergy efficiency program evaluation. There is a need to integrate thedifferent policy arenas where energy efficiency, demand response, andclimate change programs are developed, and there are positive signs thatthis integration is starting to occur.

  7. Capacitors for Integrated Circuits Produced by Means of a Double Implantation Method

    International Nuclear Information System (INIS)

    Zukowski, P.; Partyka, J.; Wegierek, P.

    1998-01-01

    The paper presents a description of a method to produce capacitors in integrated circuits that consists in implanting weakly doped silicon with the same impurity, then subjecting it to annealing (producing the inner plate) and implanting it again with ions of neutral elements to produce the dielectric layer. Results of the testing capacitors produced that way are also presented. Unit capacity of C u = 4.5 nF/mm 2 at tgδ = 0.01 has been obtained. The authors are of the opinion that the interesting problem of discontinuous variations of dielectric losses and capacities considered as functions of temperature, must be viewed as an open problem. (author)

  8. Continuous thermal hydrolysis and energy integration in sludge anaerobic digestion plants.

    Science.gov (United States)

    Fdz-Polanco, F; Velazquez, R; Perez-Elvira, S I; Casas, C; del Barrio, D; Cantero, F J; Fdz-Polanco, M; Rodriguez, P; Panizo, L; Serrat, J; Rouge, P

    2008-01-01

    A thermal hydrolysis pilot plant with direct steam injection heating was designed and constructed. In a first period the equipment was operated in batch to verify the effect of sludge type, pressure and temperature, residence time and solids concentration. Optimal operation conditions were reached for secondary sludge at 170 degrees C, 7 bar and 30 minutes residence time, obtaining a disintegration factor higher than 10, methane production increase by 50% and easy centrifugation In a second period the pilot plant was operated working with continuous feed, testing the efficiency by using two continuous anaerobic digester operating in the mesophilic and thermophilic range. Working at 12 days residence time, biogas production increases by 40-50%. Integrating the energy transfer it is possible to design a self-sufficient system that takes advantage of this methane increase to produce 40% more electric energy. (c) IWA Publishing 2008.

  9. Spatio-temporal data analytics for wind energy integration

    CERN Document Server

    Yang, Lei; Zhang, Junshan

    2014-01-01

    This SpringerBrief presents spatio-temporal data analytics for wind energy integration using stochastic modeling and optimization methods. It explores techniques for efficiently integrating renewable energy generation into bulk power grids. The operational challenges of wind, and its variability are carefully examined. A spatio-temporal analysis approach enables the authors to develop Markov-chain-based short-term forecasts of wind farm power generation. To deal with the wind ramp dynamics, a support vector machine enhanced Markov model is introduced. The stochastic optimization of economic di

  10. Optimisation of integrated energy and materials systems

    International Nuclear Information System (INIS)

    Gielen, D.J.; Okken, P.A.

    1994-06-01

    To define cost-effective long term CO2 reduction strategies an integrated energy and materials system model for the Netherlands for the period 2000-2040 is developed. The model is based upon the energy system model MARKAL, which configures an optimal mix of technologies to satisfy the specified energy and product/materials service demands. This study concentrates on CO 2 emission reduction in the materials system. For this purpose, the energy system model is enlarged with a materials system model including all steps 'from cradle to grave'. The materials system model includes 29 materials, 20 product groups and 30 waste materials. The system is divided into seven types of technologies; 250 technologies are modeled. The results show that the integrated optimisation of the energy system and the materials system can significantly reduce the emission reduction costs, especially at higher reduction percentages. The reduction is achieved through shifts in materials production and waste handling and through materials substitution in products. Shifts in materials production and waste management seem cost-effective, while the cost-effectiveness of shifts in product composition is sensitive due to the cost structure of products. For the building sector, transportation applications and packaging, CO 2 policies show a significant impact on prices, and shifts in product composition could occur. For other products, the reduction through materials substitution seems less promising. The impact on materials consumption seems most significant for cement (reduced), timber and aluminium (both increased). For steel and plastics, the net effect is balanced, but shifts between applications do occur. The MARKAL-approach is feasible to study integrated energy and materials systems. The progress compared to other environmental system analysis instruments is much more insight in the interaction of technologies on a national scale and in time

  11. Integration of energy efficient technologies in UK supermarkets

    International Nuclear Information System (INIS)

    Ochieng, E.G.; Jones, N.; Price, A.D.F.; Ruan, X.; Egbu, C.O; Zuofa, T.

    2014-01-01

    The purpose of this paper is twofold: to determine if the integration of energy efficient technologies in UK supermarkets can determine consumer behaviour, and to establish if such activities can help satisfying the environmental elements of the clients corporate social responsibilities (CSR) in an attempt to create a competitive advantage. A literature review of existing material considered the history and drivers of sustainability, the types of energy efficient technologies and factors concerning CSR and consumer behaviour in relation to the supermarket industry. Interviews with 15 senior store managers were recorded and transcribed. The opinions of the senior store managers were then sought and analysed using qualitative research software NVivo software. Validity of the data was achieved at a later stage through workshops. The results of this paper suggested that there is a definite lack of awareness and knowledge amongst customers regarding energy efficient technologies. From the findings, it was further established that the key driver for retailers who integrate energy efficient technologies is fiscal incentives, although it was suggested some retailers use CSR strategies to report there are environmental achievements it was ultimately found that cost savings were the primary driver. - Highlights: • The effect of sustainability towards consumer behaviour was explored. • Majority of consumers are unaware of energy efficient technologies. • Energy efficient technologies do not determine or create shifts in paradigm in consumer actions. • Stores are driven to integrate energy efficient technologies more by government legislation. • Participants were clear in making the point that their image and reputation was based on trust

  12. Exergy Steam Drying and Energy Integration

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Prem; Muenter, Claes (Exergy Engineering and Consulting, SE-417 55 Goeteborg (Sweden)). e-mail: verma@exergyse.com

    2008-10-15

    Exergy Steam Drying technology has existed for past 28 years and many new applications have been developed during this period. But during past few years the real benefits have been exploited in connection with bio-fuel production and energy integration. The steam dryer consists of a closed loop system, where the product is conveyed by superheated and pressurised carrier steam. The carrier steam is generated by the water vapours from the product being dried, and is indirectly superheated by another higher temperature energy source such as steam, flue gas, thermal oil etc. Besides the superior heat transfer advantages of using pressurised steam as a drying medium, the energy recovery is efficient and simple as the recovered energy (80-90%) is available in the form of steam. In some applications the product quality is significantly improved. Examples presented in this paper: Bio-Combine for pellets production: Through integration of the Exergy Steam Dryer for wood with a combined heat and power (CHP) plant, together with HP steam turbine, the excess carrier steam can be utilised for district heating and/or electrical power production in a condensing turbine. Bio-ethanol production: Both for first and second generation of ethanol can the Exergy process be integrated for treatment of raw material and by-products. Exergy Steam Dryer can dry the distillers dark grains and solubles (DDGS), wood, bagasse and lignin. Bio-diesel production: Oil containing seeds and fruits can be treated in order to improve both the quality of oil and animal feed protein, thus minimizing further oil processing costs and increasing the sales revenues. Sewage sludge as bio-mass: Municipal sewage sludge can be considered as a renewable bio-fuel. By drying and incineration, the combustion heat value of the sludge is sufficient for the drying process, generation of electrical energy and production of district heat. Keywords; Exergy, bio-fuel, bio-mass, pellets, bio-ethanol, biodiesel, bio

  13. Energy management system for an integrated steel plant

    Energy Technology Data Exchange (ETDEWEB)

    Perti, A.K.; Sankarasubramian, K.; Shivramakrishnan, J. (Bhilai Steel Plant, Bhilai (India))

    1992-09-01

    The cost of energy contributes 35 to 40% to the cost of steel production. Thus a lot of importance is being given to energy conservation in steel production. The paper outlines energy conservation measures at the Bhilai Steel Plant, India. Measures include: modifications to furnaces; partial briquetting of coal charge; and setting up an energy centre to integrate measurement and computer systems with despatches, engineers and managers of energy. 4 refs., 4 figs., 3 tabs.

  14. Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device.

    Science.gov (United States)

    Chien, Chih-Tao; Hiralal, Pritesh; Wang, Di-Yan; Huang, I-Sheng; Chen, Chia-Chun; Chen, Chun-Wei; Amaratunga, Gehan A J

    2015-06-24

    Energy scavenging has become a fundamental part of ubiquitous sensor networks. Of all the scavenging technologies, solar has the highest power density available. However, the energy source is erratic. Integrating energy conversion and storage devices is a viable route to obtain self-powered electronic systems which have long-term maintenance-free operation. In this work, we demonstrate an integrated-power-sheet, consisting of a string of series connected organic photovoltaic cells (OPCs) and graphene supercapacitors on a single substrate, using graphene as a common platform. This results in lighter and more flexible power packs. Graphene is used in different forms and qualities for different functions. Chemical vapor deposition grown high quality graphene is used as a transparent conductor, while solution exfoliated graphene pastes are used as supercapacitor electrodes. Solution-based coating techniques are used to deposit the separate components onto a single substrate, making the process compatible with roll-to-roll manufacture. Eight series connected OPCs based on poly(3-hexylthiophene)(P3HT):phenyl-C61-butyric acid methyl ester (PC60 BM) bulk-heterojunction cells with aluminum electrodes, resulting in a ≈5 V open-circuit voltage, provide the energy harvesting capability. Supercapacitors based on graphene ink with ≈2.5 mF cm(-2) capacitance provide the energy storage capability. The integrated-power-sheet with photovoltaic (PV) energy harvesting and storage functions had a mass of 0.35 g plus the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Wind energy. To produce electricity with the wind

    International Nuclear Information System (INIS)

    Bareau, Helene

    2015-11-01

    This guide addresses the different aspects of wind-based power generation. It outlines the role of wind energy to meet objectives related to the share of renewable energies in the French energy mix, that wind energy is actually replacing fossil energies, that it is based on local resources within higher safety and less wastage, that current advances are made to integrate wind energy production into the grid, and that it is a solution to diversify energy production. Some figures are presented and commented, regarding onshore wind energy production in France, the location of wind farms, and wind energy production in comparison with other renewable sources. The operation of a wind turbine is described and the different types of wind turbines are evoked. The issue of wind farm planning with citizen participation is addressed: regional planning, studies of pre-feasibility for location selection, procedure, and content of the impact study (radars, fauna and flora, landscapes, safety, health). Other features are outlined: a planned dismantling, and a globally favourable perception. The next part addresses offshore wind energy: the interesting potential of stronger and more reliable wind at sea (European situation, French opportunities, elements comprised in an offshore wind farm), impacts (on marine ecosystems, on neighbouring localities, and interests for visitors). Economic aspects are then addressed: cost and profitability, economic spin-offs, and perspectives. The last part concerns individuals and the possibilities to participate to wind farm projects or to invest in small wind turbines with some prerequisites (constant and steady winds, installation assessment, required expertise, indispensable preliminary steps, costs, aids and profitability)

  16. Integrated community energy solutions : a roadmap for action

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Integrated community energy solutions (ICES) can significantly improve community energy performance and help to achieve Canada's energy efficiency and climate change objectives. The solutions integrate physical components from multiple sectors, including transportation; housing and buildings; industry; water; waste management; and other local community services. However, ICES require the support of communities, governments and investors who can help to reduce barriers to action and define a marketplace. This road map provided details of provincial, territorial, and federal government inputs to ensuring the adoption of ICES. The roles of municipalities, developers, energy utilities and other stakeholders were also discussed. Key roles, sectoral building blocks, and barriers affecting ICES implementation were discussed. A 3-phase transition approach was presented in which the overarching strategies of ICES implementation were described. A menu of ICES tools was also included. 17 figs.

  17. Integrated fuel cell energy system for modern buildings

    Energy Technology Data Exchange (ETDEWEB)

    Moard, D.M.; Cuzens, J.E.

    1998-07-01

    Energy deregulation, building design efficiency standards and competitive pressures all encourage the incorporation of distributed fuel cell cogeneration packages into modern buildings. The building marketplace segments to which these systems apply include office buildings, retail stores, hospitals, hotels, food service and multifamily residences. These applications represent approximately 60% of the commercial building sector's energy use plus a portion of the residential sector's energy use. While there are several potential manufacturers of fuel cells on the verge of marketing equipment, most are currently using commercial hydrogen gas to fuel them. There are few suppliers of equipment, which convert conventional fuels into hydrogen. Hydrogen Burner Technology, Inc. (HBT) is one of the few companies with a proven under-oxidized-burner (UOB) technology, patented and already proven in commercial use for industrial applications. HBT is developing a subsystem based on the UOB technology that can produce a hydrogen rich product gas using natural gas, propane or liquid fuels as the feed stock, which may be directly useable by proton exchange membrane (PEM) fuel cells for conversion into electricity. The combined thermal output can also be used for space heating/cooling, water heating or steam generation applications. HBT is currently analyzing the commercial building market, integrated system designs and marketplace motivations which will allow the best overall subsystem to be designed, tested and introduced commercially in the shortest time possible. HBT is also actively involved in combined subsystem designs for use in automotive and small residential services.

  18. Integrated modelling of ecosystem services and energy systems research

    Science.gov (United States)

    Agarwala, Matthew; Lovett, Andrew; Bateman, Ian; Day, Brett; Agnolucci, Paolo; Ziv, Guy

    2016-04-01

    The UK Government is formally committed to reducing carbon emissions and protecting and improving natural capital and the environment. However, actually delivering on these objectives requires an integrated approach to addressing two parallel challenges: de-carbonising future energy system pathways; and safeguarding natural capital to ensure the continued flow of ecosystem services. Although both emphasise benefiting from natural resources, efforts to connect natural capital and energy systems research have been limited, meaning opportunities to improve management of natural resources and meet society's energy needs could be missed. The ecosystem services paradigm provides a consistent conceptual framework that applies in multiple disciplines across the natural and economic sciences, and facilitates collaboration between them. At the forefront of the field, integrated ecosystem service - economy models have guided public- and private-sector decision making at all levels. Models vary in sophistication from simple spreadsheet tools to complex software packages integrating biophysical, GIS and economic models and draw upon many fields, including ecology, hydrology, geography, systems theory, economics and the social sciences. They also differ in their ability to value changes in natural capital and ecosystem services at various spatial and temporal scales. Despite these differences, current models share a common feature: their treatment of energy systems is superficial at best. In contrast, energy systems research has no widely adopted, unifying conceptual framework that organises thinking about key system components and interactions. Instead, the literature is organised around modelling approaches, including life cycle analyses, econometric investigations, linear programming and computable general equilibrium models. However, some consistencies do emerge. First, often contain a linear set of steps, from exploration to resource supply, fuel processing, conversion

  19. Ionising energy treatment for fresh horticultural produce -mandarins and other produce, Trials 1 and 2, May-July 1987

    International Nuclear Information System (INIS)

    McLauchlan, R.L.; Brown, B.I.; Mitchell, G.E.; Aston, J.W.; Wood, A.F.; Isaacs, A.R.; Williams, S.M.; Nottingham, S.M.; Wilson, P.R.; Juffs, H.S.; Johnson, G.I.; Heather, N.W.; Giles, J.E.; Wills, P.A.

    1988-01-01

    Two trials are described on the effect of ionising energy treatment, or irradiation, on the quality, shelf-life and composition of fresh produce, mainly at doses consistent with disinfestation treatment for quarantine purposes. Trial 1, carried out in May 1987, deals with replicated treatments of Imperial mandarins and preliminary observation treatments on a range of other produce. Trial 2 deals with replicated treatments of Ellendale mandarins and preliminary observation treatments on other produce

  20. Integration properties of disaggregated solar, geothermal and biomass energy consumption in the U.S

    International Nuclear Information System (INIS)

    Apergis, Nicholas; Tsoumas, Chris

    2011-01-01

    This paper investigates the integration properties of disaggregated solar, geothermal and biomass energy consumption in the U.S. The analysis is performed for the 1989-2009 period and covers all sectors which use these types of energy, i.e., transportation, residence, industrial, electric power and commercial. The results suggest that there are differences in the order of integration depending on both the type of energy and the sector involved. Moreover, the inclusion of structural breaks traced from the regulatory changes for these energy types seem to affect the order of integration for each series. - Highlights: → Increasing importance of renewable energy sources. → Integration properties of solar, geothermal and biomass energy consumption in the U.S. → The results show differences in the order of integration depending on the type of energy. → Structural breaks traced for these energy types affect the order of integration. → The order of integration is less than 1, so energy conservation policies are transitory.

  1. Carbon and energy footprint of the hydrate-based biogas upgrading process integrated with CO2 valorization.

    Science.gov (United States)

    Castellani, Beatrice; Rinaldi, Sara; Bonamente, Emanuele; Nicolini, Andrea; Rossi, Federico; Cotana, Franco

    2018-02-15

    The present paper aims at assessing the carbon and energy footprint of an energy process, in which the energy excess from intermittent renewable sources is used to produce hydrogen which reacts with the CO 2 previously separated from an innovative biogas upgrading process. The process integrates a hydrate-based biogas upgrading section and a CO 2 methanation section, to produce biomethane from the biogas enrichment and synthetic methane from the CO 2 methanation. Clathrate hydrates are crystalline compounds, formed by gas enclathrated in cages of water molecules and are applied to the selective separation of CO 2 from biogas mixtures. Data from the experimental setup were analyzed in order to evaluate the green-house gas emissions (carbon footprint CF) and the primary energy consumption (energy footprint EF) associated to the two sections of the process. The biosynthetic methane production during a single-stage process was 0.962Nm 3 , obtained mixing 0.830Nm 3 of methane-enriched biogas and 0.132Nm 3 of synthetic methane. The final volume composition was: 73.82% CH 4 , 19.47% CO 2 , 0.67% H 2 , 1.98% O 2 , 4.06% N 2 and the energy content was 28.0MJ/Nm 3 . The functional unit is the unitary amount of produced biosynthetic methane in Nm 3 . Carbon and energy footprints are 0.7081kgCO 2eq /Nm 3 and 28.55MJ/Nm 3 , respectively, when the electric energy required by the process is provided by photovoltaic panels. In this scenario, the overall energy efficiency is about 0.82, higher than the worldwide average energy efficiency for fossil methane, which is 0.75. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Charles J.; Ton, Dan T. (U.S. Department of Energy, Washington, D.C.); Boyes, John D.; Peek, Georgianne Huff

    2008-07-01

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  3. One-dimensional modeling of thermal energy produced in a seismic fault

    Science.gov (United States)

    Konga, Guy Pascal; Koumetio, Fidèle; Yemele, David; Olivier Djiogang, Francis

    2017-12-01

    Generally, one observes an anomaly of temperature before a big earthquake. In this paper, we established the expression of thermal energy produced by friction forces between the walls of a seismic fault while considering the dynamic of a one-dimensional spring-block model. It is noted that, before the rupture of a seismic fault, displacements are caused by microseisms. The curves of variation of this thermal energy with time show that, for oscillatory and aperiodic displacement, the thermal energy is accumulated in the same way. The study reveals that thermal energy as well as temperature increases abruptly after a certain amount of time. We suggest that the corresponding time is the start of the anomaly of temperature observed which can be considered as precursory effect of a big seism. We suggest that the thermal energy can heat gases and dilate rocks until they crack. The warm gases can then pass through the cracks towards the surface. The cracks created by thermal energy can also contribute to the rupture of the seismic fault. We also suggest that the theoretical model of thermal energy, produced in seismic fault, associated with a large quantity of experimental data may help in the prediction of earthquakes.

  4. Sensitivity of the dispatch strategy in designing grid integrated hybrid energy systems

    OpenAIRE

    Perera, Amarasinghage Tharindu Dasun; Mauree, Dasaraden; Scartezzini, Jean-Louis; Nik, Vahid M.

    2016-01-01

    Integrating renewable energy technologies based on solar PV (SPV) and wind energy in the energy system is challenging due to time dependence of the energy potential for these energy sources. Grid integrated hybrid energy systems combining SPV panels, wind turbines, battery bank and internal combustion generators (ICG) can be used in this regard specially for distributed generation. Energy-economic dispatch strategy plays a vital role in managing the energy flow of the system. However, it is d...

  5. Marine current turbine design for zero emission renewable energy producing a sailing boat

    OpenAIRE

    EKİNCİ, Serkan; ALVAR, Mustafa

    2016-01-01

    In the recent years, rapid increase in theoretical studies and applications on electrical power generation from renewable sources, such as wind, sun, marine or tidal currents, can be encountered in the literature. Among these, marine current turbines, produce energy by taking the advantage of alternating motion of water, and have the ability to produce energy even at low flow rates, and are operated in oceans and seas as a renewable energy source. In this study, design of marine current turbi...

  6. Calculation of quantum-mechanical system energy spectra using path integrals

    International Nuclear Information System (INIS)

    Evseev, A.M.; Dmitriev, V.P.

    1977-01-01

    A solution of the Feynman quantum-mechanical integral connecting a wave function (psi (x, t)) at a moment t+tau (tau → 0) with the wave function at the moment t is provided by complex variable substitution and subsequent path integration. Time dependence of the wave function is calculated by the Monte Carlo method. The Fourier inverse transformation of the wave function by path integration calculated has been applied to determine the energy spectra. Energy spectra are presented of a hydrogen atom derived from wave function psi (x, t) at different x, as well as boson energy spectra of He, Li, and Be atoms obtained from psi (x, t) at X = O

  7. Smart power systems and renewable energy system integration

    CERN Document Server

    2016-01-01

    This monograph presents a wider spectrum of researches, developments, and case specific studies in the area of smart power systems and integration of renewable energy systems. The book will be for the benefit of a wider audience including researchers, postgraduate students, practicing engineers, academics, and regulatory policy makers. It covers a wide range of topics from fundamentals, and modelling and simulation aspects of traditional and smart power systems to grid integration of renewables; Micro Grids; challenges in planning and operation of a smart power system; risks, security, and stability in smart operation of a power system; and applied research in energy storage. .

  8. Energy efficiency and integrated resource planning - lessons drawn from the Californian model

    International Nuclear Information System (INIS)

    Baudry, P.

    2008-01-01

    The principle of integrated resource planning (IRP) is to consider, on the same level, investments which aim to produce energy and those which enable energy requirements to be reduced. According to this principle, the energy efficiency programmes, which help to reduce energy demand and CO 2 emissions, are considered as an economically appreciated resource. The costs and gains of this resource are evaluated and compared to those relating to energy production. California has adopted an IRP since 1990 and ranks energy efficiency highest among the available energy resources, since economic evaluations show that the cost of realizing a saving of one kWh is lower than that which corresponds to its production. Yet this energy policy model is not universally widespread over the world. This can be explained by several reasons. Firstly, a reliable economic appreciation of energy savings presupposes that great uncertainties will be raised linked to the measurement of energy savings, which emanates in articular from the different possible options for the choice of base reference. This disinterest for IRP in Europe can also be explained by an institutional context of energy market liberalization which does not promote this type of regulation, as well as by the concern of making energy supply security the policies' top priority. Lastly, the remuneration of economic players investing in the energy efficiency programmes is an indispensable condition for its quantitative recognition in national investment planning. In France, the process of multi-annual investment programming is a mechanism which could lead to energy efficiency being included as a resource with economically appreciated investments. (author)

  9. Regional Energy Planning Tool for Renewable Integrated Low-Energy District Heating Systems

    DEFF Research Database (Denmark)

    Tol, Hakan; Dincer, Ibrahim; Svendsen, Svend

    2013-01-01

    Low-energy district heating systems, operating at low temperature of 55 °C as supply and 25°C as return, can be the energy solution as being the prevailing heating infrastructure in urban areas, considering future energy schemesaiming at increased exploitation of renewable energy sources together...... with low-energy houses in focus with intensified energy efficiency measures. Employing low-temperature operation allows the ease to exploit not only any type of heat source but also low-grade sources, i.e., renewable and industrial waste heat, which would otherwise be lost. In this chapter, a regional...... energy planning tool is described considered with various energy conversion systems based on renewable energy sources to be supplied to an integrated energy infrastructure involving a low-energy district heating, a district cooling, and an electricity grid. The developed tool is performed for two case...

  10. The regional energy integration: the latin-american experiences; L'integration energetique regionale: les experiences latino-americaines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The ways of the regional economic integrations are not identical and generate different repercussions on the markets and the energy industries evolution. The example of the Latin America proposes many various experiences to evaluate the stakes and the limits of each regional integrations. These limits lead to solution researches including indisputable convergencies. The first part of this document presents the genesis of these regional economic integrations experiences in Latina America, to study in the second part the energy consequences of the liberal ALENA and of the more political MERCOSUR. (A.L.B.)

  11. Integrated roof wind energy system

    Directory of Open Access Journals (Sweden)

    Moonen S.P.G.

    2012-10-01

    Full Text Available Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  12. Financial overview of integrated community energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Croke, K. G.; Hurter, A. P.; Lerner, E.; Breen, W.; Baum, J.

    1977-01-01

    This report is designed to analyze the commercialization potential of various concepts of community-scale energy systems that have been termed Integrated Community Energy Systems (ICES). A case analysis of alternative ICES concepts applied to a major metropolitan development complex is documented. The intent of this study is twofold: (1) to develop a framework for comparing ICES technologies to conventional energy supply systems and (2) to identify potential problems in the commercialization of new systems approaches to energy conservation. In brief, the ICES Program of the ERDA Office of Energy Conservation is intended to identify the opportunities for energy conservation in the community context through analysis, development, and/or demonstration of: location and design of buildings, building complexes, and infrastructure links; engineering and systems design of existing, emerging, and advanced energy production and delivery technologies and systems; regulatory designs for public planning, administration, and regulation of energy-conserving community development and energy services; and financial planning for energy-conserving community development and energy supply systems.

  13. Task force for integral test of High Energy nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    According to completion of the JENDL-High Energy file for neutron nuclear cross sections up to 50 MeV, a task force for integral test of high energy nuclear data was organized to discuss a guide line for integral test activities. A status of existing differential and integral experiments and how to perform such a test were discussed in the task force. Here the purpose and outline of the task force is explained with some future problems raised in discussion among the task member. (author)

  14. Optimal integration of energy at the Combined Energy Plant in Norrkoeping -Integration of steam, hot water and district heat to biogas plants; Optimal integrering av energianvaendningen vid energikombinatet i Norrkoeping -Integrering av aanga, hetvatten och fjaerrvaerme till biogasanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Benjaminsson, Johan; Goldschmidt, Barbara; Uddgren, Roger

    2010-09-15

    The background of this report is to investigate and highlight the benefits of establishing a biogas plant nearby a combined energy plant where steam and district heat is available. By using heat from the combined energy plant, more biogas can be produced as vehicle fuel instead of being used as fuel to heat the digester, the biogas upgrading plant or the dryer. The project's objective is to analyze where it is interesting with integration of heat to the biogas plant and to compare alternative technologies and possible integration options. The stakeholders of the study are industries with access to organic matter for biogas production and heat producers who can deliver thermal energy into biogas plants. The project was implemented by collection of information from the Haendeloe combined energy plant outside Norrkoeping where there is a cogeneration plant, an ethanol plant and a biogas plant. Case studies for the study have been carried out with proposals regarding how heat flows from the power plant and ethanol plant can be further integrated with the biogas plant. As case studies, both the current design of the biogas plant, as well as a fictional case in which half of all distillery residues was digested, have been evaluated. The case studies show that in today's biogas plant it is not economical to replace the existing biogas upgrading unit with water absorption to chemical absorption. The upgrading cost with water absorption at today's smaller facility is 0.11 kr/kWh and in order to obtain the same total cost of chemical absorption a steam price of 0.15 kr/kWh is required. For large gas flows, chemical absorption is an advantage since the technology is more suitable for upscaling in comparison with water absorption that must be delivered in multiple lines. Nevertheless, a possibility to recover waste heat from chemical absorption is necessary if the technology shall be competitive. If waste heat from both water absorption and chemical absorption

  15. Optimum energies for dual-energy computed tomography

    International Nuclear Information System (INIS)

    Talbert, A.J.; Brooks, R.A.; Morgenthaler, D.G.

    1980-01-01

    By performing a dual-energy scan, separate information can be obtained on the Compton and photoelectric components of attenuation for an unknown material. This procedure has been analysed for the optimum energies, and for the optimum dose distribution between the two scans. It was found that an equal dose at both energies was a good compromise, compared with optimising the dose distributing for either the Compton or photoelectric components individually. For monoenergetic beams, it was found that low energy of 40 keV produced minimum noise when using high-energy beams of 80 to 100 keV. This was true whether one maintained constant integral dose or constant surface dose. A low energy of 50 keV which is more nearly attainable in practice, produced almost as good a degree of accuracy. The analysis can be extended to polyenergetic beams by the inclusion of a noise factor. The above results were qualitatively unchanged, although the noise was increased by about 20% with integral dose equivalence and 50% with surface dose equivalence. It is very important to make the spectra as narrow as possible, especially at the low energy, in order to minimise the noise. (author)

  16. Integrated societal risk assessment framework for nuclear power and renewable energy sources

    Directory of Open Access Journals (Sweden)

    Sang Hun Lee

    2015-06-01

    Full Text Available Recently, the estimation of the social cost of energy sources has been emphasized as various novel energy options become feasible in addition to conventional ones. In particular, the social cost of introducing measures to protect power-distribution systems from power-source instability and the cost of accident-risk response for various power sources must be investigated. To account for these risk factors, an integrated societal risk assessment framework, based on power-uncertainty analysis and accident-consequence analysis, is proposed. In this study, we applied the proposed framework to nuclear power plants, solar photovoltaic systems, and wind-turbine generators. The required capacity of gas-turbine power plants to be used as backup power facilities to compensate for fluctuations in the power output from the main power source was estimated based on the performance indicators of each power source. The average individual health risk per terawatt-hours (TWh of electricity produced by each power source was quantitatively estimated by assessing accident frequency and the consequences of specific accident scenarios based on the probabilistic risk assessment methodology. This study is expected to provide insight into integrated societal risk analysis, and can be used to estimate the social cost of various power sources.

  17. Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid.

    Science.gov (United States)

    Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul

    2017-02-01

    Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid.

  18. Kinetic energy definition in velocity Verlet integration for accurate pressure evaluation

    Science.gov (United States)

    Jung, Jaewoon; Kobayashi, Chigusa; Sugita, Yuji

    2018-04-01

    In molecular dynamics (MD) simulations, a proper definition of kinetic energy is essential for controlling pressure as well as temperature in the isothermal-isobaric condition. The virial theorem provides an equation that connects the average kinetic energy with the product of particle coordinate and force. In this paper, we show that the theorem is satisfied in MD simulations with a larger time step and holonomic constraints of bonds, only when a proper definition of kinetic energy is used. We provide a novel definition of kinetic energy, which is calculated from velocities at the half-time steps (t - Δt/2 and t + Δt/2) in the velocity Verlet integration method. MD simulations of a 1,2-dispalmitoyl-sn-phosphatidylcholine (DPPC) lipid bilayer and a water box using the kinetic energy definition could reproduce the physical properties in the isothermal-isobaric condition properly. We also develop a multiple time step (MTS) integration scheme with the kinetic energy definition. MD simulations with the MTS integration for the DPPC and water box systems provided the same quantities as the velocity Verlet integration method, even when the thermostat and barostat are updated less frequently.

  19. Kinetic energy definition in velocity Verlet integration for accurate pressure evaluation.

    Science.gov (United States)

    Jung, Jaewoon; Kobayashi, Chigusa; Sugita, Yuji

    2018-04-28

    In molecular dynamics (MD) simulations, a proper definition of kinetic energy is essential for controlling pressure as well as temperature in the isothermal-isobaric condition. The virial theorem provides an equation that connects the average kinetic energy with the product of particle coordinate and force. In this paper, we show that the theorem is satisfied in MD simulations with a larger time step and holonomic constraints of bonds, only when a proper definition of kinetic energy is used. We provide a novel definition of kinetic energy, which is calculated from velocities at the half-time steps (t - Δt/2 and t + Δt/2) in the velocity Verlet integration method. MD simulations of a 1,2-dispalmitoyl-sn-phosphatidylcholine (DPPC) lipid bilayer and a water box using the kinetic energy definition could reproduce the physical properties in the isothermal-isobaric condition properly. We also develop a multiple time step (MTS) integration scheme with the kinetic energy definition. MD simulations with the MTS integration for the DPPC and water box systems provided the same quantities as the velocity Verlet integration method, even when the thermostat and barostat are updated less frequently.

  20. System Integration of Distributed Energy Resources

    DEFF Research Database (Denmark)

    Nyeng, Preben

    units, including the ICT solutions that can facilitate the integration. Specifically, the international standard "IEC 61850-7-420 Communications systems for Distributed Energy Resources" is considered as a possible brick in the solution. This standard has undergone continuous development....... It is therefore investigated in this project how ancillary services can be provided by alternatives to central power stations, and to what extent these can be integrated in the system by means of market-based methods. Particular emphasis is put on automatic solutions, which is particularly relevant for small......, and this project has actively contributed to its further development and improvements. Different types of integration methods are investigated in the project. Some are based on local measurement and control, e.g. by measuring the grid frequency, whereas others are based on direct remote control or market...

  1. Integrated energy, air quality and greenhouse gas management plan

    International Nuclear Information System (INIS)

    2004-03-01

    This report outlines the measures that the Resort Municipality of Whistler has taken to become a sustainable community. In 2000, the Municipality adopted the Natural Step, a tool developed by international scientists to integrate ecological principles into the practices of communities, organizations and individuals. In 2001, the Municipality adopted a comprehensive sustainability plan. This report describes the efforts to manage energy, air quality, and greenhouse gases (GHG). More than 90 per cent of the common air contaminants that contribute to air quality problems in Whistler come from the combustion of fossil fuels. The community can reduce emissions of carbon monoxide, oxides of nitrogen, oxides of sulphur, volatile organic compounds, and particulate matter by managing energy and GHG emissions. This report is divided into several sections dealing with corporate and community energy use. It presents a community profile for Whistler, its energy and emissions inventory from 2000, and an integrated energy plan. An energy and emissions forecast for 2000 to 2020 was also included along with an implementation strategy for a sustainable energy future for Whistler. refs., tabs., figs

  2. Continental integration and energy demand in the United States

    International Nuclear Information System (INIS)

    Manning, D.J.

    2004-01-01

    This presentation highlighted some of the major issues regarding energy demand in the United States and continental integration. The energy markets in Canada and the United States are economically integrated with large cross-border investment. Therefore, the energy infrastructure can be significantly affected by inconsistencies between the two countries in policy, regulatory processes and fiscal regimes. The author discussed the inelasticity in the natural gas demand in the United States in the near-term, and how natural gas consumption, particularly for power generation, is greater than North America's supply capacity. New supplies such as liquefied natural gas and arctic gas are needed to meet growing demands. The role of renewable energy technologies and energy efficiency was also discussed. It was emphasized that imbalances in supply and demand inevitably lead to price volatility and that high prices are a major obstacle to economic growth. tabs., figs

  3. Integrated energy, environmental and financial analysis of ethanol production from cellulosic switchgrass

    International Nuclear Information System (INIS)

    Felix, Erika; Tilley, David R.

    2009-01-01

    Ethanol production from cellulosic sources such as switchgrass (Panicum virgatum L.) requires the use of natural resources, fossil fuels, electricity, and human-derived goods and services. We used emergy accounting to integrate the ultimate amount of environmental, fossil fuel, and human-derived energy required to produce ethanol from switchgrass. Emergy is the total amount of energy of one form required directly and indirectly to make another form of energy. Forty-four percent of required emergy came from the environment either directly or embodied in purchased goods, 30% came from fossil fuels either directly or embodied in purchased goods, and 25% came from human-derived services indirectly. Ethanol production per petroleum use (emergy/emergy) was 4.0-to-1 under our Baseline Scenario, but dropped to 0.5-to-1 under a scenario that assumed higher input prices, lower conversion efficiencies and less waste recycling. At least 75% of total emergy was from non-renewable sources. Energy 'hidden' in indirect paths such as goods and services was 65% of the total. Cellulosic-ethanol is not a primary fuel source that substitutes for petroleum because its production relies heavily on non-renewable energy and purchased inputs. It is a means for converting natural resources to liquid fuel. (author)

  4. Assessment on the energy flow and carbon emissions of integrated steelmaking plants

    Directory of Open Access Journals (Sweden)

    Huachun He

    2017-11-01

    Full Text Available China’s iron and steel industry has developed rapidly over the past two decades. The annual crude steel production is nearly half of the global production, and approximately 90% of the steel is produced via BF–BOF route that is energy-intensive. Based on the practice of integrated steelmaking plants, a material flow analysis model that includes three layers, i.e., material, ferrum, and energy, was constructed on process levels to analyze the energy consumption and carbon emissions according to the principle of mass conservation and the First Law of Thermodynamics. The result shows that the primary energy intensity and carbon emissions are 20.3 GJ/t and 0.46 tC/t crude steel, respectively, including coke and ancillary material’s preparation. These values are above the world’s average level of the BF–BOF route and could be regarded as a high-performance benchmark of steelmaking efficiency. However, the total energy consumption and carbon emission from steelmaking industry were approximately 13095 PJ and 300 MtC, respectively, on the best practice estimation in 2011, and are still large numbers for achieving the goal of reducing global warming. The potential carbon reduction will be limited if no significant changes are undertaken in the steel industry.

  5. FOREN 2004. Sustainable Energy Development and European Integration

    International Nuclear Information System (INIS)

    Iancu Iulian

    2004-01-01

    The 7th Regional Energy Forum- FOREN 2004 with the main topic 'Sustainable Energy Development and European Integration' took place in Neptun-Olimp, on 13th to 17th June 2004. The event was organized by WEC Romanian National Committee, under the auspices of the World Energy Council (WEC). The event was accompanied by several related manifestation as: An up to date Technical Programme designed to explore key issues concerning the ability of the Romanian energy industry to integrate in the European Union; An Exhibition providing first hand access to service and equipment providers; A Partnership Programme, to present the achievements and developments of power companies in round tables, film projections, technical visits and advertising; Social events giving to participants the opportunity to establish direct connections with the Romanian colleagues. The Forum was open to members of the World Energy Council, energy industry leaders, government ministers and officials, heads of international organizations like: UNECE, EC, IEA, Eurelectric, IGU, EUROgas, USAID, academics, media, individual and corporate members interested in sustainable energy development. For further details concerning the agenda and registration. Forum 2004 was structured on five sections each containing a key issue a panel session, communication session and poster presentation on the following items: 1. Energy legislation and institutional framework; 2. The technological dimension of sustainable energy; 3. The ecological dimension of sustainable development; 4. The social dimension of sustainable development; 5. The power equipment manufacturing industry

  6. Integration of the nuclear energy among the production facilities of energy in France; Integration de l'energie nucleaire parmi les moyens de production de l'energie en france

    Energy Technology Data Exchange (ETDEWEB)

    Ailleret, P [Electricite de France (EDF), 75 - Paris (France). Direction des Etudes et Recherches; Taranger, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The present report gives an overview of the present facilities of energy productions in France and their perspectives. the electric production comes for half about power stations hydraulics and for half of thermal power stations. However due to the increase of the energy consumption, France is particularly interested by the atomic energy that appears to bring a supply in due time to the hydraulics and to limit a development of the thermal power stations to which the natural resources of France in classic fuel would not permit to cope presumably. The integration of the nuclear plants to the other production facilities will make itself gradually according to the evolution of the energy needs. (M.B.) [French] Le present rapport donne un apercu des moyens actuels de productions energetiques en France et de ses perspectives. la production electrique provient pour moitie environ de centrales hydraulique et pour moitie de centrales thermiques. Cependant face a l'augmentation de la consommation energetique, la France est tres particulierement interessee par l'energie atomique qui parait devoir apporter en temps utile la releve a l'hydraulique et limiter un developpement des centrales thermiques auxquels les ressources naturelles de la France en combustible classique ne permettraient vraisemblablement pas de faire face. L'integration des centrales nucleaires aux autres moyens de production se fera graduellment en fonction de l'evolution des besoins energetiques. (M.B.)

  7. Efficient integration of wind energy at EnBW TSO

    Energy Technology Data Exchange (ETDEWEB)

    Graeber, Dietmar; Chatillon, Olivier [EnBW Transportnetze AG, Stuttgart (Germany)

    2009-07-01

    In Germany, the four transmission system operators (TSOs) are in charge of integrating the fluctuating electricity production of wind power plants into the grid. EnBW Transportnetze AG is responsible for the market integration of about 14% of the wind energy production in Germany. This paper describes the integration of wind power in Germany especially at the TSO in the country's south-west EnBW Transportnetze AG. The framework of the Renewable Energy Sources Act (EEG) and the immediate exchange of wind power between the four German grid control areas are explained briefly. The different activities for transforming and balancing wind energy are described in more detail. These activities can be divided into two parts: transformation of the fluctuating wind generation into baseload power supply by using the wholesale markets day ahead and earlier and activities for balancing the differences between forecasted and the real wind power generation using the intraday and balancing markets. The focus of the paper is to report practical experiences. (orig.)

  8. INTEGRAL highlights in the high energy astrophysics panorama

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.

    2013-10-15

    ESAs INTEGRAL Space Observatory has spent his first decade in orbit, and its scientific outcome has completely changed our view of the hard-X/soft γ-ray sky. The scientific result comprises, among other discoveries, the production of the all-sky high energy sources catalogue, confirming the time variability over all time scales of most of the soft γ-ray sources observed, the first detailed map of the Aluminium and 511 keV annihilation line in the Galaxy and the evidence of polarized γ-ray emission from the Crab Nebula and Cyg X-1. This paper will review the latest INTEGRAL discoveries in the framework of the high energy sky panorama.

  9. Environmental impacts of producing bioethanol and biobased lactic acid from standalone and integrated biorefineries using a consequential and an attributional life cycle assessment approach.

    Science.gov (United States)

    Parajuli, Ranjan; Knudsen, Marie Trydeman; Birkved, Morten; Djomo, Sylvestre Njakou; Corona, Andrea; Dalgaard, Tommy

    2017-11-15

    This study evaluates the environmental impacts of biorefinery products using consequential (CLCA) and attributional (ALCA) life cycle assessment (LCA) approaches. Within ALCA, economic allocation method was used to distribute impacts among the main products and the coproducts, whereas within the CLCA system expansion was adopted to avoid allocation. The study seeks to answer the questions (i) what is the environmental impacts of process integration?, and (ii) do CLCA and ALCA lead to different conclusions when applied to biorefinery?. Three biorefinery systems were evaluated and compared: a standalone system producing bioethanol from winter wheat-straw (system A), a standalone system producing biobased lactic acid from alfalfa (system B), and an integrated biorefinery system (system C) combining the two standalone systems and producing both bioethanol and lactic acid. The synergy of the integration was the exchange of useful energy necessary for biomass processing in the two standalone systems. The systems were compared against a common reference flow: "1MJ EtOH +1kg LA ", which was set on the basis of products delivered by the system C. Function of the reference flow was to provide service of both fuel (bioethanol) at 99.9% concentration (wt. basis) and biochemical (biobased lactic acid) in food industries at 90% purity; both products delivered at biorefinery gate. The environmental impacts of interest were global warming potential (GWP 100 ), eutrophication potential (EP), non-renewable energy (NRE) use and the agricultural land occupation (ALO). Regardless of the LCA approach adopted, system C performed better in most of the impact categories than both standalone systems. The process wise contribution to the obtained environmental impacts also showed similar impact pattern in both approaches. The study also highlighted that the recirculation of intermediate materials, e.g. C 5 sugar to boost bioethanol yield and that the use of residual streams in the energy

  10. Does energy and CO_2 emissions performance of China benefit from regional integration?

    International Nuclear Information System (INIS)

    Li, Jianglong; Lin, Boqiang

    2017-01-01

    Low energy and carbon efficiency and widespread market segmentation are two stylized facts of China's regional economies. This paper evaluates energy and CO_2 emissions performance using a newly developed non-radial directional distance function, and China's regional integration is investigated using a price approach. The study points to evidence that: (1) most provinces do not perform efficiently in terms of energy use and CO_2 emissions with performance gaps among regions becoming larger, indicating regional segmentation; (2) magnitude of regional integration has increased dramatically, while China's eastern provinces are less integrated in domestic side due to their convenience to international openness; (3) regional integration has significant and robust positive effects on energy and CO_2 emissions performance with over 70% of effects coming from artificial barriers, rather than geographical distance; (4) international openness is also beneficial for promoting energy and CO_2 emissions performance, but cannot substitute for regional integration because of China's specialization in energy-intensive manufacturing in the global economy. Based on the empirical findings, we suggest that central government should continue to encourage regional integration given that local governments have incentives to fragment because it is a way of promoting energy and CO_2 emissions performance and stimulating economy at the same time. - Highlights: • NDDF method is applied to evaluate China's regional energy and carbon performance. • Difficulties in identifying NDDF using parametric approach are discussed. • Panel data of China's regional integration using the price approach is constructed. • Local protectionism is particularly identified by filtering effects of geography. • World trade cannot substitute domestic integration for improving energy efficiency.

  11. The Role of CHP Plants in the Integration of Fluctuating Renewable Energy Sources

    DEFF Research Database (Denmark)

    Lund, Henrik

    2002-01-01

    The paper is an Expression of Interest to the European Commission about renewable energy sources and their integration in a energy system......The paper is an Expression of Interest to the European Commission about renewable energy sources and their integration in a energy system...

  12. The water-energy nexus at water supply and its implications on the integrated water and energy management.

    Science.gov (United States)

    Khalkhali, Masoumeh; Westphal, Kirk; Mo, Weiwei

    2018-09-15

    Water and energy are highly interdependent in the modern world, and hence, it is important to understand their constantly changing and nonlinear interconnections to inform the integrated management of water and energy. In this study, a hydrologic model, a water systems model, and an energy model were developed and integrated into a system dynamics modeling framework. This framework was then applied to a water supply system in the northeast US to capture its water-energy interactions under a set of future population, climate, and system operation scenarios. A hydrologic model was first used to simulate the system's hydrologic inflows and outflows under temperature and precipitation changes on a weekly-basis. A water systems model that combines the hydrologic model and management rules (e.g., water release and transfer) was then developed to dynamically simulate the system's water storage and water head. Outputs from the water systems model were used in the energy model to estimate hydropower generation. It was found that critical water-energy synergies and tradeoffs exist, and there is a possibility for integrated water and energy management to achieve better outcomes. This analysis also shows the importance of a holistic understanding of the systems as a whole, which would allow utility managers to make proactive long-term management decisions. The modeling framework is generalizable to other water supply systems with hydropower generation capacities to inform the integrated management of water and energy resources. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A study of existing experimental data and validation process for evaluated high energy nuclear data. Report of task force on integral test for JENDL High Energy File in Japanese Nuclear Data Committee

    International Nuclear Information System (INIS)

    Oyama, Yukio; Baba, Mamoru; Watanabe, Yukinobu

    1998-11-01

    JENDL High Energy File (JENDL-HE) is being produced by Japanese Nuclear Data Committee (JNDC) to provide common fundamental nuclear data in the intermediate energy region for many applications concerning a basic research, an accelerator-driven nuclear waste transmutation, a fusion material study, and medical applications like the radiation therapy. The first version of JENDL-HE, which contains the evaluated nuclear data up to 50 MeV, is planned to release in 1998. However, a method of integral test with which we can validate the high-energy nuclear data file has not been established. The validation of evaluated nuclear data through the integral tests is necessary to promote utilization of JENDL-HE. JNDC set up a task force in 1997 to discuss the problems concerning the integral tests of JENDL-HE. The task force members have surveyed and studied the current status of the problems for a year to obtain a guideline for development of the high-energy nuclear database. This report summarizes the results of the survey and study done by the task force for JNDC. (author)

  14. Review of Integration of Distributed Energy Resources (DERs) into Power Systems

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Xu, Zhao

    2011-01-01

    state‐of‐the‐art DER integration concepts  relations existing DER integration concepts to the EV system The power balancing challenges of power systems brought by high penetration of intermittent DER have been discussed, especially the wind power integration in the Danish context. The relevance...... of the integration of electric vehicles (EVs) to the DER integration concepts have been analyzed as well based on the energy storage potential of EVs.   Two main concepts for DER integration, virtual power plant (VPP) and microgrids, are described and a comparison of the two concepts have been done. The comparison......An overview of the integration of distributed energy resources (DER) into power systems has been presented in this report. Different aspects of integration of DER into power systems have been reviewed and discussed which are listed below.    needs of DER integration into power systems  various...

  15. Excitation energy of the fragments produced in central collisions of Xe + Sn at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Hudan, S.; Chbihi, A.; Frankland, J.D. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)] [and others

    2000-07-01

    Characteristics of the primary fragments produced in central collisions of Xe + Sn system from 32 to 50 AMeV have been deduced. By using the relative velocity correlation technique between the light charged particles (LCP) and detected fragments, we were able to extract the multiplicities and average kinetic energy of the secondary evaporated LCP. We then reconstructed the size and excitation energy of the primary fragments. For each bombarding energy a constant value of the excitation energy per nucleon, over the whole range of fragment charge has been found, suggesting that on the average thermodynamical equilibrium has been achieved at the freeze-out. This value increases slightly from 2.8 to 3.8 AMeV with a large increase of bombarding energy, 32 to 50 AMeV. (authors)

  16. Excitation energy of the fragments produced in central collisions of Xe + Sn at intermediate energies

    International Nuclear Information System (INIS)

    Hudan, S.; Chbihi, A.; Frankland, J.D.

    2000-01-01

    Characteristics of the primary fragments produced in central collisions of Xe + Sn system from 32 to 50 AMeV have been deduced. By using the relative velocity correlation technique between the light charged particles (LCP) and detected fragments, we were able to extract the multiplicities and average kinetic energy of the secondary evaporated LCP. We then reconstructed the size and excitation energy of the primary fragments. For each bombarding energy a constant value of the excitation energy per nucleon, over the whole range of fragment charge has been found, suggesting that on the average thermodynamical equilibrium has been achieved at the freeze-out. This value increases slightly from 2.8 to 3.8 AMeV with a large increase of bombarding energy, 32 to 50 AMeV. (authors)

  17. Integrated Land-Water-Energy assessment using the Foreseer Tool

    Science.gov (United States)

    Allwood, Julian; Konadu, Dennis; Mourao, Zenaida; Lupton, Rick; Richards, Keith; Fenner, Richard; Skelton, Sandy; McMahon, Richard

    2016-04-01

    This study presents an integrated energy and resource modelling and visualisation approach, ForeseerTM, which characterises the interdependencies and evaluates the land and water requirement for energy system pathways. The Foreseer Tool maps linked energy, water and land resource futures by outputting a set of Sankey diagrams for energy, water and land, showing the flow from basic resource (e.g. coal, surface water, and forested land) through transformations (e.g. fuel refining and desalination) to final services (e.g. sustenance, hygiene and transportation). By 'mapping' resources in this way, policy-makers can more easily understand the competing uses through the identification of the services it delivers (e.g. food production, landscaping, energy), the potential opportunities for improving the management of the resource and the connections with other resources which are often overlooked in a traditional sector-based management strategy. This paper will present a case study of the UK Carbon Plan, and highlights the need for integrated resource planning and policy development.

  18. Mapping the energy footprint of produced water management in New Mexico

    Science.gov (United States)

    Zemlick, Katie; Kalhor, Elmira; Thomson, Bruce M.; Chermak, Janie M.; Sullivan Graham, Enid J.; Tidwell, Vincent C.

    2018-02-01

    Hydraulic fracturing (HF) and horizontal drilling have revolutionized the fossil fuel industry by enabling production from unconventional oil and gas (UOG) reserves. However, UOG development requires large volumes of water, and subsequent oil and gas production from both conventional and unconventional wells generate large volumes of produced water (PW). While PW is usually considered a waste product, its reuse may lessen demand for freshwater supplies, reduce costs for transportation and disposal, and reduce the risks for injection-induced seismicity. Whether this water is disposed of or treated and reused, both methods require significant amounts of energy. The objective of this study was to identify the primary energy demands of alternative water management strategies, and to characterize and quantify their geographic variability in four oil and gas producing basins in New Mexico using a single year of production. Results illustrate the importance of each component of each produced water management strategy in determining its total energy footprint. Based on 2015 production and water use data, the energy to extract fresh groundwater for hydraulic fracturing (34 GWh-th yr-1.) exceeds the energy that would be required if the same volume of PW were treated chemically (19 GWh-th yr-1.). In addition, the energy required to transport fresh water and dispose of PW (167 GWh-th yr-1.) is far greater than that required to move treated PW (8 GWh-th yr-1.) to a point of reuse. Furthermore, transportation distances, which contribute significantly to the total energy footprint of a given management strategy, are underestimated by nearly 50% state-wide. This indicates that reuse may be an even more energy efficient way to manage PW, even with energy-intensive treatment strategies like electrocoagulation. Reuse of PW for HF is not only more energy efficient than conventional management techniques, it also reduces both demand for scarce fresh water resources and

  19. Energy, exergy and economic assessments of a novel integrated biomass based multigeneration energy system with hydrogen production and LNG regasification cycle

    International Nuclear Information System (INIS)

    Taheri, M.H.; Mosaffa, A.H.; Farshi, L. Garousi

    2017-01-01

    In this work, a novel integrated biomass based multigeneration energy system is presented and investigated for power, cooling and hydrogen production. The proposed system consists of a combination of biomass integrated gasifier-gas turbine cycle, a Rankine cycle, a cascade organic Rankine cycle, an absorption refrigeration system and a PEM to produce hydrogen. This system uses cold energy of LNG as a thermal sink. Comprehensive thermodynamic and economic analyses as well as an optimization are performed. The effects of operating parameters on thermodynamic performance and total cost rate are investigated for overall system and subsystems. The results show that the fuel mass flow rate is the dominant factor affecting the variation of energy efficiency and total cost rate. An increase in fuel mass flow rate from 4 kg s"−"1 to 10 kg s"−"1 leads to a decrease of 8.5% and an increase of 122.8% overall energy efficiency and total cost rate, respectively. Also, the largest increase in exergy efficiency occurs when gas turbine inlet temperature increases. The results of optimization showed that the highest net power output, mass flow rate of natural gas delivered to city and the flue gas temperature discharged to the environment are obtained for the exergy efficiency optimal design. - Highlights: • A novel multigeneration system is investigated and optimized thermodynamically and economically. • This system is proposed for power, cooling and hydrogen production. • Proposed system uses LNG cold energy thermal sink that can generate power after vaporization. • The effects of operating parameters on energy and exergy efficiencies and total cost rate are investigated. • An optimization is applied based on the energy, exergy and economic viewpoints.

  20. BioCO2 - a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products.

    Science.gov (United States)

    Skjånes, Kari; Lindblad, Peter; Muller, Jiri

    2007-10-01

    Many areas of algae technology have developed over the last decades, and there is an established market for products derived from algae, dominated by health food and aquaculture. In addition, the interest for active biomolecules from algae is increasing rapidly. The need for CO(2) management, in particular capture and storage is currently an important technological, economical and global political issue and will continue to be so until alternative energy sources and energy carriers diminish the need for fossil fuels. This review summarizes in an integrated manner different technologies for use of algae, demonstrating the possibility of combining different areas of algae technology to capture CO(2) and using the obtained algal biomass for various industrial applications thus bringing added value to the capturing and storage processes. Furthermore, we emphasize the use of algae in a novel biological process which produces H(2) directly from solar energy in contrast to the conventional CO(2) neutral biological methods. This biological process is a part of the proposed integrated CO(2) management scheme.

  1. Detection systems for high energy particle producing gaseous ionization

    International Nuclear Information System (INIS)

    Duran, I.; Martinez, L.

    1985-01-01

    This report contains a review on the most used detectors based on the collection of the ionization produced by high energy particles: proportional counters, multiwire proportional chambers, Geiger-Mueller counters and drift chambers. In six sections, the fundamental principles, the field configuration and useful gas mixtures are discussed, most relevant devices are reported. (author)

  2. Renewable energy and integrated resource planning

    International Nuclear Information System (INIS)

    Porter, K.L.

    1992-01-01

    Integrated resource planning, or IRP, is a new means of comparing resource choices for electric and gas utilities. Since its inception in 1986, at least 15 states have implemented IRP, and more are considering adopting IRP or have limited IRP processes in place. Some of the characteristics of IRP, such as increased public participation and an expanded analysis of the costs and benefits of energy resources, can contribute to addressing some of the technical and market barriers that hinder the increased deployment of renewable energy technologies. This paper looks at the status of some of these issues

  3. Thermal hydrolysis integration in the anaerobic digestion process of different solid wastes: energy and economic feasibility study.

    Science.gov (United States)

    Cano, R; Nielfa, A; Fdz-Polanco, M

    2014-09-01

    An economic assessment of thermal hydrolysis as a pretreatment to anaerobic digestion has been achieved to evaluate its implementation in full-scale plants. Six different solid wastes have been studied, among them municipal solid waste (MSW). Thermal hydrolysis has been tested with batch lab-scale tests, from which an energy and economic assessment of three scenarios is performed: with and without energy integration (recovering heat to produce steam in a cogeneration plant), finally including the digestate management costs. Thermal hydrolysis has lead to an increase of the methane productions (up to 50%) and kinetics parameters (even double). The study has determined that a proper energy integration design could lead to important economic savings (5 €/t) and thermal hydrolysis can enhance up to 40% the incomes of the digestion plant, even doubling them when digestate management costs are considered. In a full-scale MSW treatment plant (30,000 t/year), thermal hydrolysis would provide almost 0.5 M€/year net benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The regional energy integration: the latin-american experiences; L'integration energetique regionale: les experiences latino-americaines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The ways of the regional economic integrations are not identical and generate different repercussions on the markets and the energy industries evolution. The example of the Latin America proposes many various experiences to evaluate the stakes and the limits of each regional integrations. These limits lead to solution researches including indisputable convergencies. The first part of this document presents the genesis of these regional economic integrations experiences in Latina America, to study in the second part the energy consequences of the liberal ALENA and of the more political MERCOSUR. (A.L.B.)

  5. City-integrated renewable energy for urban sustainability.

    Science.gov (United States)

    Kammen, Daniel M; Sunter, Deborah A

    2016-05-20

    To prepare for an urban influx of 2.5 billion people by 2050, it is critical to create cities that are low-carbon, resilient, and livable. Cities not only contribute to global climate change by emitting the majority of anthropogenic greenhouse gases but also are particularly vulnerable to the effects of climate change and extreme weather. We explore options for establishing sustainable energy systems by reducing energy consumption, particularly in the buildings and transportation sectors, and providing robust, decentralized, and renewable energy sources. Through technical advancements in power density, city-integrated renewable energy will be better suited to satisfy the high-energy demands of growing urban areas. Several economic, technical, behavioral, and political challenges need to be overcome for innovation to improve urban sustainability. Copyright © 2016, American Association for the Advancement of Science.

  6. Integration of liberalised energy market

    International Nuclear Information System (INIS)

    Klinge Jacobsen, H.; Fristrup, P.; Munksgaard, J.; Pade, L.L.; Henriksen, T.C.

    2004-03-01

    The markets for electricity, natural gas and district heating are inter-linked both with respect to the energy flows and with respect to ownership of supply sources and infrastructure. The extent and the possible consequences of these linkages are examined in this report. The options for public interventions in these markets are analysed to compare instruments with respect to their ability to provide the necessary incentives for an efficient functioning of the liberalised markets. Aspects of retail markets with households facing multi-product distribution companies and aspects of the production of combined heat and power based on natural gas has been covered. This project identifies some important aspects related to final consumers and the interaction of markets with different types of regulation and scope for liberalisation. From a Danish perspective the district heat market and the dependence on market conditions for natural gas is a specific concern. Consumer concerns also relate to the creation of multi-product energy distribution companies that are privately owned and possibly controlled by foreign interests. Such companies might use bundled sales of energy products to extent their dominant position in one market e.g. a regulated heat market to a market with considerable competition (electricity). Bundled sales would not necessarily result in a loss for the consumer due to economies of scope in supplying energy products. However, the regulatory authorities responsible for district heat prices will have a more complicated job in surveying the bundled price setting. Integration of activities within natural gas distribution and CHP production has been analysed with respect to incentives and welfare implications. Results of the project point to critical market conditions and identify areas of concern for regulatory policies. The analysis shows that there is a large welfare loss associated with having monopolies in both natural gas supplies and the CHP production

  7. The Integration of Gasification Systems with Gas Engine by Developing Wet Tar Scrubbers and Gas Filter to Produce Electrical Energy from Biomass

    Directory of Open Access Journals (Sweden)

    Siregar Kiman

    2018-01-01

    Full Text Available The need for energy especially biomass-based renewable energy continues to increase in Indonesia. The objective of this research was to design downdraft gasifier machine with high content of combustible gas on gas engine. Downdraft gasifier machine was adjusted with the synthetic gas produced from biomass. Besides that, the net energy ratio, net energy balance, renewable index, economic analysis and impact assessment also been conducted. Gas engine that was designed in this research had been installed with capacity of 25 kW with diameter and height of reactorwere 900 mm and 1 000 mm respectively. The method used here werethe design the Detailed Engineering Design, assembly, and performance test of gas engine. The result showed that gas engine for biomass can be operated for 8 h with performance engine of 84 % and capacity of 25 kW. Net energy balance, net energy ratio, and renewable index was 30 MJ/kW h electric; 0.89; 0.76 respectively. The value of GHG emission of Biomass Power Generation is 0.03 kg-CO2 eq per MJ. Electrical production cost for Biomass Power Generation is about IDR 1 500 per kW h which is cheaper than solar power generation which is about of IDR 3 300 per kW h.

  8. Time-resolved energy spectrum of a pseudospark-produced high-brightness electron beam

    International Nuclear Information System (INIS)

    Myers, T.J.; Ding, B.N.; Rhee, M.J.

    1992-01-01

    The pseudospark, a fast low-pressure gas discharge between a hollow cathode and a planar anode, is found to be an interesting high-brightness electron beam source. Typically, all electron beam produced in the pseudospark has the peak current of ∼1 kA, pulse duration of ∼50 ns, and effective emittance of ∼100 mm-mrad. The energy information of this electron beam, however, is least understood due to the difficulty of measuring a high-current-density beam that is partially space-charge neutralized by the background ions produced in the gas. In this paper, an experimental study of the time-resolved energy spectrum is presented. The pseudospark produced electron beam is injected into a vacuum through a small pinhole so that the electrons without background ions follow single particle motion; the beam is sent through a negative biased electrode and the only portion of beam whose energy is greater than the bias voltage can pass through the electrode and the current is measured by a Faraday cup. The Faraday cup signals with various bias voltage are recorded in a digital oscilloscope. The recorded waveforms are then numerically analyzed to construct a time-resolved energy spectrum. Preliminary results are presented

  9. A New Modular Multilevel Converter with Integrated Energy Storage

    DEFF Research Database (Denmark)

    Trintis, Ionut; Munk-Nielsen, Stig; Teodorescu, Remus

    2011-01-01

    applications. Furthermore, this solution can interconnect a DC and AC grid with bidirectional power flow, where both of them can receive or generate excess power to the third source integrated in each converter sub-module. This particularity enables the converter usage as a high voltage UPS system......This paper introduces a new modular converter with integrated energy storage based on the cascaded half-bridge modular multilevel converter with common DC bus. It represents a complete modular solution with power electronics and energy storage building blocks, for medium and high voltage...... in the future HVDC meshed grids. Its functionality and flexibility makes the converter independent on the energy storage unit characteristic. The converter concept with its basic functions and control schemes are described and evaluated in this paper....

  10. REopt: A Platform for Energy System Integration and Optimization: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, T.; Cutler, D.; Anderson, K.; Olis, D.; Elgqvist, E.; Callahan, M.; Walker, A.

    2014-08-01

    REopt is NREL's energy planning platform offering concurrent, multi-technology integration and optimization capabilities to help clients meet their cost savings and energy performance goals. The REopt platform provides techno-economic decision-support analysis throughout the energy planning process, from agency-level screening and macro planning to project development to energy asset operation. REopt employs an integrated approach to optimizing a site?s energy costs by considering electricity and thermal consumption, resource availability, complex tariff structures including time-of-use, demand and sell-back rates, incentives, net-metering, and interconnection limits. Formulated as a mixed integer linear program, REopt recommends an optimally-sized mix of conventional and renewable energy, and energy storage technologies; estimates the net present value associated with implementing those technologies; and provides the cost-optimal dispatch strategy for operating them at maximum economic efficiency. The REopt platform can be customized to address a variety of energy optimization scenarios including policy, microgrid, and operational energy applications. This paper presents the REopt techno-economic model along with two examples of recently completed analysis projects.

  11. Gains from an integrated market for tradable renewable energy credits

    International Nuclear Information System (INIS)

    Mozumder, Pallab; Marathe, Achla

    2004-01-01

    Decoupling the environmental attributes of renewable energy (RE) generation from the physical unit of energy is an innovative mechanism for marketing green or renewable power. The introduction of 'Tradable Renewable Energy Credits' (TRECs) allows the green power attributes of energy to be sold or traded separately from the physical unit of energy. Since the green power certificate system removes potential locational and physical bottlenecks, both suppliers and consumers gain flexibility in the marketplace. The TREC is also an efficient tool to meet 'Renewable Portfolio Standard' (RPS) required by different states in the US. This paper discusses the RPS requirements for different states and examines the implications of an integrated TREC market. It offers a competitive setting to the consumers to pay for renewable energy and a cost effective tool to support renewable energy generation [Grace and Wiser, 2002]. This paper also highlights some practical difficulties that should be addressed in order to establish an efficient integrated TREC market

  12. Air source integrated heat pump simulation model for EnergyPlus

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo; New, Joshua; Baxter, Van

    2017-12-01

    An Air Source Integrated Heat Pump (AS-IHP) is an air source, multi-functional spacing conditioning unit with water heating function (WH), which can lead to great energy savings by recovering the condensing waste heat for domestic water heating. This paper summarizes development of the EnergyPlus AS-IHP model, introducing the physics, sub-models, working modes, and control logic. Based on the model, building energy simulations were conducted to demonstrate greater than 50% annual energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, using the EnergyPlus quick-service restaurant template building. We assessed water heating energy saving potentials using AS-IHP versus both gas and electric baseline systems, and pointed out climate zones where AS-IHPs are promising. In addition, a grid integration strategy was investigated to reveal further energy saving and electricity cost reduction potentials, via increasing the water heating set point temperature during off-peak hours and using larger water tanks.

  13. The integration of renewable energy in the French electricity system: what challenges for optimization?

    International Nuclear Information System (INIS)

    Mathieu, Mathilde; Ruedinger, Andreas; Pescia, Dimitri

    2016-01-01

    demand-side potential for flexibility. On the other hand, the deployment of RES calls for a considering of the size and operational management of the nuclear fleet in the future, between a traditional function as baseload or more flexible load-following. The implementation of market premia aims at facilitating the economic integration of RES by making producers more responsible. It also represents an interesting potential to optimize the RES technical integration. Nevertheless, a careful calibration of the mechanism is necessary to limit the impact of this change in regulation on the cost and achievement of the targets for electric renewable energy development

  14. The Economic Potential of Nuclear-Renewable Hybrid Energy Systems Producing Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    This report is one in a series of reports that Idaho National Laboratory and the Joint Institute for Strategic Energy Analysis are publishing that address the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). This report discusses an analysis of the economic potential of a tightly coupled N-R HES that produces electricity and hydrogen. Both low and high temperature electrolysis options are considered in the analysis. Low-temperature electrolysis requires only electricity to convert water to hydrogen. High temperature electrolysis requires less electricity because it uses both electricity and heat to provide the energy necessary to electrolyze water. The study finds that, to be profitable, the examined high-temperature electrosis and low-temperature electrosis N-R HES configurations that produce hydrogen require higher electricity prices, more electricity price volatility, higher natural gas prices, or higher capacity payments than the reference case values of these parameters considered in this analysis.

  15. Integrated waste-to-energy conversion and waste transportation within island communities

    International Nuclear Information System (INIS)

    Zsigraiova, Zdena; Tavares, Gilberto; Semiao, Viriato; Carvalho, Maria de Graca

    2009-01-01

    Usually in islands both primary energy sources and drinking water are missing. Additionally, municipal solid waste (MSW) must be managed avoiding exclusive use of landfills, which limits sustainable development. Power generation from MSW incineration contributes significantly to replacing energy produced from fossil fuels and to reduce overall emissions. A solution based on thermodynamics, environmental and economic analyses and 3D-GIS modelling for the afore-mentioned problems for Cape Verde is proposed. This model integrates waste transportation optimisation and incineration with energy recovery combining production of heat and power (CHP), the heat being used for drinking water production. The results show that extraction condensing steam turbines are more suitable when power production is a priority (5.0 MW with 4000 m 3 /d of drinking water), whereas back-pressure turbines yield 5540-6650 m 3 /d of drinking water with an additional power production of 3.3-4.7 MW. The environmental and economic assessment performed shows the feasibility of the proposed CHP solution, which brings a considerable reduction in net air emissions (1.6 kt), including a significant decrease in the greenhouse gas emissions (131 ktCO 2 ), and that the revenue from energy sales ( Euro 15 million) has potential to balance the incineration cost. Moreover, when terrain relief is accounted for in the route optimisation for minimum fuel consumption, savings up to 11% are obtained.

  16. Hydrogen and renewable energy sources integrated system for greenhouse heating

    Directory of Open Access Journals (Sweden)

    Ileana Blanco

    2013-09-01

    Full Text Available A research is under development at the Department of Agro- Environmental Sciences of the University of Bari “Aldo Moro” in order to investigate the suitable solutions of a power system based on solar energy (photovoltaic and hydrogen, integrated with a geothermal heat pump for powering a self sustained heated greenhouse. The electrical energy for heat pump operation is provided by a purpose-built array of solar photovoltaic modules, which supplies also a water electrolyser system controlled by embedded pc; the generated dry hydrogen gas is conserved in suitable pressured storage tank. The hydrogen is used to produce electricity in a fuel cell in order to meet the above mentioned heat pump power demand when the photovoltaic system is inactive during winter night-time or the solar radiation level is insufficient to meet the electrical demand. The present work reports some theoretical and observed data about the electrolyzer operation. Indeed the electrolyzer has required particular attention because during the experimental tests it did not show a stable operation and it was registered a performance not properly consistent with the predicted performance by means of the theoretical study.

  17. Integration of renew able energy sources in smart grid: a review

    International Nuclear Information System (INIS)

    Zafar, S.; Nawaz, K.; Naqvi, S.A.R.; Malik, T.N.

    2013-01-01

    The increasing complexity of the existing power grid due to rapid population growth, development in technology, infrastructure and computational tools are the factors that contribute to the need of deployment of smart grid for secure and efficient use of electrical energy. The modernization of electric grids toward a smart grid is being carried out to improve reliability, facilitate integration of renewable energies, and improve power consumption management. Due to continuous depletion of primary fuel resources and global concern about the environmental pollution, the development of smart grids based on renewable energy resources has gained huge strategic significance now a days to resolve the energy crisis. However the intermittent and fluctuating nature of these sources makes the integration a difficult task that needs to be effectively addressed. Firstly this paper briefly discuss the emerging renewable energy resources (RERs) and Energy storage systems (EES). Secondly this work comprehensively reviews the potential challenges in integration of these sources in smart grid along with the applied control strategies for their facilitation and some practical case studies. (author)

  18. Integrated solar energy system optimization

    Science.gov (United States)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  19. Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters

    International Nuclear Information System (INIS)

    Hackl, Roman; Harvey, Simon

    2013-01-01

    Highlights: • Framework methodology for energy efficiency of process plants and total sites. • Identification of suitable biorefinery based on host site future energy systems. • Case study results show large energy savings of site wide heat integration. • Case study on refrigeration systems: 15% shaft work savings potential. • Case study on biorefinery integration: utility savings potential of up to 37%. - Abstract: Energy intensive industries, such as the bulk chemical industry, are facing major challenges and adopting strategies to face these challenges. This paper investigates options for clusters of chemical process plants to decrease their energy and emission footprints. There is a wide range of technologies and process integration opportunities available for achieving these objectives, including (i) decreasing fossil fuel and electricity demand by increasing heat integration within individual processes and across the total cluster site; (ii) replacing fossil feedstocks with renewables and biorefinery integration with the existing cluster; (iii) increasing external utilization of excess process heat wherever possible. This paper presents an overview of the use of process integration methods for development of chemical clusters. Process simulation, pinch analysis, Total Site Analysis (TSA) and exergy concepts are combined in a holistic approach to identify opportunities to improve energy efficiency and integrate renewable feedstocks within such clusters. The methodology is illustrated by application to a chemical cluster in Stenungsund on the West Coast of Sweden consisting of five different companies operating six process plants. The paper emphasizes and quantifies the gains that can be made by adopting a total site approach for targeting energy efficiency measures within the cluster and when investigating integration opportunities for advanced biorefinery concepts compared to restricting the analysis to the individual constituent plants. The

  20. Techno-economic assessment for the integration into a multi-product plant based on cascade utilization of geothermal energy

    International Nuclear Information System (INIS)

    Rubio-Maya, Carlos; Pastor Martínez, Edgar; Romero, Carlos E.; Ambriz Díaz, Víctor M.; Pacheco-Ibarra, J. Jesús

    2016-01-01

    Highlights: • Cascade utilization of low- and mid-temperature geothermal energy is presented. • The system consists of three thermal levels producing power, ice and useful heat. • A techno-economic analysis is performed evaluating energy and economic benefits. • A simple optimization algorithm was developed to optimize system benefits. • Inconvenience of low thermal efficiency and high capital cost of ORC were overcome. - Abstract: The Organic Rankine Cycle (ORC) is a technology that has reached maturity in cogeneration or waste heat applications. However, due to low thermal efficiency and high capital cost of ORC machines, geothermal-based ORC applications represent only a small percent sharing of the geothermal power capacity worldwide. Several countries have reported a great potential of low- and mid-temperature geothermal energy, representing an opportunity to explore a more efficient ORC integration into non-conventional applications of geothermal energy. One alternative, resembling the polygeneration concept, is known as cascade utilization of geothermal energy, where different energy outputs or products can be obtained at the same time, while improving thermal and economic performance. In this paper, a techno-economic analysis for the selection of small capacity ORC machines and absorption chillers (for ice production), to be integrated into a polygeneration plant that makes use of geothermal energy in a cascade arrangement, is presented. A simple cascade system that consists of three sequential thermal levels, producing simultaneously power, ice and useful heat is proposed, considering typical temperatures of geothermal zones in Mexico. A simple optimization algorithm, based on energy and economic models, including binary variables and manufacturer’s data, was developed to evaluate and determine optimal ORC and absorption chiller units. Results show, firstly, that inconvenience of low thermal efficiency and high capital cost of ORC machines can

  1. Integrated Solar-Energy-Harvesting and -Storage Device

    Science.gov (United States)

    whitacre, Jay; Fleurial, Jean-Pierre; Mojarradi, Mohammed; Johnson, Travis; Ryan, Margaret Amy; Bugga, Ratnakumar; West, William; Surampudi, Subbarao; Blosiu, Julian

    2004-01-01

    A modular, integrated, completely solid-state system designed to harvest and store solar energy is under development. Called the power tile, the hybrid device consists of a photovoltaic cell, a battery, a thermoelectric device, and a charge-control circuit that are heterogeneously integrated to maximize specific energy capacity and efficiency. Power tiles could be used in a variety of space and terrestrial environments and would be designed to function with maximum efficiency in the presence of anticipated temperatures, temperature gradients, and cycles of sunlight and shadow. Because they are modular in nature, one could use a single power tile or could construct an array of as many tiles as needed. If multiple tiles are used in an array, the distributed and redundant nature of the charge control and distribution hardware provides an extremely fault-tolerant system. The figure presents a schematic view of the device.

  2. Integrated online energy and battery life management for hybrid long haulage truck

    NARCIS (Netherlands)

    Pham, H.T.; Kessels, J.T.B.A.; Bosch, van den P.P.J.; Huisman, R.G.M.

    2014-01-01

    Battery lifetime management plays an important role for successful commercializing hybrid electric vehicles. This paper aims at integrating the battery lifetime management into the energy management system of a heavy-duty hybrid electric truck. The developed strategy called Integrated Energy

  3. Convexity and Weighted Integral Inequalities for Energy Decay Rates of Nonlinear Dissipative Hyperbolic Systems

    International Nuclear Information System (INIS)

    Alabau-Boussouira, Fatiha

    2005-01-01

    This work is concerned with the stabilization of hyperbolic systems by a nonlinear feedback which can be localized on a part of the boundary or locally distributed. We show that general weighted integral inequalities together with convexity arguments allow us to produce a general semi-explicit formula which leads to decay rates of the energy in terms of the behavior of the nonlinear feedback close to the origin. This formula allows us to unify for instance the cases where the feedback has a polynomial growth at the origin, with the cases where it goes exponentially fast to zero at the origin. We also give three other significant examples of nonpolynomial growth at the origin. We also prove the optimality of our results for the one-dimensional wave equation with nonlinear boundary dissipation. The key property for obtaining our general energy decay formula is the understanding between convexity properties of an explicit function connected to the feedback and the dissipation of energy

  4. Renewable energy integration into the Spanish power system

    International Nuclear Information System (INIS)

    Duvison Garcia, Miguel R.; Rivas Cuenca, Ana

    2013-01-01

    The increase in renewable energy sources in the Spanish peninsular system, along with the installation of other technologies represents a challenge due to the particularities of this type of technologies. Innovative solutions and new operation paradigms may be needed in order to cope with these challenges. Grid codes must incorporate new specifications for these technologies and demand management strategies must be incorporated in control centers in order to balance the system, maximize renewable production and maintain system security. In real time, the most significant improvements that ease integration of renewable resources are the introduction of observability and controllability, which is especially important in dealing with the problem of system balancing and the impact of renewable energy on matching generation and demand. In this regard the commissioning of a control center specifically for management of these technologies have been taken in the Spanish electrical system in order to integrate the maximum amount of renewable energy

  5. Micro-relay technology for energy-efficient integrated circuits

    CERN Document Server

    Kam, Hei

    2015-01-01

    This book describes the design of relay-based circuit systems from device fabrication to circuit micro-architectures. This book is ideal for both device engineers as well as circuit system designers and highlights the importance of co-design across design hierarchies when optimizing system performance (in this case, energy-efficiency). This book is ideal for researchers and engineers focused on semiconductors, integrated circuits, and energy efficient electronics. This book also: ·         Covers microsystem fabrication, MEMS device design, circuit design, circuit micro-architecture, and CAD ·         Describes work previously done in the field and also lays the groundwork and criteria for future energy-efficient device and system design ·         Maximizes reader insights into the design and modeling of micro-relay, micro-relay reliability, integrated circuit design with micro-relays, and more

  6. Probabilistic Approaches to Energy Systems

    DEFF Research Database (Denmark)

    Iversen, Jan Emil Banning

    of renewable energy generation. Particularly we focus on producing forecasting models that can predict renewable energy generation, single user demand, and provide advanced forecast products that are needed for an efficient integration of renewable energy into the power generation mix. Such forecasts can...... integration of renewable energy.Thus forecast products should be developed in unison with the decision making tool as they are two sides of the same overall challenge.......Energy generation from wind and sun is increasing rapidly in many parts of the world. This presents new challenges on how to integrate this uncertain, intermittent and non-dispatchable energy source. This thesis deals with forecasting and decision making in energy systems with a large proportion...

  7. The Integral Fast Reactor concept: Today's hope for tomorrow's electrical energy needs

    International Nuclear Information System (INIS)

    Dwight, C.C.; Phipps, R.D.

    1989-01-01

    Acid rain and the greenhouse effect are getting more attention as their impacts on the environment become evident around the world. Substantial evidence indicates that fossil fuel combustion for electrical energy production activities is a key cause of those problems. A change in electrical energy production policy is essential to a stable, healthy environment. That change is inevitable, it's just a matter of when and at what cost. Vision now, instead of reaction later, both in technological development and public perception, will help to limit the costs of change. The Integral Fast Reactor (IFR) is a visionary concept developed by Argonne National Laboratory that involves electrical energy production through fissioning of heavy metals by fast neutrons in a reactor cooled by liquid sodium. Physical characteristics of the coolant and fuel give the reactor impressive characteristics of inherent and passive safety. Spent fuel is pyrochemically reprocessed and returned to the reactor in the IFR's closed fuel cycle. Advantages in waste management are realized, and the reactor has the potential for breeding, i.e., producing as much or more fuel than it uses. This paper describes the IFR concept and shows how it is today's hope for tomorrow's electrical energy needs. 14 refs., 1 fig., 1 tab

  8. Energy expressions in density-functional theory using line integrals.

    NARCIS (Netherlands)

    van Leeuwen, R.; Baerends, E.J.

    1995-01-01

    In this paper we will address the question of how to obtain energies from functionals when only the functional derivative is given. It is shown that one can obtain explicit expressions for the exchange-correlation energy from approximate exchange-correlation potentials using line integrals along

  9. A heuristic-based approach for reliability importance assessment of energy producers

    International Nuclear Information System (INIS)

    Akhavein, A.; Fotuhi Firuzabad, M.

    2011-01-01

    Reliability of energy supply is one of the most important issues of service quality. On one hand, customers usually have different expectations for service reliability and price. On the other hand, providing different level of reliability at load points is a challenge for system operators. In order to take reasonable decisions and obviate reliability implementation difficulties, market players need to know impacts of their assets on system and load-point reliabilities. One tool to specify reliability impacts of assets is the criticality or reliability importance measure by which system components can be ranked based on their effect on reliability. Conventional methods for determination of reliability importance are essentially on the basis of risk sensitivity analysis and hence, impose prohibitive calculation burden in large power systems. An approach is proposed in this paper to determine reliability importance of energy producers from perspective of consumers or distribution companies in a composite generation and transmission system. In the presented method, while avoiding immense computational burden, the energy producers are ranked based on their rating, unavailability and impact on power flows in the lines connecting to the considered load points. Study results on the IEEE reliability test system show successful application of the proposed method. - Research highlights: → Required reliability level at load points is a concern in modern power systems. → It is important to assess reliability importance of energy producers or generators. → Generators can be ranked based on their impacts on power flow to a selected area. → Ranking of generators is an efficient tool to assess their reliability importance.

  10. City and mobility: towards an integrated approach to resolve energy problems

    Directory of Open Access Journals (Sweden)

    Carmela Gargiulo

    2012-07-01

    Full Text Available The issue of integration between city, mobility and energy plays a central role in the current EU policies, aimed at achieving energy saving targets, independence from fossil fuels and enhance of the urban systems resilience, but the strategies of the single states are, however, still far from its implementation. This paper proposes a reading of the current policies and of the recent initiatives aimed at improving the energy efficiency of settlements, implemented at both Community and national level, aimed at laying the groundwork for the definition of an integrated approach between city and mobility to resolve energy problem. Therefore, the paper is divided into six parts. The first part describes the transition from the concept of sustainability to the concept of resilience and illustrates the central role played by this one in the current urban and territorial research; the second part briefly analyzes the main and more recent European directives related to city, mobility and energy, while the third part describes how the energy problem is afforded in the current programming and planning tools. The fourth and fifth parts, are intended to describe the innovative practices promoted in some European and Italian cities concerning energy efficiency aimed at the integration between urban and transport systems. The last part of the paper, finally, deals with the definition of a new systemic approach for achieving objectives of energy sustainability. This approach aims at integrating strategies and actions for strategies of mobility governance, based on the certain assumption that the core for the most part of energy problems is mainly represented in medium and large cities. 

  11. The Integration of Sustainable Transport into Future Renewable Energy Systems in China

    DEFF Research Database (Denmark)

    Liu, Wen

    use are largely lost in the current fossil fuel dominated energy systems. Sustainable transport development requires solutions from an overall renewable energy system in which integration of large-scale intermittent renewable energy needs assistance. Technologies of alternative vehicle fuels...... in transport may play a role in furthering such integration. The objective of this research is to make a contribution to the development of methodologies to identify and develop future sustainable transport systems as well as to apply such methodologies to the case of China. In particular, the methodological...... development focuses on 1) identifying suitable transport technologies and strategies based on renewable energy and 2) evaluating such technologies from the perspective of overall renewable energy system integration. For this purpose, a methodological framework involving the research fields of both...

  12. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would

  13. Efficient integration of renewable energies in the German electricity market

    International Nuclear Information System (INIS)

    Nabe, C.A.

    2006-01-01

    Liberalisation of the electricity sector aims to carry out coordination tasks within the system by markets and market prices. This study examines how markets need to be designed to carry out coordination tasks caused by integration of renewable energies in an efficient way. This question is applied to the German electricity system and recommendations are derived from identified deficits. The examination uses the structure-conduct-performance approach of industrial organisation economics. Integration of renewable energies does not result in entirely new coordination tasks but complicates those that exist in any electricity supply system. Within the short-term coordination tasks provision and operation of reserve capacity is affected by renewable energies. Long-term coordination means that the relation between fixed and variable costs of generators as well as generator flexibility has to be adjusted to the characteristics of renewable energies. The relevant short-term coordination task with the network is congestion management. In the long run costs of grid expansion and permanent congestion management have to be balanced. For the execution of short-run coordination tasks integrated and centralised market architectures are superior to decentralised architectures. The increase of short-term coordination tasks due to renewable energies caused by inflexibilities of consumers and conventional generators results in more information that has to be considered. By centralising that information in one market, an increase in productive efficiency can be obtained. In Germany the increased coordination tasks are determined by the integration of wind generators into the electricity system. The present German market architecture results in inefficiencies in short-term coordination. This is demonstrated by an analysis of procedural rules and prices of the ancillary service markets. They demonstrate that market performance is low and significant deviations from competitive prices

  14. Integrated modeling approach for optimal management of water, energy and food security nexus

    Science.gov (United States)

    Zhang, Xiaodong; Vesselinov, Velimir V.

    2017-03-01

    Water, energy and food (WEF) are inextricably interrelated. Effective planning and management of limited WEF resources to meet current and future socioeconomic demands for sustainable development is challenging. WEF production/delivery may also produce environmental impacts; as a result, green-house-gas emission control will impact WEF nexus management as well. Nexus management for WEF security necessitates integrated tools for predictive analysis that are capable of identifying the tradeoffs among various sectors, generating cost-effective planning and management strategies and policies. To address these needs, we have developed an integrated model analysis framework and tool called WEFO. WEFO provides a multi-period socioeconomic model for predicting how to satisfy WEF demands based on model inputs representing productions costs, socioeconomic demands, and environmental controls. WEFO is applied to quantitatively analyze the interrelationships and trade-offs among system components including energy supply, electricity generation, water supply-demand, food production as well as mitigation of environmental impacts. WEFO is demonstrated to solve a hypothetical nexus management problem consistent with real-world management scenarios. Model parameters are analyzed using global sensitivity analysis and their effects on total system cost are quantified. The obtained results demonstrate how these types of analyses can be helpful for decision-makers and stakeholders to make cost-effective decisions for optimal WEF management.

  15. Small-scale hybrid plant integrated with municipal energy supply system

    International Nuclear Information System (INIS)

    Bakken, B.H.; Fossum, M.; Belsnes, M.M.

    2001-01-01

    This paper describes a research program started in 2001 to optimize environmental impact and cost of a small-scale hybrid plant based on candidate resources, transportation technologies and conversion efficiency, including integration with existing energy distribution systems. Special attention is given to a novel hybrid energy concept fuelled by municipal solid waste. The commercial interest for the model is expected to be more pronounced in remote communities and villages, including communities subject to growing prosperity. To enable optimization of complex energy distribution systems with multiple energy sources and carriers a flexible and robust methodology must be developed. This will enable energy companies and consultants to carry out comprehensive feasibility studies prior to investment, including technological, economic and environmental aspects. Governmental and municipal bodies will be able to pursue scenario studies involving energy systems and their impact on the environment, and measure the consequences of possible regulation regimes on environmental questions. This paper describes the hybrid concept for conversion of municipal solid waste in terms of energy supply, as well as the methodology for optimizing such integrated energy systems. (author)

  16. Detection systems for high energy particle producing gaseous ionization

    International Nuclear Information System (INIS)

    Martinez, L.; Duran, I.

    1985-01-01

    This report contains a review on the most used detectors based on the collection of the ionization produced by high energy particles: proportional counters, multiwire proportional chambers, Geiger-Muller counters and drift chambers. In six sections, the fundamental principles, the field configuration and useful gas mixtures, are discussed, most relevant devices are reported along 90 pages with 98 references. (Author) 98 refs

  17. Vacancy supersaturations produced by high-energy ion implantation

    International Nuclear Information System (INIS)

    Venezia, V.C.; Eaglesham, D.J.; Jacobson, D.C.; Gossmann, H.J.

    1998-01-01

    A new technique for detecting the vacancy clusters produced by high-energy ion implantation into silicon is proposed and tested. This technique takes advantage of the fact that metal impurities, such as Au, are gettered near one-half of the projected range (1/2 R p ) of MeV implants. The vacancy clustered region produced by a 2 MeV Si + implant into silicon has been labeled with Au diffused in from the front surface. The trapped Au was detected by Rutherford backscattering spectrometry (RBS) to profile the vacancy clusters. Cross section transmission electron microscopy (XTEM) analysis shows that the Au in the region of vacancy clusters is in the form of precipitates. By annealing MeV implanted samples prior to introduction of the Au, changes in the defect concentration within the vacancy clustered region were monitored as a function of annealing conditions

  18. Regional Energy Integration in Latin America and the Caribbean

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-15

    The regional study has been conducted by the WEC Latin American Member Committees. Having identified that the weak link between existing national energy infrastructures remains a major stumbling block to strengthening regional economic integration, this study aims to propose alternative views -- primarily on the integration of electricity and natural gas markets.

  19. Integrated Energy Design of the Building Envelope

    DEFF Research Database (Denmark)

    Nielsen, Martin Vraa

    This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research...

  20. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit

    Science.gov (United States)

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed

    2017-01-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for −4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz. PMID:28763043

  1. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit

    Directory of Open Access Journals (Sweden)

    Yuharu Shinki

    2017-08-01

    Full Text Available This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for −4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz.

  2. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit.

    Science.gov (United States)

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed; Kanaya, Haruichi

    2017-08-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for -4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz.

  3. Perceptions, realities, concession-What is driving the integration of European energy policies?

    International Nuclear Information System (INIS)

    Pointvogl, Andreas

    2009-01-01

    Today's European energy policy is characterised by national approaches portraying it as one of the least successful areas of integration despite its importance for our everyday life. This exploratory study presents a new way in analysing the approaches and processes operative in this area. It introduces a new dimension of policy evaluation, the role of national energy majors, and proposes its utilisation in the increasingly important method of using indexes for energy supply security. By doing so, the relevance of perceptions of energy supply security for energy policy integration is highlighted, pointing at the concessions necessary to overcome the integratory deadlock. The indexes proposed in this paper can provide insights for policy-makers and researchers into the ongoing integration process and the crucial importance energy business plays therein. Finally, the exploratory methodology developed in this essay can be employed in various other policy areas to classify, discover and analyse policy directions.

  4. Regional Integration of Renewable Energies; Integracion Regional de energias Renovables

    Energy Technology Data Exchange (ETDEWEB)

    Amador Guerra, J; Dominguez Bravo, J [Ciemat.Madrid (Spain)

    2000-07-01

    The aim of this report is to show how Energetic Planning and Territorial Policy should be working together for a better integration of Renewable Energies into Region. This Integration should to contemplate social, economic and environmental aspects of the territory. The report has been classified into 7 items: planning, energetic scenarios, technology transfer for Renewable Energies dissemination, barriers for this dissemination, environmental aspects, European Union Policy and Decision Support Systems (and specially GIS). (Author) 54 refs.

  5. Mobile Technology and CAD Technology Integration in Teaching Architectural Design Process for Producing Creative Product

    Science.gov (United States)

    Bin Hassan, Isham Shah; Ismail, Mohd Arif; Mustafa, Ramlee

    2011-01-01

    The purpose of this research is to examine the effect of integrating the mobile and CAD technology on teaching architectural design process for Malaysian polytechnic architectural students in producing a creative product. The website is set up based on Caroll's minimal theory, while mobile and CAD technology integration is based on Brown and…

  6. Evaluating the applicability of integrated domestic energy consumption frameworks in the UK

    International Nuclear Information System (INIS)

    Keirstead, James

    2006-01-01

    Domestic energy consumption (DEC) has been traditionally understood using disciplinary perspectives, focusing on specific components of the energy consumption system such as technologies or costs. However, early attempts to encourage energy conservation demonstrated that these frameworks often miss important contextual factors such as cultural values and behavioural interactions with technologies. This evidence, combined with the present need for energy policies that can address environmental, social, and economic concerns, suggests that a broader perspective is needed. Integrated frameworks of DEC were first proposed over 20 years ago but very little has been said about the ideas proposed in these papers, whether it be critiquing their form or assessing their impact on theory and practice. This paper attempts to fill this gap by examining the influence of integrated frameworks in academic literature and in UK energy policy. It is argued that a common language could stimulate renewed interest in the integrated perspective and thereby help policy makers meet these diverse goals. To this end, a flexible agent-based framework is proposed to stimulate debate and clarify the role of an integrated approach to domestic energy policy

  7. Study of rational energy consumption in electric appliances. An integrated approach; Estudio de racionalizacion del consumo energetico en electrodomesticos. Un enfoque integrador

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Pablo A.; Romero Tirado, Rene R. [La Plata Univ. Nacional (Argentina). Facultad de Ingenieria. Dept. de Electrotecnia

    1997-12-31

    This work presents a global and integrated approach about rational energy consumption concerning the use of electric appliances based on studies carried out in this investigation and information obtained through a joint action of government agents and electric power manufacturers, producers and distributors. It also presents a program named `procaeh`(home electric appliances quality program) in the scope of the communications and energy bureau and energy rational use (URE) management 8 refs., 2 figs., 7 tabs.; e-mail: massa at isis.unlp.edu.ar

  8. An Integrated Decentralized Energy Planning Model considering Demand-Side Management and Environmental Measures

    Directory of Open Access Journals (Sweden)

    Seyed Mahmood Kazemi

    2013-01-01

    Full Text Available Decentralized energy planning (DEP is looked upon as an indisputable opportunity for energy planning of villages, isolated islands, and far spots. Nonetheless, at this decentralized planning level, the value of demand-side resources is not fairly examined, despite enjoying great advantages. Therefore, the core task of this study is to integrate demand-side resources, as a competing solution against supply-side alternatives, with decentralized energy planning decisions and demonstrate the rewarding role it plays. Moreover, sustainability indicators (SIs are incorporated into DEP attempts in order to attain sustainable development. It is emphasized that unless these indicators are considered at lower energy planning levels, they will be ignored at higher planning levels as well. Hence, to the best knowledge of the authors, this study for the first time takes into account greenhouse gas (GHG emissions produced by utilization of renewable energies in DEP optimization models. To address the issues mentioned previously, multiobjective linear programming model along with a min-max goal programming approach is employed. Finally, using data taken from the literature, the model is solved, and the obtained results are discussed. The results show that DSM policies have remarkably contributed to significant improvements especially in terms of environmental indicators.

  9. Integration of net zero energy building with smart grid to improve regional electrification ratio towards sustainable development

    Science.gov (United States)

    Latief, Yusuf; Berawi, Mohammed Ali; Supriadi, Leni; Bintang Koesalamwardi, Ario; Petroceany, Jade; Herzanita, Ayu

    2017-12-01

    Indonesia is currently encouraging its physical, social and economy development. Physical development for economic development have to be supported by energy availability. For Indonesia, 90% of electrification ratio is still become an important task that has to be completed by the Government. However, the effort to increase electrification can become an environmental problem if it’s done with BAU scenario. The by-product of electric generation is the GHG, which increasing every year since 2006 from various sectors i.e. industry, housing, commercial, transportation, and energy. Net Zero Energy Building (NZEB) is an energy efficient building which can produce energy independently from clean and renewable sources. The energy that is generated by NZEB can be used for the building itself, and can be exported to the central grid. The integration of NZEB and Smart Grid can solve today’s issue on electrification ratio. Literature study will find benchmarks which can be applied in Indonesia along with possible obstacles in applying this technology.

  10. Vehicle Testing and Integration Facility; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-02

    Engineers at the National Renewable Energy Laboratory’s (NREL’s) Vehicle Testing and Integration Facility (VTIF) are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle (EV) grid integration and minimizing fuel consumption related to vehicle climate control. Dedicated to renewable and energy-efficient solutions, the VTIF showcases technologies and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for EV components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies, and industry partners.

  11. Impacts of integration of production of black and green energy

    International Nuclear Information System (INIS)

    Zhou, Huizhong; Tamas, Meszaros Matyas

    2010-01-01

    As the mandate for minimum renewable sources renders Tradable Green Certificates (TGCs) an essential input for power generation, it may induce mergers between power companies of conventional and renewable sources. Such mergers enable the integrated firms to extend market power from the TGC market to the physical energy market. We find that the price of TGCs is indeed higher in the integrated market than the disintegrated market, indicating the presence of market power leveraging. However, despite higher TGC price, the total supply of electricity is greater under integration than disintegration, reflecting efficiency gains from vertical integration, which eliminates double marginalization. The thrust of this paper is that market changes induced by environmental policies will in turn affect environmental and economic regulations. For example, increased supply resulting from integration induced by the renewable source mandate may reduce the effectiveness of programs that promote energy saving behavior, but at the same time creates room for raising the minimum of renewable sources without unduly depressing production and consumption. (author)

  12. Considerations in implementing integrated biomass energy systems in developing countries

    International Nuclear Information System (INIS)

    Perlack, R.D.; Ranney, J.W.

    1993-01-01

    Biomass energy is emerging as a real option for satisfying power needs in developing countries. Experience has shown improvements in GDP are directly linked to increased consumption of energy. Biomass energy can also be environmentally and developmentally beneficial where it will be both grown and used. Biomass production can offset deforestation, reduce soil erosion, increase rural employment, and stimulate development. Moreover, when biomass is grown renewably there is no net buildup of atmospheric carbon. Issues and barriers associated with implementing integrated biomass energy systems in developing countries are discussed. An integrated biomass energy system is dependent on sustainably grown and managed energy crops, supportive of rural development, and environmentally beneficial, adapted to local conditions; takes advantage of by- and co-products and uses conversion technologies that have been optimized for biomass. A preliminary evaluation of a biomass to electricity project relying on plantation grown feedstocks in Southwest China indicates that biomass could be grown and converted to electricity at costs lower than alternatives and yield an internal rate of return of about 15%. The IRR based on a social and environmental benefits are substantial and investment in the facility is well-justified. However, assessing biomass energy systems is exceedingly complex. Considerations are grouped into biomass production, biomass logistics and transport, and biomass conversion. Implementation requires considerations of energy and economics, institutional and social issues, and environmental issues. The conclusion that such a project would be viable in rural China is shadowed by many site-specific circumstances and highlights the need for systematic and integrated appraisal

  13. Energy-efficient neuron, synapse and STDP integrated circuits.

    Science.gov (United States)

    Cruz-Albrecht, Jose M; Yung, Michael W; Srinivasa, Narayan

    2012-06-01

    Ultra-low energy biologically-inspired neuron and synapse integrated circuits are presented. The synapse includes a spike timing dependent plasticity (STDP) learning rule circuit. These circuits have been designed, fabricated and tested using a 90 nm CMOS process. Experimental measurements demonstrate proper operation. The neuron and the synapse with STDP circuits have an energy consumption of around 0.4 pJ per spike and synaptic operation respectively.

  14. Modeling integrated biomass gasification business concepts

    Science.gov (United States)

    Peter J. Ince; Ted Bilek; Mark A. Dietenberger

    2011-01-01

    Biomass gasification is an approach to producing energy and/or biofuels that could be integrated into existing forest product production facilities, particularly at pulp mills. Existing process heat and power loads tend to favor integration at existing pulp mills. This paper describes a generic modeling system for evaluating integrated biomass gasification business...

  15. Integrating experimental and numerical methods for a scenario-based quantitative assessment of subsurface energy storage options

    Science.gov (United States)

    Kabuth, Alina; Dahmke, Andreas; Hagrey, Said Attia al; Berta, Márton; Dörr, Cordula; Koproch, Nicolas; Köber, Ralf; Köhn, Daniel; Nolde, Michael; Tilmann Pfeiffer, Wolf; Popp, Steffi; Schwanebeck, Malte; Bauer, Sebastian

    2016-04-01

    Within the framework of the transition to renewable energy sources ("Energiewende"), the German government defined the target of producing 60 % of the final energy consumption from renewable energy sources by the year 2050. However, renewable energies are subject to natural fluctuations. Energy storage can help to buffer the resulting time shifts between production and demand. Subsurface geological structures provide large potential capacities for energy stored in the form of heat or gas on daily to seasonal time scales. In order to explore this potential sustainably, the possible induced effects of energy storage operations have to be quantified for both specified normal operation and events of failure. The ANGUS+ project therefore integrates experimental laboratory studies with numerical approaches to assess subsurface energy storage scenarios and monitoring methods. Subsurface storage options for gas, i.e. hydrogen, synthetic methane and compressed air in salt caverns or porous structures, as well as subsurface heat storage are investigated with respect to site prerequisites, storage dimensions, induced effects, monitoring methods and integration into spatial planning schemes. The conceptual interdisciplinary approach of the ANGUS+ project towards the integration of subsurface energy storage into a sustainable subsurface planning scheme is presented here, and this approach is then demonstrated using the examples of two selected energy storage options: Firstly, the option of seasonal heat storage in a shallow aquifer is presented. Coupled thermal and hydraulic processes induced by periodic heat injection and extraction were simulated in the open-source numerical modelling package OpenGeoSys. Situations of specified normal operation as well as cases of failure in operational storage with leaking heat transfer fluid are considered. Bench-scale experiments provided parameterisations of temperature dependent changes in shallow groundwater hydrogeochemistry. As a

  16. Smart Microgrid Energy Management Controls for Improved Energy Efficiency and Renewables Integration at DoD Installations

    Science.gov (United States)

    2013-05-01

    reduced greenhouse gas (GHG) emissions; 2. Increased energy efficiency; and 3. Increased energy surety. This demonstration will also directly impact ...megawatt (MW), as well as a gas-fired cogeneration plant in excess of 7 MW. In the future, additional solar PV, fuel cells and advanced energy storage... Energy Management Controls for Improved Energy Efficiency and Renewables Integration at DoD Installations May 2013 Report Documentation Page Form

  17. Sustainable energy development as an integral part of hydroelectric business management

    International Nuclear Information System (INIS)

    Lee, W.; Yu, M.; Young, C.

    1996-01-01

    Elements of Ontario Hydro's strategy for sustainable energy development were discussed, highlighting key developments in the business management practices in Ontario Hydro's Hydroelectric Business Unit. Sustainable development considerations are now integral part of any business case analysis; management of the environment also has been integrated into the Utilities' business management process. Several environmental management practices intended to enhance sustainability have been introduced, including a full-fledged environmental management system based on ISO 14001 standards. Energy efficiency opportunities are aggressively pursued, including turbine upgrades, and energy efficient lighting. Experience to date indicates that business performance and progress towards sustainable energy development need not be mutually exclusive

  18. Moving energies as first integrals of nonholonomic systems with affine constraints

    Science.gov (United States)

    Fassò, Francesco; García-Naranjo, Luis C.; Sansonetto, Nicola

    2018-03-01

    In nonholonomic mechanical systems with constraints that are affine (linear nonhomogeneous) functions of the velocities, the energy is typically not a first integral. It was shown in Fassò and Sansonetto (2016 J. Nonlinear Sci. 26 519-44) that, nevertheless, there exist modifications of the energy, called there moving energies, which under suitable conditions are first integrals. The first goal of this paper is to study the properties of these functions and the conditions that lead to their conservation. In particular, we enlarge the class of moving energies considered in Fassò and Sansonetto (2016 J. Nonlinear Sci. 26 519-44). The second goal of the paper is to demonstrate the relevance of moving energies in nonholonomic mechanics. We show that certain first integrals of some well known systems (the affine Veselova and LR systems), which had been detected on a case-by-case way, are instances of moving energies. Moreover, we determine conserved moving energies for a class of affine systems on Lie groups that include the LR systems, for a heavy convex rigid body that rolls without slipping on a uniformly rotating plane, and for an n-dimensional generalization of the Chaplygin sphere problem to a uniformly rotating hyperplane.

  19. European energy market liberalisation and integration. An assesment of the new EU energy package

    International Nuclear Information System (INIS)

    De Joode, J.; Van Oostvoorn, F.

    2008-06-01

    The new energy package presented by the European Commission (EC) in September 2007 contains a number of diverse, and sometimes controversial, measures aimed at bringing current European energy markets closer to the ideal of one competitive and fully integrated market. We discuss the flaws and merits of the package and signal a number of concerns regarding the ultimate effectiveness of the new energy market Directive into which the proposed package will culminate

  20. Analysis of Optimal Operation of an Energy Integrated Distillation Plant

    DEFF Research Database (Denmark)

    Li, Hong Wen; Hansen, C.A.; Gani, Rafiqul

    2003-01-01

    The efficiency of manufacturing systems can be significantly increased through diligent application of control based on mathematical models thereby enabling more tight integration of decision making with systems operation. In the present paper analysis of optimal operation of an energy integrated...

  1. Nuclear Hybrid Energy Systems Initial Integrated Case Study Development and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The US Department of Energy Office of Nuclear Energy established the Nuclear Hybrid Energy System (NHES) project to develop a systematic, rigorous, technically accurate set of methods to model, analyze, and optimize the integration of dispatchable nuclear, fossil, and electric storage with an industrial customer. Ideally, the optimized integration of these systems will provide economic and operational benefits to the overall system compared to independent operation, and it will enhance the stability and responsiveness of the grid as intermittent, nondispatchable, renewable resources provide a greater share of grid power.

  2. Direct integration multiple collision integral transport analysis method for high energy fusion neutronics

    International Nuclear Information System (INIS)

    Koch, K.R.

    1985-01-01

    A new analysis method specially suited for the inherent difficulties of fusion neutronics was developed to provide detailed studies of the fusion neutron transport physics. These studies should provide a better understanding of the limitations and accuracies of typical fusion neutronics calculations. The new analysis method is based on the direct integration of the integral form of the neutron transport equation and employs a continuous energy formulation with the exact treatment of the energy angle kinematics of the scattering process. In addition, the overall solution is analyzed in terms of uncollided, once-collided, and multi-collided solution components based on a multiple collision treatment. Furthermore, the numerical evaluations of integrals use quadrature schemes that are based on the actual dependencies exhibited in the integrands. The new DITRAN computer code was developed on the Cyber 205 vector supercomputer to implement this direct integration multiple-collision fusion neutronics analysis. Three representative fusion reactor models were devised and the solutions to these problems were studied to provide suitable choices for the numerical quadrature orders as well as the discretized solution grid and to understand the limitations of the new analysis method. As further verification and as a first step in assessing the accuracy of existing fusion-neutronics calculations, solutions obtained using the new analysis method were compared to typical multigroup discrete ordinates calculations

  3. Integrated National Energy Planning (INEP) in developing countries

    International Nuclear Information System (INIS)

    Munasinghe, M.

    1989-01-01

    Issues of coordinated energy planning are emphasized, with particular reference to interrelationships among the policies adopted in various energy sub-sectors such as electric power (including hydro, nuclear, geothermal, oil and coal sources), petroleum, natural gas, coal, non-conventional (solar, bio-gas, mini-hydro) and traditional fuels (woodfuel, bagasse or vegetable residue). The scope and objectives of integrated national energy planning, the policy tools available, and constraints particular to the developing countries are discussed next. Section 3.0 outlines how energy planning is carried out, while the problems of implementing the resulting policy conclusions are examined in section 4.0. 5 refs, 4 figs

  4. Development of system integration technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kang, D. J.; Kim, K. K. and others

    1999-03-01

    The objective of this report is to integrate the conceptual design of an integral reactor, SMART producing thermal energy of 330 MW, which will be utilized to supply energy for seawater desalination and small-scale power generation. This project also aims to develop system integration technology for effective design of the reactor. For the conceptual design of SMART, preliminary design requirements including the top-tier requirements and design bases were evaluated and established. Furthermore, in the view of the application of codes and standards to the SMART design, existing laws, codes and standards were analyzed and evaluated with respect to its applicability. As a part of this evaluation, directions and guidelines were proposed for the development of new codes and standards which shall be applied to the SMART design. Regarding the integration of SMART conceptual designs, major design activities and interfaces between design departments were established and coordinated through the design process. For the effective management of all design schedules, a work performance evaluation system was developed and applied to the design process. As the results of this activity, an integrated output of SMART designs was produced. Two additional scopes performed in this project include the preliminary economic analysis on the SMART utilization for seawater desalination, and the planning of verification tests for technology implemented into SMART and establishing development plan of the computer codes to be used for SMART design in the next phase. The technical cooperation with foreign country and international organization for securing technologies for integral reactor design and its application was coordinated and managed through this project. (author)

  5. Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution.

    Science.gov (United States)

    Huang, Haibo; Singh, Vijay; Qureshi, Nasib

    2015-01-01

    Waste is currently a major problem in the world, both in the developing and the developed countries. Efficient utilization of food waste for fuel and chemical production can positively influence both the energy and environmental sustainability. This study investigated using food waste to produce acetone, butanol, and ethanol (ABE) by Clostridium beijerinckii P260. In control fermentation, 40.5 g/L of glucose (initial glucose 56.7 g/L) was used to produce 14.2 g/L of ABE with a fermentation productivity and a yield of 0.22 g/L/h and 0.35 g/g, respectively. In a similar fermentation 81 g/L of food waste (containing equivalent glucose of 60.1 g/L) was used as substrate, and the culture produced 18.9 g/L ABE with a high ABE productivity of 0.46 g/L/h and a yield of 0.38 g/g. Fermentation of food waste at higher concentrations (129, 181 and 228 g/L) did not remarkably increase ABE production but resulted in high residual glucose due to the culture butanol inhibition. An integrated vacuum stripping system was designed and applied to recover butanol from the fermentation broth simultaneously to relieve the culture butanol inhibition, thereby allowing the fermentation of food waste at high concentrations. ABE fermentation integrated with vacuum stripping successfully recovered the ABE from the fermentation broth and controlled the ABE concentrations below 10 g/L during fermentation when 129 g/L food waste was used. The ABE productivity with vacuum fermentation was 0.49 g/L/h, which was 109 % higher than the control fermentation (glucose based). More importantly, ABE vacuum recovery and fermentation allowed near-complete utilization of the sugars (~98 %) in the broth. In these studies it was demonstrated that food waste is a superior feedstock for producing butanol using Clostridium beijerinckii. Compared to costly glucose, ABE fermentation of food waste has several advantages including lower feedstock cost, higher productivity, and less residual sugars.

  6. Effect of Integral Non-Linearity on Energy Calibration of ...

    African Journals Online (AJOL)

    The integral non-linearity (INL) of four spectroscopy systems, two integrated (A1 and A2) and two classical (B1 and B2) systems was determined using pulses from a random pulse generator. The effect of INL on the system's energy calibration was also determined. The effect is minimal in the classical system at high ...

  7. Continuous thermal hydrolysis and anaerobic digestion of sludge. Energy integration study.

    Science.gov (United States)

    Pérez-Elvira, S I; Fdz-Polanco, F

    2012-01-01

    Experimental data obtained from the operation in a pilot plant are used to perform mass and energy balances to a global process combining units of thermal hydrolysis (TH) of secondary sludge, anaerobic digestion (AD) of hydrolysed secondary sludge together with fresh primary sludge, and cogeneration from biogas by using a gas engine in which the biogas produces electricity and heat from the exhaust gases. Three scenarios were compared, corresponding to the three digesters operated: C (conventional AD, 17 days residence time), B (combined TH + AD, same time), and A (TH + AD at half residence time). The biogas production of digesters B and A was 33 and 24% better, respectively when compared with C. In the case of the combined TH + AD process (scenarios A and B), the key factors in the energy balance were the recovery of heat from hot streams, and the concentration of sludge. The results of the balances showed that for 8% DS concentration of the secondary sludge tested in the pilot plant, the process can be energetically self-sufficient, but a fraction of the biogas must by-pass the gas engine to be directly burned. From an economic point of view, scenario B is more profitable in terms of green energy and higher waste removal, while scenario A reduces the digester volume required by a half. Considering a population of 100,000 inhabitants, the economic benefit is 87,600 €/yr for scenario A and 132,373 €/yr for B. This value can be increased to 223,867 €/yr by increasing the sludge concentration of the feeding to the TH unit to a minimum value that allows use of all the biogas to produce green energy. This concentration is 13% DS, which is still possible from a practical point of view. Additional benefits gained with the combined TH + AD process are the enhancement of the digesters rheology and the possibility of getting Class A biosolids. The integration study presented here set the basis for the scale-up to a demonstration plant.

  8. Increasing efficiency through integrated energy data management

    International Nuclear Information System (INIS)

    Brack, M.

    2002-01-01

    This article discusses how improved management of energy data can bring about the increase in efficiency that is necessary for an electricity enterprise operating in a liberalised electricity market. The relevant technical and business processes involved for a typical power distribution utility are described. The present situation is reviewed and the various physical, data-logistics and commercial 'domains' involved are examined. Possible solutions for energy data logistics and integrated data management are discussed from the points of view of the operating utility, the power supplier and those responsible for balancing out supply and demand

  9. Energy integration into core businesses

    Energy Technology Data Exchange (ETDEWEB)

    Styan, G. [Tolko Industries Ltd., Castlegar, BC (Canada)

    2005-07-01

    An outline of Tolko Industries was presented with reference to their recent focus on biomass energy conversion. Tolko Industries has doubled its size twice over the last 10 year period, and now owns co-generation facilities and electrical generation contracts, along with significant capital investments. Current energy assets of the company are focused on process steam/heat energy with 3 small co-generation facilities. It was suggested that projects displacing natural gas have had the highest potential energy payback in Tolko facilities. A residuals summary for hog fuel, chips, and sawdust and shavings was presented. The company's core business focus is on sawmills, OSB, veneer, plywood and kraft paper. The company also has access to a large volume of biomass. Details of the Tolko's Nexterra Biomass Gasification Project were presented, along with details of the working scale pilot and phased in proposal plans. It was noted that Nexterra now produces enough biomass on site to be self-sufficient throughout its entire operational process. Tolko's expanded use of biomass technology to address emission abatement has resulted in funding from Enercan. Details of greenhouse gas (GHG) offsets were provided. It was concluded that efficient energy use and cost of supply creates a competitive advantage in the manufacturing industry. The Kyoto Protocol has provided advantages for biomass fuel development. tabs., figs.

  10. Energy options and the role of coal: an integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Institute, Edmonton, AB (Canada)

    2006-07-01

    Considers energy goals and options with particular regard to providing affordable energy to Canada. Gasification of coal and carbon to provide a reliable source of clean power and heat to the oil sand industry and for feedstocks for the production of fertilizer, methanol, petrochemicals, and ultra-clean fuels is examined. The layout for integrated gasification polygeneration with carbon feed and plans for Canada's first commercial gasification plant (the Nexen Long Lake Project) are shown in diagrams. Progress in coal gasification at a clean coal Luscar/Sherritt pilot plant is outlined. Clean coal technology is part of a strategy to provide integration across energy systems, generate value for all hydrocarbon resources, and minimize emissions. 15 figs., 2 tabs.

  11. Integrating and Promoting Wind – Tide Energy for Renewable ...

    African Journals Online (AJOL)

    The continual decline in supply of conventional energy in Nigeria due to the depletion of the national reserve as the demand continued to increase has resulted to energy crisis with epileptic power supply, rising cost of production and food prices and threat to poverty reduction as its effects. Integrating and promoting ...

  12. Environmental impact assessment for energy pathways: an integrated methodology

    International Nuclear Information System (INIS)

    Sommereux-Blanc, Isabelle

    2010-01-01

    This document presents the synthesis of my research work contributing to the development of an integrated methodology of environmental impact assessment for energy pathways. In the context of world globalization, environmental impact assessments issues are highly linked with the following questioning: Which environmental impacts? for which demand? at which location? at which temporal scale? My work is built upon the definition of a conceptual framework able to handle these issues and upon its progressive implementation. The integration of the spatial and temporal issues within the methodology are key elements. Fundamental cornerstones of this framework are presented along the DPSIR concept (Driving forces, Pressures, State, Impacts, Responses). They cover a comprehensive analysis of the limits and the relevance of life cycle analysis and the development of a geo-spatialized environmental performance approach for an electrical production pathway. Perspectives linked with the development of this integrated methodology are detailed for energy pathways. (author)

  13. On market integration of renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    Schroeer, Sebastian

    2014-12-05

    Since the liberalization of electricity and gas markets in Europe, the energy sector has changed in every respect with one constant: most actors have underestimated renewable energies with regard to their growth, their economies of scale and their impact on existing energy markets. If that trend continues, the urgency for policy measures will increase. Given the security of supply, integration of renewables into energy markets is necessary to replace fossil and nuclear capacities. However, the further development of renewable energies plays a crucial role in the ability to meet the energy and climate policy targets. Thus, it increases the need for regulation to achieve societally desirable outcomes. This thesis has examined the effects of renewable energies on existing energy markets. It has also investigated the various other cost-efficient options that policy makers have in striving to reach energy and climate policy targets. We assumed that cost efficiency is a relevant side condition. In the past, this has not always been the case. Today, cost efficiency is definitely relevant and might also be an essential target in the future (see Bundesregierung 2013, p. 50). We contributed to the analysis of power prices as a result of increasing shares of renewables by showing that shutting down conventional capacities will have a merit order effect. This is necessary if renewable energies are to replace fossil and nuclear capacities. Any discussion of a change of market design should make mention of this effect, since spot market revenues impact a company's behaviour within potential capacity markets. From a consumer perspective, we have shown that there is a substantial need for secured capacity with low marginal costs to keep spot prices stable. This outcome has important implications for policy makers if they are to provide consumers with low-cost renewable market integration. Policy makers have numerous ways to reach policy targets than rapidly expanding

  14. On market integration of renewable energies

    International Nuclear Information System (INIS)

    Schroeer, Sebastian

    2014-01-01

    Since the liberalization of electricity and gas markets in Europe, the energy sector has changed in every respect with one constant: most actors have underestimated renewable energies with regard to their growth, their economies of scale and their impact on existing energy markets. If that trend continues, the urgency for policy measures will increase. Given the security of supply, integration of renewables into energy markets is necessary to replace fossil and nuclear capacities. However, the further development of renewable energies plays a crucial role in the ability to meet the energy and climate policy targets. Thus, it increases the need for regulation to achieve societally desirable outcomes. This thesis has examined the effects of renewable energies on existing energy markets. It has also investigated the various other cost-efficient options that policy makers have in striving to reach energy and climate policy targets. We assumed that cost efficiency is a relevant side condition. In the past, this has not always been the case. Today, cost efficiency is definitely relevant and might also be an essential target in the future (see Bundesregierung 2013, p. 50). We contributed to the analysis of power prices as a result of increasing shares of renewables by showing that shutting down conventional capacities will have a merit order effect. This is necessary if renewable energies are to replace fossil and nuclear capacities. Any discussion of a change of market design should make mention of this effect, since spot market revenues impact a company's behaviour within potential capacity markets. From a consumer perspective, we have shown that there is a substantial need for secured capacity with low marginal costs to keep spot prices stable. This outcome has important implications for policy makers if they are to provide consumers with low-cost renewable market integration. Policy makers have numerous ways to reach policy targets than rapidly expanding

  15. Self-powered integrated systems-on-chip (energy chip)

    KAUST Repository

    Hussain, Muhammad Mustafa; Fahad, H.; Rojas, Jhonathan Prieto; Hasan, M.; Talukdar, A.; Oommen, J.; Mink, J.

    2010-01-01

    and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency

  16. Presentations given at the Enerplan Conference: facilitating photovoltaic energy integration in the grid

    International Nuclear Information System (INIS)

    Mueth, Thierry; Thomas, Christophe; Loyen, Richard; Masson, Gaetan; Najdawi, Celine; Dubus, Jean-Michel; Carre, Olivier; Resseguier, Stephane de; Alazard, Raymond; Prest, Ignace de; Humez, Herve; Kaiser, Martin; Cassagne, Valerick; Dauphin, Francois; Merley, Jacques; Laffaille, Didier; Gossement, Arnaud; Belon, Daniel; Blanquet, Francois; Bonnet, Jean-Philippe; Sanchez, Louis; Vienot, Raphaelle; Lambert, Karine; Berly, Frederic

    2013-07-01

    Large-scale integration of photovoltaic energy in power grids are present day topics of strategical stakes for the development of the photovoltaic industry and for the success of the energy transition. This conference provided some answers to three main subjects which were the main themes of the 3 round-tables: 1 - Identifying the context elements leading to a large integration of solar energy in Europe and in France; 2 - Identifying the technical solutions facilitating the technical integration of photovoltaic energy in power grids; 3 - Analysing the expected regional schemes for connecting renewable energies to the network, in order to shift from an administrative planning to a dynamical and practical approach profitable to the photovoltaic industry. This document brings together the available presentations (slides) given at the colloquium

  17. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.

    Science.gov (United States)

    Schell, Daniel J; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S; Jennings, Edward W

    2016-04-01

    Accurate mass balance and conversion data from integrated operation is needed to fully elucidate the economics of biofuel production processes. This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations presented here account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan to ethanol and ethanol titers of 63g/L and 69g/L, respectively. These procedures will be employed in the future and the resulting information used for techno-economic analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Elephants produce their electricity by themselves. Wilhelma an integrated energy efficiency concept of Stuttgart (SEE); Elefanten machen ihren Strom selbst. Die Wilhelma als integriertes Energieeffizienzkonzept der Stadt Stuttgart (SEE)

    Energy Technology Data Exchange (ETDEWEB)

    Hilse, Annika; Leix, Carmen; Fischer, Klaus; Kranert, Martin [Stuttgart Univ. (Germany). Inst. fuer Siedlungswasserbau, Wasserguete- und Abfallwirtschaft

    2013-10-01

    As a part of the overall project Stuttgart city with energy efficiency - SEE an integrated bioenergy concept Wilhelma at the Institute for Sanitary Engineering, Water Quality and Waste Management (ISWA) in cooperation with the Institute of Energy Economics and the Rational Use of Energy (IER) is created. The biomass potential analysis was recently completed; a differentiated analysis of energy demand is still pending. The Stuttgart Zoo Wilhelma has a significant biomass potential. With about 340 acres of gardens and parks which fall Wilhelma to care and the residue biomass of around 9000 zoo animals, offers the Stuttgart Zoo and Garden Wilhelma, together with the urban green space a high biomass potential, which is currently unused. For energy recovery through anaerobic digestion in a biogas plant are suitable 3900 t/a of biomass, which are 87% of the total exploitable biomass. For energy recovery by incineration are suitable 600 t/a of biomass, equivalent to the remaining 13% of recoverable biomass. This could be a total energy potential of about 6219 MWh/year are covered if the biomass is fully developed. Of these, 64% come from the fermentation and 36% from burning. About the determined biomass potential can be expected to be covered the electricity and heat demand of up to 16% (integrated bio-energy concept). To fully cover the energy requirements possibility of further use of renewable energy sources (e.g. solar panels on the roofs) must be examined and evaluated. (orig.)

  19. Integrating hydrogen into Canada's energy future

    International Nuclear Information System (INIS)

    Rivard, P.

    2006-01-01

    This presentation outlines the steps in integrating of hydrogen into Canada's energy future. Canada's hydrogen and fuel cell investment is primarily driven by two government commitments - climate change commitments and innovation leadership commitments. Canada's leading hydrogen and fuel cell industry is viewed as a long-term player in meeting the above commitments. A hydrogen and fuel cell national strategy is being jointly developed to create 'Win-Wins' with industry

  20. Long term building energy demand for India: Disaggregating end use energy services in an integrated assessment modeling framework

    International Nuclear Information System (INIS)

    Chaturvedi, Vaibhav; Eom, Jiyong; Clarke, Leon E.; Shukla, Priyadarshi R.

    2014-01-01

    With increasing population, income, and urbanization, meeting the energy service demands for the building sector will be a huge challenge for Indian energy policy. Although there is broad consensus that the Indian building sector will grow and evolve over the coming century, there is little understanding of the potential nature of this evolution over the longer term. The present study uses a technologically detailed, service based building energy model nested in the long term, global, integrated assessment framework, GCAM, to produce scenarios of the evolution of the Indian buildings sector up through the end of the century. The results support the idea that as India evolves toward developed country per-capita income levels, its building sector will largely evolve to resemble those of the currently developed countries (heavy reliance on electricity both for increasing cooling loads and a range of emerging appliance and other plug loads), albeit with unique characteristics based on its climate conditions (cooling dominating heating and even more so with climate change), on fuel preferences that may linger from the present (for example, a preference for gas for cooking), and vestiges of its development path (including remnants of rural poor that use substantial quantities of traditional biomass). - Highlights: ► Building sector final energy demand in India will grow to over five times by century end. ► Space cooling and appliance services will grow substantially in the future. ► Energy service demands will be met predominantly by electricity and gas. ► Urban centers will face huge demand for floor space and building energy services. ► Carbon tax policy will have little effect on reducing building energy demands

  1. Integrated energy design of the building envelope

    Energy Technology Data Exchange (ETDEWEB)

    Vraa Nielsen, M.

    2012-07-01

    This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research project analysed how the implementation of technical knowledge early in the building design process can quantify the effect of a building's facades on its energy efficiency and indoor climate and thereby facilitate a more qualified design development. The project was structured in the following way: 1) the importance of integrating knowledge in the early stages of design, and how it can be done; 2) understanding the facade's typology; and 3) the complex notion of comfort. The project touched not only on the technical capabilities and requirements governing facade design, but also the process by which it takes place. This was done by applying the methodology of Integrated Energy Design (IED) and analysing its applicability in the design of facades. A major part of the project was an actual engagement in the architectural process to test out incorporating a consciousness about energy and comfort as part of a more holistic performance evaluation. The research project illustrates the great potential in taking passive properties into account through a geometrical optimisation inherent in the development of the architectural concept. It demonstrates that integration of technical knowledge at the early stages of design not only can qualify the geometrical processing, but also facilitate the design development of the facade. Thereby a more holistic performance optimisation can be obtained through parameters such as overall facade geometry and orientation, functional organisation, room height and depth, facade layout, window geometry and transparency, design of the window aperture, etc. Through the wide range of affiliated project involved in at the architectural firm over

  2. Study of renewable energy, fuel cell and demotics integration for stationary energy production

    Energy Technology Data Exchange (ETDEWEB)

    Andaloro, L.; Ferraro, M.; Sergi, F.; Brunaccini, G.; Antonucci, V. [National Research Inst., Messina (Italy)

    2009-07-01

    This paper described a study in which a small house equipped with various renewable technologies was modelled. The aim of the study was to evaluated the integration of fuel cells with various other energy sources. Technologies installed in the house included a photovoltaic (PV) system; a hydrogen system; fuel cells; a battery-storage system; and a thermal solar panel. Maximum energy savings were evaluated for different configurations and combinations of the installed energy sources. A domotic system was also used to automatically control the use of electrical appliances and improve safety and comfort. An energy side management system was designed and compared with a demand side management system. Various scenarios were simulated in order to test the energy management systems in relation to the automated domotic system.

  3. A comparative analysis of OTF, NPS, and DQE in energy integrating and photon counting digital x-ray detectors

    International Nuclear Information System (INIS)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2010-01-01

    is a binary function given as zero or unity everywhere. In analyzing the model detector with Gaussian blurring, the difference in NPS and DQE between the two detector types is found to increase with the blurring of the x-ray converter. Ultimately, the expression for the additive white noise of the photon counter is compared against the expression for electronic noise and secondary quantum noise in an energy integrator. Thus, a method is provided to determine the average secondary quanta that the energy integrator must produce for each x ray to have superior DQE to a photon counter with the same PSF. Conclusions: This article develops analytical models of OTF, NPS, and DQE for energy integrating and photon counting digital x-ray detectors. While many subtleties of real imaging systems have not been modeled, this work is illustrative in demonstrating an additive source of white noise in photon counting detectors which has not yet been described in the literature. One benefit of this analysis is a framework for determining the average secondary quanta that an energy integrating detector must produce for each x ray to have superior DQE to competing photon counting technology.

  4. The GENiC architecture for integrated data centre energy management

    NARCIS (Netherlands)

    Pesch, D.; McGibney, A.; Sobonski, P.; Rea, S.; Scherer, Th.; Chen, L.; Engbersen, T.; Mehta, D.; O'Sullivan, B.; Pages, E.; Townley, J.; Kasinathan, Dh.; Torrens, J.I.; Zavrel, V.; Hensen, J.L.M.

    2015-01-01

    We present an architecture for integrated data centre energy management developed in the EC funded GENiC project. The architecture was devised to create a platform that can integrate functions for workload management, cooling, power management and control of heat recovery for future, highly

  5. Portable energy: autonomy and integration in the human environment; Energie portable: autonomie et integration dans l'environnement humain

    Energy Technology Data Exchange (ETDEWEB)

    Multon, F; Delamarche, P [Rennes-2 Universite, Lab. de Physiologie et de Biomecanique de l& #x27; Exercice Mulsculaire, UMR. APS, 35 (France); Lucchese, P [CEA Fontenay-aux-Roses, Dir. de la Recherche Technologique, Hydrogene et Pile a Combustible, 92 (France); and others

    2002-07-01

    This colloquium was motivated by the possibility to recover in our environment the energy produced by our movements, but also the heat emitted and the radiations received by the human body in order to supply the energy needs of portable electronic devices (telephones, micro-computers, watches, prostheses etc..). It tries to answer the different problems raised by the implementation of portable energy sources: the energy resources in the human environment, the physical and technological processes of energy production and storage, the electronic energy conversion and remote transmission means, the intelligent energy management, and the existing and potential applications of these processes. This document brings together 16 communications presented by searchers from various domains (biology, medicine, electrochemistry, computer science, mechanics, thermodynamics, electronics etc..) on the following topics: energy in the human body, possibilities of miniaturization of fuel cells, thermo-mechanical micro-generators, thermoelectric generation, solar cells and autonomy, micro-chargeable batteries, double-layer super-capacitors (principles and electrical behaviour), renewable energies in watches, electro-mechanical devices for the exploitation of human movements energy, trans-dermal power supply, new mechanical-aided systems for blood circulation, problems and their solutions related to portable telephones, low voltage and high efficiency power electronic systems for portable applications, remote energy transmission, intelligent energy management (equipments and softwares), electromagnetic environments and health. (J.S.)

  6. Techno-economic evaluation for the heat integration of vaporisation cold energy in natural gas processing

    International Nuclear Information System (INIS)

    Koku, Oludolapo; Perry, Simon; Kim, Jin-Kuk

    2014-01-01

    Highlights: • Development of thermal integration modelling framework for the utilisation of LNG cold energy. • Feasibility study for various design options for the integration of low-temperature cold energy. • Provision of a design approach for achieving efficient use of cold energy in LNG terminals. • Understanding of techno-economic impacts associated with the thermal integration of LNG cold energy. - Abstract: This paper addresses a conceptual study investigating the techno-economic feasibility for the thermal Integration of LNG cold vaporisation energy in power generation applications. In conventional regasification systems, this valuable LNG cold energy is often being wasted to ambient heat sources, representing a thermodynamic inefficient process with a significant thermal impact on the local environment. A combined facility consisting of a non-integrated Combined Cycle Power Plant (CCPP) and an LNG receiving terminal employing traditional Open Rack Vaporisers (ORV) technology, has been modelled, as a base case. Retrofit strategies for the integration of LNG cold energy have been investigated, and their impacts on power production and system efficiency are systematically compared. Retrofit design options considered in this work include the use of a propane Rankine cycle coupled with the direct expansion of natural gas, the integration of a closed-loop water cycle or open-loop water circuit with a steam Rankine cycle, and the facilitation of integrated air cooling for a gas turbine

  7. Essays on the efficient integration of renewable energies into electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Obermueller, Frank

    2018-01-09

    The dissertation ''Essay on the Efficient Integration of Renewable Energies into Electricity Markets'' consists of five research articles which shed light on the efficient integration of renewable energies into electricity markets. A major share of renewable energies has characteristics which differ from classical conventional generation technologies. The uncertain weather-dependent characteristics in combination with almost-zero marginal generation costs raise new challenges to some parts of the electricity system. On the other side, the promotion of renewable energies seems promising to achieve the Energy Transition targets and reduce Germany's CO{sub 2}-emissions. This becomes relevant in the light of the 2015 UN Climate Change Conference which negotiated the Paris Agreement to tackle climate change, e.g. by the restriction of global warming to a maximum of 2 C, and translate to CO{sub 2}-reduction efforts, especially for the carbon-dioxide intense electricity sectors. The five research papers focusing on different aspects and potential inefficiencies of the renewable energy market integration. The focus can roughly be separated into temporal and regional efficiency examinations. The temporal efficiency is subject to paper 1, paper 2 and paper 3. The regional efficiency is subject to paper 5 which is based on the preliminary findings and the generated dataset in paper 4.

  8. Essays on the efficient integration of renewable energies into electricity markets

    International Nuclear Information System (INIS)

    Obermueller, Frank

    2018-01-01

    The dissertation ''Essay on the Efficient Integration of Renewable Energies into Electricity Markets'' consists of five research articles which shed light on the efficient integration of renewable energies into electricity markets. A major share of renewable energies has characteristics which differ from classical conventional generation technologies. The uncertain weather-dependent characteristics in combination with almost-zero marginal generation costs raise new challenges to some parts of the electricity system. On the other side, the promotion of renewable energies seems promising to achieve the Energy Transition targets and reduce Germany's CO 2 -emissions. This becomes relevant in the light of the 2015 UN Climate Change Conference which negotiated the Paris Agreement to tackle climate change, e.g. by the restriction of global warming to a maximum of 2 C, and translate to CO 2 -reduction efforts, especially for the carbon-dioxide intense electricity sectors. The five research papers focusing on different aspects and potential inefficiencies of the renewable energy market integration. The focus can roughly be separated into temporal and regional efficiency examinations. The temporal efficiency is subject to paper 1, paper 2 and paper 3. The regional efficiency is subject to paper 5 which is based on the preliminary findings and the generated dataset in paper 4.

  9. Energy markets and European Integration: The World Energy Council role

    International Nuclear Information System (INIS)

    Murray, J.

    2002-01-01

    Energy market reform brings many benefits. Central and East Europe's challenge is to establish such markets when, at list in the case of electricity, the established market economies are still wrestling with how to apply competitive principles to this market. Design challenges include the natural monopoly elements within the electricity supply chain and the fact that it is, in practical terms, as essential social service. There is no one single model suitable to all markets at all stages of development. At the same time, there is a need for sustainable energy pricing, which means prices should cover all costs, with transparent and time-limited subsidies bringing the afford ability gap. Cross-border integration extends the benefits available from market reform by overcoming constraints at the national level and by broadening the geographical limits of a market. The World Energy Council works with its Central and East European members to analyse, understand and meet these challenges. (author)

  10. Integrated food–energy systems for climate-smart agriculture

    Directory of Open Access Journals (Sweden)

    Bogdanski Anne

    2012-07-01

    Full Text Available Abstract Food production needs to increase by 70%, mostly through yield increases, to feed the world in 2050. Increases in productivity achieved in the past are attributed in part to the significant use of fossil fuels. Energy use in agriculture is therefore also expected to rise in the future, further contributing to greenhouse emissions. At the same time, more than two-fifths of the world’s population still depends on unsustainably harvested wood energy for cooking and heating. Both types of energy use have detrimental impacts on the climate and natural resources. Continuing on this path is not an option as it will put additional pressure on the already stressed natural resource base and local livelihoods, while climate change is further reducing the resilience of agro-ecosystems and smallholder farmers. Ecosystem approaches that combine both food and energy production, such as agroforestry or integrated crop–livestock–biogas systems, could substantially mitigate these risks while providing both food and energy to rural and urban populations. Information and understanding on how to change course through the implementation of the practices outlined in this paper are urgently needed. Yet the scientific basis of such integrated systems, which is essential to inform decision-makers and to secure policy support, is still relatively scarce. The author therefore argues that new assessment methodologies based on a systems-oriented analysis are needed for analyzing these complex, multidisciplinary and large-scale phenomena.

  11. Formula for average energy required to produce a secondary electron in an insulator

    International Nuclear Information System (INIS)

    Xie Ai-Gen; Zhan Yu; Gao Zhi-Yong; Wu Hong-Yan

    2013-01-01

    Based on a simple classical model specifying that the primary electrons interact with the electrons of a lattice through the Coulomb force and a conclusion that the lattice scattering can be ignored, the formula for the average energy required to produce a secondary electron (in) is obtained. On the basis of the energy band of an insulator and the formula for in, the formula for the average energy required to produce a secondary electron in an insulator (in i ) is deduced as a function of the width of the forbidden band (E g ) and electron affinity χ. Experimental values and the in i values calculated with the formula are compared, and the results validate the theory that explains the relationships among E g , χ, and in i and suggest that the formula for in i is universal on the condition that the primary electrons at any energy hit the insulator. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. A new high precision energy-preserving integrator for system of oscillatory second-order differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin, E-mail: wangbinmaths@gmail.com [Department of Mathematics, Nanjing University, State Key Laboratory for Novel Software Technology at Nanjing University, Nanjing 210093 (China); Wu, Xinyuan, E-mail: xywu@nju.edu.cn [Department of Mathematics, Nanjing University, State Key Laboratory for Novel Software Technology at Nanjing University, Nanjing 210093 (China)

    2012-03-05

    This Letter proposes a new high precision energy-preserving integrator for system of oscillatory second-order differential equations q{sup ″}(t)+Mq(t)=f(q(t)) with a symmetric and positive semi-definite matrix M and f(q)=−∇U(q). The system is equivalent to a separable Hamiltonian system with Hamiltonian H(p,q)=1/2 p{sup T}p+1/2 q{sup T}Mq+U(q). The properties of the new energy-preserving integrator are analyzed. The well-known Fermi–Pasta–Ulam problem is performed numerically to show that the new integrator preserves the energy integral with higher accuracy than Average Vector Field (AVF) method and an energy-preserving collocation method. -- Highlights: ► A novel high order energy-preserving integrator AAVF-GL is proposed. ► The important properties of the new integrator AAVF-GL are shown. ► Numerical experiment is carried out compared with AVF method etc. appeared recently.

  13. Sustaining high energy efficiency in existing processes with advanced process integration technology

    International Nuclear Information System (INIS)

    Zhang, Nan; Smith, Robin; Bulatov, Igor; Klemeš, Jiří Jaromír

    2013-01-01

    Highlights: ► Process integration with better modelling and more advanced solution methods. ► Operational changes for better environmental performance through optimisation. ► Identification of process integration technology for operational optimisation. ► Systematic implementation procedure of process integration technology. ► A case study with crude oil distillation to demonstrate the operational flexibility. -- Abstract: To reduce emissions in the process industry, much emphasis has been put on making step changes in emission reduction, by developing new process technology and making renewable energy more affordable. However, the energy saving potential of existing systems cannot be simply ignored. In recent years, there have been significant advances in process integration technology with better modelling techniques and more advanced solution methods. These methods have been applied to the new design and retrofit studies in the process industry. Here attempts are made to apply these technologies to improve the environmental performance of existing facilities with operational changes. An industrial project was carried out to demonstrate the importance and effectiveness of exploiting the operational flexibility for energy conservation. By applying advanced optimisation technique to integrate the operation of distillation and heat recovery in a crude oil distillation unit, the energy consumption was reduced by 8% without capital expenditure. It shows that with correctly identified technology and the proper execution procedure, significant energy savings and emission reduction can be achieved very quickly without major capital expenditure. This allows the industry to improve its economic and environment performance at the same time.

  14. Integration of Geometrical and Material Nonlinear Energy Sink with Piezoelectric Material Energy Harvester

    Directory of Open Access Journals (Sweden)

    Ye-Wei Zhang

    2017-01-01

    Full Text Available This paper presents a novel design by integrating geometrical and material nonlinear energy sink (NES with a piezoelectric-based vibration energy harvester under shock excitation, which can realize vibration control and energy harvesting. The nonlinear spring and hysteresis behavior of the NES could reflect geometrical and material nonlinearity, respectively. Two configurations of the piezoelectric device, including the piezoelectric element embedded between the NES mass and the single-degree-of-freedom system or ground, are utilised to examine the energy dissipated by damper and hysteresis behavior of NES and the energy harvested by the piezoelectric element. Similar numerical research methods of Runge-Kutta algorithm are used to investigate the two configurations. The energy transaction measure (ETM is adopted to examine the instantaneous energy transaction between the primary and the NES-piezoelectricity system. And it demonstrates that the dissipated and harvested energy transaction is transferred from the primary system to the NES-piezoelectricity system and the instantaneous transaction of mechanical energy occupies a major part of the energy of transaction. Both figurations could realize vibration control efficiently.

  15. Energy evaluation at a winery: a case study at a Portuguese producer

    Directory of Open Access Journals (Sweden)

    Correia João

    2017-01-01

    Full Text Available The introduction of cooling systems in the wine industry to control the fermentation has allowed the oenologist to produce more and more excellent wines. In this regard, the alcoholic fermentation is a target for various studies that aims at explaining the chemical reactions involved in the release of energy. The aim of this paper is to evaluate the energy consumption of a winery and to discuss and understand the main parameters involved in the process of fermentation. The weather profile during fermentation and the schedule of charging the tanks with freshly affect strongly the needs of cooling power, and the energy use. The study conducted at the Adega da Ervideira in the South of Portugal allowed to define a model for the computation of the cooling power and the electricity consumption. The heat gains from outdoor in convection mode and the heat released during maturation and fermentation phases are the main contributors for the cooling requirements at a winery. As a result of the real fact study, it will allow an oenologist to estimate the cooling power and energy for a winery as well as to produce other types of wines.

  16. An Integrative Approach to Energy, Carbon, and Redox Metabolism in the Cyanobacterium Synechocystis sp. PCC 6803. Special Report

    Energy Technology Data Exchange (ETDEWEB)

    Overbeek, R.

    2003-06-30

    The main objectives for the first year were to produce a detailed metabolic reconstruction of synechocystis sp. PCC 6803 especially in interrelated areas of photosynthesis, respiration, and central carbon metabolism to support a more complete understanding and modeling of this organism. Additionally, Integrated Genomics, Inc., provided detailed bioinformatic analysis of selected functional systems related to carbon and energy generation and utilization, and of the corresponding pathways, functional roles and individual genes to support wet lab experiments by collaborators.

  17. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices

    KAUST Repository

    Li, Wenjie

    2016-09-21

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L−1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency.

  18. Biologically Produced Methane as a Renewable Energy Source.

    Science.gov (United States)

    Holmes, D E; Smith, J A

    2016-01-01

    Methanogens are a unique group of strictly anaerobic archaea that are more metabolically diverse than previously thought. Traditionally, it was thought that methanogens could only generate methane by coupling the oxidation of products formed by fermentative bacteria with the reduction of CO 2 . However, it has recently been observed that many methanogens can also use electrons extruded from metal-respiring bacteria, biocathodes, or insoluble electron shuttles as energy sources. Methanogens are found in both human-made and natural environments and are responsible for the production of ∼71% of the global atmospheric methane. Their habitats range from the human digestive tract to hydrothermal vents. Although biologically produced methane can negatively impact the environment if released into the atmosphere, when captured, it can serve as a potent fuel source. The anaerobic digestion of wastes such as animal manure, human sewage, or food waste produces biogas which is composed of ∼60% methane. Methane from biogas can be cleaned to yield purified methane (biomethane) that can be readily incorporated into natural gas pipelines making it a promising renewable energy source. Conventional anaerobic digestion is limited by long retention times, low organics removal efficiencies, and low biogas production rates. Therefore, many studies are being conducted to improve the anaerobic digestion process. Researchers have found that addition of conductive materials and/or electrically active cathodes to anaerobic digesters can stimulate the digestion process and increase methane content of biogas. It is hoped that optimization of anaerobic digesters will make biogas more readily accessible to the average person. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Balancing Area Coordination: Efficiently Integrating Renewable Energy Into the Grid, Greening the Grid

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Jessica; Denholm, Paul; Cochran, Jaquelin

    2015-06-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. Coordinating balancing area operation can promote more cost and resource efficient integration of variable renewable energy, such as wind and solar, into power systems. This efficiency is achieved by sharing or coordinating balancing resources and operating reserves across larger geographic boundaries.

  20. Integrated marketing communications at solar energy equipment market

    OpenAIRE

    I.L. Litovchenko; I.A. Shkurupskaya

    2013-01-01

    The aim of the article. The article is devoted to the development of the concept of «integrated marketing communications», as well as its adaptation to a specific market of solar energy equipment. The theoretical development of foreign and domestic scholars in the field of IMC is considered. The aim of the article is to define the concept of «integrated marketing communications» and use them in the market of solar еnergy equipment in an information economy. The author's definition of the c...

  1. Efficient integration of renewable energies in the German electricity market; Effiziente Integration erneuerbarer Energien in den deutschen Elektrizitaetsmarkt

    Energy Technology Data Exchange (ETDEWEB)

    Nabe, C.A.

    2006-07-01

    Liberalisation of the electricity sector aims to carry out coordination tasks within the system by markets and market prices. This study examines how markets need to be designed to carry out coordination tasks caused by integration of renewable energies in an efficient way. This question is applied to the German electricity system and recommendations are derived from identified deficits. The examination uses the structure-conduct-performance approach of industrial organisation economics. Integration of renewable energies does not result in entirely new coordination tasks but complicates those that exist in any electricity supply system. Within the short-term coordination tasks provision and operation of reserve capacity is affected by renewable energies. Long-term coordination means that the relation between fixed and variable costs of generators as well as generator flexibility has to be adjusted to the characteristics of renewable energies. The relevant short-term coordination task with the network is congestion management. In the long run costs of grid expansion and permanent congestion management have to be balanced. For the execution of short-run coordination tasks integrated and centralised market architectures are superior to decentralised architectures. The increase of short-term coordination tasks due to renewable energies caused by inflexibilities of consumers and conventional generators results in more information that has to be considered. By centralising that information in one market, an increase in productive efficiency can be obtained. In Germany the increased coordination tasks are determined by the integration of wind generators into the electricity system. The present German market architecture results in inefficiencies in short-term coordination. This is demonstrated by an analysis of procedural rules and prices of the ancillary service markets. They demonstrate that market performance is low and significant deviations from competitive prices

  2. Fully Integrated Solar Energy Harvester and Sensor Interface Circuits for Energy-Efficient Wireless Sensing Applications

    Directory of Open Access Journals (Sweden)

    Maher Kayal

    2013-02-01

    Full Text Available This paper presents an energy-efficient solar energy harvesting and sensing microsystem that harvests solar energy from a micro-power photovoltaic module for autonomous operation of a gas sensor. A fully integrated solar energy harvester stores the harvested energy in a rechargeable NiMH microbattery. Hydrogen concentration and temperature are measured and converted to a digital value with 12-bit resolution using a fully integrated sensor interface circuit, and a wireless transceiver is used to transmit the measurement results to a base station. As the harvested solar energy varies considerably in different lighting conditions, in order to guarantee autonomous operation of the sensor, the proposed area- and energy-efficient circuit scales the power consumption and performance of the sensor. The power management circuit dynamically decreases the operating frequency of digital circuits and bias currents of analog circuits in the sensor interface circuit and increases the idle time of the transceiver under reduced light intensity. The proposed microsystem has been implemented in a 0.18 µm complementary metal-oxide-semiconductor (CMOS process and occupies a core area of only 0.25 mm2. This circuit features a low power consumption of 2.1 µW when operating at its highest performance. It operates with low power supply voltage in the 0.8V to 1.6 V range.

  3. Integrative real-time geographic visualization of energy resources

    International Nuclear Information System (INIS)

    Sorokine, A.; Shankar, M.; Stovall, J.; Bhaduri, B.; King, T.; Fernandez, S.; Datar, N.; Omitaomu, O.

    2009-01-01

    'Full text:' Several models forecast that climatic changes will increase the frequency of disastrous events like droughts, hurricanes, and snow storms. Responding to these events and also to power outages caused by system errors such as the 2003 North American blackout require an interconnect-wide real-time monitoring system for various energy resources. Such a system should be capable of providing situational awareness to its users in the government and energy utilities by dynamically visualizing the status of the elements of the energy grid infrastructure and supply chain in geographic contexts. We demonstrate an approach that relies on Google Earth and similar standard-based platforms as client-side geographic viewers with a data-dependent server component. The users of the system can view status information in spatial and temporal contexts. These data can be integrated with a wide range of geographic sources including all standard Google Earth layers and a large number of energy and environmental data feeds. In addition, we show a real-time spatio-temporal data sharing capability across the users of the system, novel methods for visualizing dynamic network data, and a fine-grain access to very large multi-resolution geographic datasets for faster delivery of the data. The system can be extended to integrate contingency analysis results and other grid models to assess recovery and repair scenarios in the case of major disruption. (author)

  4. Evaluating multifunctional storage usage for the integration of renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    Koopmann, Simon; Wasowicz, Bartholomaeus; Raths, Stephan; Pollok, Thomas; Schnettler, Armin [RWTH Aachen Univ. (Germany). Inst. for High Voltage Technology

    2012-07-01

    Market and grid integration of the increasing share of renewable energy sources (RES) pose significant challenges to the electricity system in Germany. Energy storages are frequently discussed as one part of the solution. However, storage operators in a liberalized electricity market are profit maximizing actors, who are only interested in supporting the integration of RES, if it is economically attractive. A storage dispatch optimization model has been developed to comprehensively analyze the wide range of storage applications. Three storage operational modes are introduced and evaluated in this paper. The entirely market-focused multimarket operation is found to be the most profitable option for storage operators. Integration of RES is of minor importance in this operational mode. Using storage systems only for grid purposes in the grid supportive operational mode is found to be least profitable. A combined storage usage for market and grid applications in the multifunctional operation achieves similar benefits for the grid as in the grid supportive mode by better integrating RES, while also achieving profits from the markets. The current market and regulatory framework however, provides no incentives for storage operators to pursue this dispatch strategy, which is favorable for an improved RES integration.

  5. Integration of thermo-vapor compressor with multiple-effect evaporator

    International Nuclear Information System (INIS)

    Sharan, Prashant; Bandyopadhyay, Santanu

    2016-01-01

    Highlights: • Energy integration of thermo-vapor compressor with multiple-effect evaporator. • Proposed a new methodology for optimal placement of thermo-vapor compressor. • Extended Pinch Analysis for overall energy conservation. • Obtained simultaneous reduction in evaporator area requirement and energy consumption with optimal integration. - Abstract: Thermo-vapor compressor (TVC) is used for compressing the low-pressure vapor with the help of the high-pressure motive steam, to produce the medium pressure vapor. A substantial portion of energy may be conserved by integrating TVC with the multiple-effect evaporator (MEE). The common practice in desalination industry is to compress the vapor produced in the last effect of a MEE using TVC to reduce the overall motive steam requirement. Such integration does not necessarily guarantee energy optimality. The objective of the present work is to optimally integrate TVC with a MEE system to maximize the gain output ratio (GOR). GOR is defined as the ratio of the mass flow rate of vapor produced in MEE to the mass flow rate of the motive steam supplied to TVC. GOR is the measure of the energy efficiency of MEE system. Using the principles of Pinch Analysis and techniques of mathematical optimization, a new methodology for integration of TVC with MEE is proposed in this paper. This is the first analytical methodology to optimally integrate TVC with MEE, avoiding multiple simulations of the overall system. A Theorem is proposed to directly calculate the optimal location of TVC suction position. The proposed methodology gives the designer the freedom to design an MEE-TVC with minimum energy consumption and without carrying out the detailed simulation of the entire system. The methodology is demonstrated through the illustrative case studies for concentrating corn glucose, and freshwater production through thermal desalination. In the case of corn glucose, the optimal integration of TVC with 2-effect MEE resulted in

  6. Microfabrication and integration of a sol-gel PZT folded spring energy harvester.

    Science.gov (United States)

    Lueke, Jonathan; Badr, Ahmed; Lou, Edmond; Moussa, Walied A

    2015-05-26

    This paper presents the methodology and challenges experienced in the microfabrication, packaging, and integration of a fixed-fixed folded spring piezoelectric energy harvester. A variety of challenges were overcome in the fabrication of the energy harvesters, such as the diagnosis and rectification of sol-gel PZT film quality and adhesion issues. A packaging and integration methodology was developed to allow for the characterizing the harvesters under a base vibration. The conditioning circuitry developed allowed for a complete energy harvesting system, consisting a harvester, a voltage doubler, a voltage regulator and a NiMH battery. A feasibility study was undertaken with the designed conditioning circuitry to determine the effect of the input parameters on the overall performance of the circuit. It was found that the maximum efficiency does not correlate to the maximum charging current supplied to the battery. The efficiency and charging current must be balanced to achieve a high output and a reasonable output current. The development of the complete energy harvesting system allows for the direct integration of the energy harvesting technology into existing power management schemes for wireless sensing.

  7. Non-Renewable Energy and Macroeconomic Efficiency of Seven Major Oil Producing Economies in Africa

    Directory of Open Access Journals (Sweden)

    Awodumi Olabanji Benjamin

    2016-05-01

    Full Text Available This study adopted two-stage DEA to estimate the technical efficiency scores and assess the impact of the two most important components of fossil fuel associated with oil production on macroeconomic efficiency of Seven oil producing African countries during 2005-2012. Our results showed that increasing the consumption of natural gas would improve technical efficiency. Furthermore, increasing the share of fossil fuel in total energy consumption has negative effect on the efficiency of the economies of the top African oil producers. Also, we found that increasing the consumption of primary energy improves efficiency in these economies. We therefore, recommend that governments and other stakeholders in the energy industry should adopt inclusive strategies that will promote the use of natural gas in the short term. However, in the long-run, efforts should be geared towards increasing the use of primary energy, thereby reducing the percentage share of fossil fuel in total energy consumption.

  8. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1987-08-01

    This annual report summarizes the results of research carried out in 1986 within the framework of the program 'High Energy Density in Matter Produced by Heavy Ion Beams' which is funded by the Federal Ministry for Research and Technology. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense beams of heavy ions. (orig./HSI)

  9. An integrated model for estimating energy cost of a tidal current turbine farm

    International Nuclear Information System (INIS)

    Li, Ye; Lence, Barbara J.; Calisal, Sander M.

    2011-01-01

    A tidal current turbine is a device for harnessing energy from tidal currents and functions in a manner similar to a wind turbine. A tidal current turbine farm consists of a group of tidal current turbines distributed in a site where high-speed current is available. The accurate prediction of energy cost of a tidal current turbine farm is important to the justification of planning and constructing such a farm. However, the existing approaches used to predict energy cost of tidal current turbine farms oversimplify the hydrodynamic interactions between turbines in energy prediction and oversimplify the operation and maintenance strategies involved in cost estimation as well as related fees. In this paper, we develop a model, which integrates a marine hydrodynamic model with high accuracy for predicting energy output and a comprehensive cost-effective operation and maintenance model for estimating the cost that may be incurred in producing the energy, to predict energy cost from a tidal current turbine farm. This model is expected to be able to simulate more complicated cases and generate more accurate results than existing models. As there is no real tidal current turbine farm, we validate this model with offshore wind studies. Finally, case studies about Vancouver are conducted with a scenario-based analysis. We minimize the energy cost by minimizing the total cost and maximizing the total power output under constraints related to the local conditions (e.g., geological and labor information) and the turbine specifications. The results suggest that tidal current energy is about ready to penetrate the electricity market in some major cities in North America if learning curve for the operational and maintenance is minimum. (author)

  10. An Integrated Risk Framework for Gigawatt-scale Deployments of Renewable Energy: The U.S. Wind Energy Case

    Energy Technology Data Exchange (ETDEWEB)

    Ram, B. [Energetics, Inc., Columbia, MD (United States)

    2010-04-01

    Assessing the potential environmental and human effects of deploying renewable wind energy requires a new way of evaluating potential environmental and human impacts. This paper explores an integrated risk framework for renewable wind energy siting decisionmaking.

  11. INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Arney, Ph.D.

    2002-12-31

    The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

  12. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.

    Science.gov (United States)

    Li, Wenjie; Fu, Hui-Chun; Li, Linsen; Cabán-Acevedo, Miguel; He, Jr-Hau; Jin, Song

    2016-10-10

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L -1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Control structure selection for energy integrated distillation column

    DEFF Research Database (Denmark)

    Hansen, J.E.; Jørgensen, Sten Bay

    1998-01-01

    This paper treats a case study on control structure selection for an almost binary distillation column. The column is energy integrated with a heat pump in order to transfer heat from the condenser to the reboiler. This integrated plant configuration renders the possible control structures somewhat...... different from what is usual for binary distillation columns. Further the heat pump enables disturbances to propagate faster through the system. The plant has six possible actuators of which three must be used to stabilize the system. Hereby three actuators are left for product purity control. An MILP...

  14. Influence of the characteristic and installation site of wind generator on quantity of produced energy

    International Nuclear Information System (INIS)

    Palge, V.; Lepa, J.; Tamm, T.

    2002-01-01

    In Estonia, especially in inland the wind speed is rather low. According to the Master thesis of Tonis Tamm the opportunities of use of several types of wind generators are analysed. It is found out, that the wind generator, beginning to produce energy at wind speed 2 m/s can in such conditions produce about four times more electricity energy than such having 'cut-in' wind speed 4 m/s. (author)

  15. Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system

    International Nuclear Information System (INIS)

    Jing, Z.X.; Jiang, X.S.; Wu, Q.H.; Tang, W.H.; Hua, B.

    2014-01-01

    This paper presents a comprehensive model of a small-scale integrated energy based district heating and cooling (DHC) system located in a residential area of hot-summer and cold-winter zone, which makes joint use of wind energy, solar energy, natural gas and electric energy. The model includes an off-grid wind turbine generator, heat producers, chillers, a water supply network and terminal loads. This research also investigates an optimal operating strategy based on Group Search Optimizer (GSO), through which the daily running cost of the system is optimized in both the heating and cooling modes. The strategy can be used to find the optimal number of operating chillers, optimal outlet water temperature set points of boilers and optimal water flow set points of pumps, taking into account cost functions and various operating constraints. In order to verify the model and the optimal operating strategy, performance tests have been undertaken using MATLAB. The simulation results prove the validity of the model and show that the strategy is able to minimize the system operation cost. The proposed system is evaluated in comparison with a conventional separation production (SP) system. The feasibility of investment for the DHC system is also discussed. The comparative results demonstrate the investment feasibility, the significant energy saving and the cost reduction, achieved in daily operation in an environment, where there are varying heating loads, cooling loads, wind speeds, solar radiations and electricity prices. - Highlights: • A model of a small-scale integrated energy based DHC system is presented. • An off-grid wind generator used for water heating is embedded in the model. • An optimal control strategy is studied to optimize the running cost of the system. • The designed system is proved to be energy efficient and cost effective in operation

  16. Economic effect of fusion in energy market. Various externalities of energy systems and the integrated evaluation

    International Nuclear Information System (INIS)

    Ito, Keishiro

    2002-01-01

    The primacy of a nuclear fusion reactor in a competitive energy market remarkably depends on to what extent the reactor contributes to reduce the externalities of energy. The reduction effects are classified into two effects, which have quite dissimilar characteristics. One is an effect of environmental dimensions. The other is related to energy security. In this study I took up the results of EC's ExternE project studies as a representative example of the former effect. Concerning the latter effect, I clarified the fundamental characteristics of externalities related to energy security and the conceptual framework for the purpose of evaluation. In the socio-economical evaluation of research into and development investments in nuclear fusions reactors, the public will require the development of integrated evaluation systems to support the cost-effect analysis of how well the reduction effects of externalities have been integrated with the effects of technological innovation, learning, spillover, etc. (author)

  17. Economic dispatch optimization for system integrating renewable energy sources

    Science.gov (United States)

    Jihane, Kartite; Mohamed, Cherkaoui

    2018-05-01

    Nowadays, the use of energy is growing especially in transportation and electricity industries. However this energy is based on conventional sources which pollute the environment. Multi-source system is seen as the best solution to sustainable development. This paper proposes the Economic Dispatch (ED) of hybrid renewable power system. The hybrid system is composed of ten thermal generators, photovoltaic (PV) generator and wind turbine generator. To show the importance of renewable energy sources (RES) in the energy mix we have ran the simulation for system integrated PV only and PV plus wind. The result shows that the system with renewable energy sources (RES) is more compromising than the system without RES in terms of fuel cost.

  18. Renewable energy integration in smart grids-multicriteria assessment using the fuzzy analytical hierarchy process

    OpenAIRE

    JANJIC, ALEKSANDAR; SAVIC, SUZANA; VELIMIROVIC, LAZAR; NIKOLIC, VESNA

    2015-01-01

    Unlike the traditional way of efficiency assessment of renewable energy sources integration, the smart grid concept is introducing new goals and objectives regarding increased use of renewable electricity sources, grid security, energy conservation, energy efficiency, and deregulated energy market. Possible benefits brought by renewable sources integration are evaluated by the degree of the approach to the ideal smart grid. In this paper, fuzzy analytical hierarchy process methodology for the...

  19. An integrated system for buildings’ energy-efficient automation: Application in the tertiary sector

    International Nuclear Information System (INIS)

    Marinakis, Vangelis; Doukas, Haris; Karakosta, Charikleia; Psarras, John

    2013-01-01

    Highlights: ► We developed an interactive software for building automation systems. ► Monitoring of energy consumption in real time. ► Optimization of energy consumption implementing appropriate control scenarios. ► Pilot appraisal on remote control of active systems in the tertiary sector building. ► Significant decrease in energy and operating cost of A/C system. -- Abstract: Although integrated building automation systems have become increasingly popular, an integrated system which includes remote control technology to enable real-time monitoring of the energy consumption by energy end-users, as well as optimization functions is required. To respond to this common interest, the main aim of the paper is to present an integrated system for buildings’ energy-efficient automation. The proposed system is based on a prototype software tool for the simulation and optimization of energy consumption in the building sector, enhancing the interactivity of building automation systems. The system can incorporate energy-efficient automation functions for heating, cooling and/or lighting based on recent guidance and decisions of the National Law, energy efficiency requirements of EN 15232 and ISO 50001 Energy Management Standard among others. The presented system was applied to a supermarket building in Greece and focused on the remote control of active systems.

  20. Toward Wearable Self-Charging Power Systems: The Integration of Energy-Harvesting and Storage Devices.

    Science.gov (United States)

    Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin

    2018-01-01

    One major challenge for wearable electronics is that the state-of-the-art batteries are inadequate to provide sufficient energy for long-term operations, leading to inconvenient battery replacement or frequent recharging. Other than the pursuit of high energy density of secondary batteries, an alternative approach recently drawing intensive attention from the research community, is to integrate energy-generation and energy-storage devices into self-charging power systems (SCPSs), so that the scavenged energy can be simultaneously stored for sustainable power supply. This paper reviews recent developments in SCPSs with the integration of various energy-harvesting devices (including piezoelectric nanogenerators, triboelectric nanogenerators, solar cells, and thermoelectric nanogenerators) and energy-storage devices, such as batteries and supercapacitors. SCPSs with multiple energy-harvesting devices are also included. Emphasis is placed on integrated flexible or wearable SCPSs. Remaining challenges and perspectives are also examined to suggest how to bring the appealing SCPSs into practical applications in the near future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Large scale grid integration of renewable energy sources

    CERN Document Server

    Moreno-Munoz, Antonio

    2017-01-01

    This book presents comprehensive coverage of the means to integrate renewable power, namely wind and solar power. It looks at new approaches to meet the challenges, such as increasing interconnection capacity among geographical areas, hybridisation of different distributed energy resources and building up demand response capabilities.

  2. Integral high energy nuclon-nucleus cross sections for mathematical experiments with electronuclear facilities

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Gudowski, W.; Polanski, A.

    1999-01-01

    A parametrization of the integral cross sections σ nonel , σ tl , σ tot for the elastic nonelastic and total proton- and neutron-nucleus interactions is considered at medium and high energies. On the basis of this parametrization a code is created for the interpolational calculations of the integral cross sections for arbitrary target nuclei at proton energies E=1 MeV - 1 TeV and neutron energies E=12.5 MeV - 1 TeV

  3. Integration and Optimization of Alternative Sources of Energy in a Remote Region

    Science.gov (United States)

    Berberi, Pellumb; Inodnorjani, Spiro; Aleti, Riza

    2010-01-01

    In a remote coastal region supply of energy from national grid is insufficient for a sustainable development. Integration and optimization of local alternative renewable energy sources is an optional solution of the problem. In this paper we have studied the energetic potential of local sources of renewable energy (water, solar, wind and biomass). A bottom-up energy system optimization model is proposed in order to support planning policies for promoting the use of renewable energy sources. A software, based on multiple factors and constrains analysis for optimization energy flow is proposed, which provides detailed information for exploitation each source of energy, power and heat generation, GHG emissions and end-use sectors. Economical analysis shows that with existing technologies both stand alone and regional facilities may be feasible. Improving specific legislation will foster investments from Central or Local Governments and also from individuals, private companies or small families. The study is carried on the frame work of a FP6 project "Integrated Renewable Energy System."

  4. Municipal Solid Waste Gasification Plant Integrated With SOFC and Gas Turbine

    DEFF Research Database (Denmark)

    Bellomare, Filippo; Rokni, Masoud

    2012-01-01

    An interesting source of producing energy with low pollutants emission and reduced environmental impact are the biomasses; particularly using Municipal Solid Waste (MSW) as fuel, can be a competitive solution not only to produce energy with negligible costs but also to decrease the storage...... in landfills. A Municipal Solid Waste Gasification Plant Integrated with Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) has been studied and the plant is called IGSG (Integrated Gasification SOFC and GT). Gasification plant is fed by MSW to produce syngas by which the anode side of a SOFC is fed wherein...

  5. US Department of Energy Integrated Resource Planning Program: Accomplishments and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    White, D.L. [Oak Ridge National Lab., TN (United States); Mihlmester, P.E. [Aspen Systems Corp., Oak Ridge, TN (United States)

    1993-12-17

    The US Department of Energy Integrated Resource Planning Program supports many activities and projects that enhance the process by which utilities assess demand and supply options and, subsequently, evaluate and select resources. The US Department of Energy program coordinates integrated resource planning in risk and regulatory analysis; utility and regional planning; evaluation and verification; information transfer/technological assistance; and demand-side management. Professional staff from the National Renewable Energy Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley Laboratory, and Pacific Northwest Laboratories collaborate with peers and stakeholders, in particular, the National Association of Regulatory Utility Commissioners, and conduct research and activities for the US Department of Energy. Twelve integrated resource planning activities and projects are summarized in this report. The summaries reflect the diversity of planning and research activities supported by the Department. The summaries also reflect the high levels of collaboration and teaming that are required by the Program and practiced by the researchers. It is concluded that the Program is achieving its objectives by encouraging innovation and improving planning and decision making. Furthermore, as the Department continues to implement planned improvements in the Program, the Department is effectively positioned to attain its ambitious goals.

  6. Large-scale integration of wind power into the existing Chinese energy system

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2011-01-01

    stability, the maximum feasible wind power penetration in the existing Chinese energy system is approximately 26% from both technical and economic points of view. A fuel efficiency decrease occurred when increasing wind power penetration in the system, due to its rigid power supply structure and the task......This paper presents the ability of the existing Chinese energy system to integrate wind power and explores how the Chinese energy system needs to prepare itself in order to integrate more fluctuating renewable energy in the future. With this purpose in mind, a model of the Chinese energy system has...... been constructed by using EnergyPLAN based on the year 2007, which has then been used for investigating three issues. Firstly, the accuracy of the model itself has been examined and then the maximum feasible wind power penetration in the existing energy system has been identified. Finally, barriers...

  7. EFFICIENT USE OF ENERGY IN A ELECTRIC ARC FURNANCE BY HEAT INTEGRATION APPROACH

    OpenAIRE

    Umesh Kumar, Dr. A K Prasad, Sourabh Kumar Soni

    2016-01-01

    Based on the principles of heat integration, the present work investigates the design and operational modifications which can lead to efficient energy integration in an electric arc furnace being operated with direct reduction process. This process is one of the oldest and most widely applied processes amongst the commercially used process in India. For the purpose of energy integration stream data is extracted from the actual flow sheet of the plant, which consists of supply and target tempe...

  8. Some interesting features of charged particles produced in high-energy hadron-emulsion collisions

    International Nuclear Information System (INIS)

    Khushnood, H.; Ansari, A.R.

    1990-01-01

    The emission characteristics of secondary charged particles produced in 400 GeV proton-emulsion interactions were compared with those obtained at other energies. The results revealed that the angular distribution of grey particles does not depend on the nature and energy of the projectile. The dependence of the average multiplicity of the grey, black, shower, and heavily ionizing tracks on the mass of the target nucleus (A) and the nature and energy of the projectiles are also examined. The ratio of the valance quarks in pions (π - ) and protons (p) was found to be almost equal to the ratio of the grey particles produced in π - -A and p-A collisions at the same energy. The values of the normalized moments of the multiplicity distributions of charged shower particles in different N h intervals were found to nearly the same. However, this value increased with increasing values of the moment index, K. Finally, the values of the normalized and central moments were almost equal for both p-p and p-A interactions

  9. Anisotropy of energy losses in high-current Z-pinches produced by the implosion of cylindrical tungsten wire arrays

    Science.gov (United States)

    Aleksandrov, V. V.; Volkov, G. S.; Grabovski, E. V.; Gritsuk, A. N.; Lakhtyushko, N. I.; Medovshchikov, S. F.; Oleinik, G. M.; Svetlov, E. V.

    2014-02-01

    Results are presented from measurements of the anisotropy of energy losses in high-current Z-pinches produced by the implosion of wire arrays at the ANGARA-5-1 facility at load currents of up to 4MA. The energy losses were measured in the radial direction and along the pinch axis from the anode side. The main diagnostics were time-integrated thermocouple calorimeters, nanosecond X-ray diodes (XRDs) with different filters, and a foil radiation calorimeter with a time resolution of 2 μs. The azimuthal anisotropy of energy losses was measured for different wire array configurations and different shapes of the high-voltage electrode. The presence of strong initial azimuthal inhomogeneity of the wire mass distribution (sectioned arrays), as well as the use of conical electrodes instead of plane ones, does not increase the azimuthal inhomogeneity of the total energy losses. For cylindrical wire arrays, energy losses in the radial direction are compared with those along the pinch axis. According to XRD and calorimetric measurements, the radiation yield per unit solid angle along the pinch axis is two to three times lower than that in the radial direction. In the axial direction, the energy flux density of the expanding plasma is two to three times lower than the radiation intensity. The measured radiation yield across the pinch is 2.5-5 kJ/sr, while that along the pinch axis is 1-2 kJ/sr. The results obtained by means of XRDs agree to within measurement errors with those obtained using the radiation calorimeter. It is found that the energy per unit solid angle carried by the expanding plasma in the radial direction does not exceed 10% of the soft X-ray yield. Analysis of the structure of time-integrated pinhole images and signals from the radial and axial XRDs shows that radiation emitted in the radial direction from the hot central region of the pinch is partially screened by the less dense surrounding plasma halo, whereas radiation emitted in the axial direction is a

  10. Editorial : Introduction to Energy Strategy Reviews theme issue “Future Energy Systems and Market Integration of Wind Power”

    NARCIS (Netherlands)

    Lund, H.; Weijermars, R.

    2013-01-01

    Energy Strategy Reviews (ESR) provides a peer-reviewed publication platformto evaluate strategy options for tomorrow’s energy systems. The focus in this special issue is on “Future Energy Systems and Market Integration of Wind Power” and possible solutions are highlighted from the strategy viewpoint

  11. Sn ion energy distributions of ns- and ps-laser produced plasmas

    Science.gov (United States)

    Bayerle, A.; Deuzeman, M. J.; van der Heijden, S.; Kurilovich, D.; de Faria Pinto, T.; Stodolna, A.; Witte, S.; Eikema, K. S. E.; Ubachs, W.; Hoekstra, R.; Versolato, O. O.

    2018-04-01

    Ion energy distributions arising from laser-produced plasmas of Sn are measured over a wide laser parameter space. Planar-solid and liquid-droplet targets are exposed to infrared laser pulses with energy densities between 1 J cm‑2 and 4 kJ cm‑2 and durations spanning 0.5 ps to 6 ns. The measured ion energy distributions are compared to two self-similar solutions of a hydrodynamic approach assuming isothermal expansion of the plasma plume into vacuum. For planar and droplet targets exposed to ps-long pulses, we find good agreement between the experimental results and the self-similar solution of a semi-infinite simple planar plasma configuration with an exponential density profile. The ion energy distributions resulting from solid Sn exposed to ns-pulses agrees with solutions of a limited-mass model that assumes a Gaussian-shaped initial density profile.

  12. Feasibility of an energy conversion system in Canada involving large-scale integrated hydrogen production using solid fuels

    International Nuclear Information System (INIS)

    Gnanapragasam, Nirmal V.; Reddy, Bale V.; Rosen, Marc A.

    2010-01-01

    A large-scale hydrogen production system is proposed using solid fuels and designed to increase the sustainability of alternative energy forms in Canada, and the technical and economic aspects of the system within the Canadian energy market are examined. The work investigates the feasibility and constraints in implementing such a system within the energy infrastructure of Canada. The proposed multi-conversion and single-function system produces hydrogen in large quantities using energy from solid fuels such as coal, tar sands, biomass, municipal solid waste (MSW) and agricultural/forest/industrial residue. The proposed system involves significant technology integration, with various energy conversion processes (such as gasification, chemical looping combustion, anaerobic digestion, combustion power cycles-electrolysis and solar-thermal converters) interconnected to increase the utilization of solid fuels as much as feasible within cost, environmental and other constraints. The analysis involves quantitative and qualitative assessments based on (i) energy resources availability and demand for hydrogen, (ii) commercial viability of primary energy conversion technologies, (iii) academia, industry and government participation, (iv) sustainability and (v) economics. An illustrative example provides an initial road map for implementing such a system. (author)

  13. Integration of renewable energy plants based on generic data models in the energy management of a virtual power plant; Integration von erneuerbaren Energieanlagen auf Basis generischer Datenmodelle in das Energiemanagement eines virtuellen Kraftwerks

    Energy Technology Data Exchange (ETDEWEB)

    Wickert, Manuel; Slaby, Wolfgang; Hochloff, Patrick [Fraunhofer Institut fuer Windenergie und Energiesystemtechnik (IWES), Kassel (Germany); Winter, Martin [Siemens AG, Muenchen (Germany). Corporate Technology

    2012-07-01

    The integration of different types of energy resources manufactured by different vendors is one of the main challenges for virtual power plants. One of the important problems is a highly heterogeneous standardization environment for decentralized renewable energy resources. On the one hand proprietary solutions are implemented for some types of energy resources. In a future smart grid it is getting more and more important to handle decentralized energy generation. The project RegModHarz researched the dynamic integration of energy resources in virtual power plants based on generic data models. This paper introduces a concept for the integration of heterogeneous energy resources into the energy management of a virtual power plant using a uniform data model. On the assumption of a market-oriented virtual power plant the main attributes of this data model are generally identified and afterwards explained by examples. The capability of this data model is shown in a comprehensive field test with different renewable energy resources. (orig.)

  14. Integrating Variable Renewable Energy into the Grid: Key Issues, Greening the Grid (Spanish Version)

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    This is the Spanish version of 'Greening the Grid - Integrating Variable Renewable Energy into the Grid: Key Issues'. To foster sustainable, low-emission development, many countries are establishing ambitious renewable energy targets for their electricity supply. Because solar and wind tend to be more variable and uncertain than conventional sources, meeting these targets will involve changes to power system planning and operations. Grid integration is the practice of developing efficient ways to deliver variable renewable energy (VRE) to the grid. Good integration methods maximize the cost-effectiveness of incorporating VRE into the power system while maintaining or increasing system stability and reliability. When considering grid integration, policy makers, regulators, and system operators consider a variety of issues, which can be organized into four broad topics: New Renewable Energy Generation, New Transmission, Increased System Flexibility, and Planning for a High RE Future.

  15. An integrated assessment of climate change, air pollution, and energy security policy

    International Nuclear Information System (INIS)

    Bollen, Johannes; Hers, Sebastiaan; Van der Zwaan, Bob

    2010-01-01

    This article presents an integrated assessment of climate change, air pollution, and energy security policy. Basis of our analysis is the MERGE model, designed to study the interaction between the global economy, energy use, and the impacts of climate change. For our purposes we expanded MERGE with expressions that quantify damages incurred to regional economies as a result of air pollution and lack of energy security. One of the main findings of our cost-benefit analysis is that energy security policy alone does not decrease the use of oil: global oil consumption is only delayed by several decades and oil reserves are still practically depleted before the end of the 21st century. If, on the other hand, energy security policy is integrated with optimal climate change and air pollution policy, the world's oil reserves will not be depleted, at least not before our modeling horizon well into the 22nd century: total cumulative demand for oil decreases by about 24%. More generally, we demonstrate that there are multiple other benefits of combining climate change, air pollution, and energy security policies and exploiting the possible synergies between them. These benefits can be large: for Europe the achievable CO 2 emission abatement and oil consumption reduction levels are significantly deeper for integrated policy than when a strategy is adopted in which one of the three policies is omitted. Integrated optimal energy policy can reduce the number of premature deaths from air pollution by about 14,000 annually in Europe and over 3 million per year globally, by lowering the chronic exposure to ambient particulate matter. Only the optimal strategy combining the three types of energy policy can constrain the global average atmospheric temperature increase to a limit of 3 C with respect to the pre-industrial level. (author)

  16. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    organization and independent system operator settle energy transactions in its real-time markets at the same time interval it dispatches energy, and settle operating reserves transactions in its real-time markets the electric grid. These control systems will enable real-time coordination between distributed energy

  17. Evaluation Framework and Analyses for Thermal Energy Storage Integrated with Packaged Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Kung, F.; Deru, M.; Bonnema, E.

    2013-10-01

    Few third-party guidance documents or tools are available for evaluating thermal energy storage (TES) integrated with packaged air conditioning (AC), as this type of TES is relatively new compared to TES integrated with chillers or hot water systems. To address this gap, researchers at the National Renewable Energy Laboratory conducted a project to improve the ability of potential technology adopters to evaluate TES technologies. Major project outcomes included: development of an evaluation framework to describe key metrics, methodologies, and issues to consider when assessing the performance of TES systems integrated with packaged AC; application of multiple concepts from the evaluation framework to analyze performance data from four demonstration sites; and production of a new simulation capability that enables modeling of TES integrated with packaged AC in EnergyPlus. This report includes the evaluation framework and analysis results from the project.

  18. Energy in Southeast Asia: from Networks to Markets Integration

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2017-01-01

    Southeast Asia is one of the world's most dynamic regions and experiences strong economic and energy demand growth rates. In this context, the Association of Southeast Asian Nations (ASEAN) is seeking to interconnect the electric grids and gas networks of the countries through two initiatives, the Asean Power Grid and the Trans-Asean Gas Pipeline, in order to pool resources and optimize energy markets integration in the region

  19. Recent Progress on Integrated Energy Conversion and Storage Systems.

    Science.gov (United States)

    Luo, Bin; Ye, Delai; Wang, Lianzhou

    2017-09-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.

  20. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building

  1. Energy saving and emission reduction: A project of coal-resource integration in Shanxi Province, China

    International Nuclear Information System (INIS)

    Zhang Jianjun; Fu Meichen; Geng Yuhuan; Tao Jin

    2011-01-01

    The small or middle coal mines with illegal operations in developing countries or regions can cause bad energy waste and environmental disruption. The project of coal-resource integration in Shanxi Province of China gives a new idea or an approach to energy saving and emission reduction. It is a social- and economic-ecological project. The paper shows the targets of energy saving and emission reduction in Shanxi Province, and analyses the aims, significance, design process and implementation of the integration project. Based on that, the paper discusses the challenges and opportunities the project brings. The analysis shows that the project of coal-resource integration in developing countries or regions can effectively improve mining technologies, collect capital and impel international cooperation and exchange. Finally, the paper analyses the concerns about the future, including the possible problems of implementation period, industrial updating, environmental impact and re-employment. However, the successful integration of coal resources can mitigate energy crisis and climate crisis and promote cleaner production effectively. - Highlights: → Coal-resource integration gives a new idea or an approach to energy saving and emission reduction. → Coal-resource integration mitigates climate crisis and promotes cleaner production. → Coal-resource integration brings challenges and opportunities to traditional mining industries.

  2. Comparison of the energy and environmental impact by integrating a H_2 vehicle and an electric vehicle into a zero-energy building

    International Nuclear Information System (INIS)

    Cao, Sunliang

    2016-01-01

    Highlights: • Integrating a commercial-scale H_2 vehicle (HV) or electric vehicle (EV) into a ZEB. • Simultaneously fulfilling net-zero energy building and absolute-zero energy vehicle. • Energy performance comparison between the ZEBs with HV, EV, and no vehicle. • The energy matching-enhancing solutions for integrating the HV or EV with the ZEB. • Solutions for improving the matching and relieving the negative impact on the grid. - Abstract: The boundary extension of a zero-energy building to integrate a new energy vehicle will facilitate the realization of the target set by the EU 2050 roadmap. In this study, either a hydrogen vehicle (HV) or an electric vehicle (EV) is integrated into a renewable-supported building system with appropriate control strategies. The focused variables in this study are renewable energy capacities, vehicle system options, extents to utilize vehicle storages for domestic purposes, and the Excess REe-HW recharging strategies. The analysing aspects include the energy and environmental impact as well as the energy matching and the grid interactions. The results show that the annual net-zero energy/emission balance can be met by a 16, 12, and 12 kW rated wind turbine, or by a 195.8, 160.2, and 142.4 m"2 PV, for the building with the HV, the EV and no vehicle (NV), respectively. The building with the HV will be more demanding in meeting the balance due to the less efficient HV system than that with the EV. Moreover, better matching for the zero-energy system can be achieved by relieving the condition to discharge the vehicle storages for domestic usages and by using the Excess REe-HW recharging strategy. However, their negative effect will be a slight increase in the annual net-energy consumption, due to an increased loss from both the HV/EV integrated system and the thermal storage.

  3. Integrating Food-Water-Energy Research through a Socio-Ecosystem Approach

    Directory of Open Access Journals (Sweden)

    Manuel Maass

    2017-08-01

    Full Text Available The nexus approach helps in recognizing the link between water, energy, and food production systems, emphasizing the need to manage them in a more integrated way. The socio-ecosystem (SES approach, however, goes beyond that, by incorporating the regulation and supporting services in the management equation. Changes in ecosystem integrity affect the delivery of ecosystem services to society, which affects local people's well-being, creating a feedback mechanism regarding management strategies. The SES approach makes explicit the “human-bio-physical” nature of our interaction with ecosystems, highlighting the need for a more integrated and interconnected social-ecological research perspective. In addition, the SES approach makes more explicit the multi-scale character of the ecological processes that structure and maintain social-ecological systems. Water dynamics have an important role in shaping ecosystem's structure and functioning, as well as determining the systems capacity for delivering provisioning services. The tropical dry-deciduous forest (TDF, is particularly useful in studying water-food-energy trade-off interactions. Recently, a category 5 hurricane landed in the study area (Mexico's Pacific coast, triggering various social and ecological problems. This event is challenging the current forest management strategies in the region. The extreme hydrometeorological event created an excellent opportunity to test and promote the SES approach for more integrated food-water-energy research. By using the SES approach within our long-term socio-ecological research project, it was easier to identify opportunities for tackling trade-offs between maintaining the transformation of the system and a more sustainable alternative: promoting the maintenance of the ecosystem's integrity and its capacity to deliver provisioning and regulating services.

  4. Proposing a Master's Programme on Participatory Integrated Assessment of Energy Systems to Promote Energy Access and Energy Efficiency in Southern Africa

    Science.gov (United States)

    Kiravu, Cheddi; Diaz-Maurin, François; Giampietro, Mario; Brent, Alan C.; Bukkens, Sandra G.F.; Chiguvare, Zivayi; Gasennelwe-Jeffrey, Mandu A.; Gope, Gideon; Kovacic, Zora; Magole, Lapologang; Musango, Josephine Kaviti; Ruiz-Rivas Hernando, Ulpiano; Smit, Suzanne; Vázquez Barquero, Antonio; Yunta Mezquita, Felipe

    2018-01-01

    Purpose: This paper aims to present a new master's programme for promoting energy access and energy efficiency in Southern Africa. Design/methodology/approach: A transdisciplinary approach called "participatory integrated assessment of energy systems" (PARTICIPIA) was used for the development of the curriculum. This approach is based on…

  5. Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

    2014-08-01

    This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

  6. Economic and energy analysis about disposal interventions of waste tires produced in Calabria

    International Nuclear Information System (INIS)

    Florio, Gaetano; Cersosimo, Attilio.

    1997-01-01

    The present paper refers to an analysis aimed at researching disposal strategies, for waste tires produced in Calabria, which ensure correct disposal with regard to environmental compatibility and their evaluation in terms of material recovery and energy. The starting point has been an estimate of the quantities of potentially usable waste tires and disposal methods currently employed. It has therefore been possible to identify two specific disposal proposals for which an economic and energy evaluation has been conducted. The last part of the paper has faced the problem of plant location under consideration, with the aim of determining, for both proposal, the cost that each producer must bear to have his waste tires eliminated

  7. Integrated environmental assessment of future energy scenarios based on economic equilibrium models

    International Nuclear Information System (INIS)

    Igos, E.; Rugani, B.; Rege, S.; Benetto, E.; Drouet, L.; Zachary, D.; Haas, T.

    2014-01-01

    The future evolution of energy supply technologies strongly depends on (and affects) the economic and environmental systems, due to the high dependency of this sector on the availability and cost of fossil fuels, especially on the small regional scale. This paper aims at presenting the modeling system and preliminary results of a research project conducted on the scale of Luxembourg to assess the environmental impact of future energy scenarios for the country, integrating outputs from partial and computable general equilibrium models within hybrid Life Cycle Assessment (LCA) frameworks. The general equilibrium model for Luxembourg, LUXGEM, is used to evaluate the economic impacts of policy decisions and other economic shocks over the time horizon 2006-2030. A techno-economic (partial equilibrium) model for Luxembourg, ETEM, is used instead to compute operation levels of various technologies to meet the demand for energy services at the least cost along the same timeline. The future energy demand and supply are made consistent by coupling ETEM with LUXGEM so as to have the same macro-economic variables and energy shares driving both models. The coupling results are then implemented within a set of Environmentally-Extended Input-Output (EE-IO) models in historical time series to test the feasibility of the integrated framework and then to assess the environmental impacts of the country. Accordingly, a dis-aggregated energy sector was built with the different ETEM technologies in the EE-IO to allow hybridization with Life Cycle Inventory (LCI) and enrich the process detail. The results show that the environmental impact slightly decreased overall from 2006 to 2009. Most of the impacts come from some imported commodities (natural gas, used to produce electricity, and metalliferous ores and metal scrap). The main energy production technology is the combined-cycle gas turbine plant 'Twinerg', representing almost 80% of the domestic electricity production in Luxembourg

  8. Microfabrication and Integration of a Sol-Gel PZT Folded Spring Energy Harvester

    Directory of Open Access Journals (Sweden)

    Jonathan Lueke

    2015-05-01

    Full Text Available This paper presents the methodology and challenges experienced in the microfabrication, packaging, and integration of a fixed-fixed folded spring piezoelectric energy harvester. A variety of challenges were overcome in the fabrication of the energy harvesters, such as the diagnosis and rectification of sol-gel PZT film quality and adhesion issues. A packaging and integration methodology was developed to allow for the characterizing the harvesters under a base vibration. The conditioning circuitry developed allowed for a complete energy harvesting system, consisting a harvester, a voltage doubler, a voltage regulator and a NiMH battery. A feasibility study was undertaken with the designed conditioning circuitry to determine the effect of the input parameters on the overall performance of the circuit. It was found that the maximum efficiency does not correlate to the maximum charging current supplied to the battery. The efficiency and charging current must be balanced to achieve a high output and a reasonable output current. The development of the complete energy harvesting system allows for the direct integration of the energy harvesting technology into existing power management schemes for wireless sensing.

  9. Economics of Renewable Energy Integration and Energy Storage via Low Load Diesel Application

    Directory of Open Access Journals (Sweden)

    James Hamilton

    2018-04-01

    Full Text Available One-quarter of the world’s population lives without access to electricity. Unfortunately, the generation technology most commonly employed to advance rural electrification, diesel generation, carries considerable commercial and ecological risks. One approach used to address both the cost and pollution of diesel generation is renewable energy (RE integration. However, to successfully integrate RE, both the stochastic nature of the RE resource and the operating characteristics of diesel generation require careful consideration. Typically, diesel generation is configured to run heavily loaded, achieving peak efficiencies within 70–80% of rated capacity. Diesel generation is also commonly sized to peak demand. These characteristics serve to constrain the possible RE penetration. While energy storage can relieve the constraint, this adds cost and complexity to the system. This paper identifies an alternative approach, redefining the low load capability of diesel generation. Low load diesel (LLD allows a diesel engine to operate across its full capacity in support of improved RE utilization. LLD uses existing diesel assets, resulting in a reduced-cost, low-complexity substitute. This paper presents an economic analysis of LLD, with results compared to conventional energy storage applications. The results identify a novel pathway for consumers to transition from low to medium levels of RE penetration, without additional cost or system complexity.

  10. Wearable Fall Detector using Integrated Sensors and Energy Devices

    Science.gov (United States)

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-11-01

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.

  11. Disaggregated energy consumption and GDP in Taiwan: A threshold co-integration analysis

    International Nuclear Information System (INIS)

    Hu, J.-L.; Lin, C.-H.

    2008-01-01

    Energy consumption growth is much higher than economic growth for Taiwan in recent years, worsening its energy efficiency. This paper provides a solid explanation by examining the equilibrium relationship between GDP and disaggregated energy consumption under a non-linear framework. The threshold co-integration test developed with asymmetric dynamic adjusting processes proposed by Hansen and Seo [Hansen, B.E., Seo, B., 2002. Testing for two-regime threshold cointegration in vector error-correction models. Journal of Econometrics 110, 293-318.] is applied. Non-linear co-integrations between GDP and disaggregated energy consumptions are confirmed except for oil consumption. The two-regime vector error-correction models (VECM) show that the adjustment process of energy consumption toward equilibrium is highly persistent when an appropriately threshold is reached. There is mean-reverting behavior when the threshold is reached, making aggregate and disaggregated energy consumptions grow faster than GDP in Taiwan

  12. A time use survey derived integrative human-physical household system energy performance model

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Y.S. [Carnegie Mellon Univ., Pittsburgh, PA (United States). School of Architecture

    2009-07-01

    This paper reported on a virtual experiment that extrapolated the stochastic yet patterned behaviour of the integrative model of a 4-bedroom house in Chicago with 4 different household compositions. The integrative household system theory considers the household as a combination of 2 sub-systems, notably the physical system and the human system. The physical system is the materials and devices of a dwelling, and the human system is the occupants that live within the dwelling. A third element is the environment that influences the operation of the 2 sub-systems. The human-physical integrative household energy model provided a platform to simulate the effect of sub-house energy conservation measures. The virtual experiment showed that the use of the bootstrap sampling approach on American Time Use Survey (ATUS) data to determine the occupant's stochastic energy consumption behaviour has resulted in a robust complex system model. Bell-shaped distributions were presented for annual appliance, heating and cooling load demands. The virtual experiment also pointed to the development of advanced multi-zone residential HVAC system as a suitable strategy for major residential energy efficiency improvement. The load profiles generated from the integrative model simulation were found to be in good agreement with those from field studies. It was concluded that the behaviour of the integrative model is a good representation of the energy consumption behaviour of real households. 10 refs., 4 tabs., 12 figs.

  13. Practical application of Integrated National Energy Planning (INEP) using microcomputers

    International Nuclear Information System (INIS)

    Munasinghe, M.

    1989-01-01

    The paper describes the use of a practical microcomputer-based, hierarchical modelling framework for Integrated National Energy Planning (INEP), and policy analysis. The rationale for the concept and the development of the methodology are traced, following the energy crises of the 1970s. Details of the INEP process, which includes analysis at three hierarchical levels (the energy-microeconomic, energy sector and energy subsector) are given. A description of the various models, the scenarios and assumptions used in the analysis, as well as the linkages and interactions, is provided. The Sri Lanka energy situation is summarized, and the principal energy issues and options derived from the modelling are used to synthesize a national energy strategy. (author). 11 refs, 8 figs, 11 tabs

  14. Energy-Integrating Master Plan for the City of Atlantic City, New Jersey: energy conservation element. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    The Master Plan describes a coordinated energy-conservation effort for the City, the effective application and ultimate success of which depend primarily on the active involvement of the City government and its functional departments. Following an introductory section, Section XXI, Community Energy Determinants, describes the natural and man-made environment, growth and energy profiles, and the institutional environment. Additional sections are entitled: Energy-Conservation Options (passive energy options and active energy-conservation options); Energy Integration; Community Energy Management; Energy-Conservation Implementation Plan; and an appendix containing an energy-related glossary, a directory to various sources of information on energy conservation, various technical documents, a copy of the National Energy Act, and a bibliography. (MCW)

  15. World Energy Projection System model documentation

    International Nuclear Information System (INIS)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA

  16. World Energy Projection System model documentation

    Energy Technology Data Exchange (ETDEWEB)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

  17. Highly efficient integrated rectifier and voltage boosting circuits for energy harvesting applications

    Directory of Open Access Journals (Sweden)

    D. Maurath

    2008-05-01

    Full Text Available This paper presents novel circuit concepts for integrated rectifiers and voltage converting interfaces for energy harvesting micro-generators. In the context of energy harvesting, usually only small voltages are supplied by vibration-driven generators. Therefore, rectification with minimum voltage losses and low reverse currents is an important issue. This is realized by novel integrated rectifiers which were fabricated and are presented in this article. Additionally, there is a crucial need for dynamic load adaptation as well as voltage up-conversion. A circuit concept is presented, which is able to obtain both requirements. This generator interface adapts its input impedance for an optimal energy transfer efficiency. Furthermore, this generator interface provides implicit voltage up-conversion, whereas the generator output energy is stored on a buffer, which is connected to the output of the voltage converting interface. As simulations express, this fully integrated converter is able to boost ac-voltages greater than |0.35 V| to an output dc-voltage of 2.0 V–2.5 V. Thereby, high harvesting efficiencies above 80% are possible within the entire operational range.

  18. Lightweight structure design for wind energy by integrating nanostructured materials

    International Nuclear Information System (INIS)

    Li, Ying; Lu, Jian

    2014-01-01

    Highlights: • Integrate high-strength nano-materials into lightweight design. • Lightweight design scheme for wind turbine tower application. • Expand the bending formulae for tapered tubular structures with varying thickness. • We rewrite the Secant Formula for a tapered beam under eccentric compression. - Abstract: Wind power develops very fast nowadays with high expectation. Although at the mean time, the use of taller towers, however, smacks head-on into the issue of transportability. The engineering base and computational tools have to be developed to match machine size and volume. Consequently the research on the light weight structures of tower is carrying out in the main countries which are actively developing wind energy. This paper reports a new design scheme of light weight structure for wind turbine tower. This design scheme is based on the integration of the nanostructured materials produced by the Surface Mechanical Attrition Treatment (SMAT) process. The objective of this study is to accomplish the weight reduction by optimizing the wall thickness of the tapered tubular structure. The basic methods include the identification of the critical zones and the distribution of the high strength materials according to different necessities. The equivalent strength or stiffness design method and the high strength material properties after SMAT process are combined together. Bending and buckling are two main kinds of static loads concerned in consideration. The study results reveal that there is still enough margin for weight reduction in the traditional wind turbine tower design

  19. Energy and exergy analyses of an integrated solar heat pump system

    International Nuclear Information System (INIS)

    Suleman, F.; Dincer, I.; Agelin-Chaab, M.

    2014-01-01

    An integrated solar and heat pump based system for industrial heating is developed in this study. The system comprises heat pump cycle for process heating water and solar energy for another industrial heating process. Comprehensive energy and exergy analyses are performed on the system. These analyses generated some compelling results as expected because of the use of green and environmentally friendly energy sources. The results show that the energy efficiency of the process is 58% while the exergy efficiency is 75%. Energetic COP of the heat pump cycle is 3.54 whereas the exergy efficiency is 42.5%. Moreover, the energetic COP of the system is 2.97 and the exergy efficiency of the system is 35.7%. In the parametric study, a different variation such as changing the temperature and pressure of the condenser also shows positive results. - Highlights: • An integrated system is analysed using renewable energy source which can be used in textile industry. • Energy losses and exergy destructions are calculated at all major components. • Energy and exergy efficiencies of all subunits, subsystems and overall system are determined. • A parametric study shows the effect of environment and operating conditions on efficiencies. • Solar energy for heating in textile industry is efficient and environmentally friendly

  20. Uncertainty analysis of an integrated energy system based on information theory

    International Nuclear Information System (INIS)

    Fu, Xueqian; Sun, Hongbin; Guo, Qinglai; Pan, Zhaoguang; Xiong, Wen; Wang, Li

    2017-01-01

    Currently, a custom-designed configuration of different renewable technologies named the integrated energy system (IES) has become popular due to its high efficiency, benefiting from complementary multi-energy technologies. This paper proposes an information entropy approach to quantify uncertainty in an integrated energy system based on a stochastic model that drives a power system model derived from an actual network on Barry Island. Due to the complexity of co-behaviours between generators, a copula-based approach is utilized to articulate the dependency structure of the generator outputs with regard to such factors as weather conditions. Correlation coefficients and mutual information, which are effective for assessing the dependence relationships, are applied to judge whether the stochastic IES model is correct. The calculated information values can be used to analyse the impacts of the coupling of power and heat on power flows and heat flows, and this approach will be helpful for improving the operation of IES. - Highlights: • The paper explores uncertainty of an integrated energy system. • The dependent weather model is verified from the perspective of correlativity. • The IES model considers the dependence between power and heat. • The information theory helps analyse the complexity of IES operation. • The application of the model is studied using an operational system on Barry Island.

  1. Nonlocal kinetic energy functionals by functional integration

    Science.gov (United States)

    Mi, Wenhui; Genova, Alessandro; Pavanello, Michele

    2018-05-01

    Since the seminal studies of Thomas and Fermi, researchers in the Density-Functional Theory (DFT) community are searching for accurate electron density functionals. Arguably, the toughest functional to approximate is the noninteracting kinetic energy, Ts[ρ], the subject of this work. The typical paradigm is to first approximate the energy functional and then take its functional derivative, δ/Ts[ρ ] δ ρ (r ) , yielding a potential that can be used in orbital-free DFT or subsystem DFT simulations. Here, this paradigm is challenged by constructing the potential from the second-functional derivative via functional integration. A new nonlocal functional for Ts[ρ] is prescribed [which we dub Mi-Genova-Pavanello (MGP)] having a density independent kernel. MGP is constructed to satisfy three exact conditions: (1) a nonzero "Kinetic electron" arising from a nonzero exchange hole; (2) the second functional derivative must reduce to the inverse Lindhard function in the limit of homogenous densities; (3) the potential is derived from functional integration of the second functional derivative. Pilot calculations show that MGP is capable of reproducing accurate equilibrium volumes, bulk moduli, total energy, and electron densities for metallic (body-centered cubic, face-centered cubic) and semiconducting (crystal diamond) phases of silicon as well as of III-V semiconductors. The MGP functional is found to be numerically stable typically reaching self-consistency within 12 iterations of a truncated Newton minimization algorithm. MGP's computational cost and memory requirements are low and comparable to the Wang-Teter nonlocal functional or any generalized gradient approximation functional.

  2. DOE Heat Pump Centered Integrated Community Energy Systems Project

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J. M.

    1979-01-01

    The Heat Pump Centered Integrated Community Energy Systems (HP-ICES) Project is a multiphase undertaking seeking to demonstrate one or more operational HP-ICES by the end of 1983. The seven phases include System Development, Demonstration Design, Design Completion, HP-ICES Construction, Operation and Data Acquisition, HP-ICES Evaluation, and Upgraded Continuation. This project is sponsored by the Community Systems Branch, Office of Buildings and Community Systems, Assistant Secretary for Conservation and Solar Applicaions, U.S. Department of Energy (DOE). It is part of the Community Systems Program and is managed by the Energy and Environmental Systems Division of Argonne Natinal Laboratory.

  3. Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy

    International Nuclear Information System (INIS)

    Li, Tingxian; Wang, Ruzhu; Kiplagat, Jeremiah K.; Kang, YongTae

    2013-01-01

    An innovative dual-mode thermochemical sorption energy storage method is proposed for seasonal storage of solar thermal energy with little heat losses. During the charging phase in summer, solar thermal energy is stored in form of chemical bonds resulting from thermochemical decomposition process, which enables the stored energy to be kept several months at ambient temperature. During the discharging phase in winter, the stored thermal energy is released in the form of chemical reaction heat resulting from thermochemical synthesis process. Thermodynamic analysis showed that the advanced dual-mode thermochemical sorption energy storage is an effective method for the long-term seasonal storage of solar energy. A coefficient of performance (COP h ) of 0.6 and energy density higher than 1000 kJ/kg of salt can be attained from the proposed system. During the discharging phase at low ambient temperatures, the stored thermal energy can be upgraded by use of a solid–gas thermochemical sorption heat transformer cycle. The proposed thermochemical sorption energy storage has distinct advantages over the conventional sensible heat and latent heat storage, such as higher energy storage density, little heat losses, integrated energy storage and energy upgrade, and thus it can contribute to improve the seasonal utilization of solar thermal energy. - Highlights: ► A dual-mode solid thermochemical sorption is proposed for seasonal solar thermal energy storage. ► Energy upgrade techniques into the energy storage system are integrated. ► Performance of the proposed seasonal energy storage system is evaluated. ► Energy density and COP h from the proposed system are as high as 1043 kJ/kg of salt and 0.60, respectively

  4. Results. Building integrated energy supply; Resultater. Bygningsintegreret energiforsyning

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Rasmus L.; Noergaard, J.; Daniels, O.; Justesen, R.O.

    2011-08-15

    In the future, buildings will not only act as consumers of energy but as producers as well. For these ''prosumers'', energy production by use of solar panels, photovoltaics and heat pumps etc will be essential. The objective of this project was to find the most optimal combinations of building insulation and use of renewable energy sources in existing buildings in terms of economics and climate impacts. Five houses were analyzed based on different personal load, consumption profiles, solar orientation and proposed building envelope improvements and use of combinations of renewable energy systems. The analysis was conducted by making a large number of simulations of which the best combinations were selected. The final result takes form of a single top-50 list with the best combinations of energy systems according to CO{sub 2} emission, energy consumption and economics. The present report contains the conclusions of and comments on the project's results. (ln)

  5. An Optimisation Study on Integrating and Incentivising Thermal Energy Storage (TES in a Dwelling Energy System

    Directory of Open Access Journals (Sweden)

    Gbemi Oluleye

    2018-04-01

    Full Text Available In spite of the benefits from thermal energy storage (TES integration in dwellings, the penetration rate in Europe is 5%. Effective fiscal policies are necessary to accelerate deployment. However, there is currently no direct support for TES in buildings compared to support for electricity storage. This could be due to lack of evidence to support incentivisation. In this study, a novel systematic framework is developed to provide a case in support of TES incentivisation. The model determines the costs, CO2 emissions, dispatch strategy and sizes of technologies, and TES for a domestic user under policy neutral and policy intensive scenarios. The model is applied to different building types in the UK. The model is applied to a case study for a detached dwelling in the UK (floor area of 122 m2, where heat demand is satisfied by a boiler and electricity imported from the grid. Results show that under a policy neutral scenario, integrating a micro-Combined Heat and Power (CHP reduces the primary energy demand by 11%, CO2 emissions by 21%, but with a 16 year payback. Additional benefits from TES integration can pay for the investment within the first 9 years, reducing to 3.5–6 years when the CO2 levy is accounted for. Under a policy intensive scenario (for example considering the Feed in Tariff (FIT, primary energy demand and CO2 emissions reduce by 17 and 33% respectively with a 5 year payback. In this case, the additional benefits for TES integration can pay for the investment in TES within the first 2 years. The framework developed is a useful tool is determining the role TES in decarbonising domestic energy systems.

  6. Photonic Color Filters Integrated with Organic Solar Cells for Energy Harvesting

    KAUST Repository

    Park, Hui Joon

    2011-09-27

    Color filters are indispensable in most color display applications. In most cases, they are chemical pigment-based filters, which produce a particular color by absorbing its complementary color, and the absorbed energy is totally wasted. If the absorbed and wasted energy can be utilized, e.g., to generate electricity, innovative energy-efficient electronic media could be envisioned. Here we show photonic nanostructures incorporated with photovoltaics capable of producing desirable colors in the visible band and utilize the absorbed light to simultaneously generate electrical powers. In contrast to the traditional colorant-based filters, these devices offer great advantages for electro-optic applications. © 2011 American Chemical Society.

  7. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence E.

    2012-01-05

    A variety of studies have recently evaluated the opportunities for the large-scale integration of wind energy into the US power system. These studies have included, but are not limited to, "20 Percent Wind Energy by 2030: Increasing Wind Energy's Contribution to US Electricity Supply", the "Western Wind and Solar Integration Study", and the "Eastern Wind Integration and Transmission Study." Each of these US based studies have evaluated a variety of activities that can be undertaken by utilities to help integrate wind energy.

  8. The urban wind energy potential for integrated roof wind energy systems based on local building height distributions

    NARCIS (Netherlands)

    Blok, R.; Coers, M.D.

    2017-01-01

    An Integrated Roof Wind Energy System (IRWES) is a roof mounted structure with an internal wind turbine that uses smart aerodynamics to catch and accelerate wind flow. It has been designed for application on (existing) buildings in the urban environment. To estimate the maximum total wind energy

  9. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    Science.gov (United States)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain; Jung, Hun Bok; Carroll, Kenneth C.

    2018-01-23

    An electrophilic acid gas-reactive fracturing fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. The proppant stabilizes fracture openings in the bedrock to enhance recovery of energy-producing materials.

  10. Power electronics for renewable and distributed energy systems a sourcebook of topologies, control and integration

    CERN Document Server

    Chakraborty, Sudipta; Kramer, William E

    2013-01-01

    While most books approach power electronics and renewable energy as two separate subjects, Power Electronics for Renewable and Distributed Energy Systems takes an integrative approach; discussing power electronic converters topologies, controls and integration that are specific to the renewable and distributed energy system applications. An overview of power electronic technologies is followed by the introduction of various renewable and distributed energy resources that includes photovoltaics, wind, small hydroelectric, fuel cells, microturbines and variable speed generation. Energy storage s

  11. Integration of energy and environmental systems in wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Long, Suzanna [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 215 EMGT Building, Rolla, MO-65401, 573-341-7621 (United States); Cudney, Elizabeth [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 217 EMGT Building, Rolla, MO-65401, 573-341-7931 (United States)

    2012-07-01

    Most wastewater treatment facilities were built when energy costs were not a concern; however, increasing energy demand, changing climatic conditions, and constrained energy supplies have resulted in the need to apply more energy-conscious choices in the maintenance or upgrade of existing wastewater treatment facilities. This research develops an integrated energy and environmental management systems model that creates a holistic view of both approaches and maps linkages capable of meeting high-performing energy management while meeting environmental standards. The model has been validated through a case study on the Rolla, Missouri Southeast Wastewater Treatment Plant. Results from plant performance data provide guidance to improve operational techniques. The significant factors contributing to both energy and environmental systems are identified and balanced against considerations of cost.

  12. European Energy Integration in East European Countries: Real Necessity to Assure Fair Market prices for Energy Resources

    Directory of Open Access Journals (Sweden)

    Augustin IGNATOV

    2016-06-01

    Full Text Available In order to assure energy, and therefore, economic stability of East European States (hereafter EES there should be undertaken visible steps towards deeper energetic integration of the region under the coordination of EU. In such a way there will be considerably strengthened the regional economic security through creating functional mechanisms of solving current and potential energy issues including diversification of supplies and fairer market prices. Moreover, it will be possible to develop and implement more effectively energy infrastructure projects. Deeper and more functional energy integration in EES will create favorable preconditions of fostering the states’ economic development. Also, there will be considerably reduced the macroeconomic risks which could possible occur as a result of the struggle of interests of importing and supplying countries. The current paper is intended to underline the most important weaknesses in terms of energy security of EES and exemplify how efficient these problems could be tackled by cumulating common countries’ efforts in the sector. Also, it highlights the shortcomings of EU energy policy in EES and how these affect the economic prospective of the countries. Finally, it is remarked that EES need a common energy market in order to strengthen their negotiation positions in relation with supplying countries.

  13. Analysis to develop a program for energy-integrated farm systems

    Energy Technology Data Exchange (ETDEWEB)

    Eakin, D.E.; Clark, M.A.; Inaba, L.K.; Johnson, K.I.

    1981-09-01

    A program to use renewable energy resources and possibly develop decentralization of energy systems for agriculture is discussed. The purpose of the research presented is to establish the objective of the program and identify guidelines for program development. The program's objective is determined by: (1) an analysis of the technologies that could be utilized to transform renewable farm resources to energy by the year 2000, (2) the quantity of renewable farm resources that are available, and (3) current energy-use patterns. Individual research, development, and demonstration projects are fit into a national program of energy-integrated farm systems on the basis of: (1) market need, (2) conversion potential, (3) technological opportunities, and (4) acceptability. Quantification of these factors for the purpose of establishing program guidelines is conducted using the following four precepts: (1) market need is identified by current use of energy for agricultural production; (2) conversion potential is determined by the availability of renewable resources; and (3) technological opportunities are determined by the state-of-the-art methods, techniques, and processes that can convert renewable resources into farm energy. Each of these factors is analyzed in Chapters 2 to 4. Chapter 5 draws on the analysis of these factors to establish the objective of the program and identify guidelines for the distribution of program funds. Chapter 6 then discusses the acceptability of integrated farm systems, which can not be quantified like the other factors.

  14. Heat-pump-centered integrated community energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Schaetzle, W.J.; Brett, C.E.; Seppanen, M.S.

    1979-12-01

    The heat-pump-centered integrated community energy system (HP-ICES) supplies district heating and cooling using heat pumps and a thermal energy storage system which is provided by nature in underground porous formations filled with water, i.e., aquifers. The energy is transported by a two-pipe system, one for warm water and one for cool water, between the aquifers and the controlled environments. Each energy module contains the controlled environments, an aquifer, wells for access to the aquifer, the two pipe water distribution system and water source heat pumps. The heat pumps upgrade the energy in the distribution system for use in the controlled environments. Economically, the system shows improvement on both energy usage and capital costs. The system saves over 60% of the energy required for resistance heating; saves over 30% of the energy required for most air-source heat pumps and saves over 60% of the energy required for gas, coal, or oil heating, when comparing to energy input required at the power plant for heat pump usage. The proposed system has been analyzed as demonstration projects for a downtown portion of Louisville, Kentucky, and a section of Fort Rucker, Alabama. The downtown Louisville demonstration project is tied directly to major buildings while the Fort Rucker demonstration project is tied to a dispersed subdivision of homes. The Louisville project shows a payback of approximately 3 y, while Fort Rucker is approximately 30 y. The primary difference is that at Fort Rucker new heat pumps are charged to the system. In Louisville, either new construction requiring heating and cooling systems or existing chillers are utilized. (LCL)

  15. The energy integration in the sectoral policies. Good practices of european towns; L'integration de l'energie dans les politiques sectorielles. Bonnes pratiques de villes europeennes

    Energy Technology Data Exchange (ETDEWEB)

    Lacassagne, S.

    2003-07-01

    Some european towns developed a specific energy and environmental policy, function of many factors. Policies are implemented to favorite the energy consumption and the pollutant emission control. The actions of local collectivities in the domain have been analyzed following three axis: the measure of the energy performance of local collectivities, the territorial energy management tools, the energy integration in sectoral policies. This report takes stock on the third axis analysis. (A.L.B.)

  16. An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study

    International Nuclear Information System (INIS)

    Wouters, Carmen; Fraga, Eric S.; James, Adrian M.

    2015-01-01

    The integration of distributed generation units and microgrids in the current grid infrastructure requires an efficient and cost effective local energy system design. A mixed-integer linear programming model is presented to identify such optimal design. The electricity as well as the space heating and cooling demands of a small residential neighbourhood are satisfied through the consideration and combined use of distributed generation technologies, thermal units and energy storage with an optional interconnection with the central grid. Moreover, energy integration is allowed in the form of both optimised pipeline networks and microgrid operation. The objective is to minimise the total annualised cost of the system to meet its yearly energy demand. The model integrates the operational characteristics and constraints of the different technologies for several scenarios in a South Australian setting and is implemented in GAMS. The impact of energy integration is analysed, leading to the identification of key components for residential energy systems. Additionally, a multi-microgrid concept is introduced to allow for local clustering of households within neighbourhoods. The robustness of the model is shown through sensitivity analysis, up-scaling and an effort to address the variability of solar irradiation. - Highlights: • Distributed energy system planning is employed on a small residential scale. • Full energy integration is employed based on microgrid operation and tri-generation. • An MILP for local clustering of households in multi-microgrids is developed. • Micro combined heat and power units are key components for residential microgrids

  17. Sewage sludge drying process integration with a waste-to-energy power plant.

    Science.gov (United States)

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. New Approaches to Aluminum Integral Foam Production with Casting Methods

    Directory of Open Access Journals (Sweden)

    Ahmet Güner

    2015-08-01

    Full Text Available Integral foam has been used in the production of polymer materials for a long time. Metal integral foam casting systems are obtained by transferring and adapting polymer injection technology. Metal integral foam produced by casting has a solid skin at the surface and a foam core. Producing near-net shape reduces production expenses. Insurance companies nowadays want the automotive industry to use metallic foam parts because of their higher impact energy absorption properties. In this paper, manufacturing processes of aluminum integral foam with casting methods will be discussed.

  19. Design of energy efficient optical networks with software enabled integrated control plane

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Yan, Ying; Dittmann, Lars

    2015-01-01

    energy consumption by proposing a new integrated control plane structure utilising Software Defined Networking technologies. The integrated control plane increases the efficiencies of exchanging control information across different network domains, while introducing new possibilities to the routing...... methods and the control over quality of service (QoS). The structure is defined as an overlay generalised multi-protocol label switching (GMPLS) control model. With the defined structure, the integrated control plane is able to gather information from different domains (i.e. optical core network......'s) routing behaviours. With the flexibility of the routing structure, results show that the energy efficiency of the network can be improved without compromising the QoS for delay/blocking sensitive services....

  20. Integration of adaptive optics into highEnergy laser modeling and simulation

    Science.gov (United States)

    2017-06-01

    contain hundreds of actuators with high control bandwidths and low hysteresis, all of which are ideal parameters for accurate reconstruction of higher... Available : https://web.archive.org/web/20110111093235/http: //csis.org/blog/missile-defense-umbrella [10] C. Kopp, “ High energy laser directed energy...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS INTEGRATION OF ADAPTIVE OPTICS INTO HIGH ENERGY LASER MODELING AND SIMULATION by Donald Puent

  1. The balancing problem of distributed generation and the integration of different renewable energy sources

    DEFF Research Database (Denmark)

    Lund, Henrik

    2004-01-01

    The article presents the results of analyses of large- scale integration of wind power, photo voltaic and wave power into a Danish reference energy system......The article presents the results of analyses of large- scale integration of wind power, photo voltaic and wave power into a Danish reference energy system...

  2. The balancing problem of distrubuted generation and the integration of different renewable energy sources

    DEFF Research Database (Denmark)

    Lund, Henrik

    2004-01-01

    The article presents the results of analyses of large-scale integration of wind power, photo voltaic and wave power into a Danish reference energy system.......The article presents the results of analyses of large-scale integration of wind power, photo voltaic and wave power into a Danish reference energy system....

  3. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    grids. In terms of paper sessions, NREL ESI researcher Santosh Veda chaired a session on energy Kroposki chaired a session on advanced renewable energy power systems. While Veda, Muljadi, and Kroposki

  4. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel cell research and development projects through in-situ fuel cell testing. Photo of a researcher running

  5. South America's energy integration overshadows Venezuela-US confrontational posture

    International Nuclear Information System (INIS)

    Abrantes, Dayse

    2006-01-01

    Venezuela's plans of a 10 000 km gas pipeline project spanning Latin America is presented. A brief analysis of Venezuela's petroleum industry is provided. President Hugo Chavez' main ambitions include reducing oil sales to the USA and to spark South America's energy integration

  6. Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid

    International Nuclear Information System (INIS)

    Perera, A.T.D.; Nik, Vahid M.; Mauree, Dasaraden; Scartezzini, Jean-Louis

    2017-01-01

    Highlights: • A novel method introduced to optimize Electrical Hubs. • Novel dispatch based on fuzzy control and finite state machines. • Evaluating sensitivity of three performance indices for system autonomy. • Multi objective optimization considering system autonomy-cost. • Electrical Hubs can cover above 60% of the demand using wind and Solar PV. - Abstract: A paradigm change in energy system design tools, energy market, and energy policy is required to attain the target levels in renewable energy integration and in minimizing pollutant emissions in power generation. Integrating non-dispatchable renewable energy sources such as solar and wind energy is vital in this context. Distributed generation has been identified as a promising method to integrate Solar PV (SPV) and wind energy into grid in recent literature. Distributed generation using grid-tied electrical hubs, which consist of Internal Combustion Generator (ICG), non-dispatchable energy sources (i.e., wind turbines and SPV panels) and energy storage for providing the electricity demand in Sri Lanka is considered in this study. A novel dispatch strategy is introduced to address the limitations in the existing methods in optimizing grid-integrated electrical hubs considering real time pricing of the electricity grid and curtailments in grid integration. Multi-objective optimization is conducted for the system design considering grid integration level and Levelized Energy Cost (LEC) as objective functions to evaluate the potential of electrical hubs to integrate SPV and wind energy. The sensitivity of grid curtailments, energy market, price of wind turbines and SPV panels on Pareto front is evaluated subsequently. Results from the Pareto analysis demonstrate the potential of electrical hubs to cover more than 60% of the annual electricity demand from SPV and wind energy considering stringent grid curtailments. Such a share from SPV and wind energy is quite significant when compared to direct grid

  7. Sustainable Urban (re-Development with Building Integrated Energy, Water and Waste Systems

    Directory of Open Access Journals (Sweden)

    Tae-Goo Lee

    2013-03-01

    Full Text Available The construction and service of urban infrastructure systems and buildings involves immense resource consumption. Cities are responsible for the largest component of global energy, water, and food consumption as well as related sewage and organic waste production. Due to ongoing global urbanization, in which the largest sector of the global population lives in cities which are already built, global level strategies need to be developed that facilitate both the sustainable construction of new cities and the re-development of existing urban environments. A very promising approach in this regard is the decentralization and building integration of environmentally sound infrastructure systems for integrated resource management. This paper discusses such new and innovative building services engineering systems, which could contribute to increased energy efficiency, resource productivity, and urban resilience. Applied research and development projects in Germany, which are based on integrated system approaches for the integrated and environmentally sound management of energy, water and organic waste, are used as examples. The findings are especially promising and can be used to stimulate further research and development, including economical aspects which are crucial for sustainable urban (re-development.

  8. Domestic wastewater treatment as a net energy producer--can this be achieved?

    Science.gov (United States)

    McCarty, Perry L; Bae, Jaeho; Kim, Jeonghwan

    2011-09-01

    In seeking greater sustainability in water resources management, wastewater is now being considered more as a resource than as a waste-a resource for water, for plant nutrients, and for energy. Energy, the primary focus of this article, can be obtained from wastewater's organic as well as from its thermal content. Also, using wastewater's nitrogen and P nutrients for plant fertilization, rather than wasting them, helps offset the high energy cost of producing synthetic fertilizers. Microbial fuel cells offer potential for direct biological conversion of wastewater's organic materials into electricity, although significant improvements are needed for this process to be competitive with anaerobic biological conversion of wastewater organics into biogas, a renewable fuel used in electricity generation. Newer membrane processes coupled with complete anaerobic treatment of wastewater offer the potential for wastewater treatment to become a net generator of energy, rather than the large energy consumer that it is today.

  9. Integrating climate change adaptation in energy planning and decision-making - Key challenges and opportunities

    DEFF Research Database (Denmark)

    Olhoff, Anne; Olsen, Karen Holm

    2011-01-01

    management framework is used as the basis for identifying key challenges and opportunities to enhance the integration of climate change adaptation in energy planning and decision-making. Given its importance for raising awareness and for stimulating action by planners and decision-makers, emphasis is placed......Energy systems are significantly vulnerable to current climate variability and extreme events. As climate change becomes more pronounced, the risks and vulnerabilities will be exacerbated. To date, energy sector adaptation issues have received very limited attention. In this paper, a climate risk...... barriers to integration of climate risks and adaptive responses in energy planning and decision making. Both detailed assessments of the costs and benefits of integrating adaptation measures and rougher ‘order of magnitude’ estimates would enhance awareness raising and momentum for action....

  10. An Integrated Approach to Water-Energy Nexus in Shale-Gas Production

    Directory of Open Access Journals (Sweden)

    Fadhil Y. Al-Aboosi

    2018-05-01

    Full Text Available Shale gas production is associated with significant usage of fresh water and discharge of wastewater. Consequently, there is a necessity to create proper management strategies for water resources in shale gas production and to integrate conventional energy sources (e.g., shale gas with renewables (e.g., solar energy. The objective of this study is to develop a design framework for integrating water and energy systems including multiple energy sources, the cogeneration process and desalination technologies in treating wastewater and providing fresh water for shale gas production. Solar energy is included to provide thermal power directly to a multi-effect distillation plant (MED exclusively (to be more feasible economically or indirect supply through a thermal energy storage system. Thus, MED is driven by direct or indirect solar energy and excess or direct cogeneration process heat. The proposed thermal energy storage along with the fossil fuel boiler will allow for the dual-purpose system to operate at steady-state by managing the dynamic variability of solar energy. Additionally, electric production is considered to supply a reverse osmosis plant (RO without connecting to the local electric grid. A multi-period mixed integer nonlinear program (MINLP is developed and applied to discretize the operation period to track the diurnal fluctuations of solar energy. The solution of the optimization program determines the optimal mix of solar energy, thermal storage and fossil fuel to attain the maximum annual profit of the entire system. A case study is solved for water treatment and energy management for Eagle Ford Basin in Texas.

  11. Energy consumption and GDP in Turkey : Is there a co-integration relationship?

    NARCIS (Netherlands)

    Montfort, van K.; Lise, W.

    2007-01-01

    Energy consumption and GDP are expected to grow by 5.9% and 7% annually until 2025 in Turkey. This paper tries to unfold the linkage between energy consumption and GDP by undertaking a co-integration analysis for Turkey with annual data over the period 1970-2003. The analysis shows that energy

  12. Energy consumption and GDP in Turkey: is there a co-integration relationship?

    NARCIS (Netherlands)

    van Montfort, C.A.G.M.; Lise, W.

    2007-01-01

    Energy consumption and GDP are expected to grow by 5.9% and 7% annually until 2025 in Turkey. This paper tries to unfold the linkage between energy consumption and GDP by undertaking a co-integration analysis for Turkey with annual data over the period 1970-2003. The analysis shows that energy

  13. SOLID-DER. Reaching large-scale integration of Distributed Energy Resources in the enlarged European electricity market

    International Nuclear Information System (INIS)

    Van Oostvoorn, F.; Ten Donkelaar, M.

    2007-05-01

    The integration of DER (distributed energy resources) in the European electricity networks has become a key issue for energy producers, network operators, policy makers and the R and D community. In some countries it created already a number of challenges for the stability of the electricity supply system, thereby creating new barriers for further expansion of the share of DER in supply. On the other hand in many Member States there exists still a lack of awareness and understanding of the possible benefits and role of DER in the electricity system, while environmental goals and security of supply issues ask more and more for solutions that DER could provide in the future. The project SOLID-DER, a Coordination Action, will assess the barriers for further integration of DER, overcome both the lack of awareness of benefits of DER solutions and fragmentation in EU R and D results by consolidating all European DER research activities and report on its common findings. In particular awareness of DER solutions and benefits will be raised in the new Member States, thereby addressing their specific issues and barriers and incorporate them in the existing EU DER R and D community. The SOLID-DER Coordination Action will run from November 2005 to October 2008

  14. Observation of charmonium pairs produced exclusively in pp collisions

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Onderwater, G.; Pellegrino, A.

    A search is performed for the central exclusive production of pairs of charmonia produced in proton-proton collisions. Using data corresponding to an integrated luminosity of 3 fb(-1) collected at centre-of-mass energies of 7 and 8 TeV, J/psi J/psi and J/psi psi (2S) pairs are observed, which have

  15. Underground coal gasification with integrated carbon dioxide mitigation supports Bulgaria's low carbon energy supply

    Science.gov (United States)

    Nakaten, Natalie; Kempka, Thomas; Azzam, Rafig

    2013-04-01

    Underground coal gasification allows for the utilisation of coal reserves that are economically not exploitable due to complex geological boundary conditions. The present study investigates underground coal gasification as a potential economic approach for conversion of deep-seated coals into a high-calorific synthesis gas to support the Bulgarian energy system. Coupling of underground coal gasification providing synthesis gas to fuel a combined cycle gas turbine with carbon capture and storage is considered to provide substantial benefits in supporting the Bulgarian energy system with a competitive source of energy. In addition, underground voids originating from coal consumption increase the potential for geological storage of carbon dioxide resulting from the coupled process of energy production. Cost-effectiveness, energy consumption and carbon dioxide emissions of this coupled process are investigated by application of a techno-economic model specifically developed for that purpose. Capital (CAPEX) and operational expenditure (OPEX) are derived from calculations using six dynamic sub-models describing the entire coupled process and aiming at determination of the levelised costs of electricity generation (COE). The techno-economic model is embedded into an energy system-modelling framework to determine the potential integration of the introduced low carbon energy production technology into the Bulgarian energy system and its competitiveness at the energy market. For that purpose, boundary conditions resulting from geological settings as well as those determined by the Bulgarian energy system and its foreseeable future development have to be considered in the energy system-modelling framework. These tasks comprise integration of the present infrastructure of the Bulgarian energy production and transport system. Hereby, the knowledge on the existing power plant stock and its scheduled future development are of uttermost importance, since only phasing-out power

  16. Design methodology for integrated downstream separation systems in an ethanol biorefinery

    Science.gov (United States)

    Mohammadzadeh Rohani, Navid

    Energy security and environmental concerns have been the main drivers for a historic shift to biofuel production in transportation fuel industry. Biofuels should not only offer environmental advantages over the petroleum fuels they replace but also should be economically sustainable and viable. The so-called second generation biofuels such as ethanol which is the most produced biofuel are mostly derived from lignocellulosic biomasses. These biofuels are more difficult to produce than the first generation ones mainly due to recalcitrance of the feedstocks in extracting their sugar contents. Costly pre-treatment and fractionation stages are required to break down lignocellulosic feedstocks into their constituent elements. On the other hand the mixture produced in fermentation step in a biorefinery contains very low amount of product which makes the subsequent separation step more difficult and more energy consuming. In an ethanol biorefinery, the dilute fermentation broth requires huge operating cost in downstream separation for recovery of the product in a conventional distillation technique. Moreover, the non-ideal nature of ethanol-water mixture which forms an iseotrope at almost 95 wt%, hinders the attainment of the fuel grade ethanol (99.5 wt%). Therefore, an additional dehydration stage is necessary to purify the ethanol from its azeotropic composition to fuel-grade purity. In order to overcome the constraint pertaining to vapor-liquid equilibrium of ethanol-water separation, several techniques have been investigated and proposed in the industry. These techniques such as membrane-based technologies, extraction and etc. have not only sought to produce a pure fuel-grade ethanol but have also aimed at decreasing the energy consumption of this energy-intensive separation. Decreasing the energy consumption of an ethanol biorefinery is of paramount importance in improving its overall economics and in facilitating the way to displacing petroleum transportation fuel

  17. Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures.

    Science.gov (United States)

    Patel, Sanjay K S; Kumar, Prasun; Singh, Mamtesh; Lee, Jung-Kul; Kalia, Vipin C

    2015-01-01

    Biological production of hydrogen (H2) and polyhydroxybutyrate (PHB) from pea-shell slurry (PSS) was investigated using defined mixed culture (MMC4, composed of Enterobacter, Proteus, Bacillus spp.). Under batch culture, 19.0LH2/kg of PSS (total solid, TS, 2%w/v) was evolved. Using effluent from the H2 producing stage, Bacillus cereus EGU43 could produce 12.4% (w/w) PHB. Dilutions of PSS hydrolysate containing glucose (0.5%, w/v) resulted in 45-75LH2/kg TS fed and 19.1% (w/w) of PHB content. Under continuous culture, MMC4 immobilized on coconut coir (CC) lead to an H2 yield of 54L/kg TS fed and a PHB content of 64.7% (w/w). An improvement of 2- and 3.7-fold in H2 and PHB yields were achieved in comparison to control. This integrative approach using defined set of bacterial strains can prove effective in producing biomolecules from biowastes. Copyright © 2014. Published by Elsevier Ltd.

  18. Energy preserving integration of bi-Hamiltonian partial differential equations

    NARCIS (Netherlands)

    Karasozen, B.; Simsek, G.

    2013-01-01

    The energy preserving average vector field (AVF) integrator is applied to evolutionary partial differential equations (PDEs) in bi-Hamiltonian form with nonconstant Poisson structures. Numerical results for the Korteweg de Vries (KdV) equation and for the Ito type coupled KdV equation confirm the

  19. Recovery Act: Integrated DC-DC Conversion for Energy-Efficient Multicore Processors

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, Kenneth L

    2013-03-31

    In this project, we have developed the use of thin-film magnetic materials to improve in energy efficiency of digital computing applications by enabling integrated dc-dc power conversion and management with on-chip power inductors. Integrated voltage regulators also enables fine-grained power management, by providing dynamic scaling of the supply voltage in concert with the clock frequency of synchronous logic to throttle power consumption at periods of low computational demand. The voltage converter generates lower output voltages during periods of low computational performance requirements and higher output voltages during periods of high computational performance requirements. Implementation of integrated power conversion requires high-capacity energy storage devices, which are generally not available in traditional semiconductor processes. We achieve this with integration of thin-film magnetic materials into a conventional complementary metal-oxide-semiconductor (CMOS) process for high-quality on-chip power inductors. This project includes a body of work conducted to develop integrated switch-mode voltage regulators with thin-film magnetic power inductors. Soft-magnetic materials and inductor topologies are selected and optimized, with intent to maximize efficiency and current density of the integrated regulators. A custom integrated circuit (IC) is designed and fabricated in 45-nm CMOS silicon-on-insulator (SOI) to provide the control system and power-train necessary to drive the power inductors, in addition to providing a digital load for the converter. A silicon interposer is designed and fabricated in collaboration with IBM Research to integrate custom power inductors by chip stacking with the 45-nm CMOS integrated circuit, enabling power conversion with current density greater than 10A/mm2. The concepts and designs developed from this work enable significant improvements in performance-per-watt of future microprocessors in servers, desktops, and mobile

  20. Closed expressions for specific massive multiloop self-energy integrals

    International Nuclear Information System (INIS)

    Berends, F.A.; Boehm, M.; Buza, M.; Scharf, R.

    1994-01-01

    In this paper the class of N loop massive scalar self-energy diagrams with N + 1 propagators is studied in an arbitrary number of dimensions. As it is known these integrals cannot be expressed in terms of polylogarithms. Here it is shown, however, that they can be described by generalized hypergeometric functions of several variables, namely Laricella functions. These results represent previous small and large momentum expansions in closed form. Numerical comparisons for the finite part in four dimensions with a two-dimensional integral representation show good agreement. (orig.)

  1. Energy savings due to daylight and artificial lighting integration in office buildings in hot climate

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ashwal, Nagib T. [Sana' a University, Sana' a (Yemen); Budaiwi, Ismail M. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2011-07-01

    Reducing energy consumption while maintaining acceptable environmental quality in buildings has been a challenging task for building professionals. In office buildings, artificial lighting systems are a major consumer of energy and can significantly contribute to building cooling load. Furthermore, although reliable, artificial lighting does not necessarily provide the required quality of lighting. Significant improvement in lighting quality and energy consumption can be achieved by proper integration of daylight and artificial lighting. The objective of this study is to investigate the energy performance of office buildings resulting from daylight and artificial lighting integration in hot climates. A parametric analysis is conducted to find the impact of different window design parameters, including window area, height and glazing type, on building energy performance. Results have shown that as much as 35% reduction in lighting energy consumption and 13% reduction in total energy consumption can be obtained when proper daylighting and artificial lighting integration is achieved.

  2. Life cycle assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery

    International Nuclear Information System (INIS)

    Souza, Simone P.; Gopal, Anand R.; Seabra, Joaquim E.A.

    2015-01-01

    Sugarcane ethanol biorefineries in Brazil produce carbon dioxide, electricity and heat as byproducts. These are essential inputs for algae biodiesel production. In this paper, we assessed ethanol's life cycle greenhouse gas emissions and fossil energy use produced in an integrated sugarcane and algae biorefinery where biodiesel replaces petroleum diesel for all agricultural operations. Carbon dioxide from cane juice fermentation is used as the carbon source for algae cultivation, and sugarcane bagasse is the sole source of energy for the entire facility. Glycerin produced from the biodiesel plant is consumed by algae during the mixotrophic growth phase. We assessed the uncertainties through a detailed Monte-Carlo analysis. We found that this integrated system can improve both the life cycle greenhouse gas emissions and the fossil energy use of sugarcane ethanol by around 10% and 50%, respectively, compared to a traditional Brazilian sugarcane ethanol distillery. - Highlights: • A high diesel consumption is associated to the ethanol sugarcane life-cycle. • Sugarcane industry can provide sources of carbon and energy for the algae growing. • The sugarcane-algae integration can improve the ethanol life-cycle performance. • This integration is a promising pathway for the deployment of algae biodiesel. • There are still significant techno-economic barriers associated with algae biodiesel

  3. Review of recent benchmark experiments on integral test for high energy nuclear data evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Hiroshi; Tanaka, Susumu; Konno, Chikara; Fukahori, Tokio; Hayashi, Katsumi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    A survey work of recent benchmark experiments on an integral test for high energy nuclear data evaluation was carried out as one of the work of the Task Force on JENDL High Energy File Integral Evaluation (JHEFIE). In this paper the results are compiled and the status of recent benchmark experiments is described. (author)

  4. Effects of large scale integration of wind and solar energy in Japan

    Science.gov (United States)

    Esteban, Miguel; Zhang, Qi; Utama, Agya; Tezuka, Tetsuo; Ishihara, Keiichi

    2010-05-01

    A number of different energy scenarios exist for the development of renewable energy technologies in a variety of countries. Each of these scenarios produces different composition mixes depending on the assumptions on which they are based and the motivation of the authors. These studies are often based on annual data, which make general assumptions about the maximum and minimum output of a range of renewable technologies that are not considered to produce electricity at a predictable rate. These include solar power (which generally varies with the intensity of sunlight) and wind power (depending on the strength of the wind). To take into account the variability in the production of these technologies, many authors assume that the energy production sector cannot whole rely on these technologies, and that enough conventional production capacity (thermo, nuclear or hydro) must exist to cover the essential part of the electricity production. In the present work, the authors used the historical records of wind and solar radiation to estimate the minimum amount of electricity that could be produced by a given composition of renewable energies in the year 2100. The methodology used starts by inputting the geographical location and power rating of each of the power plants in the system. It assumes that PV installations will be located in roof-tops in cities (hence each of the major cities would act as a solar power plant) and that the location of wind farms closely resembles those of today. Wind farms, however, are assumed to use much greater units than those presently used, with each one having a rated power of 20MW. The method then used the historical meteorological data obtained from the Japan Meteorological Agency to compute the power production at each location sequentially for each of the 8760 hours in the year. The results show how although on adverse climate days in certain parts of the country the electricity generation from renewables is greatly reduced, when the

  5. The integration of renewable energies into the electricity systems of North Africa

    International Nuclear Information System (INIS)

    Brand, Bernhard

    2015-01-01

    How can renewable energy sources be efficiently integrated into the North African electricity systems? By using techno-economic modeling methods, this book explores optimized electricity system expansion pathways until the year 2030 for the five North African countries - Morocco, Algeria, Tunisia, Libya and Egypt. The results indicate that renewable energy integration is actually a viable business case for the entire region, if wind and solar capacities are properly planned in conjunction with the conventional generation system and under consideration of the country-specific electricity supply-/demand patterns. Further aspects featured in this publication are the impact of renewable power on the transnational electricity transmission system and the question how decision making processes about renewable energy strategies can be improved in the North African context. The book is a contribution to the scientific literature about energy issues in the Middle East and North Africa (MENA), but also seeks to address political and industrial practitioners concerned with the development of the region's renewable energy future.

  6. The integration of renewable energies into the electricity systems of North Africa

    Energy Technology Data Exchange (ETDEWEB)

    Brand, Bernhard

    2015-11-01

    How can renewable energy sources be efficiently integrated into the North African electricity systems? By using techno-economic modeling methods, this book explores optimized electricity system expansion pathways until the year 2030 for the five North African countries - Morocco, Algeria, Tunisia, Libya and Egypt. The results indicate that renewable energy integration is actually a viable business case for the entire region, if wind and solar capacities are properly planned in conjunction with the conventional generation system and under consideration of the country-specific electricity supply-/demand patterns. Further aspects featured in this publication are the impact of renewable power on the transnational electricity transmission system and the question how decision making processes about renewable energy strategies can be improved in the North African context. The book is a contribution to the scientific literature about energy issues in the Middle East and North Africa (MENA), but also seeks to address political and industrial practitioners concerned with the development of the region's renewable energy future.

  7. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL January 2018 Blockchain concept demonstrated Blockchain to Enable Energy Market in BlockCypher Partnership NREL is partnering with BlockCypher, a blockchain Web services provider, to demonstrate how blockchain technology can support distributed energy markets. For some, the language and

  8. Integrated analysis of energy transfers in elastic-wave turbulence.

    Science.gov (United States)

    Yokoyama, Naoto; Takaoka, Masanori

    2017-08-01

    In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.

  9. An estimation method for echo signal energy of pipe inner surface longitudinal crack detection by 2-D energy coefficients integration

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shiyuan, E-mail: redaple@bit.edu.cn; Sun, Haoyu, E-mail: redaple@bit.edu.cn; Xu, Chunguang, E-mail: redaple@bit.edu.cn; Cao, Xiandong, E-mail: redaple@bit.edu.cn; Cui, Liming, E-mail: redaple@bit.edu.cn; Xiao, Dingguo, E-mail: redaple@bit.edu.cn [School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China NO.5 Zhongguancun South Street, Haidian District, Beijing 100081 (China)

    2015-03-31

    The echo signal energy is directly affected by the incident sound beam eccentricity or angle for thick-walled pipes inner longitudinal cracks detection. A method for analyzing the relationship between echo signal energy between the values of incident eccentricity is brought forward, which can be used to estimate echo signal energy when testing inside wall longitudinal crack of pipe, using mode-transformed compression wave adaptation of shear wave with water-immersion method, by making a two-dimension integration of “energy coefficient” in both circumferential and axial directions. The calculation model is founded for cylinder sound beam case, in which the refraction and reflection energy coefficients of different rays in the whole sound beam are considered different. The echo signal energy is calculated for a particular cylinder sound beam testing different pipes: a beam with a diameter of 0.5 inch (12.7mm) testing a φ279.4mm pipe and a φ79.4mm one. As a comparison, both the results of two-dimension integration and one-dimension (circumferential direction) integration are listed, and only the former agrees well with experimental results. The estimation method proves to be valid and shows that the usual method of simplifying the sound beam as a single ray for estimating echo signal energy and choosing optimal incident eccentricity is not so appropriate.

  10. Hierarchical predictive control scheme for distributed energy storage integrated with residential demand and photovoltaic generation

    NARCIS (Netherlands)

    Lampropoulos, I.; Garoufalis, P.; van den Bosch, P.P.J.; Kling, W.L.

    2015-01-01

    A hierarchical control scheme is defined for the energy management of a battery energy storage system which is integrated in a low-voltage distribution grid with residential customers and photovoltaic installations. The scope is the economic optimisation of the integrated system by employing

  11. Multi-unit Inertial Fusion Energy (IFE) plants producing hydrogen fuel

    International Nuclear Information System (INIS)

    Logan, B.G.

    1993-12-01

    A quantitative energy pathway comparison is made between a modern oil refinery and genetic fusion hydrogen plant supporting hybrid-electric cars powered by gasoline and hydrogen-optimized internal combustion engines, respectively, both meeting President Clinton's goal for advanced car goal of 80 mpg gasoline equivalent. The comparison shows that a fusion electric plant producing hydrogen by water electrolysis at 80% efficiency must have an electric capacity of 10 GWe to support as many hydrogen-powered hybrid cars as one modern 200,000 bbl/day-capacity oil refinery could support in gasoline-powered hybrid cars. A 10 GWe fusion electric plant capital cost is limited to 12.5 B$ to produce electricity at 2.3 cents/kWehr, and hydrogen production by electrolysis at 8 $/GJ, for equal consumer fuel cost per passenger mile as in the oil-gasoline-hybrid pathway

  12. Deformation and energy absorption properties of powder-metallurgy produced Al foams

    International Nuclear Information System (INIS)

    Michailidis, N.; Stergioudi, F.; Tsouknidas, A.

    2011-01-01

    Highlights: → Porous Al fabricated via a dissolution and sintering method using raw cane sugar. → Different deformation mode depending on the relative density of the foams. → Enhanced energy absorption by reducing pore size and relative density of the foam. → Pore size uniformity and sintering temperature affect energy absorption. - Abstract: Al-foams with relative densities ranging from 0.30 to 0.60 and mean pore sizes of 0.35, 0.70 and 1.35 mm were manufactured by a powder metallurgy technology, based on raw cane sugar as a space-holder material. Compressive tests were carried out to investigate the deformation and energy absorbing characteristics and mechanisms of the produced Al-foams. The deformation mode of low density Al-foams is dominated by the bending and buckling of cell walls and the formation of macroscopic deformation bands whereas that of high density Al-foams is predominantly attributed to plastic yielding. The energy absorbing capacity of Al-foams rises for increased relative density and compressive strength. The sintering temperature of Al-foams having similar relative densities has a marked influence on both, energy absorbing efficiency and capacity. Pore size has a marginal effect on energy efficiency aside from Al-foams with mean pore size of 0.35 which exhibit enhanced energy absorption as a result of increased friction during deformation at lower strain levels.

  13. Development of integrated systems dynamics models for the sustainability assessment of nuclear energy

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Yacout, Abdellatif; Wade, Dave

    2005-01-01

    Nuclear energy is increasingly perceived as an attractive mature energy generation technology that can deliver an answer to the worldwide increasing energy demand while respecting environmental concerns as well as contributing to a reduced dependence on fossil fuel. Advancing nuclear energy deployment demands an assessment of nuclear energy with respect to all sustainability dimensions allowing full stakeholder involvement in deciding on the role of nuclear energy as part of a sustainable energy generation mix in the future. Integrated system dynamics models of nuclear energy systems are interesting tools for such assessment studies allowing performing material flow accounting, environmental impact, economic competitiveness and socio-political analysis and this for time-evolving nuclear energy systems. No single tool today is capable of covering all the dimensions for such integrated assessment while various developments are ongoing in different places around the world to make such tools available in the nearby future. Argonne National Laboratory has embarked on such tool development since the year 2000 and has developed various tools among which the DANESS-code shall be described in some more detail in this paper. (author)

  14. Integral energy concepts for housing estates; Integrale Energiekonzepte fuer Wohnsiedlungen

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, M.N.; Kuehl, L. [Technische Univ. Braunschweig (Germany)

    1998-06-01

    Integral energy concepts for housing estates require an early cooperation between architects, planners, and specialist engineers on the basis of a holistic planning approach. This is how future-oriented, sustainable concepts evolve which do justice to the multifarious requirements on the integral energy system of a housing estate. The present paper elucidates different approaches to optimising the energy efficiency of buildings such as the implementation of low-energy house concepts, building site and architectural planning, and detailed planning of heat insulation concepts, ventilation and air tightness concepts, and adapted heating systems. The solarisation of development plans has an influence on the arrangement of buildings, which are now planned to give the greatest possible passive and active solar energy gains. The authors also describe solar-assisted district heating systems for housing estates. [Deutsch] Integrale Energiekonzepte fuer Wohnsiedlungen erfordern die fruehe Zusammenarbeit von Architekten, Planern und Fachingenieuren im Rahmen einer ganzheitlichen Planung. So entstehen zukunftsweisende und tragfaehige Konzepte, die den vielschichtigen Anforderungen des Gesamtenergiesystems ``Wohnsiedlung`` gerecht werden. Im Folgenden wird die energetische Optimierung von Gebaeuden wie die Umsetzung von Niedrigenergiehaus-Konzepten, Standort und Gebaeudeplanung sowie Detailplanung in Bezug auf das Waermedaemmkonzept, Lueftungs-/Dichtheitskonzept und auf angepasste Waermeversorgungssysteme erl autert. Die Solarisierung von Bebauungsplaenen beeinflusste Anordnung der Gebaeude hinsichtlich der Nutzung passivsolarer Gewinne sowie des Einsatzes von Systemen der aktiven Solarenergienutzung. Solarunterstuetzte Nahwaermenetze fuer Wohnsiedlungen werden ebenfalls beschrieben.

  15. An energy-stable time-integrator for phase-field models

    KAUST Repository

    Vignal, Philippe

    2016-12-27

    We introduce a provably energy-stable time-integration method for general classes of phase-field models with polynomial potentials. We demonstrate how Taylor series expansions of the nonlinear terms present in the partial differential equations of these models can lead to expressions that guarantee energy-stability implicitly, which are second-order accurate in time. The spatial discretization relies on a mixed finite element formulation and isogeometric analysis. We also propose an adaptive time-stepping discretization that relies on a first-order backward approximation to give an error-estimator. This error estimator is accurate, robust, and does not require the computation of extra solutions to estimate the error. This methodology can be applied to any second-order accurate time-integration scheme. We present numerical examples in two and three spatial dimensions, which confirm the stability and robustness of the method. The implementation of the numerical schemes is done in PetIGA, a high-performance isogeometric analysis framework.

  16. An energy-stable time-integrator for phase-field models

    KAUST Repository

    Vignal, Philippe; Collier, N.; Dalcin, Lisandro; Brown, D.L.; Calo, V.M.

    2016-01-01

    We introduce a provably energy-stable time-integration method for general classes of phase-field models with polynomial potentials. We demonstrate how Taylor series expansions of the nonlinear terms present in the partial differential equations of these models can lead to expressions that guarantee energy-stability implicitly, which are second-order accurate in time. The spatial discretization relies on a mixed finite element formulation and isogeometric analysis. We also propose an adaptive time-stepping discretization that relies on a first-order backward approximation to give an error-estimator. This error estimator is accurate, robust, and does not require the computation of extra solutions to estimate the error. This methodology can be applied to any second-order accurate time-integration scheme. We present numerical examples in two and three spatial dimensions, which confirm the stability and robustness of the method. The implementation of the numerical schemes is done in PetIGA, a high-performance isogeometric analysis framework.

  17. Electricity cost effects of expanding wind power and integrating energy sectors

    DEFF Research Database (Denmark)

    Rodriguez, Victor Adrian Maxwell; Sperling, Karl; Hvelplund, Frede Kloster

    2015-01-01

    Recently, questions have arisen in Denmark as to how and why public funding should be allocated to wind power producers. This is, among other reasons, due to pressure from industrial electricity consumers who want their overall energy costs lowered. Utilising existing wind power subsidies across...... conditions which could allow wind power producers to reduce their reliance on subsidies. It is found that the strategy may be effective in lowering the overall energy costs of electricity consumers. Further, it is found possible to scale up this strategy and realise benefits on a national scale....

  18. Requirements of Integrated Design Teams While Evaluating Advanced Energy Retrofit Design Options in Immersive Virtual Environments

    Directory of Open Access Journals (Sweden)

    Xue Yang

    2015-12-01

    Full Text Available One of the significant ways to save energy use in buildings is to implement advanced energy retrofits in existing buildings. Improving energy performance of buildings through advanced energy retrofitting requires a clear understanding of the cost and energy implications of design alternatives from various engineering disciplines when different retrofit options are considered. The communication of retrofit design alternatives and their energy implications is essential in the decision-making process, as it affects the final retrofit selections and hence the energy efficiency of the retrofitted buildings. The objective of the research presented here was to identify a generic list of information requirements that are needed to be shared and collectively analyzed by integrated design teams during advanced energy retrofit design review meetings held in immersive settings. While identifying such requirements, the authors used an immersive environment based iterative requirements elicitation approach. The technology was used as a means to better identify the information requirements of integrated design teams to be analyzed as a group. This paper provides findings on information requirements of integrated design teams when evaluating retrofit options in immersive virtual environments. The information requirements were identified through interactions with sixteen experts in design and energy modeling domain, and validated with another group of participants consisting of six design experts who were experienced in integrated design processes. Industry practitioners can use the findings in deciding on what information to share with integrated design team members during design review meetings that utilize immersive virtual environments.

  19. BC Hydro best practices : energy efficiency and integrated planning

    International Nuclear Information System (INIS)

    Henriques, D.

    2004-01-01

    The key elements to success in energy efficiency include integrated energy planning, a review of conservation potential, pursuing a target, risk sharing between all parties, and long term planning when making investments in demand side management (DSM). The barriers to cost effective energy efficiency investment were also outlined along with the scope of the conservation potential review which included 95 per cent of electricity end use applications in all market sectors including residential, commercial, institutional and industrial. BC Hydro's Power Smart program focuses on energy efficiency and load displacement to meet 35 per cent of the utility's forecasted growth by 2012. The sources of savings within each of the market sectors were identified. Key recommendations regarding energy efficiency and conservation were also presented with reference to financial incentives offered by BC Hydro to consumers to encourage a switch to more efficient lighting systems. 10 figs

  20. Integrated fate modeling for exposure assessment of produced water on the Sable Island Bank (Scotian shelf, Canada).

    Science.gov (United States)

    Berry, Jody A; Wells, Peter G

    2004-10-01

    Produced water is the largest waste discharge from the production phase of oil and gas wells. Produced water is a mixture of reservoir formation water and production chemicals from the separation process. This creates a chemical mixture that has several components of toxic concern, ranging from heavy metals to soluble hydrocarbons. Analysis of potential environmental effects from produced water in the Sable Island Bank region (NS, Canada) was conducted using an integrated modeling approach according to the ecological risk assessment framework. A hydrodynamic dispersion model was used to describe the wastewater plume. A second fugacity-based model was used to describe the likely plume partitioning in the local environmental media of water, suspended sediment, biota, and sediment. Results from the integrated modeling showed that the soluble benzene and naphthalene components reach chronic no-effect concentration levels at a distance of 1.0 m from the discharge point. The partition modeling indicated that low persistence was expected because of advection forces caused by tidal currents for the Sable Island Bank system. The exposure assessment for the two soluble hydrocarbon components suggests that the risks of adverse environmental effects from produced water on Sable Island Bank are low.

  1. Energy shortage - a produced crisis

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Five articles of the central organ of the KPD/ML, the 'Roter Morgen', and a declaration of the central committee of th KPD/ML are published here. The articles deal with: raw materials-utilization and deposits; the oil-multis - the world's greatest financial power; the energy industry of the FRG; nuclear power - the new trick of the old bosses; resisting the bulling of oil prices, securing energy supply on the basis of coal. The articles are clearly combative and against capitalism, energy concerns and oil-multis. The energy crisis is declared to be a problem of capitalism which can only be solved by abolishing the capitalist system and its laws of profit. (HSCH) [de

  2. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  3. Economic aspects for South America energy integration; Aspectos economicos para a integracao energetica da America do Sul

    Energy Technology Data Exchange (ETDEWEB)

    Vela, Jorge Alberto Alcala; Cardozo, Fernando Simoes [ELETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Expansion of the internal market and external, production on a large scale and more dynamic economic growth would be the consequences of a regional integration in South America. However, due to the specific characteristics of South America this process did not occur. Many attempts were made through the years with the creation of institutions that tried to promote the integration of different forms of South America. This article analyses the current economic conditions in which this initiative is to achieve an energy integration, which seems feasible given the provision expresses the presidents of South American countries before a possible rationing of energy. Through analysis of the results it may be concluded that there is a growing demand for energy in all countries, which should be resolved first in order not to cut the development of South America. The main economic aspects which affect the process of integrating energy are the commercial structures of energy, the energy complementarities, the degree of development of infrastructure for interconnection, the industrial structure and conformation electric business. However, an immediate solution would be to boost bilateral integration energy projects and construction of transmission lines that interconnect the regional stations for the supply of electric energy. Moreover, as the conditions are not improved political and economic and there is no compatible models between technical institutions and legal and administrative, will not be achieved significant progress in the process of regional energy integration of South America. (author)

  4. Reliable implementation of intelligent load control and decentralized power generation in the E-Energy project E-DeMa; Zuverlaessige Integration intelligenter Laststeuerung und dezentraler Energieerzeugung im E-Energy Projekt E-DeMa

    Energy Technology Data Exchange (ETDEWEB)

    Langhammer, N.; Kays, R. [Technische Univ. Dortmund (Germany). Lehrstuhl fuer Kommunikationstechnik; Mueller, C.; Wietfeld, C. [Technische Univ. Dortmund (Germany). Lehrstuhl fuer Kommunikationsnetze; Kreutz, S.; Belitz, H.J.; Koenig, D.; Rehtanz, C. [Technische Univ. Dortmund (Germany). Inst. fuer Energiesysteme, Energieeffizienz und Energiewirtschaft

    2012-07-01

    The authors of the contribution under consideration report on the integration of intelligent load control and distributed power producers into future smart grid energy systems. The authors present the approaches and innovations that have been developed in the framework of the E-Energy project E-DeMa. The focus of this paper is on the implementation of a communication infrastructure that has been built up in E-DeMa in a large-scale field test in two pilot regions and is currently being tested. Furthermore, the economic potential of the so-called aggregator is presented that summarizes a variety of loads in the retail sector in and intelligently controls remotely.

  5. Scaling Up Renewable Energy Generation: Aligning Targets and Incentives with Grid Integration Considerations, Greening The Grid

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Jessica; Cochran, Jaquelin

    2015-05-27

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document, part of a Greening the Grid toolkit, provides power system planners with tips to help secure and sustain investment in new renewable energy generation by aligning renewable energy policy targets and incentives with grid integration considerations.

  6. Solar Energy Delivering Greenhouse with an Integrated NIR filter

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Holterman, H.J.; Tuijl, van B.A.J.; Bot, G.P.A.

    2008-01-01

    The scope of this investigation is the design and development of a new type of greenhouse with an integrated filter for rejecting near infrared radiation (NIR) and a solar energy delivery system. Cooled greenhouses are an important issue to cope with the combination of high global radiation and high

  7. Methods for assessing the sustainability of integrated municipal waste management and energy supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Luoranen, M.

    2009-07-01

    The general striving to bring down the number of municipal landfills and to increase the reuse and recycling of waste-derived materials across the EU supports the debates concerning the feasibility and rationality of waste management systems. Substantial decrease in the volume and mass of landfill-disposed waste flows can be achieved by directing suitable waste fractions to energy recovery. Global fossil energy supplies are becoming more and more valuable and expensive energy sources for the mankind, and efforts to save fossil fuels have been made. Waste-derived fuels offer one potential partial solution to two different problems. First, waste that cannot be feasibly re-used or recycled is utilized in the energy conversion process according to EU's Waste Hierarchy. Second, fossil fuels can be saved for other purposes than energy, mainly as transport fuels. This thesis presents the principles of assessing the most sustainable system solution for an integrated municipal waste management and energy system. The assessment process includes: Formation of a SISMan (Simple Integrated System Management) model of an integrated system including mass, energy and financial flows, and formation of a MEFLO (Mass, Energy, Financial, Legislational, Other decisionsupport data) decision matrix according to the selected decision criteria, including essential and optional decision criteria. The methods are described and theoretical examples of the utilization of the methods are presented in the thesis. The assessment process involves the selection of different system alternatives (process alternatives for treatment of different waste fractions) and comparison between the alternatives. The first of the two novelty values of the utilization of the presented methods is the perspective selected for the formation of the SISMan model. Normally waste management and energy systems are operated separately according to the targets and principles set for each system. In the thesis the waste

  8. Derivation of integral energy balance for the manotea facility

    Energy Technology Data Exchange (ETDEWEB)

    Pollman, Anthony, E-mail: pollman@nps.edu [Mechanical and Aeronautical Engineering Department, United States Naval Postgraduate School, Monterey, CA 93943 (United States); Marzo, Marino di [Fire Protection Engineering Department, University of Maryland, College Park, MD 20742 (United States)

    2013-12-15

    Highlights: • An integral energy balance was derived for the MANOTEA facility. • A second equation was derived which frames transients in terms of inventory alone. • Both equations were implemented and showed good agreement with experimental data. • The equations capture the physical mechanisms behind MANOTEA transients. • Physical understanding is required in order to properly model these transients with TRACE. - Abstract: Rapid-condensation-induced fluid motion occurs in several nuclear reactor accident sequences, as well as during normal operation. Modeling these events is central to our ability to regulate and ensure safe reactor operations. The UMD-USNA Near One-dimensional Transient Experimental Apparatus (MANOTEA) was constructed in order to create a rapid-condensation dataset for subsequent comparison to TRACE output. This paper outlines a derivation of the energy balance for the facility. A path integral based on mass and energy, rather than fluid mechanical, considerations is derived in order to characterize the physical mechanisms governing MANOTEA transients. This equation is further simplified to obtain an expression that frames transients in term of liquid inventory alone. Using data obtained from an actual transient, the path integral is implemented using three variables (change in liquid inventory, liquid inventory as a function of time, and change in metal temperature) to predict the outcome of a fourth independently measured variable (condenser pressure as a function of time). The implementation yields a very good approximation of the actual data. The inventory equation is also implemented and shows reasonable agreement. These equations, and the physical intuition that they yield, are key to properly characterizing MANOTEA transients and any subsequent modeling efforts.

  9. Wind energy and integration into the grid

    International Nuclear Information System (INIS)

    Fox, B.

    2009-01-01

    The development of wind power plants raises multiple challenges in terms of planning, exploitation and control of power systems. One characteristic of this energy source is its variability with time and its difficulty to be planned. This book takes stock of the theoretical and practical aspects of the question. It gives us a state-of-the-art of the existing solutions to integrate this energy source to the national grid beside other sources of different origin (nuclear, thermal..). In order to allow the reader to understand the stakes and the solutions, some basic notions of electrotechnics and wind technologies are presented first. Then it deals with the wind power impact on power system operation when the wind energy penetration reaches 10% of the whole power. The production/consumption balancing is analyzed and the problem of wind power unpredictability is approached. Beside the problems of voltage regulation of a wind farm and supply maintenance during voltage drop, the book allows to apprehend the operation of electricity markets and in particular those related to wind power (meteorology forecasts and anticipation of production). (J.S.)

  10. Self-powered integrated systems-on-chip (energy chip)

    KAUST Repository

    Hussain, Muhammad Mustafa

    2010-04-23

    In today\\'s world, consumer driven technology wants more portable electronic gadgets to be developed, and the next big thing in line is self-powered handheld devices. Therefore to reduce the power consumption as well as to supply sufficient power to run those devices, several critical technical challenges need to be overcome: a. Nanofabrication of macro/micro systems which incorporates the direct benefit of light weight (thus portability), low power consumption, faster response, higher sensitivity and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency to reduce power consumption and to supply enough power to meet that low power demand. We present a pragmatic perspective on a self-powered integrated System on Chip (SoC). We envision the integrated device will have two objectives: low power consumption/dissipation and on-chip power generation for implementation into handheld or remote technologies for defense, space, harsh environments and medical applications. This paper provides insight on materials choices, intelligent circuit design, and CMOS compatible integration.

  11. Self-powered integrated systems-on-chip (energy chip)

    Science.gov (United States)

    Hussain, M. M.; Fahad, H.; Rojas, J.; Hasan, M.; Talukdar, A.; Oommen, J.; Mink, J.

    2010-04-01

    In today's world, consumer driven technology wants more portable electronic gadgets to be developed, and the next big thing in line is self-powered handheld devices. Therefore to reduce the power consumption as well as to supply sufficient power to run those devices, several critical technical challenges need to be overcome: a. Nanofabrication of macro/micro systems which incorporates the direct benefit of light weight (thus portability), low power consumption, faster response, higher sensitivity and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency to reduce power consumption and to supply enough power to meet that low power demand. We present a pragmatic perspective on a self-powered integrated System on Chip (SoC). We envision the integrated device will have two objectives: low power consumption/dissipation and on-chip power generation for implementation into handheld or remote technologies for defense, space, harsh environments and medical applications. This paper provides insight on materials choices, intelligent circuit design, and CMOS compatible integration.

  12. Fusion in the energy system

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  13. Integration of national and regional energy development programs in Baltic States

    International Nuclear Information System (INIS)

    Klevas, V.; Antinucci, M.

    2004-01-01

    The report is dedicated to the presentation of the general framework of regional energy planning activities in Baltic States. The objective is to provide information on the context, in which regional energy policy instruments have to operate, and which has to be taken into consideration when compiling energy development measures for regional development and structural funds. The major issue of the publication is to discuss perspective of the formation methodology for energy management integration into development of regional planning documents. The main objective of this publication is to make a brief overview of what are the prospects of regional energy development. The place of municipal and regional energy development programs in general energy investment strategy is defined. The guidelines for regional energy programs are presented

  14. Use of various types of carbon-containing raw materials to produce thermal energy

    Directory of Open Access Journals (Sweden)

    В. Б. Кусков

    2016-08-01

    Full Text Available Many types of carbon-containing organic compounds and all possible carbon-containing products or wastes in low demand can be used to produce thermal energy. A technology has been developed for producing highly flammable briquettes on the basis of bituminous coal. These briquettes have a special incendiary layer. It is easily ignites from low energy heat sources (e.g. matches, and then flame spreads to the rest of briquette. Use of coal slacks and paper wastes as carbon-containing components playing the role of binders provides an opportunity to get a fuel briquette easy in terms of production and plain in composition while at the same time dispose of coal and paper wastes. Such briquettes may also have a special incendiary layer. Technology for fuel briquettes production from wood and slate wastes employed no binding agents, as wood products acted as binders. Thus technologies have been developed to produce fuel briquettes from various carbon-containing materials in low demand. The briquettes are intended for household boilers, fireplaces, different ovens in order to cook food, heat residential and utility premises, cabins, etc.

  15. Higher renewable energy integration into the existing energy system of Finland – Is there any maximum limit?

    International Nuclear Information System (INIS)

    Zakeri, Behnam; Syri, Sanna; Rinne, Samuli

    2015-01-01

    Finland is to increase the share of RES (renewable energy sources) up to 38% in final energy consumption by 2020. While benefiting from local biomass resources Finnish energy system is deemed to achieve this goal, increasing the share of other intermittent renewables is under development, namely wind power and solar energy. Yet the maximum flexibility of the existing energy system in integration of renewable energy is not investigated, which is an important step before undertaking new renewable energy obligations. This study aims at filling this gap by hourly analysis and comprehensive modeling of the energy system including electricity, heat, and transportation, by employing EnergyPLAN tool. Focusing on technical and economic implications, we assess the maximum potential of different RESs separately (including bioenergy, hydropower, wind power, solar heating and PV, and heat pumps), as well as an optimal mix of different technologies. Furthermore, we propose a new index for assessing the maximum flexibility of energy systems in absorbing variable renewable energy. The results demonstrate that wind energy can be harvested at maximum levels of 18–19% of annual power demand (approx. 16 TWh/a), without major enhancements in the flexibility of energy infrastructure. With today's energy demand, the maximum feasible renewable energy for Finland is around 44–50% by an optimal mix of different technologies, which promises 35% reduction in carbon emissions from 2012's level. Moreover, Finnish energy system is flexible to augment the share of renewables in gross electricity consumption up to 69–72%, at maximum. Higher shares of RES calls for lower energy consumption (energy efficiency) and more flexibility in balancing energy supply and consumption (e.g. by energy storage). - Highlights: • By hourly analysis, we model the whole energy system of Finland. • With existing energy infrastructure, RES (renewable energy sources) in primary energy cannot go beyond 50%.

  16. Scheduling Model for Renewable Energy Sources Integration in an Insular Power System

    Directory of Open Access Journals (Sweden)

    Gerardo J. Osório

    2018-01-01

    Full Text Available Insular power systems represent an asset and an excellent starting point for the development and analysis of innovative tools and technologies. The integration of renewable energy resources that has taken place in several islands in the south of Europe, particularly in Portugal, has brought more uncertainty to production management. In this work, an innovative scheduling model is proposed, which considers the integration of wind and solar resources in an insular power system in Portugal, with a strong conventional generation basis. This study aims to show the benefits of increasing the integration of renewable energy resources in this insular power system, and the objectives are related to minimizing the time for which conventional generation is in operation, maximizing profits, reducing production costs, and consequently, reducing greenhouse gas emissions.

  17. Energy integration on multi-periods and multi-usages for hybrid electric and thermal powertrains

    International Nuclear Information System (INIS)

    Dimitrova, Zlatina; Maréchal, François

    2015-01-01

    The improvement of the efficiency of vehicle energy systems promotes an active search to find innovative solutions during the design process. This requires more accurate modeling of complex systems, which offers new ways to improve the design efficiency of energy systems. The vehicle is a highly dynamic system. The size and the efficiency of the convertors are dependent on the dynamic driving profile. In order to increase the energy efficiency, using energy integration techniques, an adapted methodology is required to choose the best points for the integrated system design. The idea is to clusterize the dynamic profile on typical multi-periods of the vehicle use. The energy system design is then optimized for these typical multi-periods. In this article a new methodology is applied on hybrid electric vehicles, in order to define the energy integrated powertrain configuration of the vehicle. The energy recovery potential of a single stage Organic Rankine Cycle for a thermal engine in combination with a hybrid electric powertrain is assessed for different drive cycles profiles and comfort situations. After the energy integration, a multi-objective optimization is applied to define the optimal design of a hybrid electric vehicle with a waste heat recovery system. - Highlights: • K-means algorithm transforms the dynamic driving profile on static multi-periods. • The clusters represent the typical powertrain use and size the heat recovery utility. • The maximal heat recovery potential on thermal powertrains is 11% for urban driving. • The maximal heat recovery potential on hybrid electric powertrains is 5%. • Engine downsizing increases heat recovery potential on hybrid electric powertrains

  18. [Knowledge produced from the outcomes of the "Nursing Outcomes Classification--NOC": integrative review].

    Science.gov (United States)

    da Silva, Natália Chantal Magalhães; de Souza Oliveira, Ana Railka; de Carvalho, Emília Campos

    2015-12-01

    To identify the knowledge produced from the outcomes of the Nursing Outcomes Classification (NOC). A literature review using the integrative databases: Latin American and Caribbean Health Sciences (LILACS), US National Library of Medicine (PubMed), Cumulative Index to Nursing & Allied Health Literature (CINAHL) and Scopus Info Site (SCOPUS), during the months of August and September 2014. The review consisted of 21 articles that addressed different issues: Translation and Cultural adaptation (4.77%); Applicability in clinical practice (33.33%); and, Validation (63.90%). Analysis of these articles showed that the knowledge produced from the Nursing Outcomes Classification includes translation and cultural adaptation, evaluation of applicability and validation of its items. Considering the continuous evolution of this classification, periodic reviews should be carried out to identify the knowledge, use and effects of the NOC.

  19. Special Issue on Advances in Integrated Energy Systems Design, Control and Optimization

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    and novel operation schemes, and new incentives and business models. This revolution is affecting the current paradigm and demanding that energy systems be integrated into multi-carrier energy hubs [1]. It is greatly increasing the interactions between today’s energy systems at various scales (ranging from...... energy costs to all consumers, increase reliability of service and mitigate carbon footprints. However, this plan of action necessitates regulatory frameworks, strategic incentives and business models for efficient deployment....

  20. Ceramic Integration Technologies for Advanced Energy Systems: Critical Needs, Technical Challenges, and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay

    2010-01-01

    Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.