Deconvolution algorithms applied in ultrasonics
International Nuclear Information System (INIS)
Perrot, P.
1993-12-01
In a complete system of acquisition and processing of ultrasonic signals, it is often necessary at one stage to use some processing tools to get rid of the influence of the different elements of that system. By that means, the final quality of the signals in terms of resolution is improved. There are two main characteristics of ultrasonic signals which make this task difficult. Firstly, the signals generated by transducers are very often non-minimum phase. The classical deconvolution algorithms are unable to deal with such characteristics. Secondly, depending on the medium, the shape of the propagating pulse is evolving. The spatial invariance assumption often used in classical deconvolution algorithms is rarely valid. Many classical algorithms, parametric and non-parametric, have been investigated: the Wiener-type, the adaptive predictive techniques, the Oldenburg technique in the frequency domain, the minimum variance deconvolution. All the algorithms have been firstly tested on simulated data. One specific experimental set-up has also been analysed. Simulated and real data has been produced. This set-up demonstrated the interest in applying deconvolution, in terms of the achieved resolution. (author). 32 figs., 29 refs
Performance Evaluation of Various STL File Mesh Refining Algorithms Applied for FDM-RP Process
Ledalla, Siva Rama Krishna; Tirupathi, Balaji; Sriram, Venkatesh
2018-06-01
Layered manufacturing machines use the stereolithography (STL) file to build parts. When a curved surface is converted from a computer aided design (CAD) file to STL, it results in a geometrical distortion and chordal error. Parts manufactured with this file, might not satisfy geometric dimensioning and tolerance requirements due to approximated geometry. Current algorithms built in CAD packages have export options to globally reduce this distortion, which leads to an increase in the file size and pre-processing time. In this work, different mesh subdivision algorithms are applied on STL file of a complex geometric features using MeshLab software. The mesh subdivision algorithms considered in this work are modified butterfly subdivision technique, loops sub division technique and general triangular midpoint sub division technique. A comparative study is made with respect to volume and the build time using the above techniques. It is found that triangular midpoint sub division algorithm is more suitable for the geometry under consideration. Only the wheel cap part is then manufactured on Stratasys MOJO FDM machine. The surface roughness of the part is measured on Talysurf surface roughness tester.
Applied probability and stochastic processes
Sumita, Ushio
1999-01-01
Applied Probability and Stochastic Processes is an edited work written in honor of Julien Keilson. This volume has attracted a host of scholars in applied probability, who have made major contributions to the field, and have written survey and state-of-the-art papers on a variety of applied probability topics, including, but not limited to: perturbation method, time reversible Markov chains, Poisson processes, Brownian techniques, Bayesian probability, optimal quality control, Markov decision processes, random matrices, queueing theory and a variety of applications of stochastic processes. The book has a mixture of theoretical, algorithmic, and application chapters providing examples of the cutting-edge work that Professor Keilson has done or influenced over the course of his highly-productive and energetic career in applied probability and stochastic processes. The book will be of interest to academic researchers, students, and industrial practitioners who seek to use the mathematics of applied probability i...
Searching Process with Raita Algorithm and its Application
Rahim, Robbi; Saleh Ahmar, Ansari; Abdullah, Dahlan; Hartama, Dedy; Napitupulu, Darmawan; Putera Utama Siahaan, Andysah; Hasan Siregar, Muhammad Noor; Nasution, Nurliana; Sundari, Siti; Sriadhi, S.
2018-04-01
Searching is a common process performed by many computer users, Raita algorithm is one algorithm that can be used to match and find information in accordance with the patterns entered. Raita algorithm applied to the file search application using java programming language and the results obtained from the testing process of the file search quickly and with accurate results and support many data types.
Evolutionary algorithms applied to Landau-gauge fixing
International Nuclear Information System (INIS)
Markham, J.F.
1998-01-01
Current algorithms used to put a lattice gauge configuration into Landau gauge either suffer from the problem of critical slowing-down or involve an additions computational expense to overcome it. Evolutionary Algorithms (EAs), which have been widely applied to other global optimisation problems, may be of use in gauge fixing. Also, being global, they should not suffer from critical slowing-down as do local gradient based algorithms. We apply EA'S and also a Steepest Descent (SD) based method to the problem of Landau Gauge Fixing and compare their performance. (authors)
Adnan, F. A.; Romlay, F. R. M.; Shafiq, M.
2018-04-01
Owing to the advent of the industrial revolution 4.0, the need for further evaluating processes applied in the additive manufacturing application particularly the computational process for slicing is non-trivial. This paper evaluates a real-time slicing algorithm for slicing an STL formatted computer-aided design (CAD). A line-plane intersection equation was applied to perform the slicing procedure at any given height. The application of this algorithm has found to provide a better computational time regardless the number of facet in the STL model. The performance of this algorithm is evaluated by comparing the results of the computational time for different geometry.
Parameterless evolutionary algorithm applied to the nuclear reload problem
International Nuclear Information System (INIS)
Caldas, Gustavo Henrique Flores; Schirru, Roberto
2008-01-01
In this work, an evolutionary algorithm with no parameters called FPBIL (parameter free PBIL) is developed based on PBIL (population-based incremental learning). Moreover, the analysis reveals how the parameters from PBIL can be replaced by self-adaptable mechanisms which appear from the radically different form by which the evolution is processed. Despite the advantages, the FPBIL reveals itself compact and relatively modest in the use of computational resources. The FPBIL is then applied to the nuclear reload problem. The experimental results observed are compared to those of other works and corroborate to affirm the superiority of the new algorithm
Learning algorithms and automatic processing of languages
International Nuclear Information System (INIS)
Fluhr, Christian Yves Andre
1977-01-01
This research thesis concerns the field of artificial intelligence. It addresses learning algorithms applied to automatic processing of languages. The author first briefly describes some mechanisms of human intelligence in order to describe how these mechanisms are simulated on a computer. He outlines the specific role of learning in various manifestations of intelligence. Then, based on the Markov's algorithm theory, the author discusses the notion of learning algorithm. Two main types of learning algorithms are then addressed: firstly, an 'algorithm-teacher dialogue' type sanction-based algorithm which aims at learning how to solve grammatical ambiguities in submitted texts; secondly, an algorithm related to a document system which structures semantic data automatically obtained from a set of texts in order to be able to understand by references to any question on the content of these texts
HEURISTIC OPTIMIZATION AND ALGORITHM TUNING APPLIED TO SORPTIVE BARRIER DESIGN
While heuristic optimization is applied in environmental applications, ad-hoc algorithm configuration is typical. We use a multi-layer sorptive barrier design problem as a benchmark for an algorithm-tuning procedure, as applied to three heuristics (genetic algorithms, simulated ...
Genetic algorithms applied to nonlinear and complex domains
International Nuclear Information System (INIS)
Barash, D; Woodin, A E
1999-01-01
The dissertation, titled ''Genetic Algorithms Applied to Nonlinear and Complex Domains'', describes and then applies a new class of powerful search algorithms (GAS) to certain domains. GAS are capable of solving complex and nonlinear problems where many parameters interact to produce a ''final'' result such as the optimization of the laser pulse in the interaction of an atom with an intense laser field. GAS can very efficiently locate the global maximum by searching parameter space in problems which are unsuitable for a search using traditional methods. In particular, the dissertation contains new scientific findings in two areas. First, the dissertation examines the interaction of an ultra-intense short laser pulse with atoms. GAS are used to find the optimal frequency for stabilizing atoms in the ionization process. This leads to a new theoretical formulation, to explain what is happening during the ionization process and how the electron is responding to finite (real-life) laser pulse shapes. It is shown that the dynamics of the process can be very sensitive to the ramp of the pulse at high frequencies. The new theory which is formulated, also uses a novel concept (known as the (t,t') method) to numerically solve the time-dependent Schrodinger equation Second, the dissertation also examines the use of GAS in modeling decision making problems. It compares GAS with traditional techniques to solve a class of problems known as Markov Decision Processes. The conclusion of the dissertation should give a clear idea of where GAS are applicable, especially in the physical sciences, in problems which are nonlinear and complex, i.e. difficult to analyze by other means
Shafiee, Alireza
2016-06-25
In optimization-based process flowsheet synthesis, optimization methods, including genetic algorithms (GA), are used as advantageous tools to select a high performance flowsheet by ‘screening’ large numbers of possible flowsheets. In this study, we expand the role of GA to include flowsheet generation through proposing a modified Greedysub tour crossover operator. Performance of the proposed crossover operator is compared with four other commonly used operators. The proposed GA optimizationbased process synthesis method is applied to generate the optimum process flowsheet for a multicomponent membrane-based CO2 capture process. Within defined constraints and using the random-point crossover, CO2 purity of 0.827 (equivalent to 0.986 on dry basis) is achieved which results in improvement (3.4%) over the simplest crossover operator applied. In addition, the least variability in the converged flowsheet and CO2 purity is observed for random-point crossover operator, which approximately implies closeness of the solution to the global optimum, and hence the consistency of the algorithm. The proposed crossover operator is found to improve the convergence speed of the algorithm by 77.6%.
A Rotor Tip Vortex Tracing Algorithm for Image Post-Processing
Overmeyer, Austin D.
2015-01-01
A neurite tracing algorithm, originally developed for medical image processing, was used to trace the location of the rotor tip vortex in density gradient flow visualization images. The tracing algorithm was applied to several representative test images to form case studies. The accuracy of the tracing algorithm was compared to two current methods including a manual point and click method and a cross-correlation template method. It is shown that the neurite tracing algorithm can reduce the post-processing time to trace the vortex by a factor of 10 to 15 without compromising the accuracy of the tip vortex location compared to other methods presented in literature.
Energy Technology Data Exchange (ETDEWEB)
Fluhr, Christian Yves Andre
1977-06-15
This research thesis concerns the field of artificial intelligence. It addresses learning algorithms applied to automatic processing of languages. The author first briefly describes some mechanisms of human intelligence in order to describe how these mechanisms are simulated on a computer. He outlines the specific role of learning in various manifestations of intelligence. Then, based on the Markov's algorithm theory, the author discusses the notion of learning algorithm. Two main types of learning algorithms are then addressed: firstly, an 'algorithm-teacher dialogue' type sanction-based algorithm which aims at learning how to solve grammatical ambiguities in submitted texts; secondly, an algorithm related to a document system which structures semantic data automatically obtained from a set of texts in order to be able to understand by references to any question on the content of these texts.
Genetic algorithms applied to nonlinear and complex domains; TOPICAL
International Nuclear Information System (INIS)
Barash, D; Woodin, A E
1999-01-01
The dissertation, titled ''Genetic Algorithms Applied to Nonlinear and Complex Domains'', describes and then applies a new class of powerful search algorithms (GAS) to certain domains. GAS are capable of solving complex and nonlinear problems where many parameters interact to produce a ''final'' result such as the optimization of the laser pulse in the interaction of an atom with an intense laser field. GAS can very efficiently locate the global maximum by searching parameter space in problems which are unsuitable for a search using traditional methods. In particular, the dissertation contains new scientific findings in two areas. First, the dissertation examines the interaction of an ultra-intense short laser pulse with atoms. GAS are used to find the optimal frequency for stabilizing atoms in the ionization process. This leads to a new theoretical formulation, to explain what is happening during the ionization process and how the electron is responding to finite (real-life) laser pulse shapes. It is shown that the dynamics of the process can be very sensitive to the ramp of the pulse at high frequencies. The new theory which is formulated, also uses a novel concept (known as the (t,t') method) to numerically solve the time-dependent Schrodinger equation Second, the dissertation also examines the use of GAS in modeling decision making problems. It compares GAS with traditional techniques to solve a class of problems known as Markov Decision Processes. The conclusion of the dissertation should give a clear idea of where GAS are applicable, especially in the physical sciences, in problems which are nonlinear and complex, i.e. difficult to analyze by other means
Energy Technology Data Exchange (ETDEWEB)
Perrot, P
1993-12-01
In a complete system of acquisition and processing of ultrasonic signals, it is often necessary at one stage to use some processing tools to get rid of the influence of the different elements of that system. By that means, the final quality of the signals in terms of resolution is improved. There are two main characteristics of ultrasonic signals which make this task difficult. Firstly, the signals generated by transducers are very often non-minimum phase. The classical deconvolution algorithms are unable to deal with such characteristics. Secondly, depending on the medium, the shape of the propagating pulse is evolving. The spatial invariance assumption often used in classical deconvolution algorithms is rarely valid. Many classical algorithms, parametric and non-parametric, have been investigated: the Wiener-type, the adaptive predictive techniques, the Oldenburg technique in the frequency domain, the minimum variance deconvolution. All the algorithms have been firstly tested on simulated data. One specific experimental set-up has also been analysed. Simulated and real data has been produced. This set-up demonstrated the interest in applying deconvolution, in terms of the achieved resolution. (author). 32 figs., 29 refs.
International Nuclear Information System (INIS)
Rao, R. Venkata; Rai, Dhiraj P.
2017-01-01
Submerged arc welding (SAW) is characterized as a multi-input process. Selection of optimum combination of process parameters of SAW process is a vital task in order to achieve high quality of weld and productivity. The objective of this work is to optimize the SAW process parameters using a simple optimization algorithm, which is fast, robust and convenient. Therefore, in this work a very recently proposed optimization algorithm named Jaya algorithm is applied to solve the optimization problems in SAW process. In addition, a modified version of Jaya algorithm with oppositional based learning, named “Quasi-oppositional based Jaya algorithm” (QO-Jaya) is proposed in order to improve the performance of the Jaya algorithm. Three optimization case studies are considered and the results obtained by Jaya algorithm and QO-Jaya algorithm are compared with the results obtained by well-known optimization algorithms such as Genetic algorithm (GA), Particle swarm optimization (PSO), Imperialist competitive algorithm (ICA) and Teaching learning based optimization (TLBO).
Energy Technology Data Exchange (ETDEWEB)
Rao, R. Venkata; Rai, Dhiraj P. [Sardar Vallabhbhai National Institute of Technology, Gujarat (India)
2017-05-15
Submerged arc welding (SAW) is characterized as a multi-input process. Selection of optimum combination of process parameters of SAW process is a vital task in order to achieve high quality of weld and productivity. The objective of this work is to optimize the SAW process parameters using a simple optimization algorithm, which is fast, robust and convenient. Therefore, in this work a very recently proposed optimization algorithm named Jaya algorithm is applied to solve the optimization problems in SAW process. In addition, a modified version of Jaya algorithm with oppositional based learning, named “Quasi-oppositional based Jaya algorithm” (QO-Jaya) is proposed in order to improve the performance of the Jaya algorithm. Three optimization case studies are considered and the results obtained by Jaya algorithm and QO-Jaya algorithm are compared with the results obtained by well-known optimization algorithms such as Genetic algorithm (GA), Particle swarm optimization (PSO), Imperialist competitive algorithm (ICA) and Teaching learning based optimization (TLBO).
Bio-inspired algorithms applied to molecular docking simulations.
Heberlé, G; de Azevedo, W F
2011-01-01
Nature as a source of inspiration has been shown to have a great beneficial impact on the development of new computational methodologies. In this scenario, analyses of the interactions between a protein target and a ligand can be simulated by biologically inspired algorithms (BIAs). These algorithms mimic biological systems to create new paradigms for computation, such as neural networks, evolutionary computing, and swarm intelligence. This review provides a description of the main concepts behind BIAs applied to molecular docking simulations. Special attention is devoted to evolutionary algorithms, guided-directed evolutionary algorithms, and Lamarckian genetic algorithms. Recent applications of these methodologies to protein targets identified in the Mycobacterium tuberculosis genome are described.
Swarm, genetic and evolutionary programming algorithms applied to multiuser detection
Directory of Open Access Journals (Sweden)
Paul Jean Etienne Jeszensky
2005-02-01
Full Text Available In this paper, the particles swarm optimization technique, recently published in the literature, and applied to Direct Sequence/Code Division Multiple Access systems (DS/CDMA with multiuser detection (MuD is analyzed, evaluated and compared. The Swarm algorithm efficiency when applied to the DS-CDMA multiuser detection (Swarm-MuD is compared through the tradeoff performance versus computational complexity, being the complexity expressed in terms of the number of necessary operations in order to reach the performance obtained through the optimum detector or the Maximum Likelihood detector (ML. The comparison is accomplished among the genetic algorithm, evolutionary programming with cloning and Swarm algorithm under the same simulation basis. Additionally, it is proposed an heuristics-MuD complexity analysis through the number of computational operations. Finally, an analysis is carried out for the input parameters of the Swarm algorithm in the attempt to find the optimum parameters (or almost-optimum for the algorithm applied to the MuD problem.
Textual and chemical information processing: different domains but similar algorithms
Directory of Open Access Journals (Sweden)
Peter Willett
2000-01-01
Full Text Available This paper discusses the extent to which algorithms developed for the processing of textual databases are also applicable to the processing of chemical structure databases, and vice versa. Applications discussed include: an algorithm for distribution sorting that has been applied to the design of screening systems for rapid chemical substructure searching; the use of measures of inter-molecular structural similarity for the analysis of hypertext graphs; a genetic algorithm for calculating term weights for relevance feedback searching for determining whether a molecule is likely to exhibit biological activity; and the use of data fusion to combine the results of different chemical similarity searches.
Fuzzy model predictive control algorithm applied in nuclear power plant
International Nuclear Information System (INIS)
Zuheir, Ahmad
2006-01-01
The aim of this paper is to design a predictive controller based on a fuzzy model. The Takagi-Sugeno fuzzy model with an Adaptive B-splines neuro-fuzzy implementation is used and incorporated as a predictor in a predictive controller. An optimization approach with a simplified gradient technique is used to calculate predictions of the future control actions. In this approach, adaptation of the fuzzy model using dynamic process information is carried out to build the predictive controller. The easy description of the fuzzy model and the easy computation of the gradient sector during the optimization procedure are the main advantages of the computation algorithm. The algorithm is applied to the control of a U-tube steam generation unit (UTSG) used for electricity generation. (author)
Improved Bat Algorithm Applied to Multilevel Image Thresholding
Directory of Open Access Journals (Sweden)
Adis Alihodzic
2014-01-01
Full Text Available Multilevel image thresholding is a very important image processing technique that is used as a basis for image segmentation and further higher level processing. However, the required computational time for exhaustive search grows exponentially with the number of desired thresholds. Swarm intelligence metaheuristics are well known as successful and efficient optimization methods for intractable problems. In this paper, we adjusted one of the latest swarm intelligence algorithms, the bat algorithm, for the multilevel image thresholding problem. The results of testing on standard benchmark images show that the bat algorithm is comparable with other state-of-the-art algorithms. We improved standard bat algorithm, where our modifications add some elements from the differential evolution and from the artificial bee colony algorithm. Our new proposed improved bat algorithm proved to be better than five other state-of-the-art algorithms, improving quality of results in all cases and significantly improving convergence speed.
Systolic array processing of the sequential decoding algorithm
Chang, C. Y.; Yao, K.
1989-01-01
A systolic array processing technique is applied to implementing the stack algorithm form of the sequential decoding algorithm. It is shown that sorting, a key function in the stack algorithm, can be efficiently realized by a special type of systolic arrays known as systolic priority queues. Compared to the stack-bucket algorithm, this approach is shown to have the advantages that the decoding always moves along the optimal path, that it has a fast and constant decoding speed and that its simple and regular hardware architecture is suitable for VLSI implementation. Three types of systolic priority queues are discussed: random access scheme, shift register scheme and ripple register scheme. The property of the entries stored in the systolic priority queue is also investigated. The results are applicable to many other basic sorting type problems.
Application of Hybrid Genetic Algorithm Routine in Optimizing Food and Bioengineering Processes
Directory of Open Access Journals (Sweden)
Jaya Shankar Tumuluru
2016-11-01
Full Text Available Optimization is a crucial step in the analysis of experimental results. Deterministic methods only converge on local optimums and require exponentially more time as dimensionality increases. Stochastic algorithms are capable of efficiently searching the domain space; however convergence is not guaranteed. This article demonstrates the novelty of the hybrid genetic algorithm (HGA, which combines both stochastic and deterministic routines for improved optimization results. The new hybrid genetic algorithm developed is applied to the Ackley benchmark function as well as case studies in food, biofuel, and biotechnology processes. For each case study, the hybrid genetic algorithm found a better optimum candidate than reported by the sources. In the case of food processing, the hybrid genetic algorithm improved the anthocyanin yield by 6.44%. Optimization of bio-oil production using HGA resulted in a 5.06% higher yield. In the enzyme production process, HGA predicted a 0.39% higher xylanase yield. Hybridization of the genetic algorithm with a deterministic algorithm resulted in an improved optimum compared to statistical methods.
Directory of Open Access Journals (Sweden)
Debkalpa Goswami
2015-03-01
Full Text Available Ultrasonic machining (USM is a mechanical material removal process used to erode holes and cavities in hard or brittle workpieces by using shaped tools, high-frequency mechanical motion and an abrasive slurry. Unlike other non-traditional machining processes, such as laser beam and electrical discharge machining, USM process does not thermally damage the workpiece or introduce significant levels of residual stress, which is important for survival of materials in service. For having enhanced machining performance and better machined job characteristics, it is often required to determine the optimal control parameter settings of an USM process. The earlier mathematical approaches for parametric optimization of USM processes have mostly yielded near optimal or sub-optimal solutions. In this paper, two almost unexplored non-conventional optimization techniques, i.e. gravitational search algorithm (GSA and fireworks algorithm (FWA are applied for parametric optimization of USM processes. The optimization performance of these two algorithms is compared with that of other popular population-based algorithms, and the effects of their algorithm parameters on the derived optimal solutions and computational speed are also investigated. It is observed that FWA provides the best optimal results for the considered USM processes.
McIlvane, William J; Kledaras, Joanne B; Gerard, Christophe J; Wilde, Lorin; Smelson, David
2018-07-01
A few noteworthy exceptions notwithstanding, quantitative analyses of relational learning are most often simple descriptive measures of study outcomes. For example, studies of stimulus equivalence have made much progress using measures such as percentage consistent with equivalence relations, discrimination ratio, and response latency. Although procedures may have ad hoc variations, they remain fairly similar across studies. Comparison studies of training variables that lead to different outcomes are few. Yet to be developed are tools designed specifically for dynamic and/or parametric analyses of relational learning processes. This paper will focus on recent studies to develop (1) quality computer-based programmed instruction for supporting relational learning in children with autism spectrum disorders and intellectual disabilities and (2) formal algorithms that permit ongoing, dynamic assessment of learner performance and procedure changes to optimize instructional efficacy and efficiency. Because these algorithms have a strong basis in evidence and in theories of stimulus control, they may have utility also for basic and translational research. We present an overview of the research program, details of algorithm features, and summary results that illustrate their possible benefits. It also presents arguments that such algorithm development may encourage parametric research, help in integrating new research findings, and support in-depth quantitative analyses of stimulus control processes in relational learning. Such algorithms may also serve to model control of basic behavioral processes that is important to the design of effective programmed instruction for human learners with and without functional disabilities. Copyright © 2018 Elsevier B.V. All rights reserved.
Genetic algorithms applied to nuclear reactor design optimization
International Nuclear Information System (INIS)
Pereira, C.M.N.A.; Schirru, R.; Martinez, A.S.
2000-01-01
A genetic algorithm is a powerful search technique that simulates natural evolution in order to fit a population of computational structures to the solution of an optimization problem. This technique presents several advantages over classical ones such as linear programming based techniques, often used in nuclear engineering optimization problems. However, genetic algorithms demand some extra computational cost. Nowadays, due to the fast computers available, the use of genetic algorithms has increased and its practical application has become a reality. In nuclear engineering there are many difficult optimization problems related to nuclear reactor design. Genetic algorithm is a suitable technique to face such kind of problems. This chapter presents applications of genetic algorithms for nuclear reactor core design optimization. A genetic algorithm has been designed to optimize the nuclear reactor cell parameters, such as array pitch, isotopic enrichment, dimensions and cells materials. Some advantages of this genetic algorithm implementation over a classical method based on linear programming are revealed through the application of both techniques to a simple optimization problem. In order to emphasize the suitability of genetic algorithms for design optimization, the technique was successfully applied to a more complex problem, where the classical method is not suitable. Results and comments about the applications are also presented. (orig.)
Applied medical image processing a basic course
Birkfellner, Wolfgang
2014-01-01
A widely used, classroom-tested text, Applied Medical Image Processing: A Basic Course delivers an ideal introduction to image processing in medicine, emphasizing the clinical relevance and special requirements of the field. Avoiding excessive mathematical formalisms, the book presents key principles by implementing algorithms from scratch and using simple MATLAB®/Octave scripts with image data and illustrations on an accompanying CD-ROM or companion website. Organized as a complete textbook, it provides an overview of the physics of medical image processing and discusses image formats and data storage, intensity transforms, filtering of images and applications of the Fourier transform, three-dimensional spatial transforms, volume rendering, image registration, and tomographic reconstruction.
Al-Rajab, Murad; Lu, Joan; Xu, Qiang
2017-07-01
This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process. In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these. It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Support Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%). It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society. Copyright © 2017 Elsevier B.V. All rights reserved.
Active filtering applied to radiographic images unfolded by the Richardson-Lucy algorithm
International Nuclear Information System (INIS)
Almeida, Gevaldo L. de; Silvani, Maria Ines; Lopes, Ricardo T.
2011-01-01
Degradation of images caused by systematic uncertainties can be reduced when one knows the features of the spoiling agent. Typical uncertainties of this kind arise in radiographic images due to the non - zero resolution of the detector used to acquire them, and from the non-punctual character of the source employed in the acquisition, or from the beam divergence when extended sources are used. Both features blur the image, which, instead of a single point exhibits a spot with a vanishing edge, reproducing hence the point spread function - PSF of the system. Once this spoiling function is known, an inverse problem approach, involving inversion of matrices, can then be used to retrieve the original image. As these matrices are generally ill-conditioned, due to statistical fluctuation and truncation errors, iterative procedures should be applied, such as the Richardson-Lucy algorithm. This algorithm has been applied in this work to unfold radiographic images acquired by transmission of thermal neutrons and gamma-rays. After this procedure, the resulting images undergo an active filtering which fairly improves their final quality at a negligible cost in terms of processing time. The filter ruling the process is based on the matrix of the correction factors for the last iteration of the deconvolution procedure. Synthetic images degraded with a known PSF, and undergone to the same treatment, have been used as benchmark to evaluate the soundness of the developed active filtering procedure. The deconvolution and filtering algorithms have been incorporated to a Fortran program, written to deal with real images, generate the synthetic ones and display both. (author)
The Great Deluge Algorithm applied to a nuclear reactor core design optimization problem
International Nuclear Information System (INIS)
Sacco, Wagner F.; Oliveira, Cassiano R.E. de
2005-01-01
The Great Deluge Algorithm (GDA) is a local search algorithm introduced by Dueck. It is an analogy with a flood: the 'water level' rises continuously and the proposed solution must lie above the 'surface' in order to survive. The crucial parameter is the 'rain speed', which controls convergence of the algorithm similarly to Simulated Annealing's annealing schedule. This algorithm is applied to the reactor core design optimization problem, which consists in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a 3-enrichment-zone reactor, considering restrictions on the average thermal flux, criticality and sub-moderation. This problem was previously attacked by the canonical genetic algorithm (GA) and by a Niching Genetic Algorithm (NGA). NGAs were designed to force the genetic algorithm to maintain a heterogeneous population throughout the evolutionary process, avoiding the phenomenon known as genetic drift, where all the individuals converge to a single solution. The results obtained by the Great Deluge Algorithm are compared to those obtained by both algorithms mentioned above. The three algorithms are submitted to the same computational effort and GDA reaches the best results, showing its potential for other applications in the nuclear engineering field as, for instance, the nuclear core reload optimization problem. One of the great advantages of this algorithm over the GA is that it does not require special operators for discrete optimization. (author)
A New Waveform Signal Processing Method Based on Adaptive Clustering-Genetic Algorithms
International Nuclear Information System (INIS)
Noha Shaaban; Fukuzo Masuda; Hidetsugu Morota
2006-01-01
We present a fast digital signal processing method for numerical analysis of individual pulses from CdZnTe compound semiconductor detectors. Using Maxi-Mini Distance Algorithm and Genetic Algorithms based discrimination technique. A parametric approach has been used for classifying the discriminated waveforms into a set of clusters each has a similar signal shape with a corresponding pulse height spectrum. A corrected total pulse height spectrum was obtained by applying a normalization factor for the full energy peak for each cluster with a highly improvements in the energy spectrum characteristics. This method applied successfully for both simulated and real measured data, it can be applied to any detector suffers from signal shape variation. (authors)
Simulation of anaerobic digestion processes using stochastic algorithm.
Palanichamy, Jegathambal; Palani, Sundarambal
2014-01-01
The Anaerobic Digestion (AD) processes involve numerous complex biological and chemical reactions occurring simultaneously. Appropriate and efficient models are to be developed for simulation of anaerobic digestion systems. Although several models have been developed, mostly they suffer from lack of knowledge on constants, complexity and weak generalization. The basis of the deterministic approach for modelling the physico and bio-chemical reactions occurring in the AD system is the law of mass action, which gives the simple relationship between the reaction rates and the species concentrations. The assumptions made in the deterministic models are not hold true for the reactions involving chemical species of low concentration. The stochastic behaviour of the physicochemical processes can be modeled at mesoscopic level by application of the stochastic algorithms. In this paper a stochastic algorithm (Gillespie Tau Leap Method) developed in MATLAB was applied to predict the concentration of glucose, acids and methane formation at different time intervals. By this the performance of the digester system can be controlled. The processes given by ADM1 (Anaerobic Digestion Model 1) were taken for verification of the model. The proposed model was verified by comparing the results of Gillespie's algorithms with the deterministic solution for conversion of glucose into methane through degraders. At higher value of 'τ' (timestep), the computational time required for reaching the steady state is more since the number of chosen reactions is less. When the simulation time step is reduced, the results are similar to ODE solver. It was concluded that the stochastic algorithm is a suitable approach for the simulation of complex anaerobic digestion processes. The accuracy of the results depends on the optimum selection of tau value.
Heterogeneous architecture to process swarm optimization algorithms
Directory of Open Access Journals (Sweden)
Maria A. Dávila-Guzmán
2014-01-01
Full Text Available Since few years ago, the parallel processing has been embedded in personal computers by including co-processing units as the graphics processing units resulting in a heterogeneous platform. This paper presents the implementation of swarm algorithms on this platform to solve several functions from optimization problems, where they highlight their inherent parallel processing and distributed control features. In the swarm algorithms, each individual and dimension problem are parallelized by the granularity of the processing system which also offer low communication latency between individuals through the embedded processing. To evaluate the potential of swarm algorithms on graphics processing units we have implemented two of them: the particle swarm optimization algorithm and the bacterial foraging optimization algorithm. The algorithms’ performance is measured using the acceleration where they are contrasted between a typical sequential processing platform and the NVIDIA GeForce GTX480 heterogeneous platform; the results show that the particle swarm algorithm obtained up to 36.82x and the bacterial foraging swarm algorithm obtained up to 9.26x. Finally, the effect to increase the size of the population is evaluated where we show both the dispersion and the quality of the solutions are decreased despite of high acceleration performance since the initial distribution of the individuals can converge to local optimal solution.
Applied economic model development algorithm for electronics company
Directory of Open Access Journals (Sweden)
Mikhailov I.
2017-01-01
Full Text Available The purpose of this paper is to report about received experience in the field of creating the actual methods and algorithms that help to simplify development of applied decision support systems. It reports about an algorithm, which is a result of two years research and have more than one-year practical verification. In a case of testing electronic components, the time of the contract conclusion is crucial point to make the greatest managerial mistake. At this stage, it is difficult to achieve a realistic assessment of time-limit and of wage-fund for future work. The creation of estimating model is possible way to solve this problem. In the article is represented an algorithm for creation of those models. The algorithm is based on example of the analytical model development that serves for amount of work estimation. The paper lists the algorithm’s stages and explains their meanings with participants’ goals. The implementation of the algorithm have made possible twofold acceleration of these models development and fulfilment of management’s requirements. The resulting models have made a significant economic effect. A new set of tasks was identified to be further theoretical study.
Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks.
Vestergaard, Christian L; Génois, Mathieu
2015-10-01
Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling.
Processing time tolerance-based ACO algorithm for solving job-shop scheduling problem
Luo, Yabo; Waden, Yongo P.
2017-06-01
Ordinarily, Job Shop Scheduling Problem (JSSP) is known as NP-hard problem which has uncertainty and complexity that cannot be handled by a linear method. Thus, currently studies on JSSP are concentrated mainly on applying different methods of improving the heuristics for optimizing the JSSP. However, there still exist many problems for efficient optimization in the JSSP, namely, low efficiency and poor reliability, which can easily trap the optimization process of JSSP into local optima. Therefore, to solve this problem, a study on Ant Colony Optimization (ACO) algorithm combined with constraint handling tactics is carried out in this paper. Further, the problem is subdivided into three parts: (1) Analysis of processing time tolerance-based constraint features in the JSSP which is performed by the constraint satisfying model; (2) Satisfying the constraints by considering the consistency technology and the constraint spreading algorithm in order to improve the performance of ACO algorithm. Hence, the JSSP model based on the improved ACO algorithm is constructed; (3) The effectiveness of the proposed method based on reliability and efficiency is shown through comparative experiments which are performed on benchmark problems. Consequently, the results obtained by the proposed method are better, and the applied technique can be used in optimizing JSSP.
International Nuclear Information System (INIS)
Beyersdorff, Dirk; Franiel, T.; Luedemann, L.; Dietz, E.; Galler, D.; Marchot, P.
2011-01-01
Purpose: To evaluate the usefulness of a commercially available post-processing software tool for detecting prostate cancer on dynamic contrast-enhanced magnetic resonance imaging (MRI) and to compare the results to those obtained with a custom-made post-processing algorithm already tested under clinical conditions. Materials and Methods: Forty-eight patients with proven prostate cancer were examined by standard MRI supplemented by dynamic contrast-enhanced dual susceptibility contrast (DCE-DSC) MRI prior to prostatectomy. A custom-made post-processing algorithm was used to analyze the MRI data sets and the results were compared to those obtained using a post-processing algorithm from Invivo Corporation (Dyna CAD for Prostate) applied to dynamic T 1-weighted images. Histology was used as the gold standard. Results: The sensitivity for prostate cancer detection was 78 % for the custom-made algorithm and 60 % for the commercial algorithm and the specificity was 79 % and 82 %, respectively. The accuracy was 79 % for our algorithm and 77.5 % for the commercial software tool. The chi-square test (McNemar-Bowker test) yielded no significant differences between the two tools (p = 0.06). Conclusion: The two investigated post-processing algorithms did not differ in terms of prostate cancer detection. The commercially available software tool allows reliable and fast analysis of dynamic contrast-enhanced MRI for the detection of prostate cancer. (orig.)
Heuristic algorithms for the minmax regret flow-shop problem with interval processing times.
Ćwik, Michał; Józefczyk, Jerzy
2018-01-01
An uncertain version of the permutation flow-shop with unlimited buffers and the makespan as a criterion is considered. The investigated parametric uncertainty is represented by given interval-valued processing times. The maximum regret is used for the evaluation of uncertainty. Consequently, the minmax regret discrete optimization problem is solved. Due to its high complexity, two relaxations are applied to simplify the optimization procedure. First of all, a greedy procedure is used for calculating the criterion's value, as such calculation is NP-hard problem itself. Moreover, the lower bound is used instead of solving the internal deterministic flow-shop. The constructive heuristic algorithm is applied for the relaxed optimization problem. The algorithm is compared with previously elaborated other heuristic algorithms basing on the evolutionary and the middle interval approaches. The conducted computational experiments showed the advantage of the constructive heuristic algorithm with regards to both the criterion and the time of computations. The Wilcoxon paired-rank statistical test confirmed this conclusion.
Close coupling of pre- and post-processing vision stations using inexact algorithms
Shih, Chi-Hsien V.; Sherkat, Nasser; Thomas, Peter D.
1996-02-01
Work has been reported using lasers to cut deformable materials. Although the use of laser reduces material deformation, distortion due to mechanical feed misalignment persists. Changes in the lace patten are also caused by the release of tension in the lace structure as it is cut. To tackle the problem of distortion due to material flexibility, the 2VMethod together with the Piecewise Error Compensation Algorithm incorporating the inexact algorithms, i.e., fuzzy logic, neural networks and neural fuzzy technique, are developed. A spring mounted pen is used to emulate the distortion of the lace pattern caused by tactile cutting and feed misalignment. Using pre- and post-processing vision systems, it is possible to monitor the scalloping process and generate on-line information for the artificial intelligence engines. This overcomes the problems of lace distortion due to the trimming process. Applying the algorithms developed, the system can produce excellent results, much better than a human operator.
Parallel asynchronous systems and image processing algorithms
Coon, D. D.; Perera, A. G. U.
1989-01-01
A new hardware approach to implementation of image processing algorithms is described. The approach is based on silicon devices which would permit an independent analog processing channel to be dedicated to evey pixel. A laminar architecture consisting of a stack of planar arrays of the device would form a two-dimensional array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuronlike asynchronous pulse coded form through the laminar processor. Such systems would integrate image acquisition and image processing. Acquisition and processing would be performed concurrently as in natural vision systems. The research is aimed at implementation of algorithms, such as the intensity dependent summation algorithm and pyramid processing structures, which are motivated by the operation of natural vision systems. Implementation of natural vision algorithms would benefit from the use of neuronlike information coding and the laminar, 2-D parallel, vision system type architecture. Besides providing a neural network framework for implementation of natural vision algorithms, a 2-D parallel approach could eliminate the serial bottleneck of conventional processing systems. Conversion to serial format would occur only after raw intensity data has been substantially processed. An interesting challenge arises from the fact that the mathematical formulation of natural vision algorithms does not specify the means of implementation, so that hardware implementation poses intriguing questions involving vision science.
Power to the People! Meta-algorithmic modelling in applied data science
Spruit, M.; Jagesar, R.
2016-01-01
This position paper first defines the research field of applied data science at the intersection of domain expertise, data mining, and engineering capabilities, with particular attention to analytical applications. We then propose a meta-algorithmic approach for applied data science with societal
An optimization framework for process discovery algorithms
Weijters, A.J.M.M.; Stahlbock, R.
2011-01-01
Today there are many process mining techniques that, based on an event log, allow for the automatic induction of a process model. The process mining algorithms that are able to deal with incomplete event logs, exceptions, and noise typically have many parameters to tune the algorithm. Therefore, the
Adaptive Algorithms for Automated Processing of Document Images
2011-01-01
ABSTRACT Title of dissertation: ADAPTIVE ALGORITHMS FOR AUTOMATED PROCESSING OF DOCUMENT IMAGES Mudit Agrawal, Doctor of Philosophy, 2011...2011 4. TITLE AND SUBTITLE Adaptive Algorithms for Automated Processing of Document Images 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...ALGORITHMS FOR AUTOMATED PROCESSING OF DOCUMENT IMAGES by Mudit Agrawal Dissertation submitted to the Faculty of the Graduate School of the University
Qyyum, Muhammad Abdul; Long, Nguyen Van Duc; Minh, Le Quang; Lee, Moonyong
2018-01-01
Design optimization of the single mixed refrigerant (SMR) natural gas liquefaction (LNG) process involves highly non-linear interactions between decision variables, constraints, and the objective function. These non-linear interactions lead to an irreversibility, which deteriorates the energy efficiency of the LNG process. In this study, a simple and highly efficient hybrid modified coordinate descent (HMCD) algorithm was proposed to cope with the optimization of the natural gas liquefaction process. The single mixed refrigerant process was modeled in Aspen Hysys® and then connected to a Microsoft Visual Studio environment. The proposed optimization algorithm provided an improved result compared to the other existing methodologies to find the optimal condition of the complex mixed refrigerant natural gas liquefaction process. By applying the proposed optimization algorithm, the SMR process can be designed with the 0.2555 kW specific compression power which is equivalent to 44.3% energy saving as compared to the base case. Furthermore, in terms of coefficient of performance (COP), it can be enhanced up to 34.7% as compared to the base case. The proposed optimization algorithm provides a deep understanding of the optimization of the liquefaction process in both technical and numerical perspectives. In addition, the HMCD algorithm can be employed to any mixed refrigerant based liquefaction process in the natural gas industry.
Performance evaluation of the EM algorithm applied to radiographic images
International Nuclear Information System (INIS)
Brailean, J.C.; Giger, M.L.; Chen, C.T.; Sullivan, B.J.
1990-01-01
In this paper the authors evaluate the expectation maximization (EM) algorithm, both qualitatively and quantitatively, as a technique for enhancing radiographic images. Previous studies have qualitatively shown the usefulness of the EM algorithm but have failed to quantify and compare its performance with those of other image processing techniques. Recent studies by Loo et al, Ishida et al, and Giger et al, have explained improvements in image quality quantitatively in terms of a signal-to-noise ratio (SNR) derived from signal detection theory. In this study, we take a similar approach in quantifying the effect of the EM algorithm on detection of simulated low-contrast square objects superimposed on radiographic mottle. The SNRs of the original and processed images are calculated taking into account both the human visual system response and the screen-film transfer function as well as a noise component internal to the eye-brain system. The EM algorithm was also implemented on digital screen-film images of test patterns and clinical mammograms
PSO-Based Algorithm Applied to Quadcopter Micro Air Vehicle Controller Design
Directory of Open Access Journals (Sweden)
Huu-Khoa Tran
2016-09-01
Full Text Available Due to the rapid development of science and technology in recent times, many effective controllers are designed and applied successfully to complicated systems. The significant task of controller design is to determine optimized control gains in a short period of time. With this purpose in mind, a combination of the particle swarm optimization (PSO-based algorithm and the evolutionary programming (EP algorithm is introduced in this article. The benefit of this integration algorithm is the creation of new best-parameters for control design schemes. The proposed controller designs are then demonstrated to have the best performance for nonlinear micro air vehicle models.
Differential Evolution algorithm applied to FSW model calibration
Idagawa, H. S.; Santos, T. F. A.; Ramirez, A. J.
2014-03-01
Friction Stir Welding (FSW) is a solid state welding process that can be modelled using a Computational Fluid Dynamics (CFD) approach. These models use adjustable parameters to control the heat transfer and the heat input to the weld. These parameters are used to calibrate the model and they are generally determined using the conventional trial and error approach. Since this method is not very efficient, we used the Differential Evolution (DE) algorithm to successfully determine these parameters. In order to improve the success rate and to reduce the computational cost of the method, this work studied different characteristics of the DE algorithm, such as the evolution strategy, the objective function, the mutation scaling factor and the crossover rate. The DE algorithm was tested using a friction stir weld performed on a UNS S32205 Duplex Stainless Steel.
Neural Network Blind Equalization Algorithm Applied in Medical CT Image Restoration
Directory of Open Access Journals (Sweden)
Yunshan Sun
2013-01-01
Full Text Available A new algorithm for iterative blind image restoration is presented in this paper. The method extends blind equalization found in the signal case to the image. A neural network blind equalization algorithm is derived and used in conjunction with Zigzag coding to restore the original image. As a result, the effect of PSF can be removed by using the proposed algorithm, which contributes to eliminate intersymbol interference (ISI. In order to obtain the estimation of the original image, what is proposed in this method is to optimize constant modulus blind equalization cost function applied to grayscale CT image by using conjugate gradient method. Analysis of convergence performance of the algorithm verifies the feasibility of this method theoretically; meanwhile, simulation results and performance evaluations of recent image quality metrics are provided to assess the effectiveness of the proposed method.
Honing process optimization algorithms
Kadyrov, Ramil R.; Charikov, Pavel N.; Pryanichnikova, Valeria V.
2018-03-01
This article considers the relevance of honing processes for creating high-quality mechanical engineering products. The features of the honing process are revealed and such important concepts as the task for optimization of honing operations, the optimal structure of the honing working cycles, stepped and stepless honing cycles, simulation of processing and its purpose are emphasized. It is noted that the reliability of the mathematical model determines the quality parameters of the honing process control. An algorithm for continuous control of the honing process is proposed. The process model reliably describes the machining of a workpiece in a sufficiently wide area and can be used to operate the CNC machine CC743.
An Intuitive Dominant Test Algorithm of CP-nets Applied on Wireless Sensor Network
Directory of Open Access Journals (Sweden)
Liu Zhaowei
2014-07-01
Full Text Available A wireless sensor network is of spatially distributed with autonomous sensors, just like a multi-Agent system with single Agent. Conditional Preference networks is a qualitative tool for representing ceteris paribus (all other things being equal preference statements, it has been a research hotspot in artificial intelligence recently. But the algorithm and complexity of strong dominant test with respect to binary-valued structure CP-nets have not been solved, and few researchers address the application to other domain. In this paper, strong dominant test and application of CP-nets are studied in detail. Firstly, by constructing induced graph of CP-nets and studying its properties, we make a conclusion that the problem of strong dominant test on binary-valued CP-nets is single source shortest path problem essentially, so strong dominant test problem can be solved by improved Dijkstra’s algorithm. Secondly, we apply the algorithm above mentioned to the completeness of wireless sensor network, and design a completeness judging algorithm based on strong dominant test. Thirdly, we apply the algorithm on wireless sensor network to solve routing problem. In the end, we point out some interesting work in the future.
Uhr, Leonard
1984-01-01
Computer Science and Applied Mathematics: Algorithm-Structured Computer Arrays and Networks: Architectures and Processes for Images, Percepts, Models, Information examines the parallel-array, pipeline, and other network multi-computers.This book describes and explores arrays and networks, those built, being designed, or proposed. The problems of developing higher-level languages for systems and designing algorithm, program, data flow, and computer structure are also discussed. This text likewise describes several sequences of successively more general attempts to combine the power of arrays wi
Algorithms for image processing and computer vision
Parker, J R
2010-01-01
A cookbook of algorithms for common image processing applications Thanks to advances in computer hardware and software, algorithms have been developed that support sophisticated image processing without requiring an extensive background in mathematics. This bestselling book has been fully updated with the newest of these, including 2D vision methods in content-based searches and the use of graphics cards as image processing computational aids. It's an ideal reference for software engineers and developers, advanced programmers, graphics programmers, scientists, and other specialists wh
[Algorithm for the automated processing of rheosignals].
Odinets, G S
1988-01-01
Algorithm for rheosignals recognition for a microprocessing device with a representation apparatus and with automated and manual cursor control was examined. The algorithm permits to automate rheosignals registrating and processing taking into account their changeability.
A Gaussian process and derivative spectral-based algorithm for red blood cell segmentation
Xue, Yingying; Wang, Jianbiao; Zhou, Mei; Hou, Xiyue; Li, Qingli; Liu, Hongying; Wang, Yiting
2017-07-01
As an imaging technology used in remote sensing, hyperspectral imaging can provide more information than traditional optical imaging of blood cells. In this paper, an AOTF based microscopic hyperspectral imaging system is used to capture hyperspectral images of blood cells. In order to achieve the segmentation of red blood cells, Gaussian process using squared exponential kernel function is applied first after the data preprocessing to make the preliminary segmentation. The derivative spectrum with spectral angle mapping algorithm is then applied to the original image to segment the boundary of cells, and using the boundary to cut out cells obtained from the Gaussian process to separated adjacent cells. Then the morphological processing method including closing, erosion and dilation is applied so as to keep adjacent cells apart, and by applying median filtering to remove noise points and filling holes inside the cell, the final segmentation result can be obtained. The experimental results show that this method appears better segmentation effect on human red blood cells.
International Nuclear Information System (INIS)
Omori, Ryota, Sakakibara, Yasushi; Suzuki, Atsuyuki
1997-01-01
Applications of genetic algorithms (GAs) to optimization problems in the solvent extraction process for spent nuclear fuel are described. Genetic algorithms have been considered a promising tool for use in solving optimization problems in complicated and nonlinear systems because they require no derivatives of the objective function. In addition, they have the ability to treat a set of many possible solutions and consider multiple objectives simultaneously, so they can calculate many pareto optimal points on the trade-off curve between the competing objectives in a single iteration, which leads to small computing time. Genetic algorithms were applied to two optimization problems. First, process variables in the partitioning process were optimized using a weighted objective function. It was observed that the average fitness of a generation increased steadily as the generation proceeded and satisfactory solutions were obtained in all cases, which means that GAs are an appropriate method to obtain such an optimization. Secondly, GAs were applied to a multiobjective optimization problem in the co-decontamination process, and the trade-off curve between the loss of uranium and the solvent flow rate was successfully obtained. For both optimization problems, CPU time with the present method was estimated to be several tens of times smaller than with the random search method
Making Faces - State-Space Models Applied to Multi-Modal Signal Processing
DEFF Research Database (Denmark)
Lehn-Schiøler, Tue
2005-01-01
The two main focus areas of this thesis are State-Space Models and multi modal signal processing. The general State-Space Model is investigated and an addition to the class of sequential sampling methods is proposed. This new algorithm is denoted as the Parzen Particle Filter. Furthermore...... optimizer can be applied to speed up convergence. The linear version of the State-Space Model, the Kalman Filter, is applied to multi modal signal processing. It is demonstrated how a State-Space Model can be used to map from speech to lip movements. Besides the State-Space Model and the multi modal...... application an information theoretic vector quantizer is also proposed. Based on interactions between particles, it is shown how a quantizing scheme based on an analytic cost function can be derived....
Multi-Objective Optimization of Grillages Applying the Genetic Algorithm
Directory of Open Access Journals (Sweden)
Darius Mačiūnas
2012-01-01
Full Text Available The article analyzes the optimization of grillage-type foundations seeking for the least possible reactive forces in the poles for a given number of poles and for the least possible bending moments of absolute values in the connecting beams of the grillage. Therefore, we suggest using a compromise objective function (to be minimized that consists of the maximum reactive force arising in all poles and the maximum bending moment of the absolute value in connecting beams; both components include the given weights. The variables of task design are pole positions under connecting beams. The optimization task is solved applying the algorithm containing all the initial data of the problem. Reactive forces and bending moments are calculated using an original program (finite element method is applied. This program is integrated into the optimization algorithm using the “black-box” principle. The “black-box” finite element program sends back the corresponding value of the objective function. Numerical experiments revealed the optimal quantity of points to compute bending moments. The obtained results show a certain ratio of weights in the objective function where the contribution of reactive forces and bending moments to the objective function are equivalent. This solution can serve as a pilot project for more detailed design.Article in Lithuanian
International Nuclear Information System (INIS)
Sacco, Wagner F.; Oliveira, Cassiano R.E. de
2005-01-01
A new metaheuristic called 'Gravitational Attraction Algorithm' (GAA) is introduced in this article. It is an analogy with the gravitational force field, where a body attracts another proportionally to both masses and inversely to their distances. The GAA is a populational algorithm where, first of all, the solutions are clustered using the Fuzzy Clustering Means (FCM) algorithm. Following that, the gravitational forces of the individuals in relation to each cluster are evaluated and this individual or solution is displaced to the cluster with the greatest attractive force. Once it is inside this cluster, the solution receives small stochastic variations, performing a local exploration. Then the solutions are crossed over and the process starts all over again. The parameters required by the GAA are the 'diversity factor', which is used to create a random diversity in a fashion similar to genetic algorithm's mutation, and the number of clusters for the FCM. GAA is applied to the reactor core design optimization problem which consists in adjusting several reactor cell parameters in order to minimize the average peak-factor in a 3-enrichment-zone reactor, considering operational restrictions. This problem was previously attacked using the canonical genetic algorithm (GA) and a Niching Genetic Algorithm (NGA). The new metaheuristic is then compared to those two algorithms. The three algorithms are submitted to the same computational effort and GAA reaches the best results, showing its potential for other applications in the nuclear engineering field as, for instance, the nuclear core reload optimization problem. (author)
A quantitative performance evaluation of the EM algorithm applied to radiographic images
International Nuclear Information System (INIS)
Brailean, J.C.; Sullivan, B.J.; Giger, M.L.; Chen, C.T.
1991-01-01
In this paper, the authors quantitatively evaluate the performance of the Expectation Maximization (EM) algorithm as a restoration technique for radiographic images. The perceived signal-to-noise ratio (SNR), of simple radiographic patterns processed by the EM algorithm are calculated on the basis of a statistical decision theory model that includes both the observer's visual response function and a noise component internal to the eye-brain system. The relative SNR (ratio of the processed SNR to the original SNR) is calculated and used as a metric to quantitatively compare the effects of the EM algorithm to two popular image enhancement techniques: contrast enhancement (windowing) and unsharp mask filtering
International Nuclear Information System (INIS)
Sanchez Lopez, Hector
2001-01-01
This work describes an alternative algorithm of Simulated Annealing applied to the design of the main magnet for a Magnetic Resonance Imaging machine. The algorithm uses a probabilistic radial base neuronal network to classify the possible solutions, before the objective function evaluation. This procedure allows reducing up to 50% the number of iterations required by simulated annealing to achieve the global maximum, when compared with the SA algorithm. The algorithm was applied to design a 0.1050 Tesla four coil resistive magnet, which produces a magnetic field 2.13 times more uniform than the solution given by SA. (author)
Car painting process scheduling with harmony search algorithm
Syahputra, M. F.; Maiyasya, A.; Purnamawati, S.; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.
2018-02-01
Automotive painting program in the process of painting the car body by using robot power, making efficiency in the production system. Production system will be more efficient if pay attention to scheduling of car order which will be done by considering painting body shape of car. Flow shop scheduling is a scheduling model in which the job-job to be processed entirely flows in the same product direction / path. Scheduling problems often arise if there are n jobs to be processed on the machine, which must be specified which must be done first and how to allocate jobs on the machine to obtain a scheduled production process. Harmony Search Algorithm is a metaheuristic optimization algorithm based on music. The algorithm is inspired by observations that lead to music in search of perfect harmony. This musical harmony is in line to find optimal in the optimization process. Based on the tests that have been done, obtained the optimal car sequence with minimum makespan value.
Digital image processing an algorithmic approach with Matlab
Qidwai, Uvais
2009-01-01
Introduction to Image Processing and the MATLAB EnvironmentIntroduction Digital Image Definitions: Theoretical Account Image Properties MATLAB Algorithmic Account MATLAB CodeImage Acquisition, Types, and File I/OImage Acquisition Image Types and File I/O Basics of Color Images Other Color Spaces Algorithmic Account MATLAB CodeImage ArithmeticIntroduction Operator Basics Theoretical TreatmentAlgorithmic Treatment Coding ExamplesAffine and Logical Operations, Distortions, and Noise in ImagesIntroduction Affine Operations Logical Operators Noise in Images Distortions in ImagesAlgorithmic Account
Embedded algorithms within an FPGA-based system to process nonlinear time series data
Jones, Jonathan D.; Pei, Jin-Song; Tull, Monte P.
2008-03-01
This paper presents some preliminary results of an ongoing project. A pattern classification algorithm is being developed and embedded into a Field-Programmable Gate Array (FPGA) and microprocessor-based data processing core in this project. The goal is to enable and optimize the functionality of onboard data processing of nonlinear, nonstationary data for smart wireless sensing in structural health monitoring. Compared with traditional microprocessor-based systems, fast growing FPGA technology offers a more powerful, efficient, and flexible hardware platform including on-site (field-programmable) reconfiguration capability of hardware. An existing nonlinear identification algorithm is used as the baseline in this study. The implementation within a hardware-based system is presented in this paper, detailing the design requirements, validation, tradeoffs, optimization, and challenges in embedding this algorithm. An off-the-shelf high-level abstraction tool along with the Matlab/Simulink environment is utilized to program the FPGA, rather than coding the hardware description language (HDL) manually. The implementation is validated by comparing the simulation results with those from Matlab. In particular, the Hilbert Transform is embedded into the FPGA hardware and applied to the baseline algorithm as the centerpiece in processing nonlinear time histories and extracting instantaneous features of nonstationary dynamic data. The selection of proper numerical methods for the hardware execution of the selected identification algorithm and consideration of the fixed-point representation are elaborated. Other challenges include the issues of the timing in the hardware execution cycle of the design, resource consumption, approximation accuracy, and user flexibility of input data types limited by the simplicity of this preliminary design. Future work includes making an FPGA and microprocessor operate together to embed a further developed algorithm that yields better
Blind signal processing algorithms under DC biased Gaussian noise
Kim, Namyong; Byun, Hyung-Gi; Lim, Jeong-Ok
2013-05-01
Distortions caused by the DC-biased laser input can be modeled as DC biased Gaussian noise and removing DC bias is important in the demodulation process of the electrical signal in most optical communications. In this paper, a new performance criterion and a related algorithm for unsupervised equalization are proposed for communication systems in the environment of channel distortions and DC biased Gaussian noise. The proposed criterion utilizes the Euclidean distance between the Dirac-delta function located at zero on the error axis and a probability density function of biased constant modulus errors, where constant modulus error is defined by the difference between the system out and a constant modulus calculated from the transmitted symbol points. From the results obtained from the simulation under channel models with fading and DC bias noise abruptly added to background Gaussian noise, the proposed algorithm converges rapidly even after the interruption of DC bias proving that the proposed criterion can be effectively applied to optical communication systems corrupted by channel distortions and DC bias noise.
On-board event processing algorithms for a CCD-based space borne X-ray spectrometer
International Nuclear Information System (INIS)
Chun, H.J.; Bowles, J.A.; Branduardi-Raymont, G.; Gowen, R.A.
1996-01-01
This paper describes two alternative algorithms which are applied to reduce the telemetry requirements for a Charge Coupled Device (CCD) based, space-borne, X-ray spectrometer by on-board reconstruction of the X-ray events split over two or more adjacent pixels. The algorithms have been developed for the Reflection Grating Spectrometer (RGS) on the X-ray multi-mirror (XMM) mission, the second cornerstone project in the European Space Agency's Horizon 2000 programme. The overall instrument and some criteria which provide the background of the development of the algorithms, implemented in Tartan ADA on an MA31750 microprocessor, are described. The on-board processing constraints and requirements are discussed, and the performances of the algorithms are compared. Test results are presented which show that the recursive implementation is faster and has a smaller executable file although it uses more memory because of its stack requirements. (orig.)
Expeditious 3D poisson vlasov algorithm applied to ion extraction from a plasma
International Nuclear Information System (INIS)
Whealton, J.H.; McGaffey, R.W.; Meszaros, P.S.
1983-01-01
A new 3D Poisson Vlasov algorithm is under development which differs from a previous algorithm, referenced in this paper, in two respects: the mesh lines are cartesian, and the Poisson equation is solved iteratively. The resulting algorithm has been used to examine the same boundary value problem as considered in the earlier algorithm except that the number of nodes is 2 times greater. The same physical results were obtained except the computational time was reduced by a factor of 60 and the memory requirement was reduced by a factor of 10. This algorithm at present restricts Neumann boundary conditions to orthogonal planes lying along mesh lines. No such restriction applies to Dirichlet boundaries. An emittance diagram is shown below where those points lying on the y = 0 line start on the axis of symmetry and those near the y = 1 line start near the slot end
Zaiwani, B. E.; Zarlis, M.; Efendi, S.
2018-03-01
In this research, the improvement of hybridization algorithm of Fuzzy Analytic Hierarchy Process (FAHP) with Fuzzy Technique for Order Preference by Similarity to Ideal Solution (FTOPSIS) in selecting the best bank chief inspector based on several qualitative and quantitative criteria with various priorities. To improve the performance of the above research, FAHP algorithm hybridization with Fuzzy Multiple Attribute Decision Making - Simple Additive Weighting (FMADM-SAW) algorithm was adopted, which applied FAHP algorithm to the weighting process and SAW for the ranking process to determine the promotion of employee at a government institution. The result of improvement of the average value of Efficiency Rate (ER) is 85.24%, which means that this research has succeeded in improving the previous research that is equal to 77.82%. Keywords: Ranking and Selection, Fuzzy AHP, Fuzzy TOPSIS, FMADM-SAW.
Quantum Algorithms for Compositional Natural Language Processing
Directory of Open Access Journals (Sweden)
William Zeng
2016-08-01
Full Text Available We propose a new application of quantum computing to the field of natural language processing. Ongoing work in this field attempts to incorporate grammatical structure into algorithms that compute meaning. In (Coecke, Sadrzadeh and Clark, 2010, the authors introduce such a model (the CSC model based on tensor product composition. While this algorithm has many advantages, its implementation is hampered by the large classical computational resources that it requires. In this work we show how computational shortcomings of the CSC approach could be resolved using quantum computation (possibly in addition to existing techniques for dimension reduction. We address the value of quantum RAM (Giovannetti,2008 for this model and extend an algorithm from Wiebe, Braun and Lloyd (2012 into a quantum algorithm to categorize sentences in CSC. Our new algorithm demonstrates a quadratic speedup over classical methods under certain conditions.
Directory of Open Access Journals (Sweden)
Azman Hamzah
2013-09-01
Full Text Available Computer vision systems have found wide application in foods processing industry to perform quality evaluation. The systems enable to replace human inspectors for the evaluation of a variety of quality attributes. This paper describes the implementation of the Fast Fourier Transform and Kalman filtering algorithms to detect the glutinous rice flour slurry (GRFS gelatinization in an enzymatic „dodol. processing. The onset of the GRFS gelatinization is critical in determining the quality of an enzymatic „dodol.. Combinations of these two algorithms were able to detect the gelatinization of the GRFS. The result shows that the gelatinization of the GRFS was at the time range of 11.75 minutes to 14.75 minutes for 24 batches of processing. This paper will highlight the capability of computer vision using our proposed algorithms in monitoring and controlling of an enzymatic „dodol. processing via image processing technology.
Directory of Open Access Journals (Sweden)
Azman Hamzah
2007-11-01
Full Text Available Computer vision systems have found wide application in foods processing industry to perform the quality evaluation. The systems enable to replace human inspectors for the evaluation of a variety of quality attributes. This paper describes the implementation of the Fast Fourier Transform and Kalman filtering algorithms to detect the glutinous rice flour slurry (GRFS gelatinization in an enzymatic ‘dodol’ processing. The onset of the GRFS gelatinization is critical in determining the quality of an enzymatic ‘dodol’. Combinations of these two algorithms were able to detect the gelatinization of the GRFS. The result shows that the gelatinization of the GRFS was at the time range of 11.75 minutes to 15.33 minutes for 20 batches of processing. This paper will highlight the capability of computer vision using our proposed algorithms in monitoring and controlling of an enzymatic ‘dodol’ processing via image processing technology.
Digital signal processing algorithms for nuclear particle spectroscopy
International Nuclear Information System (INIS)
Zejnalova, O.; Zejnalov, Sh.; Hambsch, F.J.; Oberstedt, S.
2007-01-01
Digital signal processing algorithms for nuclear particle spectroscopy are described along with a digital pile-up elimination method applicable to equidistantly sampled detector signals pre-processed by a charge-sensitive preamplifier. The signal processing algorithms are provided as recursive one- or multi-step procedures which can be easily programmed using modern computer programming languages. The influence of the number of bits of the sampling analogue-to-digital converter on the final signal-to-noise ratio of the spectrometer is considered. Algorithms for a digital shaping-filter amplifier, for a digital pile-up elimination scheme and for ballistic deficit correction were investigated using a high purity germanium detector. The pile-up elimination method was originally developed for fission fragment spectroscopy using a Frisch-grid back-to-back double ionization chamber and was mainly intended for pile-up elimination in case of high alpha-radioactivity of the fissile target. The developed pile-up elimination method affects only the electronic noise generated by the preamplifier. Therefore the influence of the pile-up elimination scheme on the final resolution of the spectrometer is investigated in terms of the distance between pile-up pulses. The efficiency of the developed algorithms is compared with other signal processing schemes published in literature
Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data
Martins, Fabio J. W. A.; Foucaut, Jean-Marc; Thomas, Lionel; Azevedo, Luis F. A.; Stanislas, Michel
2015-08-01
Tomographic PIV is a three-component volumetric velocity measurement technique based on the tomographic reconstruction of a particle distribution imaged by multiple camera views. In essence, the performance and accuracy of this technique is highly dependent on the parametric adjustment and the reconstruction algorithm used. Although synthetic data have been widely employed to optimize experiments, the resulting reconstructed volumes might not have optimal quality. The purpose of the present study is to offer quality indicators that can be applied to data samples in order to improve the quality of velocity results obtained by the tomo-PIV technique. The methodology proposed can potentially lead to significantly reduction in the time required to optimize a tomo-PIV reconstruction, also leading to better quality velocity results. Tomo-PIV data provided by a six-camera turbulent boundary-layer experiment were used to optimize the reconstruction algorithms according to this methodology. Velocity statistics measurements obtained by optimized BIMART, SMART and MART algorithms were compared with hot-wire anemometer data and velocity measurement uncertainties were computed. Results indicated that BIMART and SMART algorithms produced reconstructed volumes with equivalent quality as the standard MART with the benefit of reduced computational time.
Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data
International Nuclear Information System (INIS)
Martins, Fabio J W A; Foucaut, Jean-Marc; Stanislas, Michel; Thomas, Lionel; Azevedo, Luis F A
2015-01-01
Tomographic PIV is a three-component volumetric velocity measurement technique based on the tomographic reconstruction of a particle distribution imaged by multiple camera views. In essence, the performance and accuracy of this technique is highly dependent on the parametric adjustment and the reconstruction algorithm used. Although synthetic data have been widely employed to optimize experiments, the resulting reconstructed volumes might not have optimal quality. The purpose of the present study is to offer quality indicators that can be applied to data samples in order to improve the quality of velocity results obtained by the tomo-PIV technique. The methodology proposed can potentially lead to significantly reduction in the time required to optimize a tomo-PIV reconstruction, also leading to better quality velocity results. Tomo-PIV data provided by a six-camera turbulent boundary-layer experiment were used to optimize the reconstruction algorithms according to this methodology. Velocity statistics measurements obtained by optimized BIMART, SMART and MART algorithms were compared with hot-wire anemometer data and velocity measurement uncertainties were computed. Results indicated that BIMART and SMART algorithms produced reconstructed volumes with equivalent quality as the standard MART with the benefit of reduced computational time. (paper)
Invariance algorithms for processing NDE signals
Mandayam, Shreekanth; Udpa, Lalita; Udpa, Satish S.; Lord, William
1996-11-01
Signals that are obtained in a variety of nondestructive evaluation (NDE) processes capture information not only about the characteristics of the flaw, but also reflect variations in the specimen's material properties. Such signal changes may be viewed as anomalies that could obscure defect related information. An example of this situation occurs during in-line inspection of gas transmission pipelines. The magnetic flux leakage (MFL) method is used to conduct noninvasive measurements of the integrity of the pipe-wall. The MFL signals contain information both about the permeability of the pipe-wall and the dimensions of the flaw. Similar operational effects can be found in other NDE processes. This paper presents algorithms to render NDE signals invariant to selected test parameters, while retaining defect related information. Wavelet transform based neural network techniques are employed to develop the invariance algorithms. The invariance transformation is shown to be a necessary pre-processing step for subsequent defect characterization and visualization schemes. Results demonstrating the successful application of the method are presented.
Barthel, Thomas; De Bacco, Caterina; Franz, Silvio
2018-01-01
We introduce and apply an efficient method for the precise simulation of stochastic dynamical processes on locally treelike graphs. Networks with cycles are treated in the framework of the cavity method. Such models correspond, for example, to spin-glass systems, Boolean networks, neural networks, or other technological, biological, and social networks. Building upon ideas from quantum many-body theory, our approach is based on a matrix product approximation of the so-called edge messages—conditional probabilities of vertex variable trajectories. Computation costs and accuracy can be tuned by controlling the matrix dimensions of the matrix product edge messages (MPEM) in truncations. In contrast to Monte Carlo simulations, the algorithm has a better error scaling and works for both single instances as well as the thermodynamic limit. We employ it to examine prototypical nonequilibrium Glauber dynamics in the kinetic Ising model. Because of the absence of cancellation effects, observables with small expectation values can be evaluated accurately, allowing for the study of decay processes and temporal correlations.
Applying Planning Algorithms to Argue in Cooperative Work
Monteserin, Ariel; Schiaffino, Silvia; Amandi, Analía
Negotiation is typically utilized in cooperative work scenarios for solving conflicts. Anticipating possible arguments in this negotiation step represents a key factor since we can take decisions about our participation in the cooperation process. In this context, we present a novel application of planning algorithms for argument generation, where the actions of a plan represent the arguments that a person might use during the argumentation process. In this way, we can plan how to persuade the other participants in cooperative work for reaching an expected agreement in terms of our interests. This approach allows us to take advantages since we can test anticipated argumentative solutions in advance.
Algorithms for boundary detection in radiographic images
International Nuclear Information System (INIS)
Gonzaga, Adilson; Franca, Celso Aparecido de
1996-01-01
Edge detecting techniques applied to radiographic digital images are discussed. Some algorithms have been implemented and the results are displayed to enhance boundary or hide details. An algorithm applied in a pre processed image with contrast enhanced is proposed and the results are discussed
The PBIL algorithm applied to a nuclear reactor design optimization
Energy Technology Data Exchange (ETDEWEB)
Machado, Marcelo D.; Medeiros, Jose A.C.C.; Lima, Alan M.M. de; Schirru, Roberto [Instituto Alberto Luiz Coimbra de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ-RJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear. Lab. de Monitoracao de Processos]. E-mails: marcelo@lmp.ufrj.br; canedo@lmp.ufrj.br; alan@lmp.ufrj.br; schirru@lmp.ufrj.br
2007-07-01
The Population-Based Incremental Learning (PBIL) algorithm is a method that combines the mechanism of genetic algorithm with the simple competitive learning, creating an important tool to be used in the optimization of numeric functions and combinatory problems. PBIL works with a set of solutions to the problems, called population, whose objective is create a probability vector, containing real values in each position, that when used in a decoding procedure gives subjects that present the best solutions for the function to be optimized. In this work a new form of learning for algorithm PBIL is developed, having aimed at to reduce the necessary time for the optimization process. This new algorithm will be used in the nuclear reactor design optimization. The optimization problem consists in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a 3-enrichment zone reactor, considering some restrictions. In this optimization is used the computational code HAMMER, and the results compared with other methods of optimization by artificial intelligence. (author)
The PBIL algorithm applied to a nuclear reactor design optimization
International Nuclear Information System (INIS)
Machado, Marcelo D.; Medeiros, Jose A.C.C.; Lima, Alan M.M. de; Schirru, Roberto
2007-01-01
The Population-Based Incremental Learning (PBIL) algorithm is a method that combines the mechanism of genetic algorithm with the simple competitive learning, creating an important tool to be used in the optimization of numeric functions and combinatory problems. PBIL works with a set of solutions to the problems, called population, whose objective is create a probability vector, containing real values in each position, that when used in a decoding procedure gives subjects that present the best solutions for the function to be optimized. In this work a new form of learning for algorithm PBIL is developed, having aimed at to reduce the necessary time for the optimization process. This new algorithm will be used in the nuclear reactor design optimization. The optimization problem consists in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a 3-enrichment zone reactor, considering some restrictions. In this optimization is used the computational code HAMMER, and the results compared with other methods of optimization by artificial intelligence. (author)
General simulation algorithm for autocorrelated binary processes.
Serinaldi, Francesco; Lombardo, Federico
2017-02-01
The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.
General simulation algorithm for autocorrelated binary processes
Serinaldi, Francesco; Lombardo, Federico
2017-02-01
The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.
SVC control enhancement applying self-learning fuzzy algorithm for islanded microgrid
Directory of Open Access Journals (Sweden)
Hossam Gabbar
2016-03-01
Full Text Available Maintaining voltage stability, within acceptable levels, for islanded Microgrids (MGs is a challenge due to limited exchange power between generation and loads. This paper proposes an algorithm to enhance the dynamic performance of islanded MGs in presence of load disturbance using Static VAR Compensator (SVC with Fuzzy Model Reference Learning Controller (FMRLC. The proposed algorithm compensates MG nonlinearity via fuzzy membership functions and inference mechanism imbedded in both controller and inverse model. Hence, MG keeps the desired performance as required at any operating condition. Furthermore, the self-learning capability of the proposed control algorithm compensates for grid parameter’s variation even with inadequate information about load dynamics. A reference model was designed to reject bus voltage disturbance with achievable performance by the proposed fuzzy controller. Three simulations scenarios have been presented to investigate effectiveness of proposed control algorithm in improving steady-state and transient performance of islanded MGs. The first scenario conducted without SVC, second conducted with SVC using PID controller and third conducted using FMRLC algorithm. A comparison for results shows ability of proposed control algorithm to enhance disturbance rejection due to learning process.
A note on a perfect simulation algorithm for marked Hawkes processes
DEFF Research Database (Denmark)
Møller, Jesper; Rasmussen, Jakob Gulddahl
2004-01-01
The usual straightforward simulation algorithm for (marked or unmarked) Hawkes processes suffers from edge effect. In this note we describe a perfect simulation algorithm which is partly derived as in Brix and Kendall (2002) and partly using upper and lower processes as in the Propp......-Wilson algorithm (1996), or rather as in the dominated CFTP algorithm by Kendall and Moller (2000). Various monotonicity properties and approximations of the cumulative distribution function for the length of a so-called cluster in a marked Hawkes process play an important role....
Lanying Lin; Sheng He; Feng Fu; Xiping Wang
2015-01-01
Wood failure percentage (WFP) is an important index for evaluating the bond strength of plywood. Currently, the method used for detecting WFP is visual inspection, which lacks efficiency. In order to improve it, image processing methods are applied to wood failure detection. The present study used thresholding and K-means clustering algorithms in wood failure detection...
International Nuclear Information System (INIS)
Elsheikh, Ahmed H.; Wheeler, Mary F.; Hoteit, Ibrahim
2014-01-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems
Energy Technology Data Exchange (ETDEWEB)
Elsheikh, Ahmed H., E-mail: aelsheikh@ices.utexas.edu [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Wheeler, Mary F. [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Hoteit, Ibrahim [Department of Earth Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)
2014-02-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems.
Elsheikh, Ahmed H.
2014-02-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems. © 2013 Elsevier Inc.
Towards an evaluation framework for process mining algorithms
Rozinat, A.; Alves De Medeiros, A.K.; Günther, C.W.; Weijters, A.J.M.M.; Aalst, van der W.M.P.
2007-01-01
Although there has been a lot of progress in developing process mining algorithms in recent years, no effort has been put in developing a common means of assessing the quality of the models discovered by these algorithms. In this paper, we outline elements of an evaluation framework that is intended
Optimization of image processing algorithms on mobile platforms
Poudel, Pramod; Shirvaikar, Mukul
2011-03-01
This work presents a technique to optimize popular image processing algorithms on mobile platforms such as cell phones, net-books and personal digital assistants (PDAs). The increasing demand for video applications like context-aware computing on mobile embedded systems requires the use of computationally intensive image processing algorithms. The system engineer has a mandate to optimize them so as to meet real-time deadlines. A methodology to take advantage of the asymmetric dual-core processor, which includes an ARM and a DSP core supported by shared memory, is presented with implementation details. The target platform chosen is the popular OMAP 3530 processor for embedded media systems. It has an asymmetric dual-core architecture with an ARM Cortex-A8 and a TMS320C64x Digital Signal Processor (DSP). The development platform was the BeagleBoard with 256 MB of NAND RAM and 256 MB SDRAM memory. The basic image correlation algorithm is chosen for benchmarking as it finds widespread application for various template matching tasks such as face-recognition. The basic algorithm prototypes conform to OpenCV, a popular computer vision library. OpenCV algorithms can be easily ported to the ARM core which runs a popular operating system such as Linux or Windows CE. However, the DSP is architecturally more efficient at handling DFT algorithms. The algorithms are tested on a variety of images and performance results are presented measuring the speedup obtained due to dual-core implementation. A major advantage of this approach is that it allows the ARM processor to perform important real-time tasks, while the DSP addresses performance-hungry algorithms.
Loss-minimal Algorithmic Trading Based on Levy Processes
Directory of Open Access Journals (Sweden)
Farhad Kia
2014-08-01
Full Text Available In this paper we optimize portfolios assuming that the value of the portfolio follows a Lévy process. First we identify the parameters of the underlying Lévy process and then portfolio optimization is performed by maximizing the probability of positive return. The method has been tested by extensive performance analysis on Forex and SP 500 historical time series. The proposed trading algorithm has achieved 4.9\\% percent yearly return on average without leverage which proves its applicability to algorithmic trading.
Food processing optimization using evolutionary algorithms | Enitan ...
African Journals Online (AJOL)
Evolutionary algorithms are widely used in single and multi-objective optimization. They are easy to use and provide solution(s) in one simulation run. They are used in food processing industries for decision making. Food processing presents constrained and unconstrained optimization problems. This paper reviews the ...
Chang, Chein-I
2017-01-01
This book explores recursive architectures in designing progressive hyperspectral imaging algorithms. In particular, it makes progressive imaging algorithms recursive by introducing the concept of Kalman filtering in algorithm design so that hyperspectral imagery can be processed not only progressively sample by sample or band by band but also recursively via recursive equations. This book can be considered a companion book of author’s books, Real-Time Progressive Hyperspectral Image Processing, published by Springer in 2016. Explores recursive structures in algorithm architecture Implements algorithmic recursive architecture in conjunction with progressive sample and band processing Derives Recursive Hyperspectral Sample Processing (RHSP) techniques according to Band-Interleaved Sample/Pixel (BIS/BIP) acquisition format Develops Recursive Hyperspectral Band Processing (RHBP) techniques according to Band SeQuential (BSQ) acquisition format for hyperspectral data.
Voytishek, Anton V.; Shipilov, Nikolay M.
2017-11-01
In this paper, the systematization of numerical (implemented on a computer) randomized functional algorithms for approximation of a solution of Fredholm integral equation of the second kind is carried out. Wherein, three types of such algorithms are distinguished: the projection, the mesh and the projection-mesh methods. The possibilities for usage of these algorithms for solution of practically important problems is investigated in detail. The disadvantages of the mesh algorithms, related to the necessity of calculation values of the kernels of integral equations in fixed points, are identified. On practice, these kernels have integrated singularities, and calculation of their values is impossible. Thus, for applied problems, related to solving Fredholm integral equation of the second kind, it is expedient to use not mesh, but the projection and the projection-mesh randomized algorithms.
Algorithms for the process management of sealed source brachytherapy
International Nuclear Information System (INIS)
Engler, M.J.; Ulin, K.; Sternick, E.S.
1996-01-01
Incidents and misadministrations suggest that brachytherapy may benefit form clarification of the quality management program and other mandates of the US Nuclear Regulatory Commission. To that end, flowcharts of step by step subprocesses were developed and formatted with dedicated software. The overall process was similarly organized in a complex flowchart termed a general process map. Procedural and structural indicators associated with each flowchart and map were critiqued and pre-existing documentation was revised. open-quotes Step-regulation tablesclose quotes were created to refer steps and subprocesses to Nuclear Regulatory Commission rules and recommendations in their sequences of applicability. Brachytherapy algorithms were specified as programmable, recursive processes, including therapeutic dose determination and monitoring doses to the public. These algorithms are embodied in flowcharts and step-regulation tables. A general algorithm is suggested as a template form which other facilities may derive tools to facilitate process management of sealed source brachytherapy. 11 refs., 9 figs., 2 tabs
Houchin, J. S.
2014-09-01
A common problem for the off-line validation of the calibration algorithms and algorithm coefficients is being able to run science data through the exact same software used for on-line calibration of that data. The Joint Polar Satellite System (JPSS) program solved part of this problem by making the Algorithm Development Library (ADL) available, which allows the operational algorithm code to be compiled and run on a desktop Linux workstation using flat file input and output. However, this solved only part of the problem, as the toolkit and methods to initiate the processing of data through the algorithms were geared specifically toward the algorithm developer, not the calibration analyst. In algorithm development mode, a limited number of sets of test data are staged for the algorithm once, and then run through the algorithm over and over as the software is developed and debugged. In calibration analyst mode, we are continually running new data sets through the algorithm, which requires significant effort to stage each of those data sets for the algorithm without additional tools. AeroADL solves this second problem by providing a set of scripts that wrap the ADL tools, providing both efficient means to stage and process an input data set, to override static calibration coefficient look-up-tables (LUT) with experimental versions of those tables, and to manage a library containing multiple versions of each of the static LUT files in such a way that the correct set of LUTs required for each algorithm are automatically provided to the algorithm without analyst effort. Using AeroADL, The Aerospace Corporation's analyst team has demonstrated the ability to quickly and efficiently perform analysis tasks for both the VIIRS and OMPS sensors with minimal training on the software tools.
Genetic Algorithm Applied to the Eigenvalue Equalization Filtered-x LMS Algorithm (EE-FXLMS
Directory of Open Access Journals (Sweden)
Stephan P. Lovstedt
2008-01-01
Full Text Available The FXLMS algorithm, used extensively in active noise control (ANC, exhibits frequency-dependent convergence behavior. This leads to degraded performance for time-varying tonal noise and noise with multiple stationary tones. Previous work by the authors proposed the eigenvalue equalization filtered-x least mean squares (EE-FXLMS algorithm. For that algorithm, magnitude coefficients of the secondary path transfer function are modified to decrease variation in the eigenvalues of the filtered-x autocorrelation matrix, while preserving the phase, giving faster convergence and increasing overall attenuation. This paper revisits the EE-FXLMS algorithm, using a genetic algorithm to find magnitude coefficients that give the least variation in eigenvalues. This method overcomes some of the problems with implementing the EE-FXLMS algorithm arising from finite resolution of sampled systems. Experimental control results using the original secondary path model, and a modified secondary path model for both the previous implementation of EE-FXLMS and the genetic algorithm implementation are compared.
Heidari, Morteza; Zargari Khuzani, Abolfazl; Danala, Gopichandh; Mirniaharikandehei, Seyedehnafiseh; Qian, Wei; Zheng, Bin
2018-03-01
Both conventional and deep machine learning has been used to develop decision-support tools applied in medical imaging informatics. In order to take advantages of both conventional and deep learning approach, this study aims to investigate feasibility of applying a locally preserving projection (LPP) based feature regeneration algorithm to build a new machine learning classifier model to predict short-term breast cancer risk. First, a computer-aided image processing scheme was used to segment and quantify breast fibro-glandular tissue volume. Next, initially computed 44 image features related to the bilateral mammographic tissue density asymmetry were extracted. Then, an LLP-based feature combination method was applied to regenerate a new operational feature vector using a maximal variance approach. Last, a k-nearest neighborhood (KNN) algorithm based machine learning classifier using the LPP-generated new feature vectors was developed to predict breast cancer risk. A testing dataset involving negative mammograms acquired from 500 women was used. Among them, 250 were positive and 250 remained negative in the next subsequent mammography screening. Applying to this dataset, LLP-generated feature vector reduced the number of features from 44 to 4. Using a leave-onecase-out validation method, area under ROC curve produced by the KNN classifier significantly increased from 0.62 to 0.68 (p breast cancer detected in the next subsequent mammography screening.
STREAM PROCESSING ALGORITHMS FOR DYNAMIC 3D SCENE ANALYSIS
2018-02-15
PROCESSING ALGORITHMS FOR DYNAMIC 3D SCENE ANALYSIS 5a. CONTRACT NUMBER FA8750-14-2-0072 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62788F 6...of Figures 1 The 3D processing pipeline flowchart showing key modules. . . . . . . . . . . . . . . . . 12 2 Overall view (data flow) of the proposed...pipeline flowchart showing key modules. from motion and bundle adjustment algorithm. By fusion of depth masks of the scene obtained from 3D
International Nuclear Information System (INIS)
Sacco, W.F.; Lapa, Celso M.F.; Pereira, C.M.N.A.; Oliveira, C.R.E. de
2006-01-01
This article extends previous efforts on genetic algorithms (GAs) applied to a nuclear power plant (NPP) auxiliary feedwater system (AFWS) surveillance tests policy optimization. We introduce the application of a niching genetic algorithm (NGA) to this problem and compare its performance to previous results. The NGA maintains a populational diversity during the search process, thus promoting a greater exploration of the search space. The optimization problem consists in maximizing the system's average availability for a given period of time, considering realistic features such as: (i) aging effects on standby components during the tests; (ii) revealing failures in the tests implies on corrective maintenance, increasing outage times; (iii) components have distinct test parameters (outage time, aging factors, etc.) and (iv) tests are not necessarily periodic. We find that the NGA performs better than the conventional GA and the island GA due to a greater exploration of the search space
Parameter optimization of electrochemical machining process using black hole algorithm
Singh, Dinesh; Shukla, Rajkamal
2017-12-01
Advanced machining processes are significant as higher accuracy in machined component is required in the manufacturing industries. Parameter optimization of machining processes gives optimum control to achieve the desired goals. In this paper, electrochemical machining (ECM) process is considered to evaluate the performance of the considered process using black hole algorithm (BHA). BHA considers the fundamental idea of a black hole theory and it has less operating parameters to tune. The two performance parameters, material removal rate (MRR) and overcut (OC) are considered separately to get optimum machining parameter settings using BHA. The variations of process parameters with respect to the performance parameters are reported for better and effective understanding of the considered process using single objective at a time. The results obtained using BHA are found better while compared with results of other metaheuristic algorithms, such as, genetic algorithm (GA), artificial bee colony (ABC) and bio-geography based optimization (BBO) attempted by previous researchers.
Big Data GPU-Driven Parallel Processing Spatial and Spatio-Temporal Clustering Algorithms
Konstantaras, Antonios; Skounakis, Emmanouil; Kilty, James-Alexander; Frantzeskakis, Theofanis; Maravelakis, Emmanuel
2016-04-01
Diamantaras, K.: 'Programming and architecture of parallel processing systems', 1st Edition, Eds. Kleidarithmos, 2011 [4] NVIDIA.: 'NVidia CUDA C Programming Guide', version 5.0, NVidia (reference book) [5] Konstantaras, A.: 'Classification of Distinct Seismic Regions and Regional Temporal Modelling of Seismicity in the Vicinity of the Hellenic Seismic Arc', IEEE Selected Topics in Applied Earth Observations and Remote Sensing, vol. 6 (4), pp. 1857-1863, 2013 [6] Konstantaras, A. Varley, M.R.,. Valianatos, F., Collins, G. and Holifield, P.: 'Recognition of electric earthquake precursors using neuro-fuzzy models: methodology and simulation results', Proc. IASTED International Conference on Signal Processing Pattern Recognition and Applications (SPPRA 2002), Crete, Greece, 2002, pp 303-308, 2002 [7] Konstantaras, A., Katsifarakis, E., Maravelakis, E., Skounakis, E., Kokkinos, E. and Karapidakis, E.: 'Intelligent Spatial-Clustering of Seismicity in the Vicinity of the Hellenic Seismic Arc', Earth Science Research, vol. 1 (2), pp. 1-10, 2012 [8] Georgoulas, G., Konstantaras, A., Katsifarakis, E., Stylios, C.D., Maravelakis, E. and Vachtsevanos, G.: '"Seismic-Mass" Density-based Algorithm for Spatio-Temporal Clustering', Expert Systems with Applications, vol. 40 (10), pp. 4183-4189, 2013 [9] Konstantaras, A. J.: 'Expert knowledge-based algorithm for the dynamic discrimination of interactive natural clusters', Earth Science Informatics, 2015 (In Press, see: www.scopus.com) [10] Drakatos, G. and Latoussakis, J.: 'A catalog of aftershock sequences in Greece (1971-1997): Their spatial and temporal characteristics', Journal of Seismology, vol. 5, pp. 137-145, 2001
Performances of the New Real Time Tsunami Detection Algorithm applied to tide gauges data
Chierici, F.; Embriaco, D.; Morucci, S.
2017-12-01
Real-time tsunami detection algorithms play a key role in any Tsunami Early Warning System. We have developed a new algorithm for tsunami detection (TDA) based on the real-time tide removal and real-time band-pass filtering of seabed pressure time series acquired by Bottom Pressure Recorders. The TDA algorithm greatly increases the tsunami detection probability, shortens the detection delay and enhances detection reliability with respect to the most widely used tsunami detection algorithm, while containing the computational cost. The algorithm is designed to be used also in autonomous early warning systems with a set of input parameters and procedures which can be reconfigured in real time. We have also developed a methodology based on Monte Carlo simulations to test the tsunami detection algorithms. The algorithm performance is estimated by defining and evaluating statistical parameters, namely the detection probability, the detection delay, which are functions of the tsunami amplitude and wavelength, and the occurring rate of false alarms. In this work we present the performance of the TDA algorithm applied to tide gauge data. We have adapted the new tsunami detection algorithm and the Monte Carlo test methodology to tide gauges. Sea level data acquired by coastal tide gauges in different locations and environmental conditions have been used in order to consider real working scenarios in the test. We also present an application of the algorithm to the tsunami event generated by Tohoku earthquake on March 11th 2011, using data recorded by several tide gauges scattered all over the Pacific area.
Mariajayaprakash, Arokiasamy; Senthilvelan, Thiyagarajan; Vivekananthan, Krishnapillai Ponnambal
2013-07-01
The various process parameters affecting the quality characteristics of the shock absorber during the process were identified using the Ishikawa diagram and by failure mode and effect analysis. The identified process parameters are welding process parameters (squeeze, heat control, wheel speed, and air pressure), damper sealing process parameters (load, hydraulic pressure, air pressure, and fixture height), washing process parameters (total alkalinity, temperature, pH value of rinsing water, and timing), and painting process parameters (flowability, coating thickness, pointage, and temperature). In this paper, the process parameters, namely, painting and washing process parameters, are optimized by Taguchi method. Though the defects are reasonably minimized by Taguchi method, in order to achieve zero defects during the processes, genetic algorithm technique is applied on the optimized parameters obtained by Taguchi method.
Faiz, J. M.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.
2017-09-01
This study conducts the simulation on optimisation of injection moulding process parameters using Autodesk Moldflow Insight (AMI) software. This study has applied some process parameters which are melt temperature, mould temperature, packing pressure, and cooling time in order to analyse the warpage value of the part. Besides, a part has been selected to be studied which made of Polypropylene (PP). The combination of the process parameters is analysed using Analysis of Variance (ANOVA) and the optimised value is obtained using Response Surface Methodology (RSM). The RSM as well as Genetic Algorithm are applied in Design Expert software in order to minimise the warpage value. The outcome of this study shows that the warpage value improved by using RSM and GA.
Image processing algorithm for robot tracking in reactor vessel
International Nuclear Information System (INIS)
Kim, Tae Won; Choi, Young Soo; Lee, Sung Uk; Jeong, Kyung Min; Kim, Nam Kyun
2011-01-01
In this paper, we proposed an image processing algorithm to find the position of an underwater robot in the reactor vessel. Proposed algorithm is composed of Modified SURF(Speeded Up Robust Feature) based on Mean-Shift and CAMSHIFT(Continuously Adaptive Mean Shift Algorithm) based on color tracking algorithm. Noise filtering using luminosity blend method and color clipping are preprocessed. Initial tracking area for the CAMSHIFT is determined by using modified SURF. And then extracting the contour and corner points in the area of target tracked by CAMSHIFT method. Experiments are performed at the reactor vessel mockup and verified to use in the control of robot by visual tracking
A hybrid niched-island genetic algorithm applied to a nuclear core optimization problem
International Nuclear Information System (INIS)
Pereira, Claudio M.N.A.
2005-01-01
Diversity maintenance is a key-feature in most genetic-based optimization processes. The quest for such characteristic, has been motivating improvements in the original genetic algorithm (GA). The use of multiple populations (called islands) has demonstrating to increase diversity, delaying the genetic drift. Island Genetic Algorithms (IGA) lead to better results, however, the drift is only delayed, but not avoided. An important advantage of this approach is the simplicity and efficiency for parallel processing. Diversity can also be improved by the use of niching techniques. Niched Genetic Algorithms (NGA) are able to avoid the genetic drift, by containing evolution in niches of a single-population GA, however computational cost is increased. In this work it is investigated the use of a hybrid Niched-Island Genetic Algorithm (NIGA) in a nuclear core optimization problem found in literature. Computational experiments demonstrate that it is possible to take advantage of both, performance enhancement due to the parallelism and drift avoidance due to the use of niches. Comparative results shown that the proposed NIGA demonstrated to be more efficient and robust than an IGA and a NGA for solving the proposed optimization problem. (author)
Floares, Alexandru George
2008-01-01
Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.
A fast autofocus algorithm for synthetic aperture radar processing
DEFF Research Database (Denmark)
Dall, Jørgen
1992-01-01
High-resolution synthetic aperture radar (SAR) imaging requires the motion of the radar platform to be known very accurately. Otherwise, phase errors are induced in the processing of the raw SAR data, and bad focusing results. In particular, a constant error in the measured along-track velocity o...... of magnitude lower than that of other algorithms providing comparable accuracies is presented. The algorithm has been tested on data from the Danish Airborne SAR, and the performance is compared with that of the traditional map drift algorithm...
An implementation of signal processing algorithms for ultrasonic NDE
International Nuclear Information System (INIS)
Ericsson, L.; Stepinski, T.
1994-01-01
Probability of detection flaws during ultrasonic pulse-echo inspection is often limited by the presence of backscattered echoes from the material structure. A digital signal processing technique for removal of this material noise, referred to as split spectrum processing (SSP), has been developed and verified using laboratory experiments during the last decade. The authors have performed recently a limited scale evaluation of various SSP techniques for ultrasonic signals acquired during the inspection of welds in austenitic steel. They have obtained very encouraging results that indicate promising capabilities of the SSP for inspection of nuclear power plants. Thus, a more extensive investigation of the technique using large amounts of ultrasonic data is motivated. This analysis should employ different combinations of materials, flaws and transducers. Due to the considerable number of ultrasonic signals required to verify the technique for future practical use, a custom-made computer software is necessary. At the request of the Swedish nuclear power industry the authors have developed such a program package. The program provides a user-friendly graphical interface and is intended for processing of B-scan data in a flexible way. Assembled in the program are a number of signal processing algorithms including traditional Split Spectrum Processing and the more recent Cut Spectrum Processing algorithm developed by them. The program and some results obtained using the various algorithms are presented in the paper
International Nuclear Information System (INIS)
Reyhan, M; Yue, N
2014-01-01
Purpose: To validate an automated image processing algorithm designed to detect the center of radiochromic film used for in vivo film dosimetry against the current gold standard of manual selection. Methods: An image processing algorithm was developed to automatically select the region of interest (ROI) in *.tiff images that contain multiple pieces of radiochromic film (0.5x1.3cm 2 ). After a user has linked a calibration file to the processing algorithm and selected a *.tiff file for processing, an ROI is automatically detected for all films by a combination of thresholding and erosion, which removes edges and any additional markings for orientation. Calibration is applied to the mean pixel values from the ROIs and a *.tiff image is output displaying the original image with an overlay of the ROIs and the measured doses. Validation of the algorithm was determined by comparing in vivo dose determined using the current gold standard (manually drawn ROIs) versus automated ROIs for n=420 scanned films. Bland-Altman analysis, paired t-test, and linear regression were performed to demonstrate agreement between the processes. Results: The measured doses ranged from 0.2-886.6cGy. Bland-Altman analysis of the two techniques (automatic minus manual) revealed a bias of -0.28cGy and a 95% confidence interval of (5.5cGy,-6.1cGy). These values demonstrate excellent agreement between the two techniques. Paired t-test results showed no statistical differences between the two techniques, p=0.98. Linear regression with a forced zero intercept demonstrated that Automatic=0.997*Manual, with a Pearson correlation coefficient of 0.999. The minimal differences between the two techniques may be explained by the fact that the hand drawn ROIs were not identical to the automatically selected ones. The average processing time was 6.7seconds in Matlab on an IntelCore2Duo processor. Conclusion: An automated image processing algorithm has been developed and validated, which will help minimize
Hamilton, Lei; McConley, Marc; Angermueller, Kai; Goldberg, David; Corba, Massimiliano; Kim, Louis; Moran, James; Parks, Philip D; Sang Chin; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N
2015-08-01
A fully autonomous intracranial device is built to continually record neural activities in different parts of the brain, process these sampled signals, decode features that correlate to behaviors and neuropsychiatric states, and use these features to deliver brain stimulation in a closed-loop fashion. In this paper, we describe the sampling and stimulation aspects of such a device. We first describe the signal processing algorithms of two unsupervised spike sorting methods. Next, we describe the LFP time-frequency analysis and feature derivation from the two spike sorting methods. Spike sorting includes a novel approach to constructing a dictionary learning algorithm in a Compressed Sensing (CS) framework. We present a joint prediction scheme to determine the class of neural spikes in the dictionary learning framework; and, the second approach is a modified OSort algorithm which is implemented in a distributed system optimized for power efficiency. Furthermore, sorted spikes and time-frequency analysis of LFP signals can be used to generate derived features (including cross-frequency coupling, spike-field coupling). We then show how these derived features can be used in the design and development of novel decode and closed-loop control algorithms that are optimized to apply deep brain stimulation based on a patient's neuropsychiatric state. For the control algorithm, we define the state vector as representative of a patient's impulsivity, avoidance, inhibition, etc. Controller parameters are optimized to apply stimulation based on the state vector's current state as well as its historical values. The overall algorithm and software design for our implantable neural recording and stimulation system uses an innovative, adaptable, and reprogrammable architecture that enables advancement of the state-of-the-art in closed-loop neural control while also meeting the challenges of system power constraints and concurrent development with ongoing scientific research designed
An Improved Phase Gradient Autofocus Algorithm Used in Real-time Processing
Directory of Open Access Journals (Sweden)
Qing Ji-ming
2015-10-01
Full Text Available The Phase Gradient Autofocus (PGA algorithm can remove the high order phase error effectively, which is of great significance to get high resolution images in real-time processing. While PGA usually needs iteration, which necessitates long working hours. In addition, the performances of the algorithm are not stable in different scene applications. This severely constrains the application of PGA in real-time processing. Isolated scatter selection and windowing are two important algorithmic steps of Phase Gradient Autofocus Algorithm. Therefore, this paper presents an isolated scatter selection method based on sample mean and a windowing method based on pulse envelope. These two methods are highly adaptable to data, which would make the algorithm obtain better stability and need less iteration. The adaptability of the improved PGA is demonstrated with the experimental results of real radar data.
International Nuclear Information System (INIS)
Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.; Valavi, K.
2013-01-01
Highlights: • SGHS enhanced the convergence rate of LPO using some improvements in comparison to basic HS and GHS. • SGHS optimization algorithm obtained averagely better fitness relative to basic HS and GHS algorithms. • Upshot of the SGHS implementation in the LPO reveals its flexibility, efficiency and reliability. - Abstract: The aim of this work is to apply the new developed optimization algorithm, Self-adaptive Global best Harmony Search (SGHS), for PWRs fuel management optimization. SGHS algorithm has some modifications in comparison with basic Harmony Search (HS) and Global-best Harmony Search (GHS) algorithms such as dynamically change of parameters. For the demonstration of SGHS ability to find an optimal configuration of fuel assemblies, basic Harmony Search (HS) and Global-best Harmony Search (GHS) algorithms also have been developed and investigated. For this purpose, Self-adaptive Global best Harmony Search Nodal Expansion package (SGHSNE) has been developed implementing HS, GHS and SGHS optimization algorithms for the fuel management operation of nuclear reactor cores. This package uses developed average current nodal expansion code which solves the multi group diffusion equation by employment of first and second orders of Nodal Expansion Method (NEM) for two dimensional, hexagonal and rectangular geometries, respectively, by one node per a FA. Loading pattern optimization was performed using SGHSNE package for some test cases to present the SGHS algorithm capability in converging to near optimal loading pattern. Results indicate that the convergence rate and reliability of the SGHS method are quite promising and practically, SGHS improves the quality of loading pattern optimization results relative to HS and GHS algorithms. As a result, it has the potential to be used in the other nuclear engineering optimization problems
An intelligent allocation algorithm for parallel processing
Carroll, Chester C.; Homaifar, Abdollah; Ananthram, Kishan G.
1988-01-01
The problem of allocating nodes of a program graph to processors in a parallel processing architecture is considered. The algorithm is based on critical path analysis, some allocation heuristics, and the execution granularity of nodes in a program graph. These factors, and the structure of interprocessor communication network, influence the allocation. To achieve realistic estimations of the executive durations of allocations, the algorithm considers the fact that nodes in a program graph have to communicate through varying numbers of tokens. Coarse and fine granularities have been implemented, with interprocessor token-communication duration, varying from zero up to values comparable to the execution durations of individual nodes. The effect on allocation of communication network structures is demonstrated by performing allocations for crossbar (non-blocking) and star (blocking) networks. The algorithm assumes the availability of as many processors as it needs for the optimal allocation of any program graph. Hence, the focus of allocation has been on varying token-communication durations rather than varying the number of processors. The algorithm always utilizes as many processors as necessary for the optimal allocation of any program graph, depending upon granularity and characteristics of the interprocessor communication network.
Applying Kitaev's algorithm in an ion trap quantum computer
International Nuclear Information System (INIS)
Travaglione, B.; Milburn, G.J.
2000-01-01
Full text: Kitaev's algorithm is a method of estimating eigenvalues associated with an operator. Shor's factoring algorithm, which enables a quantum computer to crack RSA encryption codes, is a specific example of Kitaev's algorithm. It has been proposed that the algorithm can also be used to generate eigenstates. We extend this proposal for small quantum systems, identifying the conditions under which the algorithm can successfully generate eigenstates. We then propose an implementation scheme based on an ion trap quantum computer. This scheme allows us to illustrate a simple example, in which the algorithm effectively generates eigenstates
A linear time layout algorithm for business process models
Gschwind, T.; Pinggera, J.; Zugal, S.; Reijers, H.A.; Weber, B.
2014-01-01
The layout of a business process model influences how easily it can beunderstood. Existing layout features in process modeling tools often rely on graph representations, but do not take the specific properties of business process models into account. In this paper, we propose an algorithm that is
New algorithms for the symmetric tridiagonal eigenvalue computation
Energy Technology Data Exchange (ETDEWEB)
Pan, V. [City Univ. of New York, Bronx, NY (United States)]|[International Computer Sciences Institute, Berkeley, CA (United States)
1994-12-31
The author presents new algorithms that accelerate the bisection method for the symmetric eigenvalue problem. The algorithms rely on some new techniques, which include acceleration of Newton`s iteration and can also be further applied to acceleration of some other iterative processes, in particular, of iterative algorithms for approximating polynomial zeros.
Directory of Open Access Journals (Sweden)
Kanjana Charansiriphaisan
2013-01-01
Full Text Available Multilevel thresholding is a highly useful tool for the application of image segmentation. Otsu’s method, a common exhaustive search for finding optimal thresholds, involves a high computational cost. There has been a lot of recent research into various meta-heuristic searches in the area of optimization research. This paper analyses and discusses using a family of artificial bee colony algorithms, namely, the standard ABC, ABC/best/1, ABC/best/2, IABC/best/1, IABC/rand/1, and CABC, and some particle swarm optimization-based algorithms for searching multilevel thresholding. The strategy for an onlooker bee to select an employee bee was modified to serve our purposes. The metric measures, which are used to compare the algorithms, are the maximum number of function calls, successful rate, and successful performance. The ranking was performed by Friedman ranks. The experimental results showed that IABC/best/1 outperformed the other techniques when all of them were applied to multilevel image thresholding. Furthermore, the experiments confirmed that IABC/best/1 is a simple, general, and high performance algorithm.
The product composition control system at Savannah River: Statistical process control algorithm
International Nuclear Information System (INIS)
Brown, K.G.
1994-01-01
The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will be used to immobilize the approximately 130 million liters of high-level nuclear waste currently stored at the site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive insoluble sludge and precipitate and less radioactive water soluble salts. In DWPF, precipitate (PHA) is blended with insoluble sludge and ground glass frit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in an geologic repository. Described here is the Product Composition Control System (PCCS) process control algorithm. The PCCS is the amalgam of computer hardware and software intended to ensure that the melt will be processable and that the glass wasteform produced will be acceptable. Within PCCS, the Statistical Process Control (SPC) Algorithm is the means which guides control of the DWPF process. The SPC Algorithm is necessary to control the multivariate DWPF process in the face of uncertainties arising from the process, its feeds, sampling, modeling, and measurement systems. This article describes the functions performed by the SPC Algorithm, characterization of DWPF prior to making product, accounting for prediction uncertainty, accounting for measurement uncertainty, monitoring a SME batch, incorporating process information, and advantages of the algorithm. 9 refs., 6 figs
Algorithm-Architecture Matching for Signal and Image Processing
Gogniat, Guy; Morawiec, Adam; Erdogan, Ahmet
2011-01-01
Advances in signal and image processing together with increasing computing power are bringing mobile technology closer to applications in a variety of domains like automotive, health, telecommunication, multimedia, entertainment and many others. The development of these leading applications, involving a large diversity of algorithms (e.g. signal, image, video, 3D, communication, cryptography) is classically divided into three consecutive steps: a theoretical study of the algorithms, a study of the target architecture, and finally the implementation. Such a linear design flow is reaching its li
Improving performance of wavelet-based image denoising algorithm using complex diffusion process
DEFF Research Database (Denmark)
Nadernejad, Ehsan; Sharifzadeh, Sara; Korhonen, Jari
2012-01-01
using a variety of standard images and its performance has been compared against several de-noising algorithms known from the prior art. Experimental results show that the proposed algorithm preserves the edges better and in most cases, improves the measured visual quality of the denoised images......Image enhancement and de-noising is an essential pre-processing step in many image processing algorithms. In any image de-noising algorithm, the main concern is to keep the interesting structures of the image. Such interesting structures often correspond to the discontinuities (edges...... in comparison to the existing methods known from the literature. The improvement is obtained without excessive computational cost, and the algorithm works well on a wide range of different types of noise....
Orientation estimation algorithm applied to high-spin projectiles
International Nuclear Information System (INIS)
Long, D F; Lin, J; Zhang, X M; Li, J
2014-01-01
High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm. (paper)
Orientation estimation algorithm applied to high-spin projectiles
Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.
2014-06-01
High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.
TES Level 1 Algorithms: Interferogram Processing, Geolocation, Radiometric, and Spectral Calibration
Worden, Helen; Beer, Reinhard; Bowman, Kevin W.; Fisher, Brendan; Luo, Mingzhao; Rider, David; Sarkissian, Edwin; Tremblay, Denis; Zong, Jia
2006-01-01
The Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura satellite measures the infrared radiance emitted by the Earth's surface and atmosphere using Fourier transform spectrometry. The measured interferograms are converted into geolocated, calibrated radiance spectra by the L1 (Level 1) processing, and are the inputs to L2 (Level 2) retrievals of atmospheric parameters, such as vertical profiles of trace gas abundance. We describe the algorithmic components of TES Level 1 processing, giving examples of the intermediate results and diagnostics that are necessary for creating TES L1 products. An assessment of noise-equivalent spectral radiance levels and current systematic errors is provided. As an initial validation of our spectral radiances, TES data are compared to the Atmospheric Infrared Sounder (AIRS) (on EOS Aqua), after accounting for spectral resolution differences by applying the AIRS spectral response function to the TES spectra. For the TES L1 nadir data products currently available, the agreement with AIRS is 1 K or better.
FPGA Implementation of Computer Vision Algorithm
Zhou, Zhonghua
2014-01-01
Computer vision algorithms, which play an significant role in vision processing, is widely applied in many aspects such as geology survey, traffic management and medical care, etc.. Most of the situations require the process to be real-timed, in other words, as fast as possible. Field Programmable Gate Arrays (FPGAs) have a advantage of parallelism fabric in programming, comparing to the serial communications of CPUs, which makes FPGA a perfect platform for implementing vision algorithms. The...
DEFF Research Database (Denmark)
The following topics are dealt with: parallel scientific computing; numerical algorithms; parallel nonnumerical algorithms; cloud computing; evolutionary computing; metaheuristics; applied mathematics; GPU computing; multicore systems; hybrid architectures; hierarchical parallelism; HPC systems......; power monitoring; energy monitoring; and distributed computing....
A Mining Algorithm for Extracting Decision Process Data Models
Directory of Open Access Journals (Sweden)
Cristina-Claudia DOLEAN
2011-01-01
Full Text Available The paper introduces an algorithm that mines logs of user interaction with simulation software. It outputs a model that explicitly shows the data perspective of the decision process, namely the Decision Data Model (DDM. In the first part of the paper we focus on how the DDM is extracted by our mining algorithm. We introduce it as pseudo-code and, then, provide explanations and examples of how it actually works. In the second part of the paper, we use a series of small case studies to prove the robustness of the mining algorithm and how it deals with the most common patterns we found in real logs.
General purpose graphic processing unit implementation of adaptive pulse compression algorithms
Cai, Jingxiao; Zhang, Yan
2017-07-01
This study introduces a practical approach to implement real-time signal processing algorithms for general surveillance radar based on NVIDIA graphical processing units (GPUs). The pulse compression algorithms are implemented using compute unified device architecture (CUDA) libraries such as CUDA basic linear algebra subroutines and CUDA fast Fourier transform library, which are adopted from open source libraries and optimized for the NVIDIA GPUs. For more advanced, adaptive processing algorithms such as adaptive pulse compression, customized kernel optimization is needed and investigated. A statistical optimization approach is developed for this purpose without needing much knowledge of the physical configurations of the kernels. It was found that the kernel optimization approach can significantly improve the performance. Benchmark performance is compared with the CPU performance in terms of processing accelerations. The proposed implementation framework can be used in various radar systems including ground-based phased array radar, airborne sense and avoid radar, and aerospace surveillance radar.
A polynomial time algorithm for checking regularity of totally normed process algebra
Yang, F.; Huang, H.
2015-01-01
A polynomial algorithm for the regularity problem of weak and branching bisimilarity on totally normed process algebra (PA) processes is given. Its time complexity is O(n 3 +mn) O(n3+mn), where n is the number of transition rules and m is the maximal length of the rules. The algorithm works for
Directory of Open Access Journals (Sweden)
Y. A. Gatchin
2016-05-01
Full Text Available Subject of Research.This paper presents solution of authentication problem for all components of information interoperabilityin process of operation system network loading on thin client from terminal server. System Definition. In the proposed solution operation system integrity check is made by hardware-software module, including USB-token with protected memory for secure storage of cryptographic keys and loader. The key requirement for the solution is mutual authentication of four participants: terminal server, thin client, token and user. We have created two algorithms for the problem solution. The first of the designed algorithms compares the encrypted one-time password (random number with the reference value stored in the memory of the token and updates this number in case of successful authentication. The second algorithm uses the public and private keys of the token and the server. As a result of cryptographic transformation, participants are authenticated and the secure channel is formed between the token, thin client and terminal server. Main Results. Additional research was carried out to find out if the designed algorithms meet the necessary requirements. Criteria used included applicability in a multi-access terminal system architecture, potential threats evaluation and overall system security. According to analysis results, it is recommended to use the algorithm based on PKI due to its high scalability and usability. High level of data security is proved as a result of asymmetric cryptography application with the guarantee that participants' private keys are never sent in the authentication process. Practical Relevance. The designed PKI-based algorithm allows solving the problem with the use of cryptographic algorithms according to state standard even in its absence on asymmetric cryptography. Thus, it can be applied in the State Information Systems with increased requirements to information security.
Schneider, Sébastien; Jacques, Diederik; Mallants, Dirk
2010-05-01
the inversion procedure a genetical algorithm (GA) was used. Specific features such as elitism, roulette-wheel process for selection operator and island theory were implemented. Optimization was based on the water content measurements recorded at several depths. Ten scenarios have been elaborated and applied on the two lysimeters in order to investigate the impact of the conceptual model in terms of processes description (mechanistic or compartmental) and geometry (number of horizons in the profile description) on the calibration accuracy. Calibration leads to a good agreement with the measured water contents. The most critical parameters for improving the goodness of fit are the number of horizons and the type of process description. Best fit are found for a mechanistic model with 5 horizons resulting in absolute differences between observed and simulated water contents less than 0.02 cm3cm-3 in average. Parameter estimate analysis shows that layers thicknesses are poorly constrained whereas hydraulic parameters are much well defined.
Directory of Open Access Journals (Sweden)
E. Osaba
2014-01-01
Full Text Available Since their first formulation, genetic algorithms (GAs have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test.
Osaba, E.; Carballedo, R.; Diaz, F.; Onieva, E.; de la Iglesia, I.; Perallos, A.
2014-01-01
Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test. PMID:25165731
Continuous firefly algorithm applied to PWR core pattern enhancement
International Nuclear Information System (INIS)
Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.; Moghaddam, H.K.
2013-01-01
Highlights: ► Numerical results indicate the reliability of CFA for the nuclear reactor LPO. ► The major advantages of CFA are its light computational cost and fast convergence. ► Our experiments demonstrate the ability of CFA to obtain the near optimal loading pattern. -- Abstract: In this research, the new meta-heuristic optimization strategy, firefly algorithm, is developed for the nuclear reactor loading pattern optimization problem. Two main goals in reactor core fuel management optimization are maximizing the core multiplication factor (K eff ) in order to extract the maximum cycle energy and minimizing the power peaking factor due to safety constraints. In this work, we define a multi-objective fitness function according to above goals for the core fuel arrangement enhancement. In order to evaluate and demonstrate the ability of continuous firefly algorithm (CFA) to find the near optimal loading pattern, we developed CFA nodal expansion code (CFANEC) for the fuel management operation. This code consists of two main modules including CFA optimization program and a developed core analysis code implementing nodal expansion method to calculate with coarse meshes by dimensions of fuel assemblies. At first, CFA is applied for the Foxholes test case with continuous variables in order to validate CFA and then for KWU PWR using a decoding strategy for discrete variables. Results indicate the efficiency and relatively fast convergence of CFA in obtaining near optimal loading pattern with respect to considered fitness function. At last, our experience with the CFA confirms that the CFA is easy to implement and reliable
Continuous firefly algorithm applied to PWR core pattern enhancement
Energy Technology Data Exchange (ETDEWEB)
Poursalehi, N., E-mail: npsalehi@yahoo.com [Engineering Department, Shahid Beheshti University, G.C., P.O. Box 1983963113, Tehran (Iran, Islamic Republic of); Zolfaghari, A.; Minuchehr, A.; Moghaddam, H.K. [Engineering Department, Shahid Beheshti University, G.C., P.O. Box 1983963113, Tehran (Iran, Islamic Republic of)
2013-05-15
Highlights: ► Numerical results indicate the reliability of CFA for the nuclear reactor LPO. ► The major advantages of CFA are its light computational cost and fast convergence. ► Our experiments demonstrate the ability of CFA to obtain the near optimal loading pattern. -- Abstract: In this research, the new meta-heuristic optimization strategy, firefly algorithm, is developed for the nuclear reactor loading pattern optimization problem. Two main goals in reactor core fuel management optimization are maximizing the core multiplication factor (K{sub eff}) in order to extract the maximum cycle energy and minimizing the power peaking factor due to safety constraints. In this work, we define a multi-objective fitness function according to above goals for the core fuel arrangement enhancement. In order to evaluate and demonstrate the ability of continuous firefly algorithm (CFA) to find the near optimal loading pattern, we developed CFA nodal expansion code (CFANEC) for the fuel management operation. This code consists of two main modules including CFA optimization program and a developed core analysis code implementing nodal expansion method to calculate with coarse meshes by dimensions of fuel assemblies. At first, CFA is applied for the Foxholes test case with continuous variables in order to validate CFA and then for KWU PWR using a decoding strategy for discrete variables. Results indicate the efficiency and relatively fast convergence of CFA in obtaining near optimal loading pattern with respect to considered fitness function. At last, our experience with the CFA confirms that the CFA is easy to implement and reliable.
Modified Firefly Algorithm based controller design for integrating and unstable delay processes
Directory of Open Access Journals (Sweden)
A. Gupta
2016-03-01
Full Text Available In this paper, Modified Firefly Algorithm has been used for optimizing the controller parameters of Smith predictor structure. The proposed algorithm modifies the position formula of the standard Firefly Algorithm in order to achieve faster convergence rate. Performance criteria Integral Square Error (ISE is optimized using this optimization technique. Simulation results show high performance for Modified Firefly Algorithm as compared to conventional Firefly Algorithm in terms of convergence rate. Integrating and unstable delay processes are taken as examples to indicate the performance of the proposed method.
International Nuclear Information System (INIS)
Guo, Li; Li, Pei; Pan, Cong; Cheng, Yuxuan; Ding, Zhihua; Li, Peng; Liao, Rujia; Hu, Weiwei; Chen, Zhong
2016-01-01
The complex-based OCT angiography (Angio-OCT) offers high motion contrast by combining both the intensity and phase information. However, due to involuntary bulk tissue motions, complex-valued OCT raw data are processed sequentially with different algorithms for correcting bulk image shifts (BISs), compensating global phase fluctuations (GPFs) and extracting flow signals. Such a complicated procedure results in massive computational load. To mitigate such a problem, in this work, we present an inter-frame complex-correlation (CC) algorithm. The CC algorithm is suitable for parallel processing of both flow signal extraction and BIS correction, and it does not need GPF compensation. This method provides high processing efficiency and shows superiority in motion contrast. The feasibility and performance of the proposed CC algorithm is demonstrated using both flow phantom and live animal experiments. (paper)
Liu, Kuojuey Ray
1990-01-01
Least-squares (LS) estimations and spectral decomposition algorithms constitute the heart of modern signal processing and communication problems. Implementations of recursive LS and spectral decomposition algorithms onto parallel processing architectures such as systolic arrays with efficient fault-tolerant schemes are the major concerns of this dissertation. There are four major results in this dissertation. First, we propose the systolic block Householder transformation with application to the recursive least-squares minimization. It is successfully implemented on a systolic array with a two-level pipelined implementation at the vector level as well as at the word level. Second, a real-time algorithm-based concurrent error detection scheme based on the residual method is proposed for the QRD RLS systolic array. The fault diagnosis, order degraded reconfiguration, and performance analysis are also considered. Third, the dynamic range, stability, error detection capability under finite-precision implementation, order degraded performance, and residual estimation under faulty situations for the QRD RLS systolic array are studied in details. Finally, we propose the use of multi-phase systolic algorithms for spectral decomposition based on the QR algorithm. Two systolic architectures, one based on triangular array and another based on rectangular array, are presented for the multiphase operations with fault-tolerant considerations. Eigenvectors and singular vectors can be easily obtained by using the multi-pase operations. Performance issues are also considered.
Evaluation of clinical image processing algorithms used in digital mammography.
Zanca, Federica; Jacobs, Jurgen; Van Ongeval, Chantal; Claus, Filip; Celis, Valerie; Geniets, Catherine; Provost, Veerle; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde
2009-03-01
Screening is the only proven approach to reduce the mortality of breast cancer, but significant numbers of breast cancers remain undetected even when all quality assurance guidelines are implemented. With the increasing adoption of digital mammography systems, image processing may be a key factor in the imaging chain. Although to our knowledge statistically significant effects of manufacturer-recommended image processings have not been previously demonstrated, the subjective experience of our radiologists, that the apparent image quality can vary considerably between different algorithms, motivated this study. This article addresses the impact of five such algorithms on the detection of clusters of microcalcifications. A database of unprocessed (raw) images of 200 normal digital mammograms, acquired with the Siemens Novation DR, was collected retrospectively. Realistic simulated microcalcification clusters were inserted in half of the unprocessed images. All unprocessed images were subsequently processed with five manufacturer-recommended image processing algorithms (Agfa Musica 1, IMS Raffaello Mammo 1.2, Sectra Mamea AB Sigmoid, Siemens OPVIEW v2, and Siemens OPVIEW v1). Four breast imaging radiologists were asked to locate and score the clusters in each image on a five point rating scale. The free-response data were analyzed by the jackknife free-response receiver operating characteristic (JAFROC) method and, for comparison, also with the receiver operating characteristic (ROC) method. JAFROC analysis revealed highly significant differences between the image processings (F = 8.51, p < 0.0001), suggesting that image processing strongly impacts the detectability of clusters. Siemens OPVIEW2 and Siemens OPVIEW1 yielded the highest and lowest performances, respectively. ROC analysis of the data also revealed significant differences between the processing but at lower significance (F = 3.47, p = 0.0305) than JAFROC. Both statistical analysis methods revealed that the
Directory of Open Access Journals (Sweden)
Hongying Fei
2017-01-01
Full Text Available Over the past decades, optimization in operations management has grown ever more popular not only in the academic literature but also in practice. However, the problems have varied a lot, and few literature reviews have provided an overview of the models and algorithms that are applied to the optimization in operations management. In this paper, we first classify crucial optimization areas of operations management from the process point of view and then analyze the current status and trends of the studies in those areas. The purpose of this study is to give an overview of optimization modelling and resolution approaches, which are applied to operations management.
A methodology for the geometric design of heat recovery steam generators applying genetic algorithms
International Nuclear Information System (INIS)
Durán, M. Dolores; Valdés, Manuel; Rovira, Antonio; Rincón, E.
2013-01-01
This paper shows how the geometric design of heat recovery steam generators (HRSG) can be achieved. The method calculates the product of the overall heat transfer coefficient (U) by the area of the heat exchange surface (A) as a function of certain thermodynamic design parameters of the HRSG. A genetic algorithm is then applied to determine the best set of geometric parameters which comply with the desired UA product and, at the same time, result in a small heat exchange area and low pressure losses in the HRSG. In order to test this method, the design was applied to the HRSG of an existing plant and the results obtained were compared with the real exchange area of the steam generator. The findings show that the methodology is sound and offers reliable results even for complex HRSG designs. -- Highlights: ► The paper shows a methodology for the geometric design of heat recovery steam generators. ► Calculates product of the overall heat transfer coefficient by heat exchange area as a function of certain HRSG thermodynamic design parameters. ► It is a complement for the thermoeconomic optimization method. ► Genetic algorithms are used for solving the optimization problem
Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes
Williams Colin P.
1999-01-01
Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art.
A New Block Processing Algorithm of LLL for Fast High-dimension Ambiguity Resolution
Directory of Open Access Journals (Sweden)
LIU Wanke
2016-02-01
Full Text Available Due to high dimension and precision for the ambiguity vector under GNSS observations of multi-frequency and multi-system, a major problem to limit computational efficiency of ambiguity resolution is the longer reduction time when using conventional LLL algorithm. To address this problem, it is proposed a new block processing algorithm of LLL by analyzing the relationship between the reduction time and the dimensions and precision of ambiguity. The new algorithm reduces the reduction time to improve computational efficiency of ambiguity resolution, which is based on block processing ambiguity variance-covariance matrix that decreased the dimensions of single reduction matrix. It is validated that the new algorithm with two groups of measured data. The results show that the computing efficiency of the new algorithm increased by 65.2% and 60.2% respectively compared with that of LLL algorithm when choosing a reasonable number of blocks.
Laban, Shaban; El-Desouky, Aly
2013-04-01
The monitoring of real-time systems is a challenging and complicated process. So, there is a continuous need to improve the monitoring process through the use of new intelligent techniques and algorithms for detecting exceptions, anomalous behaviours and generating the necessary alerts during the workflow monitoring of such systems. The interval-based or period-based theorems have been discussed, analysed, and used by many researches in Artificial Intelligence (AI), philosophy, and linguistics. As explained by Allen, there are 13 relations between any two intervals. Also, there have also been many studies of interval-based temporal reasoning and logics over the past decades. Interval-based theorems can be used for monitoring real-time interval-based data processing. However, increasing the number of processed intervals makes the implementation of such theorems a complex and time consuming process as the relationships between such intervals are increasing exponentially. To overcome the previous problem, this paper presents a Rule-based Interval State Machine Algorithm (RISMA) for processing, monitoring, and analysing the behaviour of interval-based data, received from real-time sensors. The proposed intelligent algorithm uses the Interval State Machine (ISM) approach to model any number of interval-based data into well-defined states as well as inferring them. An interval-based state transition model and methodology are presented to identify the relationships between the different states of the proposed algorithm. By using such model, the unlimited number of relationships between similar large numbers of intervals can be reduced to only 18 direct relationships using the proposed well-defined states. For testing the proposed algorithm, necessary inference rules and code have been designed and applied to the continuous data received in near real-time from the stations of International Monitoring System (IMS) by the International Data Centre (IDC) of the Preparatory
Directory of Open Access Journals (Sweden)
Emer Bernal
2017-01-01
Full Text Available In this paper we are presenting a method using fuzzy logic for dynamic parameter adaptation in the imperialist competitive algorithm, which is usually known by its acronym ICA. The ICA algorithm was initially studied in its original form to find out how it works and what parameters have more effect upon its results. Based on this study, several designs of fuzzy systems for dynamic adjustment of the ICA parameters are proposed. The experiments were performed on the basis of solving complex optimization problems, particularly applied to benchmark mathematical functions. A comparison of the original imperialist competitive algorithm and our proposed fuzzy imperialist competitive algorithm was performed. In addition, the fuzzy ICA was compared with another metaheuristic using a statistical test to measure the advantage of the proposed fuzzy approach for dynamic parameter adaptation.
Berends, Constantijn J.; Van De Wal, Roderik S W
2016-01-01
Many processes govern the deglaciation of ice sheets. One of the processes that is usually ignored is the calving of ice in lakes that temporarily surround the ice sheet. In order to capture this process a "flood-fill algorithm" is needed. Here we present and evaluate several optimizations to a
Parallel Algorithm of Geometrical Hashing Based on NumPy Package and Processes Pool
Directory of Open Access Journals (Sweden)
Klyachin Vladimir Aleksandrovich
2015-10-01
Full Text Available The article considers the problem of multi-dimensional geometric hashing. The paper describes a mathematical model of geometric hashing and considers an example of its use in localization problems for the point. A method of constructing the corresponding hash matrix by parallel algorithm is considered. In this paper an algorithm of parallel geometric hashing using a development pattern «pool processes» is proposed. The implementation of the algorithm is executed using the Python programming language and NumPy package for manipulating multidimensional data. To implement the process pool it is proposed to use a class Process Pool Executor imported from module concurrent.futures, which is included in the distribution of the interpreter Python since version 3.2. All the solutions are presented in the paper by corresponding UML class diagrams. Designed GeomNash package includes classes Data, Result, GeomHash, Job. The results of the developed program presents the corresponding graphs. Also, the article presents the theoretical justification for the application process pool for the implementation of parallel algorithms. It is obtained condition t2 > (p/(p-1*t1 of the appropriateness of process pool. Here t1 - the time of transmission unit of data between processes, and t2 - the time of processing unit data by one processor.
Applying Biomimetic Algorithms for Extra-Terrestrial Habitat Generation
Birge, Brian
2012-01-01
The objective is to simulate and optimize distributed cooperation among a network of robots tasked with cooperative excavation on an extra-terrestrial surface. Additionally to examine the concept of directed Emergence among a group of limited artificially intelligent agents. Emergence is the concept of achieving complex results from very simple rules or interactions. For example, in a termite mound each individual termite does not carry a blueprint of how to make their home in a global sense, but their interactions based strictly on local desires create a complex superstructure. Leveraging this Emergence concept applied to a simulation of cooperative agents (robots) will allow an examination of the success of non-directed group strategy achieving specific results. Specifically the simulation will be a testbed to evaluate population based robotic exploration and cooperative strategies while leveraging the evolutionary teamwork approach in the face of uncertainty about the environment and partial loss of sensors. Checking against a cost function and 'social' constraints will optimize cooperation when excavating a simulated tunnel. Agents will act locally with non-local results. The rules by which the simulated robots interact will be optimized to the simplest possible for the desired result, leveraging Emergence. Sensor malfunction and line of sight issues will be incorporated into the simulation. This approach falls under Swarm Robotics, a subset of robot control concerned with finding ways to control large groups of robots. Swarm Robotics often contains biologically inspired approaches, research comes from social insect observation but also data from among groups of herding, schooling, and flocking animals. Biomimetic algorithms applied to manned space exploration is the method under consideration for further study.
Reproducible cancer biomarker discovery in SELDI-TOF MS using different pre-processing algorithms.
Directory of Open Access Journals (Sweden)
Jinfeng Zou
Full Text Available BACKGROUND: There has been much interest in differentiating diseased and normal samples using biomarkers derived from mass spectrometry (MS studies. However, biomarker identification for specific diseases has been hindered by irreproducibility. Specifically, a peak profile extracted from a dataset for biomarker identification depends on a data pre-processing algorithm. Until now, no widely accepted agreement has been reached. RESULTS: In this paper, we investigated the consistency of biomarker identification using differentially expressed (DE peaks from peak profiles produced by three widely used average spectrum-dependent pre-processing algorithms based on SELDI-TOF MS data for prostate and breast cancers. Our results revealed two important factors that affect the consistency of DE peak identification using different algorithms. One factor is that some DE peaks selected from one peak profile were not detected as peaks in other profiles, and the second factor is that the statistical power of identifying DE peaks in large peak profiles with many peaks may be low due to the large scale of the tests and small number of samples. Furthermore, we demonstrated that the DE peak detection power in large profiles could be improved by the stratified false discovery rate (FDR control approach and that the reproducibility of DE peak detection could thereby be increased. CONCLUSIONS: Comparing and evaluating pre-processing algorithms in terms of reproducibility can elucidate the relationship among different algorithms and also help in selecting a pre-processing algorithm. The DE peaks selected from small peak profiles with few peaks for a dataset tend to be reproducibly detected in large peak profiles, which suggests that a suitable pre-processing algorithm should be able to produce peaks sufficient for identifying useful and reproducible biomarkers.
A cloud masking algorithm for EARLINET lidar systems
Binietoglou, Ioannis; Baars, Holger; D'Amico, Giuseppe; Nicolae, Doina
2015-04-01
Cloud masking is an important first step in any aerosol lidar processing chain as most data processing algorithms can only be applied on cloud free observations. Up to now, the selection of a cloud-free time interval for data processing is typically performed manually, and this is one of the outstanding problems for automatic processing of lidar data in networks such as EARLINET. In this contribution we present initial developments of a cloud masking algorithm that permits the selection of the appropriate time intervals for lidar data processing based on uncalibrated lidar signals. The algorithm is based on a signal normalization procedure using the range of observed values of lidar returns, designed to work with different lidar systems with minimal user input. This normalization procedure can be applied to measurement periods of only few hours, even if no suitable cloud-free interval exists, and thus can be used even when only a short period of lidar measurements is available. Clouds are detected based on a combination of criteria including the magnitude of the normalized lidar signal and time-space edge detection performed using the Sobel operator. In this way the algorithm avoids misclassification of strong aerosol layers as clouds. Cloud detection is performed using the highest available time and vertical resolution of the lidar signals, allowing the effective detection of low-level clouds (e.g. cumulus humilis). Special attention is given to suppress false cloud detection due to signal noise that can affect the algorithm's performance, especially during day-time. In this contribution we present the details of algorithm, the effect of lidar characteristics (space-time resolution, available wavelengths, signal-to-noise ratio) to detection performance, and highlight the current strengths and limitations of the algorithm using lidar scenes from different lidar systems in different locations across Europe.
A Hybrid Algorithm for Optimizing Multi- Modal Functions
Institute of Scientific and Technical Information of China (English)
Li Qinghua; Yang Shida; Ruan Youlin
2006-01-01
A new genetic algorithm is presented based on the musical performance. The novelty of this algorithm is that a new genetic algorithm, mimicking the musical process of searching for a perfect state of harmony, which increases the robustness of it greatly and gives a new meaning of it in the meantime, has been developed. Combining the advantages of the new genetic algorithm, simplex algorithm and tabu search, a hybrid algorithm is proposed. In order to verify the effectiveness of the hybrid algorithm, it is applied to solving some typical numerical function optimization problems which are poorly solved by traditional genetic algorithms. The experimental results show that the hybrid algorithm is fast and reliable.
Moore, C S; Liney, G P; Beavis, A W; Saunderson, J R
2007-09-01
A test methodology using an anthropomorphic-equivalent chest phantom is described for the optimization of the Agfa computed radiography "MUSICA" processing algorithm for chest radiography. The contrast-to-noise ratio (CNR) in the lung, heart and diaphragm regions of the phantom, and the "system modulation transfer function" (sMTF) in the lung region, were measured using test tools embedded in the phantom. Using these parameters the MUSICA processing algorithm was optimized with respect to low-contrast detectability and spatial resolution. Two optimum "MUSICA parameter sets" were derived respectively for maximizing the CNR and sMTF in each region of the phantom. Further work is required to find the relative importance of low-contrast detectability and spatial resolution in chest images, from which the definitive optimum MUSICA parameter set can then be derived. Prior to this further work, a compromised optimum MUSICA parameter set was applied to a range of clinical images. A group of experienced image evaluators scored these images alongside images produced from the same radiographs using the MUSICA parameter set in clinical use at the time. The compromised optimum MUSICA parameter set was shown to produce measurably better images.
DESIGNING SUSTAINABLE PROCESSES WITH SIMULATION: THE WASTE REDUCTION (WAR) ALGORITHM
The WAR Algorithm, a methodology for determining the potential environmental impact (PEI) of a chemical process, is presented with modifications that account for the PEI of the energy consumed within that process. From this theory, four PEI indexes are used to evaluate the envir...
Configurable intelligent optimization algorithm design and practice in manufacturing
Tao, Fei; Laili, Yuanjun
2014-01-01
Presenting the concept and design and implementation of configurable intelligent optimization algorithms in manufacturing systems, this book provides a new configuration method to optimize manufacturing processes. It provides a comprehensive elaboration of basic intelligent optimization algorithms, and demonstrates how their improvement, hybridization and parallelization can be applied to manufacturing. Furthermore, various applications of these intelligent optimization algorithms are exemplified in detail, chapter by chapter. The intelligent optimization algorithm is not just a single algorit
A Review of Algorithms for Retinal Vessel Segmentation
Directory of Open Access Journals (Sweden)
Monserrate Intriago Pazmiño
2014-10-01
Full Text Available This paper presents a review of algorithms for extracting blood vessels network from retinal images. Since retina is a complex and delicate ocular structure, a huge effort in computer vision is devoted to study blood vessels network for helping the diagnosis of pathologies like diabetic retinopathy, hypertension retinopathy, retinopathy of prematurity or glaucoma. To carry out this process many works for normal and abnormal images have been proposed recently. These methods include combinations of algorithms like Gaussian and Gabor filters, histogram equalization, clustering, binarization, motion contrast, matched filters, combined corner/edge detectors, multi-scale line operators, neural networks, ants, genetic algorithms, morphological operators. To apply these algorithms pre-processing tasks are needed. Most of these algorithms have been tested on publicly retinal databases. We have include a table summarizing algorithms and results of their assessment.
Institute of Scientific and Technical Information of China (English)
XU Benzhu; ZHU Jiman; LIU Xiaoping
2012-01-01
Identifying each process and their constraint relations from the complex wiring harness drawings quickly and accurately is the basis for formulating process routes. According to the knowledge of automotive wiring harness and the characteristics of wiring harness components, we established the model of wiring harness graph. Then we research the algorithm of identifying technology processes automatically, finally we describe the relationships between processes by introducing the constraint matrix, which is in or- der to lay a good foundation for harness process planning and production scheduling.
An Improved Hierarchical Genetic Algorithm for Sheet Cutting Scheduling with Process Constraints
Yunqing Rao; Dezhong Qi; Jinling Li
2013-01-01
For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm) is developed for better ...
Framework for Integrating Science Data Processing Algorithms Into Process Control Systems
Mattmann, Chris A.; Crichton, Daniel J.; Chang, Albert Y.; Foster, Brian M.; Freeborn, Dana J.; Woollard, David M.; Ramirez, Paul M.
2011-01-01
A software framework called PCS Task Wrapper is responsible for standardizing the setup, process initiation, execution, and file management tasks surrounding the execution of science data algorithms, which are referred to by NASA as Product Generation Executives (PGEs). PGEs codify a scientific algorithm, some step in the overall scientific process involved in a mission science workflow. The PCS Task Wrapper provides a stable operating environment to the underlying PGE during its execution lifecycle. If the PGE requires a file, or metadata regarding the file, the PCS Task Wrapper is responsible for delivering that information to the PGE in a manner that meets its requirements. If the PGE requires knowledge of upstream or downstream PGEs in a sequence of executions, that information is also made available. Finally, if information regarding disk space, or node information such as CPU availability, etc., is required, the PCS Task Wrapper provides this information to the underlying PGE. After this information is collected, the PGE is executed, and its output Product file and Metadata generation is managed via the PCS Task Wrapper framework. The innovation is responsible for marshalling output Products and Metadata back to a PCS File Management component for use in downstream data processing and pedigree. In support of this, the PCS Task Wrapper leverages the PCS Crawler Framework to ingest (during pipeline processing) the output Product files and Metadata produced by the PGE. The architectural components of the PCS Task Wrapper framework include PGE Task Instance, PGE Config File Builder, Config File Property Adder, Science PGE Config File Writer, and PCS Met file Writer. This innovative framework is really the unifying bridge between the execution of a step in the overall processing pipeline, and the available PCS component services as well as the information that they collectively manage.
Auto-SEIA: simultaneous optimization of image processing and machine learning algorithms
Negro Maggio, Valentina; Iocchi, Luca
2015-02-01
Object classification from images is an important task for machine vision and it is a crucial ingredient for many computer vision applications, ranging from security and surveillance to marketing. Image based object classification techniques properly integrate image processing and machine learning (i.e., classification) procedures. In this paper we present a system for automatic simultaneous optimization of algorithms and parameters for object classification from images. More specifically, the proposed system is able to process a dataset of labelled images and to return a best configuration of image processing and classification algorithms and of their parameters with respect to the accuracy of classification. Experiments with real public datasets are used to demonstrate the effectiveness of the developed system.
A Decision Processing Algorithm for CDC Location Under Minimum Cost SCM Network
Park, N. K.; Kim, J. Y.; Choi, W. Y.; Tian, Z. M.; Kim, D. J.
Location of CDC in the matter of network on Supply Chain is becoming on the high concern these days. Present status of methods on CDC has been mainly based on the calculation manually by the spread sheet to achieve the goal of minimum logistics cost. This study is focused on the development of new processing algorithm to overcome the limit of present methods, and examination of the propriety of this algorithm by case study. The algorithm suggested by this study is based on the principle of optimization on the directive GRAPH of SCM model and suggest the algorithm utilizing the traditionally introduced MST, shortest paths finding methods, etc. By the aftermath of this study, it helps to assess suitability of the present on-going SCM network and could be the criterion on the decision-making process for the optimal SCM network building-up for the demand prospect in the future.
Fundamentals of applied probability and random processes
Ibe, Oliver
2014-01-01
The long-awaited revision of Fundamentals of Applied Probability and Random Processes expands on the central components that made the first edition a classic. The title is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability t
Research on Palmprint Identification Method Based on Quantum Algorithms
Directory of Open Access Journals (Sweden)
Hui Li
2014-01-01
Full Text Available Quantum image recognition is a technology by using quantum algorithm to process the image information. It can obtain better effect than classical algorithm. In this paper, four different quantum algorithms are used in the three stages of palmprint recognition. First, quantum adaptive median filtering algorithm is presented in palmprint filtering processing. Quantum filtering algorithm can get a better filtering result than classical algorithm through the comparison. Next, quantum Fourier transform (QFT is used to extract pattern features by only one operation due to quantum parallelism. The proposed algorithm exhibits an exponential speed-up compared with discrete Fourier transform in the feature extraction. Finally, quantum set operations and Grover algorithm are used in palmprint matching. According to the experimental results, quantum algorithm only needs to apply square of N operations to find out the target palmprint, but the traditional method needs N times of calculation. At the same time, the matching accuracy of quantum algorithm is almost 100%.
Shafiee, Alireza; Arab, Mobin; Lai, Zhiping; Liu, Zongwen; Abbas, Ali
2016-01-01
In optimization-based process flowsheet synthesis, optimization methods, including genetic algorithms (GA), are used as advantageous tools to select a high performance flowsheet by ‘screening’ large numbers of possible flowsheets. In this study, we
Information theoretic methods for image processing algorithm optimization
Prokushkin, Sergey F.; Galil, Erez
2015-01-01
Modern image processing pipelines (e.g., those used in digital cameras) are full of advanced, highly adaptive filters that often have a large number of tunable parameters (sometimes > 100). This makes the calibration procedure for these filters very complex, and the optimal results barely achievable in the manual calibration; thus an automated approach is a must. We will discuss an information theory based metric for evaluation of algorithm adaptive characteristics ("adaptivity criterion") using noise reduction algorithms as an example. The method allows finding an "orthogonal decomposition" of the filter parameter space into the "filter adaptivity" and "filter strength" directions. This metric can be used as a cost function in automatic filter optimization. Since it is a measure of a physical "information restoration" rather than perceived image quality, it helps to reduce the set of the filter parameters to a smaller subset that is easier for a human operator to tune and achieve a better subjective image quality. With appropriate adjustments, the criterion can be used for assessment of the whole imaging system (sensor plus post-processing).
International Nuclear Information System (INIS)
Santi, P.; Favalli, A.; Hauck, D.; Henzl, V.; Henzlova, D.; Ianakiev, K.; Iliev, M.; Swinhoe, M.; Croft, S.; Worrall, L.
2015-01-01
One of the most distinctive and informative signatures of special nuclear materials is the emission of correlated neutrons from either spontaneous or induced fission. Because the emission of correlated neutrons is a unique and unmistakable signature of nuclear materials, the ability to effectively detect, process, and analyze these emissions will continue to play a vital role in the non-proliferation, safeguards, and security missions. While currently deployed neutron measurement techniques based on 3He proportional counter technology, such as neutron coincidence and multiplicity counters currently used by the International Atomic Energy Agency, have proven to be effective over the past several decades for a wide range of measurement needs, a number of technical and practical limitations exist in continuing to apply this technique to future measurement needs. In many cases, those limitations exist within the algorithms that are used to process and analyze the detected signals from these counters that were initially developed approximately 20 years ago based on the technology and computing power that was available at that time. Over the past three years, an effort has been undertaken to address the general shortcomings in these algorithms by developing new algorithms that are based on fundamental physics principles that should lead to the development of more sensitive neutron non-destructive assay instrumentation. Through this effort, a number of advancements have been made in correcting incoming data for electronic dead time, connecting the two main types of analysis techniques used to quantify the data (Shift register analysis and Feynman variance to mean analysis), and in the underlying physical model, known as the point model, that is used to interpret the data in terms of the characteristic properties of the item being measured. The current status of the testing and evaluation of these advancements in correlated neutron analysis techniques will be discussed
Bae, Kyung-hoon; Park, Changhan; Kim, Eun-soo
2008-03-01
In this paper, intermediate view reconstruction (IVR) using adaptive disparity search algorithm (ASDA) is for realtime 3-dimensional (3D) processing proposed. The proposed algorithm can reduce processing time of disparity estimation by selecting adaptive disparity search range. Also, the proposed algorithm can increase the quality of the 3D imaging. That is, by adaptively predicting the mutual correlation between stereo images pair using the proposed algorithm, the bandwidth of stereo input images pair can be compressed to the level of a conventional 2D image and a predicted image also can be effectively reconstructed using a reference image and disparity vectors. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm improves the PSNRs of a reconstructed image to about 4.8 dB by comparing with that of conventional algorithms, and reduces the Synthesizing time of a reconstructed image to about 7.02 sec by comparing with that of conventional algorithms.
Directory of Open Access Journals (Sweden)
Krystel K. Castillo-Villar
2014-11-01
Full Text Available Bioenergy is a new source of energy that accounts for a substantial portion of the renewable energy production in many countries. The production of bioenergy is expected to increase due to its unique advantages, such as no harmful emissions and abundance. Supply-related problems are the main obstacles precluding the increase of use of biomass (which is bulky and has low energy density to produce bioenergy. To overcome this challenge, large-scale optimization models are needed to be solved to enable decision makers to plan, design, and manage bioenergy supply chains. Therefore, the use of effective optimization approaches is of great importance. The traditional mathematical methods (such as linear, integer, and mixed-integer programming frequently fail to find optimal solutions for non-convex and/or large-scale models whereas metaheuristics are efficient approaches for finding near-optimal solutions that use less computational resources. This paper presents a comprehensive review by studying and analyzing the application of metaheuristics to solve bioenergy supply chain models as well as the exclusive challenges of the mathematical problems applied in the bioenergy supply chain field. The reviewed metaheuristics include: (1 population approaches, such as ant colony optimization (ACO, the genetic algorithm (GA, particle swarm optimization (PSO, and bee colony algorithm (BCA; and (2 trajectory approaches, such as the tabu search (TS and simulated annealing (SA. Based on the outcomes of this literature review, the integrated design and planning of bioenergy supply chains problem has been solved primarily by implementing the GA. The production process optimization was addressed primarily by using both the GA and PSO. The supply chain network design problem was treated by utilizing the GA and ACO. The truck and task scheduling problem was solved using the SA and the TS, where the trajectory-based methods proved to outperform the population
A necessary condition for applying MUSIC algorithm in limited-view inverse scattering problem
Park, Taehoon; Park, Won-Kwang
2015-09-01
Throughout various results of numerical simulations, it is well-known that MUltiple SIgnal Classification (MUSIC) algorithm can be applied in the limited-view inverse scattering problems. However, the application is somehow heuristic. In this contribution, we identify a necessary condition of MUSIC for imaging of collection of small, perfectly conducting cracks. This is based on the fact that MUSIC imaging functional can be represented as an infinite series of Bessel function of integer order of the first kind. Numerical experiments from noisy synthetic data supports our investigation.
Directory of Open Access Journals (Sweden)
Juliano Rodrigues Brianeze
2009-12-01
Full Text Available This work presents three of the main evolutionary algorithms: Genetic Algorithm, Evolution Strategy and Evolutionary Programming, applied to microstrip antennas design. Efficiency tests were performed, considering the analysis of key physical and geometrical parameters, evolution type, numerical random generators effects, evolution operators and selection criteria. These algorithms were validated through design of microstrip antennas based on the Resonant Cavity Method, and allow multiobjective optimizations, considering bandwidth, standing wave ratio and relative material permittivity. The optimal results obtained with these optimization processes, were confirmed by CST Microwave Studio commercial package.Este trabajo presenta tres de los principales algoritmos evolutivos: Algoritmo Genético, Estrategia Evolutiva y Programación Evolutiva, aplicados al diseño de antenas de microlíneas (microstrip. Se realizaron pruebas de eficiencia de los algoritmos, considerando el análisis de los parámetros físicos y geométricos, tipo de evolución, efecto de generación de números aleatorios, operadores evolutivos y los criterios de selección. Estos algoritmos fueron validados a través del diseño de antenas de microlíneas basado en el Método de Cavidades Resonantes y permiten optimizaciones multiobjetivo, considerando ancho de banda, razón de onda estacionaria y permitividad relativa del dieléctrico. Los resultados óptimos obtenidos fueron confirmados a través del software comercial CST Microwave Studio.
Directory of Open Access Journals (Sweden)
Muhammad Farhan Ausaf
2015-12-01
Full Text Available Process planning and scheduling are two important components of a manufacturing setup. It is important to integrate them to achieve better global optimality and improved system performance. To find optimal solutions for integrated process planning and scheduling (IPPS problem, numerous algorithm-based approaches exist. Most of these approaches try to use existing meta-heuristic algorithms for solving the IPPS problem. Although these approaches have been shown to be effective in optimizing the IPPS problem, there is still room for improvement in terms of quality of solution and algorithm efficiency, especially for more complicated problems. Dispatching rules have been successfully utilized for solving complicated scheduling problems, but haven’t been considered extensively for the IPPS problem. This approach incorporates dispatching rules with the concept of prioritizing jobs, in an algorithm called priority-based heuristic algorithm (PBHA. PBHA tries to establish job and machine priority for selecting operations. Priority assignment and a set of dispatching rules are simultaneously used to generate both the process plans and schedules for all jobs and machines. The algorithm was tested for a series of benchmark problems. The proposed algorithm was able to achieve superior results for most complex problems presented in recent literature while utilizing lesser computational resources.
An algorithm for automated layout of process description maps drawn in SBGN.
Genc, Begum; Dogrusoz, Ugur
2016-01-01
Evolving technology has increased the focus on genomics. The combination of today's advanced techniques with decades of molecular biology research has yielded huge amounts of pathway data. A standard, named the Systems Biology Graphical Notation (SBGN), was recently introduced to allow scientists to represent biological pathways in an unambiguous, easy-to-understand and efficient manner. Although there are a number of automated layout algorithms for various types of biological networks, currently none specialize on process description (PD) maps as defined by SBGN. We propose a new automated layout algorithm for PD maps drawn in SBGN. Our algorithm is based on a force-directed automated layout algorithm called Compound Spring Embedder (CoSE). On top of the existing force scheme, additional heuristics employing new types of forces and movement rules are defined to address SBGN-specific rules. Our algorithm is the only automatic layout algorithm that properly addresses all SBGN rules for drawing PD maps, including placement of substrates and products of process nodes on opposite sides, compact tiling of members of molecular complexes and extensively making use of nested structures (compound nodes) to properly draw cellular locations and molecular complex structures. As demonstrated experimentally, the algorithm results in significant improvements over use of a generic layout algorithm such as CoSE in addressing SBGN rules on top of commonly accepted graph drawing criteria. An implementation of our algorithm in Java is available within ChiLay library (https://github.com/iVis-at-Bilkent/chilay). ugur@cs.bilkent.edu.tr or dogrusoz@cbio.mskcc.org Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
A Cooperative Harmony Search Algorithm for Function Optimization
Directory of Open Access Journals (Sweden)
Gang Li
2014-01-01
Full Text Available Harmony search algorithm (HS is a new metaheuristic algorithm which is inspired by a process involving musical improvisation. HS is a stochastic optimization technique that is similar to genetic algorithms (GAs and particle swarm optimizers (PSOs. It has been widely applied in order to solve many complex optimization problems, including continuous and discrete problems, such as structure design, and function optimization. A cooperative harmony search algorithm (CHS is developed in this paper, with cooperative behavior being employed as a significant improvement to the performance of the original algorithm. Standard HS just uses one harmony memory and all the variables of the object function are improvised within the harmony memory, while the proposed algorithm CHS uses multiple harmony memories, so that each harmony memory can optimize different components of the solution vector. The CHS was then applied to function optimization problems. The results of the experiment show that CHS is capable of finding better solutions when compared to HS and a number of other algorithms, especially in high-dimensional problems.
A novel time-domain signal processing algorithm for real time ventricular fibrillation detection
International Nuclear Information System (INIS)
Monte, G E; Scarone, N C; Liscovsky, P O; Rotter, P
2011-01-01
This paper presents an application of a novel algorithm for real time detection of ECG pathologies, especially ventricular fibrillation. It is based on segmentation and labeling process of an oversampled signal. After this treatment, analyzing sequence of segments, global signal behaviours are obtained in the same way like a human being does. The entire process can be seen as a morphological filtering after a smart data sampling. The algorithm does not require any ECG digital signal pre-processing, and the computational cost is low, so it can be embedded into the sensors for wearable and permanent applications. The proposed algorithms could be the input signal description to expert systems or to artificial intelligence software in order to detect other pathologies.
A novel time-domain signal processing algorithm for real time ventricular fibrillation detection
Monte, G. E.; Scarone, N. C.; Liscovsky, P. O.; Rotter S/N, P.
2011-12-01
This paper presents an application of a novel algorithm for real time detection of ECG pathologies, especially ventricular fibrillation. It is based on segmentation and labeling process of an oversampled signal. After this treatment, analyzing sequence of segments, global signal behaviours are obtained in the same way like a human being does. The entire process can be seen as a morphological filtering after a smart data sampling. The algorithm does not require any ECG digital signal pre-processing, and the computational cost is low, so it can be embedded into the sensors for wearable and permanent applications. The proposed algorithms could be the input signal description to expert systems or to artificial intelligence software in order to detect other pathologies.
2018-01-01
ARL-TR-8270 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological Filter...Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform by Kwok F Tom Sensors and Electron...1 October 2016–30 September 2017 4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a
Efficient Implementation of Nested-Loop Multimedia Algorithms
Directory of Open Access Journals (Sweden)
Kittitornkun Surin
2001-01-01
Full Text Available A novel dependence graph representation called the multiple-order dependence graph for nested-loop formulated multimedia signal processing algorithms is proposed. It allows a concise representation of an entire family of dependence graphs. This powerful representation facilitates the development of innovative implementation approach for nested-loop formulated multimedia algorithms such as motion estimation, matrix-matrix product, 2D linear transform, and others. In particular, algebraic linear mapping (assignment and scheduling methodology can be applied to implement such algorithms on an array of simple-processing elements. The feasibility of this new approach is demonstrated in three major target architectures: application-specific integrated circuit (ASIC, field programmable gate array (FPGA, and a programmable clustered VLIW processor.
Algorithm applied in dialogue with Skateholders: a case study in a business tourism sector
Directory of Open Access Journals (Sweden)
Ana María Gil Lafuente
2010-12-01
Full Text Available According to numerous scientific studies one of the most important points in the area of sustainability in business is related to dialogue with stakeholders. Based on Stakeholder Theory we try to analyze corporate sustainability and the process of preparing a report that a company in the tourism sector in accordance with the guidelines of the guide G3 - Global Reporting Initiative. With the completion of an empirical study seeks to understand the expectations of stakeholders regarding the implementation of the contents of the sustainability report. To achieve the proposed aim we use «The Expertons Method» algorithm that allows the aggregation of opinions of various experts on the subject and represents an important extension of fuzzy subsets for aggregation processes. At the end of our study, we present the results of using this algorithm, the contributions and future research.
A necessary condition for applying MUSIC algorithm in limited-view inverse scattering problem
International Nuclear Information System (INIS)
Park, Taehoon; Park, Won-Kwang
2015-01-01
Throughout various results of numerical simulations, it is well-known that MUltiple SIgnal Classification (MUSIC) algorithm can be applied in the limited-view inverse scattering problems. However, the application is somehow heuristic. In this contribution, we identify a necessary condition of MUSIC for imaging of collection of small, perfectly conducting cracks. This is based on the fact that MUSIC imaging functional can be represented as an infinite series of Bessel function of integer order of the first kind. Numerical experiments from noisy synthetic data supports our investigation. (paper)
Chaotic Multiquenching Annealing Applied to the Protein Folding Problem
Directory of Open Access Journals (Sweden)
Juan Frausto-Solis
2014-01-01
Full Text Available The Chaotic Multiquenching Annealing algorithm (CMQA is proposed. CMQA is a new algorithm, which is applied to protein folding problem (PFP. This algorithm is divided into three phases: (i multiquenching phase (MQP, (ii annealing phase (AP, and (iii dynamical equilibrium phase (DEP. MQP enforces several stages of quick quenching processes that include chaotic functions. The chaotic functions can increase the exploration potential of solutions space of PFP. AP phase implements a simulated annealing algorithm (SA with an exponential cooling function. MQP and AP are delimited by different ranges of temperatures; MQP is applied for a range of temperatures which goes from extremely high values to very high values; AP searches for solutions in a range of temperatures from high values to extremely low values. DEP phase finds the equilibrium in a dynamic way by applying least squares method. CMQA is tested with several instances of PFP.
APPLYING ARTIFICIAL NEURAL NETWORK OPTIMIZED BY FIREWORKS ALGORITHM FOR STOCK PRICE ESTIMATION
Directory of Open Access Journals (Sweden)
Khuat Thanh Tung
2016-04-01
Full Text Available Stock prediction is to determine the future value of a company stock dealt on an exchange. It plays a crucial role to raise the profit gained by firms and investors. Over the past few years, many methods have been developed in which plenty of efforts focus on the machine learning framework achieving the promising results. In this paper, an approach based on Artificial Neural Network (ANN optimized by Fireworks algorithm and data preprocessing by Haar Wavelet is applied to estimate the stock prices. The system was trained and tested with real data of various companies collected from Yahoo Finance. The obtained results are encouraging.
An improved flux-split algorithm applied to hypersonic flows in chemical equilibrium
Palmer, Grant
1988-01-01
An explicit, finite-difference, shock-capturing numerical algorithm is presented and applied to hypersonic flows assumed to be in thermochemical equilibrium. Real-gas chemistry is either loosely coupled to the gasdynamics by way of a Gibbs free energy minimization package or fully coupled using species mass conservation equations with finite-rate chemical reactions. A scheme is developed that maintains stability in the explicit, finite-rate formulation while allowing relatively high time steps. The codes use flux vector splitting to difference the inviscid fluxes and employ real-gas corrections to viscosity and thermal conductivity. Numerical results are compared against existing ballistic range and flight data. Flows about complex geometries are also computed.
An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics from MODIS Data
Tan, Bin; Morisette, Jeffrey T.; Wolfe, Robert E.; Gao, Feng; Ederer, Gregory A.; Nightingale, Joanne; Pedelty, Jeffrey A.
2012-01-01
An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates.
Applying genetic algorithms for programming manufactoring cell tasks
Directory of Open Access Journals (Sweden)
Efredy Delgado
2005-05-01
Full Text Available This work was aimed for developing computational intelligence for scheduling a manufacturing cell's tasks, based manily on genetic algorithms. The manufacturing cell was modelled as beign a production-line; the makespan was calculated by using heuristics adapted from several libraries for genetic algorithms computed in C++ builder. Several problems dealing with small, medium and large list of jobs and machinery were resolved. The results were compared with other heuristics. The approach developed here would seem to be promising for future research concerning scheduling manufacturing cell tasks involving mixed batches.
The Chandra Source Catalog: Algorithms
McDowell, Jonathan; Evans, I. N.; Primini, F. A.; Glotfelty, K. J.; McCollough, M. L.; Houck, J. C.; Nowak, M. A.; Karovska, M.; Davis, J. E.; Rots, A. H.; Siemiginowska, A. L.; Hain, R.; Evans, J. D.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Doe, S. M.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hall, D. M.; Harbo, P. N.; He, X.; Lauer, J.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Plummer, D. A.; Refsdal, B. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.
2009-09-01
Creation of the Chandra Source Catalog (CSC) required adjustment of existing pipeline processing, adaptation of existing interactive analysis software for automated use, and development of entirely new algorithms. Data calibration was based on the existing pipeline, but more rigorous data cleaning was applied and the latest calibration data products were used. For source detection, a local background map was created including the effects of ACIS source readout streaks. The existing wavelet source detection algorithm was modified and a set of post-processing scripts used to correct the results. To analyse the source properties we ran the SAO Traceray trace code for each source to generate a model point spread function, allowing us to find encircled energy correction factors and estimate source extent. Further algorithms were developed to characterize the spectral, spatial and temporal properties of the sources and to estimate the confidence intervals on count rates and fluxes. Finally, sources detected in multiple observations were matched, and best estimates of their merged properties derived. In this paper we present an overview of the algorithms used, with more detailed treatment of some of the newly developed algorithms presented in companion papers.
Multiple Harmonics Fitting Algorithms Applied to Periodic Signals Based on Hilbert-Huang Transform
Directory of Open Access Journals (Sweden)
Hui Wang
2013-01-01
Full Text Available A new generation of multipurpose measurement equipment is transforming the role of computers in instrumentation. The new features involve mixed devices, such as kinds of sensors, analog-to-digital and digital-to-analog converters, and digital signal processing techniques, that are able to substitute typical discrete instruments like multimeters and analyzers. Signal-processing applications frequently use least-squares (LS sine-fitting algorithms. Periodic signals may be interpreted as a sum of sine waves with multiple frequencies: the Fourier series. This paper describes a new sine fitting algorithm that is able to fit a multiharmonic acquired periodic signal. By means of a “sinusoidal wave” whose amplitude and phase are both transient, the “triangular wave” can be reconstructed on the basis of Hilbert-Huang transform (HHT. This method can be used to test effective number of bits (ENOBs of analog-to-digital converter (ADC, avoiding the trouble of selecting initial value of the parameters and working out the nonlinear equations. The simulation results show that the algorithm is precise and efficient. In the case of enough sampling points, even under the circumstances of low-resolution signal with the harmonic distortion existing, the root mean square (RMS error between the sampling data of original “triangular wave” and the corresponding points of fitting “sinusoidal wave” is marvelously small. That maybe means, under the circumstances of any periodic signal, that ENOBs of high-resolution ADC can be tested accurately.
Research on distributed QOS routing algorithm based on TCP/IP
Liu, Xiaoyue; Chen, Yongqiang
2011-10-01
At present, network environment follow protocol standard of IPV4 is intended to do the best effort of network to provide network applied service for users, however, not caring about service quality.Thus the packet loss rate is high, it cannot reach an ideal applied results. This article through the establishment of mathematical model, put forward a new distributed multi QOS routing algorithm, given the realization process of this distributed QOS routing algorithm, and simulation was carried out by simulation software. The results show the proposed algorithm can improve the utilization rate of network resources and the service quality of network application.
Chemical optimization algorithm for fuzzy controller design
Astudillo, Leslie; Castillo, Oscar
2014-01-01
In this book, a novel optimization method inspired by a paradigm from nature is introduced. The chemical reactions are used as a paradigm to propose an optimization method that simulates these natural processes. The proposed algorithm is described in detail and then a set of typical complex benchmark functions is used to evaluate the performance of the algorithm. Simulation results show that the proposed optimization algorithm can outperform other methods in a set of benchmark functions. This chemical reaction optimization paradigm is also applied to solve the tracking problem for the dynamic model of a unicycle mobile robot by integrating a kinematic and a torque controller based on fuzzy logic theory. Computer simulations are presented confirming that this optimization paradigm is able to outperform other optimization techniques applied to this particular robot application
A Fast General-Purpose Clustering Algorithm Based on FPGAs for High-Throughput Data Processing
Annovi, A; The ATLAS collaboration; Castegnaro, A; Gatta, M
2012-01-01
We present a fast general-purpose algorithm for high-throughput clustering of data ”with a two dimensional organization”. The algorithm is designed to be implemented with FPGAs or custom electronics. The key feature is a processing time that scales linearly with the amount of data to be processed. This means that clustering can be performed in pipeline with the readout, without suffering from combinatorial delays due to looping multiple times through all the data. This feature makes this algorithm especially well suited for problems where the data has high density, e.g. in the case of tracking devices working under high-luminosity condition such as those of LHC or Super-LHC. The algorithm is organized in two steps: the first step (core) clusters the data; the second step analyzes each cluster of data to extract the desired information. The current algorithm is developed as a clustering device for modern high-energy physics pixel detectors. However, the algorithm has much broader field of applications. In ...
Development of Data Processing Algorithms for the Upgraded LHCb Vertex Locator
AUTHOR|(CDS)2101352
The LHCb detector will see a major upgrade during LHC Long Shutdown II, which is planned for 2019/20. The silicon Vertex Locator subdetector will be upgraded for operation under the new run conditions. The detector will be read out using a data acquisition board based on an FPGA. The work presented in this thesis is concerned with the development of the data processing algorithms to be used in this data acquisition board. In particular, work in three different areas of the FPGA is covered: the data processing block, the low level interface, and the post router block. The algorithms produced have been simulated and tested, and shown to provide the required performance. Errors in the initial implementation of the Gigabit Wireline Transmitter serialized data in the low level interface were discovered and corrected. The data scrambling algorithm and the post router block have been incorporated in the front end readout chip.
Monte Carlo algorithms with absorbing Markov chains: Fast local algorithms for slow dynamics
International Nuclear Information System (INIS)
Novotny, M.A.
1995-01-01
A class of Monte Carlo algorithms which incorporate absorbing Markov chains is presented. In a particular limit, the lowest order of these algorithms reduces to the n-fold way algorithm. These algorithms are applied to study the escape from the metastable state in the two-dimensional square-lattice nearest-neighbor Ising ferromagnet in an unfavorable applied field, and the agreement with theoretical predictions is very good. It is demonstrated that the higher-order algorithms can be many orders of magnitude faster than either the traditional Monte Carlo or n-fold way algorithms
Optimal hydrogenerator governor tuning with a genetic algorithm
International Nuclear Information System (INIS)
Lansberry, J.E.; Wozniak, L.; Goldberg, D.E.
1992-01-01
Many techniques exist for developing optimal controllers. This paper investigates genetic algorithms as a means of finding optimal solutions over a parameter space. In particular, the genetic algorithm is applied to optimal tuning of a governor for a hydrogenerator plant. Analog and digital simulation methods are compared for use in conjunction with the genetic algorithm optimization process. It is shown that analog plant simulation provides advantages in speed over digital plant simulation. This speed advantage makes application of the genetic algorithm in an actual plant environment feasible. Furthermore, the genetic algorithm is shown to possess the ability to reject plant noise and other system anomalies in its search for optimizing solutions
The application of the algorithm of the individualization of students’ physical education process
Directory of Open Access Journals (Sweden)
L.N. Barybina
2014-12-01
Full Text Available Purpose: theoretically and experimentally justify the use of the algorithm of physical education process individualization in universities taking into account the psychophysiological features of students. Material: the study involved 413 students. It was defined indicators of the level of physical fitness and functional status, psycho-physiological features. Results: it was worked out the algorithm of individualization of students’ physical education process. It was defined the structure of the complex preparedness and it was developed models of characteristics of students - representatives of different sports specializations. It was established that for the successful construction of the training process, it is necessary to combine the parameters of physical, functional training and physiological indicators into a single integral evaluation of the individual characteristics of students. It was shown that at the students of the experimental group was improved indicators of functional, psychophysiological capabilities and physical preparedness. Conclusions: the application of the algorithm of the individualization of process of physical education enhances the functionality of the students.
Epidemic Processes on Complex Networks : Modelling, Simulation and Algorithms
Van de Bovenkamp, R.
2015-01-01
Local interactions on a graph will lead to global dynamic behaviour. In this thesis we focus on two types of dynamic processes on graphs: the Susceptible-Infected-Susceptilbe (SIS) virus spreading model, and gossip style epidemic algorithms. The largest part of this thesis is devoted to the SIS
Optimising a shaft's geometry by applying genetic algorithms
Directory of Open Access Journals (Sweden)
María Alejandra Guzmán
2005-05-01
Full Text Available Many engnieering design tasks involve optimising several conflicting goals; these types of problem are known as Multiobjective Optimisation Problems (MOPs. Evolutionary techniques have proved to be an effective tool for finding solutions to these MOPs during the last decade, Variations on the basic generic algorithm have been particulary proposed by different researchers for finding rapid optimal solutions to MOPs. The NSGA (Non-dominated Sorting Generic Algorithm has been implemented in this paper for finding an optimal design for a shaft subjected to cyclic loads, the conflycting goals being minimum weight and minimum lateral deflection.
Modified BTC Algorithm for Audio Signal Coding
Directory of Open Access Journals (Sweden)
TOMIC, S.
2016-11-01
Full Text Available This paper describes modification of a well-known image coding algorithm, named Block Truncation Coding (BTC and its application in audio signal coding. BTC algorithm was originally designed for black and white image coding. Since black and white images and audio signals have different statistical characteristics, the application of this image coding algorithm to audio signal presents a novelty and a challenge. Several implementation modifications are described in this paper, while the original idea of the algorithm is preserved. The main modifications are performed in the area of signal quantization, by designing more adequate quantizers for audio signal processing. The result is a novel audio coding algorithm, whose performance is presented and analyzed in this research. The performance analysis indicates that this novel algorithm can be successfully applied in audio signal coding.
International Nuclear Information System (INIS)
Oliveira, Iona Maghali S. de; Schirru, Roberto; Medeiros, Jose A.C.C.
2009-01-01
The swarm-based algorithm described in this paper is a new search algorithm capable of locating good solutions efficiently and within a reasonable running time. The work presents a population-based search algorithm that mimics the food foraging behavior of honey bee swarms and can be regarded as belonging to the category of intelligent optimization tools. In its basic version, the algorithm performs a kind of random search combined with neighborhood search and can be used for solving multi-dimensional numeric problems. Following a description of the algorithm, this paper presents a new event classification system based exclusively on the ability of the algorithm to find the best centroid positions that correctly identifies an accident in a PWR nuclear power plant, thus maximizing the number of correct classification of transients. The simulation results show that the performance of the proposed algorithm is comparable to other population-based algorithms when applied to the same problem, with the advantage of employing fewer control parameters. (author)
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Iona Maghali S. de; Schirru, Roberto; Medeiros, Jose A.C.C., E-mail: maghali@lmp.ufrj.b, E-mail: schirru@lmp.ufrj.b, E-mail: canedo@lmp.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear
2009-07-01
The swarm-based algorithm described in this paper is a new search algorithm capable of locating good solutions efficiently and within a reasonable running time. The work presents a population-based search algorithm that mimics the food foraging behavior of honey bee swarms and can be regarded as belonging to the category of intelligent optimization tools. In its basic version, the algorithm performs a kind of random search combined with neighborhood search and can be used for solving multi-dimensional numeric problems. Following a description of the algorithm, this paper presents a new event classification system based exclusively on the ability of the algorithm to find the best centroid positions that correctly identifies an accident in a PWR nuclear power plant, thus maximizing the number of correct classification of transients. The simulation results show that the performance of the proposed algorithm is comparable to other population-based algorithms when applied to the same problem, with the advantage of employing fewer control parameters. (author)
PID controller tuning using metaheuristic optimization algorithms for benchmark problems
Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.
2017-11-01
This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.
Hypercube algorithms suitable for image understanding in uncertain environments
International Nuclear Information System (INIS)
Huntsberger, T.L.; Sengupta, A.
1988-01-01
Computer vision in a dynamic environment needs to be fast and able to tolerate incomplete or uncertain intermediate results. An appropriately chose representation coupled with a parallel architecture addresses both concerns. The wide range of numerical and symbolic processing needed for robust computer vision can only be achieved through a blend of SIMD and MIMD processing techniques. The 1024 element hypercube architecture has these capabilities, and was chosen as the test-bed hardware for development of highly parallel computer vision algorithms. This paper presents and analyzes parallel algorithms for color image segmentation and edge detection. These algorithms are part of a recently developed computer vision system which uses multiple valued logic to represent uncertainty in the imaging process and in intermediate results. Algorithms for the extraction of three dimensional properties of objects using dynamic scene analysis techniques within the same framework are examined. Results from experimental studies using a 1024 element hypercube implementation of the algorithm as applied to a series of natural scenes are reported
A genetic algorithm applied to a PWR turbine extraction optimization to increase cycle efficiency
International Nuclear Information System (INIS)
Sacco, Wagner F.; Schirru, Roberto
2002-01-01
In nuclear power plants feedwater heaters are used to heat feedwater from its temperature leaving the condenser to final feedwater temperature using steam extracted from various stages of the turbines. The purpose of this process is to increase cycle efficiency. The determination of the optimal fraction of mass flow rate to be extracted from each stage of the turbines is a complex optimization problem. This kind of problem has been efficiently solved by means of evolutionary computation techniques, such as Genetic Algorithms (GAs). GAs, which are systems based upon principles from biological genetics, have been successfully applied to several combinatorial optimization problems in nuclear engineering, as the nuclear fuel reload optimization problem. We introduce the use of GAs in cycle efficiency optimization by finding an optimal combination of turbine extractions. In order to demonstrate the effectiveness of our approach, we have chosen a typical PWR as case study. The secondary side of the PWR was simulated using PEPSE, which is a modeling tool used to perform integrated heat balances for power plants. The results indicate that the GA is a quite promising tool for cycle efficiency optimization. (author)
Algorithms and programming tools for image processing on the MPP:3
Reeves, Anthony P.
1987-01-01
This is the third and final report on the work done for NASA Grant 5-403 on Algorithms and Programming Tools for Image Processing on the MPP:3. All the work done for this grant is summarized in the introduction. Work done since August 1986 is reported in detail. Research for this grant falls under the following headings: (1) fundamental algorithms for the MPP; (2) programming utilities for the MPP; (3) the Parallel Pascal Development System; and (4) performance analysis. In this report, the results of two efforts are reported: region growing, and performance analysis of important characteristic algorithms. In each case, timing results from MPP implementations are included. A paper is included in which parallel algorithms for region growing on the MPP is discussed. These algorithms permit different sized regions to be merged in parallel. Details on the implementation and peformance of several important MPP algorithms are given. These include a number of standard permutations, the FFT, convolution, arbitrary data mappings, image warping, and pyramid operations, all of which have been implemented on the MPP. The permutation and image warping functions have been included in the standard development system library.
A New Missing Data Imputation Algorithm Applied to Electrical Data Loggers
Directory of Open Access Journals (Sweden)
Concepción Crespo Turrado
2015-12-01
Full Text Available Nowadays, data collection is a key process in the study of electrical power networks when searching for harmonics and a lack of balance among phases. In this context, the lack of data of any of the main electrical variables (phase-to-neutral voltage, phase-to-phase voltage, and current in each phase and power factor adversely affects any time series study performed. When this occurs, a data imputation process must be accomplished in order to substitute the data that is missing for estimated values. This paper presents a novel missing data imputation method based on multivariate adaptive regression splines (MARS and compares it with the well-known technique called multivariate imputation by chained equations (MICE. The results obtained demonstrate how the proposed method outperforms the MICE algorithm.
Directory of Open Access Journals (Sweden)
О. E. Prokopchenko
2015-09-01
Full Text Available The article analyzes the basic methods and algorithms of mathematical processing of medical images as objects of computer mathematics. The presented methods and computer algorithms of mathematics relevant and may find application in the field of medical imaging - automated processing of images; as a tool for measurement and determination the optical parameters; identification and formation of medical images database. Methods and computer algorithms presented in the article & based on Wolfram Mathematica are also relevant to the problem of modern medical education. As an example of Wolfram Mathematica may be considered appropriate demonstration, such as recognition of special radiographs and morphological imaging. These methods are used to improve the diagnostic significance and value of medical (clinical research and can serve as an educational interactive demonstration. Implementation submitted individual methods and algorithms of computer Wolfram Mathematics contributes, in general, the optimization process of practical processing and presentation of medical images.
New approaches of the potential field for QPSO algorithm applied to nuclear reactor reload problem
International Nuclear Information System (INIS)
Nicolau, Andressa dos Santos; Schirru, Roberto
2015-01-01
Recently quantum-inspired version of the Particle Swarm Optimization (PSO) algorithm, Quantum Particle Swarm Optimization (QPSO) was proposed. The QPSO algorithm permits all particles to have a quantum behavior, where some sort of 'quantum motion' is imposed in the search process. When the QPSO is tested against a set of benchmarking functions, it showed superior performances as compared to classical PSO. The QPSO outperforms the classical one most of the time in convergence speed and achieves better levels for the fitness functions. The great advantage of QPSO algorithm is that it uses only one parameter control. The critical step or QPSO algorithm is the choice of suitable attractive potential field that can guarantee bound states for the particles moving in the quantum environment. In this article, one version of QPSO algorithm was tested with two types of potential well: delta-potential well harmonic oscillator. The main goal of this study is to show with of the potential field is the most suitable for use in QPSO in a solution of the Nuclear Reactor Reload Optimization Problem, especially in the cycle 7 of a Brazilian Nuclear Power Plant. All result were compared with the performance of its classical counterpart of the literature and shows that QPSO algorithm are well situated among the best alternatives for dealing with hard optimization problems, such as NRROP. (author)
New approaches of the potential field for QPSO algorithm applied to nuclear reactor reload problem
Energy Technology Data Exchange (ETDEWEB)
Nicolau, Andressa dos Santos; Schirru, Roberto, E-mail: andressa@lmp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear
2015-07-01
Recently quantum-inspired version of the Particle Swarm Optimization (PSO) algorithm, Quantum Particle Swarm Optimization (QPSO) was proposed. The QPSO algorithm permits all particles to have a quantum behavior, where some sort of 'quantum motion' is imposed in the search process. When the QPSO is tested against a set of benchmarking functions, it showed superior performances as compared to classical PSO. The QPSO outperforms the classical one most of the time in convergence speed and achieves better levels for the fitness functions. The great advantage of QPSO algorithm is that it uses only one parameter control. The critical step or QPSO algorithm is the choice of suitable attractive potential field that can guarantee bound states for the particles moving in the quantum environment. In this article, one version of QPSO algorithm was tested with two types of potential well: delta-potential well harmonic oscillator. The main goal of this study is to show with of the potential field is the most suitable for use in QPSO in a solution of the Nuclear Reactor Reload Optimization Problem, especially in the cycle 7 of a Brazilian Nuclear Power Plant. All result were compared with the performance of its classical counterpart of the literature and shows that QPSO algorithm are well situated among the best alternatives for dealing with hard optimization problems, such as NRROP. (author)
Genetic algorithms applied to the nuclear power plant operation
International Nuclear Information System (INIS)
Schirru, R.; Martinez, A.S.; Pereira, C.M.N.A.
2000-01-01
Nuclear power plant operation often involves very important human decisions, such as actions to be taken after a nuclear accident/transient, or finding the best core reload pattern, a complex combinatorial optimization problem which requires expert knowledge. Due to the complexity involved in the decisions to be taken, computerized systems have been intensely explored in order to aid the operator. Following hardware advances, soft computing has been improved and, nowadays, intelligent technologies, such as genetic algorithms, neural networks and fuzzy systems, are being used to support operator decisions. In this chapter two main problems are explored: transient diagnosis and nuclear core refueling. Here, solutions to such kind of problems, based on genetic algorithms, are described. A genetic algorithm was designed to optimize the nuclear fuel reload of Angra-1 nuclear power plant. Results compared to those obtained by an expert reveal a gain in the burn-up cycle. Two other genetic algorithm approaches were used to optimize real time diagnosis systems. The first one learns partitions in the time series that represents the transients, generating a set of classification centroids. The other one involves the optimization of an adaptive vector quantization neural network. Results are shown and commented. (orig.)
A Parallel Butterfly Algorithm
Poulson, Jack; Demanet, Laurent; Maxwell, Nicholas; Ying, Lexing
2014-01-01
The butterfly algorithm is a fast algorithm which approximately evaluates a discrete analogue of the integral transform (Equation Presented.) at large numbers of target points when the kernel, K(x, y), is approximately low-rank when restricted to subdomains satisfying a certain simple geometric condition. In d dimensions with O(Nd) quasi-uniformly distributed source and target points, when each appropriate submatrix of K is approximately rank-r, the running time of the algorithm is at most O(r2Nd logN). A parallelization of the butterfly algorithm is introduced which, assuming a message latency of α and per-process inverse bandwidth of β, executes in at most (Equation Presented.) time using p processes. This parallel algorithm was then instantiated in the form of the open-source DistButterfly library for the special case where K(x, y) = exp(iΦ(x, y)), where Φ(x, y) is a black-box, sufficiently smooth, real-valued phase function. Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of phase functions. Using quasi-uniform sources, hyperbolic Radon transforms, and an analogue of a three-dimensional generalized Radon transform were, respectively, observed to strong-scale from 1-node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively. © 2014 Society for Industrial and Applied Mathematics.
A Parallel Butterfly Algorithm
Poulson, Jack
2014-02-04
The butterfly algorithm is a fast algorithm which approximately evaluates a discrete analogue of the integral transform (Equation Presented.) at large numbers of target points when the kernel, K(x, y), is approximately low-rank when restricted to subdomains satisfying a certain simple geometric condition. In d dimensions with O(Nd) quasi-uniformly distributed source and target points, when each appropriate submatrix of K is approximately rank-r, the running time of the algorithm is at most O(r2Nd logN). A parallelization of the butterfly algorithm is introduced which, assuming a message latency of α and per-process inverse bandwidth of β, executes in at most (Equation Presented.) time using p processes. This parallel algorithm was then instantiated in the form of the open-source DistButterfly library for the special case where K(x, y) = exp(iΦ(x, y)), where Φ(x, y) is a black-box, sufficiently smooth, real-valued phase function. Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of phase functions. Using quasi-uniform sources, hyperbolic Radon transforms, and an analogue of a three-dimensional generalized Radon transform were, respectively, observed to strong-scale from 1-node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively. © 2014 Society for Industrial and Applied Mathematics.
Cui, Xinchun; Niu, Yuying; Zheng, Xiangwei; Han, Yingshuai
2018-01-01
In this paper, a new color watermarking algorithm based on differential evolution is proposed. A color host image is first converted from RGB space to YIQ space, which is more suitable for the human visual system. Then, apply three-level discrete wavelet transformation to luminance component Y and generate four different frequency sub-bands. After that, perform singular value decomposition on these sub-bands. In the watermark embedding process, apply discrete wavelet transformation to a watermark image after the scrambling encryption processing. Our new algorithm uses differential evolution algorithm with adaptive optimization to choose the right scaling factors. Experimental results show that the proposed algorithm has a better performance in terms of invisibility and robustness.
Characteristic statistic algorithm (CSA) for in-core loading pattern optimization
International Nuclear Information System (INIS)
Liu Zhihong; Hu Yongming; Shi Gong
2007-01-01
To solve the problem of PWR in-core loading pattern optimization, a more suitable global optimization algorithm, i.e., Characteristic statistic algorithm (CSA), is used. The searching process of this algorithm and how to apply it to this problem are presented. Loading pattern optimization code SCYCLE is developed. Two different problems on real PWR models are calculated and the results are compared with other algorithms. It is shown that SCYCLE has high efficiency and good global performance on this problem. (authors)
Halftoning processing on a JPEG-compressed image
Sibade, Cedric; Barizien, Stephane; Akil, Mohamed; Perroton, Laurent
2003-12-01
Digital image processing algorithms are usually designed for the raw format, that is on an uncompressed representation of the image. Therefore prior to transforming or processing a compressed format, decompression is applied; then, the result of the processing application is finally re-compressed for further transfer or storage. The change of data representation is resource-consuming in terms of computation, time and memory usage. In the wide format printing industry, this problem becomes an important issue: e.g. a 1 m2 input color image, scanned at 600 dpi exceeds 1.6 GB in its raw representation. However, some image processing algorithms can be performed in the compressed-domain, by applying an equivalent operation on the compressed format. This paper is presenting an innovative application of the halftoning processing operation by screening, to be applied on JPEG-compressed image. This compressed-domain transform is performed by computing the threshold operation of the screening algorithm in the DCT domain. This algorithm is illustrated by examples for different halftone masks. A pre-sharpening operation, applied on a JPEG-compressed low quality image is also described; it allows to de-noise and to enhance the contours of this image.
The Patch-Levy-Based Bees Algorithm Applied to Dynamic Optimization Problems
Directory of Open Access Journals (Sweden)
Wasim A. Hussein
2017-01-01
Full Text Available Many real-world optimization problems are actually of dynamic nature. These problems change over time in terms of the objective function, decision variables, constraints, and so forth. Therefore, it is very important to study the performance of a metaheuristic algorithm in dynamic environments to assess the robustness of the algorithm to deal with real-word problems. In addition, it is important to adapt the existing metaheuristic algorithms to perform well in dynamic environments. This paper investigates a recently proposed version of Bees Algorithm, which is called Patch-Levy-based Bees Algorithm (PLBA, on solving dynamic problems, and adapts it to deal with such problems. The performance of the PLBA is compared with other BA versions and other state-of-the-art algorithms on a set of dynamic multimodal benchmark problems of different degrees of difficulties. The results of the experiments show that PLBA achieves better results than the other BA variants. The obtained results also indicate that PLBA significantly outperforms some of the other state-of-the-art algorithms and is competitive with others.
Modified SIMPLE algorithm for the numerical analysis of incompressible flows with free surface
International Nuclear Information System (INIS)
Mok, Jin Ho; Hong, Chun Pyo; Lee, Jin Ho
2005-01-01
While the SIMPLE algorithm is most widely used for the simulations of flow phenomena that take place in the industrial equipment or the manufacturing processes, it is less adopted for the simulations of the free surface flow. Though the SIMPLE algorithm is free from the limitation of time step, the free surface behavior imposes the restriction on the time step. As a result, the explicit schemes are faster than the implicit scheme in terms of computation time when the same time step is applied to, since the implicit scheme includes the numerical method to solve the simultaneous equations in its procedure. If the computation time of SIMPLE algorithm can be reduced when it is applied to the unsteady free surface flow problems, the calculation can be carried out in the more stable way and, in the design process, the process variables can be controlled based on the more accurate data base. In this study, a modified SIMPLE algorithm is presented for the free surface flow. The broken water column problem is adopted for the validation of the modified algorithm (MoSIMPLE) and for comparison to the conventional SIMPLE algorithm
Applied Behavior Analysis and Statistical Process Control?
Hopkins, B. L.
1995-01-01
Incorporating statistical process control (SPC) methods into applied behavior analysis is discussed. It is claimed that SPC methods would likely reduce applied behavior analysts' intimate contacts with problems and would likely yield poor treatment and research decisions. Cases and data presented by Pfadt and Wheeler (1995) are cited as examples.…
The theory of hybrid stochastic algorithms
International Nuclear Information System (INIS)
Kennedy, A.D.
1989-01-01
These lectures introduce the family of Hybrid Stochastic Algorithms for performing Monte Carlo calculations in Quantum Field Theory. After explaining the basic concepts of Monte Carlo integration we discuss the properties of Markov processes and one particularly useful example of them: the Metropolis algorithm. Building upon this framework we consider the Hybrid and Langevin algorithms from the viewpoint that they are approximate versions of the Hybrid Monte Carlo method; and thus we are led to consider Molecular Dynamics using the Leapfrog algorithm. The lectures conclude by reviewing recent progress in these areas, explaining higher-order integration schemes, the asymptotic large-volume behaviour of the various algorithms, and some simple exact results obtained by applying them to free field theory. It is attempted throughout to give simple yet correct proofs of the various results encountered. 38 refs
Global and Local Page Replacement Algorithms on Virtual Memory Systems for Image Processing
WADA, Ben Tsutom
1985-01-01
Three virtual memory systems for image processing, different one another in frame allocation algorithms and page replacement algorithms, were examined experimentally upon their page-fault characteristics. The hypothesis, that global page replacement algorithms are susceptible to thrashing, held in the raster scan experiment, while it did not in another non raster-scan experiment. The results of the experiments may be useful also in making parallel image processors more efficient, while they a...
International Nuclear Information System (INIS)
Falchieri, Davide; Gandolfi, Enzo; Masotti, Matteo
2004-01-01
This paper evaluates the performances of a wavelet-based compression algorithm applied to the data produced by the silicon drift detectors of the ALICE experiment at CERN. This compression algorithm is a general purpose lossy technique, in other words, its application could prove useful even on a wide range of other data reduction's problems. In particular the design targets relevant for our wavelet-based compression algorithm are the following ones: a high-compression coefficient, a reconstruction error as small as possible and a very limited execution time. Interestingly, the results obtained are quite close to the ones achieved by the algorithm implemented in the first prototype of the chip CARLOS, the chip that will be used in the silicon drift detectors readout chain
An exact and efficient first passage time algorithm for reaction–diffusion processes on a 2D-lattice
International Nuclear Information System (INIS)
Bezzola, Andri; Bales, Benjamin B.; Alkire, Richard C.; Petzold, Linda R.
2014-01-01
We present an exact and efficient algorithm for reaction–diffusion–nucleation processes on a 2D-lattice. The algorithm makes use of first passage time (FPT) to replace the computationally intensive simulation of diffusion hops in KMC by larger jumps when particles are far away from step-edges or other particles. Our approach computes exact probability distributions of jump times and target locations in a closed-form formula, based on the eigenvectors and eigenvalues of the corresponding 1D transition matrix, maintaining atomic-scale resolution of resulting shapes of deposit islands. We have applied our method to three different test cases of electrodeposition: pure diffusional aggregation for large ranges of diffusivity rates and for simulation domain sizes of up to 4096×4096 sites, the effect of diffusivity on island shapes and sizes in combination with a KMC edge diffusion, and the calculation of an exclusion zone in front of a step-edge, confirming statistical equivalence to standard KMC simulations. The algorithm achieves significant speedup compared to standard KMC for cases where particles diffuse over long distances before nucleating with other particles or being captured by larger islands
An exact and efficient first passage time algorithm for reaction–diffusion processes on a 2D-lattice
Energy Technology Data Exchange (ETDEWEB)
Bezzola, Andri, E-mail: andri.bezzola@gmail.com [Mechanical Engineering Department, University of California, Santa Barbara, CA 93106 (United States); Bales, Benjamin B., E-mail: bbbales2@gmail.com [Mechanical Engineering Department, University of California, Santa Barbara, CA 93106 (United States); Alkire, Richard C., E-mail: r-alkire@uiuc.edu [Department of Chemical Engineering, University of Illinois, Urbana, IL 61801 (United States); Petzold, Linda R., E-mail: petzold@engineering.ucsb.edu [Mechanical Engineering Department and Computer Science Department, University of California, Santa Barbara, CA 93106 (United States)
2014-01-01
We present an exact and efficient algorithm for reaction–diffusion–nucleation processes on a 2D-lattice. The algorithm makes use of first passage time (FPT) to replace the computationally intensive simulation of diffusion hops in KMC by larger jumps when particles are far away from step-edges or other particles. Our approach computes exact probability distributions of jump times and target locations in a closed-form formula, based on the eigenvectors and eigenvalues of the corresponding 1D transition matrix, maintaining atomic-scale resolution of resulting shapes of deposit islands. We have applied our method to three different test cases of electrodeposition: pure diffusional aggregation for large ranges of diffusivity rates and for simulation domain sizes of up to 4096×4096 sites, the effect of diffusivity on island shapes and sizes in combination with a KMC edge diffusion, and the calculation of an exclusion zone in front of a step-edge, confirming statistical equivalence to standard KMC simulations. The algorithm achieves significant speedup compared to standard KMC for cases where particles diffuse over long distances before nucleating with other particles or being captured by larger islands.
Qin, Cheng-Zhi; Zhan, Lijun
2012-06-01
As one of the important tasks in digital terrain analysis, the calculation of flow accumulations from gridded digital elevation models (DEMs) usually involves two steps in a real application: (1) using an iterative DEM preprocessing algorithm to remove the depressions and flat areas commonly contained in real DEMs, and (2) using a recursive flow-direction algorithm to calculate the flow accumulation for every cell in the DEM. Because both algorithms are computationally intensive, quick calculation of the flow accumulations from a DEM (especially for a large area) presents a practical challenge to personal computer (PC) users. In recent years, rapid increases in hardware capacity of the graphics processing units (GPUs) provided in modern PCs have made it possible to meet this challenge in a PC environment. Parallel computing on GPUs using a compute-unified-device-architecture (CUDA) programming model has been explored to speed up the execution of the single-flow-direction algorithm (SFD). However, the parallel implementation on a GPU of the multiple-flow-direction (MFD) algorithm, which generally performs better than the SFD algorithm, has not been reported. Moreover, GPU-based parallelization of the DEM preprocessing step in the flow-accumulation calculations has not been addressed. This paper proposes a parallel approach to calculate flow accumulations (including both iterative DEM preprocessing and a recursive MFD algorithm) on a CUDA-compatible GPU. For the parallelization of an MFD algorithm (MFD-md), two different parallelization strategies using a GPU are explored. The first parallelization strategy, which has been used in the existing parallel SFD algorithm on GPU, has the problem of computing redundancy. Therefore, we designed a parallelization strategy based on graph theory. The application results show that the proposed parallel approach to calculate flow accumulations on a GPU performs much faster than either sequential algorithms or other parallel GPU
Directory of Open Access Journals (Sweden)
O. Ye. Prokopchenko
2015-10-01
Full Text Available The article analyzes the basic methods and algorithms of mathematical processing of medical images as objects of computer mathematics. The presented methods and computer algorithms of mathematics relevant and may find application in the field of medical imaging - automated processing of images; as a tool for measurement and determination the optical parameters; identification and formation of medical images database. Methods and computer algorithms presented in the article and based on Wolfram Mathematica are also relevant to the problem of modern medical education. As an example of Wolfram Mathematics may be considered appropriate demonstration, such as recognition of special radiographs and morphological imaging. These methods are used to improve the diagnostic significance and value of medical (clinical research and can serve as an educational interactive demonstration. Implementation submitted individual methods and algorithms of computer Wolfram Mathematics contributes, in general, the optimization process of practical processing and presentation of medical images.
Aida-CMK multi-algorithm optimization kernel applied to analog IC sizing
Lourenço, Ricardo; Horta, Nuno
2015-01-01
This work addresses the research and development of an innovative optimization kernel applied to analog integrated circuit (IC) design. Particularly, this works describes the modifications inside the AIDA Framework, an electronic design automation framework fully developed by at the Integrated Circuits Group-LX of the Instituto de Telecomunicações, Lisbon. It focusses on AIDA-CMK, by enhancing AIDA-C, which is the circuit optimizer component of AIDA, with a new multi-objective multi-constraint optimization module that constructs a base for multiple algorithm implementations. The proposed solution implements three approaches to multi-objective multi-constraint optimization, namely, an evolutionary approach with NSGAII, a swarm intelligence approach with MOPSO and stochastic hill climbing approach with MOSA. Moreover, the implemented structure allows the easy hybridization between kernels transforming the previous simple NSGAII optimization module into a more evolved and versatile module supporting multiple s...
Image Processing Algorithms in the Secondary School Programming Education
Gerják, István
2017-01-01
Learning computer programming for students of the age of 14-18 is difficult and requires endurance and engagement. Being familiar with the syntax of a computer language and writing programs in it are challenges for youngsters, not to mention that understanding algorithms is also a big challenge. To help students in the learning process, teachers…
A Semisupervised Support Vector Machines Algorithm for BCI Systems
Qin, Jianzhao; Li, Yuanqing; Sun, Wei
2007-01-01
As an emerging technology, brain-computer interfaces (BCIs) bring us new communication interfaces which translate brain activities into control signals for devices like computers, robots, and so forth. In this study, we propose a semisupervised support vector machine (SVM) algorithm for brain-computer interface (BCI) systems, aiming at reducing the time-consuming training process. In this algorithm, we apply a semisupervised SVM for translating the features extracted from the electrical recordings of brain into control signals. This SVM classifier is built from a small labeled data set and a large unlabeled data set. Meanwhile, to reduce the time for training semisupervised SVM, we propose a batch-mode incremental learning method, which can also be easily applied to the online BCI systems. Additionally, it is suggested in many studies that common spatial pattern (CSP) is very effective in discriminating two different brain states. However, CSP needs a sufficient labeled data set. In order to overcome the drawback of CSP, we suggest a two-stage feature extraction method for the semisupervised learning algorithm. We apply our algorithm to two BCI experimental data sets. The offline data analysis results demonstrate the effectiveness of our algorithm. PMID:18368141
Covariance-Based Measurement Selection Criterion for Gaussian-Based Algorithms
Directory of Open Access Journals (Sweden)
Fernando A. Auat Cheein
2013-01-01
Full Text Available Process modeling by means of Gaussian-based algorithms often suffers from redundant information which usually increases the estimation computational complexity without significantly improving the estimation performance. In this article, a non-arbitrary measurement selection criterion for Gaussian-based algorithms is proposed. The measurement selection criterion is based on the determination of the most significant measurement from both an estimation convergence perspective and the covariance matrix associated with the measurement. The selection criterion is independent from the nature of the measured variable. This criterion is used in conjunction with three Gaussian-based algorithms: the EIF (Extended Information Filter, the EKF (Extended Kalman Filter and the UKF (Unscented Kalman Filter. Nevertheless, the measurement selection criterion shown herein can also be applied to other Gaussian-based algorithms. Although this work is focused on environment modeling, the results shown herein can be applied to other Gaussian-based algorithm implementations. Mathematical descriptions and implementation results that validate the proposal are also included in this work.
Tel, G.
We define the notion of total algorithms for networks of processes. A total algorithm enforces that a "decision" is taken by a subset of the processes, and that participation of all processes is required to reach this decision. Total algorithms are an important building block in the design of
Analysis and Improvement of Fireworks Algorithm
Directory of Open Access Journals (Sweden)
Xi-Guang Li
2017-02-01
Full Text Available The Fireworks Algorithm is a recently developed swarm intelligence algorithm to simulate the explosion process of fireworks. Based on the analysis of each operator of Fireworks Algorithm (FWA, this paper improves the FWA and proves that the improved algorithm converges to the global optimal solution with probability 1. The proposed algorithm improves the goal of further boosting performance and achieving global optimization where mainly include the following strategies. Firstly using the opposition-based learning initialization population. Secondly a new explosion amplitude mechanism for the optimal firework is proposed. In addition, the adaptive t-distribution mutation for non-optimal individuals and elite opposition-based learning for the optimal individual are used. Finally, a new selection strategy, namely Disruptive Selection, is proposed to reduce the running time of the algorithm compared with FWA. In our simulation, we apply the CEC2013 standard functions and compare the proposed algorithm (IFWA with SPSO2011, FWA, EFWA and dynFWA. The results show that the proposed algorithm has better overall performance on the test functions.
APPLYING OF COLLABORATIVE FILTERING ALGORITHM FOR PROCESSING OF MEDICAL DATA
Directory of Open Access Journals (Sweden)
Карина Владимировна МЕЛЬНИК
2015-05-01
Full Text Available The problem of improving of effectiveness of medical facility for implementation of social project is considered. There are different approaches to solve this problem, some of which require additional funding, which is usually absent. Therefore, it was proposed to use the approach of processing and application of patients’ data from medical records. The selection of a representative sample of patients was carried out using the technique of collaborative filtering. Review of the methods of collaborative filtering is performed, which showed that there are three main groups of methods. The first group calculates various measures of similarity between the object. The second group is data mining techniques. The third group of methods is a hybrid approach. The Gower coefficient for calculation of similarity measure of medical records of patients is considered in the article. A model of risk assessment of diseases based on collaborative filtering techniques is developed.
Advances and applications of optimised algorithms in image processing
Oliva, Diego
2017-01-01
This book presents a study of the use of optimization algorithms in complex image processing problems. The problems selected explore areas ranging from the theory of image segmentation to the detection of complex objects in medical images. Furthermore, the concepts of machine learning and optimization are analyzed to provide an overview of the application of these tools in image processing. The material has been compiled from a teaching perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics, and can be used for courses on Artificial Intelligence, Advanced Image Processing, Computational Intelligence, etc. Likewise, the material can be useful for research from the evolutionary computation, artificial intelligence and image processing co.
Specific algorithm method of scoring the Clock Drawing Test applied in cognitively normal elderly
Directory of Open Access Journals (Sweden)
Liana Chaves Mendes-Santos
Full Text Available The Clock Drawing Test (CDT is an inexpensive, fast and easily administered measure of cognitive function, especially in the elderly. This instrument is a popular clinical tool widely used in screening for cognitive disorders and dementia. The CDT can be applied in different ways and scoring procedures also vary. OBJECTIVE: The aims of this study were to analyze the performance of elderly on the CDT and evaluate inter-rater reliability of the CDT scored by using a specific algorithm method adapted from Sunderland et al. (1989. METHODS: We analyzed the CDT of 100 cognitively normal elderly aged 60 years or older. The CDT ("free-drawn" and Mini-Mental State Examination (MMSE were administered to all participants. Six independent examiners scored the CDT of 30 participants to evaluate inter-rater reliability. RESULTS AND CONCLUSION: A score of 5 on the proposed algorithm ("Numbers in reverse order or concentrated", equivalent to 5 points on the original Sunderland scale, was the most frequent (53.5%. The CDT specific algorithm method used had high inter-rater reliability (p<0.01, and mean score ranged from 5.06 to 5.96. The high frequency of an overall score of 5 points may suggest the need to create more nuanced evaluation criteria, which are sensitive to differences in levels of impairment in visuoconstructive and executive abilities during aging.
A practicable signal processing algorithm for industrial nuclear instrument
International Nuclear Information System (INIS)
Tang Yaogeng; Gao Song; Yang Wujiao
2006-01-01
In order to reduce the statistical error and to improve dynamic performances of the industrial nuclear instrument, a practicable method of nuclear measurement signal processing is developed according to industrial nuclear measurement features. The algorithm designed is implemented with a single-chip microcomputer. The results of application in (radiation level gauge has proved the effectiveness of this method). (authors)
A quantum algorithm for Viterbi decoding of classical convolutional codes
Grice, Jon R.; Meyer, David A.
2014-01-01
We present a quantum Viterbi algorithm (QVA) with better than classical performance under certain conditions. In this paper the proposed algorithm is applied to decoding classical convolutional codes, for instance; large constraint length $Q$ and short decode frames $N$. Other applications of the classical Viterbi algorithm where $Q$ is large (e.g. speech processing) could experience significant speedup with the QVA. The QVA exploits the fact that the decoding trellis is similar to the butter...
STAR Algorithm Integration Team - Facilitating operational algorithm development
Mikles, V. J.
2015-12-01
The NOAA/NESDIS Center for Satellite Research and Applications (STAR) provides technical support of the Joint Polar Satellite System (JPSS) algorithm development and integration tasks. Utilizing data from the S-NPP satellite, JPSS generates over thirty Environmental Data Records (EDRs) and Intermediate Products (IPs) spanning atmospheric, ocean, cryosphere, and land weather disciplines. The Algorithm Integration Team (AIT) brings technical expertise and support to product algorithms, specifically in testing and validating science algorithms in a pre-operational environment. The AIT verifies that new and updated algorithms function in the development environment, enforces established software development standards, and ensures that delivered packages are functional and complete. AIT facilitates the development of new JPSS-1 algorithms by implementing a review approach based on the Enterprise Product Lifecycle (EPL) process. Building on relationships established during the S-NPP algorithm development process and coordinating directly with science algorithm developers, the AIT has implemented structured reviews with self-contained document suites. The process has supported algorithm improvements for products such as ozone, active fire, vegetation index, and temperature and moisture profiles.
Hybrid sparse blind deconvolution: an implementation of SOOT algorithm to real data
Pakmanesh, Parvaneh; Goudarzi, Alireza; Kourki, Meisam
2018-06-01
Getting information of seismic data depends on deconvolution as an important processing step; it provides the reflectivity series by signal compression. This compression can be obtained by removing the wavelet effects on the traces. The recently blind deconvolution has provided reliable performance for sparse signal recovery. In this study, two deconvolution methods have been implemented to the seismic data; the convolution of these methods provides a robust spiking deconvolution approach. This hybrid deconvolution is applied using the sparse deconvolution (MM algorithm) and the Smoothed-One-Over-Two algorithm (SOOT) in a chain. The MM algorithm is based on the minimization of the cost function defined by standards l1 and l2. After applying the two algorithms to the seismic data, the SOOT algorithm provided well-compressed data with a higher resolution than the MM algorithm. The SOOT algorithm requires initial values to be applied for real data, such as the wavelet coefficients and reflectivity series that can be achieved through the MM algorithm. The computational cost of the hybrid method is high, and it is necessary to be implemented on post-stack or pre-stack seismic data of complex structure regions.
Optimization-Based Image Segmentation by Genetic Algorithms
Directory of Open Access Journals (Sweden)
Rosenberger C
2008-01-01
Full Text Available Abstract Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.
Optimization-Based Image Segmentation by Genetic Algorithms
Directory of Open Access Journals (Sweden)
H. Laurent
2008-05-01
Full Text Available Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.
New Parallel Algorithms for Landscape Evolution Model
Jin, Y.; Zhang, H.; Shi, Y.
2017-12-01
Most landscape evolution models (LEM) developed in the last two decades solve the diffusion equation to simulate the transportation of surface sediments. This numerical approach is difficult to parallelize due to the computation of drainage area for each node, which needs huge amount of communication if run in parallel. In order to overcome this difficulty, we developed two parallel algorithms for LEM with a stream net. One algorithm handles the partition of grid with traditional methods and applies an efficient global reduction algorithm to do the computation of drainage areas and transport rates for the stream net; the other algorithm is based on a new partition algorithm, which partitions the nodes in catchments between processes first, and then partitions the cells according to the partition of nodes. Both methods focus on decreasing communication between processes and take the advantage of massive computing techniques, and numerical experiments show that they are both adequate to handle large scale problems with millions of cells. We implemented the two algorithms in our program based on the widely used finite element library deal.II, so that it can be easily coupled with ASPECT.
International Nuclear Information System (INIS)
Gollub, C; De Vivie-Riedle, R
2009-01-01
A multi-objective genetic algorithm is applied to optimize picosecond laser fields, driving vibrational quantum processes. Our examples are state-to-state transitions and unitary transformations. The approach allows features of the shaped laser fields and of the excitation mechanisms to be controlled simultaneously with the quantum yield. Within the parameter range accessible to the experiment, we focus on short pulse durations and low pulse energies to optimize preferably robust laser fields. Multidimensional Pareto fronts for these conflicting objectives could be constructed. Comparison with previous work showed that the solutions from Pareto optimizations and from optimal control theory match very well.
Facial biometrics of Yorubas of Nigeria using Akinlolu-Raji image-processing algorithm
Directory of Open Access Journals (Sweden)
Adelaja Abdulazeez Akinlolu
2016-01-01
Full Text Available Background: Forensic anthropology deals with the establishment of human identity using genetics, biometrics, and face recognition technology. This study aims to compute facial biometrics of Yorubas of Osun State of Nigeria using a novel Akinlolu-Raji image-processing algorithm. Materials and Methods: Three hundred Yorubas of Osun State (150 males and 150 females, aged 15–33 years were selected as subjects for the study with informed consents and when established as Yorubas by parents and grandparents. Height, body weight, and facial biometrics (evaluated on three-dimensional [3D] facial photographs were measured on all subjects. The novel Akinlolu-Raji image-processing algorithm for forensic face recognition was developed using the modified row method of computer programming. Facial width, total face height, short forehead height, long forehead height, upper face height, nasal bridge length, nose height, morphological face height, and lower face height computed from readings of the Akinlolu-Raji image-processing algorithm were analyzed using z-test (P ≤ 0.05 of 2010 Microsoft Excel statistical software. Results: Statistical analyzes of facial measurements showed nonsignificant higher mean values (P > 0.05 in Yoruba males compared to females. Yoruba males and females have the leptoprosopic face type based on classifications of face types from facial indices. Conclusions: Akinlolu-Raji image-processing algorithm can be employed for computing anthropometric, forensic, diagnostic, or any other measurements on 2D and 3D images, and data computed from its readings can be converted to actual or life sizes as obtained in 1D measurements. Furthermore, Yoruba males and females have the leptoprosopic face type.
Directory of Open Access Journals (Sweden)
Marco Antonio Cruz-Chávez
2016-01-01
Full Text Available A stochastic algorithm for obtaining feasible initial populations to the Vehicle Routing Problem with Time Windows is presented. The theoretical formulation for the Vehicle Routing Problem with Time Windows is explained. The proposed method is primarily divided into a clustering algorithm and a two-phase algorithm. The first step is the application of a modified k-means clustering algorithm which is proposed in this paper. The two-phase algorithm evaluates a partial solution to transform it into a feasible individual. The two-phase algorithm consists of a hybridization of four kinds of insertions which interact randomly to obtain feasible individuals. It has been proven that different kinds of insertions impact the diversity among individuals in initial populations, which is crucial for population-based algorithm behavior. A modification to the Hamming distance method is applied to the populations generated for the Vehicle Routing Problem with Time Windows to evaluate their diversity. Experimental tests were performed based on the Solomon benchmarking. Experimental results show that the proposed method facilitates generation of highly diverse populations, which vary according to the type and distribution of the instances.
New Optimization Algorithms in Physics
Hartmann, Alexander K
2004-01-01
Many physicists are not aware of the fact that they can solve their problems by applying optimization algorithms. Since the number of such algorithms is steadily increasing, many new algorithms have not been presented comprehensively until now. This presentation of recently developed algorithms applied in physics, including demonstrations of how they work and related results, aims to encourage their application, and as such the algorithms selected cover concepts and methods from statistical physics to optimization problems emerging in theoretical computer science.
An Improved Hierarchical Genetic Algorithm for Sheet Cutting Scheduling with Process Constraints
Directory of Open Access Journals (Sweden)
Yunqing Rao
2013-01-01
Full Text Available For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.
An improved hierarchical genetic algorithm for sheet cutting scheduling with process constraints.
Rao, Yunqing; Qi, Dezhong; Li, Jinling
2013-01-01
For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony--hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.
Lee, K. J.; Stovall, K.; Jenet, F. A.; Martinez, J.; Dartez, L. P.; Mata, A.; Lunsford, G.; Cohen, S.; Biwer, C. M.; Rohr, M.; Flanigan, J.; Walker, A.; Banaszak, S.; Allen, B.; Barr, E. D.; Bhat, N. D. R.; Bogdanov, S.; Brazier, A.; Camilo, F.; Champion, D. J.; Chatterjee, S.; Cordes, J.; Crawford, F.; Deneva, J.; Desvignes, G.; Ferdman, R. D.; Freire, P.; Hessels, J. W. T.; Karuppusamy, R.; Kaspi, V. M.; Knispel, B.; Kramer, M.; Lazarus, P.; Lynch, R.; Lyne, A.; McLaughlin, M.; Ransom, S.; Scholz, P.; Siemens, X.; Spitler, L.; Stairs, I.; Tan, M.; van Leeuwen, J.; Zhu, W. W.
2013-07-01
Modern radio pulsar surveys produce a large volume of prospective candidates, the majority of which are polluted by human-created radio frequency interference or other forms of noise. Typically, large numbers of candidates need to be visually inspected in order to determine if they are real pulsars. This process can be labour intensive. In this paper, we introduce an algorithm called Pulsar Evaluation Algorithm for Candidate Extraction (PEACE) which improves the efficiency of identifying pulsar signals. The algorithm ranks the candidates based on a score function. Unlike popular machine-learning-based algorithms, no prior training data sets are required. This algorithm has been applied to data from several large-scale radio pulsar surveys. Using the human-based ranking results generated by students in the Arecibo Remote Command Center programme, the statistical performance of PEACE was evaluated. It was found that PEACE ranked 68 per cent of the student-identified pulsars within the top 0.17 per cent of sorted candidates, 95 per cent within the top 0.34 per cent and 100 per cent within the top 3.7 per cent. This clearly demonstrates that PEACE significantly increases the pulsar identification rate by a factor of about 50 to 1000. To date, PEACE has been directly responsible for the discovery of 47 new pulsars, 5 of which are millisecond pulsars that may be useful for pulsar timing based gravitational-wave detection projects.
Zhang, Chenxin; Öwall, Viktor
2016-01-01
This book focuses on domain-specific heterogeneous reconfigurable architectures, demonstrating for readers a computing platform which is flexible enough to support multiple standards, multiple modes, and multiple algorithms. The content is multi-disciplinary, covering areas of wireless communication, computing architecture, and circuit design. The platform described provides real-time processing capability with reasonable implementation cost, achieving balanced trade-offs among flexibility, performance, and hardware costs. The authors discuss efficient design methods for wireless communication processing platforms, from both an algorithm and architecture design perspective. Coverage also includes computing platforms for different wireless technologies and standards, including MIMO, OFDM, Massive MIMO, DVB, WLAN, LTE/LTE-A, and 5G. •Discusses reconfigurable architectures, including hardware building blocks such as processing elements, memory sub-systems, Network-on-Chip (NoC), and dynamic hardware reconfigur...
International Nuclear Information System (INIS)
Joseph, Joby; Muthukumaran, S.
2016-01-01
Abundant improvements have occurred in materials handling, especially in metal joining. Pulsed current gas tungsten arc welding (PCGTAW) is one of the consequential fusion techniques. In this work, PCGTAW of AISI 4135 steel engendered through powder metallurgy (P/M) has been executed, and the process parameters have been highlighted applying Taguchi's L9 orthogonal array. The results show that the peak current (Ip), gas flow rate (GFR), welding speed (WS) and base current (Ib) are the critical constraints in strong determinant of the Tensile strength (TS) as well as percentage of elongation (% Elong) of the joint. The practical impact of applying Genetic algorithm (GA) and Simulated annealing (SA) to PCGTAW process has been authenticated by means of calculating the deviation between predicted and experimental welding process parameters
Energy Technology Data Exchange (ETDEWEB)
Joseph, Joby; Muthukumaran, S. [National Institute of Technology, Tamil Nadu (India)
2016-01-15
Abundant improvements have occurred in materials handling, especially in metal joining. Pulsed current gas tungsten arc welding (PCGTAW) is one of the consequential fusion techniques. In this work, PCGTAW of AISI 4135 steel engendered through powder metallurgy (P/M) has been executed, and the process parameters have been highlighted applying Taguchi's L9 orthogonal array. The results show that the peak current (Ip), gas flow rate (GFR), welding speed (WS) and base current (Ib) are the critical constraints in strong determinant of the Tensile strength (TS) as well as percentage of elongation (% Elong) of the joint. The practical impact of applying Genetic algorithm (GA) and Simulated annealing (SA) to PCGTAW process has been authenticated by means of calculating the deviation between predicted and experimental welding process parameters.
GENERAL ALGORITHMIC SCHEMA OF THE PROCESS OF THE CHILL AUXILIARIES PROJECTION
Directory of Open Access Journals (Sweden)
A. N. Chichko
2006-01-01
Full Text Available The general algorithmic diagram of systematization of the existing approaches to the process of projection is offered and the foundation of computer system of the chill mold arming construction is laid.
Image processing algorithm of computer-aided diagnosis in lung cancer screening by CT
International Nuclear Information System (INIS)
Yamamoto, Shinji
2004-01-01
In this paper, an image processing algorithm for computer-aided diagnosis of lung cancer by X-ray CT is described, which has been developed by my research group for these 10 years or so. CT lung images gathered at the mass screening stage are almost all normal, and lung cancer nodules will be found as the rate of less than 10%. To pick up such a very rare nodules with the high accuracy, a very sensitive detection algorithm is requested which is detectable local and very slight variation of the image. On the contrary, such a sensitive detection algorithm introduces a bad effect that a lot of normal shadows will be detected as abnormal shadows. In this paper I describe how to compromise this complicated subject and realize a practical computer-aided diagnosis tool by the image processing algorithm developed by my research group. Especially, I will mainly focus my description to the principle and characteristics of the Quoit filter which is newly developed as a high sensitive filter by my group. (author)
Medical Image Processing Server applied to Quality Control of Nuclear Medicine.
Vergara, C.; Graffigna, J. P.; Marino, E.; Omati, S.; Holleywell, P.
2016-04-01
This paper is framed within the area of medical image processing and aims to present the process of installation, configuration and implementation of a processing server of medical images (MIPS) in the Fundación Escuela de Medicina Nuclear located in Mendoza, Argentina (FUESMEN). It has been developed in the Gabinete de Tecnologia Médica (GA.TE.ME), Facultad de Ingeniería-Universidad Nacional de San Juan. MIPS is a software that using the DICOM standard, can receive medical imaging studies of different modalities or viewing stations, then it executes algorithms and finally returns the results to other devices. To achieve the objectives previously mentioned, preliminary tests were conducted in the laboratory. More over, tools were remotely installed in clinical enviroment. The appropiate protocols for setting up and using them in different services were established once defined those suitable algorithms. Finally, it’s important to focus on the implementation and training that is provided in FUESMEN, using nuclear medicine quality control processes. Results on implementation are exposed in this work.
Medical Image Processing Server applied to Quality Control of Nuclear Medicine
International Nuclear Information System (INIS)
Vergara, C.; Graffigna, J.P.; Holleywell, P.; Marino, E.; Omati, S.
2016-01-01
This paper is framed within the area of medical image processing and aims to present the process of installation, configuration and implementation of a processing server of medical images (MIPS) in the Fundación Escuela de Medicina Nuclear located in Mendoza, Argentina (FUESMEN). It has been developed in the Gabinete de Tecnologia Médica (GA.TE.ME), Facultad de Ingeniería-Universidad Nacional de San Juan. MIPS is a software that using the DICOM standard, can receive medical imaging studies of different modalities or viewing stations, then it executes algorithms and finally returns the results to other devices. To achieve the objectives previously mentioned, preliminary tests were conducted in the laboratory. More over, tools were remotely installed in clinical enviroment. The appropiate protocols for setting up and using them in different services were established once defined those suitable algorithms. Finally, it’s important to focus on the implementation and training that is provided in FUESMEN, using nuclear medicine quality control processes. Results on implementation are exposed in this work. (paper)
A Scalable Gaussian Process Analysis Algorithm for Biomass Monitoring
Energy Technology Data Exchange (ETDEWEB)
Chandola, Varun [ORNL; Vatsavai, Raju [ORNL
2011-01-01
Biomass monitoring is vital for studying the carbon cycle of earth's ecosystem and has several significant implications, especially in the context of understanding climate change and its impacts. Recently, several change detection methods have been proposed to identify land cover changes in temporal profiles (time series) of vegetation collected using remote sensing instruments, but do not satisfy one or both of the two requirements of the biomass monitoring problem, i.e., {\\em operating in online mode} and {\\em handling periodic time series}. In this paper, we adapt Gaussian process regression to detect changes in such time series in an online fashion. While Gaussian process (GP) have been widely used as a kernel based learning method for regression and classification, their applicability to massive spatio-temporal data sets, such as remote sensing data, has been limited owing to the high computational costs involved. We focus on addressing the scalability issues associated with the proposed GP based change detection algorithm. This paper makes several significant contributions. First, we propose a GP based online time series change detection algorithm and demonstrate its effectiveness in detecting different types of changes in {\\em Normalized Difference Vegetation Index} (NDVI) data obtained from a study area in Iowa, USA. Second, we propose an efficient Toeplitz matrix based solution which significantly improves the computational complexity and memory requirements of the proposed GP based method. Specifically, the proposed solution can analyze a time series of length $t$ in $O(t^2)$ time while maintaining a $O(t)$ memory footprint, compared to the $O(t^3)$ time and $O(t^2)$ memory requirement of standard matrix manipulation based methods. Third, we describe a parallel version of the proposed solution which can be used to simultaneously analyze a large number of time series. We study three different parallel implementations: using threads, MPI, and a
Ameliorating mammograms by using novel image processing algorithms
Pillai, A.; Kwartowitz, D.
2014-03-01
Mammography is one of the most important tools for the early detection of breast cancer typically through detection of characteristic masses and/or micro calcifications. Digital mammography has become commonplace in recent years. High quality mammogram images are large in size, providing high-resolution data. Estimates of the false negative rate for cancers in mammography are approximately 10%-30%. This may be due to observation error, but more frequently it is because the cancer is hidden by other dense tissue in the breast and even after retrospective review of the mammogram, cannot be seen. In this study, we report on the results of novel image processing algorithms that will enhance the images providing decision support to reading physicians. Techniques such as Butterworth high pass filtering and Gabor filters will be applied to enhance images; followed by segmentation of the region of interest (ROI). Subsequently, the textural features will be extracted from the ROI, which will be used to classify the ROIs as either masses or non-masses. Among the statistical methods most used for the characterization of textures, the co-occurrence matrix makes it possible to determine the frequency of appearance of two pixels separated by a distance, at an angle from the horizontal. This matrix contains a very large amount of information that is complex. Therefore, it is not used directly but through measurements known as indices of texture such as average, variance, energy, contrast, correlation, normalized correlation and entropy.
Gradient algorithm applied to laboratory quantum control
International Nuclear Information System (INIS)
Roslund, Jonathan; Rabitz, Herschel
2009-01-01
The exploration of a quantum control landscape, which is the physical observable as a function of the control variables, is fundamental for understanding the ability to perform observable optimization in the laboratory. For high control variable dimensions, trajectory-based methods provide a means for performing such systematic explorations by exploiting the measured gradient of the observable with respect to the control variables. This paper presents a practical, robust, easily implemented statistical method for obtaining the gradient on a general quantum control landscape in the presence of noise. In order to demonstrate the method's utility, the experimentally measured gradient is utilized as input in steepest-ascent trajectories on the landscapes of three model quantum control problems: spectrally filtered and integrated second harmonic generation as well as excitation of atomic rubidium. The gradient algorithm achieves efficiency gains of up to approximately three times that of the standard genetic algorithm and, as such, is a promising tool for meeting quantum control optimization goals as well as landscape analyses. The landscape trajectories directed by the gradient should aid in the continued investigation and understanding of controlled quantum phenomena.
An Improved Crow Search Algorithm Applied to Energy Problems
Directory of Open Access Journals (Sweden)
Primitivo Díaz
2018-03-01
Full Text Available The efficient use of energy in electrical systems has become a relevant topic due to its environmental impact. Parameter identification in induction motors and capacitor allocation in distribution networks are two representative problems that have strong implications in the massive use of energy. From an optimization perspective, both problems are considered extremely complex due to their non-linearity, discontinuity, and high multi-modality. These characteristics make difficult to solve them by using standard optimization techniques. On the other hand, metaheuristic methods have been widely used as alternative optimization algorithms to solve complex engineering problems. The Crow Search Algorithm (CSA is a recent metaheuristic method based on the intelligent group behavior of crows. Although CSA presents interesting characteristics, its search strategy presents great difficulties when it faces high multi-modal formulations. In this paper, an improved version of the CSA method is presented to solve complex optimization problems of energy. In the new algorithm, two features of the original CSA are modified: (I the awareness probability (AP and (II the random perturbation. With such adaptations, the new approach preserves solution diversity and improves the convergence to difficult high multi-modal optima. In order to evaluate its performance, the proposed algorithm has been tested in a set of four optimization problems which involve induction motors and distribution networks. The results demonstrate the high performance of the proposed method when it is compared with other popular approaches.
Directory of Open Access Journals (Sweden)
Bo Cheng
2016-08-01
Full Text Available Spatial data processing often requires massive datasets, and the task/data scheduling efficiency of these applications has an impact on the overall processing performance. Among the existing scheduling strategies, hypergraph-based algorithms capture the data sharing pattern in a global way and significantly reduce total communication volume. Due to heterogeneous processing platforms, however, single hypergraph partitioning for later scheduling may be not optimal. Moreover, these scheduling algorithms neglect the overlap between task execution and data transfer that could further decrease execution time. In order to address these problems, an extended hypergraph-based task-scheduling algorithm, named Hypergraph+, is proposed for massive spatial data processing. Hypergraph+ improves upon current hypergraph scheduling algorithms in two ways: (1 It takes platform heterogeneity into consideration offering a metric function to evaluate the partitioning quality in order to derive the best task/file schedule; and (2 It can maximize the overlap between communication and computation. The GridSim toolkit was used to evaluate Hypergraph+ in an IDW spatial interpolation application on heterogeneous master-slave platforms. Experiments illustrate that the proposed Hypergraph+ algorithm achieves on average a 43% smaller makespan than the original hypergraph scheduling algorithm but still preserves high scheduling efficiency.
Joint optimization of algorithmic suites for EEG analysis.
Santana, Eder; Brockmeier, Austin J; Principe, Jose C
2014-01-01
Electroencephalogram (EEG) data analysis algorithms consist of multiple processing steps each with a number of free parameters. A joint optimization methodology can be used as a wrapper to fine-tune these parameters for the patient or application. This approach is inspired by deep learning neural network models, but differs because the processing layers for EEG are heterogeneous with different approaches used for processing space and time. Nonetheless, we treat the processing stages as a neural network and apply backpropagation to jointly optimize the parameters. This approach outperforms previous results on the BCI Competition II - dataset IV; additionally, it outperforms the common spatial patterns (CSP) algorithm on the BCI Competition III dataset IV. In addition, the optimized parameters in the architecture are still interpretable.
Fast algorithm for spectral processing with application to on-line welding quality assurance
Mirapeix, J.; Cobo, A.; Jaúregui, C.; López-Higuera, J. M.
2006-10-01
A new technique is presented in this paper for the analysis of welding process emission spectra to accurately estimate in real-time the plasma electronic temperature. The estimation of the electronic temperature of the plasma, through the analysis of the emission lines from multiple atomic species, may be used to monitor possible perturbations during the welding process. Unlike traditional techniques, which usually involve peak fitting to Voigt functions using the Levenberg-Marquardt recursive method, sub-pixel algorithms are used to more accurately estimate the central wavelength of the peaks. Three different sub-pixel algorithms will be analysed and compared, and it will be shown that the LPO (linear phase operator) sub-pixel algorithm is a better solution within the proposed system. Experimental tests during TIG-welding using a fibre optic to capture the arc light, together with a low cost CCD-based spectrometer, show that some typical defects associated with perturbations in the electron temperature can be easily detected and identified with this technique. A typical processing time for multiple peak analysis is less than 20 ms running on a conventional PC.
DEFF Research Database (Denmark)
Stamatelos, Dimtrios; Kappatos, Vassilios
2017-01-01
Purpose – This paper presents the development of an advanced structural assessment approach for aerospace components (metallic and composites). This work focuses on developing an automatic image processing methodology based on Non Destructive Testing (NDT) data and numerical models, for predicting...... the residual strength of these components. Design/methodology/approach – An image processing algorithm, based on the threshold method, has been developed to process and quantify the geometric characteristics of damages. Then, a parametric Finite Element (FE) model of the damaged component is developed based...... on the inputs acquired from the image processing algorithm. The analysis of the metallic structures is employing the Extended FE Method (XFEM), while for the composite structures the Cohesive Zone Model (CZM) technique with Progressive Damage Modelling (PDM) is used. Findings – The numerical analyses...
International Nuclear Information System (INIS)
Sacco, Wagner F.; Machado, Marcelo D.; Pereira, Claudio M.N.A.; Schirru, Roberto
2004-01-01
This article extends previous efforts on genetic algorithms (GAs) applied to a core design optimization problem. We introduce the application of a new Niching Genetic Algorithm (NGA) to this problem and compare its performance to these previous works. The optimization problem consists in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a three-enrichment zone reactor, considering restrictions on the average thermal flux, criticality and sub-moderation. After exhaustive experiments we observed that our new niching method performs better than the conventional GA due to a greater exploration of the search space
DSMC multicomponent aerosol dynamics: Sampling algorithms and aerosol processes
Palaniswaamy, Geethpriya
The post-accident nuclear reactor primary and containment environments can be characterized by high temperatures and pressures, and fission products and nuclear aerosols. These aerosols evolve via natural transport processes as well as under the influence of engineered safety features. These aerosols can be hazardous and may pose risk to the public if released into the environment. Computations of their evolution, movement and distribution involve the study of various processes such as coagulation, deposition, condensation, etc., and are influenced by factors such as particle shape, charge, radioactivity and spatial inhomogeneity. These many factors make the numerical study of nuclear aerosol evolution computationally very complicated. The focus of this research is on the use of the Direct Simulation Monte Carlo (DSMC) technique to elucidate the role of various phenomena that influence the nuclear aerosol evolution. In this research, several aerosol processes such as coagulation, deposition, condensation, and source reinforcement are explored for a multi-component, aerosol dynamics problem in a spatially homogeneous medium. Among the various sampling algorithms explored the Metropolis sampling algorithm was found to be effective and fast. Several test problems and test cases are simulated using the DSMC technique. The DSMC results obtained are verified against the analytical and sectional results for appropriate test problems. Results show that the assumption of a single mean density is not appropriate due to the complicated effect of component densities on the aerosol processes. The methods developed and the insights gained will also be helpful in future research on the challenges associated with the description of fission product and aerosol releases.
ANTQ evolutionary algorithm applied to nuclear fuel reload problem
International Nuclear Information System (INIS)
Machado, Liana; Schirru, Roberto
2000-01-01
Nuclear fuel reload optimization is a NP-complete combinatorial optimization problem where the aim is to find fuel rods' configuration that maximizes burnup or minimizes the power peak factor. For decades this problem was solved exclusively using an expert's knowledge. From the eighties, however, there have been efforts to automatize fuel reload. The first relevant effort used Simulated Annealing, but more recent publications show Genetic Algorithm's (GA) efficiency on this problem's solution. Following this direction, our aim is to optimize nuclear fuel reload using Ant-Q, a reinforcement learning algorithm based on the Cellular Computing paradigm. Ant-Q's results on the Travelling Salesmen Problem, which is conceptually similar to fuel reload, are better than the GA's ones. Ant-Q was tested on fuel reload by the simulation of the first cycle in-out reload of Bibils, a 193 fuel element PWR. Comparing An-Q's result with the GA's ones, it can b seen that even without a local heuristics, the former evolutionary algorithm can be used to solve the nuclear fuel reload problem. (author)
3-D image pre-processing algorithms for improved automated tracing of neuronal arbors.
Narayanaswamy, Arunachalam; Wang, Yu; Roysam, Badrinath
2011-09-01
The accuracy and reliability of automated neurite tracing systems is ultimately limited by image quality as reflected in the signal-to-noise ratio, contrast, and image variability. This paper describes a novel combination of image processing methods that operate on images of neurites captured by confocal and widefield microscopy, and produce synthetic images that are better suited to automated tracing. The algorithms are based on the curvelet transform (for denoising curvilinear structures and local orientation estimation), perceptual grouping by scalar voting (for elimination of non-tubular structures and improvement of neurite continuity while preserving branch points), adaptive focus detection, and depth estimation (for handling widefield images without deconvolution). The proposed methods are fast, and capable of handling large images. Their ability to handle images of unlimited size derives from automated tiling of large images along the lateral dimension, and processing of 3-D images one optical slice at a time. Their speed derives in part from the fact that the core computations are formulated in terms of the Fast Fourier Transform (FFT), and in part from parallel computation on multi-core computers. The methods are simple to apply to new images since they require very few adjustable parameters, all of which are intuitive. Examples of pre-processing DIADEM Challenge images are used to illustrate improved automated tracing resulting from our pre-processing methods.
Dynamic Vehicle Routing Using an Improved Variable Neighborhood Search Algorithm
Directory of Open Access Journals (Sweden)
Yingcheng Xu
2013-01-01
Full Text Available In order to effectively solve the dynamic vehicle routing problem with time windows, the mathematical model is established and an improved variable neighborhood search algorithm is proposed. In the algorithm, allocation customers and planning routes for the initial solution are completed by the clustering method. Hybrid operators of insert and exchange are used to achieve the shaking process, the later optimization process is presented to improve the solution space, and the best-improvement strategy is adopted, which make the algorithm can achieve a better balance in the solution quality and running time. The idea of simulated annealing is introduced to take control of the acceptance of new solutions, and the influences of arrival time, distribution of geographical location, and time window range on route selection are analyzed. In the experiment, the proposed algorithm is applied to solve the different sizes' problems of DVRP. Comparing to other algorithms on the results shows that the algorithm is effective and feasible.
Statistical trajectory of an approximate EM algorithm for probabilistic image processing
International Nuclear Information System (INIS)
Tanaka, Kazuyuki; Titterington, D M
2007-01-01
We calculate analytically a statistical average of trajectories of an approximate expectation-maximization (EM) algorithm with generalized belief propagation (GBP) and a Gaussian graphical model for the estimation of hyperparameters from observable data in probabilistic image processing. A statistical average with respect to observed data corresponds to a configuration average for the random-field Ising model in spin glass theory. In the present paper, hyperparameters which correspond to interactions and external fields of spin systems are estimated by an approximate EM algorithm. A practical algorithm is described for gray-level image restoration based on a Gaussian graphical model and GBP. The GBP approach corresponds to the cluster variation method in statistical mechanics. Our main result in the present paper is to obtain the statistical average of the trajectory in the approximate EM algorithm by using loopy belief propagation and GBP with respect to degraded images generated from a probability density function with true values of hyperparameters. The statistical average of the trajectory can be expressed in terms of recursion formulas derived from some analytical calculations
Hardware Design Considerations for Edge-Accelerated Stereo Correspondence Algorithms
Directory of Open Access Journals (Sweden)
Christos Ttofis
2012-01-01
Full Text Available Stereo correspondence is a popular algorithm for the extraction of depth information from a pair of rectified 2D images. Hence, it has been used in many computer vision applications that require knowledge about depth. However, stereo correspondence is a computationally intensive algorithm and requires high-end hardware resources in order to achieve real-time processing speed in embedded computer vision systems. This paper presents an overview of the use of edge information as a means to accelerate hardware implementations of stereo correspondence algorithms. The presented approach restricts the stereo correspondence algorithm only to the edges of the input images rather than to all image points, thus resulting in a considerable reduction of the search space. The paper highlights the benefits of the edge-directed approach by applying it to two stereo correspondence algorithms: an SAD-based fixed-support algorithm and a more complex adaptive support weight algorithm. Furthermore, we present design considerations about the implementation of these algorithms on reconfigurable hardware and also discuss issues related to the memory structures needed, the amount of parallelism that can be exploited, the organization of the processing blocks, and so forth. The two architectures (fixed-support based versus adaptive-support weight based are compared in terms of processing speed, disparity map accuracy, and hardware overheads, when both are implemented on a Virtex-5 FPGA platform.
Applying Intelligent Algorithms to Automate the Identification of Error Factors.
Jin, Haizhe; Qu, Qingxing; Munechika, Masahiko; Sano, Masataka; Kajihara, Chisato; Duffy, Vincent G; Chen, Han
2018-05-03
Medical errors are the manifestation of the defects occurring in medical processes. Extracting and identifying defects as medical error factors from these processes are an effective approach to prevent medical errors. However, it is a difficult and time-consuming task and requires an analyst with a professional medical background. The issues of identifying a method to extract medical error factors and reduce the extraction difficulty need to be resolved. In this research, a systematic methodology to extract and identify error factors in the medical administration process was proposed. The design of the error report, extraction of the error factors, and identification of the error factors were analyzed. Based on 624 medical error cases across four medical institutes in both Japan and China, 19 error-related items and their levels were extracted. After which, they were closely related to 12 error factors. The relational model between the error-related items and error factors was established based on a genetic algorithm (GA)-back-propagation neural network (BPNN) model. Additionally, compared to GA-BPNN, BPNN, partial least squares regression and support vector regression, GA-BPNN exhibited a higher overall prediction accuracy, being able to promptly identify the error factors from the error-related items. The combination of "error-related items, their different levels, and the GA-BPNN model" was proposed as an error-factor identification technology, which could automatically identify medical error factors.
Directory of Open Access Journals (Sweden)
G. Vijay Chakaravarthy
2012-11-01
Full Text Available Lot streaming is a technique used to split the processing of lots into several sublots (transfer batches to allow the overlapping of operations in a multistage manufacturing systems thereby shortening the production time (makespan. The objective of this paper is to minimize the makespan and total flow time of -job, -machine lot streaming problem in a flow shop with equal and variable size sublots and also to determine the optimal sublot size. In recent times researchers are concentrating and applying intelligent heuristics to solve flow shop problems with lot streaming. In this research, Firefly Algorithm (FA and Artificial Immune System (AIS algorithms are used to solve the problem. The results obtained by the proposed algorithms are also compared with the performance of other worked out traditional heuristics. The computational results shows that the identified algorithms are more efficient, effective and better than the algorithms already tested for this problem.
An accurate algorithm to calculate the Hurst exponent of self-similar processes
International Nuclear Information System (INIS)
Fernández-Martínez, M.; Sánchez-Granero, M.A.; Trinidad Segovia, J.E.; Román-Sánchez, I.M.
2014-01-01
In this paper, we introduce a new approach which generalizes the GM2 algorithm (introduced in Sánchez-Granero et al. (2008) [52]) as well as fractal dimension algorithms (FD1, FD2 and FD3) (first appeared in Sánchez-Granero et al. (2012) [51]), providing an accurate algorithm to calculate the Hurst exponent of self-similar processes. We prove that this algorithm performs properly in the case of short time series when fractional Brownian motions and Lévy stable motions are considered. We conclude the paper with a dynamic study of the Hurst exponent evolution in the S and P500 index stocks. - Highlights: • We provide a new approach to properly calculate the Hurst exponent. • This generalizes FD algorithms and GM2, introduced previously by the authors. • This method (FD4) results especially appropriate for short time series. • FD4 may be used in both unifractal and multifractal contexts. • As an empirical application, we show that S and P500 stocks improved their efficiency
An accurate algorithm to calculate the Hurst exponent of self-similar processes
Energy Technology Data Exchange (ETDEWEB)
Fernández-Martínez, M., E-mail: fmm124@ual.es [Department of Mathematics, Faculty of Science, Universidad de Almería, 04120 Almería (Spain); Sánchez-Granero, M.A., E-mail: misanche@ual.es [Department of Mathematics, Faculty of Science, Universidad de Almería, 04120 Almería (Spain); Trinidad Segovia, J.E., E-mail: jetrini@ual.es [Department of Accounting and Finance, Faculty of Economics and Business, Universidad de Almería, 04120 Almería (Spain); Román-Sánchez, I.M., E-mail: iroman@ual.es [Department of Accounting and Finance, Faculty of Economics and Business, Universidad de Almería, 04120 Almería (Spain)
2014-06-27
In this paper, we introduce a new approach which generalizes the GM2 algorithm (introduced in Sánchez-Granero et al. (2008) [52]) as well as fractal dimension algorithms (FD1, FD2 and FD3) (first appeared in Sánchez-Granero et al. (2012) [51]), providing an accurate algorithm to calculate the Hurst exponent of self-similar processes. We prove that this algorithm performs properly in the case of short time series when fractional Brownian motions and Lévy stable motions are considered. We conclude the paper with a dynamic study of the Hurst exponent evolution in the S and P500 index stocks. - Highlights: • We provide a new approach to properly calculate the Hurst exponent. • This generalizes FD algorithms and GM2, introduced previously by the authors. • This method (FD4) results especially appropriate for short time series. • FD4 may be used in both unifractal and multifractal contexts. • As an empirical application, we show that S and P500 stocks improved their efficiency.
A review of channel selection algorithms for EEG signal processing
Alotaiby, Turky; El-Samie, Fathi E. Abd; Alshebeili, Saleh A.; Ahmad, Ishtiaq
2015-12-01
Digital processing of electroencephalography (EEG) signals has now been popularly used in a wide variety of applications such as seizure detection/prediction, motor imagery classification, mental task classification, emotion classification, sleep state classification, and drug effects diagnosis. With the large number of EEG channels acquired, it has become apparent that efficient channel selection algorithms are needed with varying importance from one application to another. The main purpose of the channel selection process is threefold: (i) to reduce the computational complexity of any processing task performed on EEG signals by selecting the relevant channels and hence extracting the features of major importance, (ii) to reduce the amount of overfitting that may arise due to the utilization of unnecessary channels, for the purpose of improving the performance, and (iii) to reduce the setup time in some applications. Signal processing tools such as time-domain analysis, power spectral estimation, and wavelet transform have been used for feature extraction and hence for channel selection in most of channel selection algorithms. In addition, different evaluation approaches such as filtering, wrapper, embedded, hybrid, and human-based techniques have been widely used for the evaluation of the selected subset of channels. In this paper, we survey the recent developments in the field of EEG channel selection methods along with their applications and classify these methods according to the evaluation approach.
An Extended Genetic Algorithm for Distributed Integration of Fuzzy Process Planning and Scheduling
Directory of Open Access Journals (Sweden)
Shuai Zhang
2016-01-01
Full Text Available The distributed integration of process planning and scheduling (DIPPS aims to simultaneously arrange the two most important manufacturing stages, process planning and scheduling, in a distributed manufacturing environment. Meanwhile, considering its advantage corresponding to actual situation, the triangle fuzzy number (TFN is adopted in DIPPS to represent the machine processing and transportation time. In order to solve this problem and obtain the optimal or near-optimal solution, an extended genetic algorithm (EGA with innovative three-class encoding method, improved crossover, and mutation strategies is proposed. Furthermore, a local enhancement strategy featuring machine replacement and order exchange is also added to strengthen the local search capability on the basic process of genetic algorithm. Through the verification of experiment, EGA achieves satisfactory results all in a very short period of time and demonstrates its powerful performance in dealing with the distributed integration of fuzzy process planning and scheduling (DIFPPS.
Inversion algorithms for the spherical Radon and cosine transform
International Nuclear Information System (INIS)
Louis, A K; Riplinger, M; Spiess, M; Spodarev, E
2011-01-01
We consider two integral transforms which are frequently used in integral geometry and related fields, namely the spherical Radon and cosine transform. Fast algorithms are developed which invert the respective transforms in a numerically stable way. So far, only theoretical inversion formulae or algorithms for atomic measures have been derived, which are not so important for applications. We focus on two- and three-dimensional cases, where we also show that our method leads to a regularization. Numerical results are presented and show the validity of the resulting algorithms. First, we use synthetic data for the inversion of the Radon transform. Then we apply the algorithm for the inversion of the cosine transform to reconstruct the directional distribution of line processes from finitely many intersections of their lines with test lines (2D) or planes (3D), respectively. Finally we apply our method to analyse a series of microscopic two- and three-dimensional images of a fibre system
Application of the EM algorithm to radiographic images.
Brailean, J C; Little, D; Giger, M L; Chen, C T; Sullivan, B J
1992-01-01
The expectation maximization (EM) algorithm has received considerable attention in the area of positron emitted tomography (PET) as a restoration and reconstruction technique. In this paper, the restoration capabilities of the EM algorithm when applied to radiographic images is investigated. This application does not involve reconstruction. The performance of the EM algorithm is quantitatively evaluated using a "perceived" signal-to-noise ratio (SNR) as the image quality metric. This perceived SNR is based on statistical decision theory and includes both the observer's visual response function and a noise component internal to the eye-brain system. For a variety of processing parameters, the relative SNR (ratio of the processed SNR to the original SNR) is calculated and used as a metric to compare quantitatively the effects of the EM algorithm with two other image enhancement techniques: global contrast enhancement (windowing) and unsharp mask filtering. The results suggest that the EM algorithm's performance is superior when compared to unsharp mask filtering and global contrast enhancement for radiographic images which contain objects smaller than 4 mm.
The Research on Denoising of SAR Image Based on Improved K-SVD Algorithm
Tan, Linglong; Li, Changkai; Wang, Yueqin
2018-04-01
SAR images often receive noise interference in the process of acquisition and transmission, which can greatly reduce the quality of images and cause great difficulties for image processing. The existing complete DCT dictionary algorithm is fast in processing speed, but its denoising effect is poor. In this paper, the problem of poor denoising, proposed K-SVD (K-means and singular value decomposition) algorithm is applied to the image noise suppression. Firstly, the sparse dictionary structure is introduced in detail. The dictionary has a compact representation and can effectively train the image signal. Then, the sparse dictionary is trained by K-SVD algorithm according to the sparse representation of the dictionary. The algorithm has more advantages in high dimensional data processing. Experimental results show that the proposed algorithm can remove the speckle noise more effectively than the complete DCT dictionary and retain the edge details better.
Directory of Open Access Journals (Sweden)
Yuan Liu
2017-10-01
Full Text Available This paper presents a novel RGB-D 3D reconstruction algorithm for the indoor environment. The method can produce globally-consistent 3D maps for potential GIS applications. As the consumer RGB-D camera provides a noisy depth image, the proposed algorithm decouples the rotation and translation for a more robust camera pose estimation, which makes full use of the information, but also prevents inaccuracies caused by noisy depth measurements. The uncertainty in the image depth is not only related to the camera device, but also the environment; hence, a novel uncertainty model for depth measurements was developed using Gaussian mixture applied to multi-windows. The plane features in the indoor environment contain valuable information about the global structure, which can guide the convergence of camera pose solutions, and plane and feature point constraints are incorporated in the proposed optimization framework. The proposed method was validated using publicly-available RGB-D benchmarks and obtained good quality trajectory and 3D models, which are difficult for traditional 3D reconstruction algorithms.
International Nuclear Information System (INIS)
Pereira, Claudio M.N.A.; Lapa, Celso M.F.
2003-01-01
In this work, we focus the application of an Island Genetic Algorithm (IGA), a coarse-grained parallel genetic algorithm (PGA) model, to a Nuclear Power Plant (NPP) Auxiliary Feedwater System (AFWS) surveillance tests policy optimization. Here, the main objective is to outline, by means of comparisons, the advantages of the IGA over the simple (non-parallel) genetic algorithm (GA), which has been successfully applied in the solution of such kind of problem. The goal of the optimization is to maximize the system's average availability for a given period of time, considering realistic features such as: i) aging effects on standby components during the tests; ii) revealing failures in the tests implies on corrective maintenance, increasing outage times; iii) components have distinct test parameters (outage time, aging factors, etc.) and iv) tests are not necessarily periodic. In our experiments, which were made in a cluster comprised by 8 1-GHz personal computers, we could clearly observe gains not only in the computational time, which reduced linearly with the number of computers, but in the optimization outcome
Comparison of Nonequilibrium Solution Algorithms Applied to Chemically Stiff Hypersonic Flows
Palmer, Grant; Venkatapathy, Ethiraj
1995-01-01
Three solution algorithms, explicit under-relaxation, point implicit, and lower-upper symmetric Gauss-Seidel, are used to compute nonequilibrium flow around the Apollo 4 return capsule at the 62-km altitude point in its descent trajectory. By varying the Mach number, the efficiency and robustness of the solution algorithms were tested for different levels of chemical stiffness.The performance of the solution algorithms degraded as the Mach number and stiffness of the flow increased. At Mach 15 and 30, the lower-upper symmetric Gauss-Seidel method produces an eight order of magnitude drop in the energy residual in one-third to one-half the Cray C-90 computer time as compared to the point implicit and explicit under-relaxation methods. The explicit under-relaxation algorithm experienced convergence difficulties at Mach 30 and above. At Mach 40 the performance of the lower-upper symmetric Gauss-Seidel algorithm deteriorates to the point that it is out performed by the point implicit method. The effects of the viscous terms are investigated. Grid dependency questions are explored.
An algorithm of discovering signatures from DNA databases on a computer cluster.
Lee, Hsiao Ping; Sheu, Tzu-Fang
2014-10-05
Signatures are short sequences that are unique and not similar to any other sequence in a database that can be used as the basis to identify different species. Even though several signature discovery algorithms have been proposed in the past, these algorithms require the entirety of databases to be loaded in the memory, thus restricting the amount of data that they can process. It makes those algorithms unable to process databases with large amounts of data. Also, those algorithms use sequential models and have slower discovery speeds, meaning that the efficiency can be improved. In this research, we are debuting the utilization of a divide-and-conquer strategy in signature discovery and have proposed a parallel signature discovery algorithm on a computer cluster. The algorithm applies the divide-and-conquer strategy to solve the problem posed to the existing algorithms where they are unable to process large databases and uses a parallel computing mechanism to effectively improve the efficiency of signature discovery. Even when run with just the memory of regular personal computers, the algorithm can still process large databases such as the human whole-genome EST database which were previously unable to be processed by the existing algorithms. The algorithm proposed in this research is not limited by the amount of usable memory and can rapidly find signatures in large databases, making it useful in applications such as Next Generation Sequencing and other large database analysis and processing. The implementation of the proposed algorithm is available at http://www.cs.pu.edu.tw/~fang/DDCSDPrograms/DDCSD.htm.
DEFF Research Database (Denmark)
Henriksen, Lars
1996-01-01
The sonar simulator integrated environment (SSIE) is a tool for developing high performance processing algorithms for single or sequences of sonar images. The tool is based on MATLAB providing a very short lead time from concept to executable code and thereby assessment of the algorithms tested...... of the algorithms is the availability of sonar images. To accommodate this problem the SSIE has been equipped with a simulator capable of generating high fidelity sonar images for a given scene of objects, sea-bed AUV path, etc. In the paper the main components of the SSIE is described and examples of different...... processing steps are given...
Advanced defect detection algorithm using clustering in ultrasonic NDE
Gongzhang, Rui; Gachagan, Anthony
2016-02-01
A range of materials used in industry exhibit scattering properties which limits ultrasonic NDE. Many algorithms have been proposed to enhance defect detection ability, such as the well-known Split Spectrum Processing (SSP) technique. Scattering noise usually cannot be fully removed and the remaining noise can be easily confused with real feature signals, hence becoming artefacts during the image interpretation stage. This paper presents an advanced algorithm to further reduce the influence of artefacts remaining in A-scan data after processing using a conventional defect detection algorithm. The raw A-scan data can be acquired from either traditional single transducer or phased array configurations. The proposed algorithm uses the concept of unsupervised machine learning to cluster segmental defect signals from pre-processed A-scans into different classes. The distinction and similarity between each class and the ensemble of randomly selected noise segments can be observed by applying a classification algorithm. Each class will then be labelled as `legitimate reflector' or `artefacts' based on this observation and the expected probability of defection (PoD) and probability of false alarm (PFA) determined. To facilitate data collection and validate the proposed algorithm, a 5MHz linear array transducer is used to collect A-scans from both austenitic steel and Inconel samples. Each pulse-echo A-scan is pre-processed using SSP and the subsequent application of the proposed clustering algorithm has provided an additional reduction to PFA while maintaining PoD for both samples compared with SSP results alone.
A SIMULATION OF THE PENICILLIN G PRODUCTION BIOPROCESS APPLYING NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
A.J.G. da Cruz
1997-12-01
Full Text Available The production of penicillin G by Penicillium chrysogenum IFO 8644 was simulated employing a feedforward neural network with three layers. The neural network training procedure used an algorithm combining two procedures: random search and backpropagation. The results of this approach were very promising, and it was observed that the neural network was able to accurately describe the nonlinear behavior of the process. Besides, the results showed that this technique can be successfully applied to control process algorithms due to its long processing time and its flexibility in the incorporation of new data
A Gaussian Process Based Online Change Detection Algorithm for Monitoring Periodic Time Series
Energy Technology Data Exchange (ETDEWEB)
Chandola, Varun [ORNL; Vatsavai, Raju [ORNL
2011-01-01
Online time series change detection is a critical component of many monitoring systems, such as space and air-borne remote sensing instruments, cardiac monitors, and network traffic profilers, which continuously analyze observations recorded by sensors. Data collected by such sensors typically has a periodic (seasonal) component. Most existing time series change detection methods are not directly applicable to handle such data, either because they are not designed to handle periodic time series or because they cannot operate in an online mode. We propose an online change detection algorithm which can handle periodic time series. The algorithm uses a Gaussian process based non-parametric time series prediction model and monitors the difference between the predictions and actual observations within a statistically principled control chart framework to identify changes. A key challenge in using Gaussian process in an online mode is the need to solve a large system of equations involving the associated covariance matrix which grows with every time step. The proposed algorithm exploits the special structure of the covariance matrix and can analyze a time series of length T in O(T^2) time while maintaining a O(T) memory footprint, compared to O(T^4) time and O(T^2) memory requirement of standard matrix manipulation methods. We experimentally demonstrate the superiority of the proposed algorithm over several existing time series change detection algorithms on a set of synthetic and real time series. Finally, we illustrate the effectiveness of the proposed algorithm for identifying land use land cover changes using Normalized Difference Vegetation Index (NDVI) data collected for an agricultural region in Iowa state, USA. Our algorithm is able to detect different types of changes in a NDVI validation data set (with ~80% accuracy) which occur due to crop type changes as well as disruptive changes (e.g., natural disasters).
Foundations of digital signal processing theory, algorithms and hardware design
Gaydecki, Patrick
2005-01-01
An excellent introductory text, this book covers the basic theoretical, algorithmic and real-time aspects of digital signal processing (DSP). Detailed information is provided on off-line, real-time and DSP programming and the reader is effortlessly guided through advanced topics such as DSP hardware design, FIR and IIR filter design and difference equation manipulation.
Applied Swarm-based medicine: collecting decision trees for patterns of algorithms analysis.
Panje, Cédric M; Glatzer, Markus; von Rappard, Joscha; Rothermundt, Christian; Hundsberger, Thomas; Zumstein, Valentin; Plasswilm, Ludwig; Putora, Paul Martin
2017-08-16
The objective consensus methodology has recently been applied in consensus finding in several studies on medical decision-making among clinical experts or guidelines. The main advantages of this method are an automated analysis and comparison of treatment algorithms of the participating centers which can be performed anonymously. Based on the experience from completed consensus analyses, the main steps for the successful implementation of the objective consensus methodology were identified and discussed among the main investigators. The following steps for the successful collection and conversion of decision trees were identified and defined in detail: problem definition, population selection, draft input collection, tree conversion, criteria adaptation, problem re-evaluation, results distribution and refinement, tree finalisation, and analysis. This manuscript provides information on the main steps for successful collection of decision trees and summarizes important aspects at each point of the analysis.
K-mean clustering algorithm for processing signals from compound semiconductor detectors
International Nuclear Information System (INIS)
Tada, Tsutomu; Hitomi, Keitaro; Wu, Yan; Kim, Seong-Yun; Yamazaki, Hiromichi; Ishii, Keizo
2011-01-01
The K-mean clustering algorithm was employed for processing signal waveforms from TlBr detectors. The signal waveforms were classified based on its shape reflecting the charge collection process in the detector. The classified signal waveforms were processed individually to suppress the pulse height variation of signals due to the charge collection loss. The obtained energy resolution of a 137 Cs spectrum measured with a 0.5 mm thick TlBr detector was 1.3% FWHM by employing 500 clusters.
A Fast Algorithm of Cartographic Sounding Selection
Institute of Scientific and Technical Information of China (English)
SUI Haigang; HUA Li; ZHAO Haitao; ZHANG Yongli
2005-01-01
An effective strategy and framework that adequately integrate the automated and manual processes for fast cartographic sounding selection is presented. The important submarine topographic features are extracted for important soundings selection, and an improved "influence circle" algorithm is introduced for sounding selection. For automatic configuration of soundings distribution pattern, a special algorithm considering multi-factors is employed. A semi-automatic method for solving the ambiguous conflicts is described. On the basis of the algorithms and strategies a system named HGIS for fast cartographic sounding selection is developed and applied in Chinese Marine Safety Administration Bureau (CMSAB). The application experiments show that the system is effective and reliable. At last some conclusions and the future work are given.
A general theory known as the WAste Reduction (WASR) algorithm has been developed to describe the flow and the generation of potential environmental impact through a chemical process. This theory integrates environmental impact assessment into chemical process design Potential en...
New algorithms for processing time-series big EEG data within mobile health monitoring systems.
Serhani, Mohamed Adel; Menshawy, Mohamed El; Benharref, Abdelghani; Harous, Saad; Navaz, Alramzana Nujum
2017-10-01
Recent advances in miniature biomedical sensors, mobile smartphones, wireless communications, and distributed computing technologies provide promising techniques for developing mobile health systems. Such systems are capable of monitoring epileptic seizures reliably, which are classified as chronic diseases. Three challenging issues raised in this context with regard to the transformation, compression, storage, and visualization of big data, which results from a continuous recording of epileptic seizures using mobile devices. In this paper, we address the above challenges by developing three new algorithms to process and analyze big electroencephalography data in a rigorous and efficient manner. The first algorithm is responsible for transforming the standard European Data Format (EDF) into the standard JavaScript Object Notation (JSON) and compressing the transformed JSON data to decrease the size and time through the transfer process and to increase the network transfer rate. The second algorithm focuses on collecting and storing the compressed files generated by the transformation and compression algorithm. The collection process is performed with respect to the on-the-fly technique after decompressing files. The third algorithm provides relevant real-time interaction with signal data by prospective users. It particularly features the following capabilities: visualization of single or multiple signal channels on a smartphone device and query data segments. We tested and evaluated the effectiveness of our approach through a software architecture model implementing a mobile health system to monitor epileptic seizures. The experimental findings from 45 experiments are promising and efficiently satisfy the approach's objectives in a price of linearity. Moreover, the size of compressed JSON files and transfer times are reduced by 10% and 20%, respectively, while the average total time is remarkably reduced by 67% through all performed experiments. Our approach
Directory of Open Access Journals (Sweden)
Ion LUNGU
2012-01-01
Full Text Available In this paper, we research, analyze and develop optimization solutions for the parallel reduction function using graphics processing units (GPUs that implement the Compute Unified Device Architecture (CUDA, a modern and novel approach for improving the software performance of data processing applications and algorithms. Many of these applications and algorithms make use of the reduction function in their computational steps. After having designed the function and its algorithmic steps in CUDA, we have progressively developed and implemented optimization solutions for the reduction function. In order to confirm, test and evaluate the solutions' efficiency, we have developed a custom tailored benchmark suite. We have analyzed the obtained experimental results regarding: the comparison of the execution time and bandwidth when using graphic processing units covering the main CUDA architectures (Tesla GT200, Fermi GF100, Kepler GK104 and a central processing unit; the data type influence; the binary operator's influence.
SLAM algorithm applied to robotics assistance for navigation in unknown environments
Directory of Open Access Journals (Sweden)
Lobo Pereira Fernando
2010-02-01
to use the MCI. The SLAM results have shown a consistent reconstruction of the environment. The obtained map was stored inside the Muscle-Computer Interface. Conclusions The integration of a highly demanding processing algorithm (SLAM with a MCI and the communication between both in real time have shown to be consistent and successful. The metric map generated by the mobile robot would allow possible future autonomous navigation without direct control of the user, whose function could be relegated to choose robot destinations. Also, the mobile robot shares the same kinematic model of a motorized wheelchair. This advantage can be exploited for wheelchair autonomous navigation.
Optimization algorithms intended for self-tuning feedwater heater model
International Nuclear Information System (INIS)
Czop, P; Barszcz, T; Bednarz, J
2013-01-01
This work presents a self-tuning feedwater heater model. This work continues the work on first-principle gray-box methodology applied to diagnostics and condition assessment of power plant components. The objective of this work is to review and benchmark the optimization algorithms regarding the time required to achieve the best model fit to operational power plant data. The paper recommends the most effective algorithm to be used in the model adjustment process.
Enhancement of RWSN Lifetime via Firework Clustering Algorithm Validated by ANN
Directory of Open Access Journals (Sweden)
Ahmad Ali
2018-03-01
Full Text Available Nowadays, wireless power transfer is ubiquitously used in wireless rechargeable sensor networks (WSNs. Currently, the energy limitation is a grave concern issue for WSNs. However, lifetime enhancement of sensor networks is a challenging task need to be resolved. For addressing this issue, a wireless charging vehicle is an emerging technology to expand the overall network efficiency. The present study focuses on the enhancement of overall network lifetime of the rechargeable wireless sensor network. To resolve the issues mentioned above, we propose swarm intelligence based hard clustering approach using fireworks algorithm with the adaptive transfer function (FWA-ATF. In this work, the virtual clustering method has been applied in the routing process which utilizes the firework optimization algorithm. Still now, an FWA-ATF algorithm yet not applied by any researcher for RWSN. Furthermore, the validation study of the proposed method using the artificial neural network (ANN backpropagation algorithm incorporated in the present study. Different algorithms are applied to evaluate the performance of proposed technique that gives the best results in this mechanism. Numerical results indicate that our method outperforms existing methods and yield performance up to 80% regarding energy consumption and vacation time of wireless charging vehicle.
Guo, Zhan; Yan, Xuefeng
2018-04-01
Different operating conditions of p-xylene oxidation have different influences on the product, purified terephthalic acid. It is necessary to obtain the optimal combination of reaction conditions to ensure the quality of the products, cut down on consumption and increase revenues. A multi-objective differential evolution (MODE) algorithm co-evolved with the population-based incremental learning (PBIL) algorithm, called PBMODE, is proposed. The PBMODE algorithm was designed as a co-evolutionary system. Each individual has its own parameter individual, which is co-evolved by PBIL. PBIL uses statistical analysis to build a model based on the corresponding symbiotic individuals of the superior original individuals during the main evolutionary process. The results of simulations and statistical analysis indicate that the overall performance of the PBMODE algorithm is better than that of the compared algorithms and it can be used to optimize the operating conditions of the p-xylene oxidation process effectively and efficiently.
Devos, Olivier; Downey, Gerard; Duponchel, Ludovic
2014-04-01
Classification is an important task in chemometrics. For several years now, support vector machines (SVMs) have proven to be powerful for infrared spectral data classification. However such methods require optimisation of parameters in order to control the risk of overfitting and the complexity of the boundary. Furthermore, it is established that the prediction ability of classification models can be improved using pre-processing in order to remove unwanted variance in the spectra. In this paper we propose a new methodology based on genetic algorithm (GA) for the simultaneous optimisation of SVM parameters and pre-processing (GENOPT-SVM). The method has been tested for the discrimination of the geographical origin of Italian olive oil (Ligurian and non-Ligurian) on the basis of near infrared (NIR) or mid infrared (FTIR) spectra. Different classification models (PLS-DA, SVM with mean centre data, GENOPT-SVM) have been tested and statistically compared using McNemar's statistical test. For the two datasets, SVM with optimised pre-processing give models with higher accuracy than the one obtained with PLS-DA on pre-processed data. In the case of the NIR dataset, most of this accuracy improvement (86.3% compared with 82.8% for PLS-DA) occurred using only a single pre-processing step. For the FTIR dataset, three optimised pre-processing steps are required to obtain SVM model with significant accuracy improvement (82.2%) compared to the one obtained with PLS-DA (78.6%). Furthermore, this study demonstrates that even SVM models have to be developed on the basis of well-corrected spectral data in order to obtain higher classification rates. Copyright © 2013 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Cobb, J.W.; Leboeuf, J.N.
1994-01-01
The authors present a particle algorithm to extend simulation capabilities for plasma based materials processing reactors. The orbit integrator uses a syncopated leap-frog algorithm in cylindrical coordinates, which maintains second order accuracy, and minimizes computational complexity. Plasma source terms are accumulated orbit consistently directly in the frequency and azimuthal mode domains. Finally they discuss the numerical analysis of this algorithm. Orbit consistency greatly reduces the computational cost for a given level of precision. The computational cost is independent of the degree of time scale separation
Process Materialization Using Templates and Rules to Design Flexible Process Models
Kumar, Akhil; Yao, Wen
The main idea in this paper is to show how flexible processes can be designed by combining generic process templates and business rules. We instantiate a process by applying rules to specific case data, and running a materialization algorithm. The customized process instance is then executed in an existing workflow engine. We present an architecture and also give an algorithm for process materialization. The rules are written in a logic-based language like Prolog. Our focus is on capturing deeper process knowledge and achieving a holistic approach to robust process design that encompasses control flow, resources and data, as well as makes it easier to accommodate changes to business policy.
Advances in heuristic signal processing and applications
Chatterjee, Amitava; Siarry, Patrick
2013-01-01
There have been significant developments in the design and application of algorithms for both one-dimensional signal processing and multidimensional signal processing, namely image and video processing, with the recent focus changing from a step-by-step procedure of designing the algorithm first and following up with in-depth analysis and performance improvement to instead applying heuristic-based methods to solve signal-processing problems. In this book the contributing authors demonstrate both general-purpose algorithms and those aimed at solving specialized application problems, with a spec
Akl, Selim G
1985-01-01
Parallel Sorting Algorithms explains how to use parallel algorithms to sort a sequence of items on a variety of parallel computers. The book reviews the sorting problem, the parallel models of computation, parallel algorithms, and the lower bounds on the parallel sorting problems. The text also presents twenty different algorithms, such as linear arrays, mesh-connected computers, cube-connected computers. Another example where algorithm can be applied is on the shared-memory SIMD (single instruction stream multiple data stream) computers in which the whole sequence to be sorted can fit in the
Applying BI Techniques To Improve Decision Making And Provide Knowledge Based Management
Directory of Open Access Journals (Sweden)
Alexandra Maria Ioana FLOREA
2015-07-01
Full Text Available The paper focuses on BI techniques and especially data mining algorithms that can support and improve the decision making process, with applications within the financial sector. We consider the data mining techniques to be more efficient and thus we applied several techniques, supervised and unsupervised learning algorithms The case study in which these algorithms have been implemented regards the activity of a banking institution, with focus on the management of lending activities.
DEVELOPMENT OF A NEW ALGORITHM FOR KEY AND S-BOX GENERATION IN BLOWFISH ALGORITHM
Directory of Open Access Journals (Sweden)
TAYSEER S. ATIA
2014-08-01
Full Text Available Blowfish algorithm is a block cipher algorithm, its strong, simple algorithm used to encrypt data in block of size 64-bit. Key and S-box generation process in this algorithm require time and memory space the reasons that make this algorithm not convenient to be used in smart card or application requires changing secret key frequently. In this paper a new key and S-box generation process was developed based on Self Synchronization Stream Cipher (SSS algorithm where the key generation process for this algorithm was modified to be used with the blowfish algorithm. Test result shows that the generation process requires relatively slow time and reasonably low memory requirement and this enhance the algorithm and gave it the possibility for different usage.
Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan
2016-01-01
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.
Physics-based signal processing algorithms for micromachined cantilever arrays
Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W
2013-11-19
A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.
DEFF Research Database (Denmark)
Endelt, Benny Ørtoft; Volk, Wolfram
2013-01-01
, there is a number of obstacles which need to be addressed before an industrial implementation is possible, e.g. the proposed control algorithms are often limited by the ability to sample process data with both sufficient accuracy and robustness - this lack of robust sampling technologies is one of the main barriers...
Directory of Open Access Journals (Sweden)
S. Vellingiri
2018-01-01
Full Text Available This present investigation deals with squeeze casting process in order to produce a component with good mechanical properties such as micro-hardness(VH, tensile strength(Rm, and density(ρ on LM13 by varying squeeze pressure(P, molten temperature(Tm and die temperature(Td. Taguchi experimental design L9 orthogonal array was used to determine the signal to noise ratio. The results specified that the squeeze pressure and die preheat temperature are the most influencing parameters for mechanical properties improvement. Genetic algorithm (GA has been applied to optimize the casting parameters that simultaneously maximize the responses.
International Nuclear Information System (INIS)
Mouton, S.; Ledoux, Y.; Teissandier, D.; Sebastian, P.
2010-01-01
A key challenge for the future is to reduce drastically the human impact on the environment. In the aeronautic field, this challenge aims at optimizing the design of the aircraft to decrease the global mass. This reduction leads to the optimization of every part constitutive of the plane. This operation is even more delicate when the used material is composite material. In this case, it is necessary to find a compromise between the strength, the mass and the manufacturing cost of the component. Due to these different kinds of design constraints it is necessary to assist engineer with decision support system to determine feasible solutions. In this paper, an approach is proposed based on the coupling of the different key characteristics of the design process and on the consideration of the failure risk of the component. The originality of this work is that the manufacturing deviations due to the RTM process are integrated in the simulation of the assembly process. Two kinds of deviations are identified: volume impregnation (injection phase of RTM process) and geometrical deviations (curing and cooling phases). The quantification of these deviations and the related failure risk calculation is based on finite element simulations (Pam RTM registered and Samcef registered softwares). The use of genetic algorithm allows to estimate the impact of the design choices and their consequences on the failure risk of the component. The main focus of the paper is the optimization of tool design. In the framework of decision support systems, the failure risk calculation is used for making the comparison of possible industrialization alternatives. It is proposed to apply this method on a particular part of the airplane structure: a spar unit made of carbon fiber/epoxy composite.
Rahman, Nurul Hidayah Ab; Abdullah, Nurul Azma; Hamid, Isredza Rahmi A.; Wen, Chuah Chai; Jelani, Mohamad Shafiqur Rahman Mohd
2017-10-01
Closed-Circuit TV (CCTV) system is one of the technologies in surveillance field to solve the problem of detection and monitoring by providing extra features such as email alert or motion detection. However, detecting and alerting the admin on CCTV system may complicate due to the complexity to integrate the main program with an external Application Programming Interface (API). In this study, pixel processing algorithm is applied due to its efficiency and SMS alert is added as an alternative solution for users who opted out email alert system or have no Internet connection. A CCTV system with SMS alert (CMDSA) was developed using evolutionary prototyping methodology. The system interface was implemented using Microsoft Visual Studio while the backend components, which are database and coding, were implemented on SQLite database and C# programming language, respectively. The main modules of CMDSA are motion detection, capturing and saving video, image processing and Short Message Service (SMS) alert functions. Subsequently, the system is able to reduce the processing time making the detection process become faster, reduce the space and memory used to run the program and alerting the system admin instantly.
New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes
Energy Technology Data Exchange (ETDEWEB)
Agrawal, Rakesh [Purdue Univ., West Lafayette, IN (United States)
2013-11-21
This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.
PS-FW: A Hybrid Algorithm Based on Particle Swarm and Fireworks for Global Optimization
Chen, Shuangqing; Wei, Lixin; Guan, Bing
2018-01-01
Particle swarm optimization (PSO) and fireworks algorithm (FWA) are two recently developed optimization methods which have been applied in various areas due to their simplicity and efficiency. However, when being applied to high-dimensional optimization problems, PSO algorithm may be trapped in the local optima owing to the lack of powerful global exploration capability, and fireworks algorithm is difficult to converge in some cases because of its relatively low local exploitation efficiency for noncore fireworks. In this paper, a hybrid algorithm called PS-FW is presented, in which the modified operators of FWA are embedded into the solving process of PSO. In the iteration process, the abandonment and supplement mechanism is adopted to balance the exploration and exploitation ability of PS-FW, and the modified explosion operator and the novel mutation operator are proposed to speed up the global convergence and to avoid prematurity. To verify the performance of the proposed PS-FW algorithm, 22 high-dimensional benchmark functions have been employed, and it is compared with PSO, FWA, stdPSO, CPSO, CLPSO, FIPS, Frankenstein, and ALWPSO algorithms. Results show that the PS-FW algorithm is an efficient, robust, and fast converging optimization method for solving global optimization problems. PMID:29675036
Directory of Open Access Journals (Sweden)
Oleksandr B. Yashchyk
2016-05-01
Full Text Available The article discusses the importance of studying the notion of algorithm and its formal specification using Turing machines. In the article it was identified the basic hypothesis of the theory of algorithms for Turing as well as reviewed scientific research of modern scientists devoted to this issue and found the main principles of the Turing machine as an abstract mathematical model. The process of forming information competencies components, information culture and students` logical thinking development with the inclusion of the topic “Study and Application of Turing machine as Universal Algorithm Executor” in the course of Informatics was analyzed.
Applied algorithm in the liner inspection of solid rocket motors
Hoffmann, Luiz Felipe Simões; Bizarria, Francisco Carlos Parquet; Bizarria, José Walter Parquet
2018-03-01
In rocket motors, the bonding between the solid propellant and thermal insulation is accomplished by a thin adhesive layer, known as liner. The liner application method involves a complex sequence of tasks, which includes in its final stage, the surface integrity inspection. Nowadays in Brazil, an expert carries out a thorough visual inspection to detect defects on the liner surface that may compromise the propellant interface bonding. Therefore, this paper proposes an algorithm that uses the photometric stereo technique and the K-nearest neighbor (KNN) classifier to assist the expert in the surface inspection. Photometric stereo allows the surface information recovery of the test images, while the KNN method enables image pixels classification into two classes: non-defect and defect. Tests performed on a computer vision based prototype validate the algorithm. The positive results suggest that the algorithm is feasible and when implemented in a real scenario, will be able to help the expert in detecting defective areas on the liner surface.
Optimal Control of Complex Systems Based on Improved Dual Heuristic Dynamic Programming Algorithm
Directory of Open Access Journals (Sweden)
Hui Li
2017-01-01
Full Text Available When applied to solving the data modeling and optimal control problems of complex systems, the dual heuristic dynamic programming (DHP technique, which is based on the BP neural network algorithm (BP-DHP, has difficulty in prediction accuracy, slow convergence speed, poor stability, and so forth. In this paper, a dual DHP technique based on Extreme Learning Machine (ELM algorithm (ELM-DHP was proposed. Through constructing three kinds of network structures, the paper gives the detailed realization process of the DHP technique in the ELM. The controller designed upon the ELM-DHP algorithm controlled a molecular distillation system with complex features, such as multivariability, strong coupling, and nonlinearity. Finally, the effectiveness of the algorithm is verified by the simulation that compares DHP and HDP algorithms based on ELM and BP neural network. The algorithm can also be applied to solve the data modeling and optimal control problems of similar complex systems.
Algorithmic Complexity and Reprogrammability of Chemical Structure Networks
Zenil, Hector; Kiani, Narsis A.; Shang, Ming-mei; Tegner, Jesper
2018-01-01
Here we address the challenge of profiling causal properties and tracking the transformation of chemical compounds from an algorithmic perspective. We explore the potential of applying a computational interventional calculus based on the principles of algorithmic probability to chemical structure networks. We profile the sensitivity of the elements and covalent bonds in a chemical structure network algorithmically, asking whether reprogrammability affords information about thermodynamic and chemical processes involved in the transformation of different compound classes. We arrive at numerical results suggesting a correspondence between some physical, structural and functional properties. Our methods are capable of separating chemical classes that reflect functional and natural differences without considering any information about atomic and molecular properties. We conclude that these methods, with their links to chemoinformatics via algorithmic, probability hold promise for future research.
Algorithmic Complexity and Reprogrammability of Chemical Structure Networks
Zenil, Hector
2018-02-16
Here we address the challenge of profiling causal properties and tracking the transformation of chemical compounds from an algorithmic perspective. We explore the potential of applying a computational interventional calculus based on the principles of algorithmic probability to chemical structure networks. We profile the sensitivity of the elements and covalent bonds in a chemical structure network algorithmically, asking whether reprogrammability affords information about thermodynamic and chemical processes involved in the transformation of different compound classes. We arrive at numerical results suggesting a correspondence between some physical, structural and functional properties. Our methods are capable of separating chemical classes that reflect functional and natural differences without considering any information about atomic and molecular properties. We conclude that these methods, with their links to chemoinformatics via algorithmic, probability hold promise for future research.
Algorithmic Complexity and Reprogrammability of Chemical Structure Networks
Zenil, Hector
2018-04-02
Here we address the challenge of profiling causal properties and tracking the transformation of chemical compounds from an algorithmic perspective. We explore the potential of applying a computational interventional calculus based on the principles of algorithmic probability to chemical structure networks. We profile the sensitivity of the elements and covalent bonds in a chemical structure network algorithmically, asking whether reprogrammability affords information about thermodynamic and chemical processes involved in the transformation of different compound classes. We arrive at numerical results suggesting a correspondence between some physical, structural and functional properties. Our methods are capable of separating chemical classes that reflect functional and natural differences without considering any information about atomic and molecular properties. We conclude that these methods, with their links to chemoinformatics via algorithmic, probability hold promise for future research.
International Nuclear Information System (INIS)
Spiekerman, G.
1988-09-01
A partial blockage of the cooling channels of a fuel element in a swimming pool reactor could lead to vapour generation and to burn-out. To detect such anomalies, a pattern recognition algorithm based on power spectra density (PSD) proposed by Piety was further developed and implemented on a PDP 11/23 for on-line applications. This algorithm identifies anomalies by measuring the PSD on the process signal and comparing them with a standard baseline previously formed. Up to 8 decision discriminants help to recognize spectral changes due to anomalies. In our application, to detect boiling as quickly as possible with sufficient sensitivity, Piety's algorithm was modified using overlapped Fast-Fourier-Transform-Processing and the averaging of the PSDs over a large sample of preceding instantaneous PSDs. This processing allows high sensitivity in detecting weak disturbances without reducing response time. The algorithm was tested with simulation-of-boiling experiments where nitrogen in a cooling channel of a mock-up of a fuel element was injected. Void fractions higher than 30 % in the channel can be detected. In the case of boiling, it is believed that this limit is lower because collapsing bubbles could give rise to stronger fluctuations. The algorithm was also tested with a boiling experiment where the reactor coolant flow was actually reduced. The results showed that the discriminant D5 of Piety's algorithm based on neutron noise obtained from the existing neutron chambers of the reactor control system could sensitively recognize boiling. The detection time amounts to 7-30 s depending on the strength of the disturbances. Other events, which arise during a normal reactor run like scrams, removal of isotope elements without scramming or control rod movements and which could lead to false alarms, can be distinguished from boiling. 49 refs., 104 figs., 5 tabs
Urselmann, Maren; Emmerich, Michael T. M.; Till, Jochen; Sand, Guido; Engell, Sebastian
2007-07-01
Engineering optimization often deals with large, mixed-integer search spaces with a rigid structure due to the presence of a large number of constraints. Metaheuristics, such as evolutionary algorithms (EAs), are frequently suggested as solution algorithms in such cases. In order to exploit the full potential of these algorithms, it is important to choose an adequate representation of the search space and to integrate expert-knowledge into the stochastic search operators, without adding unnecessary bias to the search. Moreover, hybridisation with mathematical programming techniques such as mixed-integer programming (MIP) based on a problem decomposition can be considered for improving algorithmic performance. In order to design problem-specific EAs it is desirable to have a set of design guidelines that specify properties of search operators and representations. Recently, a set of guidelines has been proposed that gives rise to so-called Metric-based EAs (MBEAs). Extended by the minimal moves mutation they allow for a generalization of EA with self-adaptive mutation strength in discrete search spaces. In this article, a problem-specific EA for process engineering task is designed, following the MBEA guidelines and minimal moves mutation. On the background of the application, the usefulness of the design framework is discussed, and further extensions and corrections proposed. As a case-study, a two-stage stochastic programming problem in chemical batch process scheduling is considered. The algorithm design problem can be viewed as the choice of a hierarchical decision structure, where on different layers of the decision process symmetries and similarities can be exploited for the design of minimal moves. After a discussion of the design approach and its instantiation for the case-study, the resulting problem-specific EA/MIP is compared to a straightforward application of a canonical EA/MIP and to a monolithic mathematical programming algorithm. In view of the
International Nuclear Information System (INIS)
Machado, Marcelo D.; Dchirru, Roberto
2005-01-01
The nuclear reactor core reload optimization problem consists in finding a pattern of partially burned-up and fresh fuels that optimizes the plant's next operation cycle. This optimization problem has been traditionally solved using an expert's knowledge, but recently artificial intelligence techniques have also been applied successfully. The artificial intelligence optimization techniques generally have a single objective. However, most real-world engineering problems, including nuclear core reload optimization, have more than one objective (multi-objective) and these objectives are usually conflicting. The aim of this work is to develop a tool to solve multi-objective problems based on the Population-Based Incremental Learning (PBIL) algorithm. The new tool is applied to solve the Angra 1 PWR core reload optimization problem with the purpose of creating a Pareto surface, so that a pattern selected from this surface can be applied for the plant's next operation cycle. (author)
An Improved Harmony Search Algorithm for Power Distribution Network Planning
Directory of Open Access Journals (Sweden)
Wei Sun
2015-01-01
Full Text Available Distribution network planning because of involving many variables and constraints is a multiobjective, discrete, nonlinear, and large-scale optimization problem. Harmony search (HS algorithm is a metaheuristic algorithm inspired by the improvisation process of music players. HS algorithm has several impressive advantages, such as easy implementation, less adjustable parameters, and quick convergence. But HS algorithm still has some defects such as premature convergence and slow convergence speed. According to the defects of the standard algorithm and characteristics of distribution network planning, an improved harmony search (IHS algorithm is proposed in this paper. We set up a mathematical model of distribution network structure planning, whose optimal objective function is to get the minimum annual cost and constraint conditions are overload and radial network. IHS algorithm is applied to solve the complex optimization mathematical model. The empirical results strongly indicate that IHS algorithm can effectively provide better results for solving the distribution network planning problem compared to other optimization algorithms.
Evaluation of Algorithms for Compressing Hyperspectral Data
Cook, Sid; Harsanyi, Joseph; Faber, Vance
2003-01-01
With EO-1 Hyperion in orbit NASA is showing their continued commitment to hyperspectral imaging (HSI). As HSI sensor technology continues to mature, the ever-increasing amounts of sensor data generated will result in a need for more cost effective communication and data handling systems. Lockheed Martin, with considerable experience in spacecraft design and developing special purpose onboard processors, has teamed with Applied Signal & Image Technology (ASIT), who has an extensive heritage in HSI spectral compression and Mapping Science (MSI) for JPEG 2000 spatial compression expertise, to develop a real-time and intelligent onboard processing (OBP) system to reduce HSI sensor downlink requirements. Our goal is to reduce the downlink requirement by a factor > 100, while retaining the necessary spectral and spatial fidelity of the sensor data needed to satisfy the many science, military, and intelligence goals of these systems. Our compression algorithms leverage commercial-off-the-shelf (COTS) spectral and spatial exploitation algorithms. We are currently in the process of evaluating these compression algorithms using statistical analysis and NASA scientists. We are also developing special purpose processors for executing these algorithms onboard a spacecraft.
Energy Technology Data Exchange (ETDEWEB)
Esquivel-Estrada, Jaime, E-mail: jaime.esquivel@fi.uaemex.m [Facultad de Ingenieria, Universidad Autonoma del Estado de Mexico, Cerro de Coatepec S/N, Toluca de Lerdo, Estado de Mexico 50000 (Mexico); Instituto Nacional de Investigaciones Nucleares, Carr. Mexico Toluca S/N, Ocoyoacac, Estado de Mexico 52750 (Mexico); Ortiz-Servin, Juan Jose, E-mail: juanjose.ortiz@inin.gob.m [Instituto Nacional de Investigaciones Nucleares, Carr. Mexico Toluca S/N, Ocoyoacac, Estado de Mexico 52750 (Mexico); Castillo, Jose Alejandro; Perusquia, Raul [Instituto Nacional de Investigaciones Nucleares, Carr. Mexico Toluca S/N, Ocoyoacac, Estado de Mexico 52750 (Mexico)
2011-01-15
This paper presents some results of the implementation of several optimization algorithms based on ant colonies, applied to the fuel reload design in a Boiling Water Reactor. The system called Azcaxalli is constructed with the following algorithms: Ant Colony System, Ant System, Best-Worst Ant System and MAX-MIN Ant System. Azcaxalli starts with a random fuel reload. Ants move into reactor core channels according to the State Transition Rule in order to select two fuel assemblies into a 1/8 part of the reactor core and change positions between them. This rule takes into account pheromone trails and acquired knowledge. Acquired knowledge is obtained from load cycle values of fuel assemblies. Azcaxalli claim is to work in order to maximize the cycle length taking into account several safety parameters. Azcaxalli's objective function involves thermal limits at the end of the cycle, cold shutdown margin at the beginning of the cycle and the neutron effective multiplication factor for a given cycle exposure. Those parameters are calculated by CM-PRESTO code. Through the Haling Principle is possible to calculate the end of the cycle. This system was applied to an equilibrium cycle of 18 months of Laguna Verde Nuclear Power Plant in Mexico. The results show that the system obtains fuel reloads with higher cycle lengths than the original fuel reload. Azcaxalli results are compared with genetic algorithms, tabu search and neural networks results.
Optimization of Nano-Process Deposition Parameters Based on Gravitational Search Algorithm
Directory of Open Access Journals (Sweden)
Norlina Mohd Sabri
2016-06-01
Full Text Available This research is focusing on the radio frequency (RF magnetron sputtering process, a physical vapor deposition technique which is widely used in thin film production. This process requires the optimized combination of deposition parameters in order to obtain the desirable thin film. The conventional method in the optimization of the deposition parameters had been reported to be costly and time consuming due to its trial and error nature. Thus, gravitational search algorithm (GSA technique had been proposed to solve this nano-process parameters optimization problem. In this research, the optimized parameter combination was expected to produce the desirable electrical and optical properties of the thin film. The performance of GSA in this research was compared with that of Particle Swarm Optimization (PSO, Genetic Algorithm (GA, Artificial Immune System (AIS and Ant Colony Optimization (ACO. Based on the overall results, the GSA optimized parameter combination had generated the best electrical and an acceptable optical properties of thin film compared to the others. This computational experiment is expected to overcome the problem of having to conduct repetitive laboratory experiments in obtaining the most optimized parameter combination. Based on this initial experiment, the adaptation of GSA into this problem could offer a more efficient and productive way of depositing quality thin film in the fabrication process.
Parallel preconditioned conjugate gradient algorithm applied to neutron diffusion problem
International Nuclear Information System (INIS)
Majumdar, A.; Martin, W.R.
1992-01-01
Numerical solution of the neutron diffusion problem requires solving a linear system of equations such as Ax = b, where A is an n x n symmetric positive definite (SPD) matrix; x and b are vectors with n components. The preconditioned conjugate gradient (PCG) algorithm is an efficient iterative method for solving such a linear system of equations. In this paper, the authors describe the implementation of a parallel PCG algorithm on a shared memory machine (BBN TC2000) and on a distributed workstation (IBM RS6000) environment created by the parallel virtual machine parallelization software
Ghijsen, Michael T.; Tromberg, Bruce J.
2017-03-01
Affixed Transmission Speckle Analysis (ATSA) is a method recently developed to measure blood flow that is based on laser speckle imaging miniaturized into a clip-on form factor the size of a pulse-oximeter. Measuring at a rate of 250 Hz, ATSA is capable or obtaining the cardiac waveform in blood flow data, referred to as the Speckle-Plethysmogram (SPG). ATSA is also capable of simultaneously measuring the Photoplethysmogram (PPG), a more conventional signal related to light intensity. In this work we present several novel algorithms for extracting physiologically relevant information from the combined SPG-PPG waveform data. First we show that there is a slight time-delay between the SPG and PPG that can be extracted computationally. Second, we present a set of frequency domain algorithms that measure harmonic content on pulse-by-pulse basis for both the SPG and PPG. Finally, we apply these algorithms to data obtained from a set of subjects including healthy controls and individuals with heightened cardiovascular risk. We hypothesize that the time-delay and frequency content are correlated with cardiovascular health; specifically with vascular stiffening.
Large scale tracking algorithms
Energy Technology Data Exchange (ETDEWEB)
Hansen, Ross L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Joshua Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Melgaard, David Kennett [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Karelitz, David B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pitts, Todd Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zollweg, Joshua David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Anderson, Dylan Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nandy, Prabal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whitlow, Gary L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bender, Daniel A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrne, Raymond Harry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-01-01
Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.
Measuring Disorientation Based on the Needleman-Wunsch Algorithm
Güyer, Tolga; Atasoy, Bilal; Somyürek, Sibel
2015-01-01
This study offers a new method to measure navigation disorientation in web based systems which is powerful learning medium for distance and open education. The Needleman-Wunsch algorithm is used to measure disorientation in a more precise manner. The process combines theoretical and applied knowledge from two previously distinct research areas,…
CHAM: weak signals detection through a new multivariate algorithm for process control
Bergeret, François; Soual, Carole; Le Gratiet, B.
2016-10-01
Derivatives technologies based on core CMOS processes are significantly aggressive in term of design rules and process control requirements. Process control plan is a derived from Process Assumption (PA) calculations which result in a design rule based on known process variability capabilities, taking into account enough margin to be safe not only for yield but especially for reliability. Even though process assumptions are calculated with a 4 sigma known process capability margin, efficient and competitive designs are challenging the process especially for derivatives technologies in 40 and 28nm nodes. For wafer fab process control, PA are declined in monovariate (layer1 CD, layer2 CD, layer2 to layer1 overlay, layer3 CD etc….) control charts with appropriated specifications and control limits which all together are securing the silicon. This is so far working fine but such system is not really sensitive to weak signals coming from interactions of multiple key parameters (high layer2 CD combined with high layer3 CD as an example). CHAM is a software using an advanced statistical algorithm specifically designed to detect small signals, especially when there are many parameters to control and when the parameters can interact to create yield issues. In this presentation we will first present the CHAM algorithm, then the case-study on critical dimensions, with the results, and we will conclude on future work. This partnership between Ippon and STM is part of E450LMDAP, European project dedicated to metrology and lithography development for future technology nodes, especially 10nm.
Kizhner, Semion; Hunter, Stanley D.; Hanu, Andrei R.; Sheets, Teresa B.
2016-01-01
Richard O. Duda and Peter E. Hart of Stanford Research Institute in [1] described the recurring problem in computer image processing as the detection of straight lines in digitized images. The problem is to detect the presence of groups of collinear or almost collinear figure points. It is clear that the problem can be solved to any desired degree of accuracy by testing the lines formed by all pairs of points. However, the computation required for n=NxM points image is approximately proportional to n2 or O(n2), becoming prohibitive for large images or when data processing cadence time is in milliseconds. Rosenfeld in [2] described an ingenious method due to Hough [3] for replacing the original problem of finding collinear points by a mathematically equivalent problem of finding concurrent lines. This method involves transforming each of the figure points into a straight line in a parameter space. Hough chose to use the familiar slope-intercept parameters, and thus his parameter space was the two-dimensional slope-intercept plane. A parallel Hough transform running on multi-core processors was elaborated in [4]. There are many other proposed methods of solving a similar problem, such as sampling-up-the-ramp algorithm (SUTR) [5] and algorithms involving artificial swarm intelligence techniques [6]. However, all state-of-the-art algorithms lack in real time performance. Namely, they are slow for large images that require performance cadence of a few dozens of milliseconds (50ms). This problem arises in spaceflight applications such as near real-time analysis of gamma ray measurements contaminated by overwhelming amount of traces of cosmic rays (CR). Future spaceflight instruments such as the Advanced Energetic Pair Telescope instrument (AdEPT) [7-9] for cosmos gamma ray survey employ large detector readout planes registering multitudes of cosmic ray interference events and sparse science gamma ray event traces' projections. The AdEPT science of interest is in the
IDP++: signal and image processing algorithms in C++ version 4.1
International Nuclear Information System (INIS)
Lehman, S.K.
1996-11-01
IDP++ (Image and Data Processing in C++) is a collection of signal and image processing algorithms written in C++. It is a compiled signal processing environment which supports four data types of up to four dimensions. It is developed within Lawrence Livermore National Laboratory's Image and Data Processing group as a partial replacement for View. IDP ++ takes advantage of the latest, implemented and actually working, object-oriented compiler technology to provide 'information hiding.' Users need only know C, not C++. Signals are treated like any other variable with a defined set of operators and functions in an intuitive manner. IDP++ is designed for real-time environment where interpreted processing packages are less efficient. IDP++ exists for both SUNs and Silicon Graphics using their most current compilers
A Comparative Analysis of Classification Algorithms on Diverse Datasets
Directory of Open Access Journals (Sweden)
M. Alghobiri
2018-04-01
Full Text Available Data mining involves the computational process to find patterns from large data sets. Classification, one of the main domains of data mining, involves known structure generalizing to apply to a new dataset and predict its class. There are various classification algorithms being used to classify various data sets. They are based on different methods such as probability, decision tree, neural network, nearest neighbor, boolean and fuzzy logic, kernel-based etc. In this paper, we apply three diverse classification algorithms on ten datasets. The datasets have been selected based on their size and/or number and nature of attributes. Results have been discussed using some performance evaluation measures like precision, accuracy, F-measure, Kappa statistics, mean absolute error, relative absolute error, ROC Area etc. Comparative analysis has been carried out using the performance evaluation measures of accuracy, precision, and F-measure. We specify features and limitations of the classification algorithms for the diverse nature datasets.
Pentaris, Fragkiskos P.; Makris, John P.
2013-04-01
In Structural Health Monitoring (SHM) is of great importance to reveal valuable information from the recorded SHM data that could be used to predict or indicate structural fault or damage in a building. In this work a combination of digital signal processing methods, namely FFT along with Wavelet Transform is applied, together with a proposed algorithm to study frequency dispersion, in order to depict non-linear characteristics of SHM data collected in two university buildings under natural or anthropogenic excitation. The selected buildings are of great importance from civil protection point of view, as there are the premises of a public higher education institute, undergoing high use, stress, visit from academic staff and students. The SHM data are collected from two neighboring buildings that have different age (4 and 18 years old respectively). Proposed digital signal processing methods are applied to the data, presenting a comparison of the structural behavior of both buildings in response to seismic activity, weather conditions and man-made activity. Acknowledgments This work was supported in part by the Archimedes III Program of the Ministry of Education of Greece, through the Operational Program "Educational and Lifelong Learning", in the framework of the project entitled «Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC) » and is co-financed by the European Union (European Social Fund) and Greek National Fund.
A data mining approach to optimize pellets manufacturing process based on a decision tree algorithm.
Ronowicz, Joanna; Thommes, Markus; Kleinebudde, Peter; Krysiński, Jerzy
2015-06-20
The present study is focused on the thorough analysis of cause-effect relationships between pellet formulation characteristics (pellet composition as well as process parameters) and the selected quality attribute of the final product. The shape using the aspect ratio value expressed the quality of pellets. A data matrix for chemometric analysis consisted of 224 pellet formulations performed by means of eight different active pharmaceutical ingredients and several various excipients, using different extrusion/spheronization process conditions. The data set contained 14 input variables (both formulation and process variables) and one output variable (pellet aspect ratio). A tree regression algorithm consistent with the Quality by Design concept was applied to obtain deeper understanding and knowledge of formulation and process parameters affecting the final pellet sphericity. The clear interpretable set of decision rules were generated. The spehronization speed, spheronization time, number of holes and water content of extrudate have been recognized as the key factors influencing pellet aspect ratio. The most spherical pellets were achieved by using a large number of holes during extrusion, a high spheronizer speed and longer time of spheronization. The described data mining approach enhances knowledge about pelletization process and simultaneously facilitates searching for the optimal process conditions which are necessary to achieve ideal spherical pellets, resulting in good flow characteristics. This data mining approach can be taken into consideration by industrial formulation scientists to support rational decision making in the field of pellets technology. Copyright © 2015 Elsevier B.V. All rights reserved.
Optimized Laplacian image sharpening algorithm based on graphic processing unit
Ma, Tinghuai; Li, Lu; Ji, Sai; Wang, Xin; Tian, Yuan; Al-Dhelaan, Abdullah; Al-Rodhaan, Mznah
2014-12-01
In classical Laplacian image sharpening, all pixels are processed one by one, which leads to large amount of computation. Traditional Laplacian sharpening processed on CPU is considerably time-consuming especially for those large pictures. In this paper, we propose a parallel implementation of Laplacian sharpening based on Compute Unified Device Architecture (CUDA), which is a computing platform of Graphic Processing Units (GPU), and analyze the impact of picture size on performance and the relationship between the processing time of between data transfer time and parallel computing time. Further, according to different features of different memory, an improved scheme of our method is developed, which exploits shared memory in GPU instead of global memory and further increases the efficiency. Experimental results prove that two novel algorithms outperform traditional consequentially method based on OpenCV in the aspect of computing speed.
Stochastic process variation in deep-submicron CMOS circuits and algorithms
Zjajo, Amir
2014-01-01
One of the most notable features of nanometer scale CMOS technology is the increasing magnitude of variability of the key device parameters affecting performance of integrated circuits. The growth of variability can be attributed to multiple factors, including the difficulty of manufacturing control, the emergence of new systematic variation-generating mechanisms, and most importantly, the increase in atomic-scale randomness, where device operation must be described as a stochastic process. In addition to wide-sense stationary stochastic device variability and temperature variation, existence of non-stationary stochastic electrical noise associated with fundamental processes in integrated-circuit devices represents an elementary limit on the performance of electronic circuits. In an attempt to address these issues, Stochastic Process Variation in Deep-Submicron CMOS: Circuits and Algorithms offers unique combination of mathematical treatment of random process variation, electrical noise and temperature and ne...
Signal and image processing algorithm performance in a virtual and elastic computing environment
Bennett, Kelly W.; Robertson, James
2013-05-01
The U.S. Army Research Laboratory (ARL) supports the development of classification, detection, tracking, and localization algorithms using multiple sensing modalities including acoustic, seismic, E-field, magnetic field, PIR, and visual and IR imaging. Multimodal sensors collect large amounts of data in support of algorithm development. The resulting large amount of data, and their associated high-performance computing needs, increases and challenges existing computing infrastructures. Purchasing computer power as a commodity using a Cloud service offers low-cost, pay-as-you-go pricing models, scalability, and elasticity that may provide solutions to develop and optimize algorithms without having to procure additional hardware and resources. This paper provides a detailed look at using a commercial cloud service provider, such as Amazon Web Services (AWS), to develop and deploy simple signal and image processing algorithms in a cloud and run the algorithms on a large set of data archived in the ARL Multimodal Signatures Database (MMSDB). Analytical results will provide performance comparisons with existing infrastructure. A discussion on using cloud computing with government data will discuss best security practices that exist within cloud services, such as AWS.
Enhanced backpropagation training algorithm for transient event identification
International Nuclear Information System (INIS)
Vitela, J.; Reifman, J.
1993-01-01
We present an enhanced backpropagation (BP) algorithm for training feedforward neural networks that avoids the undesirable premature saturation of the network output nodes and accelerates the training process even in cases where premature saturation is not present. When the standard BP algorithm is applied to train patterns of nuclear power plant (NPP) transients, the network output nodes often become prematurely saturated causing the already slow rate of convergence of the algorithm to become even slower. When premature saturation occurs, the gradient of the prediction error becomes very small, although the prediction error itself is still large, yielding negligible weight updates and hence no significant decrease in the prediction error until the eventual recovery of the output nodes from saturation. By defining the onset of premature saturation and systematically modifying the gradient of the prediction error at saturation, we developed an enhanced BP algorithm that is compared with the standard BP algorithm in training a network to identify NPP transients
Cultural-Based Genetic Tabu Algorithm for Multiobjective Job Shop Scheduling
Directory of Open Access Journals (Sweden)
Yuzhen Yang
2014-01-01
Full Text Available The job shop scheduling problem, which has been dealt with by various traditional optimization methods over the decades, has proved to be an NP-hard problem and difficult in solving, especially in the multiobjective field. In this paper, we have proposed a novel quadspace cultural genetic tabu algorithm (QSCGTA to solve such problem. This algorithm provides a different structure from the original cultural algorithm in containing double brief spaces and population spaces. These spaces deal with different levels of populations globally and locally by applying genetic and tabu searches separately and exchange information regularly to make the process more effective towards promising areas, along with modified multiobjective domination and transform functions. Moreover, we have presented a bidirectional shifting for the decoding process of job shop scheduling. The computational results we presented significantly prove the effectiveness and efficiency of the cultural-based genetic tabu algorithm for the multiobjective job shop scheduling problem.
Applying of the NVIDIA CUDA to the video processing in the task of the roundwood volume estimation
Directory of Open Access Journals (Sweden)
Kruglov Artem
2016-01-01
Full Text Available The paper is devoted to the parallel computing. The algorithm for roundwood volume estimation had insufficient performance so it was decided to port its bottleneck part on the GPU. The analysis of various GPGPU techniques was observed and the NVIDIA CUDA technology was chosen for implementation. The results of the research have shown the high potential of the GPU implementation in the improvement performance of the computation. The speedup of the algorithm for the roundwood volume estimation is more than 300% after porting on GPU with implementation of the CUDA technology. This helps to apply the machine vision algorithm in real-time system.
International Nuclear Information System (INIS)
Vignes, J.
1986-01-01
Any result of algorithms provided by a computer always contains an error resulting from floating-point arithmetic round-off error propagation. Furthermore signal processing algorithms are also generally performed with data containing errors. The permutation-perturbation method, also known under the name CESTAC (controle et estimation stochastique d'arrondi de calcul) is a very efficient practical method for evaluating these errors and consequently for estimating the exact significant decimal figures of any result of algorithms performed on a computer. The stochastic approach of this method, its probabilistic proof, and the perfect agreement between the theoretical and practical aspects are described in this paper [fr
Algorithms and programming tools for image processing on the MPP, part 2
Reeves, Anthony P.
1986-01-01
A number of algorithms were developed for image warping and pyramid image filtering. Techniques were investigated for the parallel processing of a large number of independent irregular shaped regions on the MPP. In addition some utilities for dealing with very long vectors and for sorting were developed. Documentation pages for the algorithms which are available for distribution are given. The performance of the MPP for a number of basic data manipulations was determined. From these results it is possible to predict the efficiency of the MPP for a number of algorithms and applications. The Parallel Pascal development system, which is a portable programming environment for the MPP, was improved and better documentation including a tutorial was written. This environment allows programs for the MPP to be developed on any conventional computer system; it consists of a set of system programs and a library of general purpose Parallel Pascal functions. The algorithms were tested on the MPP and a presentation on the development system was made to the MPP users group. The UNIX version of the Parallel Pascal System was distributed to a number of new sites.
Vignesh, S.; Dinesh Babu, P.; Surya, G.; Dinesh, S.; Marimuthu, P.
2018-02-01
The ultimate goal of all production entities is to select the process parameters that would be of maximum strength, minimum wear and friction. The friction and wear are serious problems in most of the industries which are influenced by the working set of parameters, oxidation characteristics and mechanism involved in formation of wear. The experimental input parameters such as sliding distance, applied load, and temperature are utilized in finding out the optimized solution for achieving the desired output responses such as coefficient of friction, wear rate, and volume loss. The optimization is performed with the help of a novel method, Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) based on an evolutionary algorithm. The regression equations obtained using Response Surface Methodology (RSM) are used in determining the optimum process parameters. Further, the results achieved through desirability approach in RSM are compared with that of the optimized solution obtained through NSGA-II. The results conclude that proposed evolutionary technique is much effective and faster than the desirability approach.
Wang, Lui; Bayer, Steven E.
1991-01-01
Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.
An Efficient ABC_DE_Based Hybrid Algorithm for Protein–Ligand Docking
Directory of Open Access Journals (Sweden)
Boxin Guan
2018-04-01
Full Text Available Protein–ligand docking is a process of searching for the optimal binding conformation between the receptor and the ligand. Automated docking plays an important role in drug design, and an efficient search algorithm is needed to tackle the docking problem. To tackle the protein–ligand docking problem more efficiently, An ABC_DE_based hybrid algorithm (ADHDOCK, integrating artificial bee colony (ABC algorithm and differential evolution (DE algorithm, is proposed in the article. ADHDOCK applies an adaptive population partition (APP mechanism to reasonably allocate the computational resources of the population in each iteration process, which helps the novel method make better use of the advantages of ABC and DE. The experiment tested fifty protein–ligand docking problems to compare the performance of ADHDOCK, ABC, DE, Lamarckian genetic algorithm (LGA, running history information guided genetic algorithm (HIGA, and swarm optimization for highly flexible protein–ligand docking (SODOCK. The results clearly exhibit the capability of ADHDOCK toward finding the lowest energy and the smallest root-mean-square deviation (RMSD on most of the protein–ligand docking problems with respect to the other five algorithms.
International Nuclear Information System (INIS)
Rice, T.R.; Derby, S.L.
1978-01-01
The Structured Assessment Approach was applied to material control and accounting systems at facilities that process Special Nuclear Material. Four groups of analytical techniques were developed for four general adversory types. Probabilistic algorithms were developed and compared with existing algorithms. 20 figures
Meng, Luming; Sheong, Fu Kit; Zeng, Xiangze; Zhu, Lizhe; Huang, Xuhui
2017-07-01
Constructing Markov state models from large-scale molecular dynamics simulation trajectories is a promising approach to dissect the kinetic mechanisms of complex chemical and biological processes. Combined with transition path theory, Markov state models can be applied to identify all pathways connecting any conformational states of interest. However, the identified pathways can be too complex to comprehend, especially for multi-body processes where numerous parallel pathways with comparable flux probability often coexist. Here, we have developed a path lumping method to group these parallel pathways into metastable path channels for analysis. We define the similarity between two pathways as the intercrossing flux between them and then apply the spectral clustering algorithm to lump these pathways into groups. We demonstrate the power of our method by applying it to two systems: a 2D-potential consisting of four metastable energy channels and the hydrophobic collapse process of two hydrophobic molecules. In both cases, our algorithm successfully reveals the metastable path channels. We expect this path lumping algorithm to be a promising tool for revealing unprecedented insights into the kinetic mechanisms of complex multi-body processes.
Comparison of turbulence mitigation algorithms
Kozacik, Stephen T.; Paolini, Aaron; Sherman, Ariel; Bonnett, James; Kelmelis, Eric
2017-07-01
When capturing imagery over long distances, atmospheric turbulence often degrades the data, especially when observation paths are close to the ground or in hot environments. These issues manifest as time-varying scintillation and warping effects that decrease the effective resolution of the sensor and reduce actionable intelligence. In recent years, several image processing approaches to turbulence mitigation have shown promise. Each of these algorithms has different computational requirements, usability demands, and degrees of independence from camera sensors. They also produce different degrees of enhancement when applied to turbulent imagery. Additionally, some of these algorithms are applicable to real-time operational scenarios while others may only be suitable for postprocessing workflows. EM Photonics has been developing image-processing-based turbulence mitigation technology since 2005. We will compare techniques from the literature with our commercially available, real-time, GPU-accelerated turbulence mitigation software. These comparisons will be made using real (not synthetic), experimentally obtained data for a variety of conditions, including varying optical hardware, imaging range, subjects, and turbulence conditions. Comparison metrics will include image quality, video latency, computational complexity, and potential for real-time operation. Additionally, we will present a technique for quantitatively comparing turbulence mitigation algorithms using real images of radial resolution targets.
Dynamic Synchronous Capture Algorithm for an Electromagnetic Flowmeter.
Fanjiang, Yong-Yi; Lu, Shih-Wei
2017-04-10
This paper proposes a dynamic synchronous capture (DSC) algorithm to calculate the flow rate for an electromagnetic flowmeter. The characteristics of the DSC algorithm can accurately calculate the flow rate signal and efficiently convert an analog signal to upgrade the execution performance of a microcontroller unit (MCU). Furthermore, it can reduce interference from abnormal noise. It is extremely steady and independent of fluctuations in the flow measurement. Moreover, it can calculate the current flow rate signal immediately (m/s). The DSC algorithm can be applied to the current general MCU firmware platform without using DSP (Digital Signal Processing) or a high-speed and high-end MCU platform, and signal amplification by hardware reduces the demand for ADC accuracy, which reduces the cost.
Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu
2015-12-01
For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.
A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor
Directory of Open Access Journals (Sweden)
Liang Zhang
2015-08-01
Full Text Available Internet of Things (IoT is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN k-Nearest Neighbor (KNN algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University’s datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy.
A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor.
Zhang, Liang; Shen, Peiyi; Zhu, Guangming; Wei, Wei; Song, Houbing
2015-08-14
Internet of Things (IoT) is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB) method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN) k-Nearest Neighbor (KNN) algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC) estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP) is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS) algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University's datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy.
Experimental validation of thermo-chemical algorithm for a simulation of pultrusion processes
Barkanov, E.; Akishin, P.; Miazza, N. L.; Galvez, S.; Pantelelis, N.
2018-04-01
To provide better understanding of the pultrusion processes without or with temperature control and to support the pultrusion tooling design, an algorithm based on the mixed time integration scheme and nodal control volumes method has been developed. At present study its experimental validation is carried out by the developed cure sensors measuring the electrical resistivity and temperature on the profile surface. By this verification process the set of initial data used for a simulation of the pultrusion process with rod profile has been successfully corrected and finally defined.
Energy Technology Data Exchange (ETDEWEB)
Wen, Xianfei; Yang, Haori
2015-06-01
A major challenge in utilizing spectroscopy techniques for nuclear safeguards is to perform high-resolution measurements at an ultra-high throughput rate. Traditionally, piled-up pulses are rejected to ensure good energy resolution. To improve throughput rate, high-pass filters are normally implemented to shorten pulses. However, this reduces signal-to-noise ratio and causes degradation in energy resolution. In this work, a pulse pile-up recovery algorithm based on template-matching was proved to be an effective approach to achieve high-throughput gamma ray spectroscopy. First, a discussion of the algorithm was given in detail. Second, the algorithm was then successfully utilized to process simulated piled-up pulses from a scintillator detector. Third, the algorithm was implemented to analyze high rate data from a NaI detector, a silicon drift detector and a HPGe detector. The promising results demonstrated the capability of this algorithm to achieve high-throughput rate without significant sacrifice in energy resolution. The performance of the template-matching algorithm was also compared with traditional shaping methods. - Highlights: • A detailed discussion on the template-matching algorithm was given. • The algorithm was tested on data from a NaI and a Si detector. • The algorithm was successfully implemented on high rate data from a HPGe detector. • The performance of the algorithm was compared with traditional shaping methods. • The advantage of the algorithm in active interrogation was discussed.
Recursive forgetting algorithms
DEFF Research Database (Denmark)
Parkum, Jens; Poulsen, Niels Kjølstad; Holst, Jan
1992-01-01
In the first part of the paper, a general forgetting algorithm is formulated and analysed. It contains most existing forgetting schemes as special cases. Conditions are given ensuring that the basic convergence properties will hold. In the second part of the paper, the results are applied...... to a specific algorithm with selective forgetting. Here, the forgetting is non-uniform in time and space. The theoretical analysis is supported by a simulation example demonstrating the practical performance of this algorithm...
Energy Technology Data Exchange (ETDEWEB)
Maiti, Bodhisatta; Shekhawat, Mitali; Srivastava, Pradeep [Banaras Hindu Univ., Varanasi (India). School of Biochemical Engineering; Rathore, Ankita [Nizam College, Hyderabad (India). Dept. of Biotechnology; Srivastava, Saurav [National Institute of Technology, Durgapur (India). Dept. of Biotechnology
2011-04-15
Ethanol is a potential energy source and its production from renewable biomass has gained lot of popularity. There has been worldwide research to produce ethanol from regional inexpensive substrates. The present study deals with the optimization of process parameters (viz. temperature, pH, initial total reducing sugar (TRS) concentration in sugar cane molasses and fermentation time) for ethanol production from sugar cane molasses by Zymomonas mobilis using Box-Behnken experimental design and genetic algorithm (GA). An empirical model was developed through response surface methodology to analyze the effects of the process parameters on ethanol production. The data obtained after performing the experiments based on statistical design was utilized for regression analysis and analysis of variance studies. The regression equation obtained after regression analysis was used as a fitness function for the genetic algorithm. The GA optimization technique predicted a maximum ethanol yield of 59.59 g/L at temperature 31 C, pH 5.13, initial TRS concentration 216 g/L and fermentation time 44 h. The maximum experimental ethanol yield obtained after applying GA was 58.4 g/L, which was in close agreement with the predicted value. (orig.)
Mudford, Oliver C; Taylor, Sarah Ann; Martin, Neil T
2009-01-01
We reviewed all research articles in 10 recent volumes of the Journal of Applied Behavior Analysis (JABA): Vol. 28(3), 1995, through Vol. 38(2), 2005. Continuous recording was used in the majority (55%) of the 168 articles reporting data on free-operant human behaviors. Three methods for reporting interobserver agreement (exact agreement, block-by-block agreement, and time-window analysis) were employed in more than 10 of the articles that reported continuous recording. Having identified these currently popular agreement computation algorithms, we explain them to assist researchers, software writers, and other consumers of JABA articles.
Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.
He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej
2011-12-01
Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.
Tóth, B.; Lillo, F.; Farmer, J. D.
2010-11-01
We introduce an algorithm for the segmentation of a class of regime switching processes. The segmentation algorithm is a non parametric statistical method able to identify the regimes (patches) of a time series. The process is composed of consecutive patches of variable length. In each patch the process is described by a stationary compound Poisson process, i.e. a Poisson process where each count is associated with a fluctuating signal. The parameters of the process are different in each patch and therefore the time series is non-stationary. Our method is a generalization of the algorithm introduced by Bernaola-Galván, et al. [Phys. Rev. Lett. 87, 168105 (2001)]. We show that the new algorithm outperforms the original one for regime switching models of compound Poisson processes. As an application we use the algorithm to segment the time series of the inventory of market members of the London Stock Exchange and we observe that our method finds almost three times more patches than the original one.
Color reproduction and processing algorithm based on real-time mapping for endoscopic images.
Khan, Tareq H; Mohammed, Shahed K; Imtiaz, Mohammad S; Wahid, Khan A
2016-01-01
In this paper, we present a real-time preprocessing algorithm for image enhancement for endoscopic images. A novel dictionary based color mapping algorithm is used for reproducing the color information from a theme image. The theme image is selected from a nearby anatomical location. A database of color endoscopy image for different location is prepared for this purpose. The color map is dynamic as its contents change with the change of the theme image. This method is used on low contrast grayscale white light images and raw narrow band images to highlight the vascular and mucosa structures and to colorize the images. It can also be applied to enhance the tone of color images. The statistic visual representation and universal image quality measures show that the proposed method can highlight the mucosa structure compared to other methods. The color similarity has been verified using Delta E color difference, structure similarity index, mean structure similarity index and structure and hue similarity. The color enhancement was measured using color enhancement factor that shows considerable improvements. The proposed algorithm has low and linear time complexity, which results in higher execution speed than other related works.
Li, Tiejun; Min, Bin; Wang, Zhiming
2013-03-14
The stochastic integral ensuring the Newton-Leibnitz chain rule is essential in stochastic energetics. Marcus canonical integral has this property and can be understood as the Wong-Zakai type smoothing limit when the driving process is non-Gaussian. However, this important concept seems not well-known for physicists. In this paper, we discuss Marcus integral for non-Gaussian processes and its computation in the context of stochastic energetics. We give a comprehensive introduction to Marcus integral and compare three equivalent definitions in the literature. We introduce the exact pathwise simulation algorithm and give the error analysis. We show how to compute the thermodynamic quantities based on the pathwise simulation algorithm. We highlight the information hidden in the Marcus mapping, which plays the key role in determining thermodynamic quantities. We further propose the tau-leaping algorithm, which advance the process with deterministic time steps when tau-leaping condition is satisfied. The numerical experiments and its efficiency analysis show that it is very promising.
Integrating a Genetic Algorithm Into a Knowledge-Based System for Ordering Complex Design Processes
Rogers, James L.; McCulley, Collin M.; Bloebaum, Christina L.
1996-01-01
The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to be able to determine the best ordering of the processes within these subcycles to reduce design cycle time and cost. Many decomposition approaches assume the capability is available to determine what design processes and couplings exist and what order of execution will be imposed during the design cycle. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature, a genetic algorithm, has been added to DeMAID (Design Manager's Aid for Intelligent Decomposition) to allow the design manager to rapidly examine many different combinations of ordering processes in an iterative subcycle and to optimize the ordering based on cost, time, and iteration requirements. Two sample test cases are presented to show the effects of optimizing the ordering with a genetic algorithm.
Sriram, Vinay K; Montgomery, Doug
2017-07-01
The Internet is subject to attacks due to vulnerabilities in its routing protocols. One proposed approach to attain greater security is to cryptographically protect network reachability announcements exchanged between Border Gateway Protocol (BGP) routers. This study proposes and evaluates the performance and efficiency of various optimization algorithms for validation of digitally signed BGP updates. In particular, this investigation focuses on the BGPSEC (BGP with SECurity extensions) protocol, currently under consideration for standardization in the Internet Engineering Task Force. We analyze three basic BGPSEC update processing algorithms: Unoptimized, Cache Common Segments (CCS) optimization, and Best Path Only (BPO) optimization. We further propose and study cache management schemes to be used in conjunction with the CCS and BPO algorithms. The performance metrics used in the analyses are: (1) routing table convergence time after BGPSEC peering reset or router reboot events and (2) peak-second signature verification workload. Both analytical modeling and detailed trace-driven simulation were performed. Results show that the BPO algorithm is 330% to 628% faster than the unoptimized algorithm for routing table convergence in a typical Internet core-facing provider edge router.
Comparison of Clustering Algorithms for the Identification of Topics on Twitter
Directory of Open Access Journals (Sweden)
Marjori N. M. Klinczak
2016-05-01
Full Text Available Topic Identification in Social Networks has become an important task when dealing with event detection, particularly when global communities are affected. In order to attack this problem, text processing techniques and machine learning algorithms have been extensively used. In this paper we compare four clustering algorithms – k-means, k-medoids, DBSCAN and NMF (Non-negative Matrix Factorization – in order to detect topics related to textual messages obtained from Twitter. The algorithms were applied to a database initially composed by tweets having hashtags related to the recent Nepal earthquake as initial context. Obtained results suggest that the NMF clustering algorithm presents superior results, providing simpler clusters that are also easier to interpret.
International Nuclear Information System (INIS)
Penfold, S; Casiraghi, M; Dou, T; Schulte, R; Censor, Y
2015-01-01
Purpose: To investigate the applicability of feasibility-seeking cyclic orthogonal projections to the field of intensity modulated proton therapy (IMPT) inverse planning. Feasibility of constraints only, as opposed to optimization of a merit function, is less demanding algorithmically and holds a promise of parallel computations capability with non-cyclic orthogonal projections algorithms such as string-averaging or block-iterative strategies. Methods: A virtual 2D geometry was designed containing a C-shaped planning target volume (PTV) surrounding an organ at risk (OAR). The geometry was pixelized into 1 mm pixels. Four beams containing a subset of proton pencil beams were simulated in Geant4 to provide the system matrix A whose elements a-ij correspond to the dose delivered to pixel i by a unit intensity pencil beam j. A cyclic orthogonal projections algorithm was applied with the goal of finding a pencil beam intensity distribution that would meet the following dose requirements: D-OAR < 54 Gy and 57 Gy < D-PTV < 64.2 Gy. The cyclic algorithm was based on the concept of orthogonal projections onto half-spaces according to the Agmon-Motzkin-Schoenberg algorithm, also known as ‘ART for inequalities’. Results: The cyclic orthogonal projections algorithm resulted in less than 5% of the PTV pixels and less than 1% of OAR pixels violating their dose constraints, respectively. Because of the abutting OAR-PTV geometry and the realistic modelling of the pencil beam penumbra, complete satisfaction of the dose objectives was not achieved, although this would be a clinically acceptable plan for a meningioma abutting the brainstem, for example. Conclusion: The cyclic orthogonal projections algorithm was demonstrated to be an effective tool for inverse IMPT planning in the 2D test geometry described. We plan to further develop this linear algorithm to be capable of incorporating dose-volume constraints into the feasibility-seeking algorithm
A cluster algorithm for graphs
S. van Dongen
2000-01-01
textabstractA cluster algorithm for graphs called the emph{Markov Cluster algorithm (MCL~algorithm) is introduced. The algorithm provides basically an interface to an algebraic process defined on stochastic matrices, called the MCL~process. The graphs may be both weighted (with nonnegative weight)
Energy Technology Data Exchange (ETDEWEB)
Geist, G.A. [Oak Ridge National Lab., TN (United States). Computer Science and Mathematics Div.; Howell, G.W. [Florida Inst. of Tech., Melbourne, FL (United States). Dept. of Applied Mathematics; Watkins, D.S. [Washington State Univ., Pullman, WA (United States). Dept. of Pure and Applied Mathematics
1997-11-01
The BR algorithm, a new method for calculating the eigenvalues of an upper Hessenberg matrix, is introduced. It is a bulge-chasing algorithm like the QR algorithm, but, unlike the QR algorithm, it is well adapted to computing the eigenvalues of the narrowband, nearly tridiagonal matrices generated by the look-ahead Lanczos process. This paper describes the BR algorithm and gives numerical evidence that it works well in conjunction with the Lanczos process. On the biggest problems run so far, the BR algorithm beats the QR algorithm by a factor of 30--60 in computing time and a factor of over 100 in matrix storage space.
IMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS AND GLVQ TO TRACK AN OBJECT USING AR.DRONE CAMERA
Directory of Open Access Journals (Sweden)
Muhammad Nanda Kurniawan
2014-08-01
Full Text Available Abstract In this research, Parrot AR.Drone as an Unmanned Aerial Vehicle (UAV was used to track an object from above. Development of this system utilized some functions from OpenCV library and Robot Operating System (ROS. Techniques that were implemented in the system are image processing al-gorithm (Centroid-Contour Distance (CCD, feature extraction algorithm (Principal Component Analysis (PCA and an artificial neural network algorithm (Generalized Learning Vector Quantization (GLVQ. The final result of this research is a program for AR.Drone to track a moving object on the floor in fast response time that is under 1 second.
IMAGEP - A FORTRAN ALGORITHM FOR DIGITAL IMAGE PROCESSING
Roth, D. J.
1994-01-01
IMAGEP is a FORTRAN computer algorithm containing various image processing, analysis, and enhancement functions. It is a keyboard-driven program organized into nine subroutines. Within the subroutines are other routines, also, selected via keyboard. Some of the functions performed by IMAGEP include digitization, storage and retrieval of images; image enhancement by contrast expansion, addition and subtraction, magnification, inversion, and bit shifting; display and movement of cursor; display of grey level histogram of image; and display of the variation of grey level intensity as a function of image position. This algorithm has possible scientific, industrial, and biomedical applications in material flaw studies, steel and ore analysis, and pathology, respectively. IMAGEP is written in VAX FORTRAN for DEC VAX series computers running VMS. The program requires the use of a Grinnell 274 image processor which can be obtained from Mark McCloud Associates, Campbell, CA. An object library of the required GMR series software is included on the distribution media. IMAGEP requires 1Mb of RAM for execution. The standard distribution medium for this program is a 1600 BPI 9track magnetic tape in VAX FILES-11 format. It is also available on a TK50 tape cartridge in VAX FILES-11 format. This program was developed in 1991. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation.
Directory of Open Access Journals (Sweden)
V. S. Kudryashov
2016-01-01
Full Text Available The article is devoted to the development of a correction control algorithm by temperature mode of a periodic rubber mixing process for JSC "Voronezh tire plant". The algorithm is designed to perform in the main controller a section of rubber mixing Siemens S7 CPU319F-3 PN/DP, which forms tasks for the local temperature controllers HESCH HE086 and Jumo dTRON304, operating by tempering stations. To compile the algorithm was performed a systematic analysis of rubber mixing process as an object of control and was developed a mathematical model of the process based on the heat balance equations describing the processes of heat transfer through the walls of technological devices, the change of coolant temperature and the temperature of the rubber compound mixing until discharge from the mixer chamber. Due to the complexity and nonlinearity of the control object – Rubber mixers and the availability of methods and a wide experience of this device control in an industrial environment, a correction algorithm is implemented on the basis of an artificial single-layer neural network and it provides the correction of tasks for local controllers on the cooling water temperature and air temperature in the workshop, which may vary considerably depending on the time of the year, and during prolonged operation of the equipment or its downtime. Tempering stations control is carried out by changing the flow of cold water from the cooler and on/off control of the heating elements. The analysis of the model experiments results and practical research at the main controller programming in the STEP 7 environment at the enterprise showed a decrease in the mixing time for different types of rubbers by reducing of heat transfer process control error.
Real time processing of neutron monitor data using the edge editor algorithm
Directory of Open Access Journals (Sweden)
Mavromichalaki Helen
2012-09-01
Full Text Available The nucleonic component of the secondary cosmic rays is measured by the worldwide network of neutron monitors (NMs. In most cases, a NM station publishes the measured data in a real time basis in order to be available for instant use from the scientific community. The space weather centers and the online applications such as the ground level enhancement (GLE alert make use of the online data and are highly dependent on their quality. However, the primary data in some cases are distorted due to unpredictable instrument variations. For this reason, the real time primary data processing of the measured data of a station is necessary. The general operational principle of the correction algorithms is the comparison between the different channels of a NM, taking advantage of the fact that a station hosts a number of identical detectors. Median editor, Median editor plus and Super editor are some of the correction algorithms that are being used with satisfactory results. In this work an alternative algorithm is proposed and analyzed. The new algorithm uses a statistical approach to define the distribution of the measurements and introduces an error index which is used for the correction of the measurements that deviate from this distribution.
Institute of Scientific and Technical Information of China (English)
Lili Tao; Bin Xu; Zhihua Hu; Weimin Zhong
2017-01-01
The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [1]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta-neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob-lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application of ISADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.
Independent tasks scheduling in cloud computing via improved estimation of distribution algorithm
Sun, Haisheng; Xu, Rui; Chen, Huaping
2018-04-01
To minimize makespan for scheduling independent tasks in cloud computing, an improved estimation of distribution algorithm (IEDA) is proposed to tackle the investigated problem in this paper. Considering that the problem is concerned with multi-dimensional discrete problems, an improved population-based incremental learning (PBIL) algorithm is applied, which the parameter for each component is independent with other components in PBIL. In order to improve the performance of PBIL, on the one hand, the integer encoding scheme is used and the method of probability calculation of PBIL is improved by using the task average processing time; on the other hand, an effective adaptive learning rate function that related to the number of iterations is constructed to trade off the exploration and exploitation of IEDA. In addition, both enhanced Max-Min and Min-Min algorithms are properly introduced to form two initial individuals. In the proposed IEDA, an improved genetic algorithm (IGA) is applied to generate partial initial population by evolving two initial individuals and the rest of initial individuals are generated at random. Finally, the sampling process is divided into two parts including sampling by probabilistic model and IGA respectively. The experiment results show that the proposed IEDA not only gets better solution, but also has faster convergence speed.
An Automated Energy Detection Algorithm Based on Kurtosis-Histogram Excision
2018-01-01
10 kHz, 100 kHz, 1 MHz 100 MHz–1 GHz 1 100 kHz 3. Statistical Processing 3.1 Statistical Analysis Statistical analysis is the mathematical ...quantitative terms. In commercial prognostics and diagnostic vibrational monitoring applications , statistical techniques that are mainly used for alarm...applying statistical processing techniques to the energy detection scenario of signals in the RF spectrum domain. The algorithm was developed after
Elsheikh, Ahmed H.; Wheeler, Mary Fanett; Hoteit, Ibrahim
2014-01-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using
Directory of Open Access Journals (Sweden)
Andrej Bugajev
2018-01-01
Full Text Available In this article, the modelling of the judicial conflict-resolution process is considered from a construction investor’s point of view. Such modelling is important for improving the risk management for construction investors and supporting sustainable city development by supporting the development of rules regulating the construction process. Thus, this raises the problem of evaluation of different decisions and selection of the optimal one followed by distribution extraction. First, the example of such a process is analysed and schematically represented. Then, it is formalised as a graph, which is described in the form of a decision graph with cycles. We use some natural problem properties and provide the algorithm to convert this graph into a tree. Then, we propose the algorithm to evaluate profits for different scenarios with estimation of time, which is done by integration of an average daily costs function. Afterwards, the optimisation problem is solved and the optimal investor strategy is obtained—this allows one to extract the construction project profit distribution, which can be used for further analysis by standard risk (and other important information-evaluation techniques. The overall algorithm complexity is analysed, the computational experiment is performed and conclusions are formulated.
Haffner, D. P.; McPeters, R. D.; Bhartia, P. K.; Labow, G. J.
2015-12-01
The TOMS V9 total ozone algorithm will be applied to the OMPS Nadir Mapper instrument to supersede the exisiting V8.6 data product in operational processing and re-processing for public release. Becuase the quality of the V8.6 data is already quite high, enchancements in V9 are mainly with information provided by the retrieval and simplifcations to the algorithm. The design of the V9 algorithm has been influenced by improvements both in our knowledge of atmospheric effects, such as those of clouds made possible by studies with OMI, and also limitations in the V8 algorithms applied to both OMI and OMPS. But the namesake instruments of the TOMS algorithm are substantially more limited in their spectral and noise characterisitics, and a requirement of our algorithm is to also apply the algorithm to these discrete band spectrometers which date back to 1978. To achieve continuity for all these instruments, the TOMS V9 algorithm continues to use radiances in discrete bands, but now uses Rodgers optimal estimation to retrieve a coarse profile and provide uncertainties for each retrieval. The algorithm remains capable of achieving high accuracy results with a small number of discrete wavelengths, and in extreme cases, such as unusual profile shapes and high solar zenith angles, the quality of the retrievals is improved. Despite the intended design to use limited wavlenegths, the algorithm can also utilitze additional wavelengths from hyperspectral sensors like OMPS to augment the retreival's error detection and information content; for example SO2 detection and correction of Ring effect on atmospheric radiances. We discuss these and other aspects of the V9 algorithm as it will be applied to OMPS, and will mention potential improvements which aim to take advantage of a synergy with OMPS Limb Profiler and Nadir Mapper to further improve the quality of total ozone from the OMPS instrument.
Directory of Open Access Journals (Sweden)
V. E. Marley
2015-01-01
Full Text Available Summary. The concept of algorithmic models appeared from the algorithmic approach in which the simulated object, the phenomenon appears in the form of process, subject to strict rules of the algorithm, which placed the process of operation of the facility. Under the algorithmic model is the formalized description of the scenario subject specialist for the simulated process, the structure of which is comparable with the structure of the causal and temporal relationships between events of the process being modeled, together with all information necessary for its software implementation. To represent the structure of algorithmic models used algorithmic network. Normally, they were defined as loaded finite directed graph, the vertices which are mapped to operators and arcs are variables, bound by operators. The language of algorithmic networks has great features, the algorithms that it can display indifference the class of all random algorithms. In existing systems, automation modeling based on algorithmic nets, mainly used by operators working with real numbers. Although this reduces their ability, but enough for modeling a wide class of problems related to economy, environment, transport, technical processes. The task of modeling the execution of schedules and network diagrams is relevant and useful. There are many counting systems, network graphs, however, the monitoring process based analysis of gaps and terms of graphs, no analysis of prediction execution schedule or schedules. The library is designed to build similar predictive models. Specifying source data to obtain a set of projections from which to choose one and take it for a new plan.
Applying Statistical Process Control to Clinical Data: An Illustration.
Pfadt, Al; And Others
1992-01-01
Principles of statistical process control are applied to a clinical setting through the use of control charts to detect changes, as part of treatment planning and clinical decision-making processes. The logic of control chart analysis is derived from principles of statistical inference. Sample charts offer examples of evaluating baselines and…
Directory of Open Access Journals (Sweden)
Vivek Patel
2012-08-01
Full Text Available Nature inspired population based algorithms is a research field which simulates different natural phenomena to solve a wide range of problems. Researchers have proposed several algorithms considering different natural phenomena. Teaching-Learning-based optimization (TLBO is one of the recently proposed population based algorithm which simulates the teaching-learning process of the class room. This algorithm does not require any algorithm-specific control parameters. In this paper, elitism concept is introduced in the TLBO algorithm and its effect on the performance of the algorithm is investigated. The effects of common controlling parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 35 constrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. The proposed algorithm can be applied to various optimization problems of the industrial environment.
Data-driven process decomposition and robust online distributed modelling for large-scale processes
Shu, Zhang; Lijuan, Li; Lijuan, Yao; Shipin, Yang; Tao, Zou
2018-02-01
With the increasing attention of networked control, system decomposition and distributed models show significant importance in the implementation of model-based control strategy. In this paper, a data-driven system decomposition and online distributed subsystem modelling algorithm was proposed for large-scale chemical processes. The key controlled variables are first partitioned by affinity propagation clustering algorithm into several clusters. Each cluster can be regarded as a subsystem. Then the inputs of each subsystem are selected by offline canonical correlation analysis between all process variables and its controlled variables. Process decomposition is then realised after the screening of input and output variables. When the system decomposition is finished, the online subsystem modelling can be carried out by recursively block-wise renewing the samples. The proposed algorithm was applied in the Tennessee Eastman process and the validity was verified.
A study of metaheuristic algorithms for high dimensional feature selection on microarray data
Dankolo, Muhammad Nasiru; Radzi, Nor Haizan Mohamed; Sallehuddin, Roselina; Mustaffa, Noorfa Haszlinna
2017-11-01
Microarray systems enable experts to examine gene profile at molecular level using machine learning algorithms. It increases the potentials of classification and diagnosis of many diseases at gene expression level. Though, numerous difficulties may affect the efficiency of machine learning algorithms which includes vast number of genes features comprised in the original data. Many of these features may be unrelated to the intended analysis. Therefore, feature selection is necessary to be performed in the data pre-processing. Many feature selection algorithms are developed and applied on microarray which including the metaheuristic optimization algorithms. This paper discusses the application of the metaheuristics algorithms for feature selection in microarray dataset. This study reveals that, the algorithms have yield an interesting result with limited resources thereby saving computational expenses of machine learning algorithms.
Algorithm FIRE-Feynman Integral REduction
International Nuclear Information System (INIS)
Smirnov, A.V.
2008-01-01
The recently developed algorithm FIRE performs the reduction of Feynman integrals to master integrals. It is based on a number of strategies, such as applying the Laporta algorithm, the s-bases algorithm, region-bases and integrating explicitly over loop momenta when possible. Currently it is being used in complicated three-loop calculations.
The Algorithm Theoretical Basis Document for Level 1A Processing
Jester, Peggy L.; Hancock, David W., III
2012-01-01
The first process of the Geoscience Laser Altimeter System (GLAS) Science Algorithm Software converts the Level 0 data into the Level 1A Data Products. The Level 1A Data Products are the time ordered instrument data converted from counts to engineering units. This document defines the equations that convert the raw instrument data into engineering units. Required scale factors, bias values, and coefficients are defined in this document. Additionally, required quality assurance and browse products are defined in this document.
A Generalized Ant Colony Algorithm for Job一shop Scheduling Problem
Directory of Open Access Journals (Sweden)
ZHANG Hong-Guo
2017-02-01
Full Text Available Aiming at the problem of ant colony algorithm for solving Job一shop scheduling problem. Considering the complexity of the algorithm that uses disjunctive graph to describe the relationship between workpiece processing. To solve the problem of optimal solution，a generalized ant colony algorithm is proposed. Under the premise of considering constrained relationship between equipment and process，the pheromone update mechanism is applied to solve Job-shop scheduling problem，so as to improve the quality of the solution. In order to improve the search efficiency，according to the state transition rules of ant colony algorithm，this paper makes a detailed study on the selection and improvement of the parameters in the algorithm，and designs the pheromone update strategy. Experimental results show that a generalized ant colony algorithm is more feasible and more effective. Compared with other algorithms in the literature，the results prove that the algorithm improves in computing the optimal solution and convergence speed.
An ATR architecture for algorithm development and testing
Breivik, Gøril M.; Løkken, Kristin H.; Brattli, Alvin; Palm, Hans C.; Haavardsholm, Trym
2013-05-01
A research platform with four cameras in the infrared and visible spectral domains is under development at the Norwegian Defence Research Establishment (FFI). The platform will be mounted on a high-speed jet aircraft and will primarily be used for image acquisition and for development and test of automatic target recognition (ATR) algorithms. The sensors on board produce large amounts of data, the algorithms can be computationally intensive and the data processing is complex. This puts great demands on the system architecture; it has to run in real-time and at the same time be suitable for algorithm development. In this paper we present an architecture for ATR systems that is designed to be exible, generic and efficient. The architecture is module based so that certain parts, e.g. specific ATR algorithms, can be exchanged without affecting the rest of the system. The modules are generic and can be used in various ATR system configurations. A software framework in C++ that handles large data ows in non-linear pipelines is used for implementation. The framework exploits several levels of parallelism and lets the hardware processing capacity be fully utilised. The ATR system is under development and has reached a first level that can be used for segmentation algorithm development and testing. The implemented system consists of several modules, and although their content is still limited, the segmentation module includes two different segmentation algorithms that can be easily exchanged. We demonstrate the system by applying the two segmentation algorithms to infrared images from sea trial recordings.
An Efficient Randomized Algorithm for Real-Time Process Scheduling in PicOS Operating System
Helmy*, Tarek; Fatai, Anifowose; Sallam, El-Sayed
PicOS is an event-driven operating environment designed for use with embedded networked sensors. More specifically, it is designed to support the concurrency in intensive operations required by networked sensors with minimal hardware requirements. Existing process scheduling algorithms of PicOS; a commercial tiny, low-footprint, real-time operating system; have their associated drawbacks. An efficient, alternative algorithm, based on a randomized selection policy, has been proposed, demonstrated, confirmed for efficiency and fairness, on the average, and has been recommended for implementation in PicOS. Simulations were carried out and performance measures such as Average Waiting Time (AWT) and Average Turn-around Time (ATT) were used to assess the efficiency of the proposed randomized version over the existing ones. The results prove that Randomized algorithm is the best and most attractive for implementation in PicOS, since it is most fair and has the least AWT and ATT on average over the other non-preemptive scheduling algorithms implemented in this paper.
Night-Time Vehicle Detection Algorithm Based on Visual Saliency and Deep Learning
Directory of Open Access Journals (Sweden)
Yingfeng Cai
2016-01-01
Full Text Available Night vision systems get more and more attention in the field of automotive active safety field. In this area, a number of researchers have proposed far-infrared sensor based night-time vehicle detection algorithm. However, existing algorithms have low performance in some indicators such as the detection rate and processing time. To solve this problem, we propose a far-infrared image vehicle detection algorithm based on visual saliency and deep learning. Firstly, most of the nonvehicle pixels will be removed with visual saliency computation. Then, vehicle candidate will be generated by using prior information such as camera parameters and vehicle size. Finally, classifier trained with deep belief networks will be applied to verify the candidates generated in last step. The proposed algorithm is tested in around 6000 images and achieves detection rate of 92.3% and processing time of 25 Hz which is better than existing methods.
Krasichkov, A S; Grigoriev, E B; Nifontov, E M; Shapovalov, V V
The paper presents an algorithm of cardio complex classification as part of processing the data of continuous cardiac monitoring. R-wave detection concurrently with cardio complex sorting is discussed. The core of this approach is the use of prior information about. cardio complex forms, segmental structure, and degree of kindness. Results of the sorting algorithm testing are provided.
DIDADTIC TOOLS FOR THE STUDENTS’ ALGORITHMIC THINKING DEVELOPMENT
Directory of Open Access Journals (Sweden)
T. P. Pushkaryeva
2017-01-01
thinking and increase the level of understanding and learning of educational material on algorithms and programming.Scientific novelty. The developed tools and methods for developing algorithmic style of thinking during the educational process of training in programming is fundamentally different from existing ones that are aimed at kinesthetic channels of perception and activation of motor-memory area. According to the latest statistics, over 40% of people have kinesthetic sensing of the world; however, researchers have not treated this phenomenon in much detail. On the whole, the use efficiency of the didactic means when training graduates of engineering specialties has been proved in the course of the carried out experiment on kinesthetic tools introduction into educational process with the subsequent diagnostics of the levels of AT skills development, and the quality of training in programming among the students of theSiberianFederalUniversity.Practical significance. The proposed tools and methods for developing algorithmic thinking can be used in the training process in the school course of computer science, as well as university courses of programming of various kinds. The presented kinesthetic tools can be used for other technical and natural-science specialities (e.g. Mathematics after applying specific content adaptation.
Agents Modeling Experience Applied To Control Of Semi-Continuous Production Process
Directory of Open Access Journals (Sweden)
Gabriel Rojek
2014-01-01
Full Text Available The lack of proper analytical models of some production processes prevents us from obtaining proper values of process parameters by simply computing optimal values. Possible solutions of control problems in such areas of industrial processes can be found using certain methods from the domain of artificial intelligence: neural networks, fuzzy logic, expert systems, or evolutionary algorithms. Presented in this work, a solution to such a control problem is an alternative approach that combines control of the industrial process with learning based on production results. By formulating the main assumptions of the proposed methodology, decision processes of a human operator using his experience are taken into consideration. The researched model of using and gathering experience of human beings is designed with the contribution of agent technology. The presented solution of the control problem coincides with case-based reasoning (CBR methodology.
The parallel processing impact in the optimization of the reactors neutronic by genetic algorithms
International Nuclear Information System (INIS)
Pereira, Claudio M.N.A.; Universidade Federal, Rio de Janeiro, RJ; Lapa, Celso M.F.; Mol, Antonio C.A.
2002-01-01
Nowadays, many optimization problems found in nuclear engineering has been solved through genetic algorithms (GA). The robustness of such methods is strongly related to the nature of search process which is based on populations of solution candidates, and this fact implies high computational cost in the optimization process. The use of GA become more critical when the evaluation process of a solution candidate is highly time consuming. Problems of this nature are common in the nuclear engineering, and an example is the reactor design optimization, where neutronic codes, which consume high CPU time, must be run. Aiming to investigate the impact of the use of parallel computation in the solution, through GA, of a reactor design optimization problem, a parallel genetic algorithm (PGA), using the Island Model, was developed. Exhaustive experiments, then 1500 processing hours in 550 MHz personal computers, have been done, in order to compare the conventional GA with the PGA. Such experiments have demonstrating the superiority of the PGA not only in terms of execution time, but also, in the optimization results. (author)
Optimization Shape of Variable Capacitance Micromotor Using Differential Evolution Algorithm
Directory of Open Access Journals (Sweden)
A. Ketabi
2010-01-01
Full Text Available A new method for optimum shape design of variable capacitance micromotor (VCM using Differential Evolution (DE, a stochastic search algorithm, is presented. In this optimization exercise, the objective function aims to maximize torque value and minimize the torque ripple, where the geometric parameters are considered to be the variables. The optimization process is carried out using a combination of DE algorithm and FEM analysis. Fitness value is calculated by FEM analysis using COMSOL3.4, and the DE algorithm is realized by MATLAB7.4. The proposed method is applied to a VCM with 8 poles at the stator and 6 poles at the rotor. The results show that the optimized micromotor using DE algorithm had higher torque value and lower torque ripple, indicating the validity of this methodology for VCM design.
Design strategy for optimal iterative learning control applied on a deep drawing process
DEFF Research Database (Denmark)
Endelt, Benny Ørtoft
2017-01-01
Metal forming processes in general can be characterised as repetitive processes; this work will take advantage of this characteristic by developing an algorithm or control system which transfers process information from part to part, reducing the impact of repetitive uncertainties, e.g. a gradual...... changes in the material properties. The process is highly non-linear and the system plant is modelled using a non-linear finite element and the gain factors for the iterative learning controller is identified solving a non-linear optimal control problem. The optimal control problem is formulated as a non...
An Applied Image Processing for Radiographic Testing
International Nuclear Information System (INIS)
Ratchason, Surasak; Tuammee, Sopida; Srisroal Anusara
2005-10-01
An applied image processing for radiographic testing (RT) is desirable because it decreases time-consuming, decreases the cost of inspection process that need the experienced workers, and improves the inspection quality. This paper presents the primary study of image processing for RT-films that is the welding-film. The proposed approach to determine the defects on weld-images. The BMP image-files are opened and developed by computer program that using Borland C ++ . The software has five main methods that are Histogram, Contrast Enhancement, Edge Detection, Image Segmentation and Image Restoration. Each the main method has the several sub method that are the selected options. The results showed that the effective software can detect defects and the varied method suit for the different radiographic images. Furthermore, improving images are better when two methods are incorporated
Fundamentals of applied probability and random processes
Ibe, Oliver
2005-01-01
This book is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability to real-world problems, and introduce the basics of statistics. The book''s clear writing style and homework problems make it ideal for the classroom or for self-study.* Good and solid introduction to probability theory and stochastic processes * Logically organized; writing is presented in a clear manner * Choice of topics is comprehensive within the area of probability * Ample homework problems are organized into chapter sections
Transforming Collaborative Process Models into Interface Process Models by Applying an MDA Approach
Lazarte, Ivanna M.; Chiotti, Omar; Villarreal, Pablo D.
Collaborative business models among enterprises require defining collaborative business processes. Enterprises implement B2B collaborations to execute these processes. In B2B collaborations the integration and interoperability of processes and systems of the enterprises are required to support the execution of collaborative processes. From a collaborative process model, which describes the global view of the enterprise interactions, each enterprise must define the interface process that represents the role it performs in the collaborative process in order to implement the process in a Business Process Management System. Hence, in this work we propose a method for the automatic generation of the interface process model of each enterprise from a collaborative process model. This method is based on a Model-Driven Architecture to transform collaborative process models into interface process models. By applying this method, interface processes are guaranteed to be interoperable and defined according to a collaborative process.
Digital processing methodology applied to exploring of radiological images
International Nuclear Information System (INIS)
Oliveira, Cristiane de Queiroz
2004-01-01
In this work, digital image processing is applied as a automatic computational method, aimed for exploring of radiological images. It was developed an automatic routine, from the segmentation and post-processing techniques to the radiology images acquired from an arrangement, consisting of a X-ray tube, target and filter of molybdenum, of 0.4 mm and 0.03 mm, respectively, and CCD detector. The efficiency of the methodology developed is showed in this work, through a case study, where internal injuries in mangoes are automatically detected and monitored. This methodology is a possible tool to be introduced in the post-harvest process in packing houses. A dichotomic test was applied to evaluate a efficiency of the method. The results show a success of 87.7% to correct diagnosis and 12.3% to failures to correct diagnosis with a sensibility of 93% and specificity of 80%. (author)
Anti-reflection coatings applied by acid leaching process
Pastirik, E.
1980-01-01
The Magicote C process developed by S.M. Thompsen was evaluated for use in applying an antireflective coating to the cover plates of solar panels. The process uses a fluosilicic acid solution supersaturated with silica at elevated temperature to selectively attack the surface of soda-lime glass cover plates and alter the physical and chemical composition of a thin layer of glass. The altered glass layer constitutes an antireflective coating. The process produces coatings of excellent optical quality which possess outstanding resistance to soiling and staining. The coatings produced are not resistant to mechanical abrasion and are attacked to some extent by glass cleansers. Control of the filming process was found to be difficult.
A quantum algorithm for Viterbi decoding of classical convolutional codes
Grice, Jon R.; Meyer, David A.
2015-07-01
We present a quantum Viterbi algorithm (QVA) with better than classical performance under certain conditions. In this paper, the proposed algorithm is applied to decoding classical convolutional codes, for instance, large constraint length and short decode frames . Other applications of the classical Viterbi algorithm where is large (e.g., speech processing) could experience significant speedup with the QVA. The QVA exploits the fact that the decoding trellis is similar to the butterfly diagram of the fast Fourier transform, with its corresponding fast quantum algorithm. The tensor-product structure of the butterfly diagram corresponds to a quantum superposition that we show can be efficiently prepared. The quantum speedup is possible because the performance of the QVA depends on the fanout (number of possible transitions from any given state in the hidden Markov model) which is in general much less than . The QVA constructs a superposition of states which correspond to all legal paths through the decoding lattice, with phase as a function of the probability of the path being taken given received data. A specialized amplitude amplification procedure is applied one or more times to recover a superposition where the most probable path has a high probability of being measured.
Decoupling algorithms from schedules for easy optimization of image processing pipelines
Adams, Andrew; Paris, Sylvain; Levoy, Marc; Ragan-Kelley, Jonathan Millar; Amarasinghe, Saman P.; Durand, Fredo
2012-01-01
Using existing programming tools, writing high-performance image processing code requires sacrificing readability, portability, and modularity. We argue that this is a consequence of conflating what computations define the algorithm, with decisions about storage and the order of computation. We refer to these latter two concerns as the schedule, including choices of tiling, fusion, recomputation vs. storage, vectorization, and parallelism. We propose a representation for feed-forward imagi...
Portfolios of quantum algorithms.
Maurer, S M; Hogg, T; Huberman, B A
2001-12-17
Quantum computation holds promise for the solution of many intractable problems. However, since many quantum algorithms are stochastic in nature they can find the solution of hard problems only probabilistically. Thus the efficiency of the algorithms has to be characterized by both the expected time to completion and the associated variance. In order to minimize both the running time and its uncertainty, we show that portfolios of quantum algorithms analogous to those of finance can outperform single algorithms when applied to the NP-complete problems such as 3-satisfiability.
A Hybrid Chaotic Quantum Evolutionary Algorithm
DEFF Research Database (Denmark)
Cai, Y.; Zhang, M.; Cai, H.
2010-01-01
A hybrid chaotic quantum evolutionary algorithm is proposed to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm. The proposed algorithm adopts the chaotic initialization method to generate initial population which will form a pe...... tests. The presented algorithm is applied to urban traffic signal timing optimization and the effect is satisfied....
Genetic Algorithms vs. Artificial Neural Networks in Economic Forecasting Process
Directory of Open Access Journals (Sweden)
Nicolae Morariu
2008-01-01
Full Text Available This paper aims to describe the implementa-tion of a neural network and a genetic algorithm system in order to forecast certain economic indicators of a free market economy. In a free market economy forecasting process precedes the economic planning (a management function, providing important information for the result of the last process. Forecasting represents a starting point in setting of target for a firm, an organization or even a branch of the economy. Thus, the forecasting method used can influence in a significant mode the evolution of an entity. In the following we will describe the forecasting of an economic indicator using two intelligent systems. The difference between the results obtained by this two systems are described in chapter IV.
40 CFR 80.513 - What provisions apply to transmix processing facilities?
2010-07-01
... processing. This section applies to refineries that produce diesel fuel from transmix by distillation or other refining processes but do not produce diesel fuel by processing crude oil. This section only...
An algorithm for gradient-based dynamic optimization of UV ﬂash processes
DEFF Research Database (Denmark)
Ritschel, Tobias Kasper Skovborg; Capolei, Andrea; Gaspar, Jozsef
2017-01-01
This paper presents a novel single-shooting algorithm for gradient-based solution of optimal control problems with vapor-liquid equilibrium constraints. Such optimal control problems are important in several engineering applications, for instance in control of distillation columns, in certain two...... softwareaswellastheperformanceofdiﬀerentcompilersinaLinuxoperatingsystem. Thesetestsindicatethatreal-timenonlinear model predictive control of UV ﬂash processes is computationally feasible....
García-Calvo, Raúl; Guisado, JL; Diaz-del-Rio, Fernando; Córdoba, Antonio; Jiménez-Morales, Francisco
2018-01-01
Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes—master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)—is carried out for this problem. Several procedures that optimize the use of the GPU’s resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent
García-Calvo, Raúl; Guisado, J L; Diaz-Del-Rio, Fernando; Córdoba, Antonio; Jiménez-Morales, Francisco
2018-01-01
Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes-master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)-is carried out for this problem. Several procedures that optimize the use of the GPU's resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent
Gene selection heuristic algorithm for nutrigenomics studies.
Valour, D; Hue, I; Grimard, B; Valour, B
2013-07-15
Large datasets from -omics studies need to be deeply investigated. The aim of this paper is to provide a new method (LEM method) for the search of transcriptome and metabolome connections. The heuristic algorithm here described extends the classical canonical correlation analysis (CCA) to a high number of variables (without regularization) and combines well-conditioning and fast-computing in "R." Reduced CCA models are summarized in PageRank matrices, the product of which gives a stochastic matrix that resumes the self-avoiding walk covered by the algorithm. Then, a homogeneous Markov process applied to this stochastic matrix converges the probabilities of interconnection between genes, providing a selection of disjointed subsets of genes. This is an alternative to regularized generalized CCA for the determination of blocks within the structure matrix. Each gene subset is thus linked to the whole metabolic or clinical dataset that represents the biological phenotype of interest. Moreover, this selection process reaches the aim of biologists who often need small sets of genes for further validation or extended phenotyping. The algorithm is shown to work efficiently on three published datasets, resulting in meaningfully broadened gene networks.
A survey of parallel multigrid algorithms
Chan, Tony F.; Tuminaro, Ray S.
1987-01-01
A typical multigrid algorithm applied to well-behaved linear-elliptic partial-differential equations (PDEs) is described. Criteria for designing and evaluating parallel algorithms are presented. Before evaluating the performance of some parallel multigrid algorithms, consideration is given to some theoretical complexity results for solving PDEs in parallel and for executing the multigrid algorithm. The effect of mapping and load imbalance on the partial efficiency of the algorithm is studied.
Selection of parameters for advanced machining processes using firefly algorithm
Directory of Open Access Journals (Sweden)
Rajkamal Shukla
2017-02-01
Full Text Available Advanced machining processes (AMPs are widely utilized in industries for machining complex geometries and intricate profiles. In this paper, two significant processes such as electric discharge machining (EDM and abrasive water jet machining (AWJM are considered to get the optimum values of responses for the given range of process parameters. The firefly algorithm (FA is attempted to the considered processes to obtain optimized parameters and the results obtained are compared with the results given by previous researchers. The variation of process parameters with respect to the responses are plotted to confirm the optimum results obtained using FA. In EDM process, the performance parameter “MRR” is increased from 159.70 gm/min to 181.6723 gm/min, while “Ra” and “REWR” are decreased from 6.21 μm to 3.6767 μm and 6.21% to 6.324 × 10−5% respectively. In AWJM process, the value of the “kerf” and “Ra” are decreased from 0.858 mm to 0.3704 mm and 5.41 mm to 4.443 mm respectively. In both the processes, the obtained results show a significant improvement in the responses.
Simulation-based algorithms for Markov decision processes
Chang, Hyeong Soo; Fu, Michael C; Marcus, Steven I
2013-01-01
Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences. Many real-world problems modeled by MDPs have huge state and/or action spaces, giving an opening to the curse of dimensionality and so making practical solution of the resulting models intractable. In other cases, the system of interest is too complex to allow explicit specification of some of the MDP model parameters, but simulation samples are readily available (e.g., for random transitions and costs). For these settings, various sampling and population-based algorithms have been developed to overcome the difficulties of computing an optimal solution in terms of a policy and/or value function. Specific approaches include adaptive sampling, evolutionary policy iteration, evolutionary random policy search, and model reference adaptive search. This substantially enlarged new edition reflects the latest developments in novel ...
Deep Learning in Visual Computing and Signal Processing
Xie, Danfeng; Zhang, Lei; Bai, Li
2017-01-01
Deep learning is a subfield of machine learning, which aims to learn a hierarchy of features from input data. Nowadays, researchers have intensively investigated deep learning algorithms for solving challenging problems in many areas such as image classification, speech recognition, signal processing, and natural language processing. In this study, we not only review typical deep learning algorithms in computer vision and signal processing but also provide detailed information on how to apply...
Directory of Open Access Journals (Sweden)
Jie-Sheng Wang
2015-01-01
Full Text Available For predicting the key technology indicators (concentrate grade and tailings recovery rate of flotation process, a feed-forward neural network (FNN based soft-sensor model optimized by the hybrid algorithm combining particle swarm optimization (PSO algorithm and gravitational search algorithm (GSA is proposed. Although GSA has better optimization capability, it has slow convergence velocity and is easy to fall into local optimum. So in this paper, the velocity vector and position vector of GSA are adjusted by PSO algorithm in order to improve its convergence speed and prediction accuracy. Finally, the proposed hybrid algorithm is adopted to optimize the parameters of FNN soft-sensor model. Simulation results show that the model has better generalization and prediction accuracy for the concentrate grade and tailings recovery rate to meet the online soft-sensor requirements of the real-time control in the flotation process.
Sensitivity analysis and optimization algorithms for 3D forging process design
International Nuclear Information System (INIS)
Do, T.T.; Fourment, L.; Laroussi, M.
2004-01-01
This paper presents several approaches for preform shape optimization in 3D forging. The process simulation is carried out using the FORGE3 registered finite element software, and the optimization problem regards the shape of initial axisymmetrical preforms. Several objective functions are considered, like the forging energy, the forging force or a surface defect criterion. Both deterministic and stochastic optimization algorithms are tested for 3D applications. The deterministic approach uses the sensitivity analysis that provides the gradient of the objective function. It is obtained by the adjoint-state method and semi-analytical differentiation. The study of stochastic approaches aims at comparing genetic algorithms and evolution strategies. Numerical results show the feasibility of such approaches, i.e. the achieving of satisfactory solutions within a limited number of 3D simulations, less than fifty. For a more industrial problem, the forging of a gear, encouraging optimization results are obtained
A Discrete Fruit Fly Optimization Algorithm for the Traveling Salesman Problem.
Directory of Open Access Journals (Sweden)
Zi-Bin Jiang
Full Text Available The fruit fly optimization algorithm (FOA is a newly developed bio-inspired algorithm. The continuous variant version of FOA has been proven to be a powerful evolutionary approach to determining the optima of a numerical function on a continuous definition domain. In this study, a discrete FOA (DFOA is developed and applied to the traveling salesman problem (TSP, a common combinatorial problem. In the DFOA, the TSP tour is represented by an ordering of city indices, and the bio-inspired meta-heuristic search processes are executed with two elaborately designed main procedures: the smelling and tasting processes. In the smelling process, an effective crossover operator is used by the fruit fly group to search for the neighbors of the best-known swarm location. During the tasting process, an edge intersection elimination (EXE operator is designed to improve the neighbors of the non-optimum food location in order to enhance the exploration performance of the DFOA. In addition, benchmark instances from the TSPLIB are classified in order to test the searching ability of the proposed algorithm. Furthermore, the effectiveness of the proposed DFOA is compared to that of other meta-heuristic algorithms. The results indicate that the proposed DFOA can be effectively used to solve TSPs, especially large-scale problems.
Mudford, Oliver C; Taylor, Sarah Ann; Martin, Neil T
2009-01-01
We reviewed all research articles in 10 recent volumes of the Journal of Applied Behavior Analysis (JABA): Vol. 28(3), 1995, through Vol. 38(2), 2005. Continuous recording was used in the majority (55%) of the 168 articles reporting data on free-operant human behaviors. Three methods for reporting interobserver agreement (exact agreement, block-by-block agreement, and time-window analysis) were employed in more than 10 of the articles that reported continuous recording. Having identified these currently popular agreement computation algorithms, we explain them to assist researchers, software writers, and other consumers of JABA articles. PMID:19721737
Effects of visualization on algorithm comprehension
Mulvey, Matthew
Computer science students are expected to learn and apply a variety of core algorithms which are an essential part of the field. Any one of these algorithms by itself is not necessarily extremely complex, but remembering the large variety of algorithms and the differences between them is challenging. To address this challenge, we present a novel algorithm visualization tool designed to enhance students understanding of Dijkstra's algorithm by allowing them to discover the rules of the algorithm for themselves. It is hoped that a deeper understanding of the algorithm will help students correctly select, adapt and apply the appropriate algorithm when presented with a problem to solve, and that what is learned here will be applicable to the design of other visualization tools designed to teach different algorithms. Our visualization tool is currently in the prototype stage, and this thesis will discuss the pedagogical approach that informs its design, as well as the results of some initial usability testing. Finally, to clarify the direction for further development of the tool, four different variations of the prototype were implemented, and the instructional effectiveness of each was assessed by having a small sample participants use the different versions of the prototype and then take a quiz to assess their comprehension of the algorithm.
The mechanical vapour compression process applied to seawater desalination
International Nuclear Information System (INIS)
Murat, F.; Tabourier, B.
1984-01-01
The authors present the mechanical vapour compression process applied to sea water desalination. As an example, the paper presents the largest unit so far constructed by SIDEM using this process : a 1,500 m3/day unit installed in the Nuclear Power Plant of Flamanville in France which supplies a high quality process water to that plant. The authors outline the advantages of this process and present also the serie of mechanical vapour compression unit that SIDEM has developed in a size range in between 25 m3/day and 2,500 m3/day
A high precision position sensor design and its signal processing algorithm for a maglev train.
Xue, Song; Long, Zhiqiang; He, Ning; Chang, Wensen
2012-01-01
High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS) system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD) is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run.
A High Precision Position Sensor Design and Its Signal Processing Algorithm for a Maglev Train
Directory of Open Access Journals (Sweden)
Wensen Chang
2012-04-01
Full Text Available High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run.
Directory of Open Access Journals (Sweden)
Jose M. Gonzalez-Cava
2018-01-01
Full Text Available One of the main challenges in medicine is to guarantee an appropriate drug supply according to the real needs of patients. Closed-loop strategies have been widely used to develop automatic solutions based on feedback variables. However, when the variable of interest cannot be directly measured or there is a lack of knowledge behind the process, it turns into a difficult issue to solve. In this research, a novel algorithm to approach this problem is presented. The main objective of this study is to provide a new general algorithm capable of determining the influence of a certain clinical variable in the decision making process for drug supply and then defining an automatic system able to guide the process considering this information. Thus, this new technique will provide a way to validate a given physiological signal as a feedback variable for drug titration. In addition, the result of the algorithm in terms of fuzzy rules and membership functions will define a fuzzy-based decision system for the drug delivery process. The method proposed is based on a Fuzzy Inference System whose structure is obtained through a decision tree algorithm. A four-step methodology is then developed: data collection, preprocessing, Fuzzy Inference System generation, and the validation of results. To test this methodology, the analgesia control scenario was analysed. Specifically, the viability of the Analgesia Nociception Index (ANI as a guiding variable for the analgesic process during surgical interventions was studied. Real data was obtained from fifteen patients undergoing cholecystectomy surgery.
Algebraic Algorithm Design and Local Search
National Research Council Canada - National Science Library
Graham, Robert
1996-01-01
.... Algebraic techniques have been applied successfully to algorithm synthesis by the use of algorithm theories and design tactics, an approach pioneered in the Kestrel Interactive Development System (KIDS...
Multivariable PID controller design tuning using bat algorithm for activated sludge process
Atikah Nor’Azlan, Nur; Asmiza Selamat, Nur; Mat Yahya, Nafrizuan
2018-04-01
The designing of a multivariable PID control for multi input multi output is being concerned with this project by applying four multivariable PID control tuning which is Davison, Penttinen-Koivo, Maciejowski and Proposed Combined method. The determination of this study is to investigate the performance of selected optimization technique to tune the parameter of MPID controller. The selected optimization technique is Bat Algorithm (BA). All the MPID-BA tuning result will be compared and analyzed. Later, the best MPID-BA will be chosen in order to determine which techniques are better based on the system performances in terms of transient response.
Experiences with serial and parallel algorithms for channel routing using simulated annealing
Brouwer, Randall Jay
1988-01-01
Two algorithms for channel routing using simulated annealing are presented. Simulated annealing is an optimization methodology which allows the solution process to back up out of local minima that may be encountered by inappropriate selections. By properly controlling the annealing process, it is very likely that the optimal solution to an NP-complete problem such as channel routing may be found. The algorithm presented proposes very relaxed restrictions on the types of allowable transformations, including overlapping nets. By freeing that restriction and controlling overlap situations with an appropriate cost function, the algorithm becomes very flexible and can be applied to many extensions of channel routing. The selection of the transformation utilizes a number of heuristics, still retaining the pseudorandom nature of simulated annealing. The algorithm was implemented as a serial program for a workstation, and a parallel program designed for a hypercube computer. The details of the serial implementation are presented, including many of the heuristics used and some of the resulting solutions.
Algorithms and programs for processing of satellite data on ozone layer and UV radiation levels
International Nuclear Information System (INIS)
Borkovskij, N.B.; Ivanyukovich, V.A.
2012-01-01
Some algorithms and programs for automatic retrieving and processing ozone layer satellite data are discussed. These techniques are used for reliable short-term UV-radiation levels forecasting. (authors)
Directory of Open Access Journals (Sweden)
Wang Wei
2016-01-01
Full Text Available The related theory and algorithm of adaptive inverse control were presented through the research which pointed out the adaptive inverse control strategy could effectively eliminate the noise influence on the system control. Proposed using a frequency domain filter-X LMS adaptive inverse control algorithm, and the control algorithm was applied to the two-exciter hydraulic vibration test system of random shock vibration control process and summarized the process of the adaptive inverse control strategies in the realization of the random shock vibration test. The self-closed-loop and field test show that using the frequency-domain filter-X LMS adaptive inverse control algorithm can realize high precision control of random shock vibration test.
A novel hybrid algorithm of GSA with Kepler algorithm for numerical optimization
Directory of Open Access Journals (Sweden)
Soroor Sarafrazi
2015-07-01
Full Text Available It is now well recognized that pure algorithms can be promisingly improved by hybridization with other techniques. One of the relatively new metaheuristic algorithms is Gravitational Search Algorithm (GSA which is based on the Newton laws. In this paper, to enhance the performance of GSA, a novel algorithm called “Kepler”, inspired by the astrophysics, is introduced. The Kepler algorithm is based on the principle of the first Kepler law. The hybridization of GSA and Kepler algorithm is an efficient approach to provide much stronger specialization in intensification and/or diversification. The performance of GSA–Kepler is evaluated by applying it to 14 benchmark functions with 20–1000 dimensions and the optimal approximation of linear system as a practical optimization problem. The results obtained reveal that the proposed hybrid algorithm is robust enough to optimize the benchmark functions and practical optimization problems.
Fykse, Egil
2013-01-01
The objective of this thesis is to compare the suitability of FPGAs, GPUs and DSPs for digital image processing applications. Normalized cross-correlation is used as a benchmark, because this algorithm includes convolution, a common operation in image processing and elsewhere. Normalized cross-correlation is a template matching algorithm that is used to locate predefined objects in a scene image. Because the throughput of DSPs is low for efficient calculation of normalized cross-correlation, ...
Fault Detection for Industrial Processes
Directory of Open Access Journals (Sweden)
Yingwei Zhang
2012-01-01
Full Text Available A new fault-relevant KPCA algorithm is proposed. Then the fault detection approach is proposed based on the fault-relevant KPCA algorithm. The proposed method further decomposes both the KPCA principal space and residual space into two subspaces. Compared with traditional statistical techniques, the fault subspace is separated based on the fault-relevant influence. This method can find fault-relevant principal directions and principal components of systematic subspace and residual subspace for process monitoring. The proposed monitoring approach is applied to Tennessee Eastman process and penicillin fermentation process. The simulation results show the effectiveness of the proposed method.
International Nuclear Information System (INIS)
Bilej, D.V.; Fridman, N.A.; Maslov, O.V.; Maksimov, M.V.
2001-01-01
The procedure, algorithm and criterions of determination of a burnup of the irradiated nuclear fuel in process of overloading are described. The feature of the procedure, algorithm and criterions consists in the account of initial enrichment and cooling time nuclear fuel after irradiation
FPGA-Based Implementation of Lithuanian Isolated Word Recognition Algorithm
Directory of Open Access Journals (Sweden)
Tomyslav Sledevič
2013-05-01
Full Text Available The paper describes the FPGA-based implementation of Lithuanian isolated word recognition algorithm. FPGA is selected for parallel process implementation using VHDL to ensure fast signal processing at low rate clock signal. Cepstrum analysis was applied to features extraction in voice. The dynamic time warping algorithm was used to compare the vectors of cepstrum coefficients. A library of 100 words features was created and stored in the internal FPGA BRAM memory. Experimental testing with speaker dependent records demonstrated the recognition rate of 94%. The recognition rate of 58% was achieved for speaker-independent records. Calculation of cepstrum coefficients lasted for 8.52 ms at 50 MHz clock, while 100 DTWs took 66.56 ms at 25 MHz clock.Article in Lithuanian
Algorithms for contrast enhancement of electronic portal images
International Nuclear Information System (INIS)
Díez, S.; Sánchez, S.
2015-01-01
An implementation of two new automatized image processing algorithms for contrast enhancement of portal images is presented as suitable tools which facilitate the setup verification and visualization of patients during radiotherapy treatments. In the first algorithm, called Automatic Segmentation and Histogram Stretching (ASHS), the portal image is automatically segmented in two sub-images delimited by the conformed treatment beam: one image consisting of the imaged patient obtained directly from the radiation treatment field, and the second one is composed of the imaged patient outside it. By segmenting the original image, a histogram stretching can be independently performed and improved in both regions. The second algorithm involves a two-step process. In the first step, a Normalization to Local Mean (NLM), an inverse restoration filter is applied by dividing pixel by pixel a portal image by its blurred version. In the second step, named Lineally Combined Local Histogram Equalization (LCLHE), the contrast of the original image is strongly improved by a Local Contrast Enhancement (LCE) algorithm, revealing the anatomical structures of patients. The output image is lineally combined with a portal image of the patient. Finally the output images of the previous algorithms (NLM and LCLHE) are lineally combined, once again, in order to obtain a contrast enhanced image. These two algorithms have been tested on several portal images with great results. - Highlights: • Two Algorithms are implemented to improve the contrast of Electronic Portal Images. • The multi-leaf and conformed beam are automatically segmented into Portal Images. • Hidden anatomical and bony structures in portal images are revealed. • The task related to the patient setup verification is facilitated by the contrast enhancement then achieved.
International Nuclear Information System (INIS)
Gjorgiev, Blaže; Kančev, Duško; Čepin, Marko
2012-01-01
Highlights: ► Multi-objective optimization of STI based on risk-informed decision making. ► Four different genetic algorithms (GAs) techniques are used as optimization tool. ► Advantages/disadvantages among the four different GAs applied are emphasized. - Abstract: The risk-informed decision making (RIDM) process, where insights gained from the probabilistic safety assessment are contemplated together with other engineering insights, is gaining an ever-increasing attention in the process industries. Increasing safety systems availability by applying RIDM is one of the prime goals for the authorities operating with nuclear power plants. Additionally, equipment ageing is gradually becoming a major concern in the process industries and especially in the nuclear industry, since more and more safety-related components are approaching or are already in their wear-out phase. A significant difficulty regarding the consideration of ageing effects on equipment (un)availability is the immense uncertainty the available equipment ageing data are associated to. This paper presents an approach for safety system unavailability reduction by optimizing the related test and maintenance schedule suggested by the technical specifications in the nuclear industry. Given the RIDM philosophy, two additional insights, i.e. ageing data uncertainty and test and maintenance costs, are considered along with unavailability insights gained from the probabilistic safety assessment for a selected standard safety system. In that sense, an approach for multi-objective optimization of the equipment surveillance test interval is proposed herein. Three different objective functions related to each one of the three different insights discussed above comprise the multi-objective nature of the optimization process. Genetic algorithm technique is utilized as an optimization tool. Four different types of genetic algorithms are utilized and consequently comparative analysis is conducted given the
Jiang, Y.; Xing, H. L.
2016-12-01
Micro-seismic events induced by water injection, mining activity or oil/gas extraction are quite informative, the interpretation of which can be applied for the reconstruction of underground stress and monitoring of hydraulic fracturing progress in oil/gas reservoirs. The source characterises and locations are crucial parameters that required for these purposes, which can be obtained through the waveform matching inversion (WMI) method. Therefore it is imperative to develop a WMI algorithm with high accuracy and convergence speed. Heuristic algorithm, as a category of nonlinear method, possesses a very high convergence speed and good capacity to overcome local minimal values, and has been well applied for many areas (e.g. image processing, artificial intelligence). However, its effectiveness for micro-seismic WMI is still poorly investigated; very few literatures exits that addressing this subject. In this research an advanced heuristic algorithm, gravitational search algorithm (GSA) , is proposed to estimate the focal mechanism (angle of strike, dip and rake) and source locations in three dimension. Unlike traditional inversion methods, the heuristic algorithm inversion does not require the approximation of green function. The method directly interacts with a CPU parallelized finite difference forward modelling engine, and updating the model parameters under GSA criterions. The effectiveness of this method is tested with synthetic data form a multi-layered elastic model; the results indicate GSA can be well applied on WMI and has its unique advantages. Keywords: Micro-seismicity, Waveform matching inversion, gravitational search algorithm, parallel computation
Applications of Natural Language Processing in Biodiversity Science
Directory of Open Access Journals (Sweden)
Anne E. Thessen
2012-01-01
A computer can handle the volume but cannot make sense of the language. This paper reviews and discusses the use of natural language processing (NLP and machine-learning algorithms to extract information from systematic literature. NLP algorithms have been used for decades, but require special development for application in the biological realm due to the special nature of the language. Many tools exist for biological information extraction (cellular processes, taxonomic names, and morphological characters, but none have been applied life wide and most still require testing and development. Progress has been made in developing algorithms for automated annotation of taxonomic text, identification of taxonomic names in text, and extraction of morphological character information from taxonomic descriptions. This manuscript will briefly discuss the key steps in applying information extraction tools to enhance biodiversity science.
Efficient parallel implementation of active appearance model fitting algorithm on GPU.
Wang, Jinwei; Ma, Xirong; Zhu, Yuanping; Sun, Jizhou
2014-01-01
The active appearance model (AAM) is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs) that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA) on the Nvidia's GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures.
DNA Cryptography and Deep Learning using Genetic Algorithm with NW algorithm for Key Generation.
Kalsi, Shruti; Kaur, Harleen; Chang, Victor
2017-12-05
Cryptography is not only a science of applying complex mathematics and logic to design strong methods to hide data called as encryption, but also to retrieve the original data back, called decryption. The purpose of cryptography is to transmit a message between a sender and receiver such that an eavesdropper is unable to comprehend it. To accomplish this, not only we need a strong algorithm, but a strong key and a strong concept for encryption and decryption process. We have introduced a concept of DNA Deep Learning Cryptography which is defined as a technique of concealing data in terms of DNA sequence and deep learning. In the cryptographic technique, each alphabet of a letter is converted into a different combination of the four bases, namely; Adenine (A), Cytosine (C), Guanine (G) and Thymine (T), which make up the human deoxyribonucleic acid (DNA). Actual implementations with the DNA don't exceed laboratory level and are expensive. To bring DNA computing on a digital level, easy and effective algorithms are proposed in this paper. In proposed work we have introduced firstly, a method and its implementation for key generation based on the theory of natural selection using Genetic Algorithm with Needleman-Wunsch (NW) algorithm and Secondly, a method for implementation of encryption and decryption based on DNA computing using biological operations Transcription, Translation, DNA Sequencing and Deep Learning.
Majorization arrow in quantum-algorithm design
International Nuclear Information System (INIS)
Latorre, J.I.; Martin-Delgado, M.A.
2002-01-01
We apply majorization theory to study the quantum algorithms known so far and find that there is a majorization principle underlying the way they operate. Grover's algorithm is a neat instance of this principle where majorization works step by step until the optimal target state is found. Extensions of this situation are also found in algorithms based in quantum adiabatic evolution and the family of quantum phase-estimation algorithms, including Shor's algorithm. We state that in quantum algorithms the time arrow is a majorization arrow
International Nuclear Information System (INIS)
Castro, R.; Romero, J.A.; Vega, J.; Nieto, J.; Ruiz, M.; Sanz, D.; Barrera, E.; De Arcas, G.
2014-01-01
Highlights: • Implementation of a soft real-time control system based on EPICS technology. • High data throughput system control implementation. • GPU technology applied to fast control. • EPICS fast control based solution. • Fast control and data acquisition in Linux. - Abstract: For new control systems development, ITER distributes CODAC Core System that is a software package based on Linux RedHat, and includes EPICS (Experimental Physics and Industrial Control System) as software control system solution. EPICS technology is being widely used for implementing control systems in research experiments and it is a very well tested technology, but presents important lacks to meet fast control requirements. To manage and process massive amounts of acquired data, EPICS requires additional functions such as: data block oriented transmissions, links with speed-optimized data buffers and synchronization mechanisms not based on system interruptions. This EPICS limitation turned out clearly during the development of the Fast Plant System Controller Prototype for ITER based on PXIe platform. In this work, we present a solution that, on the one hand, is completely compatible and based on EPCIS technology, and on the other hand, extends EPICS technology for implementing high performance fast control systems with soft-real time characteristics. This development includes components such as: data acquisition, processing, monitoring, data archiving, and data streaming (via network and shared memory). Additionally, it is important to remark that this system is compatible with multiple Graphics Processing Units (GPUs) and is able to integrate MatLab code through MatLab engine connections. It preserves EPICS modularity, enabling system modification or extension with a simple change of configuration, and finally it enables parallelization based on data distribution to different processing components. With the objective of illustrating the presented solution in an actual
Salehi, Mojtaba; Bahreininejad, Ardeshir
2011-08-01
Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously.
An Efficient VQ Codebook Search Algorithm Applied to AMR-WB Speech Coding
Directory of Open Access Journals (Sweden)
Cheng-Yu Yeh
2017-04-01
Full Text Available The adaptive multi-rate wideband (AMR-WB speech codec is widely used in modern mobile communication systems for high speech quality in handheld devices. Nonetheless, a major disadvantage is that vector quantization (VQ of immittance spectral frequency (ISF coefficients takes a considerable computational load in the AMR-WB coding. Accordingly, a binary search space-structured VQ (BSS-VQ algorithm is adopted to efficiently reduce the complexity of ISF quantization in AMR-WB. This search algorithm is done through a fast locating technique combined with lookup tables, such that an input vector is efficiently assigned to a subspace where relatively few codeword searches are required to be executed. In terms of overall search performance, this work is experimentally validated as a superior search algorithm relative to a multiple triangular inequality elimination (MTIE, a TIE with dynamic and intersection mechanisms (DI-TIE, and an equal-average equal-variance equal-norm nearest neighbor search (EEENNS approach. With a full search algorithm as a benchmark for overall search load comparison, this work provides an 87% search load reduction at a threshold of quantization accuracy of 0.96, a figure far beyond 55% in the MTIE, 76% in the EEENNS approach, and 83% in the DI-TIE approach.
Data-processing problems in filmless readout systems applied to physical experiments
International Nuclear Information System (INIS)
Bogdanova, N.B.; Prikhod'ko, V.I.; Ososkov, G.A.; Gadzhokov, V.
1984-01-01
The applications of filmless readout systems in modern physical experiments are considered. The basic characteristics of systems built on TV tubes and on charge-coupled devices (CCD) are reported. Filmless-data processing problems are formulated: recognition of images of tracks and fiducial marks; data compression; computation of the calibration transforms and of the system accuracy parameter. Results from mathematical algorithms and computer codes are reported for the case of streamer-chamber systems
Improved Empirical Mode Decomposition Algorithm of Processing Complex Signal for IoT Application
Yang, Xianzhao; Cheng, Gengguo; Liu, Huikang
2015-01-01
Hilbert-Huang transform is widely used in signal analysis. However, due to its inadequacy in estimating both the maximum and the minimum values of the signals at both ends of the border, traditional HHT is easy to produce boundary error in empirical mode decomposition (EMD) process. To overcome this deficiency, this paper proposes an enhanced empirical mode decomposition algorithm for processing complex signal. Our work mainly focuses on two aspects. On one hand, we develop a technique to obt...
The Sustainable Technology Division has recently completed an implementation of the U.S. EPA's Waste Reduction (WAR) Algorithm that can be directly accessed from a Cape-Open compliant process modeling environment. The WAR Algorithm add-in can be used in AmsterChem's COFE (Cape-Op...
Stereo Matching Based On Election Campaign Algorithm
Directory of Open Access Journals (Sweden)
Xie Qing Hua
2016-01-01
Full Text Available Stereo matching is one of the significant problems in the study of the computer vision. By getting the distance information through pixels, it is possible to reproduce a three-dimensional stereo. In this paper, the edges are the primitives for matching, the grey values of the edges and the magnitude and direction of the edge gradient were figured out as the properties of the edge feature points, according to the constraints for stereo matching, the energy function was built for finding the route minimizing by election campaign optimization algorithm during the process of stereo matching was applied to this problem the energy function. Experiment results show that this algorithm is more stable and it can get the matching result with better accuracy.
Applied probability and stochastic processes. 2. ed.
Energy Technology Data Exchange (ETDEWEB)
Feldman, Richard M. [Texas A and M Univ., College Station, TX (United States). Industrial and Systems Engineering Dept.; Valdez-Flores, Ciriaco [Sielken and Associates Consulting, Inc., Bryan, TX (United States)
2010-07-01
This book presents applied probability and stochastic processes in an elementary but mathematically precise manner, with numerous examples and exercises to illustrate the range of engineering and science applications of the concepts. The book is designed to give the reader an intuitive understanding of probabilistic reasoning, in addition to an understanding of mathematical concepts and principles. The initial chapters present a summary of probability and statistics and then Poisson processes, Markov chains, Markov processes and queuing processes are introduced. Advanced topics include simulation, inventory theory, replacement theory, Markov decision theory, and the use of matrix geometric procedures in the analysis of queues. Included in the second edition are appendices at the end of several chapters giving suggestions for the use of Excel in solving the problems of the chapter. Also new in this edition are an introductory chapter on statistics and a chapter on Poisson processes that includes some techniques used in risk assessment. The old chapter on queues has been expanded and broken into two new chapters: one for simple queuing processes and one for queuing networks. Support is provided through the web site http://apsp.tamu.edu where students will have the answers to odd numbered problems and instructors will have access to full solutions and Excel files for homework. (orig.)
Institute of Scientific and Technical Information of China (English)
傅永峰; 苏宏业; 张英; 褚健
2008-01-01
To overcome the problem that soft sensor models cannot be updated with the process changes.a soft sensor modeling algorithm based on hybrid fuzzy C-means(FCM、algorithm and incremental support vector ma-chines(ISVM)iS proposed.This hybrid algorithm FCMISVM includes three parts:samples clustering based on FCM algorithm.leaming algorithm based on ISVM.and heuristic sample displacement method.In the training process,the training samples are first clustered bv the FCM algorithm.and then by training each clustering with the sVM algorithm.a sub-model is built to each clustering.In the predicting process.when an incremental sample that represents new operation information is introduced in the model,the fuzzy membership function of the sample to each clustering is first computed bv the FCM algorithm.Then.a corresponding SVM sub.model of the clustering with the largest fuzzy membership function iS used to predict and perform incremental learning SO the model can be updated on-line.An old sample chosen by heuristic sample displacement method iS then discarded from the sub-model to control the size of the working set.The proposed method is applied to predict the P-xylene(PX)purity in the adsorption separation process.Simulation results indicate that the proposed method actually increases the model'S adaptive abilities to various operation conditions and improves its generalization capability.
Controllable unit concept as applied to a hypothetical tritium process
International Nuclear Information System (INIS)
Seabaugh, P.W.; Sellers, D.E.; Woltermann, H.A.; Boh, D.R.; Miles, J.C.; Fushimi, F.C.
1976-01-01
A methodology (controllable unit accountability) is described that identifies controlling errors for corrective action, locates areas and time frames of suspected diversions, defines time and sensitivity limits of diversion flags, defines the time frame in which pass-through quantities of accountable material and by inference SNM remain controllable and provides a basis for identification of incremental cost associated with purely safeguards considerations. The concept provides a rationale from which measurement variability and specific safeguard criteria can be converted into a numerical value that represents the degree of control or improvement attainable with a specific measurement system or combination of systems. Currently the methodology is being applied to a high-throughput, mixed-oxide fuel fabrication process. The process described is merely used to illustrate a procedure that can be applied to other more pertinent processes
Dynamic route guidance algorithm based algorithm based on artificial immune system
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
To improve the performance of the K-shortest paths search in intelligent traffic guidance systems,this paper proposes an optimal search algorithm based on the intelligent optimization search theory and the memphor mechanism of vertebrate immune systems.This algorithm,applied to the urban traffic network model established by the node-expanding method,can expediently realize K-shortest paths search in the urban traffic guidance systems.Because of the immune memory and global parallel search ability from artificial immune systems,K shortest paths can be found without any repeat,which indicates evidently the superiority of the algorithm to the conventional ones.Not only does it perform a better parallelism,the algorithm also prevents premature phenomenon that often occurs in genetic algorithms.Thus,it is especially suitable for real-time requirement of the traffic guidance system and other engineering optimal applications.A case study verifies the efficiency and the practicability of the algorithm aforementioned.
A comparative analysis of three metaheuristic methods applied to fuzzy cognitive maps learning
Directory of Open Access Journals (Sweden)
Bruno A. Angélico
2013-12-01
Full Text Available This work analyses the performance of three different population-based metaheuristic approaches applied to Fuzzy cognitive maps (FCM learning in qualitative control of processes. Fuzzy cognitive maps permit to include the previous specialist knowledge in the control rule. Particularly, Particle Swarm Optimization (PSO, Genetic Algorithm (GA and an Ant Colony Optimization (ACO are considered for obtaining appropriate weight matrices for learning the FCM. A statistical convergence analysis within 10000 simulations of each algorithm is presented. In order to validate the proposed approach, two industrial control process problems previously described in the literature are considered in this work.
Multirate-based fast parallel algorithms for 2-D DHT-based real-valued discrete Gabor transform.
Tao, Liang; Kwan, Hon Keung
2012-07-01
Novel algorithms for the multirate and fast parallel implementation of the 2-D discrete Hartley transform (DHT)-based real-valued discrete Gabor transform (RDGT) and its inverse transform are presented in this paper. A 2-D multirate-based analysis convolver bank is designed for the 2-D RDGT, and a 2-D multirate-based synthesis convolver bank is designed for the 2-D inverse RDGT. The parallel channels in each of the two convolver banks have a unified structure and can apply the 2-D fast DHT algorithm to speed up their computations. The computational complexity of each parallel channel is low and is independent of the Gabor oversampling rate. All the 2-D RDGT coefficients of an image are computed in parallel during the analysis process and can be reconstructed in parallel during the synthesis process. The computational complexity and time of the proposed parallel algorithms are analyzed and compared with those of the existing fastest algorithms for 2-D discrete Gabor transforms. The results indicate that the proposed algorithms are the fastest, which make them attractive for real-time image processing.
A Compression Algorithm in Wireless Sensor Networks of Bearing Monitoring
International Nuclear Information System (INIS)
Zheng Bin; Meng Qingfeng; Wang Nan; Li Zhi
2011-01-01
The energy consumption of wireless sensor networks (WSNs) is always an important problem in the application of wireless sensor networks. This paper proposes a data compression algorithm to reduce amount of data and energy consumption during the data transmission process in the on-line WSNs-based bearing monitoring system. The proposed compression algorithm is based on lifting wavelets, Zerotree coding and Hoffman coding. Among of that, 5/3 lifting wavelets is used for dividing data into different frequency bands to extract signal characteristics. Zerotree coding is applied to calculate the dynamic thresholds to retain the attribute data. The attribute data are then encoded by Hoffman coding to further enhance the compression ratio. In order to validate the algorithm, simulation is carried out by using Matlab. The result of simulation shows that the proposed algorithm is very suitable for the compression of bearing monitoring data. The algorithm has been successfully used in online WSNs-based bearing monitoring system, in which TI DSP TMS320F2812 is used to realize the algorithm.
New algorithms and pulse-processing units in radioisotope instruments
International Nuclear Information System (INIS)
Antonjak, V.; Gonsjorowski, L.; Jastschuk, E.; Kwasnewski, T.
1981-01-01
Three new algorithms and the corresponding electronic circuits are described, beginning with the automatic gain stabilisation circuit for scintillation counters. The signal obtained as the difference between two pulse trains from amplitude discriminators has been used for photomultiplier high voltage control. Furthermore, a real time digital filter for random pulse trains is presented, showing that the variance of pulse trains is decreasing after passing the filter. The block diagram, principle of operation and basic features of the filter are given. Finally, a digital circuit for polynomial linearization of the scale function in radioisotope instruments is described. Again, the block diagram of pulse train processing, the mode of operation and programming method are given. (author)
Adaptive switching gravitational search algorithm: an attempt to ...
Indian Academy of Sciences (India)
Nor Azlina Ab Aziz
An adaptive gravitational search algorithm (GSA) that switches between synchronous and ... genetic algorithm (GA), bat-inspired algorithm (BA) and grey wolf optimizer (GWO). ...... heuristic with applications in applied electromagnetics. Prog.
Robust Adaptive Modified Newton Algorithm for Generalized Eigendecomposition and Its Application
Yang, Jian; Yang, Feng; Xi, Hong-Sheng; Guo, Wei; Sheng, Yanmin
2007-12-01
We propose a robust adaptive algorithm for generalized eigendecomposition problems that arise in modern signal processing applications. To that extent, the generalized eigendecomposition problem is reinterpreted as an unconstrained nonlinear optimization problem. Starting from the proposed cost function and making use of an approximation of the Hessian matrix, a robust modified Newton algorithm is derived. A rigorous analysis of its convergence properties is presented by using stochastic approximation theory. We also apply this theory to solve the signal reception problem of multicarrier DS-CDMA to illustrate its practical application. The simulation results show that the proposed algorithm has fast convergence and excellent tracking capability, which are important in a practical time-varying communication environment.
Robust Adaptive Modified Newton Algorithm for Generalized Eigendecomposition and Its Application
Directory of Open Access Journals (Sweden)
Yang Jian
2007-01-01
Full Text Available We propose a robust adaptive algorithm for generalized eigendecomposition problems that arise in modern signal processing applications. To that extent, the generalized eigendecomposition problem is reinterpreted as an unconstrained nonlinear optimization problem. Starting from the proposed cost function and making use of an approximation of the Hessian matrix, a robust modified Newton algorithm is derived. A rigorous analysis of its convergence properties is presented by using stochastic approximation theory. We also apply this theory to solve the signal reception problem of multicarrier DS-CDMA to illustrate its practical application. The simulation results show that the proposed algorithm has fast convergence and excellent tracking capability, which are important in a practical time-varying communication environment.
Robust and unobtrusive algorithm based on position independence for step detection
Qiu, KeCheng; Li, MengYang; Luo, YiHan
2018-04-01
Running is becoming one of the most popular exercises among the people, monitoring steps can help users better understand their running process and improve exercise efficiency. In this paper, we design and implement a robust and unobtrusive algorithm based on position independence for step detection under real environment. It applies Butterworth filter to suppress high frequency interference and then employs the projection based on mathematics to transform system to solve the problem of unknown position of smartphone. Finally, using sliding window to suppress the false peak. The algorithm was tested for eight participants on the Android 7.0 platform. In our experiments, the results show that the proposed algorithm can achieve desired effect in spite of device pose.
Fireworks algorithm for mean-VaR/CVaR models
Zhang, Tingting; Liu, Zhifeng
2017-10-01
Intelligent algorithms have been widely applied to portfolio optimization problems. In this paper, we introduce a novel intelligent algorithm, named fireworks algorithm, to solve the mean-VaR/CVaR model for the first time. The results show that, compared with the classical genetic algorithm, fireworks algorithm not only improves the optimization accuracy and the optimization speed, but also makes the optimal solution more stable. We repeat our experiments at different confidence levels and different degrees of risk aversion, and the results are robust. It suggests that fireworks algorithm has more advantages than genetic algorithm in solving the portfolio optimization problem, and it is feasible and promising to apply it into this field.
Directory of Open Access Journals (Sweden)
Jin Huang
2017-09-01
Full Text Available Process planning is an important function in a manufacturing system; it specifies the manufacturing requirements and details for the shop floor to convert a part from raw material to the finished form. However, considering only economical criterion with technological constraints is not enough in sustainable manufacturing practice; formerly, criteria about low carbon emission awareness have seldom been taken into account in process planning optimization. In this paper, a mathematical model that considers both machining costs reduction as well as carbon emission reduction is established for the process planning problem. However, due to various flexibilities together with complex precedence constraints between operations, the process planning problem is a non-deterministic polynomial-time (NP hard problem. Aiming at the distinctive feature of the multi-objectives process planning optimization, we then developed a hybrid non-dominated sorting genetic algorithm (NSGA-II to tackle this problem. A local search method that considers both the total cost criterion and the carbon emission criterion are introduced into the proposed algorithm to avoid being trapped into local optima. Moreover, the technique for order preference by similarity to an ideal solution (TOPSIS method is also adopted to determine the best solution from the Pareto front. Experiments have been conducted using Kim’s benchmark. Computational results show that process plan schemes with low carbon emission can be captured, and, more importantly, the proposed hybrid NSGA-II algorithm can obtain more promising optimal Pareto front than the plain NSGA-II algorithm. Meanwhile, according to the computational results of Kim’s benchmark, we find that both of the total machining cost and carbon emission are roughly proportional to the number of operations, and a process plan with less operation may be more satisfactory. This study will draw references for the further research on green
A retrieval algorithm of hydrometer profile for submillimeter-wave radiometer
Liu, Yuli; Buehler, Stefan; Liu, Heguang
2017-04-01
Vertical profiles of particle microphysics perform vital functions for the estimation of climatic feedback. This paper proposes a new algorithm to retrieve the profile of the parameters of the hydrometeor(i.e., ice, snow, rain, liquid cloud, graupel) based on passive submillimeter-wave measurements. These parameters include water content and particle size. The first part of the algorithm builds the database and retrieves the integrated quantities. Database is built up by Atmospheric Radiative Transfer Simulator(ARTS), which uses atmosphere data to simulate the corresponding brightness temperature. Neural network, trained by the precalculated database, is developed to retrieve the water path for each type of particles. The second part of the algorithm analyses the statistical relationship between water path and vertical parameters profiles. Based on the strong dependence existing between vertical layers in the profiles, Principal Component Analysis(PCA) technique is applied. The third part of the algorithm uses the forward model explicitly to retrieve the hydrometeor profiles. Cost function is calculated in each iteration, and Differential Evolution(DE) algorithm is used to adjust the parameter values during the evolutionary process. The performance of this algorithm is planning to be verified for both simulation database and measurement data, by retrieving profiles in comparison with the initial one. Results show that this algorithm has the ability to retrieve the hydrometeor profiles efficiently. The combination of ARTS and optimization algorithm can get much better results than the commonly used database approach. Meanwhile, the concept that ARTS can be used explicitly in the retrieval process shows great potential in providing solution to other retrieval problems.
A TLD dose algorithm using artificial neural networks
International Nuclear Information System (INIS)
Moscovitch, M.; Rotunda, J.E.; Tawil, R.A.; Rathbone, B.A.
1995-01-01
An artificial neural network was designed and used to develop a dose algorithm for a multi-element thermoluminescence dosimeter (TLD). The neural network architecture is based on the concept of functional links network (FLN). Neural network is an information processing method inspired by the biological nervous system. A dose algorithm based on neural networks is fundamentally different as compared to conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with given responses of a multi-element dosimeter (input) many times. The algorithm, being trained that way, eventually is capable to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personal dosimetry, the output consists of the desired dose components: deep dose, shallow dose and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. The neural network approach was applied to the Harshaw Type 8825 TLD, and was shown to significantly improve the performance of this dosimeter, well within the U.S. accreditation requirements for personnel dosimeters
Lee, Zhong-Ping; Carder, Kendall L.
2001-01-01
A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.
International Nuclear Information System (INIS)
Pedron, Antoine
2013-01-01
This thesis work is placed between the scientific domain of ultrasound non-destructive testing and algorithm-architecture adequation. Ultrasound non-destructive testing includes a group of analysis techniques used in science and industry to evaluate the properties of a material, component, or system without causing damage. In order to characterise possible defects, determining their position, size and shape, imaging and reconstruction tools have been developed at CEA-LIST, within the CIVA software platform. Evolution of acquisition sensors implies a continuous growth of datasets and consequently more and more computing power is needed to maintain interactive reconstructions. General purpose processors (GPP) evolving towards parallelism and emerging architectures such as GPU allow large acceleration possibilities than can be applied to these algorithms. The main goal of the thesis is to evaluate the acceleration than can be obtained for two reconstruction algorithms on these architectures. These two algorithms differ in their parallelization scheme. The first one can be properly parallelized on GPP whereas on GPU, an intensive use of atomic instructions is required. Within the second algorithm, parallelism is easier to express, but loop ordering on GPP, as well as thread scheduling and a good use of shared memory on GPU are necessary in order to obtain efficient results. Different API or libraries, such as OpenMP, CUDA and OpenCL are evaluated through chosen benchmarks. An integration of both algorithms in the CIVA software platform is proposed and different issues related to code maintenance and durability are discussed. (author) [fr
AN IMPROVED FUZZY CLUSTERING ALGORITHM FOR MICROARRAY IMAGE SPOTS SEGMENTATION
Directory of Open Access Journals (Sweden)
V.G. Biju
2015-11-01
Full Text Available An automatic cDNA microarray image processing using an improved fuzzy clustering algorithm is presented in this paper. The spot segmentation algorithm proposed uses the gridding technique developed by the authors earlier, for finding the co-ordinates of each spot in an image. Automatic cropping of spots from microarray image is done using these co-ordinates. The present paper proposes an improved fuzzy clustering algorithm Possibility fuzzy local information c means (PFLICM to segment the spot foreground (FG from background (BG. The PFLICM improves fuzzy local information c means (FLICM algorithm by incorporating typicality of a pixel along with gray level information and local spatial information. The performance of the algorithm is validated using a set of simulated cDNA microarray images added with different levels of AWGN noise. The strength of the algorithm is tested by computing the parameters such as the Segmentation matching factor (SMF, Probability of error (pe, Discrepancy distance (D and Normal mean square error (NMSE. SMF value obtained for PFLICM algorithm shows an improvement of 0.9 % and 0.7 % for high noise and low noise microarray images respectively compared to FLICM algorithm. The PFLICM algorithm is also applied on real microarray images and gene expression values are computed.
Xiang, Suyun; Wang, Wei; Xiang, Bingren; Deng, Haishan; Xie, Shaofei
2007-05-01
The periodic modulation-based stochastic resonance algorithm (PSRA) was used to amplify and detect the weak liquid chromatography-mass spectrometry (LC-MS) signal of granisetron in plasma. In the algorithm, the stochastic resonance (SR) was achieved by introducing an external periodic force to the nonlinear system. The optimization of parameters was carried out in two steps to give attention to both the signal-to-noise ratio (S/N) and the peak shape of output signal. By applying PSRA with the optimized parameters, the signal-to-noise ratio of LC-MS peak was enhanced significantly and distorted peak shape that often appeared in the traditional stochastic resonance algorithm was corrected by the added periodic force. Using the signals enhanced by PSRA, this method extended the limit of detection (LOD) and limit of quantification (LOQ) of granisetron in plasma from 0.05 and 0.2 ng/mL, respectively, to 0.01 and 0.02 ng/mL, and exhibited good linearity, accuracy and precision, which ensure accurate determination of the target analyte.
Genetic algorithm enhanced by machine learning in dynamic aperture optimization
Li, Yongjun; Cheng, Weixing; Yu, Li Hua; Rainer, Robert
2018-05-01
With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given "elite" status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitness of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. The machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.
Directory of Open Access Journals (Sweden)
GORGUNOGLU, S.
2014-05-01
Full Text Available In analysis of minutiae based fingerprint systems, fingerprints needs to be pre-processed. The pre-processing is carried out to enhance the quality of the fingerprint and to obtain more accurate minutiae points. Reducing the pre-processing time is important for identification and verification in real time systems and especially for databases holding large fingerprints information. Parallel processing and parallel CPU computing can be considered as distribution of processes over multi core processor. This is done by using parallel programming techniques. Reducing the execution time is the main objective in parallel processing. In this study, pre-processing of minutiae based fingerprint system is implemented by parallel processing on multi core computers using OpenMP and on graphics processor using CUDA to improve execution time. The execution times and speedup ratios are compared with the one that of single core processor. The results show that by using parallel processing, execution time is substantially improved. The improvement ratios obtained for different pre-processing algorithms allowed us to make suggestions on the more suitable approaches for parallelization.
Collaborative en-route and slot allocation algorithm based on fuzzy comprehensive evaluation
Yang, Shangwen; Guo, Baohua; Xiao, Xuefei; Gao, Haichao
2018-01-01
To allocate the en-routes and slots to the flights with collaborative decision making, a collaborative en-route and slot allocation algorithm based on fuzzy comprehensive evaluation was proposed. Evaluation indexes include flight delay costs, delay time and the number of turning points. Analytic hierarchy process is applied to determining index weights. Remark set for current two flights not yet obtained the en-route and slot in flight schedule is established. Then, fuzzy comprehensive evaluation is performed, and the en-route and slot for the current two flights are determined. Continue selecting the flight not yet obtained an en-route and a slot in flight schedule. Perform fuzzy comprehensive evaluation until all flights have obtained the en-routes and slots. MatlabR2007b was applied to numerical test based on the simulated data of a civil en-route. Test results show that, compared with the traditional strategy of first come first service, the algorithm gains better effect. The effectiveness of the algorithm was verified.
Burkatovskaya, Yuliya Borisovna; Kabanova, T.; Khaustov, Pavel Aleksandrovich
2016-01-01
CUSUM algorithm for controlling chain state switching in the Markov modulated Poissonprocess was investigated via simulation. Recommendations concerning the parameter choice were givensubject to characteristics of the process. Procedure of the process parameter estimation was described.
International Nuclear Information System (INIS)
Kim, Jae Yeol; Sim, Jae Gi; Ko, Myoung Soo; Kim, Chang Hyun; Kim, Hun Cho
2001-01-01
In this study, researchers developing the estimative algorithm for artificial defects in semiconductor packages and performing it by pattern recognition technology. For this purpose, the estimative algorithm was included that researchers made software with MATLAB. The software consists of some procedures including ultrasonic image acquisition, equalization filtering, Self-Organizing Map and Probabilistic Neural Network. Self-Organizing Map and Probabilistic Neural Network are belong to methods of Neural Networks. And the pattern recognition technology has applied to classify three kinds of detective patterns in semiconductor packages. This study presumes probability density function from a sample of learning and present which is automatically determine method. PNN can distinguish flaws very difficult distinction as well as. This can do parallel process to stand in a row we confirm that is very efficiently classifier if we applied many data real the process.
Energy Technology Data Exchange (ETDEWEB)
Sanchez Lopez, Hector [Universidad de Oriente, Santiago de Cuba (Cuba). Centro de Biofisica Medica]. E-mail: hsanchez@cbm.uo.edu.cu
2001-08-01
This work describes an alternative algorithm of Simulated Annealing applied to the design of the main magnet for a Magnetic Resonance Imaging machine. The algorithm uses a probabilistic radial base neuronal network to classify the possible solutions, before the objective function evaluation. This procedure allows reducing up to 50% the number of iterations required by simulated annealing to achieve the global maximum, when compared with the SA algorithm. The algorithm was applied to design a 0.1050 Tesla four coil resistive magnet, which produces a magnetic field 2.13 times more uniform than the solution given by SA. (author)
Energy Technology Data Exchange (ETDEWEB)
Krummenacher, P.; Renaud, B.; Marechal, F.; Favrat, D.
2001-07-01
This report presents a new methodological approach for the optimal design of energy-integrated batch processes. The main emphasis is put on indirect and, to some extend, on direct heat exchange networks with the possibility of introducing closed or open storage systems. The study demonstrates the feasibility of optimising with genetic algorithms while highlighting the pros and cons of this type of approach. The study shows that the resolution of such problems should preferably be done in several steps to better target the expected solutions. Demonstration is made that in spite of relatively large computer times (on PCs) the use of genetic algorithm allows the consideration of both continuous decision variables (size, operational rating of equipment, etc.) and integer variables (related to the structure at design and during operation). Comparison of two optimisation strategies is shown with a preference for a two-steps optimisation scheme. One of the strengths of genetic algorithms is the capacity to accommodate heuristic rules, which can be introduced in the model. However, a rigorous modelling strategy is advocated to improve robustness and adequate coding of the decision variables. The practical aspects of the research work are converted into a software developed with MATLAB to solve the energy integration of batch processes with a reasonable number of closed or open stores. This software includes the model of superstructures, including the heat exchangers and the storage alternatives, as well as the link to the Struggle algorithm developed at MIT via a dedicated new interface. The package also includes a user-friendly pre-processing using EXCEL, which is to facilitate to application to other similar industrial problems. These software developments have been validated both on an academic and on an industrial type of problems. (author)
Final Report: Sublinear Algorithms for In-situ and In-transit Data Analysis at Exascale.
Energy Technology Data Exchange (ETDEWEB)
Bennett, Janine Camille [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Pinar, Ali [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Seshadhri, C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Thompson, David [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Salloum, Maher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bhagatwala, Ankit [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chen, Jacqueline H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2015-09-01
Post-Moore's law scaling is creating a disruptive shift in simulation workflows, as saving the entirety of raw data to persistent storage becomes expensive. We are moving away from a post-process centric data analysis paradigm towards a concurrent analysis framework, in which raw simulation data is processed as it is computed. Algorithms must adapt to machines with extreme concurrency, low communication bandwidth, and high memory latency, while operating within the time constraints prescribed by the simulation. Furthermore, in- put parameters are often data dependent and cannot always be prescribed. The study of sublinear algorithms is a recent development in theoretical computer science and discrete mathematics that has significant potential to provide solutions for these challenges. The approaches of sublinear algorithms address the fundamental mathematical problem of understanding global features of a data set using limited resources. These theoretical ideas align with practical challenges of in-situ and in-transit computation where vast amounts of data must be processed under severe communication and memory constraints. This report details key advancements made in applying sublinear algorithms in-situ to identify features of interest and to enable adaptive workflows over the course of a three year LDRD. Prior to this LDRD, there was no precedent in applying sublinear techniques to large-scale, physics based simulations. This project has definitively demonstrated their efficacy at mitigating high performance computing challenges and highlighted the rich potential for follow-on re- search opportunities in this space.
Real-Coded Quantum-Inspired Genetic Algorithm-Based BP Neural Network Algorithm
Directory of Open Access Journals (Sweden)
Jianyong Liu
2015-01-01
Full Text Available The method that the real-coded quantum-inspired genetic algorithm (RQGA used to optimize the weights and threshold of BP neural network is proposed to overcome the defect that the gradient descent method makes the algorithm easily fall into local optimal value in the learning process. Quantum genetic algorithm (QGA is with good directional global optimization ability, but the conventional QGA is based on binary coding; the speed of calculation is reduced by the coding and decoding processes. So, RQGA is introduced to explore the search space, and the improved varied learning rate is adopted to train the BP neural network. Simulation test shows that the proposed algorithm is effective to rapidly converge to the solution conformed to constraint conditions.
Evolutionary design optimization of traffic signals applied to Quito city.
Armas, Rolando; Aguirre, Hernán; Daolio, Fabio; Tanaka, Kiyoshi
2017-01-01
This work applies evolutionary computation and machine learning methods to study the transportation system of Quito from a design optimization perspective. It couples an evolutionary algorithm with a microscopic transport simulator and uses the outcome of the optimization process to deepen our understanding of the problem and gain knowledge about the system. The work focuses on the optimization of a large number of traffic lights deployed on a wide area of the city and studies their impact on travel time, emissions and fuel consumption. An evolutionary algorithm with specialized mutation operators is proposed to search effectively in large decision spaces, evolving small populations for a short number of generations. The effects of the operators combined with a varying mutation schedule are studied, and an analysis of the parameters of the algorithm is also included. In addition, hierarchical clustering is performed on the best solutions found in several runs of the algorithm. An analysis of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis of emissions, and an analysis of signal coordination provide an overall picture of the systemic effects of the optimization process.
ID card number detection algorithm based on convolutional neural network
Zhu, Jian; Ma, Hanjie; Feng, Jie; Dai, Leiyan
2018-04-01
In this paper, a new detection algorithm based on Convolutional Neural Network is presented in order to realize the fast and convenient ID information extraction in multiple scenarios. The algorithm uses the mobile device equipped with Android operating system to locate and extract the ID number; Use the special color distribution of the ID card, select the appropriate channel component; Use the image threshold segmentation, noise processing and morphological processing to take the binary processing for image; At the same time, the image rotation and projection method are used for horizontal correction when image was tilting; Finally, the single character is extracted by the projection method, and recognized by using Convolutional Neural Network. Through test shows that, A single ID number image from the extraction to the identification time is about 80ms, the accuracy rate is about 99%, It can be applied to the actual production and living environment.
Multi-robot task allocation based on two dimensional artificial fish swarm algorithm
Zheng, Taixiong; Li, Xueqin; Yang, Liangyi
2007-12-01
The problem of task allocation for multiple robots is to allocate more relative-tasks to less relative-robots so as to minimize the processing time of these tasks. In order to get optimal multi-robot task allocation scheme, a twodimensional artificial swarm algorithm based approach is proposed in this paper. In this approach, the normal artificial fish is extended to be two dimension artificial fish. In the two dimension artificial fish, each vector of primary artificial fish is extended to be an m-dimensional vector. Thus, each vector can express a group of tasks. By redefining the distance between artificial fish and the center of artificial fish, the behavior of two dimension fish is designed and the task allocation algorithm based on two dimension artificial swarm algorithm is put forward. At last, the proposed algorithm is applied to the problem of multi-robot task allocation and comparer with GA and SA based algorithm is done. Simulation and compare result shows the proposed algorithm is effective.
Tutorial - applying extreme value theory to characterize food-processing systems
DEFF Research Database (Denmark)
Skou, Peter Bæk; Holroyd, Stephen E.; van der Berg, Franciscus Winfried J
2017-01-01
This tutorial presents extreme value theory (EVT) as an analytical tool in process characterization and shows its potential to describe production performance, eg, across different factories, via reliable estimates of the frequency and scale of extreme events. Two alternative EVT methods...... are discussed: point over threshold and block maxima. We illustrate the theoretical framework for EVT by process data from two different examples from the food-processing industry. Finally, we discuss limitations, decisions, and possibilities when applying EVT for process data....
Genetic Algorithms for Case Adaptation
Energy Technology Data Exchange (ETDEWEB)
Salem, A M [Computer Science Dept, Faculty of Computer and Information Sciences, Ain Shams University, Cairo (Egypt); Mohamed, A H [Solid State Dept., (NCRRT), Cairo (Egypt)
2008-07-01
Case based reasoning (CBR) paradigm has been widely used to provide computer support for recalling and adapting known cases to novel situations. Case adaptation algorithms generally rely on knowledge based and heuristics in order to change the past solutions to solve new problems. However, case adaptation has always been a difficult process to engineers within (CBR) cycle. Its difficulties can be referred to its domain dependency; and computational cost. In an effort to solve this problem, this research explores a general-purpose method that applying a genetic algorithm (GA) to CBR adaptation. Therefore, it can decrease the computational complexity of the search space in the problems having a great dependency on their domain knowledge. The proposed model can be used to perform a variety of design tasks on a broad set of application domains. However, it has been implemented for the tablet formulation as a domain of application. The proposed system has improved the performance of the CBR design systems.
Genetic Algorithms for Case Adaptation
International Nuclear Information System (INIS)
Salem, A.M.; Mohamed, A.H.
2008-01-01
Case based reasoning (CBR) paradigm has been widely used to provide computer support for recalling and adapting known cases to novel situations. Case adaptation algorithms generally rely on knowledge based and heuristics in order to change the past solutions to solve new problems. However, case adaptation has always been a difficult process to engineers within (CBR) cycle. Its difficulties can be referred to its domain dependency; and computational cost. In an effort to solve this problem, this research explores a general-purpose method that applying a genetic algorithm (GA) to CBR adaptation. Therefore, it can decrease the computational complexity of the search space in the problems having a great dependency on their domain knowledge. The proposed model can be used to perform a variety of design tasks on a broad set of application domains. However, it has been implemented for the tablet formulation as a domain of application. The proposed system has improved the performance of the CBR design systems
Algorithmically specialized parallel computers
Snyder, Lawrence; Gannon, Dennis B
1985-01-01
Algorithmically Specialized Parallel Computers focuses on the concept and characteristics of an algorithmically specialized computer.This book discusses the algorithmically specialized computers, algorithmic specialization using VLSI, and innovative architectures. The architectures and algorithms for digital signal, speech, and image processing and specialized architectures for numerical computations are also elaborated. Other topics include the model for analyzing generalized inter-processor, pipelined architecture for search tree maintenance, and specialized computer organization for raster
Directory of Open Access Journals (Sweden)
Tian Zhipeng
2015-01-01
Full Text Available In the car company, the painted body storage (PBS is set up between the paint shop and the assembly shop. It stores the vehicles in production and reorders the vehicles sequence. To improve production efficiency of assembly shop, a mathematical model is developed aiming at minimizing the consumption rate of options and the total overtime and idle time. As the PBS sequencing process contains upstream sequence inbound and downstream sequence outbound, this paper proposes an algorithm with two phases. In the first phase, the discrete small-world optimization algorithm (DSWOA is applied to schedule the inbound sequence by employing the short-range nodes and the long-range nodes in order to realize the global searching. In the second phase, the heuristic algorithm is applied to schedule the outbound sequencing. The proposed model and algorithm are applied in an automobile enterprise. The results indicate that the two-phase algorithm is suitable for the PBS sequencing problem and the DSWOA has a better searching performance than GA in this problem. The sensitivity of model parameters is analyzed as well.
Zhou, Meiling; Singh, Alok Kumar; Pedrini, Giancarlo; Osten, Wolfgang; Min, Junwei; Yao, Baoli
2018-03-01
We present a tunable output-frequency filter (TOF) algorithm to reconstruct the object from noisy experimental data under low-power partially coherent illumination, such as LED, when imaging through scattering media. In the iterative algorithm, we employ Gaussian functions with different filter windows at different stages of iteration process to reduce corruption from experimental noise to search for a global minimum in the reconstruction. In comparison with the conventional iterative phase retrieval algorithm, we demonstrate that the proposed TOF algorithm achieves consistent and reliable reconstruction in the presence of experimental noise. Moreover, the spatial resolution and distinctive features are retained in the reconstruction since the filter is applied only to the region outside the object. The feasibility of the proposed method is proved by experimental results.
ACTION OF UNIFORM SEARCH ALGORITHM WHEN SELECTING LANGUAGE UNITS IN THE PROCESS OF SPEECH
Directory of Open Access Journals (Sweden)
Ирина Михайловна Некипелова
2013-05-01
Full Text Available The article is devoted to research of action of uniform search algorithm when selecting by human of language units for speech produce. The process is connected with a speech optimization phenomenon. This makes it possible to shorten the time of cogitation something that human want to say, and to achieve the maximum precision in thoughts expression. The algorithm of uniform search works at consciousness and subconsciousness levels. It favours the forming of automatism produce and perception of speech. Realization of human's cognitive potential in the process of communication starts up complicated mechanism of self-organization and self-regulation of language. In turn, it results in optimization of language system, servicing needs not only human's self-actualization but realization of communication in society. The method of problem-oriented search is used for researching of optimization mechanisms, which are distinctive to speech producing and stabilization of language.DOI: http://dx.doi.org/10.12731/2218-7405-2013-4-50
A parallel algorithm for filtering gravitational waves from coalescing binaries
International Nuclear Information System (INIS)
Sathyaprakash, B.S.; Dhurandhar, S.V.
1992-10-01
Coalescing binary stars are perhaps the most promising sources for the observation of gravitational waves with laser interferometric gravity wave detectors. The waveform from these sources can be predicted with sufficient accuracy for matched filtering techniques to be applied. In this paper we present a parallel algorithm for detecting signals from coalescing compact binaries by the method of matched filtering. We also report the details of its implementation on a 256-node connection machine consisting of a network of transputers. The results of our analysis indicate that parallel processing is a promising approach to on-line analysis of data from gravitational wave detectors to filter out coalescing binary signals. The algorithm described is quite general in that the kernel of the algorithm is applicable to any set of matched filters. (author). 15 refs, 4 figs
Yang, Xue; Li, Xue-You; Li, Jia-Guo; Ma, Jun; Zhang, Li; Yang, Jan; Du, Quan-Ye
2014-02-01
Fast Fourier transforms (FFT) is a basic approach to remote sensing image processing. With the improvement of capacity of remote sensing image capture with the features of hyperspectrum, high spatial resolution and high temporal resolution, how to use FFT technology to efficiently process huge remote sensing image becomes the critical step and research hot spot of current image processing technology. FFT algorithm, one of the basic algorithms of image processing, can be used for stripe noise removal, image compression, image registration, etc. in processing remote sensing image. CUFFT function library is the FFT algorithm library based on CPU and FFTW. FFTW is a FFT algorithm developed based on CPU in PC platform, and is currently the fastest CPU based FFT algorithm function library. However there is a common problem that once the available memory or memory is less than the capacity of image, there will be out of memory or memory overflow when using the above two methods to realize image FFT arithmetic. To address this problem, a CPU and partitioning technology based Huge Remote Fast Fourier Transform (HRFFT) algorithm is proposed in this paper. By improving the FFT algorithm in CUFFT function library, the problem of out of memory and memory overflow is solved. Moreover, this method is proved rational by experiment combined with the CCD image of HJ-1A satellite. When applied to practical image processing, it improves effect of the image processing, speeds up the processing, which saves the time of computation and achieves sound result.
Directory of Open Access Journals (Sweden)
Ali Akbar Hasani
2016-11-01
Full Text Available In this paper, a comprehensive model is proposed to design a network for multi-period, multi-echelon, and multi-product inventory controlled the supply chain. Various marketing strategies and guerrilla marketing approaches are considered in the design process under the static competition condition. The goal of the proposed model is to efficiently respond to the customers’ demands in the presence of the pre-existing competitors and the price inelasticity of demands. The proposed optimization model considers multiple objectives that incorporate both market share and total profit of the considered supply chain network, simultaneously. To tackle the proposed multi-objective mixed-integer nonlinear programming model, an efficient hybrid meta-heuristic algorithm is developed that incorporates a Taguchi-based non-dominated sorting genetic algorithm-II and a particle swarm optimization. A variable neighborhood decomposition search is applied to enhance a local search process of the proposed hybrid solution algorithm. Computational results illustrate that the proposed model and solution algorithm are notably efficient in dealing with the competitive pressure by adopting the proper marketing strategies.
Some computer applications and digital image processing in nuclear medicine
International Nuclear Information System (INIS)
Lowinger, T.
1981-01-01
Methods of digital image processing are applied to problems in nuclear medicine imaging. The symmetry properties of central nervous system lesions are exploited in an attempt to determine the three-dimensional radioisotope density distribution within the lesions. An algorithm developed by astronomers at the end of the 19th century to determine the distribution of matter in globular clusters is applied to tumors. This algorithm permits the emission-computed-tomographic reconstruction of spherical lesions from a single view. The three-dimensional radioisotope distribution derived by the application of the algorithm can be used to characterize the lesions. The applicability to nuclear medicine images of ten edge detection methods in general usage in digital image processing were evaluated. A general model of image formation by scintillation cameras is developed. The model assumes that objects to be imaged are composed of a finite set of points. The validity of the model has been verified by its ability to duplicate experimental results. Practical applications of this work involve quantitative assessment of the distribution of radipharmaceuticals under clinical situations and the study of image processing algorithms
Asymmetric neighborhood functions accelerate ordering process of self-organizing maps
International Nuclear Information System (INIS)
Ota, Kaiichiro; Aoki, Takaaki; Kurata, Koji; Aoyagi, Toshio
2011-01-01
A self-organizing map (SOM) algorithm can generate a topographic map from a high-dimensional stimulus space to a low-dimensional array of units. Because a topographic map preserves neighborhood relationships between the stimuli, the SOM can be applied to certain types of information processing such as data visualization. During the learning process, however, topological defects frequently emerge in the map. The presence of defects tends to drastically slow down the formation of a globally ordered topographic map. To remove such topological defects, it has been reported that an asymmetric neighborhood function is effective, but only in the simple case of mapping one-dimensional stimuli to a chain of units. In this paper, we demonstrate that even when high-dimensional stimuli are used, the asymmetric neighborhood function is effective for both artificial and real-world data. Our results suggest that applying the asymmetric neighborhood function to the SOM algorithm improves the reliability of the algorithm. In addition, it enables processing of complicated, high-dimensional data by using this algorithm.
Efficient Parallel Implementation of Active Appearance Model Fitting Algorithm on GPU
Directory of Open Access Journals (Sweden)
Jinwei Wang
2014-01-01
Full Text Available The active appearance model (AAM is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA on the Nvidia’s GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures.
Algorithmic crystal chemistry: A cellular automata approach
International Nuclear Information System (INIS)
Krivovichev, S. V.
2012-01-01
Atomic-molecular mechanisms of crystal growth can be modeled based on crystallochemical information using cellular automata (a particular case of finite deterministic automata). In particular, the formation of heteropolyhedral layered complexes in uranyl selenates can be modeled applying a one-dimensional three-colored cellular automaton. The use of the theory of calculations (in particular, the theory of automata) in crystallography allows one to interpret crystal growth as a computational process (the realization of an algorithm or program with a finite number of steps).
Devine, Sean D
2016-02-01
Replication can be envisaged as a computational process that is able to generate and maintain order far-from-equilibrium. Replication processes, can self-regulate, as the drive to replicate can counter degradation processes that impact on a system. The capability of replicated structures to access high quality energy and eject disorder allows Landauer's principle, in conjunction with Algorithmic Information Theory, to quantify the entropy requirements to maintain a system far-from-equilibrium. Using Landauer's principle, where destabilising processes, operating under the second law of thermodynamics, change the information content or the algorithmic entropy of a system by ΔH bits, replication processes can access order, eject disorder, and counter the change without outside interventions. Both diversity in replicated structures, and the coupling of different replicated systems, increase the ability of the system (or systems) to self-regulate in a changing environment as adaptation processes select those structures that use resources more efficiently. At the level of the structure, as selection processes minimise the information loss, the irreversibility is minimised. While each structure that emerges can be said to be more entropically efficient, as such replicating structures proliferate, the dissipation of the system as a whole is higher than would be the case for inert or simpler structures. While a detailed application to most real systems would be difficult, the approach may well be useful in understanding incremental changes to real systems and provide broad descriptions of system behaviour. Copyright © 2016 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.
An adaptive algorithm for simulation of stochastic reaction-diffusion processes
International Nuclear Information System (INIS)
Ferm, Lars; Hellander, Andreas; Loetstedt, Per
2010-01-01
We propose an adaptive hybrid method suitable for stochastic simulation of diffusion dominated reaction-diffusion processes. For such systems, simulation of the diffusion requires the predominant part of the computing time. In order to reduce the computational work, the diffusion in parts of the domain is treated macroscopically, in other parts with the tau-leap method and in the remaining parts with Gillespie's stochastic simulation algorithm (SSA) as implemented in the next subvolume method (NSM). The chemical reactions are handled by SSA everywhere in the computational domain. A trajectory of the process is advanced in time by an operator splitting technique and the timesteps are chosen adaptively. The spatial adaptation is based on estimates of the errors in the tau-leap method and the macroscopic diffusion. The accuracy and efficiency of the method are demonstrated in examples from molecular biology where the domain is discretized by unstructured meshes.
Directory of Open Access Journals (Sweden)
Yuliang Su
2015-04-01
Full Text Available A turning machine tool is a kind of new type of machine tool that is equipped with more than one spindle and turret. The distinctive simultaneous and parallel processing abilities of turning machine tool increase the complexity of process planning. The operations would not only be sequenced and satisfy precedence constraints, but also should be scheduled with multiple objectives such as minimizing machining cost, maximizing utilization of turning machine tool, and so on. To solve this problem, a hybrid genetic algorithm was proposed to generate optimal process plans based on a mixed 0-1 integer programming model. An operation precedence graph is used to represent precedence constraints and help generate a feasible initial population of hybrid genetic algorithm. Encoding strategy based on data structure was developed to represent process plans digitally in order to form the solution space. In addition, a local search approach for optimizing the assignments of available turrets would be added to incorporate scheduling with process planning. A real-world case is used to prove that the proposed approach could avoid infeasible solutions and effectively generate a global optimal process plan.
Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design.
Mata, Edson; Bandeira, Silvio; de Mattos Neto, Paulo; Lopes, Waslon; Madeiro, Francisco
2016-11-23
The performance of signal processing systems based on vector quantization depends on codebook design. In the image compression scenario, the quality of the reconstructed images depends on the codebooks used. In this paper, alternatives are proposed for accelerating families of fuzzy K-means algorithms for codebook design. The acceleration is obtained by reducing the number of iterations of the algorithms and applying efficient nearest neighbor search techniques. Simulation results concerning image vector quantization have shown that the acceleration obtained so far does not decrease the quality of the reconstructed images. Codebook design time savings up to about 40% are obtained by the accelerated versions with respect to the original versions of the algorithms.
Receiver Architectures for MIMO-OFDM Based on a Combined VMP-SP Algorithm
DEFF Research Database (Denmark)
Manchón, Carles Navarro; Kirkelund, Gunvor Elisabeth; Riegler, Erwin
2011-01-01
, such as the sum-product (SP) and variational message passing (VMP) algorithms, have become increasingly popular. In this contribution, we apply a combined VMP-SP message-passing technique to the design of receivers for MIMO-ODFM systems. The message-passing equations of the combined scheme can be obtained from......Iterative information processing, either based on heuristics or analytical frameworks, has been shown to be a very powerful tool for the design of efficient, yet feasible, wireless receiver architectures. Within this context, algorithms performing message-passing on a probabilistic graph...... assessment of our solutions, based on Monte Carlo simulations, corroborates the high performance of the proposed algorithms and their superiority to heuristic approaches....
The relative worst order ratio applied to paging
DEFF Research Database (Denmark)
Boyar, Joan; Favrholdt, Lene Monrad; Larsen, Kim Skak
2007-01-01
The relative worst order ratio, a new measure for the quality of on-line algorithms, was recently defined and applied to two bin packing problems. Here, we apply it to the paging problem and obtain the following results: We devise a new deterministic paging algorithm, Retrospective-LRU, and show...
Directory of Open Access Journals (Sweden)
Fabián Santos
2017-01-01
Full Text Available The Andean Amazon is an endangered biodiversity hot spot but its forest dynamics are less studied than those of the Amazon lowland and forests from middle or high latitudes. This is because its landscape variability, complex topography and cloudy conditions constitute a challenging environment for any remote-sensing assessment. Breakpoint detection with Landsat time-series data is an established robust approach for monitoring forest dynamics around the globe but has not been properly evaluated for implementation in the Andean Amazon. We analyzed breakpoint detection-generated forest dynamics in order to determine its limitations when applied to three different study areas located along an altitude gradient in the Andean Amazon in Ecuador. Using all available Landsat imagery for the period 1997–2016, we evaluated different pre-processing approaches, noise reduction techniques, and breakpoint detection algorithms. These procedures were integrated into a complex function called the processing chain generator. Calibration was not straightforward since it required us to define values for 24 parameters. To solve this problem, we implemented a novel approach using genetic algorithms. We calibrated the processing chain generator by applying a stratified training sampling and a reference dataset based on high resolution imagery. After the best calibration solution was found and the processing chain generator executed, we assessed accuracy and found that data gaps, inaccurate co-registration, radiometric variability in sensor calibration, unmasked cloud, and shadows can drastically affect the results, compromising the application of breakpoint detection in mountainous areas of the Andean Amazon. Moreover, since breakpoint detection analysis of landscape variability in the Andean Amazon requires a unique calibration of algorithms, the time required to optimize analysis could complicate its proper implementation and undermine its application for large
Multiobjective Genetic Algorithm applied to dengue control.
Florentino, Helenice O; Cantane, Daniela R; Santos, Fernando L P; Bannwart, Bettina F
2014-12-01
Dengue fever is an infectious disease caused by a virus of the Flaviridae family and transmitted to the person by a mosquito of the genus Aedes aegypti. This disease has been a global public health problem because a single mosquito can infect up to 300 people and between 50 and 100 million people are infected annually on all continents. Thus, dengue fever is currently a subject of research, whether in the search for vaccines and treatments for the disease or efficient and economical forms of mosquito control. The current study aims to study techniques of multiobjective optimization to assist in solving problems involving the control of the mosquito that transmits dengue fever. The population dynamics of the mosquito is studied in order to understand the epidemic phenomenon and suggest strategies of multiobjective programming for mosquito control. A Multiobjective Genetic Algorithm (MGA_DENGUE) is proposed to solve the optimization model treated here and we discuss the computational results obtained from the application of this technique. Copyright © 2014 Elsevier Inc. All rights reserved.
Denni Algorithm An Enhanced Of SMS (Scan, Move and Sort) Algorithm
Aprilsyah Lubis, Denni; Salim Sitompul, Opim; Marwan; Tulus; Andri Budiman, M.
2017-12-01
Sorting has been a profound area for the algorithmic researchers, and many resources are invested to suggest a more working sorting algorithm. For this purpose many existing sorting algorithms were observed in terms of the efficiency of the algorithmic complexity. Efficient sorting is important to optimize the use of other algorithms that require sorted lists to work correctly. Sorting has been considered as a fundamental problem in the study of algorithms that due to many reasons namely, the necessary to sort information is inherent in many applications, algorithms often use sorting as a key subroutine, in algorithm design there are many essential techniques represented in the body of sorting algorithms, and many engineering issues come to the fore when implementing sorting algorithms., Many algorithms are very well known for sorting the unordered lists, and one of the well-known algorithms that make the process of sorting to be more economical and efficient is SMS (Scan, Move and Sort) algorithm, an enhancement of Quicksort invented Rami Mansi in 2010. This paper presents a new sorting algorithm called Denni-algorithm. The Denni algorithm is considered as an enhancement on the SMS algorithm in average, and worst cases. The Denni algorithm is compared with the SMS algorithm and the results were promising.