WorldWideScience

Sample records for processing equipment surfaces

  1. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Tao; Craig A. Blue

    2004-08-01

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, wear problems of mineral processing equipment including screens, sieve bends, heavy media vessel, dewatering centrifuge, etc., were identified. A novel surface treatment technology, high density infrared (HDI) surface coating process was proposed for the surface enhancement of selected mineral processing equipment. Microstructural and mechanical properties of the coated samples were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of AISI 4140 and ASTM A36 steels can be increased 3 and 5 folds, respectively by the application of HDI coatings.

  2. Detection of organic residues on poultry processing equipment surfaces by LED-induced fluorescence imaging

    Science.gov (United States)

    Organic residues on equipment surfaces in poultry processing plants can generate cross- contamination and increase the risk of unsafe food for consumers. This research was aimed to investigate the potential of LED-induced fluorescence imaging technique for rapid inspection of stainless steel proces...

  3. Listeria monocytogenes contamination of the environment and surfaces of the equipment in the meat processing facilities in republic of Macedonia

    OpenAIRE

    Dean Jankuloski; Pavle Sekulovski; Risto Prodanov; Zehra Hajrulai Musliu; Biljana Stojanovska Dimzovska

    2007-01-01

    Listeria monocytogenes contamination of the environment and surfaces of the equipment was examined in seven meat processing facilities. Up to date prevalence of this foodborn pathogen in meat processing facilities facilities in Republic of Macedonia was unknown. Biofilms are composed from food spoilage microorganisms and food born pathogens. They are located on the surfaces of the equipment that come in contact with food and in facilities environment. Microorganisms in biofilm presenting micr...

  4. Biofilms associated with poultry processing equipment.

    Science.gov (United States)

    Lindsay, D; Geornaras, I; von Holy, A

    1996-01-01

    Aerobic and Gram-negative bacteria were enumerated on non-metallic surfaces and stainless steel test pieces attached to equipment surfaces by swabbing and a mechanical dislodging procedure, respectively, in a South African grade B poultry processing plant. Changes in bacterial numbers were also monitored over time on metal test pieces. The highest bacterial counts were obtained from non-metallic surfaces such as rubber fingered pluckers and plastic defeathering curtains which exceeded the highest counts found on the metal surfaces by at least 1 log CFU cm-2. Gram-negative bacterial counts on all non-metallic surface types were at least 2 log CFU cm-2 lower than corresponding aerobic plate counts. On metal surfaces, the highest microbial numbers were obtained after 14 days exposure, with aerobic plate counts ranging from 3.57 log CFU cm-2 to 5.13 log CFU cm-2, and Gram-negative counts from 0.70 log CFU cm-2 to 3.31 log CFU cm-2. Scanning electron microscopy confirmed the presence of bacterial cells on non-metallic and metallic surfaces associated with poultry processing. Rubber 'fingers', plastic curtains, conveyor belt material and stainless steel test surfaces placed on the scald tank overflow and several chutes revealed extensive and often confluent bacterial biofilms. Extracellular polymeric substances, but few bacterial cells were visible on test pieces placed on evisceration equipment, spinchiller blades and the spinchiller outlet.

  5. Listeria monocytogenes contamination of the environment and surfaces of the equipment in the meat processing facilities in republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Dean Jankuloski

    2007-11-01

    Full Text Available Listeria monocytogenes contamination of the environment and surfaces of the equipment was examined in seven meat processing facilities. Up to date prevalence of this foodborn pathogen in meat processing facilities facilities in Republic of Macedonia was unknown. Biofilms are composed from food spoilage microorganisms and food born pathogens. They are located on the surfaces of the equipment that come in contact with food and in facilities environment. Microorganisms in biofilm presenting micro eco system and are source of dissemination and contamination of food born pathogens in final meat products. During the preparation of this study we have covered a 7 meat processing facilities and we took a total of 39 swabs from surfaces that come in direct or indirect contact with food. Listeria monocytogenes was discovered in 10 (25,64% swabs (locations. Prevalence of other Listeria spp. compared with total number of taken samples was 15 (38,46% Listeria innocua, 3 (7,69% Listeria welshimeri and 1 (2,65% isolate Listeria seeligeri.

  6. Description of two-process surface topography

    International Nuclear Information System (INIS)

    Grabon, W; Pawlus, P

    2014-01-01

    After two machining processes, a large number of surface topography measurements were made using Talyscan 150 stylus measuring equipment. The measured samples were divided into two groups. The first group contained two-process surfaces of random nature, while the second group used random-deterministic textures of random plateau parts and portions of deterministic valleys. For comparison, one-process surfaces were also analysed. Correlation and regression analysis was used to study the dependencies among surface texture parameters in 2D and 3D systems. As the result of this study, sets of parameters describing multi-process surface topography were obtained for two-process surfaces of random and of random-deterministic types. (papers)

  7. Equipment Reliability Process in Krsko NPP

    International Nuclear Information System (INIS)

    Gluhak, M.

    2016-01-01

    To ensure long-term safe and reliable plant operation, equipment operability and availability must also be ensured by setting a group of processes to be established within the nuclear power plant. Equipment reliability process represents the integration and coordination of important equipment reliability activities into one process, which enables equipment performance and condition monitoring, preventive maintenance activities development, implementation and optimization, continuous improvement of the processes and long term planning. The initiative for introducing systematic approach for equipment reliability assuring came from US nuclear industry guided by INPO (Institute of Nuclear Power Operations) and by participation of several US nuclear utilities. As a result of the initiative, first edition of INPO document AP-913, 'Equipment Reliability Process Description' was issued and it became a basic document for implementation of equipment reliability process for the whole nuclear industry. The scope of equipment reliability process in Krsko NPP consists of following programs: equipment criticality classification, preventive maintenance program, corrective action program, system health reports and long-term investment plan. By implementation, supervision and continuous improvement of those programs, guided by more than thirty years of operating experience, Krsko NPP will continue to be on a track of safe and reliable operation until the end of prolonged life time. (author).

  8. New electron-ion-plasma equipment for modification of materials and products surface

    International Nuclear Information System (INIS)

    Koval', N.N.

    2013-01-01

    the report the processes of electron-beam nanostructurization of material surfaces are considered. In IHCE SB RAS the equipment 'SOLO' of electron-beam treatment of product surface has been developed. By 'SOLO' the processes of electron-beam polishing of metals and alloys surface are realized. Furthermore the processes of superfast surface hardening of materials are developed by 'SOLO'. That leads to nanostructurization of surface layer. In process of electron-beam treatment the pulse electron beam with energy of (5÷50) J/cm 2 , getting on a treated surface, makes superfast heating (10 8 -10 9 K/s) (during pulse duration of ((50÷200) µs) to temperature of melting point of substrate material. Then superfast (10 6 -10 8 K/s) cooling occurs at the expense of heat removal in deeper cold layers of a substrate. As a result of superfast hardening in near-surface layer with thickness of several units to several tens micron the improved structure of treated material is formed. The surface is cleared; fusible impurity is evaporated; in steels hardening submicro- and nanocrystalline structure is formed; surface hardness increases. Besides, in vacuum in a liquid phase smoothing of surfaces relief (polishing) occurs by surface tension force. The essential changes of a structural-phase state of surface layer lead to significant improvement of physical, chemical, and strength properties of the material. That is impossible by traditional methods of surface treatment. In the report the examples of combined processes of surface layers nanostructurization, including perspective electron-beam mixing of coating/substrate systems are demonstrated. The presented equipment and realized processes are a basis of development of new electron-ion-plasma technologies of nanostructurization of material and product surfaces. These methods allow considerably improving physical and chemical, exploitation properties of details and instruments surface. That leads to

  9. Materials Selection And Fabrication Practices For Food Processing Equipment Manufacturers In Uganda

    Directory of Open Access Journals (Sweden)

    John Baptist Kirabira

    2017-08-01

    Full Text Available The food processing industry is one of the fast-growing sub-sectors in Uganda. The industry which is majorly composed of medium and small scale firms depends on the locally developed food processing equipment. Due to lack of effective materials selection practices employed by the equipment manufacturers the materials normally selected for most designs are not the most appropriate ones hence compromising the quality of the equipment produced. This has not only led to poor quality food products due to contamination but could also turn out health hazardous to the consumers of the food products. This study involved the assessment of the current materials selection and fabrication procedures used by the food processing equipment manufacturers with a view of devising best practices that can be used to improve the quality of the food products processed by the locally fabricated equipment. Results of the study show that designers experience biasness and desire to minimize cost compromise the materials selection procedure. In addition to failing to choose the best material for a given application most equipment manufacturers are commonly fabricating equipment with inadequate surface finish and improper weldments. This hinders the equipments ability to meet food hygiene standards.

  10. Remotely operated replaceable process equipment

    International Nuclear Information System (INIS)

    Westendorf, H.

    1987-01-01

    The coupling process of pneumatic and electrical auxiliary lines of a pneumatic control pressure line in a large cell of the reprocessing plant is carried out, together with the coupling process of the connecting flange of the process equipment. The coupling places of the auxiliary lines, such as control or supply lines, are laid in the flange parts of the flanges to be connected. The pipe flange on the frame side remains flush with the connecting flange of the process equipment. (DG) [de

  11. Research on reliability measures of the main transformer and GIS equipment manufacturing process

    International Nuclear Information System (INIS)

    Wu Honglong

    2014-01-01

    Based on the accidents of the main transformer GIS equipment and the accidents of the high voltage switch equipment, combined with the main transformer switch equipment maintenance experience and electrical theory, the reliability measures of the main transformer GIS equipment during manufacturing stage are studied and improved. Six successful reliability measures are identified: 1) design properly and check the ability of transformer for anti short circuit; 2) choose mature and reliable main transformer HV bushing; 3) choose GIS switch operation mechanism of high quality and reliability; 4) ensure that the insulation margin through tests piece by piece on withstand voltage and partial discharge of the GIS equipment insulation; 5) take test measures such as GIS conductor, shell polishing witness process and full form lightning impulse, to find out and eliminate the defects of abnormal electric field distribution; 6) Anti VFTO design for the main transformer connected with GIS with the voltage of 500 kV should be considered, and its anti VFTO ability to meet the safe operation under VFTO requirements should be checked. This paper proposed 2 new measures: 1) the main transformer insulation material quality standard is determined not only by its high dielectric strength, but more importantly by the homogeneous dielectric electric strength. Insulating Materials with a high and also uniform dielectric strength should be chosen. 2) During the silver-coating stage of the GIS equipment conductor, QC group activities should be organized to ensure that the plating layer quality, and the current lap surface DC resistance measurements should be supervised and witnessed to ensure the quality of the conductor contact surface. These measures are verified in Fuqing project of GIS main transformer equipment manufacturing process, and their effectiveness is proven. (author)

  12. Powder Metallurgy Reconditioning of Food and Processing Equipment Components

    Science.gov (United States)

    Nafikov, M. Z.; Aipov, R. S.; Konnov, A. Yu.

    2017-12-01

    A powder metallurgy method is developed to recondition the worn surfaces of food and processing equipment components. A combined additive is composed to minimize the powder losses in sintering. A technique is constructed to determine the powder consumption as a function of the required metallic coating thickness. A rapid method is developed to determine the porosity of the coating. The proposed technology is used to fabricate a wear-resistant defectless metallic coating with favorable residual stresses, and the adhesive strength of this coating is equal to the strength of the base metal.

  13. Equipment reliability improvement process; implementation in Almaraz NPP and Trillo NPP

    International Nuclear Information System (INIS)

    Risquez Bailon, Aranzazu; Gutierrez Fernandez, Eduardo

    2010-01-01

    The Equipment Reliability Improvement Process (INPO AP-913) is a non-regulatory process developed by the US Nuclear Industry for improving Plants Availability. This Process integrates and coordinates a broad range of equipment reliability activities into one process, performed by the Plant in a non-centralized way. The integration and coordination of these activities will allow plant personnel to evaluate the trends of important station equipment, develop and implement long-term equipment health plans, monitor equipment performance and condition, and make adjustments to preventive maintenance tasks and frequencies based on equipment operating experience, if necessary, arbitrating operational and design improvements, to reach a Failure-free Operation. This paper describes the methodology of Equipment Reliability Improvement Process, being focused on main aspects of the implementation process, relating to the scope and establishment of an Equipment Reliability Monitoring Plan, which should include and complement the existing mechanisms and organizations in the Plant to monitor the condition and performance of the equipments, with the common aim of achieving an operation free of failures. The paper will describe the tools that Iberdrola Ingenieria has developed to support the implementation and monitoring of the Equipment Reliability Improvement Process, as well as the results and lessons learned from its implementation in Almaraz NPP and Trillo NPP. (authors)

  14. Electronic equipment for spectrometric data processing

    International Nuclear Information System (INIS)

    Antonov, L.J.; Trenev, A.M.; Todorova, E.I.; Dimitrov, V.D.

    1978-01-01

    Electronic equipment carrying out logical operations and a full set of the arithmetic operations was developed for spectrometric data processing. The flowsheet of the computing part of the device, made on the basis of a specialized integral circuit, is given. The device includes input registers, multiplexor, matrix commutator, arithmetic unit and indication unit. The equipment is rated to carry out calculations according to comparatively complex formulae in several seconds

  15. Remotely operated replaceable process equipment. Fernbedient austauschbare Prozessapparatur

    Energy Technology Data Exchange (ETDEWEB)

    Westendorf, H.

    1987-07-23

    The coupling process of pneumatic and electrical auxiliary lines of a pneumatic control pressure line in a large cell of the reprocessing plant is carried out, together with the coupling process of the connecting flange of the process equipment. The coupling places of the auxiliary lines, such as control or supply lines, are laid in the flange parts of the flanges to be connected. The pipe flange on the frame side remains flush with the connecting flange of the process equipment.

  16. Process plant equipment operation, control, and reliability

    CERN Document Server

    Holloway, Michael D; Onyewuenyi, Oliver A

    2012-01-01

    "Process Plant Equipment Book is another great publication from Wiley as a reference book for final year students as well as those who will work or are working in chemical production plants and refinery…" -Associate Prof. Dr. Ramli Mat, Deputy Dean (Academic), Faculty of Chemical Engineering, Universiti Teknologi Malaysia "…give[s] readers access to both fundamental information on process plant equipment and to practical ideas, best practices and experiences of highly successful engineers from around the world… The book is illustrated throughout with numerous black & white p

  17. Process and equipment design optimising product properties and attributes

    NARCIS (Netherlands)

    Bongers, P.M.M.; Thullie, J.

    2009-01-01

    Classically, when products have been developed at the bench, process engineers will search for equipment to manufacture the product at large scale. More than often, this search is constraint to the existing equipment base, or a catalog search for standard equipment. It is then not surprising, that

  18. Mechanized covering application in equipment surfaces; Aplicacao mecanizada de revestimento em superficies de equipamentos

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Billy A. de; Broering, Carlos E. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica

    2004-07-01

    Facing such challenges, the main objective of this work is to develop automated equipment and new welding procedures to be used to repair tank reservoirs operating in corrosive media. The equipment is expected to be applied directly in the maintenance of petrochemical plants. The project consists on a mechanical displacement device, able to move along a flexible rail, which can be fixed to a concave or convex surface and fitting itself to the geometry. A transversal arm gives it a second movement ability, allowing oscillatory displacements and the exact positioning of the pistol. As it is widely known, the automated welding process results in a considerably increase in productivity and quality, when comparing to the hand made process. Therefore, knowing the parameters involved and adjusted the welding variables to the best values, it is expected to achieve welding free of imperfections, inconsistencies and errors, and able to be repetitive. (author)

  19. Transfer of Escherichia coli O157:H7 from equipment surfaces to fresh-cut leafy greens during processing in a model pilot-plant production line with sanitizer-free water.

    Science.gov (United States)

    Buchholz, Annemarie L; Davidson, Gordon R; Marks, Bradley P; Todd, Ewen C D; Ryser, Elliot T

    2012-11-01

    Escherichia coli O157:H7 contamination of fresh-cut leafy greens has become a public health concern as a result of several large outbreaks. The goal of this study was to generate baseline data for E. coli O157:H7 transfer from product-inoculated equipment surfaces to uninoculated lettuce during pilot-scale processing without a sanitizer. Uninoculated cored heads of iceberg and romaine lettuce (22.7 kg) were processed using a commercial shredder, step conveyor, 3.3-m flume tank with sanitizer-free tap water, shaker table, and centrifugal dryer, followed by 22.7 kg of product that had been dip inoculated to contain ∼10(6), 10(4), or 10(2) CFU/g of a four-strain avirulent, green fluorescent protein-labeled, ampicillin-resistant E. coli O157:H7 cocktail. After draining the flume tank and refilling the holding tank with tap water, 90.8 kg of uninoculated product was similarly processed and collected in ∼5-kg aliquots. After processing, 42 equipment surface samples and 46 iceberg or 36 romaine lettuce samples (25 g each) from the collection baskets were quantitatively examined for E. coli O157:H7 by direct plating or membrane filtration using tryptic soy agar containing 0.6% yeast extract and 100 ppm of ampicillin. Initially, the greatest E. coli O157:H7 transfer was seen from inoculated lettuce to the shredder and conveyor belt, with all equipment surface populations decreasing 90 to 99% after processing 90.8 kg of uncontaminated product. After processing lettuce containing 10(6) or 10(4) E. coli O157:H7 CFU/g followed by uninoculated lettuce, E. coli O157:H7 was quantifiable throughout the entire 90.8 kg of product. At an inoculation level of 10(2) CFU/g, E. coli O157:H7 was consistently detected in the first 21.2 kg of previously uninoculated lettuce at 2 to 3 log CFU/100 g and transferred to 78 kg of product. These baseline E. coli O157:H7 transfer results will help determine the degree of sanitizer efficacy required to better ensure the safety of fresh-cut leafy

  20. Purex: process and equipment performance

    International Nuclear Information System (INIS)

    Orth, D.A.

    1986-01-01

    The Purex process is the solvent extraction system that uses tributyl phosphate as the extractant for separating uranium and plutonium from irradiated reactor fuels. Since the first flowsheet was proposed at Oak Ridge National Laboratory in 1950, the process has endured for over 30 years with only minor modifications. The spread of the technology was rapid, and worldwide use or research on Purex-type processes was reported by the time of the 1955 Geneva Conference. The overall performance of the process has been so good that there are no serious contenders for replacing it soon. This paper presents: process description; equipment performance (mixer-settlers, pulse columns, rapid contactors); fission product decontamination; solvent effects (solvent degradation products); and partitioning of uranium and plutonium

  1. Study for process and equipment design of wet gelation stages in vibropacking process

    International Nuclear Information System (INIS)

    Tanimoto, Ryoji; Kikuchi, Toshiaki; Tanaka, Hirokazu; Amino, Masaki; Yanai, Minoru

    2004-02-01

    Process and layout design of external wet gelation stages in vibropacking process was examined for the feasibility study of commercialized FBR cycle system. In this study, following process stages for the oxide core fuel production line were covered, that is, solidification, washing, drying, calcination, reduction, sintering stages including interim storage of sintering particles and reagent recovery stage. The main results obtained by this study are as follows: (1) Based on the process examination results conducted previously, process-flow, mass-balance and number of production line/equipment were clarified. The process is covered from the receive tank of feed solution to the interim storage equipment. Reagent recovery process-flow, mass-balance were also clarified. And preliminary design of the main equipment was reexamined. (2) Normal operation procedure and the procedure after process failure were summarized along with a remote automated operation procedure. Operation sequence of each production line was mapped out by using a time-chart. (3) Design outline of reagent recovery equipments, installed to recover waste liquid from the wet gelation stages in the view of environmental impact were examined. Effective techniques such as collection of solvent, residue waste treatment method were examined its applicability and selected. Schematic block diagram was presented. (4) Analytical items and analyzing apparatus were extracted taking into account of quality control and process management. Analytical sample taking position and frequency of sampling were also examined. (5) A schematic layout drawing of main manufacturing process and reagent recovery process was presented taking into account of material handling. (6) A feature of the operating rate at each process stage was examined by analyzing failure rate reliability of each component. applying the reliability-centred method. (RCM), the operating rate was evaluated and annual maintenance period was estimated using

  2. A Handbook for Public Playground Safety. Volume II: Technical Guidelines for Equipment and Surfacing.

    Science.gov (United States)

    Consumer Product Safety Commission, Washington, DC.

    This handbook suggests safety guidelines for public playground equipment and describes various surfaces used under the equipment and possible injuries resulting from falls. The handbook is intended for use mainly by manufacturers, installers, school and park officials, and others interested in technical criteria for public playground equipment.…

  3. Dosimetric study of surface applicators of HDR brachytherapy GammaMed Plus equipment

    International Nuclear Information System (INIS)

    Reyes-Rivera, E.; Sosa, M.; Reyes, U.; Jesús Bernal-Alvarado, José de; Córdova, T.; Gil-Villegas, A.; Monzón, E.

    2014-01-01

    The cone type surface applicators used in HDR brachytherapy for treatment of small skin lesions are an alternative to be used with both electron beams and orthovoltage X-ray equipment. For a good treatment planning is necessary to know the dose distribution of these applicators, which can be obtained by experimental measurement and Monte Carlo simulation as well. In this study the dose distribution of surface applicators of 3 and 3.5 cm diameter, respectively of HDR brachytherapy GammaMed Plus equipment has been estimated using the Monte Carlo method, MCNP code. The applicators simulated were placed on the surface of a water phantom of 20 × 20 × 20 cm and the dose was calculated at depths from 0 to 3 cm with increments of 0.25 mm. The dose profiles obtained at depth show the expected gradients for surface therapy

  4. Dosimetric study of surface applicators of HDR brachytherapy GammaMed Plus equipment

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Rivera, E., E-mail: eric-1985@fisica.ugto.mx, E-mail: modesto@fisica.ugto.mx, E-mail: uvaldoreyes@fisica.ugto.mx; Sosa, M., E-mail: eric-1985@fisica.ugto.mx, E-mail: modesto@fisica.ugto.mx, E-mail: uvaldoreyes@fisica.ugto.mx; Reyes, U., E-mail: eric-1985@fisica.ugto.mx, E-mail: modesto@fisica.ugto.mx, E-mail: uvaldoreyes@fisica.ugto.mx; Jesús Bernal-Alvarado, José de, E-mail: bernal@fisica.ugto.mx, E-mail: theo@fisica.ugto.mx, E-mail: gil@fisica.ugto.mx; Córdova, T., E-mail: bernal@fisica.ugto.mx, E-mail: theo@fisica.ugto.mx, E-mail: gil@fisica.ugto.mx; Gil-Villegas, A., E-mail: bernal@fisica.ugto.mx, E-mail: theo@fisica.ugto.mx, E-mail: gil@fisica.ugto.mx [División de Ciencias e Ingenierías, Universidad de Guanajuato, 37150 León, Gto. (Mexico); Monzón, E., E-mail: emonzon@imss.gob.mx [Unidad de Alta Especialidad No.1, Instituto Mexicano del Seguro Social, Léon, Gto. (Mexico)

    2014-11-07

    The cone type surface applicators used in HDR brachytherapy for treatment of small skin lesions are an alternative to be used with both electron beams and orthovoltage X-ray equipment. For a good treatment planning is necessary to know the dose distribution of these applicators, which can be obtained by experimental measurement and Monte Carlo simulation as well. In this study the dose distribution of surface applicators of 3 and 3.5 cm diameter, respectively of HDR brachytherapy GammaMed Plus equipment has been estimated using the Monte Carlo method, MCNP code. The applicators simulated were placed on the surface of a water phantom of 20 × 20 × 20 cm and the dose was calculated at depths from 0 to 3 cm with increments of 0.25 mm. The dose profiles obtained at depth show the expected gradients for surface therapy.

  5. Vitrification process equipment design for the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Chapman, C.C.; Drosjack, W.P.

    1988-10-01

    The vitrification process and equipment design is nearing completion for the West Valley Project. This report provides the basis and current status for the design of the major vessels and equipment within the West Valley Vitrification Plant. A review of the function and key design features of the equipment is also provided. The major subsystems described include the feed preparation and delivery systems, the melter, the canister handling systems, and the process off-gas system. 11 refs., 33 figs., 4 tabs

  6. UOE Pipe Manufacturing Process Simulation: Equipment Designing and Construction

    Science.gov (United States)

    Delistoian, Dmitri; Chirchor, Mihael

    2017-12-01

    UOE pipe manufacturing process influence directly on pipeline resilience and operation capacity. At present most spreaded pipe manufacturing method is UOE. This method is based on cold forming. After each technological step appears a certain stress and strain level. For pipe stress strain study is designed and constructed special equipment that simulate entire technological process.UOE pipe equipment is dedicated for manufacturing of longitudinally submerged arc welded DN 400 (16 inch) steel pipe.

  7. Process equipment waste and process waste liquid collection systems

    International Nuclear Information System (INIS)

    1990-06-01

    The US DOE has prepared an environmental assessment for construction related to the Process Equipment Waste (PEW) and Process Waste Liquid (PWL) Collection System Tasks at the Idaho Chemical Processing Plant. This report describes and evaluates the environmental impacts of the proposed action (and alternatives). The purpose of the proposed action would be to ensure that the PEW and PWL collection systems, a series of enclosed process hazardous waste, and radioactive waste lines and associated equipment, would be brought into compliance with applicable State and Federal hazardous waste regulations. This would be accomplished primarily by rerouting the lines to stay within the buildings where the lined floors of the cells and corridors would provide secondary containment. Leak detection would be provided via instrumented collection sumps locate din the cells and corridors. Hazardous waste transfer lines that are routed outside buildings will be constructed using pipe-in-pipe techniques with leak detection instrumentation in the interstitial area. The need for the proposed action was identified when a DOE-sponsored Resource Conservation and Recovery Act (RCRA) compliance assessment of the ICPP facilities found that singly-contained waste lines ran buried in the soil under some of the original facilities. These lines carried wastes with a pH of less than 2.0, which were hazardous waste according to the RCRA standards. 20 refs., 7 figs., 1 tab

  8. Gas phase decontamination of gaseous diffusion process equipment

    International Nuclear Information System (INIS)

    Bundy, R.D.; Munday, E.B.; Simmons, D.W.; Neiswander, D.W.

    1994-01-01

    D ampersand D of the process facilities at the gaseous diffusion plants (GDPs) will be an enormous task. The EBASCO estimate places the cost of D ampersand D of the GDP at the K-25 Site at approximately $7.5 billion. Of this sum, nearly $4 billion is associated with the construction and operation of decontamination facilities and the dismantlement and transport of contaminated process equipment to these facilities. In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits to form volatile LJF6, which can be recovered by chemical trapping or freezing. The LTLT process permits the decontamination of the inside of gas-tight GDP process equipment at room temperature by substituting a long exposure to subatmospheric C1F for higher reaction rates at higher temperatures. This paper outlines the concept for applying LTLT gas phase decontamination, reports encouraging laboratory experiments, and presents the status of the design of a prototype mobile system. Plans for demonstrating the LTLT process on full-size gaseous diffusion equipment are also outlined briefly

  9. ADVANCING THE PROCESSING TECHNOLOGIES OF THE DETAILS OF CONSTRUCTION MACHINERY AND EQUIPMENT

    Directory of Open Access Journals (Sweden)

    Burlachenko Oleg Vasil’evich

    2016-03-01

    Full Text Available On the contemporary stage on the development and advancement of processing technologies of machine and equipment details it is necessary to find a complex solution to the problem of their performance characteristics. This solution supposes the development of specific methods providing and advancing some specific index of performance efficiency (often regardless of real coupling state and the creation and implementation of the technologies having complex physical and technical impacts on the contact combination. The novelty of processing methods is determined by all the components of the technological system, each of which has its own novelty or creates the novelty of the system as a whole due to definite non-traditional combination of the known components. The system of improving the existing and creating new methods and technological processes of manufacturing the products is considered. The mechanical, physical and chemical effects on the work surface in case of specific kinematics of tool path and the workpieces during operation, and also the wear of engine cylinders are analyzed. The authors offer a technology of obtaining nonporous hot-stamped powder alloys with higher strength properties of the outer surface and high plastic properties of core. The unity of the processes of power, temperature and other effects on the working surface of details during their manufacture and operation is established.

  10. Development of diaphragm automatic homing equipment

    International Nuclear Information System (INIS)

    Kobayashi, Hidetoshi; Yamada, Koji; Moriya, Shinichi; Koike, Jiro; Okabe, Masao; Oyama, Akihiro.

    1996-01-01

    In steam-turbine overhaul inspection, one of the most important processes is to remove rust and deposited contaminants on the surface of turbine parts, while the turbine is in operation, to recover thermal efficiency and prepare good surface conditions for color penetrant inspection. These processes generally are done by dry honing, but this generates dust. To protect laborers against these conditions, Hitachi, Ltd. has developed automatic honing equipment for the diaphragms of the nuclear steam turbine. This equipment was first used in the first annual inspection and overhaul of Hamaoka Nuclear Power Plant No.4 of Chubu Electric Power Inc. (author)

  11. Method and equipment for treating waste water resulting from the technological testing processes of NPP equipment

    International Nuclear Information System (INIS)

    Radulescu, M. C.; Valeca, S.; Iorga, C.

    2016-01-01

    Modern methods and technologies coupled together with advanced equipment for treating residual substances resulted from technological processes are mandatory measures for all industrial facilities. The correct management of the used working agents and of the all wastes resulted from the different technological process (preparation, use, collection, neutralization, discharge) is intended to reduce up to removal of their potential negative impact on the environment. The high pressure and temperature testing stands from INR intended for functional testing of nuclear components (fuel bundles, fuelling machines, etc.) were included in these measures since the use of oils, demineralized water chemically treated, greases, etc. This paper is focused on the method and equipment used at INR Pitesti in the chemical treatment of demineralized waters, as well as the equipment for collecting, neutralizing and discharging them after use. (authors)

  12. 21 CFR 211.65 - Equipment construction.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Equipment construction. 211.65 Section 211.65 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... construction. (a) Equipment shall be constructed so that surfaces that contact components, in-process materials...

  13. Fabricating Super-hydrophobic Polydimethylsiloxane Surfaces by a Simple Filler-Dissolved Process

    Science.gov (United States)

    Lin, Yung-Tsan; Chou, Jung-Hua

    2010-12-01

    The self-cleaning effect of super-hydrophobic surfaces has attracted the attention of researchers. Typical ways of manufacturing super-hydrophobic surfaces include the use of either dedicated equipment or a complex chemical process. In this study, a simple innovative filler-dissolved method is developed using mainly powder salt and rinsing to form hydrophobic surfaces. This method can produce large super-hydrophobic surfaces with porous and micro rib surface structures. It can also be applied to curved surfaces, including flexible membranes. The contact angle of the manufactured artificial hydrophobic surface is about 160°. Furthermore, water droplets roll off the surface readily at a sliding angle of less than 5°, resembling the nonwetting lotus like effect.

  14. Review on Fuel Loading Process and Performance for Advanced Fuel Handling Equipment

    International Nuclear Information System (INIS)

    Chang, Sang-Gyoon; Lee, Dae-Hee; Kim, Young-Baik; Lee, Deuck-Soo

    2007-01-01

    The fuel loading process and the performance of the advanced fuel handling equipment for OPR 1000 (Optimized Power Plant) are analyzed and evaluated. The fuel handling equipment, which acts critical processes in the refueling outage, has been improved to reduce fuel handling time. The analysis of the fuel loading process can be a useful tool to improve the performance of the fuel handling equipment effectively. Some recommendations for further improvement are provided based on this study

  15. Decontamination of process equipment using recyclable chelating solvent

    International Nuclear Information System (INIS)

    Jevec, J.; Lenore, C.; Ulbricht, S.

    1995-01-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment. Current approaches to the decontamination of metals most often involve one of four basic process types: (1) chemical, (2) manual and mechanical, (3) electrochemical, and (4) ultrasonic. open-quotes Hardclose quotes chemical decontamination solutions, capable of achieving decontamination factors (Df's) of 50 to 100, generally involve reagent concentrations in excess of 5%, tend to physically degrade the surface treated, and generate relatively large volumes of secondary waste. open-quotes Softclose quotes chemical decontamination solutions, capable of achieving Df's of 5 to 10, normally consist of reagents at concentrations of 0.1 to 1%, generally leave treated surfaces in a usable condition, and generate relatively low secondary waste volumes. Under contract to the Department of Energy, the Babcock ampersand Wilcox Company is developing a chemical decontamination process using chelating agents to remove uranium compounds and other actinide species from process equipment

  16. Process insulation. Isolation thermique des equipements

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    A manual is presented to assist managers and operating personnel to recognize industrial energy management opportunities, and provides mathematical equations, general information on proven techniques and technology, and examples. It deals with process insulation, focusing on the insulation of mechanical systems such as piping, process vessels, equipment, and ductwork. The manual describes the effects of insulation materials; commonly encountered types of insulation, coverings and protective finishes as well as common applications; energy management opportunities, divided into housekeeping, low cost, and retrofit; and includes worked examples of each. Includes glossary. 17 figs., 8 tabs.

  17. Spent fuel storage process equipment development

    International Nuclear Information System (INIS)

    Park, Hyun Soo; Lee, Jae Sol; Yoo, Jae Hyung

    1990-02-01

    Nuclear energy which is a major energy source of national energy supply entails spent fuels. Spent fuels which are high level radioactive meterials, are tricky to manage and need high technology. The objectives of this study are to establish and develop key elements of spent fuel management technologies: handling equipment and maintenance, process automation technology, colling system, and cleanup system. (author)

  18. Process Equipment Failure Mode Analysis in a Chemical Industry

    Directory of Open Access Journals (Sweden)

    J. Nasl Seraji

    2008-04-01

    Full Text Available Background and aims   Prevention of potential accidents and safety promotion in chemical processes requires systematic safety management in them. The main objective of this study was analysis of important process equipment components failure modes and effects in H2S and CO2  isolation from extracted natural gas process.   Methods   This study was done in sweetening unit of an Iranian gas refinery. Failure Mode and Effect Analysis (FMEA used for identification of process equipments failures.   Results   Totally 30 failures identified and evaluated using FMEA. P-1 blower's blade breaking and sour gas pressure control valve bearing tight moving had maximum risk Priority number (RPN, P-1 body corrosion and increasing plug lower side angle of reach DEAlevel control valve  in tower - 1 were minimum calculated RPN.   Conclusion   By providing a reliable documentation system for equipment failures and  incidents recording, maintaining of basic information for later safety assessments would be  possible. Also, the probability of failures and effects could be minimized by conducting preventive maintenance.

  19. Analysis of bacterial contamination on surface of general radiography equipment and CT equipment in emergency room of radiology

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Dong Hee; KIm, Hyeong Gyun [Dept. of Radiological Science, Far East University, Eumseong (Korea, Republic of)

    2016-09-15

    We aim to offer basic materials about infection management through conducting bacterial contamination test about general radiography equipment and CT equipment installed in ER of three general hospitals with 100 sickbeds or more located in Gyeongsangbuk-do Province, and suggest management plan. It had been conducted from 1st December 2015 to 31st December, and objects were general radiography equipment and CT equipment of emergency room located in Gyeongsangbuk-do Province. For general radiography equipment, sources were collected from 4 places such as upper side of control box which employees use most, upper side of exposure button, whole upper side of table which is touching part of patient's skin, upper side of stand bucky's grid, and where patients put their jaws on. For CT equipment, sources were collected from 3 places such as upper side of control box which radiography room employees use most, X-ray exposure button, whole upper side of table which is touching part of patient's skin, and gantry inner. Surface contamination strain found at general radiography equipment in emergency room of radiology are Providencia stuartii(25%), Stenotrophomonas maltophilia(18%), Enterobacter cloacae(8%), Pseudomonas species(8%), Staphylococcus epidermidis(8%), Gram negative bacilli(8%), and ungrown bacteria at incubator after 48 hours of incubation (67%) which is the biggest. Most bacteria were found at upper side of stand bucky-grid and stand bucky of radiology's general radiography equipment, and most sources of CT equipment were focused at patient table, which means it is contaminated by patients who have various diseases, and patients who have strains with decreased immunity may get severe diseases. Thus infection prevention should be made through 70% alcohol disinfection at both before test and after test.

  20. Analysis of bacterial contamination on surface of general radiography equipment and CT equipment in emergency room of radiology

    International Nuclear Information System (INIS)

    Hong, Dong Hee; KIm, Hyeong Gyun

    2016-01-01

    We aim to offer basic materials about infection management through conducting bacterial contamination test about general radiography equipment and CT equipment installed in ER of three general hospitals with 100 sickbeds or more located in Gyeongsangbuk-do Province, and suggest management plan. It had been conducted from 1st December 2015 to 31st December, and objects were general radiography equipment and CT equipment of emergency room located in Gyeongsangbuk-do Province. For general radiography equipment, sources were collected from 4 places such as upper side of control box which employees use most, upper side of exposure button, whole upper side of table which is touching part of patient's skin, upper side of stand bucky's grid, and where patients put their jaws on. For CT equipment, sources were collected from 3 places such as upper side of control box which radiography room employees use most, X-ray exposure button, whole upper side of table which is touching part of patient's skin, and gantry inner. Surface contamination strain found at general radiography equipment in emergency room of radiology are Providencia stuartii(25%), Stenotrophomonas maltophilia(18%), Enterobacter cloacae(8%), Pseudomonas species(8%), Staphylococcus epidermidis(8%), Gram negative bacilli(8%), and ungrown bacteria at incubator after 48 hours of incubation (67%) which is the biggest. Most bacteria were found at upper side of stand bucky-grid and stand bucky of radiology's general radiography equipment, and most sources of CT equipment were focused at patient table, which means it is contaminated by patients who have various diseases, and patients who have strains with decreased immunity may get severe diseases. Thus infection prevention should be made through 70% alcohol disinfection at both before test and after test

  1. 49 CFR 1242.46 - Computers and data processing equipment (account XX-27-46).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Computers and data processing equipment (account XX-27-46). 1242.46 Section 1242.46 Transportation Other Regulations Relating to Transportation... RAILROADS 1 Operating Expenses-Equipment § 1242.46 Computers and data processing equipment (account XX-27-46...

  2. 21 CFR 864.3010 - Tissue processing equipment.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue processing equipment. 864.3010 Section 864.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3010...

  3. A Scale-up Approach for Film Coating Process Based on Surface Roughness as the Critical Quality Attribute.

    Science.gov (United States)

    Yoshino, Hiroyuki; Hara, Yuko; Dohi, Masafumi; Yamashita, Kazunari; Hakomori, Tadashi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-01

    Scale-up approaches for film coating process have been established for each type of film coating equipment from thermodynamic and mechanical analyses for several decades. The objective of the present study was to establish a versatile scale-up approach for film coating process applicable to commercial production that is based on critical quality attribute (CQA) using the Quality by Design (QbD) approach and is independent of the equipment used. Experiments on a pilot scale using the Design of Experiment (DoE) approach were performed to find a suitable CQA from surface roughness, contact angle, color difference, and coating film properties by terahertz spectroscopy. Surface roughness was determined to be a suitable CQA from a quantitative appearance evaluation. When surface roughness was fixed as the CQA, the water content of the film-coated tablets was determined to be the critical material attribute (CMA), a parameter that does not depend on scale or equipment. Finally, to verify the scale-up approach determined from the pilot scale, experiments on a commercial scale were performed. The good correlation between the surface roughness (CQA) and the water content (CMA) identified at the pilot scale was also retained at the commercial scale, indicating that our proposed method should be useful as a scale-up approach for film coating process.

  4. The process control and management on equipment qualification of nuclear power plant

    International Nuclear Information System (INIS)

    Liu Dong; Wang Hongyin; Zhang Yong

    2013-01-01

    The equipment qualification (EQ) to the safety class equipment is an important safety measure for the nuclear power plants (NPP), and also reflects the nuclear safety culture. Along with the continuous constructions of NPP in China, it has become an important issue for NPP engineering company and equipment suppliers how to effectively establish standard EQ process control and management, and provide sufficient technical arrangements to maintain this EQ management system. This paper summarizes three process of EQ including Design Input, EQ Establishment and EQ Maintenance, proposes the measures and key points for EQ process control and management in phase of NPP construction, and introduces the documents management during the whole process of EQ. (authors)

  5. Development of processing procedure preparing for digital computer controlled equipment on modular design base

    International Nuclear Information System (INIS)

    Starosel'tsev, O.P.; Khrundin, V.I.

    1982-01-01

    In order to reduce labour consumption of technological preparation of production for digital computer controlled machines during the treatment of steam turbines articles created is a system of modular design of technological processes and controlling programs. A set of typical modulas-transitions, being a number of surfaces of an articles treated with one cutting tool in optimum sequence, and a library of cutting tools are the base of the system. Introduction of such a system sharply enhaneces the efficiency of the equipment utilization [ru

  6. Quality control of diagnostic x-ray equipment and film processing

    International Nuclear Information System (INIS)

    1993-01-01

    According to the section 40 of the Radiation Act (592/92), the licensee is required in Finland to make the arrangements to control the function of the radiation equipment and related facilities used for medical procedures. The guide explains how quality control can be organized for diagnostic x-ray equipment. It also gives recommendations for constancy tests for conventional x-ray radiographic and fluoroscopic equipment and for film processing. The recommendations are based on the publications and statements of the International Committee for Radiation Protection (ICRP) and standardization organizations. The intention is that the operators of x-ray equipment or the maintenance personnel are able to perform the quality control tests presented in the guide

  7. Development of processes and equipment for the refabrication of HTGR fuels

    International Nuclear Information System (INIS)

    Sease, J.D.; Lotts, A.L.

    1976-06-01

    Refabrication is in the step in the HTGR thorium fuel cycle that begins with a nitrate solution containing 238 U and culminates in the assembly of this material into fuel elements for use in an HTGR. Refabrication of HTGR fuel is essentially a manufacturing operation and consists of preparation of fuel kernels, application of multiple layers of pyrolytic carbon and SiC, preparation of fuel rods, and assembly of fuel rods in fuel elements. All the equipment for refabrication of 238 U-containing fuel must be designed for completely remote operation and maintenance in hot cell facilities. This paper describes the status of processes and equipment development for the remote refabrication of HTGR fuels. The feasibility of HTGR refabrication processes has been proven by laboratory development. Engineering-scale development is now being performed on a unit basis on the majority of the major equipment items. Engineering-scale equipment described includes full-scale resin loading equipment, a 5-in.-dia (0.13-m) microsphere coating furnace, a fuel rod forming machine, and a cure-in-place furnace

  8. Development of a telerobotic system for handling contaminated process equipment

    International Nuclear Information System (INIS)

    Fisher, J.J.; Ward, C.R.; Schuler, T.F.

    1987-01-01

    E. I. du Pont de Nemours and Company is evaluating a unique eight-degree-of-freedom Telerobot manipulator to perform size-reduction and material handling operations on contaminated process equipment at the Savannah River Plant (SRP). The Telerobot will be installed in the proposed Transuranic (TRU) Waste Processing Facility, which is scheduled to be operational by 1990. A full-scale prototype Telerobot, manufactured by GCA Corporation, St. Paul, MN is being tested with other process equipment in the Components Test Facility at the Savannah River Laboratory (SRL). All telerobotic operations required in the TRU Waste Facility such as crate unpacking, equipment dismantling, material size-reduction, and selected maintenance operations are being tested. This paper discusses the major mechanical and control features of the Telerobot system. Several system enhancements were added by SRL, including a new quick-hand-change coupling and expanded software control functions. The new software enables a system operator to perform both teleoperated and automatic tasks through several operating modes. These enhancements, as well as future mechanical, control system, and software features, are reviewed

  9. Predictive maintenance of critical equipment in industrial processes

    Science.gov (United States)

    Hashemian, Hashem M.

    This dissertation is an account of present and past research and development (R&D) efforts conducted by the author to develop and implement new technology for predictive maintenance and equipment condition monitoring in industrial processes. In particular, this dissertation presents the design of an integrated condition-monitoring system that incorporates the results of three current R&D projects with a combined funding of $2.8 million awarded to the author by the U.S. Department of Energy (DOE). This system will improve the state of the art in equipment condition monitoring and has applications in numerous industries including chemical and petrochemical plants, aviation and aerospace, electric power production and distribution, and a variety of manufacturing processes. The work that is presented in this dissertation is unique in that it introduces a new class of condition-monitoring methods that depend predominantly on the normal output of existing process sensors. It also describes current R&D efforts to develop data acquisition systems and data analysis algorithms and software packages that use the output of these sensors to determine the condition and health of industrial processes and their equipment. For example, the output of a pressure sensor in an operating plant can be used not only to indicate the pressure, but also to verify the calibration and response time of the sensor itself and identify anomalies in the process such as blockages, voids, and leaks that can interfere with accurate measurement of process parameters or disturb the plant's operation, safety, or reliability. Today, process data are typically collected at a rate of one sample per second (1 Hz) or slower. If this sampling rate is increased to 100 samples per second or higher, much more information can be extracted from the normal output of a process sensor and then used for condition monitoring, equipment performance measurements, and predictive maintenance. A fast analog-to-digital (A

  10. Assessment of lightning impact frequency for process equipment

    International Nuclear Information System (INIS)

    Necci, Amos; Antonioni, Giacomo; Cozzani, Valerio; Krausmann, Elisabeth; Borghetti, Alberto; Nucci, Carlo Alberto

    2014-01-01

    Fires and explosions triggered by lightning strikes are among the most frequent Natech scenarios affecting the chemical and process industry. Although lightning hazard is well known, well accepted quantitative procedures to assess the contribution of accidents caused by lightning to industrial risk are still lacking. In the present study, a quantitative methodology for the assessment of the expected frequency of lightning capture by process equipment is presented. A specific model, based on Monte Carlo simulations, was developed to assess the capture frequency of lightning for equipment with a given geometry. The model allows the assessment of lay-out effects and the reduction of the capture probability due to the presence of other structures or equipment items. The results of the Monte Carlo simulations were also used to develop a simplified cell method allowing a straightforward assessment of the lightning impact probability in a quantitative risk assessment framework. The developed approach allows an in-depth analysis of the hazard due to lightning impact by identifying equipment items with the highest expected frequency of lightning impacts in a given lay-out. The model thus supplies useful data to approach the assessment of the quantitative contribution of lightning-triggered accidents to industrial risk. - Highlights: • A specific approach to storage tank lightning impact frequency calculation was developed. • The approach is suitable for the quantitative assessment of industrial risk due to lightning. • The models developed provide lightning capture frequency based on tank geometry. • Lay-out effects due to nearby structures are also accounted. • Capture frequencies may be as high as 10 −1 events/year for standalone unprotected tanks

  11. Consideration of demand rate in overall equipment effetiveness (OEE on equipment with constant process time

    Directory of Open Access Journals (Sweden)

    Perumal Puvanasvaran

    2013-06-01

    Full Text Available Purpose: The paper is primarily done on the purpose of introducing new concept in defining the Overall Equipment Effectiveness (OEE with the consideration of both machine utilization and customer demand requested. Previous literature concerning the limitation and difficulty of OEE implementation has been investigated in order to track out the potential opportunities to be improved, since the OEE has been widely accepted by most of the industries regardless their manufacturing environment.Design/methodology/approach: The paper is conducting the study based on literature review and the computerized data collection. In details, the novel definition and method of processing the computerized data are all interpreted based on similar studies performed by others and supported by related journals in proving the validation of the output. Over the things, the computerized data are the product amount and total time elapsed on each production which is automatically recorded by the system at the manufacturing site.Findings: The finding of this paper is firstly the exposure and emphasis of limitation exists in current implementation of OEE, which showing that high utilization of the machine is encouraged regardless of the customer demand and is having conflict with the inventory handling cost. This is certainly obvious with overproduction issue especially during low customer demand period. The second limitation in general implementation of OEE is the difficulty in obtaining the ideal cycle time, especially those equipments with constant process time. The section of this paper afterward comes out with the proposed solution in fixing this problem through the definition of performance ratio and then usage of this definition in measuring the machine utilization from time to time. Before this, the time available for the production is calculated incorporating the availability of OEE, which is then used to get the Takt time.Research limitations/implications: Future

  12. Equipment reliability process improvement and preventive maintenance optimization

    International Nuclear Information System (INIS)

    Darragi, M.; Georges, A.; Vaillancourt, R.; Komljenovic, D.; Croteau, M.

    2004-01-01

    The Gentilly-2 Nuclear Power Plant wants to optimize its preventive maintenance program through an Integrated Equipment Reliability Process. All equipment reliability related activities should be reviewed and optimized in a systematic approach especially for aging plants such as G2. This new approach has to be founded on best practices methods with the purpose of the rationalization of the preventive maintenance program and the performance monitoring of on-site systems, structures and components (SSC). A rational preventive maintenance strategy is based on optimized task scopes and frequencies depending on their applicability, critical effects on system safety and plant availability as well as cost-effectiveness. Preventive maintenance strategy efficiency is systematically monitored through degradation indicators. (author)

  13. Design Methodology of Process Layout considering Various Equipment Types for Large scale Pyro processing Facility

    International Nuclear Information System (INIS)

    Yu, Seung Nam; Lee, Jong Kwang; Lee, Hyo Jik

    2016-01-01

    At present, each item of process equipment required for integrated processing is being examined, based on experience acquired during the Pyropocess Integrated Inactive Demonstration Facility (PRIDE) project, and considering the requirements and desired performance enhancement of KAPF as a new facility beyond PRIDE. Essentially, KAPF will be required to handle hazardous materials such as spent nuclear fuel, which must be processed in an isolated and shielded area separate from the operator location. Moreover, an inert-gas atmosphere must be maintained, because of the radiation and deliquescence of the materials. KAPF must also achieve the goal of significantly increased yearly production beyond that of the previous facility; therefore, several parts of the production line must be automated. This article presents the method considered for the conceptual design of both the production line and the overall layout of the KAPF process equipment. This study has proposed a design methodology that can be utilized as a preliminary step for the design of a hot-cell-type, large-scale facility, in which the various types of processing equipment operated by the remote handling system are integrated. The proposed methodology applies to part of the overall design procedure and contains various weaknesses. However, if the designer is required to maximize the efficiency of the installed material-handling system while considering operation restrictions and maintenance conditions, this kind of design process can accommodate the essential components that must be employed simultaneously in a general hot-cell system

  14. Development of an equipment management model to improve effectiveness of processes

    International Nuclear Information System (INIS)

    Chang, H. S.; Ju, T. Y.; Song, T. Y.

    2012-01-01

    The nuclear industries have developed and are trying to create a performance model to improve effectiveness of the processes implemented at nuclear plants in order to enhance performance. Most high performing nuclear stations seek to continually improve the quality of their operations by identifying and closing important performance gaps. Thus, many utilities have implemented performance models adjusted to their plant's configuration and have instituted policies for such models. KHNP is developing a standard performance model to integrate the engineering processes and to improve the inter-relation among processes. The model, called the Standard Equipment Management Model (SEMM), is under development first by focusing on engineering processes and performance improvement processes related to plant equipment used at the site. This model includes performance indicators for each process that can allow evaluating and comparing the process performance among 21 operating units. The model will later be expanded to incorporate cost and management processes. (authors)

  15. Overall equipment efficiency of Flexographic Printing process: A case study

    Science.gov (United States)

    Zahoor, S.; Shehzad, A.; Mufti, NA; Zahoor, Z.; Saeed, U.

    2017-12-01

    This paper reports the efficiency improvement of a flexographic printing machine by reducing breakdown time with the help of a total productive maintenance measure called overall equipment efficiency (OEE). The methodology is comprised of calculating OEE of the machine before and after identifying the causes of the problems. Pareto diagram is used to prioritize main problem areas and 5-whys analysis approach is used to identify the root cause of these problems. OEE of the process is improved from 34% to 40.2% for a 30 days time period. It is concluded that OEE and 5-whys analysis techniques are useful in improving effectiveness of the equipment and for the continuous process improvement as well.

  16. Development of process diagnostic techniques for piping and equipment

    International Nuclear Information System (INIS)

    Yotsutsuji, Mitoshi

    1987-01-01

    The thing required for using the facilities composing a plant for a long period without anxiety is to quantitatively grasp the quantities of the present condition of the facilities and to take the necessary measures beforehand. For this purpose, the diagnostic techniques for quickly and accurately detect the quantities of the condition of facilities are necessary, and the development of process diagnostic techniques has been desired. The process diagnostic techniques mentioned here mean those for diagnosing the contamination, clogging and performance of towers, tanks, heat exchangers and others. Idemitsu Engineering Co. had developed a simplified diagnostic equipment for detecting the state of fouling in piping in 1982, which is the gamma ray transmission diagnosis named Scale Checker. By further improving it, the process diagnostic techniques for piping and equipment were developed. In this report, the course of development and examination, the principle of detection, the constitution and the examination of remodeling of the Scale Checker are reported. As the cases of process diagnosis in plant facilities, the diagnosis of the clogging in process piping and the diagnosis of the performance of a distillation tower were carried out. The contents of the diagnosis and the results of those cases are explained. (Kako, I.)

  17. Development of the new data transmission and processing equipment for radiation surveillance

    International Nuclear Information System (INIS)

    Suzuki, Shintaro; Takahashi, Kouichi; Suganami, Jun; Kawai, Toshiaki

    2004-01-01

    In the Mito Atomic Energy Office, which belongs to Ministry of Education, Culture, Sports, Science and Technology, as part of an environmental safety measures of the nuclear institutions in Ibaraki area, the regular surveillance of the environmental monitoring data measured in Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Energy Research Institute (JAERI) which are main facilities in Oarai and Tokai area is performed. For the purpose of strengthening environmental radiation surveillance in the fiscal year 2003, the data transmission and processing equipment for radiation surveillance is updated, and the new equipment is actually operated from March, 2004. In this paper, the features and functions of the new data transmission and processing equipment are introduced. (author)

  18. Equipment for hydraulic testing

    International Nuclear Information System (INIS)

    Jacobsson, L.; Norlander, H.

    1981-07-01

    Hydraulic testing in boreholes is one major task of the hydrogeological program in the Stripa Project. A new testing equipment for this purpose was constructed. It consists of a downhole part and a surface part. The downhole part consists of two packers enclosing two test-sections when inflated; one between the packers and one between the bottom packer and the bottom of the borehole. A probe for downhole electronics is also included in the downhole equipment together with electrical cable and nylon tubing. In order to perform shut-in and pulse tests with high accuracy a surface controlled downhole valve was constructed. The surface equipment consists of the data acquisition system, transducer amplifier and surface gauges. In the report detailed descriptions of each component in the whole testing equipment are given. (Auth.)

  19. Industrial high pressure applications. Processes, equipment and safety

    Energy Technology Data Exchange (ETDEWEB)

    Eggers, Rudolf (ed.) [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Inst. fuer Thermische Verfahrenstechnik

    2012-07-01

    Industrial high pressure processes open the door to many reactions that are not possible under 'normal' conditions. These are to be found in such different areas as polymerization, catalytic reactions, separations, oil and gas recovery, food processing, biocatalysis and more. The most famous high pressure process is the so-called Haber-Bosch process used for fertilizers and which was awarded a Nobel prize. Following an introduction on historical development, the current state, and future trends, this timely and comprehensive publication goes on to describe different industrial processes, including methanol and other catalytic syntheses, polymerization and renewable energy processes, before covering safety and equipment issues. With its excellent choice of industrial contributions, this handbook offers high quality information not found elsewhere, making it invaluable reading for a broad and interdisciplinary audience.

  20. Waste Handling Equipment Development Test and Evaluation Study

    International Nuclear Information System (INIS)

    R.L. Tome

    1998-01-01

    planned and conducted by the appropriate design organization as part of the design process. The scope of this study, therefore, will address only surface development testing activities that will be performed prior to detail design and procurement of the MGR surface waste handling equipment. Testing to support development of additional MGR surface equipment and operations, such as cooling of shipping casks and dual-purpose canisters (DPCs) prior to pool entry, decontamination of disposal containers (DCs), and recovery systems for various equipment, is not addressed in this study. These equipment items/systems were not developed for VA and are not currently identified as specific MGR surface waste handling equipment

  1. Special equipment for processing can-rupture measurements; Equipement specialise de traitement des mesures de rupture de gaines

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, J.; Phalippou, J.; Dumont, D.; Viellard, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    Recent installations for detecting can-rupture in nuclear reactors use, in the measurement processing section, a digital computer, either completely or partially. The reliability of the system is limited by that of the computer, which represents a common point for the processing of data from the detector. In order to satisfy the demands imposed by safety considerations for the operation of the equipment it is necessary to consider the possibility of installing a second computer in certain cases. The use of a computer involves the presence as interface between the detection equipment and the computer itself, of sealers operating as integrators for the pulses produced by the detector. By adding a certain number of circuits to these sealers, it is possible to carry out the work now demanded of the computer, as far as the calculation is concerned. This reasoning has led us to a so-called 'decentralized' solution involving the construction of specialized equipment in the region of the prospector itself. We believe that this solution, apart from the reliability point of view, has definite economic advantages. In our solution, the common point in the processing of the data is now situated not in the zone of the production of results but further down, in the printing out of these results. Even in the case of an incident at the common point, the results are produced, exposed and compared to the alarm thresholds. In the case of a breakdown of the specialized equipment, the results from this prospector are no longer available but the others continue to operate. It seems that this solution is more reliable than that employing universal computers. By using an interchangeable drawer system (MULTIBLOC) it is possible to replace rapidly any of the specialized equipment which breaks down. The systematic use of integrated circuits (TTL) ensures an increased reliability of the equipment. (author) [French] Les installations recentes de detection de rupture de gaines

  2. Selection Criteria and Methods for Testing Different Surface Materials for Contact Frying Processes

    DEFF Research Database (Denmark)

    Ashokkumar, Saranya

    Inner surfaces of industrial process equipment for food are often coated to give the surfaces particular properties with respect to adhesion and cleanability. Existing coating materials (PTFE (Teflon®) or silicone based polymers) suffer from drawbacks when used in contact frying, because these co...... surface materials for contact frying processes. The surfaces selected for this purpose cover a wide spectrum of materials that range from hydrophobic to hydrophilic materials. The different surface materials investigated include stainless steel (reference), aluminium (Al Mg 5754), PTFE......, an experimental rig has been constructed which enabled a controlled fouling of different coatings on steel and aluminium substrates under realistic frying conditions. A subjective rating procedure was employed for screening different surfaces according to their non-stick properties when used for frying of a model...... defects and surface roughness play a significant role. The wear resistance of the coatings was tested by performing abrasive wear experiments. The ceramic coatings: TiAlN and ZrN were found to show the best wear resistance properties. The experiments also revealed the poor wear resistance of stainless...

  3. Business processes in the RFID-equipped restricted access administrative office

    Directory of Open Access Journals (Sweden)

    Robert Waszkowski

    2016-01-01

    Full Text Available The paper presents business processes in the RFID-equipped restricted access administrative office. The presented diagrams are the result of the analytical work performed by the multidisciplinary team of experts. The team was composed of IT specialist, security systems specialists and employees of the secret office. The presented models include the fact that the facilities in the secret office (cabinet, sluice, photocopier, desks are equipped with the RFID reader, which allows to immediately read the documents that are within their reach.

  4. Process and equipment development for hot isostatic pressing treatability study

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, Ken; Wahlquist, Dennis; Malewitz, Tim

    2015-03-01

    Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd^3 (4,400 m^3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP within INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1 gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask-handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEA’s readiness for treatment of INL calcine.

  5. A new method of knowledge processing for equipment diagnosis of nuclear power plants

    International Nuclear Information System (INIS)

    Fujii, M.; Fukumoto, A.; Tai, I.; Morioka, T.

    1987-01-01

    In this work, the authors complete the development of a new knowledge processing method and representation for equipment diagnosis of nuclear power plants and evaluate its functions by applying to the maintenance and diagnosis support system of the reactor instrumentation. This knowledge processing method system is based on the Cause Generation and Checking concept and has sufficient performance not only in the diagnosis function but also in the man-machine interfacing function. The maintenance and diagnosis support system based on this method leads to the possibility for users to diagnose various phenomena occurred in an objective equipment to the considerable extent by consulting with the system, even if they don't have enough knowledge. With this system, it becomes easy for operators or plant engineers to take immediate actions to counteract against the abnormality. The maintainability of the equipments is improved and MTTR (Mean Time To Repair) is expected to be shorter. This new knowledge processing method is proved to be suited for fault diagnosis of the equipments of nuclear power plants

  6. AX Tank Farm ancillary equipment study

    International Nuclear Information System (INIS)

    SKELLY, W.A.

    1999-01-01

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms

  7. Development of an Improved Process for Installation Projects of High Technology Manufacturing Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Quintana, Sarah V. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-30

    High technology manufacturing equipment is utilized at Los Alamos National Laboratory (LANL) to support nuclear missions. This is undertaken from concept initiation where equipment is designed and then taken through several review phases, working closely with system engineers (SEs) responsible for each of the affected systems or involved disciplines (from gasses to HVAC to structural, etc.). After the design is finalized it moves to procurement and custom fabrication of the equipment and equipment installation, including all of the paperwork involved. Not only are the engineering and manufacturing aspects important, but also the scheduling, financial forecasting, and planning portions that take place initially and are sometimes modified as the project progresses should requirements, changes or additions become necessary. The process required to complete a project of this type, including equipment installation, is unique and involves numerous steps to complete. These processes can be improved and recent work on the Direct Current Arc (DC Arc) Glovebox Design, Fabrication and Installation Project provides an opportunity to identify some important lessons learned (LL) that can be implemented in the future for continued project improvement and success.

  8. Evaluation of Design Models of Process Equipment for Use in PRIDE: Remote Operability and Maintainability

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Kim, Sung Hyun; Yu, Seung Nam; Lee, Jong Kwang; Park, Byung Suk; Han, Jong Hui; Cho, Il Je; Lee, Han Soo

    2012-01-01

    Process equipment for pyroprocessing are being developed at KAERI (Korea Atomic Energy Research Institute). Those equipment should be operated and maintained in a fully remote manner in the argon gas filled cell of PRIDE (PyRoprocess Integrated inactive DEmonstration facility) at KAERI because direct human access to the in-cell is not possible during an operation due to the high toxicity of the argon gas. To make such process equipment remotely operable and maintainable, their design developments have been tested and evaluated in a simulator before they are constructed. A simulator as a means of evaluating the remote operability and maintainability of the design models of process equipment for pyroprocessing is described, and results of the design models tested and evaluated in a simulator are presented

  9. Effects of wearing different personal equipment on force distribution at the plantar surface of the foot.

    Science.gov (United States)

    Schulze, Christoph; Lindner, Tobias; Woitge, Sandra; Finze, Susanne; Mittelmeier, Wolfram; Bader, Rainer

    2013-01-01

    The wearing of personal equipment can cause specific changes in muscle activity and posture. In the present study, we investigated the influence of differences in equipment related weight loading and load distribution on plantar pressure. In addition, we studied functional effects of wearing different equipment with a particular focus on relevant changes in foot shape. Static and dynamic pedobarography were performed on 31 male soldiers carrying increasing weights consisting of different items of equipment. The pressure acting on the plantar surface of the foot increased with higher loading, both under static and dynamic conditions (p feet deformities which seem to flatten at an earlier load condition with a greater amount compared to subjects with normal arches. Improving load distribution should be a main goal in the development of military equipment in order to prevent injuries or functional disorders of the lower extremity.

  10. 9 CFR 318.305 - Equipment and procedures for heat processing systems.

    Science.gov (United States)

    2010-01-01

    ... processing systems. 318.305 Section 318.305 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION... PREPARATION OF PRODUCTS Canning and Canned Products § 318.305 Equipment and procedures for heat processing...

  11. Decontamination Efficiency of Fish Bacterial Flora from Processing Surfaces

    Directory of Open Access Journals (Sweden)

    Birna Guðbjörnsdóttir

    2009-01-01

    Full Text Available There are numerous parameters that can influence bacterial decontamination during washing of machinery and equipment in a food processing establishment. Incomplete decontamination of bacteria will increase the risk of biofilm formation and consequently increase the risk of pathogen contamination or prevalence of other undesirable microorganisms such as spoilage bacteria in the processing line. The efficiency of a typical washing protocol has been determined by testing three critical parameters and their effects on bacterial decontamination. Two surface materials (plastic and stainless steel, water temperatures (7 and 25 °C and detergent concentrations (2 and 4 % were used for this purpose in combination with two types of detergents. Biofilm was prepared on the surfaces with undefined bacterial flora obtained from minced cod fillets. The bacterial flora of the biofilm was characterised by cultivation and molecular analysis of 16S rRNA genes. All different combinations of washing protocols tested were able to remove more than 99.9 % of the bacteria in the biofilm and reduce the cell number from 7 to 0 or 2 log units of bacteria/cm2. The results show that it is possible to use less diluted detergents than recommended with comparable success, and it is easier to clean surface material made of stainless steel compared to polyethylene plastic.

  12. Improving the Thermal Testing Technology of Technological Equipment of Autonomous Complexes

    Directory of Open Access Journals (Sweden)

    V. V. Chugunkov

    2017-01-01

    Full Text Available The environmental conditions of autonomous objects of different-purpose technical complexes are in close relationship with increased values of operating temperatures. This requires thermal pretesting of the process equipment. The publication [1] considers the thermal test conditions in which the equipment elements under test are placed in a heated water tank covered by the globe insulators where, under automatic temperature control using a block of heaters, they are then kept for a specified period of time at a specified temperature range. Such an approach to the thermal tests of equipment allows us to reduce, but not eliminate completely the mass flows of water from evaporation with reducing power consumption of test equipment.Despite the results achieved, even a little bit of water vapor available when conducting the thermal tests may cause a failure of equipment. Therefore, there is a need in test equipment modernization for complete eliminating the fluxes of mass water and better power consumption in the test process. To this end, it is proposed to place a three-layer bubble wrap on the open surface of water.To justify an efficiency of the proposed option was developed a mathematical model of heat and mass transfer processes that occur during thermal tests, taking into account the geometric and thermo-physical characteristics of test tank, polymer film, and equipment. Using the laws and equations of heat and mass transfer enabled us to determine the required capacities for heating the tank with water and equipment to the required temperature range for a specified time, as well as the mass flows of water when evaporating from the tank surface.The efficiency of the three-layer bubble film as compared with the globe insulators as the elements for covering the test tank the surface has been analysed on the basis of the results obtained.The proposed film coating allowed almost complete elimination of evaporation losses of water mass and almost 8

  13. Intelligent Processing Equipment Developments Within the Navy's Manufacturing Technology Centers of Excellence

    Science.gov (United States)

    Nanzetta, Philip

    1992-01-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  14. An improved probit method for assessment of domino effect to chemical process equipment caused by overpressure.

    Science.gov (United States)

    Mingguang, Zhang; Juncheng, Jiang

    2008-10-30

    Overpressure is one important cause of domino effect in accidents of chemical process equipments. Damage probability and relative threshold value are two necessary parameters in QRA of this phenomenon. Some simple models had been proposed based on scarce data or oversimplified assumption. Hence, more data about damage to chemical process equipments were gathered and analyzed, a quantitative relationship between damage probability and damage degrees of equipment was built, and reliable probit models were developed associated to specific category of chemical process equipments. Finally, the improvements of present models were evidenced through comparison with other models in literatures, taking into account such parameters: consistency between models and data, depth of quantitativeness in QRA.

  15. Prediction of hygiene in food processing equipment using flow modelling

    DEFF Research Database (Denmark)

    Friis, Alan; Jensen, Bo Boye Busk

    2002-01-01

    Computational fluid dynamics (CFD) has been applied to investigate the design of closed process equipment with respect to cleanability. The CFD simulations were validated using the standardized cleaning test proposed by the European Hygienic Engineering and Design Group. CFD has been proven as a ...

  16. Radioactive decontamination of equipment

    International Nuclear Information System (INIS)

    1982-03-01

    After a recall of some definitions relating to decontamination techniques and of the regulation into effect, the principles to be respected to arrange rationally work zones are quoted while insisting more particularly on the types of coatings which facilitate maintenance operations and the dismantling of these installations. Then, the processes and equipments to use in decontamination units for routine or particular operations are described; the list of recommended chemical products to decontaminate the equipment is given. The influence of these treatments on the state and the duration of life of equipments is studied, and some perfectible methods are quoted. In the appendix, are given: the limits of surface contamination accepted in the centers; a standard project which defines the criteria of admissible residual contamination in wastes considered as cold wastes; some remarks on the interest that certain special ventilation and air curtain devices for the protection of operators working on apparatus generating contaminated dusts [fr

  17. The improvement of maintenance service for traction networks equipment on the base of process approach

    Directory of Open Access Journals (Sweden)

    D. V. Mironov

    2014-12-01

    Full Text Available Purpose. The new methods development for improving the maintenance service for equipment of traction networks in order to increase its efficiency and quality. Methodology. In world practice of solving problems related to the quality of products and services is usually achieved by introducing quality management system in to the enterprises. The provisions of quality management system were used for solving the problem. The technologies of process engineering were used for describing the main stages of maintenance service. Findings. The development of high-speed movement and growth of its intensity, the use of electric rolling stock of a new generation require the introduction of new methods diagnostics of equipment technical state and improvement of the existing maintenance system and repair of power supply. Developing a model of business-processes, their optimization with using techniques of process engineering and system management is needed for the transition to the management system based on the process approach. From the standpoint of the process approach and in accordance with the requirements of the quality management system (ISO 9001-2009, the operation of the E (Department of electrification and power supply infrastructure sector is represented as a scheme of business-processes in which the guaranteed supply with electricity of railway and third-party consumers is defined as the main business-process of management. Each of the sub-process of power supply for consumers is described in details. The use methods and main stages of process approach for sample management system reorganization were investigated. The methodology and the application method of PDCA (Plan-Do-Check-Act closed loop to the equipment maintenance system were described. The monitoring process of traction networks maintenance using the process approach was divided into components after investigations. The technical documentation of maintenance service was investigated in

  18. IFR fuel cycle process equipment design environment and objectives

    International Nuclear Information System (INIS)

    Rigg, R.H.

    1993-01-01

    Argonne National laboratory (ANL) is refurbishing the hot cell facility originally constructed with the EBR-II reactor. When refurbishment is complete, the facility win demonstrate the complete fuel cycle for current generation high burnup metallic fuel elements. These are sodium bonded, stainless steel clad fuel pins of U-Zr or U-Pu-Zr composition typical of the fuel type proposed for a future Integral Fast Reactor (IFR) design. To the extent possible, the process equipment is being built at full commercial scale, and the facility is being modified to incorporate current DOE facility design requirements and modem remote maintenance principles. The current regulatory and safety environment has affected the design of the fuel fabrication equipment, most of which will be described in greater detail in subsequent papers in this session

  19. A Study of Parallels Between Antarctica South Pole Traverse Equipment and Lunar/Mars Surface Systems

    Science.gov (United States)

    Mueller, Robert P.; Hoffman, Stephen, J.; Thur, Paul

    2010-01-01

    The parallels between an actual Antarctica South Pole re-supply traverse conducted by the National Science Foundation (NSF) Office of Polar Programs in 2009 have been studied with respect to the latest mission architecture concepts being generated by the United States National Aeronautics and Space Administration (NASA) for lunar and Mars surface systems scenarios. The challenges faced by both endeavors are similar since they must both deliver equipment and supplies to support operations in an extreme environment with little margin for error in order to be successful. By carefully and closely monitoring the manifesting and operational support equipment lists which will enable this South Pole traverse, functional areas have been identified. The equipment required to support these functions will be listed with relevant properties such as mass, volume, spare parts and maintenance schedules. This equipment will be compared to space systems currently in use and projected to be required to support equivalent and parallel functions in Lunar and Mars missions in order to provide a level of realistic benchmarking. Space operations have historically required significant amounts of support equipment and tools to operate and maintain the space systems that are the primary focus of the mission. By gaining insight and expertise in Antarctic South Pole traverses, space missions can use the experience gained over the last half century of Antarctic operations in order to design for operations, maintenance, dual use, robustness and safety which will result in a more cost effective, user friendly, and lower risk surface system on the Moon and Mars. It is anticipated that the U.S Antarctic Program (USAP) will also realize benefits for this interaction with NASA in at least two areas: an understanding of how NASA plans and carries out its missions and possible improved efficiency through factors such as weight savings, alternative technologies, or modifications in training and

  20. Modification of surfaces and surface layers by non equilibrium processes

    International Nuclear Information System (INIS)

    Beamson, G.; Brennan, W.J.; Clark, D.T.; Howard, J.

    1988-01-01

    Plasmas are examples of non-equilibrium phenomena which are being used increasingly for the synthesis and modification of materials impossible by conventional routes. This paper introduces methods available by describing the construction and characteristics of some equipment used for the production of different types of plasmas and other non-equilibrium phenomena. This includes high energy ion beams. The special features, advantages and disadvantages of the techniques will be described. There are a multitude of potential application relevant to electronic, metallic, ceramic, and polymeric materials. However, scale-up from the laboratory to production equipment depends on establishing a better understanding of both the physics and chemistry of plasma as well as plasma-solid interactions. Examples are given of how such an understanding can be gained. The chemical analysis of polymer surfaces undergoing modification by inert gas, hydrogen or oxygen plasmas is shown to give physical information regarding the relative roles of diffusion of active species, and direct and radiative energy transfer from the plasma. Surface modification by plasma depositing a new material onto an existing substrate is discussed with particular reference to the deposition of amorphous carbon films. Applications of the unique properties of these films are outlined together with our current understanding of these properties based on chemical and physical methods of analysis of both the films and the plasmas producing them. Finally, surface modification by ion beams is briefly illustrated using examples from the electronics and metals industries where the modification has had a largely physical rather than chemical effect on the starting material. (orig.)

  1. Materials selection for process equipment in the Hanford waste vitrification plant

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, M R; Jensen, G A

    1991-07-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify defense liquid high-level wastes and transuranic wastes stored at Hanford. The HWVP Functional Design Criteria (FDC) requires that materials used for fabrication of remote process equipment and piping in the facility be compatible with the expected waste stream compositions and process conditions. To satisfy FDC requirements, corrosion-resistant materials have been evaluated under simulated HWVP-specific conditions and recommendations have been made for HWVP applications. The materials recommendations provide to the project architect/engineer the best available corrosion rate information for the materials under the expected HWVP process conditions. Existing data and sound engineering judgement must be used and a solid technical basis must be developed to define an approach to selecting suitable construction materials for the HWVP. This report contains the strategy, approach, criteria, and technical basis developed for selecting materials of construction. Based on materials testing specific to HWVP and on related outside testing, this report recommends for constructing specific process equipment and identifies future testing needs to complete verification of the performance of the selected materials. 30 refs., 7 figs., 11 tabs.

  2. Future development of IR thermovision weather satellite equipment

    Science.gov (United States)

    Listratov, A. V.

    1974-01-01

    The self radiation of the surface being viewed is used for image synthesis in IR thermovision equipment. The installation of such equipment aboard weather satellites makes it possible to obtain cloud cover pictures of the earth's surface in a complete orbit, regardless of the illumination conditions, and also provides quantitative information on the underlying surface temperature and cloud top height. Such equipment is used successfully aboard the Soviet satellites of the Meteor system, and experimentally on the American satellites of the Nimbus series. With regard to surface resolution, the present-day IR weather satellite equipment is inferior to the television equipment. This is due primarily to the comparatively low detectivity of the IR detectors used. While IR equipment has several fundamental advantages in comparison with the conventional television equipment, the problem arises of determining the possibility for future development of weather satellite IR thermovision equipment. Criteria are examined for evaluating the quality of IR.

  3. Regulatory process for material handling equipment

    International Nuclear Information System (INIS)

    Rajendran, S.; Agarwal, Kailash

    2017-01-01

    Atomic Energy (Factories) Rules (AEFR) 1996, Rule 35 states, 'Thorough inspection and load testing of a Crane shall be done by a Competent Person at least once every 12 months'. To adhere to this rule, BARC Safety Council constituted 'Material Handling Equipment Committee (MHEC)' under the aegis of Conventional Fire and Safety Review Committee (CFSRC) to carry out periodical inspection and certification of Material Handling Equipment (MHE), tools and tackles used in BARC Facilities at Trombay, Tarapur and Kalpakkam

  4. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    Science.gov (United States)

    Phillips, C. B.; Molaro, J.; Hand, K. P.

    2017-12-01

    The surface of Jupiter's moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa's leading-trailing hemisphere brightness asymmetry. Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted "chaos-type" terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features. In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa's surface area. Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age ( 50myr) of Europa. Quantifying the timescale

  5. System Model of Heat and Mass Transfer Process for Mobile Solvent Vapor Phase Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2014-01-01

    Full Text Available The solvent vapor phase drying process is one of the most important processes during the production and maintenance for large oil-immersed power transformer. In this paper, the working principle, system composition, and technological process of mobile solvent vapor phase drying (MVPD equipment for transformer are introduced in detail. On the basis of necessary simplification and assumption for MVPD equipment and process, a heat and mass transfer mathematical model including 40 mathematical equations is established, which represents completely thermodynamics laws of phase change and transport process of solvent, water, and air in MVPD technological processes and describes in detail the quantitative relationship among important physical quantities such as temperature, pressure, and flux in key equipment units and process. Taking a practical field drying process of 500 KV/750 MVA power transformer as an example, the simulation calculation of a complete technological process is carried out by programming with MATLAB software and some relation curves of key process parameters changing with time are obtained such as body temperature, tank pressure, and water yield. The change trend of theoretical simulation results is very consistent with the actual production record data which verifies the correctness of mathematical model established.

  6. Making equipment to process paddy water for providing drinking water by using Ozone-UVC& Ultrafiltration

    Science.gov (United States)

    Styani, E.; Dja'var, N.; Irawan, C.; Hanafi

    2018-01-01

    This study focuses on making equipment which is useful to process paddy water to be consumable as drinking water by using ozone-UVC and ultrafiltration. The equipment which is made by the process of ozone-UVC and ultrafiltration or reverse osmosis is driven by electric power generated from solar panels. In the experiment, reverse osmosis system with ozone-UVC reactor proves to be good enough in producing high quality drinking water.

  7. Effectiveness of disinfectant wipes for decontamination of bacteria on patients' environmental and medical equipment surfaces at Siriraj Hospital.

    Science.gov (United States)

    Seenama, Chakkraphong; Tachasirinugune, Peenithi; Jintanothaitavorn, Duangporn; Kachintorn, Kanchana; Thamlikitkul, Visanu

    2013-02-01

    To determine the effectiveness of Virusolve+ disinfectant wipes and PAL disinfectant wipes for decontamination of inoculated bacteria on patients' environmental and medical equipment surfaces at Siriraj Hospital. Tryptic soy broths containing MRSA and XDR A. baumannii were painted onto the surfaces of patient's stainless steel bed rail, patient's fiber footboard, control panel of infusion pump machine and control panel of respirator. The contaminated surfaces were cleaned by either tap water, tap water containing detergent, Virusolve+ disinfectant wipes or PAL disinfectant wipes. The surfaces without any cleaning procedures served as the control surface. The contaminated surfaces cleaned with the aforementioned procedures and control surfaces were swabbed with cotton swabs. The swabs were streaked on agar plates to determine the presence of MRSA and XDR A. baumannii. MRSA and XDR A. baumannii were recovered from all control surfaces. All surfaces cleaned with tap water or tap water containing detergent revealed presence of both MRSA and XDR A. baumannii. However the amounts of bacteria on the surfaces cleaned with tap water containing detergent were less than those cleaned with tap water alone. All surfaces cleaned with PAL disinfectant wipes also revealed presence of both MRSA and XDR A. baumannii. However the amounts of bacteria on the surfaces cleaned with PAL disinfectant wipes were less than those cleaned with tap water containing detergent. No bacteria were recovered from all surfaces cleaned with Virusolve+ disinfectant wipes. Virusolve+ disinfectant wipes were more effective than tap water; tap water containing detergent and PAL disinfectant wipes for decontamination of bacteria inoculated on patients environmental and medical equipment surfaces at Siriraj Hospital.

  8. Process and equipment qualification of the ceramic and metal waste forms for spent fuel treatment

    International Nuclear Information System (INIS)

    Marsden, Ken; Knight, Collin; Bateman, Kenneth; Westphal, Brian; Lind, Paul

    2005-01-01

    The electrometallurgical process for treating sodium-bonded spent metallic fuel at the Materials and Fuels Complex of the Idaho National Laboratory separates actinides and partitions fission products into two waste forms. The first is the metal waste form, which is primarily composed of stainless steel from the fuel cladding. This stainless steel is alloyed with 15w% zirconium to produce a very corrosion-resistant metal which binds noble metal fission products and residual actinides. The second is the ceramic waste form which stabilizes fission product-loaded chloride salts in a sodalite and glass composite. These two waste forms will be packaged together for disposal at the Yucca Mountain repository. Two production-scale metal waste furnaces have been constructed. The first is in a large argon-atmosphere glovebox and has been used for equipment qualification, process development, and process qualification - the demonstration of process reliability for production of the DOE-qualified metal waste form. The second furnace will be transferred into a hot cell for production of metal waste. Prototype production-scale ceramic waste equipment has been constructed or procured; some equipment has been qualified with fission product-loaded salt in the hot cell. Qualification of the remaining equipment with surrogate materials is underway. (author)

  9. Maintenance of influenza virus infectivity on the surfaces of personal protective equipment and clothing used in healthcare settings.

    Science.gov (United States)

    Sakaguchi, Hiroko; Wada, Koji; Kajioka, Jitsuo; Watanabe, Mayumi; Nakano, Ryuichi; Hirose, Tatsuko; Ohta, Hiroshi; Aizawa, Yoshiharu

    2010-11-01

    The maintenance of infectivity of influenza viruses on the surfaces of personal protective equipment and clothing is an important factor in terms of controlling viral cross-infection in the environment and preventing contact infection. The aim of this study was to determine if laboratory-grown influenza A (H1N1) virus maintained infectivity on the surfaces of personal protective equipment and clothing used in healthcare settings. Influenza A virus (0.5 mL) was deposited on the surface of a rubber glove, an N95 particulate respirator, a surgical mask made of non-woven fabric, a gown made of Dupont Tyvek, a coated wooden desk, and stainless steel. Each sample was left for 1, 8, and 24 h, and hemagglutination (HA) and 50% tissue culture infective dose (TCID(50))/mL were measured. The HA titer of this influenza A virus did not decrease in any of the materials tested even after 24 h. The infectivity of influenza A virus measured by TCID(50) was maintained for 8 h on the surface of all materials, with the exception of the rubber glove for which virus infectivity was maintained for 24 h. Our results indicate that the replacement/renewal of personal protective equipment and clothing by healthcare professionals in cases of exposure to secretions and droplets containing viruses spread by patients is an appropriate procedure to prevent cross-infection.

  10. 9 CFR 381.305 - Equipment and procedures for heat processing systems.

    Science.gov (United States)

    2010-01-01

    ... AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Canning and Canned... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Equipment and procedures for heat processing systems. 381.305 Section 381.305 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE...

  11. A Fault Diagnosis Model of Surface to Air Missile Equipment Based on Wavelet Transformation and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhheng Ni

    2016-01-01

    Full Text Available At present, the fault signals of surface to air missile equipment are hard to collect and the accuracy of fault diagnosis is very low. To solve the above problems, based on the superiority of wavelet transformation on processing non-stationary signals and the advantage of SVM on pattern classification, this paper proposes a fault diagnosis model and takes the typical analog circuit diagnosis of one power distribution system as an example to verify the fault diagnosis model based on Wavelet Transformation and SVM. The simulation results show that the model is able to achieve fault diagnosis based on a small amount of training samples, which improves the accuracy of fault diagnosis.

  12. A-Cell equipment removal quality process plan

    International Nuclear Information System (INIS)

    TAKASUMI, D.S.

    1999-01-01

    This document establishes the quality assuring activities used to manage the 324 building A-Cell equipment removal activity. This activity will package, remove, transport and dispose of the equipment in A-Cell. This document is provided to ensure that appropriate and effective quality assuring activities have been incorporated into the work controlling documentation and procedures

  13. Free-world microelectronic manufacturing equipment

    Science.gov (United States)

    Kilby, J. S.; Arnold, W. H.; Booth, W. T.; Cunningham, J. A.; Hutcheson, J. D.; Owen, R. W.; Runyan, W. R.; McKenney, Barbara L.; McGrain, Moira; Taub, Renee G.

    1988-12-01

    Equipment is examined and evaluated for the manufacture of microelectronic integrated circuit devices and sources for that equipment within the Free World. Equipment suitable for the following are examined: single-crystal silicon slice manufacturing and processing; required lithographic processes; wafer processing; device packaging; and test of digital integrated circuits. Availability of the equipment is also discussed, now and in the near future. Very adequate equipment for most stages of the integrated circuit manufacturing process is available from several sources, in different countries, although the best and most widely used versions of most manufacturing equipment are made in the United States or Japan. There is also an active market in used equipment, suitable for manufacture of capable integrated circuits with performance somewhat short of the present state of the art.

  14. MIC damage in a water coolant header for remote process equipment

    International Nuclear Information System (INIS)

    Jenkins, C.F.

    1996-01-01

    Stainless steel water piping, used to supply coolant for remote chemical separations equipment, developed several leaks during low flow conditions, the result of an extended interruption of operations. All the leaks occurred at welds in the bottom of the pipe, which was blanketed with silt deposits from unfiltered well water used for cooling. Ultrasonic, radiographic, and metallographic examinations of the leak sites revealed worm-hole pitting adjacent to the welds. Seepage at the penetrations was strongly acidic and corroded the external pipe surfaces. Analyses of the water and deposits suggested microbiologically influenced corrosion and fouling

  15. Effects of Wearing Different Personal Equipment on Force Distribution at the Plantar Surface of the Foot

    Directory of Open Access Journals (Sweden)

    Christoph Schulze

    2013-01-01

    Full Text Available Background. The wearing of personal equipment can cause specific changes in muscle activity and posture. In the present study, we investigated the influence of differences in equipment related weight loading and load distribution on plantar pressure. In addition, we studied functional effects of wearing different equipment with a particular focus on relevant changes in foot shape. Methods. Static and dynamic pedobarography were performed on 31 male soldiers carrying increasing weights consisting of different items of equipment. Results. The pressure acting on the plantar surface of the foot increased with higher loading, both under static and dynamic conditions (p < 0.05. We observed an increase in the contact area (p < 0.05 and an influence of load distribution through different ways to carry the rifle. Conclusions. The wearing of heavier weights leads to an increase in plantar pressure and contact area. This may be caused by flattening of the transverse and longitudinal arches. The effects are more evident in subjects with flat feet deformities which seem to flatten at an earlier load condition with a greater amount compared to subjects with normal arches. Improving load distribution should be a main goal in the development of military equipment in order to prevent injuries or functional disorders of the lower extremity.

  16. Developing a Logistics Data Process for Support Equipment for NASA Ground Operations

    Science.gov (United States)

    Chakrabarti, Suman

    2010-01-01

    The United States NASA Space Shuttle has long been considered an extremely capable yet relatively expensive rocket. A great part of the roughly US $500 million per launch expense was the support footprint: refurbishment and maintenance of the space shuttle system, together with the long list of resources required to support it, including personnel, tools, facilities, transport and support equipment. NASA determined to make its next rocket system with a smaller logistics footprint, and thereby more cost-effective and quicker turnaround. The logical solution was to adopt a standard Logistics Support Analysis (LSA) process based on GEIA-STD-0007 http://www.logisticsengineers.org/may09pres/GEIASTD0007DEXShortIntro.pdf which is the successor of MIL-STD-1388-2B widely used by U.S., NATO, and other world military services and industries. This approach is unprecedented at NASA: it is the first time a major program of programs, Project Constellation, is factoring logistics and supportability into design at many levels. This paper will focus on one of those levels NASA ground support equipment for the next generation of NASA rockets and on building a Logistics Support Analysis Record (LSAR) for developing and documenting a support solution and inventory of resources for. This LSAR is actually a standards-based database, containing analyses of the time and tools, personnel, facilities and support equipment required to assemble and integrate the stages and umbilicals of a rocket. This paper will cover building this database from scratch: including creating and importing a hierarchical bill of materials (BOM) from legacy data; identifying line-replaceable units (LRUs) of a given piece of equipment; analyzing reliability and maintainability of said LRUs; and therefore making an assessment back to design whether the support solution for a piece of equipment is too much work, i.e., too resource-intensive. If one must replace or inspect an LRU too much, perhaps a modification of

  17. Furnace and support equipment for space processing. [space manufacturing - Czochralski method

    Science.gov (United States)

    Mazelsky, R.; Duncan, C. S.; Seidensticker, R. G.; Johnson, R. A.; Hopkins, R. H.; Roland, G. W.

    1975-01-01

    A core facility capable of performing a majority of materials processing experiments is discussed. Experiment classes are described, the needs peculiar to each experiment type are outlined, and projected facility requirements to perform the experiments are treated. Control equipment (automatic control) and variations of the Czochralski method for use in space are discussed.

  18. Dynamics of liquid nitrogen cooling process of solid surface at wetting contact coefficient

    International Nuclear Information System (INIS)

    Smakulski, P; Pietrowicz, S

    2015-01-01

    Liquid cryogens cooling by direct contact is very often used as a method for decreasing the temperature of electronic devices or equipment i.e. HTS cables. Somehow, cooldown process conducted in that way could not be optimized, because of cryogen pool boiling characteristic and low value of the heat transfer coefficient. One of the possibilities to increase the efficiency of heat transfer, as well as the efficiency of cooling itself, it is to use a spray cooling method. The paper shows dynamics analysis of liquid nitrogen cooling solid surface process. The model of heat transfer for the single droplet of liquid nitrogen, which hits on a flat and smooth surface with respect to the different Weber numbers, is shown. Temperature profiles in calculation domains are presented, as well as the required cooling time. The numerical calculations are performed for different initial and boundary conditions, to study how the wetting contact coefficient is changing, and how it contributed to heat transfer between solid and liquid cryogen. (paper)

  19. Stability of nonfouling electroless nickel-polytetrafluoroethylene coatings after exposure to commercial dairy equipment sanitizers.

    Science.gov (United States)

    Huang, Kang; Goddard, Julie M

    2015-09-01

    Application of nonfouling coatings on thermal processing equipment can improve operational efficiency. However, to enable effective commercial translation, a need exists for more comprehensive studies on the stability of nonfouling coatings after exposure to different sanitizers. In the current study, the influence of different commercial dairy equipment sanitizers on the nonfouling properties of stainless steel modified with electroless Ni-polytetrafluoroethylene (PTFE) coatings was determined. Surface properties, such as dynamic contact angle, surface energy, surface morphology, and elemental composition, were measured before and after the coupons were exposed to the sanitizers for 168 cleaning cycles. The fouling behavior of Ni-PTFE-modified stainless steel coupons after exposure was also evaluated by processing raw milk on a self-fabricated benchtop-scale plate heat exchanger. The results indicated that peroxide sanitizer had only minor effect on the Ni-PTFE-modified stainless steel surface, whereas chlorine- and iodine-based sanitizers influenced the surface properties drastically. The coupons after 168 cycles of exposure to peroxide sanitizer accumulated the least amount of fouling material (4.44±0.24mg/cm(2)) compared with the coupons exposed to the other 3 sanitizers. These observations indicated that the Ni-PTFE nonfouling coating retained antifouling properties after 168 cycles of exposure to peroxide-based sanitizer, supporting their potential application as nonfouling coatings for stainless steel dairy processing equipment. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Corrosion and conservation of weapons and military equipment

    Directory of Open Access Journals (Sweden)

    Bore V. Jegdić

    2012-01-01

    Full Text Available This paper analyzed the conditions for the occurrence of corrosion processes on historically important weapons and military equipment made of steel during the period in outdoor environment. A considerable attention has been given to the characteristics of the most important corrosion products formed on the steel surface. The formation of akaganite, β-FeOOH is a sign of active corrosion under a layer of corrosion products. The conditions that cause the formation and regeneration of hydrochloric and sulphuric acid during the exposure to the elements were analyzed. The most often applied methods of diagnostics and procedures of removing active corrosion anions (desalination were described as well. The NaOH solution of certain pH values still has the most important application for the desalination process. The procedures for cleaning the surface before the application of protective coatings and the application of chemicals that transform rust into stable compounds were discussed. As protective coatings, different types of organic coatings plated on well-prepared steel surfaces were used and sometimes special types of waxes as well. This paper presents the results of the tests of corrosion products taken from the exhibits of weapons and military equipment from the Military Museum in Belgrade.

  1. Semiconductor Manufacturing equipment introduction

    International Nuclear Information System (INIS)

    Im, Jong Sun

    2001-02-01

    This book deals with semiconductor manufacturing equipment. It is comprised of nine chapters, which are manufacturing process of semiconductor device, history of semiconductor manufacturing equipment, kinds and role of semiconductor manufacturing equipment, construction and method of semiconductor manufacturing equipment, introduction of various semiconductor manufacturing equipment, spots of semiconductor manufacturing, technical elements of semiconductor manufacturing equipment, road map of technology of semiconductor manufacturing equipment and semiconductor manufacturing equipment in the 21st century.

  2. Process and equipment for automatic measurement of resonant frequencies in seismic detectors

    International Nuclear Information System (INIS)

    Fredriksson, O.A.; Thomas, E.L.

    1977-01-01

    This is a process for the automatic indication of the resonant frequency of one or more detector elements which have operated inside a geophysical data-gathering system. Geophones or hydrophones or groups of both instruments are to be understood as comprising the detector elements. The invention concerns the creation of a process and of equipment working with laboratory precision, although it can be used in the field. (orig./RW) [de

  3. Equipment characterization to mitigate risks during transfers of cell culture manufacturing processes.

    Science.gov (United States)

    Sieblist, Christian; Jenzsch, Marco; Pohlscheidt, Michael

    2016-08-01

    The production of monoclonal antibodies by mammalian cell culture in bioreactors up to 25,000 L is state of the art technology in the biotech industry. During the lifecycle of a product, several scale up activities and technology transfers are typically executed to enable the supply chain strategy of a global pharmaceutical company. Given the sensitivity of mammalian cells to physicochemical culture conditions, process and equipment knowledge are critical to avoid impacts on timelines, product quantity and quality. Especially, the fluid dynamics of large scale bioreactors versus small scale models need to be described, and similarity demonstrated, in light of the Quality by Design approach promoted by the FDA. This approach comprises an associated design space which is established during process characterization and validation in bench scale bioreactors. Therefore the establishment of predictive models and simulation tools for major operating conditions of stirred vessels (mixing, mass transfer, and shear force.), based on fundamental engineering principles, have experienced a renaissance in the recent years. This work illustrates the systematic characterization of a large variety of bioreactor designs deployed in a global manufacturing network ranging from small bench scale equipment to large scale production equipment (25,000 L). Several traditional methods to determine power input, mixing, mass transfer and shear force have been used to create a data base and identify differences for various impeller types and configurations in operating ranges typically applied in cell culture processes at manufacturing scale. In addition, extrapolation of different empirical models, e.g. Cooke et al. (Paper presented at the proceedings of the 2nd international conference of bioreactor fluid dynamics, Cranfield, UK, 1988), have been assessed for their validity in these operational ranges. Results for selected designs are shown and serve as examples of structured

  4. Computer aided process control equipment at the Karlsruhe reprocessing pilot plant, WAK

    International Nuclear Information System (INIS)

    Winter, R.; Finsterwalder, L.; Gutzeit, G.; Reif, J.; Stollenwerk, A.H.; Weinbrecht, E.; Weishaupt, M.

    1991-01-01

    A computer aided process control system has been installed at the Karlsruhe Spent Fuel Reprocessing Plant, WAK. All necessary process control data of the first extraction cycle is collected via a data collection system and is displayed in suitable ways on a screen for the operator in charge of the unit. To aid verification of displayed data, various measurements are associated to each other using balance type process modeling. Thus, deviation of flowsheet conditions and malfunctioning of measuring equipment are easily detected. (orig.) [de

  5. An open software system based on X Windows for process control and equipment monitoring

    International Nuclear Information System (INIS)

    Aimar, A.; Carlier, E.; Mertens, V.

    1992-01-01

    The construction and application of a configurable open software system for process control and equipment monitoring can speed up and simplify the development and maintenance of equipment specific software as compared to individual solutions. The present paper reports the status of such an approach for the distributed control systems of SPS and LEP beam transfer components, based on X Windows and the OSF/Motif tool kit and applying data modeling and software engineering methods. (author)

  6. Vibration analysis and vibration damage assessment in nuclear and process equipment

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.; Yetisir, M.; Smith, B.A.W.

    1997-01-01

    Component failures due to excessive flow-induced vibration are still affecting the performance and reliability of process and nuclear components. The purpose of this paper is to discuss flow-induced vibration analysis and vibration damage prediction. Vibration excitation mechanisms are described with particular emphasis on fluid elastic instability. The dynamic characteristics of process and power equipment are explained. The statistical nature of some parameters, in particular support conditions, is discussed. The prediction of fretting-wear damage is approached from several points-of-view. An energy approach to formulate fretting-wear damage is proposed. (author)

  7. Validation of the production process of core-equipment HYNIC-Bombesin-Sn

    International Nuclear Information System (INIS)

    Rubio C, N. I.

    2008-01-01

    The validation process is establishing documented evidence that provides a high degree of assurance that a specific process consistently will produce a product that will meet specifications and quality attributes preset and, therefore, ensures the efficiency and effectiveness of a product. The radiopharmaceutical 99m Tc-HYNlC-Bombesin is part of the gastrin-releasing peptide (GRP) analogues of bombesin that are radiolabelled with technetium 99 metastable for molecular images obtention. Is obtained from freeze-dry formulations kits (core- equipment)) and has reported a very high stability in human serum, specific binding to receptors and rapid internalization. Biodistribution data in mice showed rapid blood clearance with predominant renal excretion and specific binding to tissues with positive response to GRP receptors. According to biokinetics studies performed on patients with breast cancer, breast show a marked asymmetry with increased uptake in neoplastic breast in healthy women and the uptake of radiopharmaceuticals is symmetrical in both breasts. No reported adverse reactions. In this paper, the prospective validation core-equipment HYNlC-Bombesin-Sn, which was shown consistently that the product meets the specifications and quality, attributes to preset from the obtained from the diagnostic radiopharmaceutical third generation: 99m Tc-HYNlC-Bombesin. The process was successfully validated and thereby ensuring the efficiency and effectiveness of this agent as a preliminary diagnostic for approval to be marketed. (Author)

  8. Evaluation of Surface Roughness by Image Processing of a Shot-Peened, TIG-Welded Aluminum 6061-T6 Alloy: An Experimental Case Study

    Directory of Open Access Journals (Sweden)

    Anas M. Atieh

    2018-05-01

    Full Text Available Visual inspection through image processing of welding and shot-peened surfaces is necessary to overcome equipment limitations, avoid measurement errors, and accelerate processing to gain certain surface properties such as surface roughness. Therefore, it is important to design an algorithm to quantify surface properties, which enables us to overcome the aforementioned limitations. In this study, a proposed systematic algorithm is utilized to generate and compare the surface roughness of Tungsten Inert Gas (TIG welded aluminum 6061-T6 alloy treated by two levels of shot-peening, high-intensity and low-intensity. This project is industrial in nature, and the proposed solution was originally requested by local industry to overcome equipment capabilities and limitations. In particular, surface roughness measurements are usually only possible on flat surfaces but not on other areas treated by shot-peening after welding, as in the heat-affected zone and weld beads. Therefore, those critical areas are outside of the measurement limitations. Using the proposed technique, the surface roughness measurements were possible to obtain for weld beads, high-intensity and low-intensity shot-peened surfaces. In addition, a 3D surface topography was generated and dimple size distributions were calculated for the three tested scenarios: control sample (TIG-welded only, high-intensity shot-peened, and low-intensity shot-peened TIG-welded Al6065-T6 samples. Finally, cross-sectional hardness profiles were measured for the three scenarios; in all scenarios, lower hardness measurements were obtained compared to the base metal alloy in the heat-affected zone and in the weld beads even after shot-peening treatments.

  9. Process and associated equipment for decontaminating, cleaning all surfaces which are covered with transferrable contamination of a nuclear nature, without creating other wastes

    International Nuclear Information System (INIS)

    Tiesse, J.-C.G.; Chauvet, S.; Chabert, R.E.; Dezu, M.D.

    1989-01-01

    The invention relates to a process for removing all transferrable contamination of a nuclear nature without creating new nuclear contamination wastes. This process is characterised by the following three stages: spraying and covering the contaminated surfaces with dry ice, without causing any blast; spraying a jet of steam or hot air on to the coated surfaces from very close range; forced ventilation causing total evaporation of the dry ice, bringing about the phenomenon of sublimation. The device for applying the process comprises a dry ice emitter and a spray nozzle for water vapour at a temperature in excess of 70 0 C. (author)

  10. MIC damage in a water coolant header for remote process equipment

    International Nuclear Information System (INIS)

    Jenkins, C.F.

    1994-01-01

    Stainless steel water piping used to supply coolant for remote chemical separations equipment developed leaks during low flow conditions resulting from an extended interruption of operations. All the leaks occurred at welds in the bottom zone of the pipe, which was blanketed with silt deposits from the unfiltered well water used for cooling. Ultrasonic, radiographic, and metallographic examinations of leak sites revealed worm hole pitting adjacent to the welds. Seepage at the penetrations was strongly acidic and resulted in corrosion on the external pipe surfaces beneath brown crusty deposits which had developed. Analyses of the water and deposits suggest a strong propensity toward microbiologically influenced corrosion (MIC) and fouling

  11. The Ural Electrochemical Integrated Plant Process for Managing Equipment Intended for Nuclear Material Protection, Control and Accounting System Upgrades

    International Nuclear Information System (INIS)

    Yuldashev, Rashid; Nosov, Andrei; Carroll, Michael F.; Garrett, Albert G.; Dabbs, Richard D.; Ku, Esther M.

    2008-01-01

    Since 1996, the Ural Electrochemical Integrated Plant (UEIP) located in the town of Novouralsk, Russia, (previously known as Sverdlovsk-44) and the United States Department of Energy (U.S. DOE) have been cooperating under the Nuclear Material Protection, Control and Accounting (MPC and A) Program. Because UEIP is involved in the processing of highly enriched uranium (HEU) into low enriched uranium (LEU), and there are highly enriched nuclear materials on its territory, the main goal of the MPC and A cooperation is to upgrade those systems that ensure secure storage, processing and transportation of nuclear materials at the plant. UEIP has completed key upgrades (equipment procurement and installation) aimed at improving MPC and A systems through significant investments made by both the U.S. DOE and UEIP. These joint cooperative efforts resulted in bringing MPC and A systems into compliance with current regulations, which led to nuclear material (NM) theft risk reduction and prevention from other unlawful actions with respect to them. Upon the U.S. MPC and A project team's suggestion, UEIP has developed an equipment inventory control process to track all the property provided through the MPC and A Program. The UEIP process and system for managing equipment provides many benefits including: greater ease and efficiency in determining the quantities, location, maintenance and repair schedule for equipment; greater assurance that MPC and A equipment is in continued satisfactory operation; and improved control in the development of a site sustainability program. While emphasizing UEIP's equipment inventory control processes, this paper will present process requirements and a methodology that may have practical and helpful applications at other sites.

  12. LESSONS LEARNED IN TESTING OF SAFEGUARDS EQUIPMENT

    International Nuclear Information System (INIS)

    Pepper, S.; Farnitano, M.; Carelli, J.; Hazeltine, J.; Bailey, D.

    2001-01-01

    The International Atomic Energy Agency's (IAEA) Department of Safeguards uses complex instrumentation for the application of safeguards at nuclear facilities around the world. Often, this equipment is developed through cooperation with member state support programs because the Agency's requirements are unique and are not met by commercially available equipment. Before approving an instrument or system for routine inspection use, the IAEA subjects it to a series of tests designed to evaluate its reliability. In 2000, the IAEA began to observe operational failures in digital surveillance systems. In response to the observed failures, the IAEA worked with the equipment designer and manufacturer to determine the cause of failure. An action plan was developed to correct the performance issues and further test the systems to make sure that additional operational issues would not surface later. This paper addresses the steps taken to address operation issues related to digital image surveillance systems and the lessons learned during this process

  13. Data Validation Package - April and July 2015 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [Dept. of Energy (DOE), Washington, DC (United States). Office of Legacy Management; Campbell, Sam [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-02-01

    This event included annual sampling of groundwater and surface water locations at the Gunnison, Colorado, Processing Site. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. Samples were collected from 28 monitoring wells, three domestic wells, and six surface locations in April at the processing site as specified in the 2010 Ground Water Compliance Action Plan for the Gunnison, Colorado, Processing Site. Domestic wells 0476 and 0477 were sampled in July because the homes were unoccupied in April, and the wells were not in use. Duplicate samples were collected from locations 0113, 0248, and 0477. One equipment blank was collected during this sampling event. Water levels were measured at all monitoring wells that were sampled. No issues were identified during the data validation process that requires additional action or follow-up.

  14. Energy to the Edge (E2E) Equipment Assessment U.S. Army Rapid Equipping Force

    Science.gov (United States)

    2015-05-01

    84 Contents Energy to the Edge • U.S. Army Rapid Equipping Force U.S. Army Rapid Equipping Force 1.0 Executive Summary Executive Summary U.S. Army... audiovisual equipment. • Once radiant barrier liner is inserted, the process of subsequent setups • Cables for lighting and outlets are located...behind the internal barrier • The shelter comes with organic audiovisual equipment. b. • • This shelter has a different setup and tear down process

  15. Plasma and process characterization of high power magnetron physical vapor deposition with integrated plasma equipment--feature profile model

    International Nuclear Information System (INIS)

    Zhang Da; Stout, Phillip J.; Ventzek, Peter L.G.

    2003-01-01

    High power magnetron physical vapor deposition (HPM-PVD) has recently emerged for metal deposition into deep submicron features in state of the art integrated circuit fabrication. However, the plasma characteristics and process mechanism are not well known. An integrated plasma equipment-feature profile modeling infrastructure has therefore been developed for HPM-PVD deposition, and it has been applied to simulating copper seed deposition with an Ar background gas for damascene metalization. The equipment scale model is based on the hybrid plasma equipment model [M. Grapperhaus et al., J. Appl. Phys. 83, 35 (1998); J. Lu and M. J. Kushner, ibid., 89, 878 (2001)], which couples a three-dimensional Monte Carlo sputtering module within a two-dimensional fluid model. The plasma kinetics of thermalized, athermal, and ionized metals and the contributions of these species in feature deposition are resolved. A Monte Carlo technique is used to derive the angular distribution of athermal metals. Simulations show that in typical HPM-PVD processing, Ar + is the dominant ionized species driving sputtering. Athermal metal neutrals are the dominant deposition precursors due to the operation at high target power and low pressure. The angular distribution of athermals is off axis and more focused than thermal neutrals. The athermal characteristics favor sufficient and uniform deposition on the sidewall of the feature, which is the critical area in small feature filling. In addition, athermals lead to a thick bottom coverage. An appreciable fraction (∼10%) of the metals incident to the wafer are ionized. The ionized metals also contribute to bottom deposition in the absence of sputtering. We have studied the impact of process and equipment parameters on HPM-PVD. Simulations show that target power impacts both plasma ionization and target sputtering. The Ar + ion density increases nearly linearly with target power, different from the behavior of typical ionized PVD processing. The

  16. Surface Energy and Setting Process of Contacting Surfaces

    Directory of Open Access Journals (Sweden)

    M. V. Musokhranov

    2014-01-01

    Full Text Available The paper deals with a challenge in terms of ensuring an accuracy of the relative position of the conjugated surfaces that is to determine a coefficient of friction. To solve it, there is a proposal to use the surface energy, as a tool that influences the contacting parts nature. Presently, energy of the surface layers at best is only stated, but not used in practice.Analysis of the conditions of interaction between two contacting surfaces, such as seizing and setting cannot be explained only from the position of the roughness parameters. It is found that these phenomena are explained by the appearing gripe (setting bridges, which result from the energy of interaction between two or more adjacent surfaces. The emerging phenomenon such as micro welding, i.e. occurring bonds, is caused by the overflow of energy, according to the theory of physics, from the surface with a high level of energy to the surface with the smaller one to balance the system as a whole.The paper shows that through the use of process, controlling the depth of the surface layer and creating a certain structure, the energy level of the material as a whole can be specified. And this will allow us to provide the necessary performance and mechanical properties. It means to create as many gripe bridges as possible to ensure continuous positioning i.e. a fixed connection of the contacting surfaces.It was determined that to increase a value of the friction coefficient, the physical and mechanical properties of the surface layer of the parts material must be taken into account, namely, in the part body accumulate the energy to be consumed for forming the surface.The paper gives recommendations for including the parts of the surface energy in the qualitative indicators of characteristics. This will make a technologist, when routing a process, to choose such operations and modes to provide the designer-specified parameters not only of the accuracy and surface finish, but also of the

  17. Classification of methods and equipment recovery secondary waters

    Directory of Open Access Journals (Sweden)

    G. V. Kalashnikov

    2017-01-01

    Full Text Available The issues of purification of secondary waters of industrial production have an important place and are relevant in the environmental activities of all food and chemical industries. For cleaning the transporter-washing water of beet-sugar production the key role is played by the equipment of treatment plants. A wide variety of wastewater treatment equipment is classified according to various methods. Typical structures used are sedimentation tanks, hydrocyclones, separators, centrifuges. In turn, they have a different degree of purification, productivity through the incoming suspension and purified secondary water. This is equipment is divided into designs, depending on the range of particles to be removed. A general classification of methods for cleaning the transporter-washing water, as well as the corresponding equipment, is made. Based on the analysis of processes and instrumentation, the main methods of wastewater treatment are identified: mechanical, physicochemical, combined, biological and disinfection. To increase the degree of purification and reduce technical and economic costs, a combined method is widely used. The main task of the site for cleaning the transporter-washing waters of sugar beet production is to provide the enterprise with water in the required quantity and quality, with economical use of water resources, taking into account the absence of pollution of surface and groundwater by industrial wastewater. In the sugar industry is currently new types of washing equipment of foreign production are widely used, which require high quality and a large amount of purified transporter-washing water for normal operation. The proposed classification makes it possible to carry out a comparative technical and economic analysis when choosing the methods and equipment for recuperation of secondary waters. The main equipment secondary water recovery used at the beet-sugar plant is considered. The most common beet processing plant is a

  18. Earth Surface Processes, Landforms and Sediment Deposits

    Science.gov (United States)

    Bridge, John; Demicco, Robert

    Earth surface processes, landforms and sediment deposits are intimately related - involving erosion of rocks, generation of sediment, and transport and deposition of sediment through various Earth surface environments. These processes, and the landforms and deposits that they generate, have a fundamental bearing on engineering, environmental and public safety issues; on recovery of economic resources; and on our understanding of Earth history. This unique textbook brings together the traditional disciplines of sedimentology and geomorphology to explain Earth surface processes, landforms and sediment deposits in a comprehensive and integrated way. It is the ideal resource for a two-semester course in sedimentology, stratigraphy, geomorphology, and Earth surface processes from the intermediate undergraduate to beginning graduate level. The book is also accompanied by a website hosting illustrations and material on field and laboratory methods for measuring, describing and analyzing Earth surface processes, landforms and sediments.

  19. Automated processing of forensic casework samples using robotic workstations equipped with nondisposable tips: contamination prevention.

    Science.gov (United States)

    Frégeau, Chantal J; Lett, C Marc; Elliott, Jim; Yensen, Craig; Fourney, Ron M

    2008-05-01

    An automated process has been developed for the analysis of forensic casework samples using TECAN Genesis RSP 150/8 or Freedom EVO liquid handling workstations equipped exclusively with nondisposable tips. Robot tip cleaning routines have been incorporated strategically within the DNA extraction process as well as at the end of each session. Alternative options were examined for cleaning the tips and different strategies were employed to verify cross-contamination. A 2% sodium hypochlorite wash (1/5th dilution of the 10.8% commercial bleach stock) proved to be the best overall approach for preventing cross-contamination of samples processed using our automated protocol. The bleach wash steps do not adversely impact the short tandem repeat (STR) profiles developed from DNA extracted robotically and allow for major cost savings through the implementation of fixed tips. We have demonstrated that robotic workstations equipped with fixed pipette tips can be used with confidence with properly designed tip washing routines to process casework samples using an adapted magnetic bead extraction protocol.

  20. Surface studies of plasma processed Nb samples

    International Nuclear Information System (INIS)

    Tyagi, Puneet V.; Doleans, Marc; Hannah, Brian S.; Afanador, Ralph; Stewart, Stephen; Mammosser, John; Howell, Matthew P; Saunders, Jeffrey W; Degraff, Brian D; Kim, Sang-Ho

    2015-01-01

    Contaminants present at top surface of superconducting radio frequency (SRF) cavities can act as field emitters and restrict the cavity accelerating gradient. A room temperature in-situ plasma processing technology for SRF cavities aiming to clean hydrocarbons from inner surface of cavities has been recently developed at the Spallation Neutron Source (SNS). Surface studies of the plasma-processed Nb samples by Secondary ion mass spectrometry (SIMS) and Scanning Kelvin Probe (SKP) showed that the NeO_2 plasma processing is very effective to remove carbonaceous contaminants from top surface and improves the surface work function by 0.5 to 1.0 eV.

  1. Development of manufacturing equipment and QC equipment for DUPIC fuel

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, J.J.; Lee, J.W.; Kim, S.S.; Yim, S.P.; Kim, J.H.; Kim, K.H.; Na, S.H.; Kim, W.K.; Shin, J.M.; Lee, D.Y.; Cho, K.H.; Lee, Y.S.; Sohn, J.S.; Kim, M.J.

    1999-05-01

    In this study, DUPIC powder and pellet fabrication equipment, welding system, QC equipment, and fission gas treatment are developed to fabricate DUPIC fuel at IMEF M6 hot cell. The systems are improved to be suitable for remote operation and maintenance with the manipulator at hot cell. Powder and pellet fabrication equipment have been recently developed. The systems are under performance test to check remote operation and maintenance. Welding chamber and jigs are designed and developed to remotely weld DUPIC fuel rod with manipulators at hot cell. Remote quality control equipment are being tested for analysis and inspection of DUPIC fuel characteristics at hot cell. And trapping characteristics is analyzed for cesium and ruthenium released under oxidation/reduction and sintering processes. The design criteria and process flow diagram of fission gas treatment system are prepared incorporating the experimental results. The fission gas treatment system has been successfully manufactured. (Author). 33 refs., 14 tabs., 91 figs

  2. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Husler, R.O.; Weir, T.J.

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I ampersand C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility

  3. Innovative ultrasonic technology to improve the life of NPP equipment at its manufacturing

    International Nuclear Information System (INIS)

    Trofimov, A.I.; Minin, S.I.; Trofimov, M.A.; Kirillov, Yu.A.

    2012-01-01

    The paper presents a theoretical and experimental justification for the effects of ultrasound on the welds during welding the equipment of nuclear power plants. Impact of ultrasound technology on the process of welding and surfacing is described as well [ru

  4. Graduate Management Project: The Capital Equipment Acquisition Process at The Johns Hopkins Hospital Evaluating Acquisition Strategies Through Financial Analysis

    National Research Council Canada - National Science Library

    McGowan, Colleen

    1999-01-01

    .... The purpose of this paper is to first develop an equipment evaluation process at The Johns Hopkins Hospital which considers both clinical and financial factors when allocating capital dollars to acquire equipment...

  5. Equipment for decontamination of inner vessel surfaces featuring sound or ultrasound transducer on float inside liquid-filled vessel

    International Nuclear Information System (INIS)

    Bar, J.; Straka, M.

    1982-01-01

    The equipment for the decontamination of the inner surfaces of vessels consists of an immersion float which is provided with a screw, an electric motor, a rudder and at least one float chamber, and a remotely controlled valve. The float is provided with a power source, a high frequency a.c. current generator and a control panel outside the vessel. The float is connected to parts of the equipment outside the vessel by a multi-core cable. The immersion float may also be provided with a detector for measuring the quantity of ionizing radiation whose display is placed outside the vessel being decontaminated. (B.S.)

  6. Superhydrophobic surfaces by electrochemical processes.

    Science.gov (United States)

    Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Amigoni, Sonia; Guittard, Frederic

    2013-03-13

    This review is an exhaustive representation of the electrochemical processes reported in the literature to produce superhydrophobic surfaces. Due to the intensive demand in the elaboration of superhydrophobic materials using low-cost, reproducible and fast methods, the use of strategies based on electrochemical processes have exponentially grown these last five years. These strategies are separated in two parts: the oxidation processes, such as oxidation of metals in solution, the anodization of metals or the electrodeposition of conducting polymers, and the reduction processed such as the electrodeposition of metals or the galvanic deposition. One of the main advantages of the electrochemical processes is the relative easiness to produce various surface morphologies and a precise control of the structures at a micro- or a nanoscale. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development of equipment reliability process using predictive technologies at Hamaoka Nuclear Power Station

    International Nuclear Information System (INIS)

    Taniguchi, Yuji; Sakuragi, Futoshi; Hamada, Seiichi

    2014-01-01

    Development of equipment reliability(ER) process, specifically for predictive maintenance (PdM) technologies integrated condition based maintenance (CBM) process, at Hamaoka Nuclear Power Station is introduced in this paper. Integration of predictive maintenance technologies such as vibration, oil analysis and thermo monitoring is more than important to establish strong maintenance strategies and to direct a specific technical development. In addition, a practical example of CBM is also presented to support the advantage of the idea. (author)

  8. Space Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.

    1998-01-01

    The performance evaluation of space heating equipment for a geothermal application is generally considered from either of two perspectives: (a) selecting equipment for installation in new construction, or (b) evaluating the performance and retrofit requirements of an existing system. With regard to new construction, the procedure is relatively straightforward. Once the heating requirements are determined, the process need only involve the selection of appropriately sized hot water heating equipment based on the available water temperature. It is important to remember that space heating equipment for geothermal applications is the same equipment used in non-geothermal applications. What makes geothermal applications unique is that the equipment is generally applied at temperatures and flow rates that depart significantly from traditional heating system design. This chapter presents general considerations for the performance of heating equipment at non-standard temperature and flow conditions, retrofit of existing systems, and aspects of domestic hot water heating.

  9. The influence of molecular layers of amines on the hydraulic resistance of piping systems and power plant equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhenkov, Viacheslav A.; Ryzhenkov, Artem V. [Moscow Power Engineering Institute / Technical Univ. (Russian Federation). Dept. of Industrial Heat and Power Systems; Petrova, Tamara I. [Moscow Power Engineering Institute / Technical Univ. (Russian Federation). Water and Fuel Technology Dept.

    2012-07-15

    The current state of pipeline systems and power equipment has a high accident rate due to intense corrosion, the accumulation of deposits on heat and in-line transfer surfaces, and high hydraulic resistance. Analysis and synthesis of published results shows that the solution to improving the efficiency of pipeline systems and power equipment can be approached from two directions: (i) the impact on the properties of transported media and (ii) changes in the properties of functional surfaces of pipelines and equipment. Improving the ''quality'' of the technological agents involves very substantial capital and operating costs, so the most promising way is to modify the surface properties. Studies conducted at the National Research University MPEI showed that these problems are solved more effectively by means of molecular layers of adsorbed amines on the functional surfaces of pipes and equipment. When present in a certain way with the optimal number of molecular amine layers, these significantly alter the surface properties of conventional structural materials, which leads to very substantial improvement in the hydrodynamic characteristics: reduction of the hydraulic resistance of pipelines and equipment (up to 40 %), almost complete stoppage of corrosion processes (up to 7 times), and a multiple (up to 10-fold) reduction in the rate of deposit accumulation. The method of adsorption of molecular amine layers and the equipment for its implementation developed on the basis of this research will not only reduce flow resistance, but will also significantly improve the operating efficiency of pipeline systems and power equipment generally. (orig.)

  10. Collective contract in thermal equipment mounting process at the Balakovo NPP

    International Nuclear Information System (INIS)

    Shpol, E.A.; Goryashchenko, Yu.N.

    1986-01-01

    Experience of collective contract introduction into thermal equipment mounting process at the Balakovo NPP is briefly described.4627 thousand roubles are utilized and 45.6% of annual volume of works are made using the collective contract method in 1984 during reactor room construction at the Balakovo-1 NPP. Cost of works are reduced by 137.8 thousand roubles. The conclusion is made that the formation of large teams ( 45-70 men ) promotes labour productivity increase as well as high quality of works

  11. The formalization of innovative processes of food technology equipment

    Directory of Open Access Journals (Sweden)

    V. A. Panfilov

    2016-01-01

    Full Text Available Improving the efficiency of scientific and engineering work to develop methods for converting agricultural raw materials into food is the most important condition of output processing and food sectors of agriculture in the sixth technological structure. The purpose of this article is to formalize the process of creating a progressive technique of food technologies. The process of self-organizing technological systems, presents a model of dual mechanism of control with regard to the processes of food technology. It is shown that in the process of adaptation development of the technological system as purposefully improving the structure and functioning of the system: increases the efficiency of interaction with the external environment. This smoothed out the contradictions of the technological system and its the main thing, the main technical contradiction: «productivity – quality». The steps to be taken to ensure that the technological system of conditions for intensive development. It is concluded that the potential development of some technological systems is hidden in the perspective of automation, and others – is associated with adaptive development processes, in particular machines, devices and bioreactors. The paper shows that innovative and truly breakthrough developments leading to the creation of fundamentally new equipment and new generations of technological systems, possible only with the establishment of patterns of organization, structure, functioning and development of open systems, which are modern technologies of agriculture. The mechanism of control of technological object acts as a core of adaptive development, which implements the anti-entropic entity management object, formalizing the innovation process of innovative food processing technologies.

  12. Underwater Nuclear Fuel Disassembly and Rod Storage Process and Equipment Description. Volume II

    International Nuclear Information System (INIS)

    Viebrock, J.M.

    1981-09-01

    The process, equipment, and the demonstration of the Underwater Nuclear Fuel Disassembly and Rod Storage System are presented. The process was shown to be a viable means of increasing spent fuel pool storage density by taking apart fuel assemblies and storing the fuel rods in a denser fashion than in the original storage racks. The assembly's nonfuel-bearing waste is compacted and containerized. The report documents design criteria and analysis, fabrication, demonstration program results, and proposed enhancements to the system

  13. CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE DECOMMISSIONG AND DECONTAMINATION OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT

    International Nuclear Information System (INIS)

    HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

    2007-01-01

    This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place

  14. Men’s artistic gymnastics: is the use of elastic surfaces systematic in the training process?

    Directory of Open Access Journals (Sweden)

    Marco Antonio Coelho BORTOLETO

    2016-03-01

    Full Text Available Abstract In Artistic Gymnastics, the area (the apparatus represents the most relevant systemic component. Thus, when one strives to comprehend the internal logic of this sport, the gymnast-apparatus relationship warrants special attention. A change in the training paradigm was observed, showing that the use of Elastic Surfaces (ES is an essential resource, due to the contemporary features of this sport, such as the hyper-valorisation of acrobatics and a greater presence of flight elements. Through a case study developed in a men’s artistic gymnastics high-performance gymnasium, this study analysed the use of different ES in the training process. Although coaches recognize the importance of ES in training programs, the record of daily activities showed that this use is still limited to select equipment and is not systematic. Such difficulties are due mainly to the lack of educational programs to the development of certain specific methodologies and the non-existence of national equipment suppliers certified by International Gymnastics Federation.

  15. Process and equipment for pressure build-up in nuclear reactor fuel rods

    International Nuclear Information System (INIS)

    Heer, W.F.; Carli, E.V. de.

    1976-01-01

    The equipment makes possible the build-up of inert gas pressure in a filled and closed fuel can, i.e. in a complete fuel rod. Handling is simple, it is suitable for mass production and only causes low processing costs. The quality, e.g. the degree of purity of the contents of the rod, remains unchangedin processing. The equipment consists of a vacuum-tight space, into which the equally vacuum tight fuel rod is introduced, and can be fixed so that its position can be reproduced unmistakeably. The vacuum space contains a connection for the inert gases and a laser arrangement. After inserting a fuel rod into the facility, this is evacuated and the fuel can has a hole bored in it by a laser beam. After fast equalisation of pressure, an inert gas at the required pressure is introduced into the chamber and the fuel rod. After the filling process is completed, the fuel can is closed again with the same laser beam. The quality of the seal obtained, i.e the leak-tightness of the fuel can, can be checked after reduction of the inert gas pressure and before taking out the fuel rod, by repeated evacuation of the chamber. Laser light energies between 13,000 and 110,000 Joule/sq cm are sufficient. Optimum results were obtained for a Zircaloy fuel can with about 52,000 Joule/sq cm. (TK) [de

  16. RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    International Nuclear Information System (INIS)

    Smith, M; Allan Barnes, A; Jim Coleman, J; Robert Hopkins, R; Dan Iverson, D; Richard Odriscoll, R; David Peeler, D

    2006-01-01

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF), the world's largest operating high level waste (HLW) vitrification plant, began stabilizing about 35 million gallons of SRS liquid radioactive waste by-product in 1996. The DWPF has since filled over 2000 canisters with about 4000 pounds of radioactive glass in each canister. In the past few years there have been several process and equipment improvements at the DWPF to increase the rate at which the waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process and therefore minimized process upsets and thus downtime. These improvements, which include glass former optimization, increased waste loading of the glass, the melter glass pump, the melter heated bellows liner, and glass surge protection software, will be discussed in this paper

  17. Practices and conditions which promote persistence of Listeria monocytogenes on equipment surfaces and transfer to cantaloupes in the packing environment

    Science.gov (United States)

    Introduction: Investigation of the 2011 U.S. listeriosis outbreak associated withcontaminated cantaloupes revealed that transfer of L. monocytogenes(Lm) from equipment surfaces to melons in the packing facility was a potential route of contamination. Purpose:This study examined the persistence of Lm...

  18. THE SITE DEMONSTRATION OF CHEMFIX SOLIDIFICATION/ STABILIZATION PROCESS AT THE PORTABLE EQUIPMENT SALVAGE COMPANY SITE

    Science.gov (United States)

    A demonstration of the GHEMFIX solidification/stabilization process was conducted under the United States Environmental Protection Agency`s (EPA) Superfund Innovative Technology Evaluation (SITE) program. The demonstration was conducted in March 1989, at the Portable Equipment Sa...

  19. Future trends in metal forming—equipment, materials and processes in automotive applications

    Science.gov (United States)

    Hitz, D.; Duggirala, R.

    1995-10-01

    Global competition in the automotive market has made a significant impact in the materials, processes, tools, and equipment used to make components. Steels are being replaced by other materials, such as aluminum, composites, and plastics, that meet the demand for a higher performance per weight ratio. From a processing viewpoint, the customers demand production of parts to near-net shape with little or no machining. Competition in business depends on understanding the needs of the customer in the coming years in the area of metal forming. A workshop was conducted using a novel approach to address the above issue. This presentation describes the approach and the results of the study.

  20. Quantitative Modeling of Earth Surface Processes

    Science.gov (United States)

    Pelletier, Jon D.

    This textbook describes some of the most effective and straightforward quantitative techniques for modeling Earth surface processes. By emphasizing a core set of equations and solution techniques, the book presents state-of-the-art models currently employed in Earth surface process research, as well as a set of simple but practical research tools. Detailed case studies demonstrate application of the methods to a wide variety of processes including hillslope, fluvial, aeolian, glacial, tectonic, and climatic systems. Exercises at the end of each chapter begin with simple calculations and then progress to more sophisticated problems that require computer programming. All the necessary computer codes are available online at www.cambridge.org/9780521855976. Assuming some knowledge of calculus and basic programming experience, this quantitative textbook is designed for advanced geomorphology courses and as a reference book for professional researchers in Earth and planetary science looking for a quantitative approach to Earth surface processes. More details...

  1. 30 CFR 57.9330 - Clearance for surface equipment.

    Science.gov (United States)

    2010-07-01

    ... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and... the farthest projection of moving railroad equipment shall be provided on at least one side of the...

  2. 30 CFR 57.4230 - Surface self-propelled equipment.

    Science.gov (United States)

    2010-07-01

    ... Section 57.4230 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire... fire or its effects could impede escape from self-propelled equipment, a fire extinguisher shall be on...

  3. Equipment-related incidents in the operating room: an analysis of occurrence, underlying causes and consequences for the clinical process

    NARCIS (Netherlands)

    Wubben, I.; van Manen, Jeanette Gabrielle; van den Akker, B.J.; Vaartjes, S.R.; van Harten, Willem H.

    2010-01-01

    Background: Equipment-related incidents in the operating room (OR) can affect quality of care. In this study, the authors determined the occurrence and effects on the care process in a large teaching hospital. - Methods: During a 4-week period, OR nurses reported equipment-related incidents during

  4. The pharmaceutical vial capping process: Container closure systems, capping equipment, regulatory framework, and seal quality tests.

    Science.gov (United States)

    Mathaes, Roman; Mahler, Hanns-Christian; Buettiker, Jean-Pierre; Roehl, Holger; Lam, Philippe; Brown, Helen; Luemkemann, Joerg; Adler, Michael; Huwyler, Joerg; Streubel, Alexander; Mohl, Silke

    2016-02-01

    Parenteral drug products are protected by appropriate primary packaging to protect against environmental factors, including potential microbial contamination during shelf life duration. The most commonly used CCS configuration for parenteral drug products is the glass vial, sealed with a rubber stopper and an aluminum crimp cap. In combination with an adequately designed and controlled aseptic fill/finish processes, a well-designed and characterized capping process is indispensable to ensure product quality and integrity and to minimize rejections during the manufacturing process. In this review, the health authority requirements and expectations related to container closure system quality and container closure integrity are summarized. The pharmaceutical vial, the rubber stopper, and the crimp cap are described. Different capping techniques are critically compared: The most common capping equipment with a rotating capping plate produces the lowest amount of particle. The strength and challenges of methods to control the capping process are discussed. The residual seal force method can characterize the capping process independent of the used capping equipment or CCS. We analyze the root causes of several cosmetic defects associated with the vial capping process. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Processing equipment for grinding of building powders

    Science.gov (United States)

    Fediuk, R. S.; Ibragimov, R. A.; Lesovik, V. S.; Pak, A. A.; Krylov, V. V.; Poleschuk, M. M.; Stoyushko, N. Y.; Gladkova, N. A.

    2018-03-01

    In the article questions of mechanical grinding up to nanosize of building powder materials are considered. In the process of mechanoactivation of the composite binder, active molecules of cement minerals arise when molecular packets are destroyed in the areas of defects and loosening of the metastable phase during decompensation of intermolecular forces. The process is accompanied by a change in the kinetics of hardening Portland cement. Mechanical processes in the grinding of mineral materials cause, together with an increase in their surface energy, the growth of the isobaric potential of the powders and, accordingly, their chemical activity, which also contributes to high adhesion strength when they come into contact with binders. Thus, a set of measures for mechanical activation allows more fully use the mass of components of the filled cement systems and regulate their properties. At relatively low costs, it is possible to provide an impressive and, importantly, easily repeatable in production conditions result. It is revealed that the use of a vario-planetary mill allows to achieve the best results on grinding the powder building materials.

  6. Development of filtration equipment to reuse PFC decontamination wastewater

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Lee, Sung Yeol; Won, Hui Jun; Jung Chong Hun; Oh, Won Zin; Park, Jin Ho

    2005-01-01

    When PFC(Perfluorocarbonate) decontamination technology is applied to removal of radioactive contaminated particulate adhered at surface during the operation of nuclear research facilities, it is necessary to develop a filtration equipment to reuse of PFC solution due to high price, also to minimize the volume of second wastewater. Contaminated characteristics of hot particulate was investigated and a filtration process was presented to remove suspended radioactive particulate from PFC decontamination wastewater generated on PFC decontamination

  7. Surface behaviour of S. Thyphimurium, S. Derby, S. Brandenburg and S. Infantis

    NARCIS (Netherlands)

    Castelijn, G.A.A.; Parabirsing, J.A.; Zwietering, M.H.; Moezelaar, R.; Abee, T.

    2013-01-01

    Cross-contamination due to Salmonella on the surface of processing equipment greatly contributes to contamination of pork products. Therefore, a clear understanding of surface and survival behaviour of relevant Salmonella serovars in pork processing environments is needed to develop better

  8. High level radioactive waste vitrification process equipment component testing

    International Nuclear Information System (INIS)

    Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system

  9. Suitability of electrolyzed oxidizing water for the disinfection of hard surfaces and equipment in radiology.

    Science.gov (United States)

    Pintaric, Robert; Matela, Joze; Pintaric, Stefan

    2015-01-01

    Hospitals are faced with increasingly resistant strains of micro-organisms. When it comes to disinfection, individual parts of electronic equipment of angiology diagnostics such as patient couches of computer tomography (CT) and magnetic resonance imaging (MRI) scanners prove to be very hard to disinfect. Disinfectants of choice are therefore expected to possess properties such as rapid, residue-free action without any damaging effect on the sensitive electronic equipment. This paper discusses the use of the neutral electrolyzed oxidizing water (EOW) as a biocide for the disinfection of diagnostic rooms and equipment. The CT and MRI rooms were aerosolized with EOW using aerosolization device. The presence of micro-organisms before and after the aerosolization was recorded with the help of sedimentation and cyclone air sampling. Total body count (TBC) was evaluated in absolute and log values. The number of micro-organisms in hospital rooms was low as expected. Nevertheless, a possible TBC reduction between 78.99-92.50% or 50.50-70.60% in log values was recorded. The research has shown that the use of EOW for the air and hard surface disinfection can considerably reduce the presence of micro-organisms and consequently the possibility of hospital infections. It has also demonstrated that the sedimentation procedure is insufficient for the TBC determination. The use of Biocide aerosolization proved to be efficient and safe in all applied ways. Also, no eventual damage to exposed devices or staff was recorded.

  10. Concept of diagnostic monitoring of condition of selected equipment for V-1 nuclear power plant

    International Nuclear Information System (INIS)

    Jaros, I.

    1981-01-01

    The vibroacoustic method based on picking up and processing vibrations, shocks and structural noise from the outer surface of equipment was chosen for testing the mechanical conditions of the reactor and of the main circulating pumps. The location of vibration pickups on the primary circuit components, their specifications, signal processing and evaluation are described. (M.D.)

  11. Plasma Decontamination of Space Equipment for Planetary Protection

    Science.gov (United States)

    Thomas, Hubertus; Barczyk, Simon; Rettberg, Petra; Shimizu, Satoshi; Shimizu, Tetsuji; Klaempfl, Tobias; Morfill, Gregor; Zimmermann, Julia; Weber, Peter

    The search for extraterrestrial life is one of the most challenging science topics for the next decades. Space missions, like ExoMars, plan to land and search for biological remnants on planets and moons in our nearby Solar system. Planetary protection regulations defined by COSPAR prevent that during the mission biological contamination of the bodies occur through the space probes. Therefore decontamination of the probes and more general space equipment is necessary before the launch. The up-to-date accepted decontamination procedure originate from the old NASA Viking missions and use dry heat (T>110°C for 30h) - a technology not well suited for sensitive equipment nowadays. We investigated in a study financed by the German Space Agency* cold atmospheric plasma (CAP) as an alternative for such decontamination. It is well known that CAP can kill bacteria or spores within seconds or minutes, respectively, if the plasma is in direct contact with the treated sample. This procedure might also be quite aggressive to the treated surface materials. Therefore, we developed an afterglow CAP device specially designed for the soft treatment of space equipment. Afterglow plasma produced by a SMD device in air is transported into a “larger” treatment chamber where the samples are positioned. It could be shown that samples of different bacteria and spores, the latter defined by COSPAR as a means to show the effectiveness of the decontamination process, positioned on different materials (steel, Teflon, quartz) could be effectively inactivated. The surface materials were investigated after the plasma treatment to identify etching or deposition problems. The afterglow in the treatment chamber could even overcome obstacles (tubes of different height and diameter) which simulate more complicated structures of the relevant surfaces. Up to now, CAP looks like a quite promising alternative to decontaminate space equipment and need to be studied in greater detail in the near future

  12. Radon transport processes below the earth's surface

    International Nuclear Information System (INIS)

    Wilkening, M.

    1980-01-01

    Processes by which 222 Rn is transported from the soil to the earth's surface are reviewed. The mechanisms effective in transporting 222 Rn to the surface are related to the size and configuration of the spaces occupied by the soil gas which may vary from molecular interstices to large underground caverns. The near-surface transport processes are divided into two categories: (1) a microscopic process that includes molecular diffusion and viscous flow in fine capillaries and (2) macroscopic flow in fissures and channels. Underground air rich in 222 Rn can also reach the surface through cracks, fissures, and underground channels. This type of transport is shown for (1) a horizontal tunnel penetrating a fractured hillside, (2) a large underground cave, and (3) volcanic activity. Pressure differentials having various natural origins and thermal gradients are responsible for the transport in these examples. 222 Rn transport by ordinary molecular diffusion appears to be the dominant process

  13. 30 CFR 56.4230 - Self-propelled equipment.

    Science.gov (United States)

    2010-07-01

    ....4230 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Equipment § 56.4230 Self-propelled equipment. (a)(1) Whenever a fire or its effects...

  14. Surface-Assisted Dynamic Search Processes.

    Science.gov (United States)

    Shin, Jaeoh; Kolomeisky, Anatoly B

    2018-03-01

    Many chemical and biological systems exhibit intermittent search phenomena when participating particles alternate between dynamic regimes with different dimensionalities. Here we investigate theoretically a dynamic search process of finding a small target on a two-dimensional surface starting from a bulk solution, which is an example of such an intermittent search process. Both continuum and discrete-state stochastic descriptions are developed. It is found that depending on the scanning length λ, which describes the area visited by the reacting molecule during one search cycle, the system can exhibit three different search regimes: (i) For small λ values, the reactant finds the target mostly via three-dimensional bulk diffusion; (ii) for large λ values, the reactant molecule associates to the target mostly via surface diffusion; and (iii) for intermediate λ values, the reactant reaches the target via a combination of three-dimensional and two-dimensional search cycles. Our analysis also shows that the mean search times have different scalings as a function of the size of the surface segment depending on the nature of the dynamic search regime. Search dynamics are also sensitive to the position of the target for large scanning lengths. In addition, it is argued that the continuum description underestimates mean search times and does not always correctly describe the most optimal conditions for the surface-assisted dynamic processes. The importance of our findings for real natural systems is discussed.

  15. Plasma surface interaction processes and possible synergisms

    International Nuclear Information System (INIS)

    Behrisch, R.; Roberto, J.B.

    1984-08-01

    The process determining the plasma surface interaction in today's high temperature plasma experiments are investigated following several lines. First, in plasma devices, the particle and energy fluxes to the different first wall areas the fluxes from the walls back into the plasma are measured and the boundary plasma parameters are determined. The surface composition and structure of the walls, limiters and divertor plates are analyzed following exposure to many discharges. Secondly, the different surface processes which are expected to contribute to the plasma surface interaction (particularly to hydrogen particle balance and impurity introduction) are studied in simulation experiments using well defined particle beams

  16. Nuclear power equipment procurement management under EPC mode

    International Nuclear Information System (INIS)

    Shuai Yuezhi

    2014-01-01

    Nuclear power equipment procurement is one of the major constraints and management difficulties in the process of domestic nuclear power project construction for a long time. The construction of Hainan Changjiang Project can not meet the milestones due to the major equipment supply delay. Through the introduction to the organization and features of Changjiang project equipment procurement under EPC mode, and the main problems in the procurement process and its reason analysis, the purpose of this paper is to put forward ideas and suggestions of these items, i.e. selection of equipment suppliers, equipment localization, mass material design and procurement, complete system equipment supply, spare parts delivery and storage, owner process management, providing reference for follow-up projects. (author)

  17. The development of the American national standard, ''control of radioactive surface contamination on materials, equipment and facilities to be released for uncontrolled use''

    International Nuclear Information System (INIS)

    Shapiro, J.

    1980-01-01

    The American National Standard, Control of Radioactive Surface Contamination on Materials, Equipment and Facilities to be Released for Uncontrolled Use, was developed under the procedures of ANSI for ANSI Main Committee N13 (Radiation Protection) by a working group of the Health Physics Society Standards Committee. This standard provides criteria for the control of materials, equipment and facilities contaminated with radioactivity proposed to be released for uncontrolled use. Permissible contamination limits are specified as well as methods assessing the levels of contamination. This paper reviews the proceedings of the Subcommittee on Radioactive Surface Contamination, the comments received by reviewers of the standard, the resolution of the committee, and the bases for reaching the final limits, recommendations, and measurement procedures. (H.K.)

  18. Process and equipment for locating defective fuel rods of a reactor fuel element

    International Nuclear Information System (INIS)

    Jester, A.; Honig, H.

    1977-01-01

    By this equipment, well-known processes for determining defective fuel rods of a reactor fuel element are improved in such a fashion that defective fuel rods can be located individually, so that it is possible to replace them. The equipment consists of a cylindrical test vessel open above, which accommodates the element to be tested, so that an annular space is left between the latter's external circumference and the wall of the vessel, and so that the fuel rods project above the vessel. A bell in the shape of a frustrum of a cone is inverted over the test vessel, which has an infra-red measuring equipment at a certain distance above the tops of the fuel rods. The fuel element to be tested together with the test vessel and hood are immersed in a basin full of water, which displaces water by means of gas from the hood. The post-shutdown heat increases the temperature in the water space of the test vessel, which is stabilised at 100 0 C. In each defective fuel rod the water which has penetrated the defective fuel rod previously, or does so now, starts to boil. The steam rising in the fuel rod raises the temperature of the defective fuel rod compared to all the sound ones. The subsequent measurement easily determines this. Where one can expect interference with the measurement by appreciable amounts of gamma rays, the measuring equipment is removed from the path of radiation by mirror deflection in a suitably shaped measuring hood. (FW) [de

  19. Uniform superhydrophobic surfaces using micro/nano complex structures formed spontaneously by a simple and cost-effective nonlithographic process based on anodic aluminum oxide technology

    International Nuclear Information System (INIS)

    Kim, Dae-Ho; Cho, Chae-Ryong; Kim, Jong-Man; Kim, Yongsung; Kim, Byung Min; Ko, Jong Soo

    2011-01-01

    This paper presents a uniform micro/nano double-roughened superhydrophobic surface with a high static contact angle (CA) and low contact angle hysteresis (CAH). The proposed micro/nano complex structured surfaces were self-fabricated simply and efficiently using a very simple and low-cost nonlithographic sequential process, which consists of aluminum (Al) sputtering, anodization of the Al layer and pore widening, without specific equipment and additional subsequent processes. The wetting properties of the fabricated surfaces were characterized by measuring the static CAs and the CAHs after plasma polymerized fluorocarbon coating with a low surface energy. The measured static CA and CAH were 154 ± 2.3° and 5.7 ± 0.8°, respectively, showing that the fabricated double-roughened surfaces exhibit superhydrophobic behaviors clearly. In addition, the proposed double-scaled surfaces at a wafer-level exhibited uniform superhydrophobic behaviors across the wafer with an apparent CA and CAH of 153.9 ± 0.8° and 4.9 ± 1.3°, respectively.

  20. 40 CFR 761.378 - Decontamination, reuse, and disposal of solvents, cleaners, and equipment.

    Science.gov (United States)

    2010-07-01

    ... of solvents, cleaners, and equipment. 761.378 Section 761.378 Protection of Environment ENVIRONMENTAL...-Porous Surfaces § 761.378 Decontamination, reuse, and disposal of solvents, cleaners, and equipment. (a) Decontamination. Decontaminate solvents and non-porous surfaces on equipment in accordance with the standards and...

  1. Cold Atmospheric Plasma Technology for Decontamination of Space Equipment

    Science.gov (United States)

    Thomas, Hubertus; Rettberg, Petra; Shimizu, Tetsuji; Thoma, Markus; Morfill, Gregor; Zimmermann, Julia; Müller, Meike; Semenov, Igor

    2016-07-01

    Cold atmospheric plasma (CAP) technology is very fast and effective in inactivation of all kinds of pathogens. It is used in hygiene and especially in medicine, since the plasma treatment can be applied to sensitive surfaces, like skin, too. In a first study to use CAP for the decontamination of space equipment we could show its potential as a quite promising alternative to the standard "dry heat" and H2O2 methods [Shimizu et al. Planetary and Space Science, 90, 60-71. (2014)]. In a follow-on study we continue the investigations to reach high application level of the technology. First, we redesign the actual setup to a plasma-gas circulation system, increasing the effectivity of inactivation and the sustainability. Additionally, we want to learn more about the plasma chemistry processes involved in the inactivation. Therefore, we perform detailed plasma and gas measurements and compare them to numerical simulations. The latter will finally be used to scale the decontamination system to sizes useful also for larger space equipment. Typical materials relevant for space equipment will be tested and investigated on surface material changes due to the plasma treatment. Additionally, it is planned to use electronic boards and compare their functionality before and after the CAP expose. We will give an overview on the status of the plasma decontamination project funded by the Bavarian Ministry of Economics.

  2. PROBLEMS OF MANAGEMENT PROCESSES OF MODERNIZATION OF DOMESTIC FARM EQUIPMENT IN A VIEW OF AVAILABLE FINANCIAL SOURCES

    Directory of Open Access Journals (Sweden)

    Waldemar BOJAR

    2010-10-01

    Full Text Available In the paper analysis of technical equipment modernization process of selected farms in Kujawy Pomorze Province was made with questionnaire method. Not sufficient investment funds cause that farmers first of all buy worn equipment because of lower prices. They pay for cheaper machinery mostly with own funds while combines and tractors disburse partly from bank credits and/or loans and also the EU support. Introduction VAT from second hand machinery purchase after the accession markedly stops dynamism of equipment buying. In opinion o farmers advantage from second hand equipment getting are lower exploitation costs and also technological progress agreed with trends for simplification, specialization and concentration of farming. This is appeared in purchasing tractors of higher power and universal machinery of higher capacity and quality. Farmers decisions are rational because they consider both economical situation of their farms and increasing requirements of receivers of food raw materials.

  3. Mechanisms and energetics of surface atomic processes

    International Nuclear Information System (INIS)

    Tsong, T.T.

    1991-01-01

    The energies involved in various surface atomic processes such as surface diffusion, the binding of small atomic clusters on the surface, the interaction between two adsorbed atoms, the dissociation of an atom from a small cluster or from a surface layer, the binding of kink size atoms or atoms at different adsorption sites to the surface etc., can be derived from an analysis of atomically resolved field ion microscope images and a kinetic energy measurement of low temperature field desorbed ions using the time-of-flight atom-probe field ion microscope. These energies can be used to compare with theories and to understand the transport of atoms on the surface in atomic reconstructions, epitaxial growth of surface layers and crystal growth, adsorption layer superstructure formation, and also why an atomic ordering or atomic reconstruction at the surface is energetically favored. Mechanisms of some of the surface atomic processes are also clarified from these quantitative, atomic resolution studies. In this paper work in this area is bris briefly reviewed

  4. Techniques for removing contaminated concrete surfaces

    International Nuclear Information System (INIS)

    Halter, J.M.; Sullivan, R.G.

    1981-01-01

    This discussion compares various techniques that have been used to clean concrete surfaces by removing the surface. Three techniques which have been investigated by the Pacific Northwest Laboratory for removing surfaces are also described: the water cannon, the concrete spaller, and high-pressure water jet. The equipment was developed with the assumption that removal of the top 1/8 to 1/4 in. of surface would remove most of the contamination. If the contamination has gone into cracks or deep voids in the surface, the removal processes can be repeated until the surface is acceptable

  5. Diffusion processes in bombardment-induced surface topography

    International Nuclear Information System (INIS)

    Robinson, R.S.

    1984-01-01

    A treatment is given of the problem of surface diffusion processes occurring during surface topography development, whenever a surface is simultaneously seeded with impurities and ion bombarded. The development of controllable topography and the importance of surface diffusion parameters, which can be obtained during these studies, are also analyzed. 101 refs.; 7 figs.; 2 tabs

  6. Equipment and obtention process of 131I by dry distillation starting from TeO2

    International Nuclear Information System (INIS)

    Alanis M, J.

    2000-08-01

    The present invention refers to an equipment and process for the obtaining of 131 I by dry distillation starting from TeO 2 that has three interconnected systems, the manipulation system, the electric system and the distillation system, the combination of these systems, allows to improve the yield and the separation of the 131 I during the distillation process, since inside the electric system it is an oven that has a special design based on a temperature gradient. The more relevant aspects of the equipment its are the design of each one of its components that give as result the effectiveness of the production of 131 I in routinary form (industrial) whose final product can end up reaching a radiochemical purity up to 99% and a radionuclide purity of approximately 100%. The object of this invention is to provide a distillation equipment different to those that at the moment exist, thanks to its novel internal construction whose main characteristics already gather advantages on those existent. The reaction of obtaining of the TeO 2 , the development of the technique and studies of TeO 2 sintering and the irradiation experiments, its contributed to characterize with more precision the 'new process of obtaining of 131 I by dry via starting from the Te' developed in the ININ, and in this way it was achieved a more pure product, more economic, with less risks, from a point of view of Radiological Safety and mainly that it avoids the import to the country and it makes to self-sufficient Mexico in the production of 131 I. (Author)

  7. Controlled air incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    International Nuclear Information System (INIS)

    Neuls, A.S.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.; Warner, C.L.

    1982-11-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawings specifications, calculations, and costs. It aids duplication of the process at other facilities

  8. Improving the efficiency of thermal power equipment based on technologies using surfactants

    Science.gov (United States)

    Nikolaeva, L. A.; Zueva, O. S.

    2015-10-01

    The formation of deposits on the functional surfaces of the equipment of heating systems and their corrosion are one of the major energetic problems. To improve the operational efficiency of thermal power equipment, surface-active agents (surfactants) are widely used, which are applied for the treatment of the working surfaces before use, during use, to prevent the parking corrosion, as well as while performing periodic chemical cleanings of power equipment. The tests have been performed, and the technology of application of Auge Neo Ac 56 acid product (MAHIM, Kazan) has been developed, designed to remove mineral deposits and scale from cooling and boiler systems without mechanical influence on them and without disassembly of technological equipment.

  9. Technology and equipment for processing diamond materials of modern electronics

    Directory of Open Access Journals (Sweden)

    Mityagin A. Yu.

    2009-02-01

    Full Text Available The methods of selection and sorting of diamonds according to their physical properties by modern physical methods of the analysis are developed, as well as the technologies of precision laser cutting of diamonds, their processing on a basis of thermochemical reactions in gas environment. The experimental installation for polishing and grinding of diamond plates, installation for slicing, installation for plasma-chemical processing are created. The techniques of surface roughness measurement of the processed plates and control of roughness parameters are developed. Some experimental results are given.

  10. Multi-surface topography targeted plateau honing for the processing of cylinder liner surfaces of automotive engines

    Science.gov (United States)

    Lawrence, K. Deepak; Ramamoorthy, B.

    2016-03-01

    Cylinder bores of automotive engines are 'engineered' surfaces that are processed using multi-stage honing process to generate multiple layers of micro geometry for meeting the different functional requirements of the piston assembly system. The final processed surfaces should comply with several surface topographic specifications that are relevant for the good tribological performance of the engine. Selection of the process parameters in three stages of honing to obtain multiple surface topographic characteristics simultaneously within the specification tolerance is an important module of the process planning and is often posed as a challenging task for the process engineers. This paper presents a strategy by combining the robust process design and gray-relational analysis to evolve the operating levels of honing process parameters in rough, finish and plateau honing stages targeting to meet multiple surface topographic specifications on the final running surface of the cylinder bores. Honing experiments were conducted in three stages namely rough, finish and plateau honing on cast iron cylinder liners by varying four honing process parameters such as rotational speed, oscillatory speed, pressure and honing time. Abbott-Firestone curve based functional parameters (Rk, Rpk, Rvk, Mr1 and Mr2) coupled with mean roughness depth (Rz, DIN/ISO) and honing angle were measured and identified as the surface quality performance targets to be achieved. The experimental results have shown that the proposed approach is effective to generate cylinder liner surface that would simultaneously meet the explicit surface topographic specifications currently practiced by the industry.

  11. Californium-252 Program Equipment Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Chattin, Fred Rhea [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Kenton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ezold, Julie G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-12-01

    To successfully continue the 252Cf production and meet the needs of the customers, a comprehensive evaluation of the Building 7920 processing equipment was requested to identify equipment critical to the operational continuity of the program.

  12. Data Validation Package June 2016 Groundwater and Surface Water Sampling at the Old and New Rifle, Colorado, Processing Sites September 2016

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Richard [USDOE Office of Legacy Management (LM), Washington, DC (United States); Lemke, Peter [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-10-17

    Sampling Period: June 14–17 and July 7, 2016. Water samples were collected from 36 locations at New Rifle and Old Rifle, Colorado, Disposal/Processing Sites. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Duplicate samples were collected from New Rifle locations 0216 and 0855, and Old Rifle location 0655. One equipment blank was collected after decontamination of non-dedicated equipment used to collect one surface water sample. See Attachment 2, Trip Report for additional details. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and- analysis-plan-us-department-energy-office-legacy-management-sites). New Rifle Site Samples were collected at the New Rifle site from 16 monitoring wells and 7 surface locations in compliance with the December 2008 Groundwater Compliance Action Plan [GCAP] for the New Rifle, Colorado, Processing Site (LMS/RFN/S01920). Monitoring well 0216 could not be sampled in June because it was surrounded by standing water due to the high river stage from spring runoff, it was later sampled in July. Monitoring well 0635 and surface location 0322 could not be sampled because access through the elk fence along Interstate 70 has not been completed at this time. Old Rifle Site Samples were collected at the Old Rifle site from eight monitoring wells and five surface locations in compliance with the December 2001 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site (GJ0-2000-177-TAR).

  13. A complex method of equipment replacement planning. An advanced plan for the replacement of medical equipment.

    Science.gov (United States)

    Dondelinger, Robert M

    2004-01-01

    This complex method of equipment replacement planning is a methodology; it is a means to an end, a process that focuses on equipment most in need of replacement, rather than the end itself. It uses data available from the maintenance management database, and attempts to quantify those subjective items important [figure: see text] in making equipment replacement decisions. Like the simple method of the last issue, it is a starting point--albeit an advanced starting point--which the user can modify to fit their particular organization, but the complex method leaves room for expansion. It is based on sound logic, documented facts, and is fully defensible during the decision-making process and will serve your organization well as provide a structure for your equipment replacement planning decisions.

  14. HIGH VELOCITY THERMAL GUN FOR SURFACE PREPARATION AND TREATMENT

    Directory of Open Access Journals (Sweden)

    I.A. Gorlach

    2012-01-01

    Full Text Available Many surface preparation and treatment processes utilise compressed air to propel particles against surfaces in order to clean and treat them. The effectiveness of the processes depends on the velocity of the particles, which in turn depends on the pressure of the compressed air. This paper describes a thermal gun built on the principles of High Velocity Air Fuel (HVAF and High Velocity Oxy Fuel (HVOF processes. The designed apparatus can be used for abrasive blasting, coating of surfaces, cutting of rocks, removing rubber from mining equipment, cleaning of contaminations etc.

  15. Optimal Medical Equipment Maintenance Service Proposal Decision Support System combining Activity Based Costing (ABC) and the Analytic Hierarchy Process (AHP).

    Science.gov (United States)

    da Rocha, Leticia; Sloane, Elliot; M Bassani, Jose

    2005-01-01

    This study describes a framework to support the choice of the maintenance service (in-house or third party contract) for each category of medical equipment based on: a) the real medical equipment maintenance management system currently used by the biomedical engineering group of the public health system of the Universidade Estadual de Campinas located in Brazil to control the medical equipment maintenance service, b) the Activity Based Costing (ABC) method, and c) the Analytic Hierarchy Process (AHP) method. Results show the cost and performance related to each type of maintenance service. Decision-makers can use these results to evaluate possible strategies for the categories of equipment.

  16. Underground coal mining - methods, equipment developments and trends

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, R

    1988-12-01

    Underground mines are truly beginning to accept the so-called 'high tech' technology evident in other industries. Automation, remote control and robotics have taken an added significance. Wireless communication, mine-wide equipment health and performance monitoring, and transmission of data from deeper levels to surface is moving towards becoming the norm. There is emphasis on developing and applying continuous mining systems, as well as on modifying cyclical discontinuous methods to continuous systems. Multi-purpose equipment is also being developed. Technology transfer is playing its role - equipment and systems from surface coal mining are being applied to underground mining and vice-versa. At the American Mining Congress Exhibition held in Chicago in April 1988, a variety of equipment for underground mining was displayed including coal face equipment such as shearer loaders, conveyors and powered supports, and equipment for room-and-pillar coal mining. The trend continues to be towards high power machines equipped with a variety of electronics and sensors, safety devices, and alarm systems. Ancillary equipment on display covered a variety of cutting drums, cutting tools, conveying equipment and so on. In room-and-pillar mining, the overall emphasis was on moving away from the cyclical nature of the work. Transportation by shuttle cars must be replaced by continuous transport systems such as conveyors. Experience from Australia has shown that the application of continuous haulage and breaker line supports has permitted a doubling of production from room-and-pillar systems. Production levels of 3,000tpd have already been achieved, and 4,000tpd is considered achievable.

  17. Procurement strategic analysis of nuclear safety equipment

    International Nuclear Information System (INIS)

    Wu Caixia; Yang Haifeng; Li Xiaoyang; Li Shixin

    2013-01-01

    The nuclear power development plan in China puts forward a challenge on procurement of nuclear safety equipment. Based on the characteristics of the procurement of nuclear safety equipment, requirements are raised for procurement process, including further clarification of equipment technical specification, establishment and improvement of the expert database of the nuclear power industry, adoption of more reasonable evaluation method and establishment of a unified platform for nuclear power plants to procure nuclear safety equipment. This paper makes recommendation of procurement strategy for nuclear power production enterprises from following aspects, making a plan of procurement progress, dividing procurement packages rationally, establishing supplier database through qualification review and implementing classified management, promoting localization process of key equipment continually and further improving the system and mechanism of procurement of nuclear safety equipment. (authors)

  18. Processing and finishing of granite surfaces

    OpenAIRE

    Klich, J. (Jiří); Hlaváček, P. (Petr); Ščučka, J. (Jiří); Sitek, L. (Libor); Foldyna, J. (Josef); Georgiovská, L. (Lucie); Souček, K. (Kamil); Staš, L. (Lubomír); Bortolussi, A.

    2013-01-01

    The article deals with granite surface processing and finishing by various methods including bush hammering, flaming, polishing, continuous and pulsating water jetting. Both optical and CT X-ray methods are used for analysis of surface and subsurface areas of tested samples. Advantages of pulsating water jetting compared to other techniques are discussed.

  19. 30 CFR 77.1707 - First aid equipment; location; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false First aid equipment; location; minimum... OF UNDERGROUND COAL MINES Miscellaneous § 77.1707 First aid equipment; location; minimum requirements. (a) Each operator of a surface coal mine shall maintain a supply of the first aid equipment set forth...

  20. Automatic data-processing equipment of moon mark of nail for verifying some experiential theory of Traditional Chinese Medicine.

    Science.gov (United States)

    Niu, Renjie; Fu, Chenyu; Xu, Zhiyong; Huang, Jianyuan

    2016-04-29

    Doctors who practice Traditional Chinese Medicine (TCM) diagnose using four methods - inspection, auscultation and olfaction, interrogation, and pulse feeling/palpation. The shape and shape changes of the moon marks on the nails are an important indication when judging the patient's health. There are a series of classical and experimental theories about moon marks in TCM, which does not have support from statistical data. To verify some experiential theories on moon mark in TCM by automatic data-processing equipment. This paper proposes the equipment that utilizes image processing technology to collect moon mark data of different target groups conveniently and quickly, building a database that combines this information with that gathered from the health and mental status questionnaire in each test. This equipment has a simple design, a low cost, and an optimized algorithm. The practice has been proven to quickly complete automatic acquisition and preservation of key data about moon marks. In the future, some conclusions will likely be obtained from these data; some changes of moon marks related to a special pathological change will be established with statistical methods.

  1. Choice of drilling equipment for surface mines of the Banovici and Djurdjevik coal basins

    Energy Technology Data Exchange (ETDEWEB)

    Kljucanin, T.; Cilovic, I.; Novak, I.; Tomic, R.

    1988-07-01

    Discusses factors influencing drilling equipment productivity at the Turija, Grivice and Potocari mines. When no reliable correlations were found in geomechanical analyses of overburden from different rigs, large-scale in field observations were made of overburden drilling. Four types of drilling equipment were in use in combination with 8 different shovel excavators (bucket capacity 5-20 m{sup 3}). Gives full details of the equipment considered and concludes by recommending the use of 110-115 mm diameter drilling equipment in combination with 8-9 m{sup 3} shovel excavators and also 150 mm diameter drilling equipment with larger capacity (18-20 m{sup 3}) excavators. 4 refs.

  2. Chapter 12. Space Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.

    1998-01-01

    The performance evaluation of space heating equipment for a geothermal application is generally considered from either of two perspectives: (a) selecting equipment for installation in new construction, or (b) evaluating the performance and retrofit requirements of an existing system. With regard to new construction, the procedure is relatively straightforward. Once the heating requirements are determined, the process need only involve the selection of appropriately sized hot water heating equipment based on the available water temperature. It is important to remember that space heating equipment for geothermal applications is the same equipment used in non-geothermal applications. What makes geothermal applications unique is that the equipment is generally applied at temperatures and flow rates that depart significantly from traditional heating system design. This chapter presents general considerations for the performance of heating equipment at non-standard temperature and flow conditions, retrofit of existing systems, and aspects of domestic hot water heating.

  3. 7 CFR 58.626 - Packaging equipment.

    Science.gov (United States)

    2010-01-01

    ... containers with frozen desserts shall be constructed so that all product contact surfaces shall be of... Standards for Equipment for Packaging Frozen Desserts and Cottage Cheese. Quality Specifications for Raw...

  4. Bionic design methodology for wear reduction of bulk solids handling equipment

    NARCIS (Netherlands)

    Chen, G.; Schott, D.L.; Lodewijks, G.

    2016-01-01

    Large-scale handling of particulate solids can cause severe wear on bulk solids handling equipment surfaces. Wear reduces equipment life span and increases maintenance cost. Examples of traditional methods to reduce wear of bulk solids handling equipment include optimizing transport operations

  5. Air plasma processing of poly(methyl methacrylate) micro-beads: Surface characterisations

    International Nuclear Information System (INIS)

    Liu Chaozong; Cui Naiyi; Osbeck, Susan; Liang He

    2012-01-01

    Highlights: ► PMMA micro-beads were processed using a rotary air plasma reactor. ► Surface chemistry and surface texture of PMMA micro-beads were characterised. ► Surface wettability was evaluated using “floating” water contact angle method. ► Surface oxidation and texture changes induced by air plasma attributed to the improvement of surface wettability. - Abstract: This paper reports the surface processing of poly(methyl methacrylate) (PMMA) micro-beads by using a rotary air plasma reactor, and its effects on surface properties. The surface properties, including surface wettability, surface chemistry and textures of the PMMA beads, were characterised. It was observed that the air plasma processing can improve the surface wettability of the PMMA microbeads significantly. A 15 min plasma processing can reduce the surface water contact angle of PMMA beads to about 50° from its original value of 80.3°. This was accompanied by about 8% increase in surface oxygen concentration as confirmed by XPS analysis. The optical profilometry examination revealed the air plasma processing resulted in a rougher surface that has a “delicate” surface texture. It is concluded that the surface chemistry and texture, induced by air plasma processing, co-contributed to the surface wettability improvement of PMMA micro-beads.

  6. Electrolytic plasma processing of steel surfaces

    International Nuclear Information System (INIS)

    Bejar, M.A; Araya, R.N; Baeza, B

    2006-01-01

    The thermo-chemical treatments of steels with plasma is normally carried out in low-pressure ionized gaseous atmospheres. Among the treatments used most often are: nitruration, carburization and boronized. A plasma can also generate at atmospheric pressure. One way to produce it is with an electrochemical cell that works at a relatively high inter-electrode voltage and under conditions of heavy gas generation. This type of plasma is known as electrolytic plasma. This work studies the feasibility of using electrolytic plasma for the surface processing of steels. Two processes were selected: boronized and nitruration., for the hardening of two types of steel: one with low carbon (1020) and one with low alloy (4140). In the case of the nitruration, the 1020 steel was first aluminized. The electrolytes were aqueous solutions of borax for the boronizing and urea for the nitruration. The electrolytic plasmas were classified qualitatively, in relation with their luminosity by low, medium and high intensity. The boronizing was carried out with low intensity plasmas for a period of one hour. The nitruration was performed with plasmas of different intensities and for period of a few minutes to half an hour. The test pieces processed by electrolytic plasma were characterized by micro-hardness tests and X-ray diffraction. The maximum surface hardnesses obtained for the 1020 and 4140 steels were the following: 300 and 700 HV for the boronizing, and 1650 and 1200 HV for the nitruration, respectively. The utilization of an electrolytic plasma permits the surface processing of steels, noticeably increasing their hardness. With this type of plasma some thermo-chemical surface treatments can be done very rapidly as well (CW)

  7. RATIONAL RECOVERY MODEL OF DEPOT PROCESSING EQUIPMENT AT THE INDUSTRIAL ENTERPRISE

    Directory of Open Access Journals (Sweden)

    M. I. Kapitsa

    2014-07-01

    Full Text Available Purpose. The problem of the maximum resources recovery of rolling stock repair depot of industrial enterprise with limited resources consumption, which are used in the system is today’s topical question.The main factors that affect the repair depot operation of industrial enterprise are reviewed. The most significant factors, affecting the quality of the repair depot, are emphasized for further study, specifically - the state of the major repair equipment of a sector. There is a need to minimize the impact of the unsatisfactory state of this factor. Methodology. The formed task of major equipment rational repairing in the mathematical sense is based on the solution of a vector optimization problem. In this case the target functions are the monetary funds spending and time expenditure for repairing. Findings. The mathematical model of optimal equipment maintainability of the repair department at the industrial enterprise was developed by the authors. On the example the choice model of optimal path for equipment repairing of enterprise repair department is described. Originality. As a result of the conducted research the repairing system of major equipment of industrial enterprise sectors was improved. As the mathematical model of rational system recovery of industrial enterprise repair depot we recommend apparatus of class problems of vector optimization. Practical value. Using the proposed model of major equipment repair system of the repair depot at the industrial enterprise will improve the quality of the department by increasing the efficiency of primary resources - time and monetary funds - which are spent by the sector in order to repair its techniques.

  8. Process pump operating problems and equipment failures, F-Canyon Reprocessing Facility, Savannah River Plant

    International Nuclear Information System (INIS)

    Durant, W.S.; Starks, J.B.; Galloway, W.D.

    1987-02-01

    A compilation of operating problems and equipment failures associated with the process pumps in the Savannah River Plant F-Canyon Fuel Reprocessing Facility is presented. These data have been collected over the 30-year operation of the facility. An analysis of the failure rates of the pumps is also presented. A brief description of the pumps and the data bank from which the information was sorted is also included

  9. Development of ultrasonic testing equipment incorporating electromagnetic acoustic transducer

    International Nuclear Information System (INIS)

    Sato, Michio; Kimura, Motohiko; Okano, Hideharu; Miyazawa, Tatsuo; Nagase, Koichi; Ishikawa, Masaaki

    1989-01-01

    An ultrasonic testing equipment for use in in-service inspection of nuclear power plant piping has been developed, which comprises an angle-beam electromagnetic acoustic transducer mounted on a vehicle for scanning the piping surface to be inspected. The transducer functions without direct contact with the piping surface through couplant, and the vehicle does not require a guide track installed on the piping surface, being equipped with magnetic wheels that adhere to the piping material, permitting it to travel along the circumferential weld joint of a carbon steel pipe. The equipment thus dispenses with the laborious manual work involved in preparing the piping for inspection, such as removal of protective coating, surface polishing and installation of guide track and thereby considerably reduces the duration of inspection. The functioning principle and structural features of the transducer and vehicle are described, together with the results of trial operation of a prototype unit, which proved a 1mm deep notch cut on a test piece of 25mm thick carbon steel plate to be locatable with an accuracy of ±2mm. (author)

  10. Laser surface texturing of tool steel: textured surfaces quality evaluation

    Science.gov (United States)

    Šugár, Peter; Šugárová, Jana; Frnčík, Martin

    2016-05-01

    In this experimental investigation the laser surface texturing of tool steel of type 90MnCrV8 has been conducted. The 5-axis highly dynamic laser precision machining centre Lasertec 80 Shape equipped with the nano-second pulsed ytterbium fibre laser and CNC system Siemens 840 D was used. The planar and spherical surfaces first prepared by turning have been textured. The regular array of spherical and ellipsoidal dimples with a different dimensions and different surface density has been created. Laser surface texturing has been realized under different combinations of process parameters: pulse frequency, pulse energy and laser beam scanning speed. The morphological characterization of ablated surfaces has been performed using scanning electron microscopy (SEM) technique. The results show limited possibility of ns pulse fibre laser application to generate different surface structures for tribological modification of metallic materials. These structures were obtained by varying the processing conditions between surface ablation, to surface remelting. In all cases the areas of molten material and re-cast layers were observed on the bottom and walls of the dimples. Beside the influence of laser beam parameters on the machined surface quality during laser machining of regular hemispherical and elipsoidal dimple texture on parabolic and hemispherical surfaces has been studied.

  11. Surface processing: existing and potential applications of ultraviolet light.

    Science.gov (United States)

    Manzocco, Lara; Nicoli, Maria Cristina

    2015-01-01

    Solid foods represent optimal matrices for ultraviolet processing with effects well beyond nonthermal surface disinfection. UV radiation favors hormetic response in plant tissues and degradation of toxic compound on the product surface. Photoinduced reactions can also provide unexplored possibilities to steer structure and functionality of food biopolymers. The possibility to extensively exploit this technology will depend on availability of robust information about efficacious processing conditions and adequate strategies to completely and homogeneously process food surface.

  12. Gas cluster ion beam equipments for industrial applications

    International Nuclear Information System (INIS)

    Matsuo, J.; Takaoka, G.H.; Yamada, I.

    1995-01-01

    30 keV and 200 keV gas cluster ion beam equipments have been developed for industrial applications. A gas cluster source with a non-cooled nozzle was used for both the equipments. Sufficient monomer ion suppression was achieved by using an ExB filter and chromatic lenses mass filter with low extraction voltage. These equipments are suitable to be used for low-damage surface treatment of metals, insulators and semiconductors without heavy metal contamination. (orig.)

  13. The use of simulated rainfall to study the discharge process and the influence factors of urban surface runoff pollution loads.

    Science.gov (United States)

    Qinqin, Li; Qiao, Chen; Jiancai, Deng; Weiping, Hu

    2015-01-01

    An understanding of the characteristics of pollutants on impervious surfaces is essential to estimate pollution loads and to design methods to minimize the impacts of pollutants on the environment. In this study, simulated rainfall equipment was constructed to investigate the pollutant discharge process and the influence factors of urban surface runoff (USR). The results indicated that concentrations of total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) appeared to be higher in the early period and then decreased gradually with rainfall duration until finally stabilized. The capacity and particle size of surface dust, rainfall intensity and urban surface slopes affected runoff pollution loads to a variable extent. The loads of TP, TN and COD showed a positive relationship with the surface dust capacity, whereas the maximum TSS load appeared when the surface dust was 0.0317 g·cm⁻². Smaller particle sizes (pollution carrying capacity of runoff, leading to higher pollution loads. Knowledge of the influence factors could assist in the management of USR pollution loads.

  14. Method of processing dismantled products of radiation-contaminated equipments and transportation container therefor

    International Nuclear Information System (INIS)

    Komura, Shiro; Heki, Hideaki.

    1991-01-01

    In a method of decontaminating dismantled products of radiation-contaminated equipments removed at nuclear power facilities and classifying the dismantled products depending on their remaining radioactivity levels measured at a processing facility, the dismantled products are contained in a transportation container, to which decontamination liquids are injected and they are transferred to the processing facility. The decontaminated liquid wastes are drained from the transportation container, the dismantled products are washed while being contained in the transportation container as they are. Then, they are transferred to a step for measuring their remaining radioactivity level. This can shorten the time from the containment of the dismantled products to the transportation container to the completion of the decontamination, to improve the efficiency for the decontamination processing. Further, by separately containing the dismantled products on every kind of materials to respective containers, the processing time can be appropriately controlled respectively even if the dissolving efficiency to the decontamination liquids is different depending on the materials. (T.M.)

  15. Development of electric discharge equipment for small specimen sampling

    International Nuclear Information System (INIS)

    Okamoto, Koji; Kitagawa, Hideaki; Kusumoto, Junichi; Kanaya, Akihiro; Kobayashi, Toshimi

    2009-01-01

    We have developed the on-site electric discharge sampling equipment that can effectively take samples such as small specimens from the surface portion of the plant components. Compared with the conventional sampling equipment, our sampling equipment can take samples that are thinner in depth and larger in area. In addition, the affection to the equipment can be held down to the minimum, and the thermally-affected zone of the material due to electric discharge is small, which is to be ignored. Therefore, our equipment is excellent in taking samples for various tests such as residual life evaluation.

  16. Efficiency improvement of technological preparation of power equipment manufacturing

    Science.gov (United States)

    Milukov, I. A.; Rogalev, A. N.; Sokolov, V. P.; Shevchenko, I. V.

    2017-11-01

    Competitiveness of power equipment primarily depends on speeding-up the development and mastering of new equipment samples and technologies, enhancement of organisation and management of design, manufacturing and operation. Actual political, technological and economic conditions cause the acute need in changing the strategy and tactics of process planning. At that the issues of maintenance of equipment with simultaneous improvement of its efficiency and compatibility to domestically produced components are considering. In order to solve these problems, using the systems of computer-aided process planning for process design at all stages of power equipment life cycle is economically viable. Computer-aided process planning is developed for the purpose of improvement of process planning by using mathematical methods and optimisation of design and management processes on the basis of CALS technologies, which allows for simultaneous process design, process planning organisation and management based on mathematical and physical modelling of interrelated design objects and production system. An integration of computer-aided systems providing the interaction of informative and material processes at all stages of product life cycle is proposed as effective solution to the challenges in new equipment design and process planning.

  17. PROCESSING OF DIGITAL IMAGES OF INDUSTRIAL OBJECT SURFACES DURING NON-DESTRUCTIVE TESTING

    Directory of Open Access Journals (Sweden)

    A. A. Hundzin

    2016-01-01

    Full Text Available The paper presents modern approaches to processing of images obtained with the help of industrial equipment. Usage of pixel modification in small neighborhoods, application of uniform image processing while changing brightness level, possibilities for combination of several images, threshold image processing have been described in the paper. While processing a number of images on a metal structure containing micro-cracks and being under strain difference between two such images have been determined in the paper. The metal structure represents a contour specifying the difference in images. An analysis of the contour makes it possible to determine initial direction of crack propagation in the metal. A threshold binarization value has been determined while processing the image having a field of medium intensity which are disappearing in the process of simple binarization and merging with the background due to rather small drop between the edges. In this regard an algorithm of a balanced threshold histogram clipping has been selected and it is based on the following approach: two different histogram fractions are “weighed” and if one of the fractions “outweighs” then last column of the histogram fraction is removed and the procedure is repeated again. When there is rather high threshold value a contour break (disappearance of informative pixels may occur, and when there is a low threshold value – a noise (non-informative pixels may appear. The paper shows implementation of an algorithm for location of contact pads on image of semiconductor crystal. Algorithms for morphological processing of production prototype images have been obtained in the paper and these algorithms permit to detect defects on the surface of semiconductors, to carry out filtration, threshold binarization that presupposes application of an algorithm of a balanced threshold histogram clipping. The developed approaches can be used to highlight contours on the surface

  18. Comparison of the incidence of Listeria on equipment versus environmental sites within dairy processing plants.

    Science.gov (United States)

    Pritchard, T J; Flanders, K J; Donnelly, C W

    1995-08-01

    This study was undertaken to compare the incidence of Listeria contamination of processing equipment with that of the general dairy processing environment. A total of 378 sponge samples obtained from 21 dairy plants were analyzed for Listeria using three different enrichment media. Use of extended microbiological analysis allowed us to identify 26 Listeria positive sites which would have not been identified had a single test format been employed. Eighty (80) of 378 sites (21.2%) were identified as Listeria positive. Listeria innocua was isolated from 59 of the 80 (73.8%) positive samples, L. monocytogenes was identified in 35 (43.8%) of the positive samples, and L. seeligeri was isolated from 5 (6.3%) of the Listeria positive samples. Positive equipment samples were obtained from 6 of the 21 (28.6%) plants and 19 of the 21 (90.5%) plants had positive environmental sites. Seventeen of the 215 (7.9%) samples from equipment were positive for Listeria species. Eleven of these sites, including 3 holding tanks, 2 table tops, 3 conveyor/chain systems, a pasta filata wheel, a pint milk filler and a brine pre-filter machine, were positive for L. monocytogenes. Nineteen of the 21 (90.5%) plants had positive environmental sites. Sixty-three of the 163 (41.1%) samples from environmental sites were Listeria positive and 24 were positive for L. monocytogenes. Two-tailed student t-test analysis of the mean frequencies indicated that the level of contamination was significantly higher (p plant, and that greater emphasis needs to be placed on the cleaning and sanitizing of the plant environment.

  19. AVM branch vibration test equipment

    International Nuclear Information System (INIS)

    Anne, J.P.

    1995-01-01

    An inventory of the test equipment of the AVM Branch ''Acoustic and Vibratory Mechanics Analysis Methods'' group has been undertaken. The purpose of this inventory is to enable better acquaintance with the technical characteristics of the equipment, providing an accurate definition of their functionalities, ad to inform potential users of the possibilities and equipment available in this field. The report first summarizes the various experimental surveys conduced. Then, using the AVM equipment database to draw up an exhaustive list of available equipment, it provides a full-scope picture of the vibration measurement systems (sensors, conditioners and exciters) and data processing resources commonly used on industrial sites and in laboratories. A definition is also given of a mobile test unit, called 'shelter', and a test bench used for the testing and performance rating of the experimental analysis methods developed by the group. The report concludes with a description of two fixed installations: - the calibration bench ensuring the requisite quality level for the vibration measurement systems ; - the training bench, whereby know-how acquired in the field in the field of measurement and experimental analysis processes is made available to others. (author). 27 refs., 15 figs., 2 appends

  20. Changes in the processing of heavy α-contaminated equipment at the Marcoule center

    International Nuclear Information System (INIS)

    Seyfried, P.

    1969-01-01

    The processing of heavy α-contaminated equipment at the Marcoule Centre has been carried out for a long time by a rather expensive 'manual' method. It has become necessary to reduce these costs by using more automated methods. Two studies which have been carried out have shown that when the amount of waste to be treated is large and is composed mainly of plastic material, it is possible to design economic installations using cooling and shock demolition, conventional compaction leading to rather poor results. For average quantities, a cutting-up reservoir, used also for other purposes, makes it possible to solve these processing problems at Marcoule. The costs involved are much lower than those previously required in the case of so-called 'manual' methods. (author) [fr

  1. Resistance welding equipment manufacturing capability for exports

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, V.S.; Raju, Y.S.; Somani, A.K.; Setty, D.S.; Rameswara Raw, A.; Hermantha Rao, G.V.S.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderbad (India)

    2010-07-01

    Indian Pressurised Heavy Water Reactor (PHWR) fuel bundle is fully welded and is unique in its design. Appendage welding, end closure welding, and end plate welding is carried out using resistance welding technique. Out of many joining processes available, resistance-welding process is reliable, environment friendly and best suitable for mass production applications. Nuclear Fuel Complex (NFC), an industrial unit is established in Hyderabad, under the aegis of the Dept of Atomic Energy to manufacture fuel for Pressurised Heavy Water Reactors. From inception, NFC has given importance for self-reliance and indigenization with respect to manufacturing process and equipment. Sintering furnaces, centreless grinders, appendage-welding machines, end-closure welding equipment and end-plate welding equipments, which were initially imported, are either indigenized or designed and manufactured in house. NFC has designed, manufactured a new appendage-welding machine for manufacturing 37 element fuel bundles. Recently NFC has bagged an order from IAEA through international bidding for design, manufacture, supply, erection and commissioning of end-closure welding equipment. The paper gives in detail the salient features of these welding equipment. (author)

  2. An investigation of laser processing of silica surfaces

    International Nuclear Information System (INIS)

    Weber, A.J.; Stewart, A.F.; Exarhos, G.J.; Stowell, W.K.

    1988-01-01

    An initial set of experiments has been conducted to determine the practicality of laser processing of optical substrates. In contrast to earlier work, a high average power CO 2 laser was used to flood load the entire surface of each test sample. Fused silica substrates were laser polished on both surfaces at power densities ranging from 150 to 350 W/cm 2 . During each test sequence sample surface temperatures were recorded using a thermal imaging system. Extensive pre- and post-test characterization revealed that surface roughness and scattering of bare silica surfaces were reduced while internal stress increased. Laser damage thresholds were found to increase only for certain conditions. Changes in the microstructure were observed. These preliminary experiments demonstrate that laser processing can dramatically improve the optical properties of fused silica substrates

  3. Remote handling equipment for CANDU retubing

    International Nuclear Information System (INIS)

    Crawford, G.S.; Lowe, H.

    1993-01-01

    Numet Engineering Ltd. has designed and supplied remote handling equipment for Ontario Hydro's retubing operation of its CANDU reactors at the Bruce Nuclear Generating Station. This equipment consists of ''Retubing Tool Carriers'' an'' Worktables'' which operate remotely or manually at the reactor face. Together they function to transport tooling to and from the reactor face, to position and support tooling during retubing operations, and to deliver and retrieve fuel channels and channel components. This paper presents the fundamentals of the process and discusses the equipment supplied in terms of its design, manufacturing, components and controls, to meet the functional and quality requirements of Ontario Hydro's retubing process. (author)

  4. Equipment designs for the spent LWR fuel dry storage demonstration

    International Nuclear Information System (INIS)

    Steffen, R.J.; Kurasch, D.H.; Hardin, R.T.; Schmitten, P.F.

    1980-01-01

    In conjunction with the Spent Fuel Handling and Packaging Program (SFHPP) equipment has been designed, fabricated and successfully utilized to demonstrate the packaging and interim dry storage of spent LWR fuel. Surface and near surface storage configurations containing PWR fuel assemblies are currently on test and generating baseline data. Specific areas of hardware design focused upon include storage cell components and the support related equipment associated with encapsulation, leak testing, lag storage, and emplacement operations

  5. Surface Alloying of SUS 321 Chromium-Nickel Steel by an Electron-Plasma Process

    Science.gov (United States)

    Ivanov, Yu. F.; Teresov, A. D.; Petrikova, E. A.; Krysina, O. V.; Ivanova, O. V.; Shugurov, V. V.; Moskvin, P. V.

    2017-07-01

    The mechanisms of forming nanostructured, nanophase layers are revealed and analyzed in austenitic steel subjected to surface alloying using an electron-plasma process. Nanostructured, nanophase layers up to 30 μm in thickness were formed by melting of the film/substrate system with an electron beam generated by a SOLO facility (Institute of High Current Electronics, SB RAS), Tomsk), which ensured crystallization and subsequent quenching at the cooling rates within the range 105-108 K/s. The surface was modified with structural stainless steel specimens (SUS 321 steel). The film/substrate system (film thickness 0.5 μm) was formed by a plasma-assisted vacuum-arc process by evaporating a cathode made from a sintered pseudoalloy of the following composition: Zr - 6 at.% Ti - 6 at.% Cu. The film deposition was performed in a QUINTA facility equipped with a PINK hot-cathode plasma source and DI-100 arc evaporators with accelerated cooling of the process cathode, which allowed reducing the size and fraction of the droplet phase in the deposited film. It is found that melting of the film/substrate system (Zr-Ti-Cu)/(SUS 321 steel) using a high-intensity pulsed electron beam followed by the high-rate crystallization is accompanied by the formation of α-iron cellular crystallization structure and precipitation of Cr2Zr, Cr3C2 and TiC particles on the cell boundaries, which as a whole allowed increasing microhardness by a factor of 1.3, Young's modulus - by a factor of 1.2, wear resistance - by a factor of 2.7, while achieving a three-fold reduction in the friction coefficient.

  6. Modification and Validation of an Automotive Data Processing Unit, Compessed Video System, and Communications Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R.J.

    1997-04-01

    The primary purpose of the "modification and validation of an automotive data processing unit (DPU), compressed video system, and communications equipment" cooperative research and development agreement (CRADA) was to modify and validate both hardware and software, developed by Scientific Atlanta, Incorporated (S-A) for defense applications (e.g., rotary-wing airplanes), for the commercial sector surface transportation domain (i.e., automobiles and trucks). S-A also furnished a state-of-the-art compressed video digital storage and retrieval system (CVDSRS), and off-the-shelf data storage and transmission equipment to support the data acquisition system for crash avoidance research (DASCAR) project conducted by Oak Ridge National Laboratory (ORNL). In turn, S-A received access to hardware and technology related to DASCAR. DASCAR was subsequently removed completely and installation was repeated a number of times to gain an accurate idea of complete installation, operation, and removal of DASCAR. Upon satisfactory completion of the DASCAR construction and preliminary shakedown, ORNL provided NHTSA with an operational demonstration of DASCAR at their East Liberty, OH test facility. The demonstration included an on-the-road demonstration of the entire data acquisition system using NHTSA'S test track. In addition, the demonstration also consisted of a briefing, containing the following: ORNL generated a plan for validating the prototype data acquisition system with regard to: removal of DASCAR from an existing vehicle, and installation and calibration in other vehicles; reliability of the sensors and systems; data collection and transmission process (data integrity); impact on the drivability of the vehicle and obtrusiveness of the system to the driver; data analysis procedures; conspicuousness of the vehicle to other drivers; and DASCAR installation and removal training and documentation. In order to identify any operational problems not captured by the systems

  7. Low cost solar array project production process and equipment task: A Module Experimental Process System Development Unit (MEPSDU)

    Science.gov (United States)

    1981-01-01

    Several major modifications were made to the design presented at the PDR. The frame was deleted in favor of a "frameless" design which will provide a substantially improved cell packing factor. Potential shaded cell damage resulting from operation into a short circuit can be eliminated by a change in the cell series/parallel electrical interconnect configuration. The baseline process sequence defined for the MEPSON was refined and equipment design and specification work was completed. SAMICS cost analysis work accelerated, format A's were prepared and computer simulations completed. Design work on the automated cell interconnect station was focused on bond technique selection experiments.

  8. Incidents of chemical reactions in cell equipment

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, N.M.; Barlow, C.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  9. [Development of Hospital Equipment Maintenance Information System].

    Science.gov (United States)

    Zhou, Zhixin

    2015-11-01

    Hospital equipment maintenance information system plays an important role in improving medical treatment quality and efficiency. By requirement analysis of hospital equipment maintenance, the system function diagram is drawed. According to analysis of input and output data, tables and reports in connection with equipment maintenance process, relationships between entity and attribute is found out, and E-R diagram is drawed and relational database table is established. Software development should meet actual process requirement of maintenance and have a friendly user interface and flexible operation. The software can analyze failure cause by statistical analysis.

  10. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process

    Directory of Open Access Journals (Sweden)

    Priya Varshney

    2016-10-01

    Full Text Available In this paper, the superhydrophobic coatings on aluminium surfaces were prepared by two-step (chemical etching followed by coating and one-step (chemical etching and coating in a single step processes using potassium hydroxide and lauric acid. Besides, surface immersion time in solutions was varied in both processes. Wettability and surface morphologies of treated aluminium surfaces were characterized using contact angle measurement technique and scanning electron microscopy, respectively. Microstructures are formed on the treated aluminium surfaces which lead to increase in contact angle of the surface (>150°. Also on increasing immersion time, contact angle further increases due to increase in size and depth of microstructures. Additionally, these superhydrophobic coatings show excellent self-cleaning and corrosion-resistant behavior. Water jet impact, floatation on water surface, and low temperature condensation tests assert the excellent water-repellent nature of coatings. Further, coatings are to be found mechanically, thermally, and ultraviolet stable. Along with, these coatings are found to be excellent regeneration ability as verified experimentally. Although aforesaid both processes generate durable and regenerable superhydrophobic aluminium surfaces with excellent self-cleaning, corrosion-resistant, and water-repellent characteristics, but one-step process is proved more efficient and less time consuming than two-step process and promises to produce superhydrophobic coatings for industrial applications.

  11. Development and assessment of two decontamination processes: closed electropolishing system for decontamination of underwater surfaces -vibratory decontamination with abrasives

    International Nuclear Information System (INIS)

    Benavides, E.; Fajardo, M.

    1992-01-01

    Two decontamination processes have been developed to decontaminate the stainless steel components of nuclear power plants. The first process uses an underwater closed electropolishing system for the decontamination of large stainless steel surfaces in flooded systems without loss of electrolyte. Large underwater contaminated areas can be treated with an electropolishing head covering an area of 2 m 2 in one step. The decontamination factors achieved with this technique range between 100 and 1000. The second process consists in the decontamination of nuclear components using vibratory equipment with self-cleaning abrasives generating a minimum quantity of waste. This technique may reach contamination factors similar to those obtained with other abrasive methods (brush abrasion, abrasive blasting, etc...). The obtained decontamination factors range between 5 and 50. Only a small quantity of waste is generated, which is treated and reduced in volume by filtration and evaporation

  12. Plasma nitriding - an eco friendly surface hardening process

    International Nuclear Information System (INIS)

    Mukherjee, S.

    2015-01-01

    Surface hardening is a process of heating the metal such that the surface gets only hardened. This process is adopted for many components like gears, cams, and crankshafts, which desire high hardness on the outer surface with a softer core to withstand the shocks. So, to attain such properties processes like carburising, nitriding, flame hardening and induction hardening are employed. Amongst these processes nitriding is the most commonly used process by many industries. In nitriding process the steel material is heated to a temperature of around 550 C and then exposed to atomic nitrogen. This atomic nitrogen reacts with iron and other alloying elements and forms nitrides, which are very hard in nature. By this process both wear resistance and hardness of the product can be increased. The atomic nitrogen required for this process can be obtained using ammonia gas (gas nitriding), cyanide based salt bath (liquid nitriding) and plasma medium (plasma nitriding). However, plasma nitriding has recently received considerable industrial interest owing to its characteristic of faster nitrogen penetration, short treatment time, low process temperature, minimal distortion, low energy use and easier control of layer formation compared with conventional techniques such as gas and liquid nitriding. This process can be used for all ferrous materials including stainless steels. Plasma nitriding is carried out using a gas mixture of nitrogen and hydrogen gas at sub atmospheric pressures hence, making it eco-friendly in nature. Plasma nitriding allows modification of the surface layers and hardness profiles by changing the gas mixture and temperature. The wide applicable temperature range enables a multitude of applications, beyond the possibilities of gas or salt bath processes. This has led to numerous applications of this process in industries such as the manufacture of machine parts for plastics and food processing, packaging and tooling as well as pumps and hydraulic, machine

  13. Diffusion processes in bombardment-induced surface topography

    International Nuclear Information System (INIS)

    Robinson, R.S.

    1984-01-01

    The bombardment of surfaces with moderate energy ions can lead to the development of various micron-sized surface structures. These structures include ridges, ledges, flat planes, pits and cones. The causal phenomena in the production of these features are sputtering, ion reflection, redeposition of sputtered material, and surface diffusion of both impurity and target-atom species. The authors concentrate on the formation of ion bombardment-induced surface topography wherein surface diffusion is a dominant process. The most thoroughly understood aspect of this topography development is the generation of cone-like structures during sputtering. The formation of cones during sputtering has been attributed to three effects. These are: (1) the presence of asperities, defects, or micro-inclusions in the surface layers, (2) the presence of impurities on the surfaces, and (3) particular crystal orientations. (Auth.)

  14. 40 CFR 60.254 - Standards for coal processing and conveying equipment, coal storage systems, transfer and loading...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for coal processing and conveying equipment, coal storage systems, transfer and loading systems, and open storage piles. 60.254... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation...

  15. Diagnostic x-ray equipment compliance and facility survey. Recommended procedures for equipment and facility testing

    International Nuclear Information System (INIS)

    1994-01-01

    The Radiation Protection Bureau has set out guidelines for the testing of diagnostic x-ray equipment and facilities. This guide provides information for the x-ray inspector, test engineer, technologist, medical physicist and any other person responsible for verifying the regulatory compliance or safety of diagnostic x-ray equipment and facilities. Diagnostic x-radiation is an essential part of present day medical practice. The largest contributor of irradiation to the general population comes from diagnostic x-radiation. Although individual irradiations are usually small, there is a concern of possible excess cancer risk when large populations are irradiated. Unnecessary irradiations to patients from radiological procedures can be significantly reduced with little or no decrease in the value of medical diagnostic information. This can be achieved by using well designed x-ray equipment which is installed, used and maintained by trained personnel, and by the adoption of standardized procedures. In general, when patient surface dose is reduced, there is a corresponding decrease in dose to x-ray equipment operators and other health care personnel. 2 tabs., 4 figs

  16. Diagnostic x-ray equipment compliance and facility survey. Recommended procedures for equipment and facility testing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Radiation Protection Bureau has set out guidelines for the testing of diagnostic x-ray equipment and facilities. This guide provides information for the x-ray inspector, test engineer, technologist, medical physicist and any other person responsible for verifying the regulatory compliance or safety of diagnostic x-ray equipment and facilities. Diagnostic x-radiation is an essential part of present day medical practice. The largest contributor of irradiation to the general population comes from diagnostic x-radiation. Although individual irradiations are usually small, there is a concern of possible excess cancer risk when large populations are irradiated. Unnecessary irradiations to patients from radiological procedures can be significantly reduced with little or no decrease in the value of medical diagnostic information. This can be achieved by using well designed x-ray equipment which is installed, used and maintained by trained personnel, and by the adoption of standardized procedures. In general, when patient surface dose is reduced, there is a corresponding decrease in dose to x-ray equipment operators and other health care personnel. 2 tabs., 4 figs.

  17. Surface thermohardening by the fast-moving electric arch

    Science.gov (United States)

    Gabdrakhmanov, Az T.; Shafigullin, L. N.; Galimov, E. R.; Ibragimov, A. R.

    2017-01-01

    This paper describes the technology of modern engineering-plasma hardening steels and prospects of its application. It gives the opportunity to manage the process without using of cooling media, vacuum, special coatings to improve the absorptive capacity of hardened surfaces; the simplicity, the low cost, the maneuverability, a small size of the process equipment; a possibility of the automation and the robotization of technological process.

  18. Setting up processes and standardization of the equipment in order to optimize analyses of the wavelength dispersion X-ray fluorescence (WDXRF) system

    International Nuclear Information System (INIS)

    Phan Trong Phuc; Luu Anh Tuyen; La Ly Nguyen; Nguyen Thi Ngoc Hue; Pham Thi Hue; Do Duy Khiem

    2015-01-01

    For the purpose of operating and optimizing the analyses of the equipment: wavelength dispersion X-ray fluorescence (WDXRF)- model S8 TIGER from Enhancing Equipment Project (TCTTB) 2011-2012, we set up sampling and analytical process for different sample kinds; we constructed multi-elemental calibration curve for clay sample; we analysed elemental concentrations of 5 clay samples by XRF method and compared the results with the results given by NAA method. Equipment sensitivity was tested by analysing elemental concentrations of 2 Kaolin standard samples. The results show that S8-Tiger equipment is within good condition and is able to analyze powder clay sample exactly. (author)

  19. Optical monitoring of surface processes relevant to thin film growth by chemical vapour deposition

    International Nuclear Information System (INIS)

    Simcock, Michael Neil

    2002-01-01

    This thesis reports on the investigation of the use of reflectance anisotropy spectroscopy (RAS) as an in-situ monitor for the preparation and oxidation of GaAs(100) c(4x4) surfaces using a CVD 2000 MOCVD reactor. These surfaces were oxidised using air. It was found that it was possible to follow surface degradation using RA transients at 2.6eV and 4eV. From this data it was possible to speculate on the nature of the surface oxidation process. A study was performed into the rate of surface degradation under different concentrations of air, it was found that the relation between the air concentration and the surface degradation was complicated but that the behaviour of the first third of the degradation approximated a first order behaviour. An estimation of the activation energy of the process was then made, and an assessment of the potential use of the glove-box for STM studies which is an integral part of the MOCVD equipment was also made. Following this, a description is given of the construction of an interferometer for monitoring thin film growth. An investigation is also described into two techniques designed to evaluate the changes in reflected intensity as measured by an interferometer. The first technique uses an iteration procedure to determine the film thickness from the reflection data. This is done using a Taylor series expansion of the thin film reflection function to iterate for the thickness. Problems were found with the iteration when applied to noisy data, these were solved by using a least squares fit to smooth the data. Problems were also found with the iteration at the turning points these were solved using the derivative of the function and by anticipating the position of the turning points. The second procedure uses the virtual interface method to determine the optical constants of the topmost deposited material, the virtual substrate, and the growth rate. This method is applied by using a Taylor series expansion of the thin film reflection

  20. Equipment and obtention process of phosphorus-32 starting from sulfur-32

    International Nuclear Information System (INIS)

    Alanis M, J.

    2004-12-01

    In the National Institute of Nuclear Research, it is the Radioisotopes Production plant, which covers in the area of the medicine 70% approximately of the national market and it exports to some countries of Latin America (Technetium-99, iodine-131, Sm-153 among other). At the moment the plant has modern facilities and certified with the ISO-9001-2000 standard, this, gives trust to the clients as for the quality of its products. Besides the production of radioisotopes dedicated for the medical area, the work of the plant tends to be more enlarged every time, producing new radioisotopes not only but with medical purposes but also industrial and agricultural ones, such it is the case of the production of Phosphorus-32 ( 32 P) that has applications with medical, industrial and in the agriculture purposes. The investigation studies from the prime matter (sulfur-32), sulfur purification, sulfur irradiation in the nuclear reactor and the obtaining process of 32 P in a prototype, its took us to design and to build the obtaining process from 32 P to more high level, which is presented in this work. To be able to select the obtaining method of 32 P that is presented it was necessary to study the methods that have been developed in the world, later on it was selected the way that is presented. In that way the physical and chemical properties of the sulfur were studied which is used as prime matter, the interest nuclear reaction was also studied to carry out the production of 32 P by means of the realization of mathematical calculations of irradiation of the sulfur in TRIGA Mark lll nuclear reactor. Once the sulfur is irradiated, it is necessary to carry out the radiochemical separation of the 32 P produced from the sulfur, for this, it was necessary to carry out experimental tests of this separation, later on it was developed a prototype where it was carried out this separation and finally it was developed the final equipment of production of 32 P mainly composed of three

  1. 3. International Symposium 'Vacuum Technology and Equipment'. ISVTE-3

    International Nuclear Information System (INIS)

    Kogan, V.S.; Shulaev, V.M.

    1999-01-01

    The reports of the 3th International Symposium 'Vacuum Technology and Equipment', which was held in Kharkov at 22-24 September 1999 are presented. In this issue such subject are published: equipment and technology for thin and coating preparation. Studies of their surface layer and material modification by corpuscular effect and light

  2. Intergranular corrosion protective of austenitic stainless steel chemical equipment

    International Nuclear Information System (INIS)

    Kuzyukov, A.N.

    1994-01-01

    A complex of protective measures was developed for each concrete case of intergranular fracture of equipment, i.e.: decrease in the level of strains, surfacing with materials resistant to intergranular fracture under the conditions; permissible correction of process parameters, permitting a shift in corrosion potential towards decrease in the rate of intergranular corrosion. It is shown that even if the eguipment was subject to interfranular corrosion, but the fracture is not of catastrophic character, it proved possible to develop and apply complex methods of protection from the above types of corrosion fracture and to elongate the service life by 5-15 years

  3. Evaluation report on the R and D of the membrane separation process introduction technology; Makubunri process donyu gijutsu no kenkyu kaihatsu hyoka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper reported the R and D of the membrane separation process introduction technology during a period of 1994 through 1998. The membrane separation technology is not associated with the phase change which requires large energy and expected to be an energy saving process. For the production of membranes required of high functions, the vapor deposition polymerization method was considered, and high order structure control of the membrane, control of adhesion and attachment, and control of orientation, and development of the high polymerization technology were required. For the high grade control of vapor polymerization, the substrate surface structure/quality were important. The molecular level analysis of the vapor deposition surface was also needed. Therefore, the paper took notice of STM (scanning tunneling microscopy), AFM (atomic force microscopy) and HREELS (high resolution electron energy loss spectroscopy) as surface atomic/molecular configuration analysis technology, and designed/fabricated and studied the high resolving power and high sensitivity analysis equipment using the analysis equipment which combined HREELS and STM and the analysis equipment using SFG (sum frequency generation) which can detect signals in the low frequency region. Making full use of the highest technology, technology was able to be developed for substrate surface analysis and surface reaction analysis technologies which become the basis of the high performance separation membrane fabrication technology by the vapor deposition polymerization method indispensable for introduction of the membrane separation process. The technology can be the base applicable to a lot of fields where surfaces and interfaces are concerned

  4. Development of an equipment diagnostic system that evaluates sensor drift

    International Nuclear Information System (INIS)

    Kanada, Masaki; Arita, Setsuo; Tada, Nobuo; Yokota, Katsuo

    2011-01-01

    The importance of condition monitoring technology for equipment has increased with the introduction of condition-based maintenance in nuclear power plants. We are developing a diagnostic system using process signals for plant equipment, such as pumps and motors. It is important to enable the diagnostic system to distinguish sensor drift and equipment failure. We have developed a sensor drift diagnostic method that combines some highly correlative sensor signals by using the MT (Mahalanobis-Taguchi) method. Furthermore, we have developed an equipment failure diagnostic method that measures the Mahalanobis distance from the normal state of equipment by the MT method. These methods can respectively detect sensor drift and equipment failure, but there are the following problems. In the sensor drift diagnosis, there is a possibility of misjudging the sensor drift when the equipment failure occurs and the process signal changes because the behavior of the process signal is the same as that of the sensor drift. Oppositely, in the equipment failure diagnosis, there is a possibility of misjudging the equipment failure when the sensor drift occurs because the sensor drift influences the change of process signal. To solve these problems, we propose a diagnostic method combining the sensor drift diagnosis and the equipment failure diagnosis by the MT method. Firstly, the sensor drift values are estimated by the sensor drift diagnosis, and the sensor drift is removed from the process signal. It is necessary to judge the validity of the estimated sensor drift values before removing the sensor drift from the process signal. We developed a method for judging the validity of the estimated sensor drift values by using the drift distribution based on the sensor calibration data. And then, the equipment failure is diagnosed by using the process signals after removal of the sensor drifts. To verify the developed diagnostic system, several sets of simulation data based on abnormal cases

  5. Process for cleaning radioactively contaminated metal surfaces

    International Nuclear Information System (INIS)

    Mihram, R.G.; Snyder, G.A.

    1975-01-01

    A process is described for removing radioactive scale from a ferrous metal surface, including the steps of initially preconditioning the surface by contacting it with an oxidizing solution (such as an aqueous solution of an alkali metal permanganate or hydrogen peroxide), then, after removal or decomposition of the oxidizing solution, the metallic surface is contacted with a cleaning solution which is a mixture of a mineral acid and a complexing agent (such as sulfuric acid and oxalic acid), and which preferably contains a corrosion inhibitor. A final step in the process is the treatment of the spent cleaning solution containing radioactive waste materials in solution by adding a reagent selected from the group consisting of calcium hydroxide or potassium permanganate and an alkali metal hydroxide to thereby form easily recovered metallic compounds containing substantially all of the dissolved metals and radioactivity. (auth)

  6. LMZ experience in refurbishment of hydroturbine equipment

    Energy Technology Data Exchange (ETDEWEB)

    Sotnikov, Anatoly A. [LMZ, St. Petersburg (Russian Federation). Div. of Hydraulic Machine

    2000-07-01

    AO LMZ experience in refurbishment of hydroturbine equipment is generalized. Hydraulic turbines of many power stations having been in service of more than 30 years need rehabilitation and modernization. As a rule, the following problems are solved in the process of refurbishment works: increase of turbine efficiency and output, ensuring of reliable operation of the equipment during the next length of life, ensuring the environmental safety of the equipment, furnishing of the power station with up to date automatic control systems. The process of refurbishment used by LMZ is described. The examples of refurbishment are given. (author)

  7. Pulsed high current ion beam processing equipment

    International Nuclear Information System (INIS)

    Korenev, S.A.; Perry, A.

    1995-01-01

    A pulsed high voltage ion source is considered for use in ion beam processing for the surface modification of materials, and deposition of conducting films on different substrates. The source consists of an Arkad'ev-Marx high voltage generator, a vacuum ion diode based on explosive ion emission, and a vacuum chamber as substrate holder. The ion diode allows conducting films to be deposited from metal or allow sources, with ion beam mixing, onto substrates held at a pre-selected temperature. The main variables can be set in the ranges: voltage 100-700 kV, pulse length 0.3 μs, beam current 1-200 A depending on the ion chosen. The applications of this technology are discussed in semiconductor, superconductor and metallizing applications as well as the direction of future development and cost of these devices for commercial application. 14 refs., 6 figs

  8. The development of special equipment amplitude detection instrument based on DSP

    International Nuclear Information System (INIS)

    Dai Sidan; Chen Ligang; Lan Peng; Wang Huiting; Zhang Liangxu; Wang Lin

    2014-01-01

    Development and industrial application of special equipment plays an important role in the development of nuclear energy process. Equipment development process need to do a lot of tests, amplitude detection is a key test,it can analysis the device's electromechanical and physical properties. In the industrial application, the amplitude detection can effectively reflect the operational status of the current equipment, the equipment can also be a certain degree of fault diagnosis, identify problems in a timely manner. The main development target in this article is amplitude detection of special equipment. This article describes the development of special equipment amplitude detection instrument. The instrument uses a digital signal processor (DSP) as the central processing unit, and uses the DSP + CPLD + high-speed AD technology to build a complete set of high-precision signal acquisition and analysis processing systems, rechargeable lithium battery as the powered device. It can do a online monitoring of special equipment amplitude, speed parameters by acquiring and analysing the tachometer signal in the special equipment, and locally display through the LCD screen. (authors)

  9. Los Alamos Controlled Air Incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    International Nuclear Information System (INIS)

    Neuls, A.S.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.; Warner, C.L.

    1982-08-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawing, specifications, calculations, and costs. It aids duplication of the process at other facilities

  10. Los Alamos Controlled Air Incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Neuls, A.S.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.; Warner, C.L.

    1982-08-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawing, specifications, calculations, and costs. It aids duplication of the process at other facilities.

  11. Nanoscale processes on insulating surfaces

    National Research Council Canada - National Science Library

    Gnecco, Enrico; Szymoński, Marek

    2009-01-01

    ... the group of Prof. Ernst Meyer in Basel, where he investigated friction processes on alkali halide surfaces in ultra high vacuum (UHV). The main result was the observation of a logarithmic velocity dependence of atomic friction, which was interpreted within a combination of the classical Tomlinson and Eyring models. After his Ph.D. he joined the ...

  12. Methodology for assessing laser-based equipment

    Science.gov (United States)

    Pelegrina-Bonilla, Gabriel; Hermsdorf, Jörg; Thombansen, Ulrich; Abels, Peter; Kaierle, Stefan; Neumann, Jörg

    2017-10-01

    Methodologies for the assessment of technology's maturity are widely used in industry and research. Probably the best known are technology readiness levels (TRLs), initially pioneered by the National Aeronautics and Space Administration (NASA). At the beginning, only descriptively defined TRLs existed, but over time, automated assessment techniques in the form of questionnaires emerged in order to determine TRLs. Originally TRLs targeted equipment for space applications, but the demands on industrial relevant equipment are partly different in terms of, for example, overall costs, product quantities, or the presence of competitors. Therefore, we present a commonly valid assessment methodology with the aim of assessing laser-based equipment for industrial use, in general. The assessment is carried out with the help of a questionnaire, which allows for a user-friendly and easy accessible way to monitor the progress from the lab-proven state to the application-ready product throughout the complete development period. The assessment result is presented in a multidimensional metric in order to reveal the current specific strengths and weaknesses of the equipment development process, which can be used to direct the remaining development process of the equipment in the right direction.

  13. Seismic qualification of equipment for the TA-55 Plutonium Processing Facility

    International Nuclear Information System (INIS)

    Pellette, P.R.; Endebrock, E.G.; Giles, P.M.; Shaw, R.H.

    1977-04-01

    The techniques employed by the Los Alamos Scientific Laboratory (LASL) for the seismic qualification of internal equipment for the TA-55 Plutonium Facility are discussed. The structural analysis of the plutonium building and critical associated structures was performed by the Architect-Engineer (A-E), and the calculations were checked by LASL. The specifications and procedures used by LASL produced dramatic improvement in the responses by qualified vendors to the seismic requirements. There was an increase from about a 20% bid ratio to greater than 90% because prospective vendors could be competitive without having had previous seismic experience with their equipment. The equipment seismic qualification for TA-55 is in compliance with the Code of Federal Regulations, Nuclear Regulatory Commission (NRC) Guides, Energy Research and Development Administration (ERDA) Manual Chapters and Appendices, and Institute of Electrical and Electronic Engineers (IEEE) Standard 344

  14. An Evaluation System for Foodservice Equipment

    Science.gov (United States)

    1985-10-01

    of the machine, as eggs , pancakes, etc. cannot be cooked oo a grooved surface. A grooved suriaca will be tilted towards tha grease trough for...Refrigerator Specialty Units PREPARATION EQUIPMENT Burger Forming Machine Electric Meatball Machine breading Machine Crepe Machine Breaded/Sifter

  15. Electrostatic Properties of Selected Personal Protective Equipment Regarding Explosion Hazard

    Directory of Open Access Journals (Sweden)

    Marcin Jachowicz

    2013-01-01

    Full Text Available In industries such as the mining, petrochemistry or power industries, personal protective equipment is often used in explosive atmospheres. What causes the occurrence of explosive hazards is ever-present in the work environment they include, electrostatic phenomena as well as the build-up of electrical charges on the surface of the protective equipment used. This paper presents the results of studies which were aimed at determining the fundamental electrostatic parameters of protective helmets as well as eye and face protection, surface resistance and the voltage of electrostatic fields. Examinations on the typical structure of the above mentioned equipment was conducted including the variable values of ambient humidity, which can occur in the working environment and with the use of various types of materials used to generate a charge. The adopted methods and testing equipment have been presented. Using the current, general requirements regarding the electrostatic properties of materials, the examined helmets and eye protection were assessed for their use in explosive atmospheres.

  16. Design and Construction of Equipment for Applying the Geophysical Prospecting Method Electric Tomography

    Directory of Open Access Journals (Sweden)

    Fabio Héctor Giraldo Sánchez

    2013-06-01

    Full Text Available Outlines the procedure for the design and construction of electric equipment for geophysical prospecting through electrical tomography method. The team is of average power, ensuring exploration depths quite suitable for applications and commercial and geotechnical studies. The device is essentially a DC voltage source of 500 volts that is able to provide a maximum current of 1 amp. It also contains a small charge current source of electrical currents counteract naturally found in the subsoil and are manifested as a difference in the surface potential. A general explanation of the geophysical method in question, helps to understand the basic principles of operation of the equipment and functions to be fulfilled. After building the team, we conducted a field data acquisition, in area near the town of Gachancipa Cundinamarca. The data from this equipment are processed with specialized software. The images obtained with the software presents the distributions of subsurface resistivity can be associated with the possible structures and geology of the study area.

  17. MATHEMATICAL SIMULATION OF CONCURRENT TWO-SIDED LENS PROCESSING

    Directory of Open Access Journals (Sweden)

    A. S. Kozeruk

    2015-01-01

    Full Text Available The purpose of the paper is to modernize technology for obtaining high-accuracy lenses with fine centre. Presently their operating surfaces are fixed  to an accessory with the help of adhesive substance that leads to elastic deformation in glass and causes local errors in lens parts.A mathematical model for concurrent two-sided processing of high-accuracy optical parts with spherical surfaces has been developed in the paper. The paper presents analytical expressions that permit to calculate sliding speed at any point on the processed spherical surface depending on type and value of technological equipment settings. Calculation of parameter Q = Pv in a diametric section of the convexo-concave lens has been carried out while using these expressions together with functional dependence of pressure on contact zone еarea of tool and part bedding surfaces.Theoretical and experimental investigations have been carried out with the purpose to study changes in Q parameter according to the processed lens surface for various setting parameters of the technological equipment and their optimum values ensuring preferential stock removal in the central or boundary part zone or uniform distribution of the removal along the whole processed surface have been determined in the paper.The paper proposes a machine tool scheme for concurrent two-sided grinding and polishing of lenses while fixing their side (cylindrical surface. Machine tool kinematics makes it possible flexibly and within wide limits to change its setting parameters  that significantly facilitates the control of form-building process of parts with highly-precise spherical surfaces.Methodology for investigations presupposes the following: mathematical simulation of highly-precise spherical surface form-building process under conditions of forced closing, execution of numerical and experimental studies.  

  18. Isotope-equipped measuring instruments

    International Nuclear Information System (INIS)

    Miyagawa, Kazuo; Amano, Hiroshi

    1980-01-01

    In the steel industry, though the investment in isotope-equipped measuring instruments is small as compared with that in machinery, they play important role in the moisture measurement in sintering and blast furnaces, the thickness measurement in rolling process and others in automatic control systems. The economic aspect of the isotope-equipped measuring instruments is described on the basis of the practices in Kimitsu Works of Nippon Steel Corporation: distribution of such instruments, evaluation of economic effects, usefulness evaluation in view of raising the accuracy, and usefulness evaluation viewed from the failure of the isotope instruments. The evaluation of economic effects was made under the premise that the isotope-equipped measuring instruments are not employed. Then, the effects of raising the accuracy are evaluated for a γ-ray plate thickness gauge and a neutron moisture gauge for coke in a blast furnace. Finally, the usefulness was evaluated, assuming possible failure of the isotope-equipped measuring instruments. (J.P.N.)

  19. Methodology development for availability improvement of standby equipment

    International Nuclear Information System (INIS)

    Shin, Sung Min; Jeon, In Seop; Kang, Hyun Gook

    2014-01-01

    The core damage frequency (CDF) of operating and constructing pressurized nuclear plants are ranging on the order of 10 -5 and 10 -6 per year. The target CDF of new NPP design has been set at 10 -7 . In this context, although various systems are currently studied, availability improvement of standby equipment will be more efficient than the additional application of safety systems. It is obvious in every aspect, such as management and cost efficiency. Here, soundness can affect equipment unavailability, and the soundness degrades because of aging. However, some studies did not consider aging when calculating the unavailability. Standby equipment can age because of two important factors: standby stress which accumulates over time, and test stress which accumulates with the number of tests (or operations). Both factors should be considered together when aging is considered. However, some studies only considered standby stress or test stress. There are some previous studies which considered both factors. Besides equipment soundness related to aging effect, some process like bypass during test also can affect equipment unavailability because the original function of equipment cannot be performed immediately during this process. However, there are seldom studies dealing with above factors as a whole problem. This study investigated a general approach to calculate the unavailability of standby equipment which considers aging caused by standby and test stresses and bypass process. Based on this general approach, we propose two maintenance strategies which aim to reduce standby equipment unavailability. In section 2, the general approach is presented. As one of the strategies, the changing test interval method (CIM) is introduced in section 3, and its effectiveness is also analyzed. The online monitoring method (OMM) is investigated in section 4 as another method to reduce equipment unavailability. In section 5, a combination of these two methods is analyzed. A general

  20. Risk exposures for human ornithosis in a poultry processing plant modified by use of personal protective equipment: an analytical outbreak study.

    Science.gov (United States)

    Williams, C J; Sillis, M; Fearne, V; Pezzoli, L; Beasley, G; Bracebridge, S; Reacher, M; Nair, P

    2013-09-01

    Ornithosis outbreaks in poultry processing plants are well-described, but evidence for preventive measures is currently lacking. This study describes a case-control study into an outbreak of ornithosis at a poultry processing plant in the East of England, identified following three employees being admitted to hospital. Workers at the affected plant were recruited via their employer, with exposures assessed using a self-completed questionnaire. Cases were ascertained using serological methods or direct antigen detection in sputum. 63/225 (28%) staff participated, with 10% of participants showing evidence of recent infection. Exposure to the killing/defeathering and automated evisceration areas, and contact with viscera or blood were the main risk factors for infection. Personal protective equipment (goggles and FFP3 masks) reduced the effect of exposure to risk areas and to self-contamination with potentially infectious material. Our study provides some evidence of effectiveness for respiratory protective equipment in poultry processing plants where there is a known and current risk of ornithosis. Further studies are required to confirm this tentative finding, but in the meantime respiratory protective equipment is recommended as a precautionary measure in plants where outbreaks of ornithosis occur.

  1. Surface modification for biomedical purposes utilizing dielectric barrier discharges at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Gessner, Cordula; Bartels, Volker; Betker, Tanja; Matucha, Ulrike; Penache, Cristina; Klages, Claus-Peter

    2004-07-01

    Using dielectric barrier discharges (DBD) at atmospheric pressure, glass or polymer surfaces were equipped with epoxide groups or amino groups by plasma deposition from suitable monomers or - in case of polymers - DBD treatment in nitrogen-containing gases. Functional group densities have been estimated using absorption and fluorescence measurements or by X-ray photoelectron spectroscopy. Amino group densities are comparable or even larger than those of aminosilylated surfaces. Fluorescence-labeled streptavidin has been used to investigate the binding capacity of surfaces equipped with covalently bound biotin molecules, starting either from epoxide or from amino groups. As an example of a Plasma Printing process, the generation of an array amino-functionalized spots, 400-{mu}m in diameter on a polymer surface by local deposition from aminopropyl-trimethoxysilane is demonstrated.

  2. Self reliance in equipment building for PHWR fuel fabrication

    International Nuclear Information System (INIS)

    Sastry, V.S.; Hemantha Rao, G.V.S.; Jayaraj, R.N.

    2009-01-01

    Full text: Keeping in tune with the policy of self-reliance and indigenisation adopted from the very inception of nuclear power programme in India during the mid 1960, Nuclear Fuel Complex, established in the year 1971, developed its own processes, equipment and technologies based on both in-house experience and the expertise available in the indigenous industry. Starting from the basic raw materials, Nuclear Fuel Complex (NFC) manufactures and supplies finished fuel assemblies, apart from zircaloy core components, to all the nuclear power stations in India. Out of several products manufactured by NFC, 19 and 37 element fuel bundles for Pressurised Heavy Water Reactors (PHWRs) is vital for operation of several PHWRs being operated by Nuclear Power Corporation of India Limited (NPCIL). Starting from the manufacturing of half-charge for RAPS-1, more than 3.8 lakh fuel bundles were made till now. Several process improvements were taken up over the years for improving the quality of the fuel. PHWR fuel bundles manufactured by NFC has adopted an unique feature of joining appendages on zirconium alloy tubes by resistance welding before loading natural uranium dioxide pellets. Graphite coating on the inner surface of the zirconium alloy tube and vacuum baking, use of profiled end caps, use of bio-degradable cleaning agents are some of the processes adopted in the manufacturing of PHWR fuel bundles. With the recent opening up of international nuclear trade for India and the enhanced growth of nuclear power, exciting opportunities and challenges confront NFC. This paper presents salient features of some important special purpose equipment developed in-house at NFC for production of PHWR fuel bundles. It looks ahead to develop many more such special purpose equipment towards meeting the diverse demands now showing up to meet the indigenous as well as international requirements

  3. Development of the maintenance process by the servo manipulator for the parts of the equipment outside the MSM's workspace in a hot cell

    International Nuclear Information System (INIS)

    Lee, J. Y.; Kim, S. H.; Song, D. K.; Park, B. S.; Yun, G. S.

    2003-01-01

    In this study, the maintenance process by the servo manipulator for the parts of the equipment that cannot be reached by MSM in the hot cell was developed. To do this, the virtual mock up is implemented using virtual prototyping technology. And, Using this mock-up, the workspace of the manipulators in the hot cell and the operator's view through the wall-mounted lead glass are analyzed. And the path planning of the servo manipulator using the collision detection of the virtual mockup is established. Also, the maintenance process for the parts of the equipment that are located out area of the MSM's workspace by the servo manipulator is proposed and verified through the graphic simulation. The proposed remote maintenance process of the equipment can be effectively used in the real hot cell operation. Also, the implemented virtual mock-up of the hot cell can be effecively used in analyzing the various hot cell operation and in enhancing the reliability and safety of the spent fuel manaement

  4. Surface modification of the metal plates using continuous electron beam process (CEBP)

    International Nuclear Information System (INIS)

    Kim, Jisoo; Kim, Jin-Seok; Kang, Eun-Goo; Park, Hyung Wook

    2014-01-01

    Highlights: • We performed surface modification of SM20C, SUS303, and Al6061 using CEBP. • We analyzed surface properties and microstructure after electron-beam irradiation. • The surface quality was improved after electron-beam irradiation. • The surface hardness for SM20C was increased by ∼50% after CEBP irradiation. - Abstract: The finishing process is an important component of the quality-control procedure for final products in manufacturing applications. In this study, we evaluated the performance of continuous electron-beam process as the final process for finishing SM20C (steel alloy), SUS303 (stainless steel alloy), and Al6061 (aluminum alloy) surfaces both on the initially smooth and rough surfaces. Surface modification of the metals was carried out by varying the feed and frequency of the continuous electron-beam irradiation procedure. The resulting surface roughness was examined with respect to the initial surface roughness of the metals. SM20C and SUS303 experienced an improvement in surface roughness, particularly for initially rough surfaces. Continuous electron-beam process produced craters during the process and the effect of this phenomenon on the resulting surface roughness was relatively large with the initially smooth SM20C and SUS303 alloy surfaces. For Al6061, the continuous electron-beam process was effective at improving its surface roughness even with the initially smooth surface under the optimized conditions of process; this was attributed to its low melting point. Scanning electron microscopy was used to identify metallurgical variation within the thin melted and re-solidification layers of the tested alloys. Changes in the surface contact angle and hardness before and after electron-beam irradiation were also examined

  5. Surface modification of the metal plates using continuous electron beam process (CEBP)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jisoo, E-mail: kimjisu16@unist.ac.kr [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan Metropolitan City 689-798 (Korea, Republic of); Kim, Jin-Seok, E-mail: totoro22@kitech.re.kr [Korea Institute of Industrial Technology (KITECH), KITECH Cheonan Headquarters 35-3 Hongcheon-ri, Ipjang-myeon, Cheonan-si, Chungcheongnam-do 330-825 (Korea, Republic of); Kang, Eun-Goo, E-mail: egkang@kitech.re.kr [Korea Institute of Industrial Technology (KITECH), KITECH Cheonan Headquarters 35-3 Hongcheon-ri, Ipjang-myeon, Cheonan-si, Chungcheongnam-do 330-825 (Korea, Republic of); Park, Hyung Wook, E-mail: hwpark@unist.ac.kr [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan Metropolitan City 689-798 (Korea, Republic of)

    2014-08-30

    Highlights: • We performed surface modification of SM20C, SUS303, and Al6061 using CEBP. • We analyzed surface properties and microstructure after electron-beam irradiation. • The surface quality was improved after electron-beam irradiation. • The surface hardness for SM20C was increased by ∼50% after CEBP irradiation. - Abstract: The finishing process is an important component of the quality-control procedure for final products in manufacturing applications. In this study, we evaluated the performance of continuous electron-beam process as the final process for finishing SM20C (steel alloy), SUS303 (stainless steel alloy), and Al6061 (aluminum alloy) surfaces both on the initially smooth and rough surfaces. Surface modification of the metals was carried out by varying the feed and frequency of the continuous electron-beam irradiation procedure. The resulting surface roughness was examined with respect to the initial surface roughness of the metals. SM20C and SUS303 experienced an improvement in surface roughness, particularly for initially rough surfaces. Continuous electron-beam process produced craters during the process and the effect of this phenomenon on the resulting surface roughness was relatively large with the initially smooth SM20C and SUS303 alloy surfaces. For Al6061, the continuous electron-beam process was effective at improving its surface roughness even with the initially smooth surface under the optimized conditions of process; this was attributed to its low melting point. Scanning electron microscopy was used to identify metallurgical variation within the thin melted and re-solidification layers of the tested alloys. Changes in the surface contact angle and hardness before and after electron-beam irradiation were also examined.

  6. Maintenance and fabrication of nuclear electronic equipment

    International Nuclear Information System (INIS)

    Hong, Seok Boong; Chung, Chong Eun; Hwang, In Koo; Koo, In Soo; Park, Bum; Kim, Soo Hee; Lee, Seong Joo; Kim, Min Seok; Choi, Wha Lim

    2011-12-01

    - process equipment at PIEF, Chemical Analysis Team and RWFTF have been calibrated. - The electronic equipment and radiation equipment at RWTF and PIEF have been prepared. - Development and installation of integrated RMS software for Hanaro Cold Neutron Laboratory Building(CNLB) RMS, and development and performance upgrade of a portal monitor for CNLB. - Performance test of the Hardware/Software of digital unit controller has been performed, and functional upgrade of the Hardware/Software of stimulator for SMART MMIS performance test facility has also been performed. - A controller of high voltage power supply for a small electron beam generator and a controller for razer pinning and a remote monitoring apparatus of cathode power supply for a 0.2 Mev. small electron beam generator have been designed and fabricated. - Database construction for effective maintenance for the process equipment and radiation instruments are designed and constructed

  7. Surface photo reaction processes using synchrotron radiation; Hoshako reiki ni yoru hyomenko hanno process

    Energy Technology Data Exchange (ETDEWEB)

    Imaizumi, Y. [Tohoku University, Sendai (Japan). Institute for Materials Research; Yoshigoe, A. [Toyohashi University of Technology, Aichi (Japan); Urisu, T. [Toyohashi University of Technology, Aichi (Japan). Institute for Molecular Science

    1997-08-20

    This paper introduces the surface photo reaction processes using synchrotron radiation, and its application. A synchrotron radiation process using soft X-rays contained in electron synchrotron radiated light as an excited light source has a possibility of high-resolution processing because of its short wave length. The radiated light can excite efficiently the electronic state of a substance, and can induce a variety of photochemical reactions. In addition, it can excite inner shell electrons efficiently. In the aspect of its application, it has been found that, if radiated light is irradiated on surfaces of solids under fluorine-based reaction gas or Cl2, the surfaces can be etched. This technology is utilized practically. With regard to radiated light excited CVD process, it may be said that anything that can be deposited by the ordinary plasma CVD process can be deposited. Its application to epitaxial crystal growth may be said a nano processing application in thickness direction, such as forming an ultra-lattice structure, the application being subjected to expectation. In micromachine fabricating technologies, a possibility is searched on application of a photo reaction process of the radiated light. 5 refs., 6 figs.

  8. Equipment Reliability Program in NPP Krsko

    International Nuclear Information System (INIS)

    Skaler, F.; Djetelic, N.

    2006-01-01

    Operation that is safe, reliable, effective and acceptable to public is the common message in a mission statement of commercial nuclear power plants (NPPs). To fulfill these goals, nuclear industry, among other areas, has to focus on: 1 Human Performance (HU) and 2 Equipment Reliability (EQ). The performance objective of HU is as follows: The behaviors of all personnel result in safe and reliable station operation. While unwanted human behaviors in operations mostly result directly in the event, the behavior flaws either in the area of maintenance or engineering usually cause decreased equipment reliability. Unsatisfied Human performance leads even the best designed power plants into significant operating events, which can be found as well-known examples in nuclear industry. Equipment reliability is today recognized as the key to success. While the human performance at most NPPs has been improving since the start of WANO / INPO / IAEA evaluations, the open energy market has forced the nuclear plants to reduce production costs and operate more reliably and effectively. The balance between these two (opposite) goals has made equipment reliability even more important for safe, reliable and efficient production. Insisting on on-line operation by ignoring some principles of safety could nowadays in a well-developed safety culture and human performance environment exceed the cost of electricity losses. In last decade the leading USA nuclear companies put a lot of effort to improve equipment reliability primarily based on INPO Equipment Reliability Program AP-913 at their NPP stations. The Equipment Reliability Program is the key program not only for safe and reliable operation, but also for the Life Cycle Management and Aging Management on the way to the nuclear power plant life extension. The purpose of Equipment Reliability process is to identify, organize, integrate and coordinate equipment reliability activities (preventive and predictive maintenance, maintenance

  9. Intelligent Processing Equipment Research and Development Programs of the Department of Commerce

    Science.gov (United States)

    Simpson, J. A.

    1992-01-01

    The intelligence processing equipment (IPE) research and development (R&D) programs of the Department of Commerce are carried out within the National Institute of Standards and Technology (NIST). This institute has had work in support of industrial productivity as part of its mission since its founding in 1901. With the advent of factory automation these efforts have increasingly turned to R&D in IPE. The Manufacturing Engineering Laboratory (MEL) of NIST devotes a major fraction of its efforts to this end while other elements within the organization, notably the Material Science and Engineering Laboratory, have smaller but significant programs. An inventory of all such programs at NIST and a representative selection of projects that at least demonstrate the scope of the efforts are presented.

  10. Surface processing for bulk niobium superconducting radio frequency cavities

    Science.gov (United States)

    Kelly, M. P.; Reid, T.

    2017-04-01

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2-4 mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single- or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies on real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and ‘nitrogen doping’ of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.

  11. West Valley Demonstration Project vitrification process equipment Functional and Checkout Testing of Systems (FACTS)

    International Nuclear Information System (INIS)

    Carl, D.E.; Paul, J.; Foran, J.M.; Brooks, R.

    1990-01-01

    The Vitrification Facility (VF) at the West Valley Demonstration Project was designed to convert stored radioactive waste into a stable glass for disposal in a federal repository. The Functional and Checkout Testing of Systems (FACTS) program was conducted from 1984 to 1989. During this time new equipment and processes were developed, installed, and implemented. Thirty-seven FACTS tests were conducted, and approximately 150,000 kg of glass were made by using nonradioactive materials to simulate the radioactive waste. By contrast, the planned radioactive operation is expected to produce approximately 500,000 kg of glass. The FACTS program demonstrated the effectiveness of equipment and procedures in the vitrification system, and the ability of the VF to produce quality glass on schedule. FACTS testing also provided data to validate the WVNS waste glass qualification method and verify that the product glass would meet federal repository acceptance requirements. The system was built and performed to standards which would have enabled it to be used in radioactive service. As a result, much of the VF tested, such as the civil construction, feed mixing and holding vessels, and the off-gas scrubber, will be converted for radioactive operation. The melter was still in good condition after being at temperature for fifty-eight of the sixty months of FACTS. However, the melter exceeded its recommended design life and will be replaced with a similar melter. Components that were not designed for remote operation and maintenance will be replaced with remote-use items. The FACTS testing was accomplished with no significant worker injury or environmental releases. During the last FACTS run, the VF processes approximated the remote-handling system that will be used in radioactive operations. Following this run the VF was disassembled for conversion to a radioactive process. Functional and checkout testing of new components will be performed prior to radioactive operation

  12. Development of equipment for fabricating DUPIC fuel powder

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Yang, M. S.; Park, J. J.; Lee, J. W.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.; Na, S. H.

    1999-06-01

    The powder fabrication processes, as the first stage of manufacturing DUPIC (Direct Use of PWR spent fuel In CANDU) fuel, consist of the slitting of spent PWR fuel rods, REOX (Oxidation and REduction of Oxide Fuels) processing to produce the powder feedstock, the milling of the produced powder, the granulation of the milled powder, and the mixing of the granulated powder with pressing lubricants. All these processes should be conducted by remote means in a hot-cell environment where the direct human access is limited to the strictest minimum due to the high radioactivity. This report describe the development of the equipment for fabricating DUPIC fuel powder. These equipment are Slitting Machine, Oxidation and Reduction (OREOX) Furnace, Mill, Roll Compactor, and Mixer. Remote design concept was applied to all the equipment for use in the M6 hot-cell of the IMEF. Mechanical design considerations and capabilities of the equipment for remote operation and maintenance are presented. First prototypes were developed and installed in the DUPIC full scale mock-up and tested using a master-slave manipulator. Redesign and reconstruction were made on each equipment based on mock-up test results. The remote technology acquired through this research was utilized in developing other equipment for DUPIC fuel fabrication, thereby improving safety and increasing productivity. This technology could also be extended to the area of remote handling equipment development for use in hazardous environments. (author). 14 refs., 9 tabs., 21 figs

  13. Development of equipment for fabricating DUPIC fuel powder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Ho; Yang, M. S.; Park, J. J.; Lee, J. W.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.; Na, S. H

    1999-06-01

    The powder fabrication processes, as the first stage of manufacturing DUPIC (Direct Use of PWR spent fuel In CANDU) fuel, consist of the slitting of spent PWR fuel rods, REOX (Oxidation and REduction of Oxide Fuels) processing to produce the powder feedstock, the milling of the produced powder, the granulation of the milled powder, and the mixing of the granulated powder with pressing lubricants. All these processes should be conducted by remote means in a hot-cell environment where the direct human access is limited to the strictest minimum due to the high radioactivity. This report describe the development of the equipment for fabricating DUPIC fuel powder. These equipment are Slitting Machine, Oxidation and Reduction (OREOX) Furnace, Mill, Roll Compactor, and Mixer. Remote design concept was applied to all the equipment for use in the M6 hot-cell of the IMEF. Mechanical design considerations and capabilities of the equipment for remote operation and maintenance are presented. First prototypes were developed and installed in the DUPIC full scale mock-up and tested using a master-slave manipulator. Redesign and reconstruction were made on each equipment based on mock-up test results. The remote technology acquired through this research was utilized in developing other equipment for DUPIC fuel fabrication, thereby improving safety and increasing productivity. This technology could also be extended to the area of remote handling equipment development for use in hazardous environments. (author). 14 refs., 9 tabs., 21 figs.

  14. Plasma assisted surface coating/modification processes: An emerging technology

    Science.gov (United States)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  15. Plasma assisted surface coating/modification processes - An emerging technology

    Science.gov (United States)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  16. Surface modification by electrolytic plasma processing for high Nb-TiAl alloys

    Science.gov (United States)

    Gui, Wanyuan; Hao, Guojian; Liang, Yongfeng; Li, Feng; Liu, Xiao; Lin, Junpin

    2016-12-01

    Metal surface modification by electrolytic plasma processing (EPP) is an innovative treatment widely commonly applied to material processing and pretreatment process of coating and galvanization. EPP involves complex processes and a great deal of parameters, such as preset voltage, current, solution temperature and processing time. Several characterization methods are presented in this paper for evaluating the micro-structure surfaces of Ti45Al8Nb alloys: SEM, EDS, XRD and 3D topography. The results showed that the oxide scale and other contaminants on the surface of Ti45Al8Nb alloys can be effectively removed via EPP. The typical micro-crater structure of the surface of Ti45Al8Nb alloys were observed by 3D topography after EPP to find that the mean diameter of the surface structure and roughness value can be effectively controlled by altering the processing parameters. The mechanical properties of the surface according to nanomechanical probe testing exhibited slight decrease in microhardness and elastic modulus after EPP, but a dramatic increase in surface roughness, which is beneficial for further processing or coating.

  17. Factors influencing surface roughness of polyimide film

    International Nuclear Information System (INIS)

    Yao Hong; Zhang Zhanwen; Huang Yong; Li Bo; Li Sai

    2011-01-01

    The polyimide (PI) films of pyromellitic dianhydride-oxydiamiline (PMDA-ODA) were fabricated using vapor deposition polymerization (VDP) method under high vacuum pressure of 10-4 Pa level. The influence of equipment, substrate temperature, the process of heating and deposition ratio of monomers on the surface roughness of the PI films was investigated. The surface topography of films was measured by interferometer microscopy and scanning electron microscopy(SEM), and the surface roughness was probed with atomic force microscopy(AFM). The results show that consecutive films can be formed when the distance from steering flow pipe to substrate is 74 cm. The surface roughnesses are 291.2 nm and 61.9 nm respectively for one-step heating process and multi-step heating process, and using fine mesh can effectively avoid the splash of materials. The surface roughness can be 3.3 nm when the deposition rate ratio of PMDA to ODA is 0.9:1, and keeping the temperature of substrate around 30 degree C is advantageous to form a film with planar micro-surface topography. (authors)

  18. Selection of equipment for equipment qualification

    International Nuclear Information System (INIS)

    Torr, K.G.

    1989-01-01

    This report describes the methodology applied in selecting equipment in the special safety systems for equipment qualification in the CANDU 600 MW nuclear generating stations at Gentilly 2 and Point Lepreau. Included is an explanation of the selection procedure adopted and the rationale behind the criteria used in identifying the equipment. The equipment items on the list have been grouped into three priority categories as a planning aid to AECB staff for a review of the qualification status of the special safety systems

  19. 30 CFR 77.807-3 - Movement of equipment; minimum distance from high-voltage lines.

    Science.gov (United States)

    2010-07-01

    ... high-voltage lines. 77.807-3 Section 77.807-3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-3 Movement of equipment; minimum distance from high-voltage lines. When any part of any equipment operated on the surface of any...

  20. Remote maintenance lessons learned on prototypical reprocessing equipment

    International Nuclear Information System (INIS)

    Kring, C.T.; Schrock, S.L.

    1990-01-01

    A major objective of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory is to develop and demonstrate the technology required to reprocess spent nuclear fuel. The Fuel Recycle Division, over the past 16 years, has undertaken this objective by designing and testing prototypical hardware representing essentially every major equipment item currently included in most fuel reprocessing plant conceptual designs. These designs are based on total remote maintenance to increase plant availability and reduce radiation exposure to plant operators. The designs include modular equipment to facilitate maintainability and the remote manipulation necessary to accomplish maintenance tasks. Prototypic equipment has been installed and tested in a cold mock-up of a reprocessing hot cell, called the remote operations and maintenance demonstration facility. The applied maintenance concept utilizes the dexterity and mobility of bridge-mounted, force-reflecting servomanipulators. Prototypic processing equipment includes a remote disassembly system, a remote shear system, a rotary dissolver, a remote automated sampler system, removable equipment racks to support chemical process equipment items, and the advanced servomanipulators. Each of these systems and a brief description of functions are discussed

  1. Array processing for seismic surface waves

    Energy Technology Data Exchange (ETDEWEB)

    Marano, S.

    2013-07-01

    This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich takes a look at the analysis of surface wave properties which allows geophysicists to gain insight into the structure of the subsoil, thus avoiding more expensive invasive techniques such as borehole drilling. This thesis aims at improving signal processing techniques for the analysis of surface waves in various directions. One main contribution of this work is the development of a method for the analysis of seismic surface waves. The method also deals with the simultaneous presence of multiple waves. Several computational approaches to minimize costs are presented and compared. Finally, numerical experiments that verify the effectiveness of the proposed cost function and resulting array geometry designs are presented. These lead to greatly improved estimation performance in comparison to arbitrary array geometries.

  2. Array processing for seismic surface waves

    International Nuclear Information System (INIS)

    Marano, S.

    2013-01-01

    This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich takes a look at the analysis of surface wave properties which allows geophysicists to gain insight into the structure of the subsoil, thus avoiding more expensive invasive techniques such as borehole drilling. This thesis aims at improving signal processing techniques for the analysis of surface waves in various directions. One main contribution of this work is the development of a method for the analysis of seismic surface waves. The method also deals with the simultaneous presence of multiple waves. Several computational approaches to minimize costs are presented and compared. Finally, numerical experiments that verify the effectiveness of the proposed cost function and resulting array geometry designs are presented. These lead to greatly improved estimation performance in comparison to arbitrary array geometries

  3. Hot roller embossing system equipped with a temperature margin-based controller

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seyoung, E-mail: seyoungkim@kimm.re.kr; Son, Youngsu; Lee, Sunghee; Ham, Sangyong; Kim, Byungin [Department of Robotics and Mechatronics, Korea Institute of Machinery and Materials (KIMM), Daejeon (Korea, Republic of)

    2014-08-15

    A temperature control system was proposed for hot roller embossing. The roll surface was heated using induction coils and cooled with a circulating chilled water system. The temperature of the roll surface was precisely controlled by a temperature margin-based control algorithm that we developed. Implementation of the control system reduced deviations in the roll surface temperature to less than ±2 °C. The tight temperature control and the ability to rapidly increase and decrease the roll temperature will allow optimum operating parameters to be developed quickly. The temperature margin-based controller could also be used to optimize the time course of electrical power and shorten the cooling time by choosing an appropriate temperature margin, possibly for limited power consumption. The chiller-equipped heating roll with the proposed control algorithm is expected to decrease the time needed to determine the optimal embossing process.

  4. Hot roller embossing system equipped with a temperature margin-based controller

    International Nuclear Information System (INIS)

    Kim, Seyoung; Son, Youngsu; Lee, Sunghee; Ham, Sangyong; Kim, Byungin

    2014-01-01

    A temperature control system was proposed for hot roller embossing. The roll surface was heated using induction coils and cooled with a circulating chilled water system. The temperature of the roll surface was precisely controlled by a temperature margin-based control algorithm that we developed. Implementation of the control system reduced deviations in the roll surface temperature to less than ±2 °C. The tight temperature control and the ability to rapidly increase and decrease the roll temperature will allow optimum operating parameters to be developed quickly. The temperature margin-based controller could also be used to optimize the time course of electrical power and shorten the cooling time by choosing an appropriate temperature margin, possibly for limited power consumption. The chiller-equipped heating roll with the proposed control algorithm is expected to decrease the time needed to determine the optimal embossing process

  5. Explosion Clad for Upstream Oil and Gas Equipment

    Science.gov (United States)

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO2 and/or H2S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  6. Explosion Clad for Upstream Oil and Gas Equipment

    International Nuclear Information System (INIS)

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO 2 and/or H 2 S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  7. Estimation of surface absorptivity in laser surface heating process with experimental data

    International Nuclear Information System (INIS)

    Chen, H-T; Wu, X-Y

    2006-01-01

    This study applies a hybrid technique of the Laplace transform and finite-difference methods in conjunction with the least-squares method and experimental temperature data inside the test material to predict the unknown surface temperature, heat flux and absorptivity for various surface conditions in the laser surface heating process. In this study, the functional form of the surface temperature is unknown a priori and is assumed to be a function of time before performing the inverse calculation. In addition, the whole time domain is divided into several analysis sub-time intervals and then these unknown estimates on each analysis interval can be predicted. In order to show the accuracy of the present inverse method, comparisons are made among the present estimates, direct results and previous results, showing that the present estimates agree with the direct results for the simulated problem. However, the present estimates of the surface absorptivity deviate slightly from previous estimated results under the assumption of constant thermal properties. The effect of the surface conditions on the surface absorptivity and temperature is not negligible

  8. Biofilm retention on surfaces with variable roughness and hydrophobicity

    DEFF Research Database (Denmark)

    Tang, Lone; Pillai, Saju; Revsbech, Niels Peter

    2011-01-01

    Biofilms on food processing equipment cause food spoilage and pose a hazard to consumers. The bacterial community on steel surfaces in a butcher’s shop was characterized, and bacteria representative of this community enriched from minced pork were used to study biofilm retention. Stainless steel...

  9. Surface analytical techniques applied to minerals processing

    International Nuclear Information System (INIS)

    Smart, R.St.C.

    1991-01-01

    An understanding of the chemical and physical forms of the chemically altered layers on the surfaces of base metal sulphides, particularly in the form of hydroxides, oxyhydroxides and oxides, and the changes that occur in them during minerals processing lies at the core of a complete description of flotation chemistry. This paper reviews the application of a variety of surface-sensitive techniques and methodologies applied to the study of surface layers on single minerals, mixed minerals, synthetic ores and real ores. Evidence from combined XPS/SAM/SEM studies have provided images and analyses of three forms of oxide, oxyhydroxide and hydroxide products on the surfaces of single sulphide minerals, mineral mixtures and complex sulphide ores. 4 refs., 2 tabs., 4 figs

  10. Automatic monitoring of vibration welding equipment

    Science.gov (United States)

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  11. Prioritizing equipment for replacement.

    Science.gov (United States)

    Capuano, Mike

    2010-01-01

    It is suggested that clinical engineers take the lead in formulating evaluation processes to recommend equipment replacement. Their skill, knowledge, and experience, combined with access to equipment databases, make them a logical choice. Based on ideas from Fennigkoh's scheme, elements such as age, vendor support, accumulated maintenance cost, and function/risk were used.6 Other more subjective criteria such as cost benefits and efficacy of newer technology were not used. The element of downtime was also omitted due to the data element not being available. The resulting Periop Master Equipment List and its rationale was presented to the Perioperative Services Program Council. They deemed the criteria to be robust and provided overwhelming acceptance of the list. It was quickly put to use to estimate required capital funding, justify items already thought to need replacement, and identify high-priority ranked items for replacement. Incorporating prioritization criteria into an existing equipment database would be ideal. Some commercially available systems do have the basic elements of this. Maintaining replacement data can be labor-intensive regardless of the method used. There is usually little time to perform the tasks necessary for prioritizing equipment. However, where appropriate, a clinical engineering department might be able to conduct such an exercise as shown in the following case study.

  12. History and development of the tennis equipment

    OpenAIRE

    Horáková, Kateřina

    2007-01-01

    Title: History and development of the tennis equipment. Aim of the work: Process an integral, tabular and synoptic historical development overview of the tennis equipment. This owerview will cover the period since the early beginnings of the game to present days. Methods: Advance work has historical charakter therefore used methods are historiogaphical methods such as chronological method and historical method. Results: Produce tabular description of the tennis equipment by means of reading a...

  13. Efficient and compact mobile equipment based on the new RADEON-NWM technology to process liquid radioactive wastes resulted from the accidents of the nuclear installations

    International Nuclear Information System (INIS)

    Martoyan, Gagik; Nalbandyan, Garik; Gagiyan, Lavrenti; Karamyan, Gagik; Brutyan, Gagik

    2013-01-01

    During the operation of nuclear reactors important volume of liquid and solid radioactive wastes are generated, which, in normal conditions, becomes processed by stationary equipment by different methods to minimize their volume and then sent to specially constructed storages. The cases of accidents of Chernobyl and Fukushima showed that the localization of rejected big quantity of radioactive wastes is a prior problem for their further processing by stationary equipment. In this regard it is very important the processing of radioactive wastes on the contaminated areas to localize them by mobile equipment based on the efficient technologies. RADEONNWM new technology allows resolving this problem. This technology is compact, completely automated, which makes possible to assemble it on a standard 40-ft by 7-ft trailer driven by heavy-duty truck. The new technology is fully elaborated, the necessary tests are conducted. (authors)

  14. A dual response surface optimization methodology for achieving uniform coating thickness in powder coating process

    Directory of Open Access Journals (Sweden)

    Boby John

    2015-09-01

    Full Text Available The powder coating is an economic, technologically superior and environment friendly painting technique compared with other conventional painting methods. However large variation in coating thickness can reduce the attractiveness of powder coated products. The coating thickness variation can also adversely affect the surface appearance and corrosion resistivity of the product. This can eventually lead to customer dissatisfaction and loss of market share. In this paper, the author discusses a dual response surface optimization methodology to minimize the thickness variation around the target value of powder coated industrial enclosures. The industrial enclosures are cabinets used for mounting the electrical and electronic equipment. The proposed methodology consists of establishing the relationship between the coating thickness & the powder coating process parameters and developing models for the mean and variance of coating thickness. Then the powder coating process is optimized by minimizing the standard deviation of coating thickness subject to the constraint that the thickness mean would be very close to the target. The study resulted in achieving a coating thickness mean of 80.0199 microns for industrial enclosures, which is very close to the target value of 80 microns. A comparison of the results of the proposed approach with that of existing methodologies showed that the suggested method is equally good or even better than the existing methodologies. The result of the study is also validated with a new batch of industrial enclosures.

  15. Equipment cost optimization

    International Nuclear Information System (INIS)

    Ribeiro, E.M.; Farias, M.A.; Dreyer, S.R.B.

    1995-01-01

    Considering the importance of the cost of material and equipment in the overall cost profile of an oil company, which in the case of Petrobras, represents approximately 23% of the total operational cost or 10% of the sales, an organization for the optimization of such costs has been established within Petrobras. Programs are developed aiming at: optimization of life-cycle cost of material and equipment; optimization of industrial processes costs through material development. This paper describes the methodology used in the management of the development programs and presents some examples of concluded and ongoing programs, which are conducted in permanent cooperation with suppliers, technical laboratories and research institutions and have been showing relevant results

  16. Surface quality in rapid prototype MMD process

    Directory of Open Access Journals (Sweden)

    Lisandro Vargas Henríquez

    2004-09-01

    Full Text Available This article summarises a Manufacturing Materials and Processes MSc thesis written for the Mechanical and Electrical Engineering Department. The paper shows the interaction of process, gap (deposition distance and extursion terminal velocity modelled process parameters for CEIF's (Centro de Equipos Interfacultades rapid prototype molten material deposit (MMD Titan SH-1 machine by analysing prototupes improved surface quality and resistence to tension and characterising material. The project applies experimental design criteria for orientating the selection of experimental process parameters. Acrylonitrile-buttadin-styrene (ABS had alredy been mechanically and physicochemically characterised (i.e the material used in the MMD process.

  17. The adoption of innovative asphalt equipment in road construction

    NARCIS (Netherlands)

    Habets, M.J.M.; Voordijk, Johannes T.; van der Sijde, Peter

    2011-01-01

    Purpose – The purpose of this paper is to provide insight into the adoption process of innovative asphalt equipment in road construction and how the level of knowledge as characterised by the level of education in the companies affects this process. The emphasis is on equipment used for transporting

  18. Performance monitoring of safeguards equipment

    International Nuclear Information System (INIS)

    Sirisena, K.; Peltoranta, M.; Goussarov, V.; Vodrazka, P.

    1999-01-01

    SGTCS is responsible for monitoring and reporting the performance of the SG equipment. Performance monitoring (PM) has been implemented in most important safeguards equipment operating unattended in nuclear facilities. Inspectors acquire equipment performance data in facilities. After inspection, the data package is submitted to SGTCS for processing and analysis. The performance data is used for identification of systems or components, which should be changed in the field and for identification of modules which, should be diagnosed at HQ in order to determine the cause of failure. Moreover, the performance data is used for preventive maintenance and spares distribution planning, and to provide statistics for official reports and management decision making. An important part of the performance monitoring is reporting. Equipment performance reports contain information about equipment inventory, utilization, failure types, failure distribution, and reliability. Trends in performance are given in graphical form in cases, where past data is available. Reliability estimates such as expected times between failures are provided. The automated reporting tools are obtainable through EMIS database application. (author)

  19. Summary of Industry-Academia Collaboration Projects on Cluster Ion Beam Process Technology

    International Nuclear Information System (INIS)

    Yamada, Isao; Toyoda, Noriaki; Matsuo, Jiro

    2008-01-01

    Processes employing clusters of ions comprised of a few hundred to many thousand atoms are now being developed into a new field of ion beam technology. Cluster-surface collisions produce important non-linear effects which are being applied to shallow junction formation, to etching and smoothing of semiconductors, metals, and dielectrics, to assisted formation of thin films with nano-scale accuracy, and to other surface modification applications. In 2000, a four year R and D project for development of industrial technology began in Japan under funding from the New Energy and Industrial Technology Development Organization (NEDO). Subjects of the projects are in areas of equipment development, semiconductor surface processing, high accuracy surface processing and high-quality film formation. In 2002, another major cluster ion beam project which emphasized nano-technology applications has started under a contract from the Ministry of Economy and Technology for Industry (METI). This METI project involved development related to size-selected cluster ion beam equipment and processes, and development of GCIB processes for very high rate etching and for zero damage etching of magnetic materials and compound semiconductor materials. This paper describes summery of the results.

  20. TDRSS S-shuttle unique receiver equipment

    Science.gov (United States)

    Weinberg, A.; Schwartz, J. J.; Spearing, R.

    1985-01-01

    Beginning with STS-9, the Tracking and Date Relay Satellite system (TDRSS) will start providing S- and Ku-band communications and tracking support to the Space Shuttle and its payloads. The most significant element of this support takes place at the TDRSS White Sands Ground Terminal, which processes the Shuttle return link S- and Ku-band signals. While Ku-band hardware available to other TDRSS users is also applied to Ku-Shuttle, stringent S-Shuttle link margins have precluded the application of the standard TDRSS S-band processing equipment to S-Shuttle. It was therfore found necessary to develop a unique S-Shuttle Receiver that embodies state-of-the-art digital technology and processing techniques. This receiver, developed by Motorola, Inc., enhances link margins by 1.5 dB relative to the standard S-band equipment and its bit error rate performance is within a few tenths of a dB of theory. An overview description of the Space Shuttle Receiver Equipment (SSRE) is presented which includes the presentation of block diagrams and salient design features. Selected, measured performance results are also presented.

  1. Zerodur polishing process for high surface quality and high efficiency

    International Nuclear Information System (INIS)

    Tesar, A.; Fuchs, B.

    1992-08-01

    Zerodur is a glass-ceramic composite importance in applications where temperature instabilities influence optical and mechanical performance, such as in earthbound and spaceborne telescope mirror substrates. Polished Zerodur surfaces of high quality have been required for laser gyro mirrors. Polished surface quality of substrates affects performance of high reflection coatings. Thus, the interest in improving Zerodur polished surface quality has become more general. Beyond eliminating subsurface damage, high quality surfaces are produced by reducing the amount of hydrated material redeposited on the surface during polishing. With the proper control of polishing parameters, such surfaces exhibit roughnesses of < l Angstrom rms. Zerodur polishing was studied to recommend a high surface quality polishing process which could be easily adapted to standard planetary continuous polishing machines and spindles. This summary contains information on a polishing process developed at LLNL which reproducibly provides high quality polished Zerodur surfaces at very high polishing efficiencies

  2. St. Louis demonstration final report: refuse processing plant equipment, facilities, and environmental evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Fiscus, D.E.; Gorman, P.G.; Schrag, M.P.; Shannon, L.J.

    1977-09-01

    The results are presented of processing plant evaluations of the St. Louis-Union Electric Refuse Fuel Project, including equipment and facilities as well as assessment of environmental emissions at both the processing and the power plants. Data on plant material flows and operating parameters, plant operating costs, characteristics of plant material flows, and emissions from various processing operations were obtained during a testing program encompassing 53 calendar weeks. Refuse derived fuel (RDF) is the major product (80.6% by weight) of the refuse processing plant, the other being ferrous metal scrap, a marketable by-product. Average operating costs for the entire evaluation period were $8.26/Mg ($7.49/ton). The average overall processing rate for the period was 168 Mg/8-h day (185.5 tons/8-h day) at 31.0 Mg/h (34.2 tons/h). Future plants using an air classification system of the type used at the St. Louis demonstration plant will need an emissions control device for particulates from the large de-entrainment cyclone. Also in the air exhaust from the cyclone were total counts of bacteria and viruses several times higher than those of suburban ambient air. No water effluent or noise exposure problems were encountered, although landfill leachate mixed with ground water could result in contamination, given low dilution rates.

  3. Integrated reliability condition monitoring and maintenance of equipment

    CERN Document Server

    Osarenren, John

    2015-01-01

    Consider a Viable and Cost-Effective Platform for the Industries of the Future (IOF) Benefit from improved safety, performance, and product deliveries to your customers. Achieve a higher rate of equipment availability, performance, product quality, and reliability. Integrated Reliability: Condition Monitoring and Maintenance of Equipment incorporates reliable engineering and mathematical modeling to help you move toward sustainable development in reliability condition monitoring and maintenance. This text introduces a cost-effective integrated reliability growth monitor, integrated reliability degradation monitor, technological inheritance coefficient sensors, and a maintenance tool that supplies real-time information for predicting and preventing potential failures of manufacturing processes and equipment. The author highlights five key elements that are essential to any improvement program: improving overall equipment and part effectiveness, quality, and reliability; improving process performance with maint...

  4. The development of the American National Standard 'control of radioactive surface contamination on materials equipment and facilities to be released for uncontrolled use'

    International Nuclear Information System (INIS)

    Shapiro, J.

    1980-01-01

    A new standard submitted by the Health Physics Society Standards Committee to the American National Standards Institute concerning radioactive surface contamination of materials and equipment is discussed. The chronological events in the development of this standard are given. The standard provides criteria for the release for uncontrolled use of materials, equipment and facilities contaminated or potentially contaminated with radioactivity. Permissible contamination limits are specified for: 1) long lived alpha emitters except natural uranium and thorium, 2) more hazardous beta-gamma emitters, 3) less hazardous beta-gamma emitters and 4) natural uranium and thorium. A contamination reference level of 1000 dpm/100 cm 2 for 90 Sr was set as the basis for assigning limits to radionuclides presenting an ingestion hazard and other radionuclides were grouped based on the values of their maximum permissible concentration (MPC) in water relative to 90 Sr. The contamination limit for 239 Pu was chosen as the basis for assigning limits based on MPC in air to radionuclides presenting an inhalation hazard; a value of 100 dpm/100 cm 2 was adopted in the standard. An upper limit of 5000 dpm/100 cm 2 for surface contamination was selected for the standard. (UK)

  5. Safety analysis report for packaging (onsite) decontaminated equipment self-container

    International Nuclear Information System (INIS)

    Boehnke, W.M.

    1998-01-01

    The purpose of this Safety Analysis Report for Packaging (SARP) is to demonstrate that specific decontaminated equipment can be safely used as its own self-container. As a Decontaminated Equipment Self-Container (also referred to as a self-container), no other packaging, such as a burial box, would be required to transport the equipment onsite. The self-container will consist of a piece of equipment or apparatus which has all readily removable interior contamination removed, all of its external openings sealed, and all external surfaces decontaminated to less than 2000 dpm/100 cm for gamma-emitting radionuclides and less than 220 dpm/100 CM2 for alpha-emitting radionuclides

  6. 30 CFR 77.203 - Use of material or equipment overhead; safeguards.

    Science.gov (United States)

    2010-07-01

    ...; safeguards. 77.203 Section 77.203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS...; safeguards. Where overhead repairs are being made at surface installations and equipment or material is taken...

  7. THE PRODUCT DESIGN PROCESS USING STYLISTIC SURFACES

    Directory of Open Access Journals (Sweden)

    Arkadiusz Gita

    2017-06-01

    Full Text Available The increasing consumer requirements for the way what everyday use products look like, forces manufacturers to put more emphasis on product design. Constructors, apart from the functional aspects of the parts created, are forced to pay attention to the aesthetic aspects. Software for designing A-class surfaces is very helpful in this case. Extensive quality analysis modules facilitate the work and allow getting models with specific visual features. The authors present a design process of the product using stylistic surfaces based on the front panel of the moped casing. In addition, methods of analysis of the design surface and product technology are presented.

  8. Tribological investigations of the applicability of surface functionalization for dry extrusion processes

    Science.gov (United States)

    Teller, Marco; Prünte, Stephan; Ross, Ingo; Temmler, André; Schneider, Jochen M.; Hirt, Gerhard

    2017-10-01

    Cold extrusion processes are characterized by large relative contact stresses combined with a severe surface enlargement of the workpiece. Under these process conditions a high risk for galling of workpiece material to the tool steel occurs especially in processing of aluminum and aluminum alloys. In order to reduce adhesive wear lubricants for separation of workpiece and tool surfaces are used. As a consequence additional process steps (e.g. preparation and cleaning of workpieces) are necessary. Thus, the realization of a dry forming process is aspired from an environmental and economic perspective. In this paper a surface functionalization with self-assembled-monolayers (SAM) of the tool steels AISI D2 (DIN 1.2379) and AISI H11 (DIN 1.2343) is evaluated by a process-oriented tribological test. The tribological experiment is able to resemble and scale the process conditions of cold extrusion related to relative contact stress and surface enlargement for the forming of pure aluminum (Al99.5). The effect of reduced relative contact stress, surface enlargement and relative velocity on adhesive wear and tool lifetime is evaluated. Similar process conditions are achievable by different die designs with decreased extrusion ratios and adjusted die angles. The effect of surface functionalization critically depends on the substrate material. The different microstructure and the resulting differences in surface chemistry of the two tested tool steels appear to affect the performance of the tool surface functionalization with SAM.

  9. Equipment qualification research program: program plan

    International Nuclear Information System (INIS)

    Dong, R.G.; Smith, P.D.

    1982-01-01

    The Lawrence Livermore National Laboratory (LLNL) under the sponsorship of the US Nuclear Regulatory Commission (NRC) has developed this program plan for research in equipment qualification (EQA). In this report the research program which will be executed in accordance with this plan will be referred to as the Equipment Qualification Research Program (EQRP). Covered are electrical and mechanical equipment under the conditions described in the OBJECTIVE section of this report. The EQRP has two phases; Phase I is primarily to produce early results and to develop information for Phase II. Phase I will last 18 months and consists of six projects. The first project is program management. The second project is responsible for in-depth evaluation and review of EQ issues and EQ processes. The third project is responsible for detailed planning to initiate Phase II. The remaining three projects address specific equipment; i.e., valves, electrical equipment, and a pump

  10. Changing nature of equipment and parts qualification

    International Nuclear Information System (INIS)

    Bucci, R.M.

    1988-01-01

    Ideally, the original supplier of a piece of nuclear safety-related equipment has performed a qualification program and will continue to support that equipment throughout the lifetime of the nuclear power plants in which in equipment is installed. The supplier's nuclear quality assurance program will be maintained and he will continue to offer all necessary replacement parts. These parts will be identical to the original parts, certified to the original purchase order requirements, and the parts will be offered at competitive prices. Due to the changing nature of the nuclear plant equipment market, however, one or more of those ideal features are frequently unavailable when safety-related replacement equipment or parts are required. Thus, the process of equipment and parts qualification has had to adjust in order to ensure obtaining qualified replacements when needed. This paper presents some new directions taken in the qualification of replacement equipment and parts to meet changes in the marketplace

  11. Development and design application of cerium (IV) decontamination process

    International Nuclear Information System (INIS)

    Bray, L.A.; Seay, J.M.

    1988-01-01

    A simple and effective method was developed for decontamination of high-level waste canisters. This method of chemical decontamination is applicable to a wide variety of contaminated equipment found in the nuclear industry. Conceptual design of the cerium [Ce(IV)] decontamination process equipment has been completed for the West Valley Demonstration project (WVDP) vitrification facility. This remote equipment, which is the first engineering scale application of this technology, will remove surface contamination from stainless-steel (SS) containers containing high-level waste (HLW) glass prior to placing them into temporary storage and ultimate shipment to a U.S. Department of Energy (DOE) repository for disposal. The objective of the development and design study was to identify an effective chemical process and to design equipment to decontaminate the HLW glass canisters to limits that meet U.S. DOE requirements. The equipment includes canister-capping and smear stations in addition to the decontamination module and associated services

  12. Development and design application of cerium (IV) decontamination process

    International Nuclear Information System (INIS)

    Bray, L.A.; Seay, J.M.

    1988-10-01

    A simple and effective method was developed for decontamination of high-level waste canisters. This method of chemical decontamination is applicable to a wide variety of contaminated equipment found in the nuclear industry. Conceptual design of the cerium [Ce(IV)] decontamination process equipment has been completed for the West Valley Demonstration Project (WVDP) vitrification facility. This remote equipment, which is the first engineering scale application of this technology, will remove surface contamination from stainless-steel (SS) containers containing high-level waste (HLW) glass prior to placing them into temporary storage and ultimate shipment to a US Department of Energy (DOE) repository for disposal. The objective of the development and design study was to identify an effective chemical process and to design equipment to decontaminate the HLW glass canisters to limits that meet USDOE requirements. The equipment includes canister-capping and smear stations in addition to the decontamination module and associated services. 2 refs., 1 fig

  13. Novel CNC Grinding Process Control for Nanometric Surface Roughness for Aspheric Space Optical Surfaces

    Directory of Open Access Journals (Sweden)

    Jeong-Yeol Han

    2004-06-01

    Full Text Available Optics fabrication process for precision space optical parts includes bound abrasive grinding, loose abrasive lapping and polishing. The traditional bound abrasive grinding with bronze bond cupped diamond wheel leaves the machine marks of about 20 μm rms in height and the subsurface damage of about 1 μm rms in height to be removed by subsequent loose abrasive lapping. We explored an efficient quantitative control of precision CNC grinding. The machining parameters such as grain size, work-piece rotation speed and feed rate were altered while grinding the work-piece surfaces of 20-100 mm in diameter. The input grinding variables and the resulting surface quality data were used to build grinding prediction models using empirical and multi-variable regression analysis. The effectiveness of such grinding prediction models was then examined by running a series of precision CNC grinding operation with a set of controlled input variables and predicted output surface quality indicators. The experiment achieved the predictability down to ±20 nm in height and the surface roughness down to 36 nm in height. This study contributed to improvement of the process efficiency reaching directly the polishing and figuring process without the need for the loose abrasive lapping stage.

  14. Acoustic emission-based in-process monitoring of surface generation in robot-assisted polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2016-01-01

    The applicability of acoustic emission (AE) measurements for in-process monitoring of surface generation in the robot-assisted polishing (RAP) was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate...... automatic detection of optimal process endpoint allow intelligent process control, creating fundamental elements in development of robust fully automated RAP process for its widespread industrial application....... removal of the part from the machine tool. In this study, stabilisation of surface roughness during polishing rotational symmetric surfaces by the RAP process was monitored by AE measurements. An AE sensor was placed on a polishing arm in direct contact with a bonded abrasive polishing tool...

  15. Functional Requirements for Continuation Period Equipment and Drilling

    International Nuclear Information System (INIS)

    Sweeney, J.J.

    2000-01-01

    For geophysical measurements, creating a functional requirement based on finding a specific-sized target at a specific depth is difficult because of the wide variation of subsurface and surface geologic conditions that can be encountered. An alternative approach used in this paper is to specify functional requirements based on what is needed to search for the effects of a given target within a reasonable background of environmental or geological variation (noise). There is a gap between what the state-of-the-art expert with a large amount of experience can be expected to accomplish and what a non-expert inspector with limited experience can do. There are also limitations because of the Treaty environment (equipment certification, transparency, managed access, etc.); thus, for OSI, we must opt for pragmatic approach. Equipment must be easy to use, rugged, and functional over a wide range of environmental conditions. Equipment should consist of commercially available technology. Well-established operational procedures should be used for taking measurements, reducing data, and presenting data, with software mostly provided by the manufacturer along with the equipment. Equipment should be used in conjunction with WGB-approved position-finding equipment capable of relative position determinations pertinent to the type of equipment and measurement

  16. ENVISAT Land Surface Processes. Phase 2

    Science.gov (United States)

    vandenHurk, B. J. J. M.; Su, Z.; Verhoef, W.; Menenti, M.; Li, Z.-L.; Wan, Z.; Moene, A. F.; Roerink, G.; Jia, I.

    2002-01-01

    This is a progress report of the 2nd phase of the project ENVISAT- Land Surface Processes, which has a 3-year scope. In this project, preparative research is carried out aiming at the retrieval of land surface characteristics from the ENVISAT sensors MERIS and AATSR, for assimilation into a system for Numerical Weather Prediction (NWP). Where in the 1st phase a number of first shot experiments were carried out (aiming at gaining experience with the retrievals and data assimilation procedures), the current 2nd phase has put more emphasis on the assessment and improvement of the quality of the retrieved products. The forthcoming phase will be devoted mainly to the data assimilation experiments and the assessment of the added value of the future ENVISAT products for NWP forecast skill. Referring to the retrieval of albedo, leaf area index and atmospheric corrections, preliminary radiative transfer calculations have been carried out that should enable the retrieval of these parameters once AATSR and MERIS data become available. However, much of this work is still to be carried out. An essential part of work in this area is the design and implementation of software that enables an efficient use of MODTRAN(sub 4) radiative transfer code, and during the current project phase familiarization with these new components has been achieved. Significant progress has been made with the retrieval of component temperatures from directional ATSR-images, and the calculation of surface turbulent heat fluxes from these data. The impact of vegetation cover on the retrieved component temperatures appears manageable, and preliminary comparison of foliage temperature to air temperatures were encouraging. The calculation of surface fluxes using the SEBI concept,which includes a detailed model of the surface roughness ratio, appeared to give results that were in reasonable agreement with local measurements with scintillometer devices. The specification of the atmospheric boundary conditions

  17. Heavy metals in soil at a waste electrical and electronic equipment processing area in China.

    Science.gov (United States)

    Gu, Weihua; Bai, Jianfeng; Yao, Haiyan; Zhao, Jing; Zhuang, Xuning; Huang, Qing; Zhang, Chenglong; Wang, JingWei

    2017-11-01

    For the objective of evaluating the contamination degree of heavy metals and analysing its variation trend in soil at a waste electrical and electronic equipment processing area in Shanghai, China, evaluation methods, which include single factor index method, geo-accumulation index method, comprehensive pollution index method, and potential ecological risk index method, were adopted in this study. The results revealed that the soil at a waste electrical and electronic equipment processing area was polluted by arsenic, cadmium, copper, lead, zinc, and chromium. It also demonstrated that the concentrations of heavy metals were increased over time. Exceptionally, the average value of the metalloid (arsenic) was 73.31 mg kg -1 in 2014, while it was 58.31 mg kg -1 in the first half of 2015, and it was 2.93 times and 2.33 times higher than that of the Chinese Environmental Quality Standard for Soil in 2014 and the first half of 2015, respectively. The sequences of the contamination degree of heavy metals in 2014 and the first half of 2015 were cadmium > lead > copper > chromium > zinc and cadmium > lead > chromium > zinc > copper. From the analysis of the potential ecological risk index method, arsenic and cadmium had higher ecological risk than other heavy metals. The integrated ecological risk index of heavy metals (cadmium, copper, lead, zinc, and chromium) and metalloid (arsenic) was 394.10 in 2014, while it was 656.16 in the first half of 2015, thus documenting a strong ecological risk.

  18. Characteristics and application study of AP1000 NPPs equipment reliability classification method

    International Nuclear Information System (INIS)

    Guan Gao

    2013-01-01

    AP1000 nuclear power plant applies an integrated approach to establish equipment reliability classification, which includes probabilistic risk assessment technique, maintenance rule administrative, power production reliability classification and functional equipment group bounding method, and eventually classify equipment reliability into 4 levels. This classification process and result are very different from classical RCM and streamlined RCM. It studied the characteristic of AP1000 equipment reliability classification approach, considered that equipment reliability classification should effectively support maintenance strategy development and work process control, recommended to use a combined RCM method to establish the future equipment reliability program of AP1000 nuclear power plants. (authors)

  19. LDRD report: Smoke effects on electrical equipment

    International Nuclear Information System (INIS)

    TANAKA, TINA J.; BAYNES, EDWARD E. JR.; NOWLEN, STEVEN P.; BROCKMANN, JOHN E.; GRITZO, LOUIS A.; SHADDIX, Christopher R.

    2000-01-01

    Smoke is known to cause electrical equipment failure, but the likelihood of immediate failure during a fire is unknown. Traditional failure assessment techniques measure the density of ionic contaminants deposited on surfaces to determine the need for cleaning or replacement of electronic equipment exposed to smoke. Such techniques focus on long-term effects, such as corrosion, but do not address the immediate effects of the fire. This document reports the results of tests on the immediate effects of smoke on electronic equipment. Various circuits and components were exposed to smoke from different fields in a static smoke exposure chamber and were monitored throughout the exposure. Electrically, the loss of insulation resistance was the most important change caused by smoke. For direct current circuits, soot collected on high-voltage surfaces sometimes formed semi-conductive soot bridges that shorted the circuit. For high voltage alternating current circuits, the smoke also tended to increase the likelihood of arcing, but did not accumulate on the surfaces. Static random access memory chips failed for high levels of smoke, but hard disk drives did not. High humidity increased the conductive properties of the smoke. The conductivity does not increase linearly with smoke density as first proposed; however, it does increase with quantity. The data can be used to give a rough estimate of the amount of smoke that will cause failures in CMOS memory chips, dc and ac circuits. Comparisons of this data to other fire tests can be made through the optical and mass density measurements of the smoke

  20. Apparent stress-strain relationships in experimental equipment where magnetorheological fluids operate under compression mode

    International Nuclear Information System (INIS)

    Mazlan, S A; Ekreem, N B; Olabi, A G

    2008-01-01

    This paper presents an experimental investigation of two different magnetorheological (MR) fluids, namely, water-based and hydrocarbon-based MR fluids in compression mode under various applied currents. Finite element method magnetics was used to predict the magnetic field distribution inside the MR fluids generated by a coil. A test rig was constructed where the MR fluid was sandwiched between two flat surfaces. During the compression, the upper surface was moved towards the lower surface in a vertical direction. Stress-strain relationships were obtained for arrangements of equipment where each type of fluid was involved, using compression test equipment. The apparent compressive stress was found to be increased with the increase in magnetic field strength. In addition, the apparent compressive stress of the water-based MR fluid showed a response to the compressive strain of greater magnitude. However, during the compression process, the hydrocarbon-based MR fluid appeared to show a unique behaviour where an abrupt pressure drop was discovered in a region where the apparent compressive stress would be expected to increase steadily. The conclusion is drawn that the apparent compressive stress of MR fluids is influenced strongly by the nature of the carrier fluid and by the magnitude of the applied current

  1. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    Science.gov (United States)

    Rey, Charles A.

    1991-03-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  2. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    Science.gov (United States)

    Rey, Charles A.

    1991-01-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  3. Surface energy and radiation balance systems - General description and improvements

    Science.gov (United States)

    Fritschen, Leo J.; Simpson, James R.

    1989-01-01

    Surface evaluation of sensible and latent heat flux densities and the components of the radiation balance were desired for various vegetative surfaces during the ASCOT84 experiment to compare with modeled results and to relate these values to drainage winds. Five battery operated data systems equipped with sensors to determine the above values were operated for 105 station days during the ASCOT84 experiment. The Bowen ratio energy balance technique was used to partition the available energy into the sensible and latent heat flux densities. A description of the sensors and battery operated equipment used to collect and process the data is presented. In addition, improvements and modifications made since the 1984 experiment are given. Details of calculations of soil heat flow at the surface and an alternate method to calculate sensible and latent heat flux densities are provided.

  4. The suitability and installation of technological equipment when upgrading existing facilities

    Directory of Open Access Journals (Sweden)

    Ladnushkin A. A.

    2016-03-01

    Full Text Available to date, a large number of Russian companies in diverse and various industries, has old equipment and requires modernization of the technological process due to the growth of scientific and technological progress. In order to achieve goals when upgrading is considered such an important aspect as the readiness of the new equipment installation. Mounting hardware suitability describes the suitability and readiness of equipment for efficient Assembly at the user. Replacement of technological equipment requires large volumes of works on installation and dismantling, in the absence of the building has its own lifting mechanisms require large financial and labor costs. One of possible methods for replacement of process equipment is the technology of without crane installation allows us to carry out work in existing space planning. Today is the question of the necessity of development and introduction of new technological production methods and fixtures tooling in which it is possible to conduct installation and dismantling of technological equipment in the operating production process.

  5. Origins of eponymous orthopaedic equipment.

    Science.gov (United States)

    Meals, Clifton; Wang, Jeffrey

    2010-06-01

    Orthopaedists make great use of eponymous equipment, however the origins of these tools are unknown to many users. This history enriches, enlightens, and enhances surgical education, and may inspire modern innovation. We explored the origins of common and eponymous orthopaedic equipment. We selected pieces of equipment named for their inventors and in the broadest use by modern orthopaedists. We do not describe specialized orthopaedic implants and instruments owing to the overwhelming number of these devices. The history of this equipment reflects the coevolution of orthopaedics and battlefield medicine. Additionally, these stories evidence the primacy of elegant design and suggest that innovation is often a process of revision and refinement rather than sudden inspiration. Their history exposes surgical innovators as brilliant, lucky, hardworking, and sometimes odd. These stories amuse, enlighten, and may inspire modern orthopaedists to develop creative solutions of their own. The rich history of the field's eponymous instruments informs an ongoing tradition of innovation in orthopaedics.

  6. Plant equipment services with laser metrology

    International Nuclear Information System (INIS)

    Hayes, J.H.; Kreitman, P.J.

    1995-01-01

    A new industrial metrology process is now being applied to support PWR Nuclear Plant Steam Generator Replacement Projects. The method uses laser tracking interferometry to perform as built surveys of existing and replacement plant equipment. This method provides precision data with a minimum of setup when compared to alternative methods available. In addition there is no post processing required to ascertain validity. The data is obtained quickly, processed in real time and displayed during the survey in the desired coordinate system. These capabilities make this method of industrial measure ideal for various data acquisition needs throughout the power industry, from internal/external equipment templating to area mapping. Laser tracking interferometry is an improvement on the present use of optical instruments and surveying technique. In order to describe the laser tracking interferometry measurement process, previous methods of templating and surveying are first reviewed

  7. Scaling behaviour of randomly alternating surface growth processes

    International Nuclear Information System (INIS)

    Raychaudhuri, Subhadip; Shapir, Yonathan

    2002-01-01

    The scaling properties of the roughness of surfaces grown by two different processes randomly alternating in time are addressed. The duration of each application of the two primary processes is assumed to be independently drawn from given distribution functions. We analytically address processes in which the two primary processes are linear and extend the conclusions to nonlinear processes as well. The growth scaling exponent of the average roughness with the number of applications is found to be determined by the long time tail of the distribution functions. For processes in which both mean application times are finite, the scaling behaviour follows that of the corresponding cyclical process in which the uniform application time of each primary process is given by its mean. If the distribution functions decay with a small enough power law for the mean application times to diverge, the growth exponent is found to depend continuously on this power-law exponent. In contrast, the roughness exponent does not depend on the timing of the applications. The analytical results are supported by numerical simulations of various pairs of primary processes and with different distribution functions. Self-affine surfaces grown by two randomly alternating processes are common in nature (e.g., due to randomly changing weather conditions) and in man-made devices such as rechargeable batteries

  8. Remote equipment technology. Final report for GFY 1880

    International Nuclear Information System (INIS)

    Wadekamper, D.C.

    1980-09-01

    An interactive graphics terminal and a desk-top computer were utilized to perform a Computer Aided Remote Maintenance simulation of a hypothetical equipment item. The equipment item included an electrical connection, hydraulic fitting, and simple bolt pattern which were maintained by remote manipulators during the simulation. These remote maintenance operations demonstrated that the Computer Aided Remote Maintenance simulation technology could be extended to complex equipment items. As a result, these equipment items can be evaluated from the standpoint of remote operation and maintenance prior to purchase or installation in a remote processing or cell arrangement

  9. Surface concrete decontamination equipment developed by Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Halter, J.M.; Sullivan, R.G.; Bevan, J.L.

    1982-08-01

    This report documents a project that the Pacific Northwest Laboratory conducted to identify and develop techniques for removing contaminated concrete surfaces. A major problem associated with nuclear facility decontamination and decommissioning is how to economically demolish and dispose of contaminated concrete. Removing only the contaminated portion of the concrete can substantially reduce costs. Evaluation of various methods for removing concrete surfaces shows that several techniques presently used require excessive manpower, time, and energy. Many times more material is removed than necessary, increasing the quantity of waste that must be handled under controlled conditions. These evaluations generated the basic criteria for developing a suitable concrete removal technique: provide a convenient method for cleaning surfaces (such as those contaminated by a small spill); reduce the contaminated waste volume that has to be placed into controlled storage; remove surfaces quickly; and minimize personal exposure to potentially harmful radiation or toxic materials. Removal to 1/4 to 1/2 in. of contaminated surface layer is sufficient for cleanup of most facilities. Two unique decontamination methods have been developed: the concrete spaller and the water cannon. The concrete spaller is the most efficient technique: it removes the concrete surface faster than the water cannons and at a lower cost (as little as $3.00/ft 2 of concrete surface). However, the .458 magnum water cannon may be well suited for small or hard-to-reach locations

  10. Status of pre-processing of waste electrical and electronic equipment in Germany and its influence on the recovery of gold.

    Science.gov (United States)

    Chancerel, Perrine; Bolland, Til; Rotter, Vera Susanne

    2011-03-01

    Waste electrical and electronic equipment (WEEE) contains gold in low but from an environmental and economic point of view relevant concentration. After collection, WEEE is pre-processed in order to generate appropriate material fractions that are sent to the subsequent end-processing stages (recovery, reuse or disposal). The goal of this research is to quantify the overall recovery rates of pre-processing technologies used in Germany for the reference year 2007. To achieve this goal, facilities operating in Germany were listed and classified according to the technology they apply. Information on their processing capacity was gathered by evaluating statistical databases. Based on a literature review of experimental results for gold recovery rates of different pre-processing technologies, the German overall recovery rate of gold at the pre-processing level was quantified depending on the characteristics of the treated WEEE. The results reveal that - depending on the equipment groups - pre-processing recovery rates of gold of 29 to 61% are achieved in Germany. Some practical recommendations to reduce the losses during pre-processing could be formulated. Defining mass-based recovery targets in the legislation does not set incentives to recover trace elements. Instead, the priorities for recycling could be defined based on other parameters like the environmental impacts of the materials. The implementation of measures to reduce the gold losses would also improve the recovery of several other non-ferrous metals like tin, nickel, and palladium.

  11. Failure Analysis Of The Bolt From Turn Table Tightening On The Heavy Lifting Equipment System

    International Nuclear Information System (INIS)

    Hatta, IIham

    2000-01-01

    This paper provides the results of failure analysis of the bolt from the turn table tightening which usually using on the heavy lifting equipment or as a equipment tor the material handling with the maximum load about 25 ton. The process of the failure analysis from the series of laboratory testing such as chemical composition, tensile testing, hardness, fracture surtace and microstructure. The results of the analysis we see this bolt have suffered fatigue failure and the initiation, cracking from the manufacture defect. This defect in the form like the folding on the screw surface which maybe happen at the screw forming process. This folding as a part of metal which not bonding together, so could act as a initial crack, and got the creasing of the strength too which cause from oxidation and decarburization at the moment of heat treatment process. So this material got the changein the strength too which oxidation and decarburization at the moment of heat treatment process. So this material got the change in the microstructure, from the martensite temper to the coarse ferrite and finally reduces the strength of the bolt

  12. Dynamics of gas-surface interactions atomic-level understanding of scattering processes at surfaces

    CERN Document Server

    Díez Muniño, Ricardo

    2013-01-01

    This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the ‘surface science’ approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level u...

  13. SURFACE CAST IRON STRENGTHENING USING COMBINED LASER AND ULTRASONIC PROCESSING

    Directory of Open Access Journals (Sweden)

    O. G. Devojno

    2013-01-01

    Full Text Available The paper provides an analysis of ultrasonic surface plastic deformation and subsequent laser thermal strengthening of gray cast iron parts in the regime of hardening from a solid state with the purpose to obtain strengthened surface layers of bigger depth and less roughness of the processed surface. Program complex ANSYS 11.0 has been used for calculation of temperature fields induced by laser exposure.  The appropriate regime of laser processing without surface fusion has been selected on the basis of the applied complex. The possibility of displacement in the bottom boundary of α–γ-transformation temperature  for СЧ20 with 900 °С up to 800 °С is confirmed due to preliminary ultrasonic surface plastic deformation of the surface that allows to expand technological opportunities of laser quenching  of gray  cast iron from a solid state. 

  14. Maintenence and fabrication of Electronic Equipment

    International Nuclear Information System (INIS)

    Chung, Chong Eun; Moon, Byung Soo; Hong, Suk Boong; Kim, Young Keun; Kim, Jung Bok; Lee, Sang Suk

    2004-12-01

    Development of the SPND Monitor could be the base of development of small signal processing circuits and the technique could be used to develop other precision equipment. The repair technology for high purity germanium(HPGe) detector system could be adapted to other areas where high purity detectors are used such as hospitals, universities etc. The technology of multi-channel ASIC for nuclear radiation detector, which has been imported from abroad, could be adapted to development of radiation equipment for image processing, position of detection, NDT etc., and also the technique will be expected to contribute to increase the use of radiation technology to industrial applications

  15. Surface modification and characterization Collaborative Research Center at ORNL

    International Nuclear Information System (INIS)

    1986-01-01

    The Surface Modification and Characterization Collaborative Research Center (SMAC/CRC) is a unique facility for the alteration and characterization of the near-surface properties of materials. The SMAC/CRC facility is equipped with particle accelerators and high-powered lasers which can be used to improve the physical, electrical, and/or chemical properties of solids and to create unique new materials not possible to obtain with conventional ''equilibrium'' processing techniques. Surface modification is achieved using such techniques as ion implantation doping, ion beam mixing, laser mixing, ion deposition, and laser annealing

  16. On rationally supported surfaces

    DEFF Research Database (Denmark)

    Gravesen, Jens; Juttler, B.; Sir, Z.

    2008-01-01

    We analyze the class of surfaces which are equipped with rational support functions. Any rational support function can be decomposed into a symmetric (even) and an antisymmetric (odd) part. We analyze certain geometric properties of surfaces with odd and even rational support functions....... In particular it is shown that odd rational support functions correspond to those rational surfaces which can be equipped with a linear field of normal vectors, which were discussed by Sampoli et al. (Sampoli, M.L., Peternell, M., Juttler, B., 2006. Rational surfaces with linear normals and their convolutions...... with rational surfaces. Comput. Aided Geom. Design 23, 179-192). As shown recently, this class of surfaces includes non-developable quadratic triangular Bezier surface patches (Lavicka, M., Bastl, B., 2007. Rational hypersurfaces with rational convolutions. Comput. Aided Geom. Design 24, 410426; Peternell, M...

  17. Effect of different machining processes on the tool surface integrity and fatigue life

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chuan Liang [College of Mechanical and Electrical Engineering, Nanchang University, Nanchang (China); Zhang, Xianglin [School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2016-08-15

    Ultra-precision grinding, wire-cut electro discharge machining and lapping are often used to machine the tools in fine blanking industry. And the surface integrity from these machining processes causes great concerns in the research field. To study the effect of processing surface integrity on the fine blanking tool life, the surface integrity of different tool materials under different processing conditions and its influence on fatigue life were thoroughly analyzed in the present study. The result shows that the surface integrity of different materials was quite different on the same processing condition. For the same tool material, the surface integrity on varying processing conditions was quite different too and deeply influenced the fatigue life.

  18. Method for keeping equipment and pipeline of nuclear power plant

    International Nuclear Information System (INIS)

    Okubo, Osamu.

    1990-01-01

    The present invention intends to suppress corrosion of equipments and pipelines in condensate, feedwater and feedwater heater drain systems during operation of a nuclear power plant. That is, condensate, feedwater and drain remained in equipments and pipelines just after the stopping of operation are passed through pipelines comprising only conduits, or they are introduced to a condensator passing through the pipelines and condensate pipes. Further, the remaining droplets on the inner surfaces are evaporated by the remaining heat of the equipments and the pipelines themselves. Then, the equipments and pipelines are isolated from other regions and kept. In view of the above, since condensate, feedwater and water feeder drains are introduced directly to the condensator passing through the conduits in which other equipments such as tanks and pumps are not present and are isolated and kept, corrosion of the equipments and the pipelines is suppressed and radioactive contamination is suppressed from prevailing by way of cruds. (I.S.)

  19. Advantages of a Modular Mars Surface Habitat Approach

    Science.gov (United States)

    Rucker, Michelle A.; Hoffman, Stephan J.; Andrews, Alida; Watts, Kevin

    2018-01-01

    Early crewed Mars mission concepts developed by the National Aeronautics and Space Administration (NASA) assumed a single, large habitat would house six crew members for a 500-day Mars surface stay. At the end of the first mission, all surface equipment, including the habitat, -would be abandoned and the process would be repeated at a different Martian landing site. This work was documented in a series of NASA publications culminating with the Mars Design Reference Mission 5.0 (NASA-SP-2009-566). The Evolvable Mars Campaign (EMC) explored whether re-using surface equipment at a single landing site could be more affordable than the Apollo-style explore-abandon-repeat mission cadence. Initial EMC assumptions preserved the single, monolithic habitat, the only difference being a new requirement to reuse the surface habitat for multiple expedition crews. A trade study comparing a single large habitat versus smaller, modular habitats leaned towards the monolithic approach as more mass-efficient. More recent work has focused on the operational aspects of building up Mars surface infrastructure over multiple missions, and has identified compelling advantages of the modular approach that should be considered before making a final decision. This paper explores Mars surface mission operational concepts and integrated system analysis, and presents an argument for the modular habitat approach.

  20. Equipment qualification testing - a practical approach

    International Nuclear Information System (INIS)

    Davies, G.A.; McDougall, R.I.; Poirier, M.P.

    1996-01-01

    When nuclear safety equipment is credited with a Required Safety Function it must properly perform that function to facilitate safe control and/or shutdown of the plant during a design basis accident. When such equipment is required to be environmentally (EQ) and/or seismically qualified (SQ) for safety related use in CANDU nuclear power plants, the preferred method of qualification is by type testing. The qualification testing process requires that the test specimen equipment be subjected to the aging stressors associated with the normal service conditions that it would experience during it's required qualified (or service) life. Following the aging process, the test specimen is in a condition representative of that in which it would be at the end of its service life in the plant. The test specimen is then subjected to a simulated accident during which it must satisfy performance requirements thereby demonstrating that it can perform its required safety function. The performance requirements specified for the qualification testing must be designed to ensure that satisfactory performance of the safety function is demonstrated during the qualification program. This paper provides descriptions of practical methods used in the deriving and satisfying of relevant performance requirements during the qualification testing of safety related equipment. (author)

  1. An Experimental Study of the Dropwise Condensation on Physically Processed Surface

    International Nuclear Information System (INIS)

    Choi, Jaeyoung; Chang, Soonheung; Watanabe, N.; Sambuichi, T.; Shiota, D.; Aritomi, M.

    2013-01-01

    Recent research by Kawakubo et al. derived empirical condensation heat transfer correlation suitable for wider range of operating condition in presence of non-condensable gas. However, their proposals of PCCS are focused on plane tube surface. To design better PCCS heat exchanger with high heat transfer coefficient new treatment on condensation surface can be considered in order to maintain dropwise condensation, the heat transfer coefficient of which has an order of magnitude larger than those of film condensation. Advanced research measure dropwise condensation heat transfer coefficient of Au and Cr coated surface based on number of droplet and droplet growth rate. However, coated surface is not desirable in power plant due to its duration of few years. On the other hand, physical processing (micro holes and patterns) on stainless steel and titanium surface is expected to perform better heat transfer, also is durable for the whole reactor lifetime. Since there is no published research about dropwise condensation for physically processed surface on SUS and Ti, the purposes of this research are to measure the condensation heat transfer coefficient and analyze its mechanism of enhanced heat transfer of treated SUS and Ti commonly used to nuclear plant. In the comparison of theoretical equation and experiment, it shows same result that heat transfer coefficient is proportional to maximum droplet diameter power to -0.321. Moreover, in the comparison of bare and processed surface, heat transfer coefficient decreases in processed surface

  2. 49 CFR 1242.24 - Shop buildings-other equipment (account XX-19-26).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Shop buildings-other equipment (account XX-19-26). 1242.24 Section 1242.24 Transportation Other Regulations Relating to Transportation (Continued) SURFACE... Structures § 1242.24 Shop buildings—other equipment (account XX-19-26). Assign directly to freight (or as...

  3. High surface area carbon and process for its production

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  4. Interventional suite and equipment management: cradle to grave

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Keith J. [Harvard Medical School, Radiology Physics and Engineering, Children' s Hospital Boston, Boston, MA (United States)

    2006-09-15

    The acquisition process for interventional equipment and the care that this equipment receives constitute a comprehensive quality improvement program. This program strives to (a) achieve the production of good image quality that meets clinical needs, (b) reduce radiation doses to the patient and personnel to their lowest possible levels, and (c) provide overall good patient care at reduced cost. Interventional imaging equipment is only as effective and efficient as its supporting facility. The acquisition process of interventional equipment and the development of its environment demand a clinical project leader who can effectively coordinate the efforts of the many professionals who must communicate and work effectively on this type of project. The clinical project leader needs to understand (a) clinical needs of the end users, (b) how to justify the cost of the project, (c) the technical needs of the imaging and all associated equipment, (d) building and construction limitations, (e) how to effectively read construction drawings, and (f) how to negotiate and contract the imaging equipment from the appropriate vendor. After the initial commissioning of the equipment, it must not be forgotten. The capabilities designed into the imaging device can be properly utilized only by well-trained operators and staff who were initially properly trained and receive ongoing training concerning the latest clinical techniques throughout the equipment's lifetime. A comprehensive, ongoing maintenance and repair program is paramount to reducing costly downtime of the imaging device. A planned periodic maintenance program can identify and eliminate problems with the imaging device before these problems negatively impact patient care. (orig.)

  5. Interventional suite and equipment management: cradle to grave

    International Nuclear Information System (INIS)

    Strauss, Keith J.

    2006-01-01

    The acquisition process for interventional equipment and the care that this equipment receives constitute a comprehensive quality improvement program. This program strives to (a) achieve the production of good image quality that meets clinical needs, (b) reduce radiation doses to the patient and personnel to their lowest possible levels, and (c) provide overall good patient care at reduced cost. Interventional imaging equipment is only as effective and efficient as its supporting facility. The acquisition process of interventional equipment and the development of its environment demand a clinical project leader who can effectively coordinate the efforts of the many professionals who must communicate and work effectively on this type of project. The clinical project leader needs to understand (a) clinical needs of the end users, (b) how to justify the cost of the project, (c) the technical needs of the imaging and all associated equipment, (d) building and construction limitations, (e) how to effectively read construction drawings, and (f) how to negotiate and contract the imaging equipment from the appropriate vendor. After the initial commissioning of the equipment, it must not be forgotten. The capabilities designed into the imaging device can be properly utilized only by well-trained operators and staff who were initially properly trained and receive ongoing training concerning the latest clinical techniques throughout the equipment's lifetime. A comprehensive, ongoing maintenance and repair program is paramount to reducing costly downtime of the imaging device. A planned periodic maintenance program can identify and eliminate problems with the imaging device before these problems negatively impact patient care. (orig.)

  6. NEW TECHNOLOGIES FOR RESTORATION AND PROTECTION OF POWER EQUIPMENT WITH THE AID OF COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    A. O. Ischenko

    2017-01-01

    Full Text Available The analysis of possible variants of reconstruction of the power equipment is fulfilled and the conclusion concerning the prospects of such work with the use of composite materials is reached. The data on the technical characteristics of composite repair materials for various purposes are presented, the results of repairs of power equipment, in particular the technology for the recovery of the boarding surfaces of the diffuser rings and protection of the pumps D1250 casings are provided. The technology of the recovery pneumatic cylinder, hydraulic cylinder rod, as well as the unique technology of restoration of working surfaces of the impeller vanes of transfer pump, that had been destroyed by corrosion in conjunction with the cavitation processes and were considered as not restorable is described. The restored impeller was in operation during a year and only thereafter it was removed for restoration. Another composite material discussed in the article – diagum – makes it possible to perform a series of repairs associated with restoration of the rubber-covered surfaces of pump casings as well as with restoration of various surfaces of the conveyor belts. Taking the excellent adhesive properties of this composite into account, restoration of worn stainless steel sieve screens to remove abrasive material was fulfilled with the aid of it. The restoration was accomplished via the use of the conveyor belt which application time had expired, that was glued to a metal sieve with diagum. The use of the composites is economically justified, because the application of them in repairs reduces, firstly, terms of restoration work and, secondly, the price of repairs. Third, equipment that was damaged beyond repair is being commissioned by the use of the mentioned composites. 

  7. 30 CFR 56.12027 - Grounding mobile equipment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding mobile equipment. 56.12027 Section 56.12027 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  8. Fluorolon coatings of cold drying for radiation-protective equipment

    International Nuclear Information System (INIS)

    Shigorina, I.I.; Egorov, B.N.; Timofeeva, L.P.

    1977-01-01

    A composition of the volatile fraction (butyl acetate:acetone = 3:1) is proposed for fluorolon 32L base varnishes possessing high viability. Formulations for the fluorolon air-drying enamels of various colous are presented. Fluorolon coatings based on these enamels are detailed, providing satisfactory adhesion properties. A fairly high chemical stability of these coatings is shown making it possible to employ them for anti-corrosion protection of outer surfaces, equipment and building constructions for chemical equipment

  9. Safety Review related to Commercial Grade Digital Equipment in Safety System

    International Nuclear Information System (INIS)

    Yu, Yeongjin; Park, Hyunshin; Yu, Yeongjin; Lee, Jaeheung

    2013-01-01

    The upgrades or replacement of I and C systems on safety system typically involve digital equipment developed in accordance with non-nuclear standards. However, the use of commercial grade digital equipment could include the vulnerability for software common-mode failure, electromagnetic interference and unanticipated problems. Although guidelines and standards for dedication methods of commercial grade digital equipment are provided, there are some difficulties to apply the methods to commercial grade digital equipment for safety system. This paper focuses on regulatory guidelines and relevant documents for commercial grade digital equipment and presents safety review experiences related to commercial grade digital equipment in safety system. This paper focuses on KINS regulatory guides and relevant documents for dedication of commercial grade digital equipment and presents safety review experiences related to commercial grade digital equipment in safety system. Dedication including critical characteristics is required to use the commercial grade digital equipment on safety system in accordance with KEPIC ENB 6370 and EPRI TR-106439. The dedication process should be controlled in a configuration management process. Appropriate methods, criteria and evaluation result should be provided to verify acceptability of the commercial digital equipment used for safety function

  10. Special servicing equipment for reactor pressurized vessel stud hole and stud accessories

    International Nuclear Information System (INIS)

    Li Jianglian

    1999-01-01

    The author briefly introduces the design and manufacture of nuclear island special servicing equipment of Nuclear Power Institute of China. Maintenance process of reactor pressurized vessel (RPV) stud hold and stud accessories the special servicing equipment include RPV flange dummy, closed-circuit television (CCTV) inspection equipment, RPV stud hole expandable comb, RPV stud hole polisher, RPV stud hold thread lubricating equipment, RPV stud hole thread miller and RPV stud hole camera. It is presented how eight kinds of special servicing equipment perform the maintenance process concerning their function, structure, and characteristics, their practical use on site is also introduced

  11. The application of an electrochemical process as a decontamination technique

    International Nuclear Information System (INIS)

    Bond, R.D.

    1985-10-01

    A method of electrodeplating has been developed for reducing surface radioactive contamination. The theory, practice and equipment involved are described together with experimental work to test the process. Results are given of preliminary tests and it is concluded that electropolishing in phosphoric acid electrolyte is an effective method for the removal of radioactive particulate contamination from metal surfaces. (UK)

  12. Two photon processes in surface photovoltage spectroscopy

    International Nuclear Information System (INIS)

    Craig, R.P.; Thurgate, S.M.

    1996-01-01

    Full text: A significant mid-gap effect has been found in Surface Photovoltage Spectroscopy measurements of cleaved GaAs, InP and Si wafer which is normally interpreted as arising from transitions between surface states and band edges. This large mid-gap effect common to various materials is puzzling as such a high proportion of mid-gap states seems unlikely. Most theories of surface states predict states that tail from the band edges into the gap or states that have a well defined energy in the gap. None propose a large state exactly at E G /2. We recently investigated the variation in SPS spectra with flux density. We find a non-linear correlation in the magnitude of Band-Bending arising from mid-gap and band-gap photon energies. We suggest that the mid-gap feature is due to a two photon absorption process leading to carrier pair generation mediated by mid-gap states in the continuum of band-gap surface states

  13. Development of Partial Discharging Simulation Test Equipment

    Science.gov (United States)

    Kai, Xue; Genghua, Liu; Yan, Jia; Ziqi, Chai; Jian, Lu

    2017-12-01

    In the case of partial discharge training for recruits who lack of on-site work experience, the risk of physical shock and damage of the test equipment may be due to the limited skill level and improper operation by new recruits. Partial discharge simulation tester is the use of simulation technology to achieve partial discharge test process simulation, relatively true reproduction of the local discharge process and results, so that the operator in the classroom will be able to get familiar with and understand the use of the test process and equipment.The teacher sets up the instrument to display different partial discharge waveforms so that the trainees can analyze the test results of different partial discharge types.

  14. Quantification of chemical transport processes from the soil to surface runoff.

    Science.gov (United States)

    Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary

    2013-01-01

    There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Surface topography of parallel grinding process for nonaxisymmetric aspheric lens

    International Nuclear Information System (INIS)

    Zhang Ningning; Wang Zhenzhong; Pan Ri; Wang Chunjin; Guo Yinbiao

    2012-01-01

    Workpiece surface profile, texture and roughness can be predicted by modeling the topography of wheel surface and modeling kinematics of grinding process, which compose an important part of precision grinding process theory. Parallel grinding technology is an important method for nonaxisymmetric aspheric lens machining, but there is few report on relevant simulation. In this paper, a simulation method based on parallel grinding for precision machining of aspheric lens is proposed. The method combines modeling the random surface of wheel and modeling the single grain track based on arc wheel contact points. Then, a mathematical algorithm for surface topography is proposed and applied in conditions of different machining parameters. The consistence between the results of simulation and test proves that the algorithm is correct and efficient. (authors)

  16. The manager and equipment decisions: is that in the capital budget?

    Science.gov (United States)

    McConnell, C R

    2001-06-01

    Although any decision to purchase a piece of capital equipment involves a number of the organization's functions, the department manager has some significant responsibilities in the selection and acquisition of capital equipment. Except for unavoidable replacement of essential equipment that fails unexpectedly, capital purchases must ordinarily be planned in advance through the annual budgeting process. The department manager is ordinarily the organization's primary source of information in major capital expenditure projects; therefore, it is essential that the manager follow a logical process for identifying and evaluating alternative equipment choices and perform a consistent economic analysis of the alternatives.

  17. Simulation of dynamic processes when machining transition surfaces of stepped shafts

    Science.gov (United States)

    Maksarov, V. V.; Krasnyy, V. A.; Viushin, R. V.

    2018-03-01

    The paper addresses the characteristics of stepped surfaces of parts categorized as "solids of revolution". It is noted that in the conditions of transition modes during the switch to end surface machining, there is cutting with varied load intensity in the section of the cut layer, which leads to change in cutting force, onset of vibrations, an increase in surface layer roughness, a decrease of size precision, and increased wear of a tool's cutting edge. This work proposes a method that consists in developing a CNC program output code that allows one to process complex forms of stepped shafts with only one machine setup. The authors developed and justified a mathematical model of a technological system for mechanical processing with consideration for the resolution of tool movement at the stages of transition processes to assess the dynamical stability of a system in the process of manufacturing stepped surfaces of parts of “solid of revolution” type.

  18. Remote maintenance ''lessons learned'' on prototypical reprocessing equipment

    International Nuclear Information System (INIS)

    Kring, C.T.; Schrock, S.L.

    1990-01-01

    Hardware representative of essentially every major equipment item necessary for reprocessing breeder reactor nuclear fuel has been installed and tested for remote maintainability. This testing took place in a cold mock-up of a remotely maintained hot cell operated by the Consolidated Fuel Reprocessing Program (CFRP) within the Fuel Recycle Division at Oak Ridge National Laboratory (ORNL). The reprocessing equipment tested included a Disassembly System, a Shear System, a Dissolver System, an Automated Sampler System, removable Equipment Racks on which various chemical process equipment items were mounted, and an advanced servomanipulator (ASM). These equipment items were disassembled and reassembled remotely by using the remote handling systems that are available within the cold mock-up area. This paper summarizes the ''lessons learned'' as a result of the numerous maintenance activities associated with each of these equipment items. 4 refs., 3 figs., 1 tab

  19. The theory of development of surface morphology by sputter erosion processes

    International Nuclear Information System (INIS)

    Carter, G.; Nobes, M.J.

    1984-01-01

    When a surface is bombarded by an energetic ion flux a rich variety of surface structures are observed to develop at the atomic, microscopic and macroscopic scales. Such structures include elevated, with respect to the surrounding surface, features such as mesas or plateaux, ridges, cones and pyramids and depressed features such as etch pits and cavities. These elementary features may be isolated or in profusion and frequently repetitive patterns of coordinated pyramidal structures, etch pits, surface ledges or facets and ripple or wave-like structures occur. The majority of the features arise rather directly from the erosion action of the sputtering process, particularly from differential erosion processes at different surface localities. The authors outline a general approach to sputter erosion induced surface morphology development based on the concept of the surface as an advancing wave. (Auth.)

  20. Providing reliable equipment to IAEA through a low risk transition plan

    International Nuclear Information System (INIS)

    Green, L.; Weinstock, E.V.; Karlin, E.W.

    1988-01-01

    The development and production of safeguards equipment is a complex process containing many potential pitfalls between the conceptual design and its implementation in the field. The conditions for equipment use are especially demanding. At the same time, the consequences of failure may be serious. Repeated failure may result in the loss of credibility of safeguards. Expensive back up measures such as re-verification of inventories may be required. Inspectors may come to distrust the equipment. Finally, the expense of maintaining the equipment may be excessive. It is therefore essential that the process for bringing equipment for the conceptual stage to actual routine use minimizes the risk of producing equipment that is unsuitable for the job. Fortunately, approaches for accomplishing this have already been developed in both the industrial and commercial sectors. One such approach, the Low Risk Transition Plan (LRTP) is described to show it can be applied to the production of reliable safeguards equipment

  1. A tool for Load Modeling in Induction Hardening Equipment Driven by Power Semiconductor Systems

    International Nuclear Information System (INIS)

    Suarez Antola, R.; Suarez Bagnasco, D.

    2006-01-01

    Kelvin effect (Skin effect) is used in surface hardening produced by induction heating of gears, camforms, camshafts and other work pieces of fairly complex geometries.The induction heating equipment for surface hardening of metals and alloys (using LF or medium frequencies in the jargon of induction heating) is composed by a coil or coil assembly and a power semiconductor driving system up to 50kHz. The load seen by the driving system is equivalent to a transformer. The primary corresponds to the excitation coil or coil assembly, and the work piece corresponds to a short-circuited secondary. To asses the electrical load it is necessary to determine the variations in skin depth from place to place due to local curvature effects in the work piece, and its variations in space and time due to variations in conductivity and magnetic properties coupled with thermal effects. In these and others technical applications of Kelvin effect it is often necessary to be able to relate local skin depths with local curvatures of the surface of electrically conductive bodies.The purpose of this paper is twofold. First, derive a closed form analytical formula that relates the local skin depth with the local mean curvature and the well known skin depth for a flat conductive body. The limits of applicability of this formula are discussed. The predicted skin depths are compared with available experimental results obtained in the framework of surface hardening processes. Second, apply the above mentioned formula to describe the electrical load of the induction heating equipment in the conditions used for surface hardening. In the choice or design of an induction heating system the parameters of the intended process (depth of Kelvin effect, temperatures to be reached and duration of the heating process, amongst others) put restrictions over the coils and the power driving system. To determine the best shape and size of induction coils or coil assemblies, the complex thermal and

  2. Records Management Handbook; Source Data Automation Equipment Guide.

    Science.gov (United States)

    National Archives and Records Service (GSA), Washington, DC. Office of Records Management.

    A detailed guide to selecting appropriate source data automation equipment is presented. Source data automation equipment is used to prepare data for electronic data processing or computerized recordkeeping. The guide contains specifications, performance data cost, and pictures of the major types of machines used in source data automation.…

  3. Fuel processing for molten-salt reactors

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1975-01-01

    Progress is reported on the development of processes for the isolation of protactinium and for the removal of fission products from molten-salt breeder reactors. The metal transfer experiment MTE-3 (for removing rare earths from MSRE fuel salt) was completed and the equipment used in that experiment was examined. The examination showed that no serious corrosion had occurred on the internal surfaces of the vessels, but that serious air oxidation occurred on the external surfaces of the vessels. Analyses of the bismuth phases indicated that the surfaces in contact with the salts were enriched in thorium and iron. Mass transfer coefficients in the mechanically agitated nondispersing contactors were measured in the Salt/Bismuth Flow-through Facility. The measured mass transfer coefficients are about 30 to 40 percent of those predicted by the preferred literature correlation, but were not as low as those seen in some of the runs in MTE-3. Additional studies using water--mercury systems to simulate molten salt-bismuth systems indicated that the model used to interpret results from previous measurements in the water--mercury system has significant deficiencies. Autoresistance heating studies were continued to develop a means of internal heat generation for frozen-wall fluorinators. Equipment was built to test a design of a side arm for the heating electrode. Results of experiments with this equipment indicate that for proper operation the wall temperature must be held much lower than that for which the equipment was designed. Studies with an electrical analog of the equipment indicate that no regions of abnormally high current density exist in the side arm. (JGB)

  4. Evaluation of the efficiency face to the NO{sub x} emissions from European gas-fired heat process equipment

    Energy Technology Data Exchange (ETDEWEB)

    Fourniguet, M.J.; Quinqueneau, A. [Gaz de France, Saint-Denis la Plaine (France); Karll, B. [Dansk Gasteknisk Center, Hoersholm (Denmark); Breithaupt, P. Gasunie [Gasunie, Groningue (Netherlands); Jonsson, O. [Svensk Gastekniskt Center AB, Malmoe (Sweden); Navarri, P. [CETIAT, Villeurbanne (France)

    1999-10-01

    In the frame of the project, tests have been performed by Gaz de France, CETIAT, DGC, GASUNIE and SGC on 35 European industrial sites in order to depict what the European industry using natural gas as an energy source actually looks like in 1997, the levels of efficiency and nitrogen oxides (NOx) emissions currently being achieved. These 35 industrial sites were chosen among the three following sectors: steam or water boilers, engines or turbines and industrial processes (food processing industry, metallurgy, ceramic, paper and textile industries). The partners focused on relatively new installations or newly retrofitted which were equipped with low NOx technologies. To create an open database between the Partners, a common EXCEL sheet has been defined and used to report the results for the three sectors concerned including principally the following items: General background on the site: it includes the description of the installation, technical characteristics of the furnace, the boiler or the engine, operating scenarios, gas total rating, and depending of the type of installation power density, rated electric power or production rate; Description of the equipment: it includes, if available, the control system of the heating equipment and the low NOx techniques identified; Description of the measurement techniques: In order to compensate for the lack of international standard, this part has been particularly detailed. It includes the description of flue gas analysers (CO, CO{sub 2}, O{sub 2}, NOx, CH{sub 4}, UHC, N{sub 2}O, VOC), metering and pressure and temperature probes in terms of measurement principle, supplier, measurement rang and accuracy and gas calibration. It precise the position of the sampling points and the type of the sampling line; Results: The operating conditions (atmospheric data, type of natural gas burnt during the test and measurement period) are given before the results themselves (complete flue gas analysis and determination of combustion

  5. Silicon surface barrier detectors used for liquid hydrogen density measurement

    Science.gov (United States)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  6. Surface crack testing - state of technique and trends in development

    International Nuclear Information System (INIS)

    1991-01-01

    This Seminar contains 12 lectures on the following subjects: State of technique in magnetic powder testing (K. Goebbels); Recognisability of faults and probability of faults in surface crack testing (W. Morgner); Requirements for picture processing systems for proving and assessing crack indications (M. Stadthaus); Possibilities and limits of automatic crack recognition in magnetic powder testing (V. Deutsch); Development of equipment for eddy current testing (M. Junger); Signal processing - a way of improving the recognisability of faults in eddy current testing (R. Becker); Methods of testing steel products for surface faults and their practical limits of fault recognisability (D. Thiery); Surface crack testing in pipe manufacture (R. Pawelletz); Surface crack testing in powerstation construction (L. v. Bernus); Trends in automation in surface crack testing (G. Maier); Eddy current testing in engine construction (E. Dickhaut); Eddy current testing in aircraft repair (F. Schur). (orig.) [de

  7. Project management in nuclear equipment manufacture

    International Nuclear Information System (INIS)

    Liu Jiancheng

    2005-01-01

    The completion of the management organization shall be firstly considered in project management for a nuclear power plant. The organization of nuclear equipment quality assurance program and project management consists of 5 departments such as the nuclear power container department, the manufacture department and the quality assurance department. The general manager takes the overall responsibility for the quality of the nuclear press usr bearing equipment, and the vice general manager takes responsibility for the quality, technology and schedule related with the manufacture of the equipment, and organizes the organization department for the audit. The director of the quality assurance department takes the responsibility for the establishment and completion of the quality assurance program, with enough rights authorized by the general manager, including the right not bounded by the cost and schedule, and confirms the implementation of the program by related departments and personnel. The manufacture schedule shall be prepared to ensure the implementation feasibility, process continuity and flexibility. The schedule shall be followed and monitored for the whole process, to check and feedback the implementation. (authors)

  8. 7 CFR 58.128 - Equipment and utensils.

    Science.gov (United States)

    2010-01-01

    ... cleaning and inspection. Any opening at the top of the tank or vat including the entrance of the shaft... equally noncorrosive metal it shall be properly tinned over the entire surface. Sanitary seal assemblies at the shaft ends of coil vats shall be of the removable type, except that existing equipment not...

  9. A Mathematical Model for Pathogen Cross-Contamination Dynamics during the Postharvest Processing of Leafy Greens.

    Science.gov (United States)

    Mokhtari, Amir; Oryang, David; Chen, Yuhuan; Pouillot, Regis; Van Doren, Jane

    2018-01-08

    We developed a probabilistic mathematical model for the postharvest processing of leafy greens focusing on Escherichia coli O157:H7 contamination of fresh-cut romaine lettuce as the case study. Our model can (i) support the investigation of cross-contamination scenarios, and (ii) evaluate and compare different risk mitigation options. We used an agent-based modeling framework to predict the pathogen prevalence and levels in bags of fresh-cut lettuce and quantify spread of E. coli O157:H7 from contaminated lettuce to surface areas of processing equipment. Using an unbalanced factorial design, we were able to propagate combinations of random values assigned to model inputs through different processing steps and ranked statistically significant inputs with respect to their impacts on selected model outputs. Results indicated that whether contamination originated on incoming lettuce heads or on the surface areas of processing equipment, pathogen prevalence among bags of fresh-cut lettuce and batches was most significantly impacted by the level of free chlorine in the flume tank and frequency of replacing the wash water inside the tank. Pathogen levels in bags of fresh-cut lettuce were most significantly influenced by the initial levels of contamination on incoming lettuce heads or surface areas of processing equipment. The influence of surface contamination on pathogen prevalence or levels in fresh-cut bags depended on the location of that surface relative to the flume tank. This study demonstrates that developing a flexible yet mathematically rigorous modeling tool, a "virtual laboratory," can provide valuable insights into the effectiveness of individual and combined risk mitigation options. © 2018 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  10. 30 CFR 77.403-1 - Mobile equipment; rollover protective structures (ROPS).

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mobile equipment; rollover protective structures (ROPS). 77.403-1 Section 77.403-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE...

  11. 30 CFR 77.403 - Mobile equipment; falling object protective structures (FOPS).

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mobile equipment; falling object protective structures (FOPS). 77.403 Section 77.403 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK...

  12. Multi-criteria evaluation and priority analysis for localization equipment in a thermal power plant using the AHP (analytic hierarchy process)

    International Nuclear Information System (INIS)

    Yagmur, Levent

    2016-01-01

    Ensuring the safety of its energy supply is one of the main issues for newly industrialized/developing countries when utilizing domestic sources for electricity generation. Turkey depends heavily on imported gas to generate electricity, and the ratio of natural gas power generation to total electricity production is nearly 50%. Coal-fired thermal power plants using domestic resources are considered a good option to decrease the large amount of imported natural gas, and to supply a secure energy demand. However, electricity generation from coal-fired power plants using local lignite reserves is not adequate to maintain a secure energy mix and provide sustainable development, as Turkey does not have indigenous energy sector technology. Therefore, technology transfer and its localization are crucial for newly industrialized/developing countries such as Turkey. The aim of this study is to use the analytic hierarchy process to determine a priority analysis in relation to localization equipment for a thermal power plant. Parameters involved, such as readiness of both infrastructure and human resources, manpower as skilled labor, market potential for equipment developed by transferred technology, and competition in global/internal market, are related to localization in thermal power plant technologies, and are considered in relation to the country's technological capability, design ability, possession of materials/equipment, and ability to erect a plant. Results of analysis show that the boiler is the most important piece of equipment in this respect, and that heaters and fans are ranked after the boiler with respect to local conditions. - Highlights: • Localization of foreign technology was determined for developing countries. • An evaluation and priority analysis were performed for parts of a thermal power plant. • Analytic hierarchy process was applied for the hierarchical ordering of parts when transferring technology.

  13. The presence of biofilm forming microorganisms on hydrotherapy equipment and facilities.

    Science.gov (United States)

    Jarząb, Natalia; Walczak, Maciej

    2017-10-01

    Hydrotherapy equipment provides a perfect environment for the formation and growth of microbial biofilms. Biofilms may reduce the microbiological cleanliness of hydrotherapy equipment and harbour opportunistic pathogens and pathogenic bacteria. The aims of this study were to investigate the ability of microorganisms that colonize hydrotherapy equipment to form biofilms, and to assess the influence of temperature and nutrients on the rate of biofilm formation. Surface swab samples were collected from the whirlpool baths, inhalation equipment and submerged surfaces of a brine pool at the spa center in Ciechocinek, Poland. We isolated and identified microorganisms from the swab samples and measured their ability to form biofilms. Biofilm formation was observed at a range of temperatures, in both nutrient-deficient and nutrient-rich environments. We isolated and identified microorganisms which are known to form biofilms on medical devices (e.g. Stenotrophomonas maltophilia). All isolates were classified as opportunistic pathogens, which can cause infections in humans with weakened immunity systems. All isolates showed the ability to form biofilms in the laboratory conditions. The potential for biofilm formation was higher in the presence of added nutrients. In addition, the hydrolytic activity of the biofilm was connected with the presence of nutrients.

  14. Trace analysis for 300 MM wafers and processes with TXRF

    International Nuclear Information System (INIS)

    Nutsch, A.; Erdmann, V.; Zielonka, G.; Pfitzner, L.; Ryssel, H.

    2000-01-01

    Efficient fabrication of semiconductor devices is combined with an increasing size of silicon wafers. The contamination level of processes, media, and equipment has to decrease continuously. A new test laboratory for 300 mm was installed in view of the above mentioned aspects. Aside of numerous processing tools this platform consist electrical test methods, particle detection, vapor phase decomposition (VPD) preparation, and TXRF. The equipment is installed in a cleanroom. It is common to perform process or equipment control, development, evaluation and qualification with monitor wafers. The evaluation and the qualification of 300 mm equipment require direct TXRF on 300 mm wafers. A new TXRF setup was installed due to the wafer size of 300 mm. The 300 mm TXRF is equipped with tungsten and molybdenum anode. This combination allows a sensitive detection of elements with fluorescence energy below 10 keV for tungsten excitation. The molybdenum excitation enables the detection of a wide variety of elements. The detection sensitivity for the tungsten anode excited samples is ten times higher than for molybdenum anode measured samples. The system is calibrated with 1 ng Ni. This calibration shows a stability within 5 % when monitored to control system stability. Decreasing the amount of Ni linear results in a linear decrease of the measured Ni signal. This result is verified for a range of elements by multielement samples. New designs demand new processes and materials, e.g. ferroelectric layers and copper. The trace analysis of many of these materials is supported by the higher excitation energy of the molybdenum anode. Reclaim and recycling of 300 mm wafers demand for an accurate contamination control of the processes to avoid cross contamination. Polishing or etching result in modified surfaces. TXRF as a non-destructive test method allows the simultaneously detection of a variety of elements on differing surfaces in view of contamination control and process

  15. Discrete-continuous analysis of optimal equipment replacement

    OpenAIRE

    YATSENKO, Yuri; HRITONENKO, Natali

    2008-01-01

    In Operations Research, the equipment replacement process is usually modeled in discrete time. The optimal replacement strategies are found from discrete (or integer) programming problems, well known for their analytic and computational complexity. An alternative approach is represented by continuous-time vintage capital models that explicitly involve the equipment lifetime and are described by nonlinear integral equations. Then the optimal replacement is determined via the opt...

  16. Experience in testing and inspection and maintenance of material handling equipments

    International Nuclear Information System (INIS)

    Sharma, M.L.

    2009-01-01

    All the Industries, Power Projects/Stations, Organizations engaged in the field of process of manufacturing, power generation, transportation, design, layout, manufacturing, and supply have to utilize material handling equipment, machinery tools tackles, lifting gears for performing their tasks/activities. The major role of the material handling equipments play an important role and a component of 40% of the total activities of the system/process to achieve targeted output with the reliability and quality is performed by material handling equipment and machineries. The material handling equipment shall have to be chosen/selected to suit the process requirement at times to be specifically designed inspected and tested to meet the specific requirement. These equipment/machineries/lifting gears have to undergo for the periodical inspection and testing to qualify for further use in a specified period. All those equipment and machinery to be used for material handling if not found satisfactory during inspection and testing or otherwise also shall be dismantled/stripped to the extent of inspection requirement of the components/sub components and maintenance repair shall have to be done to make them worthy for reuse after testing and inspection duly witnessed by competent authority

  17. Improving the work function of the niobium surface of SRF cavities by plasma processing

    International Nuclear Information System (INIS)

    Tyagi, P.V.; Doleans, M.; Hannah, B.; Afanador, R.; McMahan, C.; Stewart, S.; Mammosser, J.; Howell, M.; Saunders, J.; Degraff, B.; Kim, S.-H.

    2016-01-01

    Highlights: • An in situ plasma processing for SNS SRF cavities has been developed to remove hydrocarbons from cavity surface. • Reactive oxygen plasma is very effective to remove hydrocarbons from niobium top surface. • Reactive oxygen plasma processing increases the work function of niobium surface in the range of 0.5–1.0 eV. • It was observed that hydrocarbons can migrate at plasma cleaned top surface from near surface regions when waiting in vacuum at room temperature. • Multiple cycles of plasma processing with waiting periods in between was found beneficial to mitigate such hydrocarbons migration at plasma cleaned surface. - Abstract: An in situ plasma processing technique using chemically reactive oxygen plasma to remove hydrocarbons from superconducting radio frequency cavity surfaces at room temperature has been developed at the spallation neutron source, at Oak Ridge National Laboratory. To understand better the interaction between the plasma and niobium surface, surface studies on small samples were performed. In this article, we report the results from those surface studies. The results show that plasma processing removes hydrocarbons from top surface and improves the surface work function by 0.5–1.0 eV. Improving the work function of RF surface of cavities can help to improve their operational performance.

  18. Robotized Surface Mounting of Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Erik Hultman

    2014-10-01

    Full Text Available Using permanent magnets on a rotor can both simplify the design and increase the efficiency of electric machines compared to using electromagnets. A drawback, however, is the lack of existing automated assembly methods for large machines. This paper presents and motivates a method for robotized surface mounting of permanent magnets on electric machine rotors. The translator of the Uppsala University Wave Energy Converter generator is used as an example of a rotor. The robot cell layout, equipment design and assembly process are presented and validated through computer simulations and experiments with prototype equipment. A comparison with manual assembly indicates substantial cost savings and an improved work environment. By using the flexibility of industrial robots and a scalable equipment design, it is possible for this assembly method to be adjusted for other rotor geometries and sizes. Finally, there is a discussion on the work that remains to be done on improving and integrating the robot cell into a production line.

  19. Apparatus and method for carbon fiber surface treatment

    Science.gov (United States)

    Paulauskas, Felix L; Sherman, Daniel M

    2014-06-03

    An apparatus and method for enhancing the surface energy and/or surface chemistry of carbon fibers involves exposing the fibers to direct or indirect contact with atmospheric pressure plasma generated using a background gas containing at least some oxygen or other reactive species. The fiber may be exposed directly to the plasma, provided that the plasma is nonfilamentary, or the fiber may be exposed indirectly through contact with gases exhausting from a plasma discharge maintained in a separate volume. In either case, the process is carried out at or near atmospheric pressure, thereby eliminating the need for vacuum equipment. The process may be further modified by moistening the fibers with selected oxygen-containing liquids before exposure to the plasma.

  20. Scientific Equipment Division - Overview

    International Nuclear Information System (INIS)

    Halik, J.

    2001-01-01

    Full text: The Scientific Equipment Division consists of the Design Group and the Mechanical Workshop. The activity of the Division includes the following: - designing of devices and equipment for experiments in physics, their mechanical construction and assembly. In particular, there are vacuum chambers and installations for HV and UHV; - maintenance and upgrading of the existing installations and equipment in our Institute; - participation of our engineers and technicians in design works, equipment assembly and maintenance for experiments in foreign laboratories. The Design Group is equipped with PC-computers and AutoCAD graphic software (release 2000 and Mechanical Desktop 4.0) and a AO plotter, what allows us to make drawings and 2- and 3-dimensional mechanical documentation to the world standards. The Mechanical Workshop can offer a wide range of machining and treatment methods with satisfactory tolerances and surface quality. It offers the following possibilities: - turning - cylindrical elements of a length up to 2000 mm and a diameter up to 400 mm, and also disc-type elements of a diameter up to 600 mm and a length not exceeding 300 mm; - milling - elements of length up to 1000 mm and gear wheels of diameter up to 300 mm; - grinding - flat surfaces of dimensions up to 300 mm x 1000 mm and cylindrical elements of a diameter up to 200 mm and a length up to 800 mm; - drilling - holes of a diameter up to 50 mm; - welding - electrical and gas welding, including TIG vacuum-tight welding; - soft and hard soldering; - mechanical works including precision engineering; - plastics treatment - machining and polishing using diamond milling, modelling, lamination of various shapes and materials, including plexiglas, scintillators and light-guides; - painting - paint spraying with possibility of using furnace-fred drier of internal dimensions of 800 mm x 800 mm x 800 mm. Our workshop posses CNC milling machine which can be used for machining of work-pieces up to 500 kg

  1. Monitoring tablet surface roughness during the film coating process

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Heinämäki, Jyrki; Rantanen, Jukka

    2006-01-01

    The purpose of this study was to evaluate the change of surface roughness and the development of the film during the film coating process using laser profilometer roughness measurements, SEM imaging, and energy dispersive X-ray (EDX) analysis. Surface roughness and texture changes developing during...... the process of film coating tablets were studied by noncontact laser profilometry and scanning electron microscopy (SEM). An EDX analysis was used to monitor the magnesium stearate and titanium dioxide of the tablets. The tablet cores were film coated with aqueous hydroxypropyl methylcellulose, and the film...... coating was performed using an instrumented pilot-scale side-vented drum coater. The SEM images of the film-coated tablets showed that within the first 30 minutes, the surface of the tablet cores was completely covered with a thin film. The magnesium signal that was monitored by SEM-EDX disappeared after...

  2. Ion implanters contamination on wafer surface analyzed by ToF-SIMS and SPV analytical techniques

    International Nuclear Information System (INIS)

    Ricciari, R.; Bertini, M.; Ferlito, E.P.; Pizzo, G.; Anastasi, G.; Mello, D.; Franco, G.

    2007-01-01

    In ULSI processes, metallic contamination controls are very important issues. For the ion implantation process it is known that several sources of contaminations still need to be controlled: metals from sputtering of the apertures or wafer holders, Na + contaminations from filament impurities and messy maintenance procedure. ToF-SIMS is one of the most promising candidates to perform in-line surface analysis due to its high sensitivity. It is very common to use surface photo-voltage (SPV) techniques to control ion implanter equipments but this kind of analysis is an indirect measure for metallic contamination. The aim of this work is to study the possibility to use ToF-SIMS instead of SPV for in line equipment contamination monitoring. For this reason a comparison between SPV and ToF-SIMS data occurred. Good correlation between the data is shown; moreover ToF-SIMS spectra give detailed information about the other contaminations present on the wafer surface

  3. Equipment for the handling of thorium materials

    International Nuclear Information System (INIS)

    Heisler, S.W. Jr.; Mihalovich, G.S.

    1988-01-01

    The Feed Materials Production Center (FMPC) is the United States Department of Energy's storage facility for thorium. FMPC thorium handling and overpacking projects ensure the continued safe handling and storage of the thorium inventory until final disposition of the materials is determined and implemented. The handling and overpacking of the thorium materials requires the design of a system that utilizes remote handling and overpacking equipment not currently utilized at the FMPC in the handling of uranium materials. The use of remote equipment significantly reduces radiation exposure to personnel during the handling and overpacking efforts. The design system combines existing technologies from the nuclear industry, the materials processing and handling industry and the mining industry. The designed system consists of a modified fork lift truck for the transport of thorium containers, automated equipment for material identification and inventory control, and remote handling and overpacking equipment for material identification and inventory control, and remote handling and overpacking equipment for repackaging of the thorium materials

  4. Model of nanodegradation processes in electronic equipment of NPP Kozloduy

    International Nuclear Information System (INIS)

    J. Boucher Blvd, 1164 Sofia, BG (Bulgaria))" data-affiliation=" (Sofia University, Faculty of Physics, 5 J. Boucher Blvd, 1164 Sofia, BG (Bulgaria))" >Popov, A

    2014-01-01

    From the complex studies it was proof that the main degradation processes in the three groups of elements for the extended period of time are slow; do not lead to a hopping change in basic parameters and to catastrophic failures. This gives grounds to suggest a common diffusion model, which is limited to the following: -in electronic components containing a p-n junction, is performed diffusion of residual cooper atoms, that are accumulated in the area of a spatial charge under the influence of the electric field and the local temperature, creating micro-shunt regions; -in the contactor systems whose contact surfaces are made of metal alloys under the influence of increased temperature starts decomposition of a homogeneous alloy. Conditions are created for diffusion of individual atoms to the surface, micro-phases of homogeneous atoms are formed and modify the contact resistances; -in the course of time in the insulating materials are changed the mechanisms of polarization, double bonds and dipoles are disrupting, leading to the release of carbon atoms. The latter diffuse at elevated temperatures and form conductive cords, which amend the dielectric losses and the specific resistance of the materials

  5. Use of automated test equipment and open-quotes paperlessclose quotes process control to implement efficient production of SSC dipole magnets

    International Nuclear Information System (INIS)

    Tobin, T.; Fagan, R.; Mitchell, D.

    1994-01-01

    In an effort to minimize human error and maximize process control and test capabilities during Collider Dipole Magnets (CDM) production, General Dynamics is developing automated test and process control equipment; known as Test ampersand Process Control Modules (TPCM's). When used along with software designed to create open-quotes paperlessclose quotes process control documentation, the system becomes the Test ampersand Process Control System (TPCS). This system simplifies business decisions and eliminates some problems normally associated with process control documentation, while reducing human errors during CDM production. It is also designed to reduce test operator errors normally incurred during test setup and data analysis. The authors present an overview of the TPCS hardware and software being developed at General Dynamics, along with the process control techniques included in TPCS

  6. Modern methods of overlay welding for corrosion protection of power generating equipment

    International Nuclear Information System (INIS)

    Ershov, A.V.; Shul'man, I.E.; Potapov, N.N.

    1989-01-01

    Methods for overlay welding of inner surfaces of power equipment for corrosion protection are analysed. Various methods of electroslag overlay welding by a band electrode (overlay welding by two-electrode bands by a wide band with magnetic control, by an electrode band with high melting velocity) are marked to be the most perspective for cladding of NPP vessel equipment

  7. Methods of equipment choice in shotcreting

    Science.gov (United States)

    Sharapov, R. R.; Yadykina, V. V.; Stepanov, M. A.; Kitukov, B. A.

    2018-03-01

    Shotcrete is widely used in architecture, hydraulic engineering structures, finishing works in tunnels, arc covers and ceilings. The problem of the equipment choice in shotcreting is very important. The main issues influencing the equipment choice are quality improvement and intensification of shotcreting. Main parameters and rational limits of technological characteristic of machines used in solving different problems in shotcreting are described. It is suggested to take into account peculiarities of shotcrete mixing processes and peculiarities of applying these mixtures with compressed air kinetic energy. The described method suggests choosing a mixer with the account of energy capacity, Reynolds number and rotational frequency of the mixing drum. The suggested choice procedure of the equipment nomenclature allows decreasing exploitation costs, increasing the quality of shotcrete and shotcreting in general.

  8. Maintenance and fabrication of electronic equipment

    International Nuclear Information System (INIS)

    Chung, Chong Eun; Moon, Byung Soo; Hong, Suk Boong; Kim, Yong Keun; Kim, Jung Bok

    2003-12-01

    Development of radiation monitoring equipment could be the base of domestic development of RMS. And the technique could be adapted to development of other radiation equipment of KAERI as well as hospitals and nuclear power plants. The RMS technology could be adapted to the development of precision instruments related to nuclear radiation and be the base of fundamental technology such as protein structure analysis of bio technology, development of nano advanced material and aircraft material. The technology of multi-channel readout ASIC for nuclear radiation detector, which has been imported from abroad, could be adapted to development of radiation equipment for image processing, position of detection, NDT etc., and also the technique will be expected to contribute to increase the use of radiation technology to industrial applications

  9. Influence of Si wafer thinning processes on (sub)surface defects

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Fumihiro, E-mail: fumihiro.inoue@imec.be [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Jourdain, Anne; Peng, Lan; Phommahaxay, Alain; De Vos, Joeri; Rebibis, Kenneth June; Miller, Andy; Sleeckx, Erik; Beyne, Eric [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Uedono, Akira [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2017-05-15

    Highlights: • Mono-vacancy free Si-thinning can be accomplished by combining several thinning techniques. • The grinding damage needs to be removed prior to dry etching, otherwise vacancies remain in the Si at a depth around 0.5 to 2 μm after Si wafer thickness below 5 μm. • The surface of grinding + CMP + dry etching is equivalent mono vacancy level as that of grinding + CMP. - Abstract: Wafer-to-wafer three-dimensional (3D) integration with minimal Si thickness can produce interacting multiple devices with significantly scaled vertical interconnections. Realizing such a thin 3D structure, however, depends critically on the surface and subsurface of the remaining backside Si after the thinning processes. The Si (sub)surface after mechanical grinding has already been characterized fruitfully for a range of few dozen of μm. Here, we expand the characterization of Si (sub)surface to 5 μm thickness after thinning process on dielectric bonded wafers. The subsurface defects and damage layer were investigated after grinding, chemical mechanical polishing (CMP), wet etching and plasma dry etching. The (sub)surface defects were characterized using transmission microscopy, atomic force microscopy, and positron annihilation spectroscopy. Although grinding provides the fastest removal rate of Si, the surface roughness was not compatible with subsequent processing. Furthermore, mechanical damage such as dislocations and amorphous Si cannot be reduced regardless of Si thickness and thin wafer handling systems. The CMP after grinding showed excellent performance to remove this grinding damage, even though the removal amount is 1 μm. For the case of Si thinning towards 5 μm using grinding and CMP, the (sub)surface is atomic scale of roughness without vacancy. For the case of grinding + dry etch, vacancy defects were detected in subsurface around 0.5–2 μm. The finished surface after wet etch remains in the nm scale in the strain region. By inserting a CMP step in

  10. Generation of equipment response spectrum considering equipment-structure interaction

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Yoo, Kwang Hoon

    2005-01-01

    Floor response spectra for dynamic response of subsystem such as equipment, or piping in nuclear power plant are usually generated without considering dynamic interaction between main structure and subsystem. Since the dynamic structural response generally has the narrow-banded shapes, the resulting floor response spectra developed for various locations in the structure usually have high spectral peak amplitudes in the narrow frequency bands corresponding to the natural frequencies of the structural system. The application of such spectra for design of subsystems often leads to excessive design conservatisms, especially when the equipment frequency and structure are at resonance condition. Thus, in order to provide a rational and realistic design input for dynamic analysis and design of equipment, dynamic equipment-structure interaction (ESI) should be considered in developing equipment response spectrum which is particularly important for equipment at the resonance condition. Many analytical methods have been proposed in the past for developing equipment response spectra considering ESI. However, most of these methods have not been adapted to the practical applications because of either the complexities or the lack of rigorousness of the methods. At one hand, mass ratio among the equipment and structure was used as an important parameter to obtain equipment response spectra. Similarly, Tseng has also proposed the analytical method for developing equipment response spectra using mass ratio in the frequency domain. This method is analytically rigorous and can be easily validated. It is based on the dynamic substructuring method as applied to the dynamic soil-structure interaction (SSI) analysis, and can relatively easily be implemented for practical applications without to change the current dynamic analysis and design practice for subsystems. The equipment response spectra derived in this study are also based on Tseng's proposed method

  11. Measurement value analysis overall equipment effectiveness (OEE) packaging process in line 2 (Case Study of PT. MBI Tbk)

    Science.gov (United States)

    Rimawan, Erry; Kholil, Muhammad; Hendri

    2018-03-01

    PT. MBI Tbk is engaged in the manufacture of beverage industry, where the company’s production is based on the magnitude of customer demand that is marketing offices that had been scattered in various regions of Indonesia. In the packaging process steps in PT.MBI through the line 3 lines including racking, canning line, bottling line. In the canning process to existing packing on Line 2 (canning line), there are some machines that are used continuously, among other Depalletizer machine, filler machine, can seamer machine, pasteurizer machine, machine FLD, Wrap Around engine, engine Shrink Wrap. Due to the large demand from customers that is relentless, therefore the calculation of overall equipment effectiveness (OEE) as a whole on line 2 (canning line) is needed in order to make improvements continuously (Continuous Improvement) at line 2 (canning line). This study aims to determine the value of overall equipment effectiveness (OEE) and Losses of the most influential of the big six OEE Losses focused on equipment or machinery as a whole into a single unit that is on the line 2, which will then be known root cause of the losses that occur from the research over the field. From the calculation of overall equipment effectiveness (OEE), there are two ratios are still poor and under world-class standards, while the ratio of the availability of 88.85% of the world-class standards by 90% and the performance ratio of 78.51% of the standard world class by 95%, whereas for quality ratio has entered the world-class standard that is equal to 99.90%. Thus the value of OEE on Line 2 line is below world class standards. In this study there were only five losses, which can be identified, and while the losses were very influential, namely the Speed Reduced Losses, losses, these losses accounted for the largest percentage of the value of the rate of 19.12%, of the results of this study losses occurred due to poor surveillance systems (less good) that causes the employee or

  12. Air/surface exchange processes of mercury and their linkage to atmospheric pools

    International Nuclear Information System (INIS)

    Bahlmann, Enno; Ebinghaus, Ralf

    2001-01-01

    The atmospheric mercury cycle is strongly linked to the terrestrial, aquatic and biologic cycle of mercury via air/surface exchange processes. In order to quantify mercury fluxes from and to the atmosphere to predict local and regional source contributions the methods for flux measurements as well as the physicochemical factors controlling air/surface exchange processes must be assessed. We will describe methods for the determination of mercury and mercury species in ambient air which are basic for investigation of air/surface exchange processes. Further on we will describe approaches for studying the physicochemical factors controlling this processes by using a new laboratory flux measurement system. (author)

  13. Factors influencing equipment selection in electron beam processing

    Science.gov (United States)

    Barnard, J. W.

    2003-08-01

    During the eighties and nineties accelerator manufacturers dramatically increased the beam power available for high-energy equipment. This effort was directed primarily at meeting the demands of the sterilization industry. During this era, the perception that bigger (higher power, higher energy) was always better prevailed since the operating and capital costs of accelerators did not increase with power and energy as fast as the throughput. High power was needed to maintain per unit costs low for treatment. This philosophy runs counter to certain present-day realities of the sterilization business as well as conditions influencing accelerator selection in other electron beam applications. Recent experience in machine selection is described and factors affecting choice are presented.

  14. Process equipment data organisation in CERN PS controls

    International Nuclear Information System (INIS)

    Casalegno, L.; Cuperus, J.; Sicard, C.H.

    1990-01-01

    The CERN PS control system has a widely distributed architecture, mainly for fast response in a real-time environment. The organisation of the data for equipment access must be compatible with this architecture and give efficient program access to the data. Moreover, it must also offer managerial features such as data integrity, easy backup and restoration, adaptibility to changes in data structure, initialisation, data-entry facilities and automatic documentation. This paper shows how one can take advantage of a commercial data-base management system with its associated tools, adding to it some object-oriented programming concepts to meet the objectives of a manageable distributed data organisation having good run-time performance features and using a reasonable manpower investment. (orig.)

  15. The equipment access software for a distributed UNIX-based accelerator control system

    International Nuclear Information System (INIS)

    Trofimov, Nikolai; Zelepoukine, Serguei; Zharkov, Eugeny; Charrue, Pierre; Gareyte, Claire; Poirier, Herve

    1994-01-01

    This paper presents a generic equipment access software package for a distributed control system using computers with UNIX or UNIX-like operating systems. The package consists of three main components, an application Equipment Access Library, Message Handler and Equipment Data Base. An application task, which may run in any computer in the network, sends requests to access equipment through Equipment Library calls. The basic request is in the form Equipment-Action-Data and is routed via a remote procedure call to the computer to which the given equipment is connected. In this computer the request is received by the Message Handler. According to the type of the equipment connection, the Message Handler either passes the request to the specific process software in the same computer or forwards it to a lower level network of equipment controllers using MIL1553B, GPIB, RS232 or BITBUS communication. The answer is then returned to the calling application. Descriptive information required for request routing and processing is stored in the real-time Equipment Data Base. The package has been written to be portable and is currently available on DEC Ultrix, LynxOS, HPUX, XENIX, OS-9 and Apollo domain. ((orig.))

  16. Division of Scientific Equipment - Overview

    International Nuclear Information System (INIS)

    Halik, J.

    2002-01-01

    Full text: The Scientific Equipment Division consists of the Design Group and the Mechanical Workshop. The activity of the Division includes the following: * designs of devices and equipment for experiments in physics; their mechanical construction and assembly. In particular, these are vacuum chambers and installations for HV and UHV;* maintenance and upgrading of the existing installations and equipment in our Institute; * participation of our engineers and technicians in design works, equipment assembly and maintenance for experiments in foreign laboratories. The Design Group is equipped with PC-computers and AutoCAD graphic software (release 2000 and Mechanical Desktop 4.0) and an A0 plotter, which allow us to make drawings and 2- and 3-dimensional mechanical documentation to the world standards. The Mechanical Workshop offers a wide range of machining and treatment methods with satisfactory tolerances and surface quality. They include: * turning - cylindrical elements of a length up to 2000 mm and a diameter up to 400 mm, and also disc type elements of a diameter up to 600 mm and a length not exceeding 300 mm, * milling - elements of length up to 1000 mm and gear wheels of diameter up to 300 mm, * grinding - flat surfaces of dimensions up to 300 mm x 1000 mm and cylindrical elements of a diameter up to 200 mm and a length up to 800 mm, * drilling - holes of a diameter up to 50 mm, * welding - electrical and gas welding, including TIG vacuum-tight welding, * soft and hard soldering, * mechanical works including precision engineering, * plastics treatment - machining and polishing using diamond milling, modelling, lamination of various shapes and materials, including plexiglas, scintillators and light-guides, * painting - paint spraying with possibility of using furnace-fired drier of internal dimensions of 800 mm x 800 mm x 800 mm. Our workshop is equipped with the CNC milling machine which can be used for machining of work pieces up to 500 kg. The machine

  17. Surface modification of hydroturbine steel using friction stir processing

    Science.gov (United States)

    Grewal, H. S.; Arora, H. S.; Singh, H.; Agrawal, A.

    2013-03-01

    Friction stir processing (FSP) has proved to be a viable tool for enhancing the mechanical properties of materials, however, the major focus has been upon improving the bulk properties of light metals and their alloys. Hydroturbines are susceptible to damage owing to slurry and cavitation erosion. In this study, FSP of a commonly employed hydroturbine steel, 13Cr4Ni was undertaken. Microstructural characterization of the processed steel was conducted using optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) techniques. Mechanical characterization of the steel was undertaken in terms of microhardness and resistance to cavitation erosion (CE). FSP resulted in the refinement of the microstructure with reduction in grain size by a factor of 10. EBSD results confirmed the existence of submicron and ultrafine grained microstructure. The microhardness of the steel was found to enhance by 2.6 times after processing. The processed steel also showed 2.4 times higher resistance against cavitation erosion in comparison to unprocessed steel. The primary erosion mechanism for both the steels was identical in nature, with plastic deformation responsible for the loss of material.

  18. Milk-run kanban system for raw printed circuit board withdrawal to surface-mounted equipment

    Directory of Open Access Journals (Sweden)

    Swee Li Chee

    2012-12-01

    Full Text Available Purpose:  The paper aims to present a case study and later simulation analysis on a kanban system that incorporating milk-run operation to draw in raw material to the process. Design/methodology/approach:  Data collection at the case study company for ten weeks followed by a process study called value stream mapping. The proposed kanban model is simulated to test its various performances including total output, average flow time, average work-in-process, SME utilization, and average waiting time. Response surface methodology is adopted to generate suitable representative regression models.  Findings: For all performance measures, simulation results showed that the proposed system consistently outperforms the push system currently practiced. Second, the system indicates the advantages of leveling, particularly in the event of machine failure and blockage. Third, operator in the proposed kanban system has a lower utilization, even with the additional material handling task.   Research limitations/implications: This study only begins to reveal the implication of leveling for production control on multi-machine scenario. The simulation of the system is solely based only the case study. The control parameters critical to the case study, were naturally used. The furtherance of the research should include generalizing the system and devising the respective methodology to facilitate wider applications. Practical implications: Originality/value:  The kanban system is proposed in the light of conflicting interests in handling the surface mounting and the related upstream processes. Such aspect is common to electronics assembly industry.

  19. Reconciliation of equipment flexibility effects on piping system dynamic response

    International Nuclear Information System (INIS)

    Geraets, L.H.

    1987-01-01

    Piping systems are connected to equipment; if the equipment cannot be considered as ''rigid'' relative to excitation frequencies, nozzle response spectra techniques, or equipment modeling techniques are used. If the equipment is considered rigid, a fixed anchor is assumed. However, occasionally after (seismic) dynamic analysis has been completed, tests or detailed equipment dynamic analyses demonstrate that the assumption of ''infinite stiff'' is questionable. This paper reviews several classes of equipment (pumps, vessels, reservoirs, heat exchangers), and the associated (piping stresses, support loads, equipment nozzle allowables). Significant divergences between design and ''as built'' results are shown (for heat exchangers in particular). The paper discusses the reconciliation process performed for a belgian PWR plant through the use of less conservative seismic damping data (Code Case N-411)

  20. Dominant rate process of silicon surface etching by hydrogen chloride gas

    International Nuclear Information System (INIS)

    Habuka, Hitoshi; Suzuki, Takahiro; Yamamoto, Sunao; Nakamura, Akio; Takeuchi, Takashi; Aihara, Masahiko

    2005-01-01

    Silicon surface etching and its dominant rate process are studied using hydrogen chloride gas in a wide concentration range of 1-100% in ambient hydrogen at atmospheric pressure in a temperature range of 1023-1423 K, linked with the numerical calculation accounting for the transport phenomena and the surface chemical reaction in the entire reactor. The etch rate, the gaseous products and the surface morphology are experimentally evaluated. The dominant rate equation accounting for the first-order successive reactions at silicon surface by hydrogen chloride gas is shown to be valid. The activation energy of the dominant surface process is evaluated to be 1.5 x 10 5 J mol - 1 . The silicon deposition by the gaseous by-product, trichlorosilane, is shown to have a negligible influence on the silicon etch rate

  1. 9 CFR 590.502 - Equipment and utensils; PCB-containing equipment.

    Science.gov (United States)

    2010-01-01

    ... Sanitary Standards and accepted practices currently in effect for such equipment. (c) New or replacement equipment or machinery (including any replacement parts) brought onto the premises of any official plant... equipment and machinery, and any replacement parts for such equipment and machinery. Totally enclosed...

  2. Gaussian process based intelligent sampling for measuring nano-structure surfaces

    Science.gov (United States)

    Sun, L. J.; Ren, M. J.; Yin, Y. H.

    2016-09-01

    Nanotechnology is the science and engineering that manipulate matters at nano scale, which can be used to create many new materials and devices with a vast range of applications. As the nanotech product increasingly enters the commercial marketplace, nanometrology becomes a stringent and enabling technology for the manipulation and the quality control of the nanotechnology. However, many measuring instruments, for instance scanning probe microscopy, are limited to relatively small area of hundreds of micrometers with very low efficiency. Therefore some intelligent sampling strategies should be required to improve the scanning efficiency for measuring large area. This paper presents a Gaussian process based intelligent sampling method to address this problem. The method makes use of Gaussian process based Bayesian regression as a mathematical foundation to represent the surface geometry, and the posterior estimation of Gaussian process is computed by combining the prior probability distribution with the maximum likelihood function. Then each sampling point is adaptively selected by determining the position which is the most likely outside of the required tolerance zone among the candidates and then inserted to update the model iteratively. Both simulationson the nominal surface and manufactured surface have been conducted on nano-structure surfaces to verify the validity of the proposed method. The results imply that the proposed method significantly improves the measurement efficiency in measuring large area structured surfaces.

  3. Equipment considerations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Trace or ultratrace analyses require that the HPLC equipment used, including the detector, be optimal for such determinations. HPLC detectors are discussed at length in Chapter 4; discussion here is limited to the rest of the equipment. In general, commercial equipment is adequate for trace analysis; however, as the authors approach ultratrace analysis, it becomes very important to examine the equipment thoroughly and optimize it, where possible. For this reason they will review the equipment commonly used in HPLC and discuss the optimization steps. Detectability in HPLC is influenced by two factors (1): (a) baseline noise or other interferences that lead to errors in assigning the baseline absorbance; (b) peak width. 87 refs

  4. Method for atmospheric pressure reactive atom plasma processing for surface modification

    Science.gov (United States)

    Carr, Jeffrey W [Livermore, CA

    2009-09-22

    Reactive atom plasma processing can be used to shape, polish, planarize and clean the surfaces of difficult materials with minimal subsurface damage. The apparatus and methods use a plasma torch, such as a conventional ICP torch. The workpiece and plasma torch are moved with respect to each other, whether by translating and/or rotating the workpiece, the plasma, or both. The plasma discharge from the torch can be used to shape, planarize, polish, and/or clean the surface of the workpiece, as well as to thin the workpiece. The processing may cause minimal or no damage to the workpiece underneath the surface, and may involve removing material from the surface of the workpiece.

  5. Monitoring and improving the effectiveness of surface cleaning and disinfection.

    Science.gov (United States)

    Rutala, William A; Weber, David J

    2016-05-02

    Disinfection of noncritical environmental surfaces and equipment is an essential component of an infection prevention program. Noncritical environmental surfaces and noncritical medical equipment surfaces may become contaminated with infectious agents and may contribute to cross-transmission by acquisition of transient hand carriage by health care personnel. Disinfection should render surfaces and equipment free of pathogens in sufficient numbers to prevent human disease (ie, hygienically clean). Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  6. Formation of negative ions on a metal surface

    International Nuclear Information System (INIS)

    Amersfoort, P.W. van.

    1987-01-01

    In this thesis a fundamental study of the charge exchange process of positive ions on the converter surface is presented. Beams of hydrogen ad cesium ions are scattered from a thoroughly cleaned W(110) surface, under ultra-high vacuum conditions. The cesium coverage of the surface is a controlled parameter. Ch. 2 deals with the negative-ion formation probability for hydrogen atoms. The influence of coabsorption of hydrogen is studied in Ch. 3. These measurements are important for understanding the formation process in plasma sources, because the converter surface is expected to be strongly contaminated with hydrogen. The charge state of scattered cesium particles is investigated in Ch. 4. Knowledge of this parameter is essential for Ch. 5, in which a model study of adsorption of cesium on a metal surface in contact with a plasma is presented. Finally, the negative-ion formation process in a plasma environment is studied in Ch. 6. Measurements done on a hollow-cathode discharge equipped with a novel type of converter, a porous tungsten button, are discussed. Liquid cesium diffuses through this button towards the side in contact with the plasma. (Auth.)

  7. Research on Gear Shifting Process without Disengaging Clutch for a Parallel Hybrid Electric Vehicle Equipped with AMT

    Directory of Open Access Journals (Sweden)

    Hui-Long Yu

    2014-01-01

    Full Text Available Dynamic models of a single-shaft parallel hybrid electric vehicle (HEV equipped with automated mechanical transmission (AMT were described in different working stages during a gear shifting process without disengaging clutch. Parameters affecting the gear shifting time, components life, and gear shifting jerk in different transient states during a gear shifting process were deeply analyzed. The mathematical models considering the detailed synchronizer working process which can explain the gear shifting failure, long time gear shifting, and frequent synchronizer failure phenomenon in HEV were derived. Dynamic coordinated control strategy of the engine, motor, and actuators in different transient states considering the detailed working stages of synchronizer in a gear shifting process of a HEV is for the first time innovatively proposed according to the state of art references. Bench test and real road test results show that the proposed control strategy can improve the gear shifting quality in all its evaluation indexes significantly.

  8. Modernization of the automation control system of technological processes at the preparation plant in the conditions of technical re-equipment

    Science.gov (United States)

    Lyakhovets, M. V.; Wenger, K. G.; Myshlyaev, L. P.; Shipunov, M. V.; Grachev, V. V.; Melkozerov, M. Yu; Fairoshin, Sh A.

    2018-05-01

    The experience of modernization of the automation control system of technological processes at the preparation plant under the conditions of technical re-equipment of the preparation plant “Barzasskoye Tovarischestvo” LLC (Berezovsky) is considered. The automated process control systems (APCS), the modernization goals and the ways to achieve them are indicated, the main subsystems of the integrated APCS are presented, the enlarged functional and technical structure of the upgraded system is given. The procedure for commissioning an upgraded system is described.

  9. Suitability of electrolyzed oxidizing water for the disinfection of hard surfaces and equipment in radiology

    OpenAIRE

    Pintaric, Robert; Matela, Joze; Pintaric, Stefan

    2015-01-01

    Background Hospitals are faced with increasingly resistant strains of micro-organisms. When it comes to disinfection, individual parts of electronic equipment of angiology diagnostics such as patient couches of computer tomography (CT) and magnetic resonance imaging (MRI) scanners prove to be very hard to disinfect. Disinfectants of choice are therefore expected to possess properties such as rapid, residue-free action without any damaging effect on the sensitive electronic equipment. This pap...

  10. Process/Equipment Co-Simulation on Syngas Chemical Looping Process

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang; Zhou, Qiang; Fan, Liang-Shih

    2012-09-30

    The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO{sub 2} by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.

  11. Surface Nano Structures Manufacture Using Batch Chemical Processing Methods for Tooling Applications

    DEFF Research Database (Denmark)

    Tosello, Guido; Calaon, Matteo; Gavillet, J.

    2011-01-01

    The patterning of large surface areas with nano structures by using chemical batch processes to avoid using highenergy intensive nano machining processes was investigated. The capability of different surface treatment methods of creating micro and nano structured adaptable mould inserts for subse...

  12. Development of remote handling tools and equipment

    International Nuclear Information System (INIS)

    Nakahira, Masataka; Oka, Kiyoshi; Taguchi, Kou; Ito, Akira; Fukatsu, Seiichi; Oda, Yasushi; Kajiura, Soji; Yamazaki, Seiichiro; Aoyama, Kazuo.

    1997-01-01

    The remote handling (RH) tools and equipment development in ITER focuses mainly on the welding and cutting technique, weld inspection and double-seal door which are essential factors in the replacement of in-vessel components such as divertor and blanket. The conceptual design of these RH tools and equipment has been defined through ITER engineering design activity (EDA). Similarly, elementary R and D of the RH tools and equipment have been extensively performed to accumulate a technological data base for process and performance qualification. Based on this data, fabrications of full-scale RH tools and equipment are under progress. A prototypical bore tool for pipe welding and cutting has already been fabricated and is currently undergoing integrated performance tests. This paper describes the design outline of the RH tools and equipment related to in-vessel components maintenance, and highlights the current status of RH tools and equipment development by the Japan Home Team as an ITER R and D program. This paper also includes an outline of insulation joint and quick-pipe connector development, which has also been conducted through the ITER R and D program in order to standardize RH operations and components. (author)

  13. In-can melting process and equipment development from 1974 to 1978

    International Nuclear Information System (INIS)

    Blair, H.T.

    1979-08-01

    Both the defense HLLW stores in tanks presently and the HLLW from proposed reprocessing of commercial LWR fuel can be vitrified as borosilicate glass in containers made of 300-series stainless steel by the ICM (in-can melting) process. Melting rates of 50 kg/h in 12-in.-dia cans and 117 kg/h in 28-in.-dia cans can be achieved in the ICM by using the rising-level charging method and internal heat-transfer plate assemblies in the cans. The ICM process can be monitored and remotely controlled without the aid of instrumentation attached to the waste can. The ICM process is compatible with both heated-wall spray calciners and fluidized-bed calciners. The ICM process causes residual tensile stresses as high as the yield strength in vitrified product containers made of 300-series stainless steel. Spall due to oxidation of the exterior of the can during an ICM process can be prevented by using an inert cover gas, by putting a protective coating on the can surface, or by using an oxidation-resistant alloy. Processing problems are minimized and product quality is improved when the complete can is located inside the furnace chamber by setting it on the hearth. A maximum of 24 kW and an average of 15 kW is required per 15-in.-high furnace zone to melt waste borosilicate glass at a rate of 117 kg/h in a 28-in.-dia ICM

  14. Chlorine dioxide as a disinfectant for Ralstonia solanacearum control in water, storage and equipment

    Directory of Open Access Journals (Sweden)

    Popović Tatjana

    2016-01-01

    Full Text Available Brown rot or bacterial wilt caused by bacterium Ralstonia solanacearum is the main limiting factor in potato production. Quarantine measures are necessary to avoid spread of disease to disease-free areas. R. solanacearum has been shown to contaminate watercourses from which crop irrigation is then prohibited causing further potential losses in yield and quality. The bacteria also spread via surfaces that diseased seed potatoes come into contact with. This study showed bactericidal activity of chlorine dioxide (CIO2 on R. solanacearum for disinfection of water, surface and equipment. The results showed that CIO2 solution at concentration of 2 ppm at 30 minutes of exposure time had bactericidal effect for disinfection of water. For surface and equipment disinfection, concentration of 50 ppm showed total efficacy at 30 min and 5 sec exposure time, respectively. Results suggest that use of CIO2 as a disinfectant has a potential for control of brown rot pathogen in water, storage and equipment.

  15. Radiological equipment analyzed by specific developed phantoms and software

    International Nuclear Information System (INIS)

    Soto, M.; Campayo, J. M.; Mayo, P.; Verdu, G.; Rodenas, F.

    2010-10-01

    The use of radiographic phantoms specifically designed to evaluate the operation of the radiographic equipment lets the study of the image quality obtained by this equipment in an objective way. In digital radiographic equipment, the analysis of the image quality can be computerized because the acquisition of the image is possible in different technologies that are, computerized radiography or phosphor plate and direct radiography or detector. In case of film-screen equipment s this analysis could be applied digitalising the image in a professional scanner. In this work we have shown an application to assess automatically the constancy quality image in the image chain of the radiographic equipment s. This application is integrated by designed radiographic phantoms which are adapted to conventional, dental equipment s and specific developed software for the automatic evaluation of the phantom image quality. The software is based on digital image processing techniques that let the automatic detection of the different phantom tests by edge detector, morphological operators, threshold histogram techniques... etc. The utility developed is enough sensitive to the radiographic equipment of operating conditions of voltage (kV) and charge (m As). It is a friendly user programme connected with a data base of the hospital or clinic where it has been used. After the phantom image processing the user can obtain an inform with a resume of the imaging system state with accepting and constancy results. (Author)

  16. Radiological equipment analyzed by specific developed phantoms and software

    Energy Technology Data Exchange (ETDEWEB)

    Soto, M.; Campayo, J. M. [Logistica y Acondicionamientos Industriales SAU, Sorolla Center, Local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Mayo, P. [TITANIA Servicios Tecnologicos SL, Sorolla Center, Local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Verdu, G.; Rodenas, F., E-mail: m.soto@lainsa.co [ISIRYIM Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia (Spain)

    2010-10-15

    The use of radiographic phantoms specifically designed to evaluate the operation of the radiographic equipment lets the study of the image quality obtained by this equipment in an objective way. In digital radiographic equipment, the analysis of the image quality can be computerized because the acquisition of the image is possible in different technologies that are, computerized radiography or phosphor plate and direct radiography or detector. In case of film-screen equipment s this analysis could be applied digitalising the image in a professional scanner. In this work we have shown an application to assess automatically the constancy quality image in the image chain of the radiographic equipment s. This application is integrated by designed radiographic phantoms which are adapted to conventional, dental equipment s and specific developed software for the automatic evaluation of the phantom image quality. The software is based on digital image processing techniques that let the automatic detection of the different phantom tests by edge detector, morphological operators, threshold histogram techniques... etc. The utility developed is enough sensitive to the radiographic equipment of operating conditions of voltage (kV) and charge (m As). It is a friendly user programme connected with a data base of the hospital or clinic where it has been used. After the phantom image processing the user can obtain an inform with a resume of the imaging system state with accepting and constancy results. (Author)

  17. Chemical process engineering in the transuranium processing plant

    International Nuclear Information System (INIS)

    Collins, E.D.; Bigelow, J.E.

    1976-01-01

    Since operation of the Transuranium Processing Plant began, process changes have been made to counteract problems caused by equipment corrosion, to satisfy new processing requirements, and to utilize improved processes. The new processes, equipment, and techniques have been incorporated into a sequence of steps which satisfies all required processing functions

  18. Medical Issues: Equipment

    Science.gov (United States)

    ... Information Packets Equipment Pool Living With SMA Medical Issues Palliative Breathing Orthopedics Nutrition Equipment Daily Life At ... curesma.org > support & care > living with sma > medical issues > equipment Equipment Individuals with SMA often require a ...

  19. Surface processes during purification of InP quantum dots

    Directory of Open Access Journals (Sweden)

    Natalia Mordvinova

    2014-08-01

    Full Text Available Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH3 during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of postsynthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular.

  20. Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Serra, R., E-mail: ricardo.serra@dem.uc.pt [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal); Oliveira, V. [ICEMS-Instituto de Ciência e Engenharia de Materiais e Superfícies, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro Emídio Navarro no 1, 1959-007 Lisbon (Portugal); Oliveira, J.C. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal); Kubart, T. [The Ångström Laboratory, Solid State Electronics, P.O. Box 534, SE-751 21 Uppsala (Sweden); Vilar, R. [Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro Emídio Navarro no 1, 1959-007 Lisbon (Portugal); Instituto Superior Técnico, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal)

    2015-03-15

    Highlights: • Large-area LIPSS were formed by femtosecond laser processing B-C films surface. • The LIPSS spatial period increases with laser fluence (140–200 nm). • Stress-related sinusoidal-like undulations were formed on the B-C films surface. • The undulations amplitude (down to a few nanometres) increases with laser fluence. • Laser radiation absorption increases with surface roughness. - Abstract: Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm{sup 2}. Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under

  1. Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing

    International Nuclear Information System (INIS)

    Serra, R.; Oliveira, V.; Oliveira, J.C.; Kubart, T.; Vilar, R.; Cavaleiro, A.

    2015-01-01

    Highlights: • Large-area LIPSS were formed by femtosecond laser processing B-C films surface. • The LIPSS spatial period increases with laser fluence (140–200 nm). • Stress-related sinusoidal-like undulations were formed on the B-C films surface. • The undulations amplitude (down to a few nanometres) increases with laser fluence. • Laser radiation absorption increases with surface roughness. - Abstract: Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm 2 . Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under different

  2. Recycling-oriented characterization of small waste electrical and electronic equipment

    International Nuclear Information System (INIS)

    Chancerel, Perrine; Rotter, Susanne

    2009-01-01

    As a result of the continuous change in the design and function of consumer electrical and electronic products, the mechanical and material properties of the obsolete products, called waste electric and electronic equipment (WEEE), are highly variable. The variability within WEEE is explained by the number of different appliances, and the heterogeneity in composition of any given appliance. This paper reports on an extended investigation of the properties of WEEE, in particular small appliances. The investigation focuses on the analysis of the composition of about 700 single appliances. Firstly, analytical methods to characterize the waste equipment are described. The results of the experimental analyses show that the mechanical properties, the material composition, the polymer composition and the chemical composition of WEEE vary not only between equipment types with different functions, but also between single appliances within one equipment type. Data on hazardous and valuable substances in selected equipment types are presented. Using detailed data on the composition of individual appliances to calculate rates of recovery for assumed recycling processes demonstrates that the performance of recycling processes depends strongly on the composition of WEEE. Recycling-oriented characterization is, therefore, a systematic approach to support the design and the operation of recycling processes.

  3. LMHC/TWRS year 2000 equipment project renovation and contingency plan

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    1999-01-01

    A program has been completed to assess, renovate and document tank farm field equipment year 2000 compliance. A communication plan has also been prepared (see section 8.0). The objective of the program was to assure that no adverse effects occur in tank farm operations as a result of equipment malfunction due to the advent of year 2000. The purposes of this document are to: describe the process used to assess field equipment; document items found to be compliant; document items found to be non-compliant including options for making the equipment year 2000 functional and/or tolerant; describe location and management of field equipment year 2000 documentation; assess overall vulnerability of TWRS field equipment with regard to year 2000 problems and describe plans to communicate year 2000 equipment review results and corrective actions

  4. General Guidelines for Remote Operation and Maintenance of Pyroprocess Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Park, B. S.; Park, H. S.; Lee, H. J.; Choi, C. W.; Lee, J. K

    2007-12-15

    As the pyroprocess handle the high radioactive materials, a high radioactive material handling facility required high safety, radioactive shielding, strict quality control, and the remote handling equipment of high technology. This report describes the guidelines of for pyroprocess based the design guides for radioactive material handling facility and equipment from American Nuclear Society(ANS), design guidelines for remotely maintained equipment from Oak Ridge National Laboratory(ORNL), and the experience of design for ACP equipment installed at the ACPF(Advanced Conditioning Process Facility). The General guidelines in this report are as follows. The General guidelines for remote operation and maintenance of pyroprocess equipment: Pyroprocess, Remote handling equipment for pyroprocess, General guide for remote operation and maintenance, general guidelines for the design of remotely operated and maintained equipment, Estimation and analysis for remote maintenance.

  5. Intelligent detection of cracks in metallic surfaces using a waveguide sensor loaded with metamaterial elements.

    Science.gov (United States)

    Ali, Abdulbaset; Hu, Bing; Ramahi, Omar

    2015-05-15

    This work presents a real life experiment of implementing an artificial intelligence model for detecting sub-millimeter cracks in metallic surfaces on a dataset obtained from a waveguide sensor loaded with metamaterial elements. Crack detection using microwave sensors is typically based on human observation of change in the sensor's signal (pattern) depicted on a high-resolution screen of the test equipment. However, as demonstrated in this work, implementing artificial intelligence to classify cracked from non-cracked surfaces has appreciable impact in terms of sensing sensitivity, cost, and automation. Furthermore, applying artificial intelligence for post-processing data collected from microwave sensors is a cornerstone for handheld test equipment that can outperform rack equipment with large screens and sophisticated plotting features. The proposed method was tested on a metallic plate with different cracks and the obtained experimental results showed good crack classification accuracy rates.

  6. Thermal Diffusion Processes in Metal-Tip-Surface Interactions: Contact Formation and Adatom Mobility

    DEFF Research Database (Denmark)

    Sørensen, Mads Reinholdt; Jacobsen, Karsten Wedel; Jonsson, Hannes

    1996-01-01

    and the surface can occur by a sequence of atomic hop and exchange processes which become active on a millisecond time scale when the tip is about 3-5 Angstrom from the surface. Adatoms on the surface are stabilized by the presence of the tip and energy barriers for diffusion processes in the region under the tip......We have carried out computer simulations to identify and characterize various thermally activated atomic scale processes that can play an important role in room temperature experiments where a metal tip is brought close to a metal surface. We find that contact formation between the tip...

  7. Use of Audiovisual Media and Equipment by Medical Educationists ...

    African Journals Online (AJOL)

    The most frequently used audiovisual medium and equipment is transparency on Overhead projector (O. H. P.) while the medium and equipment that is barely used for teaching is computer graphics on multi-media projector. This study also suggests ways of improving teaching-learning processes in medical education, ...

  8. High-Temperature Surface-Acoustic-Wave Transducer

    Science.gov (United States)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  9. Practical use of dry desulfurization equipment using coal ash and effective use of used desulfurizer. Sekitanbai riyo kanshiki datsuryu sochi no jitsuyoka to shiyozumi datsuryuzai no yukoriyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T.; Ueno, T. (The Hokkaido Electric Power CO. Inc., Hokkaido (Japan))

    1992-01-30

    Practical use of dry desulfurization equipment using coal ash installed in Atsuma power plant no.1 is explained. Outline of dry desulferization process is consisted of basic principles and structure of the process which includes desulfurizer production equipment and absorption equipment. When compared with conventional wet process, equipments for waste water and for reheating of exhaust gas are not necessary, and operation maintenance has been more convenient with the simplification of the system and absorber has graded up the elimination function. Advantages of simplification of treatment of used desulfurizer, and absorption of sulfurdioxide by desulfurizer together with characteristics of desulfurizer production are given. As far as practical macineries are concerned, outline of instrument facilities, construction technology and results of experimental operation are reported. Effective Use of desulfurizer using deodorant and hedro treatment has been verified from ammonium absorption experiment and practical investigation results. However use of hedro material has required, conformity of surface caking technology, under water caking technology, under water covering technology and effect on under water living environment. 13 figs., 4 tabs.

  10. Design challenges for matrix assisted pulsed laser evaporation and infrared resonant laser evaporation equipment

    Science.gov (United States)

    Greer, James A.

    2011-11-01

    Since the development of the Matrix Assisted Pulsed Laser Evaporation (MAPLE) process by the Naval Research Laboratory (NRL) in the late 1990s, MAPLE has become an active area of research for the deposition of a variety of polymer, biological, and organic thin films. As is often the case with advancements in thin-film deposition techniques new technology sometimes evolves by making minor or major adjustments to existing deposition process equipment and techniques. This is usually the quickest and least expensive way to try out new ideas and to "push the envelope" in order to obtain new and unique scientific results as quickly as possible. This process of "tweaking" current equipment usually works to some degree, but once the new process is further refined overall designs for a new deposition tool based on the critical attributes of the new process typically help capitalize more fully on the all the salient features of the new and improved process. This certainly has been true for the MAPLE process. In fact the first MAPLE experiments the polymer/solvent matrix was mixed and poured into a copper holder held at LN2 temperature on a laboratory counter top. The holder was then quickly placed onto a LN2 cooled reservoir in a vacuum deposition chamber and placed in a vertical position on a LN2 cooled stage and pumped down as quickly as possible. If the sample was not placed into the chamber quickly enough the frozen matrix would melt and drip into the bottom of the chamber onto the chambers main gate valve making a bit of a mess. However, skilled and motivated scientists usually worked quickly enough to make this process work most of the time. The initial results from these experiments were encouraging and led to several publications which sparked considerable interest in this newly developed technique Clearly this approach provided the vision that MAPLE was a viable deposition process, but the equipment was not optimal for conducting MAPLE experiments on a regular basis

  11. DETERMINATION AND ANALYSIS OF CHANGE POWER CHARACTER AND POWER PARAMETERS OF EARTHMOVING- TRANSPORT WORKING PROCESS MACHINES OF CYCLIC ACTION

    Directory of Open Access Journals (Sweden)

    KHMARA L. A.

    2017-05-01

    Full Text Available Summary. Raising of problem. Efficiency of implementation working process an earthmoving-transport machine on digging of soil depends on complete realization of power equipment and hauling properties working equipment during implementation this operation. Most effective will be the mode of digging when from his beginning to the final stage a power equipment will realize nominal power, and working equipment maximal KKD at that skidding of mover does not exceed the defined possible value. However, for the traditional constructions of earthmoving-transport machines cyclic action, for such, as a drag shovel, bulldozer, realizing these terms is heavy. The feature of process digging consists in the increase of resistance to digging soil from the ego of the initial stage to eventual when hauling possibilities of machine will be maximally realized. Therefore the calculation of power equipment takes into account the power indexes of machine on the final stage of digging. Thus the unstationarity of working process results in the under exploitation of power equipment machine and hereupon appearance her bits and pieces. The size of bits and pieces power depends on the stage digging of soil, his physical and mechanical properties, terms cooperation of working equipment with the surface of motion. One of methods realization surplus power, this use it for the drive intensifiers working process of earthmoving-transport machines. Therefore for the effective choice parameters of intensifier, his office hours it is necessary to know the size of bits and pieces of power and character her change during digging of soil. The purpose of the article. Development of methodology determination remaining power equipment an earthmoving-transport machine on the example self-propelled drags hovel, character her change at digging of soil taking into account physical and mechanical properties of soil and terms cooperation working equipment with the surface of motion. Conclusion

  12. Concrete pedestals for high-performance semiconductor production equipment

    Science.gov (United States)

    Vogen, Wayne; Franklin, Craig L.; Morneault, Joseph

    1999-09-01

    Concrete pedestals have many vibration and stiffness characteristics that make them a superior choice for sensitive semiconductor production equipment including scanners, scanning electron microscopes, focused ion beam millers and optical inspection equipment. Among the advantages of concrete pedestals are high inherent damping, monolithic construction that eliminates low stiffness joints common in steep pedestals, ability to reuse and ease of installation. Steel pedestals that have plates attached to the top of the frame are easily excited by acoustic excitation, especially in the range from 50 Hertz to 400 Hertz. Concrete pedestals do not suffer from this phenomenon because of the high mass and damping of the top surface.

  13. Mathematical Optimal Sequence Model Development to Process Planes and Other Interconnected Surfaces of Complex Body Parts

    Directory of Open Access Journals (Sweden)

    I. I. Kravchenko

    2016-01-01

    Full Text Available Experience in application of multi-operational machines CNC (MOM CNC shows that they are efficient only in case of significantly increasing productivity and dramatically reducing time-to-market cycle of new products. Most full technological MOM capabilities are revealed when processing the complex body parts. The more complex is a part design and the more is its number of machined surfaces, the more tools are necessary for its processing and positioning, the more is an efficiency of their application. At the same time, the case history of using these machines in industry shows that MOM CNC are, virtually, used mostly for technological processes of universal equipment, which is absolutely unacceptable. One way to improve the processing performance on MOM CNC is to reduce nonproductive machine time through reducing the mutual idle movements of the working machine. This problem is solved using dynamic programming methods, one of which is the solution of the traveling salesman problem (Bellman's method. With a known plan for treatment of all elementary surfaces of the body part, i.e. the known number of performed transitions, each transition is represented as a vertex of some graph, while technological links between the vertices are its edges. A mathematical model is developed on the Bellman principle, which is adapted to technological tasks to minimize the idle time of mutual idle movements of the working machine to perform all transitions in the optimal sequence. The initial data to fill matrix of time expenditures are time consumed by the hardware after executing the i-th transition, and necessary to complete the j-transition. The programmer fills in matrix cells according to known routing body part taking into account the time for part and table positioning, tool exchange, spindle and table approach to the working zone, and the time of table rotation, etc. The mathematical model was tested when machining the body part with 36 transitions on the

  14. Equipment specifications for an electrochemical fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hemphill, Kevin P.

    2010-01-01

    Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

  15. Electronic dissipation processes during chemical reactions on surfaces

    CERN Document Server

    Stella, Kevin

    2012-01-01

    Hauptbeschreibung Every day in our life is larded with a huge number of chemical reactions on surfaces. Some reactions occur immediately, for others an activation energy has to be supplied. Thus it happens that though a reaction should thermodynamically run off, it is kinetically hindered. Meaning the partners react only to the thermodynamically more stable product state within a mentionable time if the activation energy of the reaction is supplied. With the help of catalysts the activation energy of a reaction can be lowered. Such catalytic processes on surfaces are widely used in industry. A

  16. The point of view of thermal equipment users; Le point de vue des gestionnaires d`equipements thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Barroyer, P. [Compagnie Generale de Chauffe, 59 - Saint Andre Lez Lille (France)

    1997-12-31

    The influence of new pollution regulations in France on the operation of thermal equipment for central heating systems or industrial heat process systems, is examined. The main French regulations concerning air pollution control and energy rational consumption are reviewed, and their effects on the design, equipment, operation and costs of heat plants are discussed: impacts of the decree on upgrading and disposal of fossil fuel ashes, the decree on special protection zone (large cities), the clean air law, the compulsory declaration for classified combustion plants and limit air pollution emission levels

  17. Design and construction of a air pollutant gases sampler equipment

    International Nuclear Information System (INIS)

    Gomez S, R.A.; Rodriguez, T.J.

    1996-01-01

    This thesis is about the sketch and construction of an equipment which samples contaminated gases in the air. The topic of this work, is to propose a solution for imported and national equipment. The solution consist on lower prices of imported and national equipment without loosing the accuracy and the precision of those now available. The investigation shows all process to sample gases and theirs measurement for which all the mechanical, electric and electronic equipment, and the necessary software for giving the results in a computerized way were outlined. With this work it was able to succeed in measurements with a national low price, accurate, reliable, programmable, completely automatic and easy to use. This equipment exceed in accuracy the Japanese and the american equipment

  18. The application of GIS equipment in nuclear power plant

    International Nuclear Information System (INIS)

    Ji Lin; Huang Pengbo; Chang Xin'ai

    2012-01-01

    In this paper, the advantage and disadvantage of gas insulated switchgear (GIS) in environmental adaptability, operation safety and economic benefit are analyzed. Issues concerning the manufacture, transportation, on-site installation, operation, maintenance and extension of GIS equipment are discussed. Comparing those characteristics with air insulated switchgear (AIS), GIS is characterized by better aseismic ability, less occupied area and installation process, lower fault rate, longer maintenance period, easier for extension and higher economic benefit, SF6 gas insures the operation safety and reliability of GIS equipment, modular transport and re-assembling improves the installation flexibility. Therefore, GIS equipment may be the first choice for the primary equipment of nuclear power plant. (authors)

  19. Fiber-Optic Surface Temperature Sensor Based on Modal Interference

    Directory of Open Access Journals (Sweden)

    Frédéric Musin

    2016-07-01

    Full Text Available Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.

  20. Status of the nondestructive examination equipment for the fuels and materials examination facility

    International Nuclear Information System (INIS)

    Frandsen, G.B.

    1980-01-01

    The present status of Nondestructive Examination (NDE) Equipment proposed for the Fuels and Materials Examination Facility (FMEF) now under construction at the Hanford Engineering Development Laboratory is discussed. Items discussed include the NDE cell receiving machine, the dismantling machine, the standard examination stage, profilometry, eddy current, wire wrap removal machine, surface examination, gamma scan and general NDE equipment

  1. 40 CFR 63.489 - Batch front-end process vents-monitoring equipment.

    Science.gov (United States)

    2010-07-01

    ... heater of less than 44 megawatts design heat input capacity is used, a temperature monitoring device in... operator may determine gas stream flow using the design blower capacity, with appropriate adjustments for... are required, each equipped with a continuous recorder. (6) Where a condenser is used, a condenser...

  2. Development of augmented reality system for servicing electromechanical equipment

    Science.gov (United States)

    Zhukovskiy, Y.; Koteleva, N.

    2018-05-01

    Electromechanical equipment is widely used. It is used in industrial enterprises, in the spheres of public services, in everyday life, etc. Maintenance servicing of electromechanical equipment is an important part of its life cycle. High-quality and timely service can extend the life of the electromechanical equipment. The creation of special systems that simplify the process of servicing electromechanical equipment is an urgent task. Such systems can shorten the time for maintenance of electrical equipment, and, therefore, reduce the cost of maintenance in general. This article presents an analysis of information on the operation of service services for maintenance and repair of electromechanical equipment, identifies the list of services, and estimates the time required to perform basic service operations. The structure of the augmented reality system is presented, the ways of interaction of the augmented reality system with the automated control systems working at the enterprise are presented.

  3. Decontamination chamber for the maintenance of DUPIC nuclear fuel fabrication and process equipment

    International Nuclear Information System (INIS)

    Kim, K. H.; Park, J. J.; Yang, M. S.; Lee, H. H.; Shin, J. M.

    2000-10-01

    This report presents the decontamination chamber of being capable of decontaminating and maintaining DUPIC nuclear fuel fabrication equipment contaminated in use. The decontamination chamber is a closed room in which contaminated equipment can be isolated from a hot-cell, be decontaminated and be reparired. This chamber can prevent contamination from spreading over the hot-cell, and it can also be utilized as a part of the hot-cell after maintenance work. The developed decontamination chamber has mainly five sub-modules - a horizontal module for opening and closing a ceil of the chamber, a vertical module for opening and closing a side of the chamber, a subsidiary door module for enforcing the vertical opening/closing module, a rotary module for rotating contaminated equipment, and a grasping module for holding a decontamination device. Such sub-modules were integrated and installed in the M6 hot-cell of the IMEF at the KAERI. The mechanical design considerations of each modules and the arrangement with hot-cell facility, remote operation and manipulation of the decontamination chamber are also described

  4. Decontamination chamber for the maintenance of DUPIC nuclear fuel fabrication and process equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. H.; Park, J. J.; Yang, M. S.; Lee, H. H.; Shin, J. M

    2000-10-01

    This report presents the decontamination chamber of being capable of decontaminating and maintaining DUPIC nuclear fuel fabrication equipment contaminated in use. The decontamination chamber is a closed room in which contaminated equipment can be isolated from a hot-cell, be decontaminated and be reparired. This chamber can prevent contamination from spreading over the hot-cell, and it can also be utilized as a part of the hot-cell after maintenance work. The developed decontamination chamber has mainly five sub-modules - a horizontal module for opening and closing a ceil of the chamber, a vertical module for opening and closing a side of the chamber, a subsidiary door module for enforcing the vertical opening/closing module, a rotary module for rotating contaminated equipment, and a grasping module for holding a decontamination device. Such sub-modules were integrated and installed in the M6 hot-cell of the IMEF at the KAERI. The mechanical design considerations of each modules and the arrangement with hot-cell facility, remote operation and manipulation of the decontamination chamber are also described.

  5. [Hydrotherapy equipment].

    Science.gov (United States)

    Tsibikov, V B; Ragozin, S I; Mikheeva, L V

    1985-01-01

    A flow-chart is developed demonstrating the relation between medical and prophylactic institutions within the organizational structure of the rehabilitation system and main types of rehabilitation procedures. In order to ascertain the priority in equipping rehabilitation services with adequate hardware the special priority criterion is introduced. The highest priority is assigned to balneotherapeutic and fangotherapeutic services. Based on the operation-by-operation analysis of clinical processes related to service and performance of balneologic procedures the preliminary set of clinical devices designed for baths, basins and showers in hospitals and rehabilitation departments is defined in a generalized form.

  6. Equipment decontamination: A brief survey of the DOE complex

    International Nuclear Information System (INIS)

    Conner, C.; Chamberlain, D.B.; Chen, L.; Vandegrift, G.F.

    1995-03-01

    Deactivation at DOE facilities has left a tremendous amount of contaminated equipment behind. In-situ methods are needed to decontaminate the interiors of the equipment sufficiently to allow either free release or land disposal. A brief survey was completed of the DOE complex on their needs for equipment decontamination with in-situ technology to determine (1) the types of contamination problems within the DOE complex, (2) decontamination processes that are being used or are being developed within the DOE, and (3) the methods that are available to dispose of spent decontamination solutions. In addition, potential sites for testing decontamination methods were located. Based on the information obtained from these surveys, the Rocky Flats Plant and the Idaho National Engineering Laboratory appear to be best suited to complete the initial testing of the decontamination processes

  7. Effects of Micromachining Processes on Electro-Osmotic Flow Mobility of Glass Surfaces

    Directory of Open Access Journals (Sweden)

    Norihisa Miki

    2013-03-01

    Full Text Available Silica glass is frequently used as a device material for micro/nano fluidic devices due to its excellent properties, such as transparency and chemical resistance. Wet etching by hydrofluoric acid and dry etching by neutral loop discharge (NLD plasma etching are currently used to micromachine glass to form micro/nano fluidic channels. Electro-osmotic flow (EOF is one of the most effective methods to drive liquids into the channels. EOF mobility is affected by a property of the micromachined glass surfaces, which includes surface roughness that is determined by the manufacturing processes. In this paper, we investigate the effect of micromaching processes on the glass surface topography and the EOF mobility. We prepared glass surfaces by either wet etching or by NLD plasma etching, investigated the surface topography using atomic force microscopy, and attempted to correlate it with EOF generated in the micro-channels of the machined glass. Experiments revealed that the EOF mobility strongly depends on the surface roughness, and therefore upon the fabrication process used. A particularly strong dependency was observed when the surface roughness was on the order of the electric double layer thickness or below. We believe that the correlation described in this paper can be of great help in the design of micro/nano fluidic devices.

  8. Melt processing and property testing of a model system of plastics contained in waste from electrical and electronic equipment.

    Science.gov (United States)

    Triantou, Marianna I; Tarantili, Petroula A; Andreopoulos, Andreas G

    2015-05-01

    In the present research, blending of polymers used in electrical and electronic equipment, i.e. acrylonitrile-butadiene-styrene terpolymer, polycarbonate and polypropylene, was performed in a twin-screw extruder, in order to explore the effect process parameters on the mixture properties, in an attempt to determine some characteristics of a fast and economical procedure for waste management. The addition of polycarbonate in acrylonitrile-butadiene-styrene terpolymer seemed to increase its thermal stability. Also, the addition of polypropylene in acrylonitrile-butadiene-styrene terpolymer facilitates its melt processing, whereas the addition of acrylonitrile-butadiene-styrene terpolymer in polypropylene improves its mechanical performance. Moreover, the upgrading of the above blends by incorporating 2 phr organically modified montmorillonite was investigated. The prepared nanocomposites exhibit greater tensile strength, elastic modulus and storage modulus, as well as higher melt viscosity, compared with the unreinforced blends. The incorporation of montmorillonite nanoplatelets in polycarbonate-rich acrylonitrile-butadiene-styrene terpolymer/polycarbonate blends turns the thermal degradation mechanism into a two-stage process. Alternatively to mechanical recycling, the energy recovery from the combustion of acrylonitrile-butadiene-styrene terpolymer/polycarbonate and acrylonitrile-butadiene-styrene terpolymer/polypropylene blends was recorded by measuring the gross calorific value. Comparing the investigated polymers, polypropylene presents the higher gross calorific value, followed by acrylonitrile-butadiene-styrene terpolymer and then polycarbonate. The above study allows a rough comparative evaluation of various methodologies for treating plastics from waste from electrical and electronic equipment. © The Author(s) 2015.

  9. Generic data base for security equipment and its utility in the safeguards inspection process. Final report 8151-79-FR-16

    International Nuclear Information System (INIS)

    Scala, S.

    1979-01-01

    This report contains material presented at the Nuclear Regulatory Commission (NRC) conference of regional inspectors in Atlanta, Georgia, on January 17, 1979. It describes the contents of the generic data base for security equipment, which was developed by SRI for NRC under a Sandia Laboratories' subcontract, and examines its potential utility in the process of inspection of NRC-licensed facilities

  10. Operational planning optimization of steam power plants considering equipment failure in petrochemical complex

    International Nuclear Information System (INIS)

    Luo, Xianglong; Zhang, Bingjian; Chen, Ying; Mo, Songping

    2013-01-01

    Highlights: ► We develop a systematic programming methodology to address equipment failure. ► We classify different operation conditions into real periods and virtual periods. ► The formulated MILP models guarantee cost reduction and enough operation safety. ► The consideration of reserving operation redundancy is effective. - Abstract: One or more interconnected steam power plants (SPPs) are constructed in a petrochemical complex to supply utility energy to the process. To avoid large economic penalties or process shutdowns, these SPPs should be flexible and reliable enough to meet the process energy requirement under varying conditions. Unexpected utility equipment failure is inevitable and difficult to be predicted. Most of the conventional methods are based on the assumption that SPPs do not experience any kind of equipment failure. Unfortunately, a process shutdown cannot be avoided when equipment fails unexpectedly. In this paper, a systematic methodology is presented to minimize the total cost under normal conditions while reserving enough flexibility and safety for unexpected equipment failure conditions. The proposed method transforms the different conditions into real periods to indicate normal scenarios and virtual periods to indicate unexpected equipment failure scenarios. The optimization strategy incorporating various operation redundancy scheduling, the transition constraints from equipment failure conditions to normal conditions, and the boiler load increase behavior modeling are presented to save cost and guarantee operation safety. A detailed industrial case study shows that the proposed systematic methodology is effective and practical in coping with equipment failure conditions with only few additional cost penalties

  11. Integrated electronic device for processing impulses from neutron detectors

    International Nuclear Information System (INIS)

    Stoica, Mihai; Pirvu, Ion

    2009-01-01

    The developing of nuclear power is a key factor in decreasing energy Romania's dependence on imports of fossil fuels (oil, natural gas). An important point in achieving this goal is to use the experience acquired in the design and use of the equipment produced with the participation of INR specialists for Cernavoda NPP, Units 1 and 2. The design based on Surface Mount Technology (SMT) and the implementation of electronic interface modules of computer processing and detectors of radiation or nuclear particles contribute both to modernize and increase the performance of equipment. (authors)

  12. An assessment and evaluation for recycle/reuse of contaminated process and metallurgical equipment at the DOE Rocky Flats Plant Site -- Building 865

    International Nuclear Information System (INIS)

    1993-08-01

    An economic analysis of the potential advantages of alternatives for recycling and reusing equipment now stored in Building 865 at the Rocky Flats Plant (RFP) in Colorado has been conducted. The inventory considered in this analysis consists primarily of metallurgical and process equipment used before January 1992, during development and production of nuclear weapons components at the site. The economic analysis consists of a thorough building inventory and cost comparisons for four equipment dispositions alternatives. The first is a baseline option of disposal at a Low Level Waste (LLW) landfill. The three alternatives investigated are metal recycling, reuse with the government sector, and release for unrestricted use. This report provides item-by-item estimates of value, disposal cost, and decontamination cost. The economic evaluation methods documented here, the simple cost comparisons presented, and the data provided as a supplement, should provide a foundation for D ampersand D decisions for Building 865, as well as for similar D ampersand D tasks at RFP and at other sites

  13. Overcoming soil compaction in surface mine reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Sweigard, R.J. (University of Kentucky, Lexington, KY (USA). Dept. of Mining Engineering)

    1991-01-01

    Rubber-tyred soil reconstruction equipment causes compaction of soil and means surface mine operators cannot satisfy crop yield standards defined by the Surface Mining Control and Reclamation Act. Soil compaction can be overcome by either modifying the reconstruction process or alleviating the problem, for example by deep tillage, once it occurs. The Dept. of Mining Engineering at the Institute of Mining and Minerals Research is conducting a laboratory investigation into a method of injecting low density porous organic material into a bin containing soil at the same time as the soil is ripped. This should prevent voids collapsing when subjected to forces from farm equipment and natural sources. Soil analyses are performed before and after the injection. Ripping and injection with ground pecan shells had a residual effect on nuclear bulk density compared to the initially compacted case and also showed an improvement in hydraulic conductivity. Work is in progress on modifying the system to handle other injection material and should lead on to field tests on a prototype involving both soil analysis and crop yield determination. 1 fig.

  14. Overcoming soil compaction in surface mine reclamation

    International Nuclear Information System (INIS)

    Sweigard, R.J.

    1991-01-01

    Rubber-tyred soil reconstruction equipment causes compaction of soil and means surface mine operators cannot satisfy crop yield standards defined by the Surface Mining Control and Reclamation Act. Soil compaction can be overcome by either modifying the reconstruction process or alleviating the problem, for example by deep tillage, once it occurs. The Dept. of Mining Engineering at the Institute of Mining and Minerals Research is conducting a laboratory investigation into a method of injecting low density porous organic material into a bin containing soil at the same time as the soil is ripped. This should prevent voids collapsing when subjected to forces from farm equipment and natural sources. Soil analyses are performed before and after the injection. Ripping and injection with ground pecan shells had a residual effect on nuclear bulk density compared to the initially compacted case and also showed an improvement in hydraulic conductivity. Work is in progress on modifying the system to handle other injection material and should lead on to field tests on a prototype involving both soil analysis and crop yield determination. 1 fig

  15. Photoelectric equipment type MFS-7 for analyzing oils

    International Nuclear Information System (INIS)

    Orlova, S.A.; Fridman, M.G.; Kholosha, T.V.; Ezhoda, G.D.; Nechitailov, V.V.

    1987-01-01

    The authors describe the equipment type MFS-7 which is intended for analyzing used oils for the wear products of motors. The difference between type MFS-7 and its predecessors lies in the application of computer techniques to control the equipment and process the output data; and in the design of the sample container, which allows for two methods of introducing the sample into the discharge. The photoelectric equipment consists of an excitation spectrum source IVS-28, having an ac arc mode and 1.v. spark, a polychoromator, a special sample holder for analyzing liquid samples, an electronic recording apparatus with digital voltmeter type ERU-18 and control computer system Spectr 2.2 based on a minicomputer with its own printer. The type MFS-7 equipment has been tested and put into mass production

  16. Electrochemical and morphological analyses on the titanium surface modified by shot blasting and anodic oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Szesz, Eduardo M., E-mail: eszesz@neoortho.com.br [Neoortho Research Institute, Rua Ângelo Domingos Durigan, 607-Cascatinha, CEP 82025-100 Curitiba, PR (Brazil); Pereira, Bruno L., E-mail: brnl7@hotmail.com [Physics Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Kuromoto, Neide K., E-mail: kuromoto@fisica.ufpr.br [Physics Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Marino, Claudia E.B., E-mail: claudiamarino@yahoo.com [Mechanical Engineering Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Souza, Gelson B. de, E-mail: gelsonbs@uepg.br [Physics Department, Universidade Estadual de Ponta Grossa, 84051-510 Ponta Grossa, PR (Brazil); Soares, Paulo, E-mail: pa.soares@pucpr.br [Mechanical Engineering Department, Pontifícia Universidade Católica do Paraná, 80215-901 Curitiba, PR (Brazil)

    2013-01-01

    In recent years, many surface modification processes have been developed in order to induce the osseointegration on titanium surface and thus to improve the implants' biocompatibility. In this work, Ti surface has been modified by shot blasting followed by anodic oxidation process in order to associate the good surface characteristics of both processes to obtain a rough and porous surface able to promote the titanium surface bioactivity. Commercially pure titanium (grade 2) plates were used on the surface treatments that were as follows: Shot blasting (SB) performed using alumina (Al{sub 2}O{sub 3}) particles, and anodic oxidation (AO) using NaOH electrolyte. The morphology, structural changes and the open-circuit potentials (OCP) of the surfaces were analyzed. It can be observed that an increase on the roughness of the blasted surface and a rough and porous surface happens after the AO process. The anodic film produced is thin and followed the blasted surface topography. It can be observed that there are small pores with regular shape covering the entire surface. X-ray diffraction results showed the presence of the anatase and rutile phases on the blasted and anodized surface after heat treatment at 600 °C/1 h. Concerning electrochemical measurements, when the different samples were submitted to open-circuit conditions in a physiological electrolyte, the protective effect increases with the oxidation process due to the oxide layer. When the surface was blasted, the OCP was more negative when compared with the Ti surface without surface treatments. - Highlights: ► A combination of shot blasting and anodic oxidation surface treatments is proposed. ► Both processes produced an increase in roughness compared to the polished surface. ► The combination of processes produced a rough and porous surface. ► Open circuit results show that the protective effect increases with oxidation process. ► The combination of processes presents the better results in this

  17. Food-safe modification of stainless steel food processing surfaces to reduce bacterial biofilms.

    Science.gov (United States)

    Awad, Tarek Samir; Asker, Dalal; Hatton, Benjamin D

    2018-06-11

    Biofilm formation on stainless steel (SS) surfaces of food processing plants, leading to foodborne illness outbreaks, is enabled by the attachment and confinement within microscale cavities of surface roughness (grooves, scratches). We report Foodsafe Oil-based Slippery Coatings (FOSCs) for food processing surfaces that suppress bacterial adherence and biofilm formation by trapping residual oil lubricant within these surface cavities to block microbial growth. SS surfaces were chemically functionalized with alkylphosphonic acid to preferentially wet a layer of food grade oil. FOSCs reduced the effective surface roughness, the adhesion of organic food residue, and bacteria. FOSCs significantly reduced Pseudomonas aeruginosa biofilm formation on standard roughness SS-316 by 5 log CFU cm-2, and by 3 log CFU cm-2 for mirror-finished SS. FOSCs also enhanced surface cleanability, which we measured by bacterial counts after conventional detergent cleaning. Importantly, both SS grades maintained their anti-biofilm activity after erosion of the oil layer by surface wear with glass beads, which suggests there is a residual volume of oil that remains to block surface cavity defects. These results indicate the potential of such low-cost, scalable approaches to enhance the cleanability of SS food processing surfaces and improve food safety by reducing biofilm growth.

  18. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma

    International Nuclear Information System (INIS)

    Xin, Qiang; Li, Na; Wang, Jun; Wang, Bo; Li, Guo; Ding, Fei; Jin, Huiliang

    2015-01-01

    Highlights: • The morphology evolution of ground fused silica, processed by atmospheric plasma, was investigated experimentally. • The roughness development results from opening and coalescing of the plasma-etched cracks. • The shapes of grain-like etched pits are the results of the adjacent cracks coalescing with one another. • The descent of the pits density is due to some smaller etched pits that are swallowed up by larger pits. • Leading role in surface smoothing is laterally etching away the side walls of the intersecting pits. - Abstract: Subsurface damage (SSD) is a defect that is inevitably induced during mechanical processes, such as grinding and polishing. This defect dramatically reduces the mechanical strength and the laser damage thresholds of optical elements. Compared with traditional mechanical machining, atmospheric pressure plasma processing (APPP) is a relatively novel technology that induces almost no SSD during the processing of silica-based optical materials. In this paper, a form of APPP, inductively coupled plasma (ICP), is used to process fused silica substrates with fluorocarbon precursor under atmospheric pressure. The surface morphology evolution of ICP-processed substrates was observed and characterized by confocal laser scanning microscope (CLSM), field emission scanning electron microscope (SEM), and atomic force microscopy (AFM). The results show that the roughness evolves with the etching depth, and the roughness evolution is a single-peaked curve. This curve results from the opening and the coalescing of surface cracks and fractures. The coalescence procedure of these microstructures was simulated with two common etched pits on a polished fused silica surface. Understanding the roughness evolution of plasma-processed surface might be helpful in optimizing the optical fabrication chain that contains APPP

  19. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Qiang; Li, Na; Wang, Jun; Wang, Bo, E-mail: bradywang@hit.edu.cn; Li, Guo; Ding, Fei; Jin, Huiliang

    2015-06-30

    Highlights: • The morphology evolution of ground fused silica, processed by atmospheric plasma, was investigated experimentally. • The roughness development results from opening and coalescing of the plasma-etched cracks. • The shapes of grain-like etched pits are the results of the adjacent cracks coalescing with one another. • The descent of the pits density is due to some smaller etched pits that are swallowed up by larger pits. • Leading role in surface smoothing is laterally etching away the side walls of the intersecting pits. - Abstract: Subsurface damage (SSD) is a defect that is inevitably induced during mechanical processes, such as grinding and polishing. This defect dramatically reduces the mechanical strength and the laser damage thresholds of optical elements. Compared with traditional mechanical machining, atmospheric pressure plasma processing (APPP) is a relatively novel technology that induces almost no SSD during the processing of silica-based optical materials. In this paper, a form of APPP, inductively coupled plasma (ICP), is used to process fused silica substrates with fluorocarbon precursor under atmospheric pressure. The surface morphology evolution of ICP-processed substrates was observed and characterized by confocal laser scanning microscope (CLSM), field emission scanning electron microscope (SEM), and atomic force microscopy (AFM). The results show that the roughness evolves with the etching depth, and the roughness evolution is a single-peaked curve. This curve results from the opening and the coalescing of surface cracks and fractures. The coalescence procedure of these microstructures was simulated with two common etched pits on a polished fused silica surface. Understanding the roughness evolution of plasma-processed surface might be helpful in optimizing the optical fabrication chain that contains APPP.

  20. ANFIS Modeling of the Surface Roughness in Grinding Process

    OpenAIRE

    H. Baseri; G. Alinejad

    2011-01-01

    The objective of this study is to design an adaptive neuro-fuzzy inference system (ANFIS) for estimation of surface roughness in grinding process. The Used data have been generated from experimental observations when the wheel has been dressed using a rotary diamond disc dresser. The input parameters of model are dressing speed ratio, dressing depth and dresser cross-feed rate and output parameter is surface roughness. In the experimental procedure the grinding conditions...

  1. Upper Meter Processes: Short Wind Waves, Surface Flow, and Micro-Turbulence

    National Research Council Canada - National Science Library

    Jaehne, Bernd

    2000-01-01

    The primary goal of this project was to advance the knowledge of small-scale air-sea interaction processes at the ocean surface, focussing on the dynamics of short waves, the surface flow field and the micro-turbulence...

  2. Scaling behaviour of randomly alternating surface growth processes

    CERN Document Server

    Raychaudhuri, S

    2002-01-01

    The scaling properties of the roughness of surfaces grown by two different processes randomly alternating in time are addressed. The duration of each application of the two primary processes is assumed to be independently drawn from given distribution functions. We analytically address processes in which the two primary processes are linear and extend the conclusions to nonlinear processes as well. The growth scaling exponent of the average roughness with the number of applications is found to be determined by the long time tail of the distribution functions. For processes in which both mean application times are finite, the scaling behaviour follows that of the corresponding cyclical process in which the uniform application time of each primary process is given by its mean. If the distribution functions decay with a small enough power law for the mean application times to diverge, the growth exponent is found to depend continuously on this power-law exponent. In contrast, the roughness exponent does not depe...

  3. Electrical equipment qualification

    International Nuclear Information System (INIS)

    Farmer, W.S.

    1983-01-01

    Electrical equipment qualification research programs being carried out by CEA, JAERI, and Sandia Laboratories are discussed. Objectives of the program are: (1) assessment of accident simulation methods for electrical equipment qualification testing; lower coarse (2) evaluation of equipment aging and accelerated aging methods; (3) determine radiation dose spectrum to electrical equipment and assess simulation methods for qualification; (4) identify inadequacies in electrical equipment qualification procedures and standards and potential failure modes; and (5) provide data for verifying and improving standards, rules and regulatory guides

  4. Mechanical and tribological properties of ion beam-processed surfaces

    International Nuclear Information System (INIS)

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness

  5. Cold pressure welding of aluminium-steel blanks: Manufacturing process and electrochemical surface preparation

    Science.gov (United States)

    Schmidt, Hans Christian; Homberg, Werner; Orive, Alejandro Gonzalez; Grundmeier, Guido; Hordych, Illia; Maier, Hans Jürgen

    2018-05-01

    In this study the manufacture of aluminium-steel blanks by cold pressure welding and their preparation for a welding process through electrochemical surface treatment are investigated and discussed. The cold pressure welding process was done with an incremental rolling tool that allows for the partial pressure welding of two blanks along a prepared path. The influence of the surface preparation by electrochemical deposition of bond promoting organosilane-based agents and roughening on a nano-scale is investigated and compared to conventional surface treatments. Coating the surfaces with a thin organosilane-based film incorporating specific functional groups should promote additional bonding between the mating oxide layers; its influence on the total weld strength is studied. Pressure welding requires suitable process strategies, and the current advances in the proposed incremental rolling process for the combination of mild steel and aluminium are presented.

  6. In situ processing of concrete surface by impregnation and polymerization of an organic resin

    International Nuclear Information System (INIS)

    Pellecchia, V.; Ursella, P.; Moretto, G.

    1990-01-01

    The impregnation by resins of concrete structures is widely known as PIC (Polymer Impregnated Concrete). This process is normally used to improve the physical-chemical features of prefabricated items in particular to raise their lifetime under severe environmental conditions. The main target of this research contract was the verification of the possibility of a proper impregnation of existing concrete surfaces, of any dimensions and position, by comparing the obtained characteristics with those of untreated original material to check the improvement of chemical-physical properties and durability. In a nuclear facility, this goal is very important with reference to the long-term integrity of concrete walls during plant operative lifetime and after the final shutdown and decommissioning of the plant, if its dismantling is deferred. The operative steps of the research were the design, manufacturing and implementation of a tailored prototype equipment, the setting-up of the machine, the project and erection of a walling unit made of different density sectors in nuclear grade concrete and optimisation of the PIC process phases (dehydration, degassing, monomer injection, thermal cycles) during the experimental campaign. The data collected from samples gathered from field application gave results very similar to laboratory impregnated samples, thus confirming the satisfactory running of the prototype unit. Particularly the resin penetration, in spite of low porosity of nuclear grade concrete matrix, reached depths well beyond 50 mm with a significant increase of mechanical features, leaching resistance to aggressive agents and an appreciable sealing of concrete porosity

  7. Amplified fragment length polymorphism fingerprinting of Pseudomonas strains from a poultry processing plant.

    Science.gov (United States)

    Geornaras, I; Kunene, N F; von Holy, A; Hastings, J W

    1999-09-01

    Molecular typing has been used previously to identify and trace dissemination of pathogenic and spoilage bacteria associated with food processing. Amplified fragment length polymorphism (AFLP) is a novel DNA fingerprinting technique which is considered highly reproducible and has high discriminatory power. This technique was used to fingerprint 88 Pseudomonas fluorescens and Pseudomonas putida strains that were previously isolated from plate counts of carcasses at six processing stages and various equipment surfaces and environmental sources of a poultry abattoir. Clustering of the AFLP patterns revealed a high level of diversity among the strains. Six clusters (clusters I through VI) were delineated at an arbitrary Dice coefficient level of 0.65; clusters III (31 strains) and IV (28 strains) were the largest clusters. More than one-half (52.3%) of the strains obtained from carcass samples, which may have represented the resident carcass population, grouped together in cluster III. By contrast, 43.2% of the strains from most of the equipment surfaces and environmental sources grouped together in cluster IV. In most cases, the clusters in which carcass strains from processing stages grouped corresponded to the clusters in which strains from the associated equipment surfaces and/or environmental sources were found. This provided evidence that there was cross-contamination between carcasses and the abattoir environment at the DNA level. The AFLP data also showed that strains were being disseminated from the beginning to the end of the poultry processing operation, since many strains associated with carcasses at the packaging stage were members of the same clusters as strains obtained from carcasses after the defeathering stage.

  8. Equipment size effects on open pit mining performance

    Energy Technology Data Exchange (ETDEWEB)

    A. Bozorgebrahimi; R.A. Hall; M.A. Morin [University of British Columbia, Vancouver, BC (Canada). Mining Engineering Department

    2005-03-01

    This paper discusses the exploitation of economies of scale in open pit mining through the use of increasingly larger equipment. It presents a method adopted to evaluate the impact of increased scale on operational performance factors. The work identifies equipment size sensitive variables (ESSVs) in the mine design process that affect the performance of the production process. Data from a set of case studies show that the ESSV influence extends beyond mine production to encompass milling performance, environmental footprint and community impacts. Some ESSVs (such as reliability, tyre costs and productivity) are shown to be related to the current state of equipment technology and their effects are therefore comparable for different mines. Other ESSVs relate to the mine and deposit characteristics; their effects therefore vary from mine to mine. A detailed analytical approach, developed to model the impact of ESSVs, suggests that for truck/shovel operations, the industry may be approaching a situation of diseconomies of scale.

  9. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces.

    Science.gov (United States)

    Xu, Wenji; Song, Jinlong; Sun, Jing; Lu, Yao; Yu, Ziyuan

    2011-11-01

    A superhydrophobic magnesium (Mg) alloy surface was successfully fabricated via a facile electrochemical machining process, and subsequently covered with a fluoroalkylsilane (FAS) film. The surface morphologies and chemical compositions were investigated using a scanning electron microscope (SEM) equipped with an energy-dispersive spectroscopy (EDS) and a Fourier-transform infrared spectrophotometer (FTIR). The results show hierarchal rough structures and an FAS film with a low surface energy on the Mg alloy surfaces, which confers good superhydrophobicity with a water contact angle of 165.2° and a water tilting angle of approximately 2°. The processing conditions, such as the processing time and removal rate per unit area at a constant removal mass per unit area, were investigated to determine their effects on the superhydrophobicity. Interestingly, when the removal mass per unit area is constant at approximately 11.10 mg/cm(2), the superhydrophobicity does not change with the removal rate per unit area. Therefore, a superhydrophobic Mg alloy surface can be rapidly fabricated based on this property. A large-area superhydrophobic Mg alloy surface was also fabricated for the first time using a small-area moving cathode. The corrosion resistance and durability of the superhydrophobic surfaces were also examined.

  10. Surface enhancement of cold work tool steels by friction stir processing with a pinless tool

    Science.gov (United States)

    Costa, M. I.; Verdera, D.; Vieira, M. T.; Rodrigues, D. M.

    2014-03-01

    The microstructure and mechanical properties of enhanced tool steel (AISI D2) surfaces produced using a friction stir welding (FSW) related procedure, called friction stir processing (FSP), are analysed in this work. The surface of the tool steel samples was processed using a WC-Co pinless tool and varying processing conditions. Microstructural analysis revealed that meanwhile the original substrate structure consisted of a heterogeneous distribution of coarse carbides in a ferritic matrix, the transformed surfaces consisted of very small carbides, homogenously distributed in a ferrite- bainite- martensite matrix. The morphology of the surfaces, as well as its mechanical properties, evaluated by hardness and tensile testing, were found to vary with increasing tool rotation speed. Surface hardness was drastically increased, relative to the initial hardness of bulk steel. This was attributed to ferrite and carbide refinement, as well as to martensite formation during solid state processing. At the highest rotation rates, tool sliding during processing deeply compromised the characteristics of the processed surfaces.

  11. A high volume cost efficient production macrostructuring process. [for silicon solar cell surface treatment

    Science.gov (United States)

    Chitre, S. R.

    1978-01-01

    The paper presents an experimentally developed surface macro-structuring process suitable for high volume production of silicon solar cells. The process lends itself easily to automation for high throughput to meet low-cost solar array goals. The tetrahedron structure observed is 0.5 - 12 micron high. The surface has minimal pitting with virtually no or very few undeveloped areas across the surface. This process has been developed for (100) oriented as cut silicon. Chemi-etched, hydrophobic and lapped surfaces were successfully texturized. A cost analysis as per Samics is presented.

  12. Improvement in Surface Characterisitcs of Polymers for Subsequent Electroless Plating Using Liquid Assisted Laser Processing

    DEFF Research Database (Denmark)

    Marla, Deepak; Zhang, Yang; Jabbaribehnam, Mirmasoud

    2016-01-01

    Metallization of polymers is a widely used process in the electronic industry that involves their surface modification as a pre-treatment step. Laser-based surface modification is one of the commonly used techniques for polymers due to its speed and precision. The process involves laser heating...... of the polymer surface to generate a rough or porous surface. Laser processing in liquid generates superior surface characteristics that result in better metal deposition. In this study, a comparison of the surface characteristics obtained by laser processing in water vis-à-vis air along with the deposition...... characteristics are presented. In addition, a numerical model based on the finite volume method is developed to predict the temperature profile during the process. Based on the model results, it is hypothesized that physical phenomena such as vapor bubble generation and plasma formation may occur in the presence...

  13. HAPO Plant and capital equipment budget for FY 1966 and revision of budget for FY 1965 equipment not related to construction projects

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J.E.

    1964-05-12

    This document is divided into: byproduct horizontal control rod system (5 reactors); high-speed scanning-effluent temperature monitoring system (KE reactor); improved reactor gas system (100-KE & KW); safety circuit system modifications (5 reactors); alternate process hot die sizing, 313 Building 300 Area; button line equipment (234-5 Building); in-tank waste solidification (3rd unit); and misc. minor equipment projects.

  14. Research on the Influence of Cutting Rates on Macrogeometry Deflections of Surfaces under Processing Complex form Products Made of Aluminium Aloys

    Directory of Open Access Journals (Sweden)

    Ieva Švagždytė

    2015-03-01

    Full Text Available The article reviews the influence of cutting rates on macrogeometry deflection of milling complex form products and turning an outside surface. For that purpose, one of the most popular aluminium alloys 6082 has been chosen. A ball nose mill of 8 mm in diameter has been milled employing CNC vertical centre HAAS MINI MILL and applying CNC lathe HAAS ST 20 for turning. Measurements have been carried out using coordinate measuring machine DEA micro-hite DCC, applying the probe sphere of 3mm in diameter and the probe equipped with a needle. A deviation of the surface profile from tangent to therophore parabola has been investigated. The determinants R2 of the obtained regressive equation have disclosed that the depth of the cut has the biggest influence on macrogeometry deflections, whereas feed rate has a slighter influence and cutting speed has no radical influence. For the turning process, the depth of the cut has the strongest influence on circularity while cilindrisity has been mainly affected by cutting speed.

  15. Implementation plan for HANDI 2000 TWRS master equipment list

    International Nuclear Information System (INIS)

    BENNION, S.I.

    1999-01-01

    This document presents the implementation plan for an additional deliverable of the HANDI 2000 Project. The PassPort Equipment Data module processes include those portions of the COTS PassPort system required to support tracking and management of the Master Equipment List for Lockheed Martin Hanford Company (LMHC) and custom software created to work with the COTS products

  16. Characterizing polycyclic aromatic hydrocarbon build-up processes on urban road surfaces

    International Nuclear Information System (INIS)

    Liu, Liang; Liu, An; Li, Dunzhu; Zhang, Lixun; Guan, Yuntao

    2016-01-01

    Reliable prediction models are essential for modeling pollutant build-up processes on urban road surfaces. Based on successive samplings of road deposited sediments (RDS), this study presents empirical models for mathematical replication of the polycyclic aromatic hydrocarbon (PAH) build-up processes on urban road surfaces. The contaminant build-up behavior was modeled using saturation functions, which are commonly applied in US EPA's Stormwater Management Model (SWMM). Accurate fitting results were achieved in three typical urban land use types, and the applicability of the models was confirmed based on their acceptable relative prediction errors. The fitting results showed high variability in PAH saturation value and build-up rate among different land use types. Results of multivariate data and temporal-based analyses suggested that the quantity and property of RDS significantly influenced PAH build-up. Furthermore, pollution sources, traffic parameters, road surface conditions, and sweeping frequency could synthetically impact the RDS build-up and RDS property change processes. Thus, changes in these parameters could be the main reason for variations in PAH build-up in different urban land use types. - Highlights: • Sufficient robust prediction models were established for analysis of PAH build-up on urban road surfaces. • PAH build-up processes showed high variability among different land use types. • Pollution sources as well as the quantity and property of RDS mainly influenced PAH build-up. - Sufficient robust prediction models were established for analysis of PAH build-up on urban road surfaces. Pollution sources as well as the quantity and property of RDS mainly influenced PAH build-up.

  17. Discussion on the safety classification of nuclear safety mechanical equipment

    International Nuclear Information System (INIS)

    Shen Wei

    2010-01-01

    The purpose and definition of the equipment safety classification in nuclear plant are introduced. The differences of several safety classification criterions are compared, and the object of safety classification is determined. According to the regulation, the definition and category of the safety functions are represented. The safety classification method, safety classification process, safety class interface, and the requirement for the safety class mechanical equipment are explored. At last, the relation of the safety classification between the mechanical and electrical equipment is presented, and the relation of the safety classification between mechanical equipment and system is also presented. (author)

  18. Spectrum correction algorithm for detectors in airborne radioactivity monitoring equipment NH-UAV based on a ratio processing method

    International Nuclear Information System (INIS)

    Cao, Ye; Tang, Xiao-Bin; Wang, Peng; Meng, Jia; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2015-01-01

    The unmanned aerial vehicle (UAV) radiation monitoring method plays an important role in nuclear accidents emergency. In this research, a spectrum correction algorithm about the UAV airborne radioactivity monitoring equipment NH-UAV was studied to measure the radioactive nuclides within a small area in real time and in a fixed place. The simulation spectra of the high-purity germanium (HPGe) detector and the lanthanum bromide (LaBr 3 ) detector in the equipment were obtained using the Monte Carlo technique. Spectrum correction coefficients were calculated after performing ratio processing techniques about the net peak areas between the double detectors on the detection spectrum of the LaBr 3 detector according to the accuracy of the detection spectrum of the HPGe detector. The relationship between the spectrum correction coefficient and the size of the source term was also investigated. A good linear relation exists between the spectrum correction coefficient and the corresponding energy (R 2 =0.9765). The maximum relative deviation from the real condition reduced from 1.65 to 0.035. The spectrum correction method was verified as feasible. - Highlights: • An airborne radioactivity monitoring equipment NH-UAV was developed to measure radionuclide after a nuclear accident. • A spectrum correction algorithm was proposed to obtain precise information on the detected radioactivity within a small area. • The spectrum correction method was verified as feasible. • The corresponding spectrum correction coefficients increase first and then stay constant

  19. Spectrum correction algorithm for detectors in airborne radioactivity monitoring equipment NH-UAV based on a ratio processing method

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ye [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Tang, Xiao-Bin, E-mail: tangxiaobin@nuaa.edu.cn [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Peng; Meng, Jia; Huang, Xi; Wen, Liang-Sheng [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Chen, Da [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2015-10-11

    The unmanned aerial vehicle (UAV) radiation monitoring method plays an important role in nuclear accidents emergency. In this research, a spectrum correction algorithm about the UAV airborne radioactivity monitoring equipment NH-UAV was studied to measure the radioactive nuclides within a small area in real time and in a fixed place. The simulation spectra of the high-purity germanium (HPGe) detector and the lanthanum bromide (LaBr{sub 3}) detector in the equipment were obtained using the Monte Carlo technique. Spectrum correction coefficients were calculated after performing ratio processing techniques about the net peak areas between the double detectors on the detection spectrum of the LaBr{sub 3} detector according to the accuracy of the detection spectrum of the HPGe detector. The relationship between the spectrum correction coefficient and the size of the source term was also investigated. A good linear relation exists between the spectrum correction coefficient and the corresponding energy (R{sup 2}=0.9765). The maximum relative deviation from the real condition reduced from 1.65 to 0.035. The spectrum correction method was verified as feasible. - Highlights: • An airborne radioactivity monitoring equipment NH-UAV was developed to measure radionuclide after a nuclear accident. • A spectrum correction algorithm was proposed to obtain precise information on the detected radioactivity within a small area. • The spectrum correction method was verified as feasible. • The corresponding spectrum correction coefficients increase first and then stay constant.

  20. Improvement of Surface Properties of CP-Titanium by Thermo-Chemical Treatment (TCT) Process

    International Nuclear Information System (INIS)

    Jeong, Hyeon-Gyeong; Hur, Bo-Young; Lee, Dong-Geun; Lee, Yong-Tai; Yaskiv, O.

    2011-01-01

    The thermo-chemical treatment (TCT) process was applied to achieve surface hardening of CP titanium. The following three different surface modification conditions were tested so that the best surface hardening process could be selected:(a) PVD, (b) TCT+PVD, and (c) TCT+Aging+PVD. These specimens were tested and analyzed in terms of surface roughness, wear, friction coefficient, and the gradient of hardening from the surface of the matrix. The three test conditions were all beneficial to improve the surface hardness of CP titanium. Moreover, the TCT treated specimens, that is, (b) and (c), showed significantly improved surface hardness and low friction coefficients through the thickness up to 100um. This is due to the functionally gradient hardened surface improvement by the diffused interstitial elements. The hardened surface also showed improvement in bonding between the PVD and TCT surface, and this leads to improvement in wear resistance. However, TCT after aging treatment did not show much improvement in surface properties compared to TCT only. For the best surface hardening on CP titanium, TCT+PVD has advantages in surface durability and economics.

  1. Experience of high-nitrogenous steel powder application in repairs and surface hardening of responsible parts for power equipment by plasma spraying

    Science.gov (United States)

    Kolpakov, A. S.; Kardonina, N. I.

    2016-02-01

    The questions of the application of novel diffusion-alloying high-nitrogenous steel powders for repair and surface hardening of responsible parts of power equipment by plasma spraying are considered. The appropriateness of the method for operative repair of equipment and increasing its service life is justified. General data on the structure, properties, and manufacture of nitrogen-, aluminum-, and chromium-containing steel powders that are economically alloyed using diffusion are described. It is noted that the nitrogen release during the decomposition of iron nitrides, when heating, protects the powder particles from oxidation in the plasma jet. It is shown that the coating retains 50% of nitrogen that is contained in the powder. Plasma spraying modes for diffusion-alloying high-nitrogenous steel powders are given. The service properties of plasma coatings based on these powders are analyzed. It is shown that the high-nitrogenous steel powders to a nitrogen content of 8.9 wt % provide the necessary wear resistance and hardness of the coating and the strength of its adhesion to the substrate and corrosion resistance to typical aggressive media. It is noted that increasing the coating porosity promotes stress relaxation and increases its thickness being limited with respect to delamination conditions in comparison with dense coatings on retention of the low defectiveness of the interface and high adhesion to the substrate. The examples of the application of high-nitrogenous steel powders in power engineering during equipment repairs by service companies and overhaul subdivisions of heat power plants are given. It is noted that the plasma spraying of diffusion-alloyed high-nitrogenous steel powders is a unique opportunity to restore nitrided steel products.

  2. Automated Quality Assurance of Medical Digital X-Ray Equipment

    International Nuclear Information System (INIS)

    Zelikman, Mikhail; Kruchinin, Sergey

    2013-06-01

    Quality assurance of the x-ray equipment includes a set of various tests among which are installation and periodic exams performed by qualified engineers as well as daily routine tests carried out by the medical staff of the Radiology Department. As a rule, the decision concerning the applicability of the x-ray equipment for using in clinical studies is made on the basis of the routine tests results. The presented method is based on the detector's output signals, Signal-to-Noise Ratio and Modulation Transfer Function evaluation in automated way using the simple test-object's digital image registered with given geometry and x-ray exposure parameters settings. Rectangular 20 mm thick aluminum plate with fixed 1 mm thick well-finished steel edge (for general x-ray radiography/fluoroscopy systems) or 2 mm thick aluminum plate with fixed 1 mm thick aluminum well-finished edge (for digital x-ray mammography systems) can be used as a test equipment. Relevant to the decision concerning the x-ray device operation status are the parameters: deviations from the reference levels of the tube voltage and mAs as well as internal detector's noise variance and detector's gain deviations. Everyday testing procedure includes the following steps. On the first step the roentgenographer places the test-object at the center of the detector's surface, makes an exposure with specified parameters setting and geometry and after this, test results are displayed on the work station monitor or console screen in automatic way. In order to provide an automated regime of the presenting algorithm, the software must be integrated with the program module intended for the x-ray device control. The use of the presented method in clinical practice provides the reliable daily monitoring of the x-ray equipment operation status prior to its utilizing for patient diagnostic process. As a rule, it will take not more than 3-5 minutes for the roentgenographer to complete the routine

  3. Equipamentos para agroindústria de minicenouras Cenourete® e Catetinho® Processing equipment for the agroindustry of Cenourete® and Catetinho® mini-carrots

    Directory of Open Access Journals (Sweden)

    João Bosco C da Silva

    2009-03-01

    of Cenourete® and Catetinho®, the Brazilian minicarrots. Two shapers, three cutters, and one classifier were developed. The first shaper, named 'Processador de Cenourete e Catetinho', consists of two units. The first is equipped with a rough abrasive surface, intended for shaping; while the second carries a smooth abrasive surface, planned for polishing the product. The second shaper, named 'Múltipla', presents the same functioning principles as 'Processador de Cenourete e Catetinho', but has four disks in the upper compartment, which results in a four-fold processing capacity when compared to the first model. Both devices have a water recycling system. 'Corte-Fácil' consists of one guillotine and two inclined metallic bars used to measure the carrot pieces before cutting, yielding raw material for both Cenourete® and Catetinho®. The other two cutters, 'Precisa' and 'Cortadora Horizontal', consist of a group of gutters used to bring carrots into a set of cutting disks, where roots are trimmed in 6-cm segments. Both cutters yield raw material only for Cenourete® production. The classifier consists basically of two inclined belts that move in the same direction, with a progressive and adjustable distance in between. Carrot segments are transported along the belts until going through the space in-between, which happens when the diameter of the root segments coincides with the distance between belts. With this set of processing equipment, the national agroindustry is able to produce baby carrots on a competitive scale with the imported product.

  4. Noise-Robust Monitoring of Lombard Speech Using a Wireless Neck-surface Accelerometer and Microphone

    Science.gov (United States)

    2017-08-20

    simultaneously powered via USB and battery. The system contains a small receiver that is equipped with the same Bluetooth module as the transmitter (BC127...G. R., “Subglottal impedance-based inverse filtering of voiced sounds using neck surface acceleration,” IEEE Trans. Audio Speech Lang. Processing

  5. 40 CFR 63.134 - Process wastewater provisions-surface impoundments.

    Science.gov (United States)

    2010-07-01

    ..., and semi-annually thereafter, for improper work practices and control equipment failures in accordance... this subpart, when an improper work practice or a control equipment failure is identified, first... treats a Group 1 wastewater stream or a residual removed from a Group 1 wastewater stream, the owner or...

  6. Equipment experience in a radioactive LFCM [liquid-fed ceramic melter] vitrification facility

    International Nuclear Information System (INIS)

    Holton, L.K. Jr.; Dierks, R.D.; Sevigny, G.J.; Goles, R.W.; Surma, J.E.; Thomas, N.M.

    1986-11-01

    Since October 1984, the Pacific Northwest Laboratory (PNL) has operated a pilot-scale radioactive liquid-fed ceramic melter (RLFCM) vitrification process in shielded manipulator hot cells. This vitrification facility is being operated for the Department of Energy (DOE) to remotely test vitrification equipment components in a radioactive environment and to develop design and operation data that can be applied to production-scale projects. This paper summarizes equipment and process experience obtained from the operations of equipment systems for waste feeding, waste vitrification, canister filling, canister handling, and vitrification off-gas treatment

  7. Facile preparation of self-healing superhydrophobic CeO2 surface by electrochemical processes

    Science.gov (United States)

    Nakayama, Katsutoshi; Hiraga, Takuya; Zhu, Chunyu; Tsuji, Etsushi; Aoki, Yoshitaka; Habazaki, Hiroki

    2017-11-01

    Herein we report simple electrochemical processes to fabricate a self-healing superhydrophobic CeO2 coating on Type 304 stainless steel. The CeO2 surface anodically deposited on flat stainless steel surface is hydrophilic, although high temperature-sintered and sputter-deposited CeO2 surface was reported to be hydrophobic. The anodically deposited hydrophilic CeO2 surface is transformed to hydrophobic during air exposure. Specific accumulation of contaminant hydrocarbon on the CeO2 surface is responsible for the transformation to hydrophobic state. The deposition of CeO2 on hierarchically rough stainless steel surface produces superhydrophobic CeO2 surface, which also shows self-healing ability; the surface changes to superhydrophilic after oxygen plasma treatment but superhydrophobic state is recovered repeatedly by air exposure. This work provides a facile method for preparing a self-healing superhydrophobic surface using practical electrochemical processes.

  8. Effect of finishing process on the surface quality of Co-Cr-Mo dental alloys

    Directory of Open Access Journals (Sweden)

    Dorota Klimecka -Tatar

    2016-09-01

    Full Text Available Preparatory procedures for the material have a significant influence on the surface stereometry of the material. This study investigated the effect of the electropolishing process on the surface quality of metallic prosthetic constructions based on Co-Cr-Mo alloys. It has been found that the process of electropolishing prevents to excessive development of the surface of a material and consequently improves surface quality.

  9. A Study on Decontamination Process Using Atmospheric Pressure Plasma

    International Nuclear Information System (INIS)

    Kim, Yong Soo; Jeon, Sang Hwan; Jin, Dong Sik; Park, Dong Min

    2010-05-01

    Radioactive decontamination process using atmospheric pressure plasma which can be operated parallel with low vacuum cold plasma processing is studied. Two types of cold plasma torches were designed and manufactured. One of them is the cylindrical type applicable to the treatment of three-dimensional surfaces. The other is the rectangular type for the treatment of flat and large surface areas. Ar palsam was unstable but using He as a carrier gas, discharge condition was improved. Besides filtering module using pre, medium, charcoal, and HEPA filter was designed and manufactured. More intensive study for developing filtering system will be followed. Atmospheric pressure plasma decontamination process can be used to the equipment and facility wall decontamination

  10. Fabrication of superhydrophobic wood surfaces via a solution-immersion process

    Science.gov (United States)

    Liu, Changyu; Wang, Shuliang; Shi, Junyou; Wang, Chengyu

    2011-11-01

    Superhydrophobic wood surfaces were fabricated from potassium methyl siliconate (PMS) through a convenient solution-immersion method. The reaction involves a hydrogen bond assembly and a polycondensation process. The silanol was formed by reacting PMS aqueous solution with CO2, which was assembled on the wood surface via hydrogen bonds with the wood surface -OH groups. The polymethylsilsesquioxane coating was obtained through the polycondensation reaction of the hydroxyl between wood and silanol. The morphology of products were characterized using a scanning electron microscope (SEM), the surface chemical composition was determined using energy dispersive X-ray analysis (EDXA), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TGA) and contact angle measurement. Analytical results revealed that rough protuberances uniformly covered the wood surface, thus transforming the wood surface from hydrophilic to superhydrophobic. The water contact angle of the superhydrophobic wood surface was about 153° and a sliding angle was 4.6°.

  11. Application of electron beam equipment based on a plasma cathode gun in additive technology

    Science.gov (United States)

    Galchenko, N. K.; Kolesnikova, K. A.; Semenov, G. V.; Rau, A. G.; Raskoshniy, S. Y.; Bezzubko, A. V.; Dampilon, B. V.; Sorokova, S. N.

    2016-11-01

    The paper discusses the application of electron beam equipment based on a plasma cathode gun for three-dimensional surface modification of metals and alloys. The effect of substrate surface preparation on the adhesion strength of gas thermal coatings has been investigated.

  12. Apparatus and process for the surface treatment of carbon fibers

    Science.gov (United States)

    Paulauskas, Felix Leonard; Ozcan, Soydan; Naskar, Amit K.

    2016-05-17

    A method for surface treating a carbon-containing material in which carbon-containing material is reacted with decomposing ozone in a reactor (e.g., a hollow tube reactor), wherein a concentration of ozone is maintained throughout the reactor by appropriate selection of at least processing temperature, gas stream flow rate, reactor dimensions, ozone concentration entering the reactor, and position of one or more ozone inlets (ports) in the reactor, wherein the method produces a surface-oxidized carbon or carbon-containing material, preferably having a surface atomic oxygen content of at least 15%. The resulting surface-oxidized carbon material and solid composites made therefrom are also described.

  13. Surface modification of food contact materials for processing and packaging applications

    Science.gov (United States)

    Barish, Jeffrey A.

    This body of work investigates various techniques for the surface modification of food contact materials for use in food packaging and processing applications. Nanoscale changes to the surface of polymeric food packaging materials enables changes in adhesion, wettability, printability, chemical functionality, and bioactivity, while maintaining desirable bulk properties. Polymer surface modification is used in applications such as antimicrobial or non-fouling materials, biosensors, and active packaging. Non-migratory active packagings, in which bioactive components are tethered to the package, offer the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing non-migratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. Polyethylene glycol (PEG), a biocompatible polymer, is grafted from the surface of ozone treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. The grafting of PEG onto the surface of polymer packaging films is accomplished by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of non-migratory active packaging. Fouling on food contact surfaces during food processing has a significant impact on operating efficiency and can promote biofilm development. Processing raw milk on plate heat exchangers results in significant fouling of proteins as well as minerals, and is exacerbated by the wall heating effect. An electroless nickel coating is co-deposited with polytetrafluoroethylene onto stainless steel to test its ability to resist fouling on a pilot plant scale plate heat exchanger. Further

  14. A review on technologies for oil shale surface retort

    International Nuclear Information System (INIS)

    Pan, Y.; Zhang, X.; Liu, S.; Yang, S.A.; Ren, N.

    2012-01-01

    In recent years, with the shortage of oil resources and the continuous increase in oil prices, oil shale has seized much more attention. Oil shale is a kind of important unconventional oil and gas resources. Oil shale resources are plentiful according to the proven reserves in places. And shale oil is far richer than crude oil in the world. Technology processing can be divided into two categories: surface retorting and in-situ technology. The process and equipment of surface retorting are more mature, and are still up to now, the main way to produce shale oil from oil shale. According to the variations of the particle size, the surface retorting technologies of oil shale can be notified and classified into two categories such as lump shale process and particulate shale process. The lump shale processes introduced in this article include the Fushun retorting technology, the Kiviter technology and the Petrosix technology; the particulate processes include the Gloter technology, the LR technology, the Tosco-II technology, the ATP (Alberta Taciuk Process) technology and the Enefit-280 technology. After the thorough comparison of these technologies, we can notice that, this article aim is to show off that : the particulate process that is environmentally friendly, with its low cost and high economic returns characteristics, will be the major development trend; Combined technologies of surface retorting technology and other oil producing technology should be developed; the comprehensive utilization of oil shale should be considered during the development of surface retorting technology, meanwhile the process should be harmless to the environment. (author)

  15. Achieving atomistic control in materials processing by plasma–surface interactions

    International Nuclear Information System (INIS)

    Chang, Jeffrey; Chang, Jane P

    2017-01-01

    The continuous down-scaling of electronic devices and the introduction of functionally improved novel materials require a greater atomic level controllability in the synthesis and patterning of thin film materials, especially with regards to deposition uniformity and conformality as well as etching selectivity and anisotropy. The richness of plasma chemistry and the corresponding plasma–surface interactions provide the much needed processing flexibility and efficacy. To achieve the integration of the novel materials into devices, plasma-enhanced atomic layer processing techniques are emerging as the enabling factors to obtain atomic scale control of complex materials and nanostructures. This review focuses on an overview of the role of respective plasma species involved in plasma–surface interactions, addressing their respective and synergistic effects, which is followed by two distinct applications: plasma-enhanced atomic layer deposition (ALD) and atomic layer etching (ALE). For plasma-enhanced ALD, this review emphasizes the use of plasma chemistry to enable alternative pathways to synthesize complex materials at low temperatures and the challenges associated with deposition conformality. For plasma enabled ALE processes, the review focuses on the surface-specific chemical reactions needed to achieve desirable selectivity and anisotropy. (topical review)

  16. Design of equipment used for high-level waste vitrification at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Vance, R.F.; Brill, B.A.; Carl, D.E.

    1997-06-01

    The equipment as designed, started, and operated for high-level radioactive waste vitrification at the West Valley Demonstration Project in western New York State is described. Equipment for the processes of melter feed make-up, vitrification, canister handling, and off-gas treatment are included. For each item of equipment the functional requirements, process description, and hardware descriptions are presented

  17. Nuclear fuel re-processing plant

    International Nuclear Information System (INIS)

    Sasaki, Yuko; Honda, Takashi; Shoji, Saburo; Kobayashi, Shiro; Furuya, Yasumasa

    1989-01-01

    In a nuclear fuel re-processing plant, high Si series stainless steels not always have sufficient corrosion resistance in a solution containing only nitric acid at medium or high concentration. Further, a method of blowing NOx gases may possibly promote the corrosion of equipment constituent materials remarkably. In view of the above, the corrosion promoting effect of nuclear fission products is suppressed without depositing corrosive metal ions as metals in the nitric acid solution. That is, a reducing atmosphere is formed by generating NOx by electrolytic reduction thereby preventing increase in the surface potential of stainless steels. Further, an anode is disposed in the nitric acid solution containing oxidative metal ions to establish an electrical conduction and separate them by way of partition membranes and a constant potential or constant current is applied while maintaining an ionic state so as not to deposit metals. Thus, equipments of re-processing facility can be protected from corrosion with no particular treatment for wastes as radioactive materials. (K.M.)

  18. Modelling Periglacial Processes on Low-Relief High-Elevation Surfaces

    DEFF Research Database (Denmark)

    Andersen, Jane Lund; Knudsen, Mads Faurschou; Egholm, D.L.

    history in many regions of the world. The glacial buzzsaw concept suggests that intense glacial erosion focused at the equilibrium-line altitude (ELA) leads to a concentration in surface area close to the ELA. However, even in predominantly glacial landscapes, such as the Scandinavian Mountains, the high...... as a function of mean annual air temperature and sediment thickness. This allows us to incorporate periglacial processes into a long-term landscape evolution model where surface elevation, sediment thickness, and climate evolve over time. With this model we are able to explore the slow feedbacks between...... evolution model can be used for obtaining more insight into the conditions needed for formation of low-relief surfaces at high elevation. Anderson, R. S. Modeling the tor-dotted crests, bedrock edges, and parabolic profiles of high alpine surfaces of the Wind River Range, Wyoming. Geomorphology, 46, 35...

  19. Particle dry deposition to water surfaces: Processes and consequences

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.

    2000-01-01

    flux to coastal waters, atmosphere-surface exchange represents a significant component of the total flux and may be particularly critical during the summertime when both the riverine input and ambient nutrient concentrations are often at a minimum. In this chapter, we present an overview...... of the physical and chemical processes which dictate the quantity (and direction) of atmosphere-surface fluxes of trace chemicals to (and above) water surfaces with particular emphasis on the role of particles. Dry deposition (transfer to the surface in the absence of precipitation) of particles is determined...... efforts to simulate and measure fluxes close to the coastline. These arise in part from the complexity of atmospheric flow in this region where energy and chemical fluxes are highly inhomogeneous in space and time and thermally generated atmospheric circulations are commonplace. (C) 2000 Elsevier Science...

  20. Response to waste electrical and electronic equipments in China: legislation, recycling system, and advanced integrated process.

    Science.gov (United States)

    Zhou, Lei; Xu, Zhenming

    2012-05-01

    Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry. © 2012 American Chemical Society

  1. Improving the work function of the niobium surface of SRF cavities by plasma processing

    Science.gov (United States)

    Tyagi, P. V.; Doleans, M.; Hannah, B.; Afanador, R.; McMahan, C.; Stewart, S.; Mammosser, J.; Howell, M.; Saunders, J.; Degraff, B.; Kim, S.-H.

    2016-04-01

    An in situ plasma processing technique using chemically reactive oxygen plasma to remove hydrocarbons from superconducting radio frequency cavity surfaces at room temperature has been developed at the spallation neutron source, at Oak Ridge National Laboratory. To understand better the interaction between the plasma and niobium surface, surface studies on small samples were performed. In this article, we report the results from those surface studies. The results show that plasma processing removes hydrocarbons from top surface and improves the surface work function by 0.5-1.0 eV. Improving the work function of RF surface of cavities can help to improve their operational performance.

  2. Validation of an HPLC–UV method for the determination of digoxin residues on the surface of manufacturing equipment

    Directory of Open Access Journals (Sweden)

    ZORAN B. TODOROVIĆ

    2009-09-01

    Full Text Available In the pharmaceutical industry, an important step consists in the removal of possible drug residues from the involved equipments and areas. The cleaning procedures must be validated and methods to determine trace amounts of drugs have, therefore, to be considered with special attention. An HPLC–UV method for the determination of digoxin residues on stainless steel surfaces was developed and validated in order to control a cleaning procedure. Cotton swabs, moistened with methanol were used to remove any residues of drugs from stainless steel surfaces, and give recoveries of 85.9, 85.2 and 78.7 % for three concentration levels. The precision of the results, reported as the relative standard deviation (RSD, were below 6.3 %. The method was validated over a concentration range of 0.05–12.5 µg mL-1. Low quantities of drug residues were determined by HPLC–UV using a Symmetry C18 column (150´4.6 mm, 5 µm at 20 °C with an acetonitrile–water (28:72, v/v mobile phase at a flow rate of 1.1 mL min-1, an injection volume of 100 µL and were detected at 220 nm. A simple, selective and sensitive HPLC–UV assay for the determination of digoxin residues on stainless steel was developed, validated and applied.

  3. The esa earth explorer land surface processes and interactions mission

    Science.gov (United States)

    Labandibar, Jean-Yves; Jubineau, Franck; Silvestrin, Pierluigi; Del Bello, Umberto

    2017-11-01

    The European Space Agency (ESA) is defining candidate missions for Earth Observation. In the class of the Earth Explorer missions, dedicated to research and pre-operational demonstration, the Land Surface Processes and Interactions Mission (LSPIM) will acquire the accurate quantitative measurements needed to improve our understanding of the nature and evolution of biosphere-atmosphere interactions and to contribute significantly to a solution of the scaling problems for energy, water and carbon fluxes at the Earth's surface. The mission is intended to provide detailed observations of the surface of the Earth and to collect data related to ecosystem processes and radiation balance. It is also intended to address a range of issues important for environmental monitoring, renewable resources assessment and climate models. The mission involves a dedicated maneuvering satellite which provides multi-directional observations for systematic measurement of Land Surface BRDF (BiDirectional Reflectance Distribution Function) of selected sites on Earth. The satellite carries an optical payload : PRISM (Processes Research by an Imaging Space Mission), a multispectral imager providing reasonably high spatial resolution images (50 m over 50 km swath) in the whole optical spectral domain (from 450 nm to 2.35 μm with a resolution close to 10 nm, and two thermal bands from 8.1 to 9.1 μm). This paper presents the results of the Phase A study awarded by ESA, led by ALCATEL Space Industries and concerning the design of LSPIM.

  4. Identification of soil erosion land surfaces by Landsat data analysis and processing

    International Nuclear Information System (INIS)

    Lo Curzio, S.

    2009-01-01

    In this paper, we outline the typical relationship between the spectral reflectance of aileron's on newly-formed land surfaces and the geo morphological features of the land surfaces at issue. These latter represent the products of superficial erosional processes due to the action of the gravity and/or water; thus, such land surfaces are highly representative of the strong soil degradation occurring in a wide area located on the boundary between Molise and Puglia regions (Southern Italy). The results of this study have been reported on thematic maps; on such maps, the detected erosional land surfaces have been mapped on the basis of their typical spectral signature. The study has been performed using Landsat satellite imagery data which have been then validated by means of field survey data. The satellite data have been processed using remote sensing techniques, such as: false colour composite, contrast stretching, principal component analysis and decorrelation stretching. The study has permitted to produce, in a relatively short time and at low expense, a map of the eroded land surfaces. Such a result represents a first and fundamental step in evaluating and monitoring the erosional processes in the study area [it

  5. Nano and Microscale Topographies for the Prevention of Bacterial Surface Fouling

    Directory of Open Access Journals (Sweden)

    Mary V. Graham

    2014-01-01

    Full Text Available Bacterial surface fouling is problematic for a wide range of applications and industries, including, but not limited to medical devices (implants, replacement joints, stents, pacemakers, municipal infrastructure (pipes, wastewater treatment, food production (food processing surfaces, processing equipment, and transportation (ship hulls, aircraft fuel tanks. One method to combat bacterial biofouling is to modify the topographical structure of the surface in question, thereby limiting the ability of individual cells to attach to the surface, colonize, and form biofilms. Multiple research groups have demonstrated that micro and nanoscale topographies significantly reduce bacterial biofouling, for both individual cells and bacterial biofilms. Antifouling strategies that utilize engineered topographical surface features with well-defined dimensions and shapes have demonstrated a greater degree of controllable inhibition over initial cell attachment, in comparison to undefined, texturized, or porous surfaces. This review article will explore the various approaches and techniques used by researches, including work from our own group, and the underlying physical properties of these highly structured, engineered micro/nanoscale topographies that significantly impact bacterial surface attachment.

  6. A post-processing study on aluminum surface by fiber laser: Removing face milling patterns

    Science.gov (United States)

    Kayahan, Ersin

    2018-05-01

    The face milling process of the metal surface is a well-known machining process of using rotary cutters to remove material from a workpiece. Flat metal surfaces can be produced by a face milling process. However, in practice, visible, traced marks following the motion of points on the cutter's face are usually apparent. In this study, it was shown that milled patterns can be removed by means of 20 W fiber laser on the aluminum surface (AA7075). Experimental results also showed that roughened and hydrophobic surface can be produced with optimized laser parameters. It is a new approach to remove the patterns from the metal surface and can be explained through roughening by re-melting instead of ablation. The new method is a strong candidate to replace sandblasting the metal surface. It is also cheap and environmentally friendly.

  7. Applications of Geomatics in Surface Mining

    Science.gov (United States)

    Blachowski, Jan; Górniak-Zimroz, Justyna; Milczarek, Wojciech; Pactwa, Katarzyna

    2017-12-01

    In terms of method of extracting mineral from deposit, mining can be classified into: surface, underground, and borehole mining. Surface mining is a form of mining, in which the soil and the rock covering the mineral deposits are removed. Types of surface mining include mainly strip and open-cast methods, as well as quarrying. Tasks associated with surface mining of minerals include: resource estimation and deposit documentation, mine planning and deposit access, mine plant development, extraction of minerals from deposits, mineral and waste processing, reclamation and reclamation of former mining grounds. At each stage of mining, geodata describing changes occurring in space during the entire life cycle of surface mining project should be taken into consideration, i.e. collected, analysed, processed, examined, distributed. These data result from direct (e.g. geodetic) and indirect (i.e. remote or relative) measurements and observations including airborne and satellite methods, geotechnical, geological and hydrogeological data, and data from other types of sensors, e.g. located on mining equipment and infrastructure, mine plans and maps. Management of such vast sources and sets of geodata, as well as information resulting from processing, integrated analysis and examining such data can be facilitated with geomatic solutions. Geomatics is a discipline of gathering, processing, interpreting, storing and delivering spatially referenced information. Thus, geomatics integrates methods and technologies used for collecting, management, processing, visualizing and distributing spatial data. In other words, its meaning covers practically every method and tool from spatial data acquisition to distribution. In this work examples of application of geomatic solutions in surface mining on representative case studies in various stages of mine operation have been presented. These applications include: prospecting and documenting mineral deposits, assessment of land accessibility

  8. Examining elite Parasport athletes with sport involvement and sports equipment.

    Science.gov (United States)

    Hambrick, Marion E; Hums, Mary A; Bower, Glenna G; Wolff, Eli A

    2015-01-01

    Elite athletes require the most advanced sports equipment to maintain their competitive edge, but manufacturers cannot always satisfy these athletes' specific equipment needs. Sport involvement can influence sports-equipment selections and is described as the process by which individuals rely on attitudes and belief systems to make sports-related consumption decisions. This study involved semistructured interviews with 5 elite Parasport athletes to identify and analyze the role of sport involvement in their selection of sports equipment. The results revealed that the athletes identified product limitations, created a collaborative environment, and promoted a culture of innovation to develop new sports products and address existing limitations. Theoretical and practical implications are discussed.

  9. Experience of safety and performance improvement for fuel handling equipment

    International Nuclear Information System (INIS)

    Gyoon Chang, Sang; Hee Lee, Dae

    2014-01-01

    The purpose of this study is to provide experience of safety and performance improvement of fuel handling equipment for nuclear power plants in Korea. The fuel handling equipment, which is used as an important part of critical processes during the refueling outage, has been improved to enhance safety and to optimize fuel handling procedures. Results of data measured during the fuel reloading are incorporated into design changes. The safety and performance improvement for fuel handling equipment could be achieved by simply modifying the components and improving the interlock system. The experience provided in this study can be useful lessons for further improvement of the fuel handling equipment. (authors)

  10. An experimental facility for microwave induced plasma processing of materials

    International Nuclear Information System (INIS)

    Patil, D.S.; Ramachandran, K.; Bhide, A.L.; Venkatramani, N.

    1997-01-01

    Microwave induced plasma processing offers many advantages over conventional processes. However this technology is in the development stage. This report gives a detailed information about a microwave plasma processing facility (2.45 GHz, 700 W) set up in the Laser and Plasma Technology Division. The equipment details and the results obtained on deposition of diamond like carbon (DLC) thin films and surface modification of polymer PET (polyethylene terephthalate) using this facility are given in this report. (author)

  11. 40 CFR 61.135 - Standard: Equipment leaks.

    Science.gov (United States)

    2010-07-01

    ... stuffing box pressure; or (ii) Equipped with a barrier fluid system that is connected by a closed vent... system that purges the barrier fluid into a process stream with zero benzene emissions to the atmosphere...

  12. Test methods for estimating the efficacy of the fast-acting disinfectant peracetic acid on surfaces of personal protective equipment.

    Science.gov (United States)

    Lemmer, K; Howaldt, S; Heinrich, R; Roder, A; Pauli, G; Dorner, B G; Pauly, D; Mielke, M; Schwebke, I; Grunow, R

    2017-11-01

    The work aimed at developing and evaluating practically relevant methods for testing of disinfectants on contaminated personal protective equipment (PPE). Carriers were prepared from PPE fabrics and contaminated with Bacillus subtilis spores. Peracetic acid (PAA) was applied as a suitable disinfectant. In method 1, the contaminated carrier was submerged in PAA solution; in method 2, the contaminated area was covered with PAA; and in method 3, PAA, preferentially combined with a surfactant, was dispersed as a thin layer. In each method, 0·5-1% PAA reduced the viability of spores by a factor of ≥6 log 10 within 3 min. The technique of the most realistic method 3 proved to be effective at low temperatures and also with a high organic load. Vaccinia virus and Adenovirus were inactivated with 0·05-0·1% PAA by up to ≥6 log 10 within 1 min. The cytotoxicity of ricin was considerably reduced by 2% PAA within 15 min of exposure. PAA/detergent mixture enabled to cover hydrophobic PPE surfaces with a thin and yet effective disinfectant layer. The test methods are objective tools for estimating the biocidal efficacy of disinfectants on hydrophobic flexible surfaces. © 2017 The Society for Applied Microbiology.

  13. Image quality analysis of digital mammographic equipments

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, P.; Pascual, A.; Verdu, G. [Valencia Univ. Politecnica, Chemical and Nuclear Engineering Dept. (Spain); Rodenas, F. [Valencia Univ. Politecnica, Applied Mathematical Dept. (Spain); Campayo, J.M. [Valencia Univ. Hospital Clinico, Servicio de Radiofisica y Proteccion Radiologica (Spain); Villaescusa, J.I. [Hospital Clinico La Fe, Servicio de Proteccion Radiologica, Valencia (Spain)

    2006-07-01

    The image quality assessment of a radiographic phantom image is one of the fundamental points in a complete quality control programme. The good functioning result of all the process must be an image with an appropriate quality to carry out a suitable diagnostic. Nowadays, the digital radiographic equipments are replacing the traditional film-screen equipments and it is necessary to update the parameters to guarantee the quality of the process. Contrast-detail phantoms are applied to digital radiography to study the threshold contrast detail sensitivity at operation conditions of the equipment. The phantom that is studied in this work is C.D.M.A.M. 3.4, which facilitates the evaluation of image contrast and detail resolution. One of the most extended indexes to measure the image quality in an objective way is the Image Quality Figure (I.Q.F.). This parameter is useful to calculate the image quality taking into account the contrast and detail resolution of the image analysed. The contrast-detail curve is useful as a measure of the image quality too, because it is a graphical representation in which the hole thickness and diameter are plotted for each contrast-detail combination detected in the radiographic image of the phantom. It is useful for the comparison of the functioning of different radiographic image systems, for phantom images under the same exposition conditions. The aim of this work is to study the image quality of different images contrast-detail phantom C.D.M.A.M. 3.4, carrying out the automatic detection of the contrast-detail combination and to establish a parameter which characterize in an objective way the mammographic image quality. This is useful to compare images obtained at different digital mammographic equipments to study the functioning of the equipments. (authors)

  14. Image quality analysis of digital mammographic equipments

    International Nuclear Information System (INIS)

    Mayo, P.; Pascual, A.; Verdu, G.; Rodenas, F.; Campayo, J.M.; Villaescusa, J.I.

    2006-01-01

    The image quality assessment of a radiographic phantom image is one of the fundamental points in a complete quality control programme. The good functioning result of all the process must be an image with an appropriate quality to carry out a suitable diagnostic. Nowadays, the digital radiographic equipments are replacing the traditional film-screen equipments and it is necessary to update the parameters to guarantee the quality of the process. Contrast-detail phantoms are applied to digital radiography to study the threshold contrast detail sensitivity at operation conditions of the equipment. The phantom that is studied in this work is C.D.M.A.M. 3.4, which facilitates the evaluation of image contrast and detail resolution. One of the most extended indexes to measure the image quality in an objective way is the Image Quality Figure (I.Q.F.). This parameter is useful to calculate the image quality taking into account the contrast and detail resolution of the image analysed. The contrast-detail curve is useful as a measure of the image quality too, because it is a graphical representation in which the hole thickness and diameter are plotted for each contrast-detail combination detected in the radiographic image of the phantom. It is useful for the comparison of the functioning of different radiographic image systems, for phantom images under the same exposition conditions. The aim of this work is to study the image quality of different images contrast-detail phantom C.D.M.A.M. 3.4, carrying out the automatic detection of the contrast-detail combination and to establish a parameter which characterize in an objective way the mammographic image quality. This is useful to compare images obtained at different digital mammographic equipments to study the functioning of the equipments. (authors)

  15. Evaporation phase change processes of water/methanol mixtures on superhydrophobic nanostructured surfaces

    Science.gov (United States)

    Chiang, Cheng-Kun; Lu, Yen-Wen

    2011-07-01

    Evaporation phenomena are a critical and frequently seen phase change process in many heat transfer applications. In this paper, we study the evaporation process of a sessile droplet on two topologically different surfaces, including smooth and nanostructured surfaces. The nanostructured surface has an array of high-aspect-ratio nanowires (height/diameter ~ 125) and is implemented by using a simple template-based nanofabrication method. It possesses superhydrophobicity (>140°) and low contact angle hysteresis (1.2-2.1°), allowing the liquid droplets to remain in the 'fakir' state throughout the evaporation processes. Sessile droplets of deionized (DI) water and water/methanol binary mixture test liquids with their contact angles and base diameters are monitored. The results show that the nanostructures play a critical role in the droplet dynamics during evaporation.

  16. Evaporation phase change processes of water/methanol mixtures on superhydrophobic nanostructured surfaces

    International Nuclear Information System (INIS)

    Chiang, Cheng-Kun; Lu, Yen-Wen

    2011-01-01

    Evaporation phenomena are a critical and frequently seen phase change process in many heat transfer applications. In this paper, we study the evaporation process of a sessile droplet on two topologically different surfaces, including smooth and nanostructured surfaces. The nanostructured surface has an array of high-aspect-ratio nanowires (height/diameter ∼ 125) and is implemented by using a simple template-based nanofabrication method. It possesses superhydrophobicity (>140°) and low contact angle hysteresis (1.2–2.1°), allowing the liquid droplets to remain in the 'fakir' state throughout the evaporation processes. Sessile droplets of deionized (DI) water and water/methanol binary mixture test liquids with their contact angles and base diameters are monitored. The results show that the nanostructures play a critical role in the droplet dynamics during evaporation

  17. Gradient nanostructured surface of a Cu plate processed by incremental frictional sliding

    DEFF Research Database (Denmark)

    Hong, Chuanshi; Huang, Xiaoxu; Hansen, Niels

    2015-01-01

    The flat surface of a Cu plate was processed by incremental frictional sliding at liquid nitrogen temperature. The surface treatment results in a hardened gradient surface layer as thick as 1 mm in the Cu plate, which contains a nanostructured layer on the top with a boundary spacing of the order...

  18. Human performance for the success of equipment reliability programs

    International Nuclear Information System (INIS)

    Woodcock, J.

    2007-01-01

    Human performance is a critical element of programs directed at equipment reliability. Reliable equipment performance requires broad support from all levels of plant management and throughout all plant departments. Experience at both nuclear power plants and fuel manufacturing plants shows that human performance must be addressed during all phases of program implementation from the beginning through the establishment of a living, on-going process. At the beginning, certain organizational and management actions during the initiation of the program set the stage for successful adoption by station personnel, leading to more rapid benefits. For the long term, equipment reliability is a living process needed throughout the lifetime of a station, a program which must be motivated and measured. Sustained acceptance and participation by the plant personnel is a requirement, and culture is a key ingredient. This paper will provide an overview of key human performance issues to be considered, using the application of the INPO AP-913 Equipment Reliability Guideline as a basis and gives some best practices for training, communicating and implementing programs. The very last part includes ways to tell if the program is effective

  19. Practical aspects of steam injection processes: A handbook for independent operators

    Energy Technology Data Exchange (ETDEWEB)

    Sarathi, P.S.; Olsen, D.K.

    1992-10-01

    More than 80% of the total steam injection process operating costs are for the production of steam and the operation of surface and subsurface equipment. The proper design and operation of the surface equipment is of critical importance to the success of any steam injection operation. However, the published monographs on thermal recovery have attached very little importance to this aspect of thermal oil recovery; hence, a definite need exists for a comprehensive manual that places emphasis on steam injection field practices and problems. This handbook is an attempt to fulfill this need. This handbook explores the concept behind steam injection processes and discusses the information required to evaluate, design, and implement these processes in the field. The emphasis is on operational aspects and those factors that affect the technology and economics of oil recovery by steam. The first four chapters describe the screening criteria, engineering, and economics of steam injection operation as well as discussion of the steam injection fundamentals. The next four chapters begin by considering the treatment of the water used to generate steam and discuss in considerable detail the design, operation and problems of steam generations, distribution and steam quality determination. The subsurface aspects of steamflood operations are addressed in chapters 9 through 12. These include thermal well completion and cementing practices, insulated tubulars, and lifting equipment. The next two chapters are devoted to subsurface operational problems encountered with the use of steam. Briefly described in chapters 15 and 16 are the steam injection process surface production facilities, problems and practices. Chapter 17 discusses the importance of monitoring in a steam injection project. The environmental laws and issues of importance to steam injection operation are outlined in chapter 18.

  20. Comparing Methods of Separating Bacterial Biofilms on the Surface of Water Transportation Pipes and Equipment of Milking in the Farms

    Directory of Open Access Journals (Sweden)

    setareh nabizadeh

    2016-08-01

    Full Text Available Introduction Bacterial biofilms can be both useful and harmful based on their combination and locations. Biofilm formation occurs as a stepwise process. Their formation in liquid transportation pipes used for milking system and drinking water in animal farms may create some problems and is a potential source of pollution. Speed of biofilm formation depends on many factors including: construction and functional characteristics of bacteria, the composition and culture conditions such as temperature and substratum. In this research the Bacillus subtillis bacteria with special characteristics was selected due to its capability for biofilm creation. Bacillus subtillis bacteria is mobility and a stronger connection than other bacteria levels are created. In the research conducted in the biofilm there are many resources on biofilm formation by Bacillus subtillis bacteria. Bacillus subtillis is saprophytic in the soil, water and air. There is also the ability to form spores of Bacillus subtillis. Materials and Methods Firstly the possibility of creating biofilms on different Plastic (polyvinilchlorid, polypropylene, polyethylengelycole, alluminum and glass surfaces in three temperatures of 4°C, 30°C and 37°C were studied. Two different methods of biofilms separation including separating swap and vortex were tested and their efficienceies were calculated. After biofilm formation on parts of the vortex separation method after washing parts in sterile conditions in a tube containing normal saline for 4 minutes was vortex. The bacterial suspension decreasing dilution series was created. Pour plate in medium using agar plate count agar and was cultured at 30°C for 24-48 hours. Numbers of colonies were counted. The numbers of biofilm cells were calculated. In swap method after biofilm formation on parts using a cotton swap was isolated biofilms. The swap was transferred to tube containing normal saline and the bacterial suspension decreasing dilution