Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids
Santos, J. E.; Savioli, G. B.
2018-04-01
Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.
New knowledge on the temperature-entropy saturation boundary slope of working fluids
International Nuclear Information System (INIS)
Su, Wen; Zhao, Li; Deng, Shuai
2017-01-01
The slope of temperature-entropy saturation boundary of working fluids has a significant effect on the thermodynamic performance of cycle processes. However, for the working fluids used in cycles, few studies have been conducted to analyze the saturated slope from the molecular structure and mixture composition. Thus, in this contribution, an analytical expression on the slope of saturated curve is obtained based on the highly accurate Helmholtz energy equation. 14 pure working fluids and three typical binary mixtures are employed to analyze the influence of molecular groups and mixture compositions on the saturated slope, according to the correlated parameters of Helmholtz energy equation. Based on the calculated results, a preliminary trend is demonstrated that with an increase of the number of molecular groups, the positive liquid slope of pure fluids increases and the vapor slope appears positive sign in a narrow temperature range. Particularly, for the binary mixtures, the liquid slope is generally located between the corresponding pure fluids', while the vapor slope can be infinity by mixing dry and wet fluids ingeniously. It can be proved through the analysis of mixtures' saturated slope that three types of vapor slope could be obtained by regulating the mixture composition. - Highlights: • The saturated slope is derived from the Helmholtz function for working fluids. • The effect of molecular structure on the saturated slope is analyzed. • The variation of saturated slope with the mixture composition is investigated.
Thermophysical properties of a fluid-saturated sandstone
International Nuclear Information System (INIS)
Abid, Muhammad; Hammerschmidt, Ulf; Koehler, Juergen
2014-01-01
Thermophysical properties of a fluid-saturated stone are presented that are obtained by using the transient hot-bridge technique (THB) at ambient conditions. Measurements are succeedingly done each after having filled the porous stone structure first with six different fluids of distinct thermal conductivities and next with six different gases also having different thermal conductivities. Variations in thermal conductivity, thermal diffusivity and volumetric specific heat due to liquid or gas saturations are discussed. Internal pore structure of the stone is studied by using Scanning Electron Microscopy (SEM), Mercury Intrusion Porosimetry (MIP) and other standardized density methods at ambient conditions. Effect of interstitial pore pressure on thermophysical properties are also discussed in the context of Knudsen effect. (authors)
Scattering by a spherical inhomogeneity in a fluid-saturated porous medium
International Nuclear Information System (INIS)
Berryman, J.G.
1985-01-01
A fast compressional wave incident on an inhomogeneity in a fluid-saturated porous medium will produce three scattered elastic waves: a fast compressional wave, a slow compressional wave, and a shear wave. This problem is formulated as a multipole expansion using Biot's equations of poroelasticity. The solution for the first term (n = 0) in the multipole series involves a 4 x 4 system which is solved analytically in the long-wavelength limit. All higher-order terms (n > or = 1) require the solution of a 6 x 6 system. A procedure for solving these equations by splitting the problem into a 4 x 4 system and a 2 x 2 system and then iterating is introduced. The first iterate is just the solution of the elastic wave scattering problem in the absence of fluid effects. Higher iterates include the successive perturbation effects of fluid/solid interaction
Observation of a new surface mode on a fluid-saturated permeable solid
International Nuclear Information System (INIS)
Nagy, P.B.
1992-01-01
Almost ten years ago, S. Feng and D. L. Johnson predicted the presence of a new surface mode on a fluid/fluid-saturated porous solid interface with closed surface pores [J. Acoust. Soc. Am. 74, 906 (1983)]. We found that, due to surface tension, practically closed-pore boundary conditions can prevail at an interface between a nonwetting fluid (e.g., air) and a porous solid saturated with a wetting fluid (e.g., water or alcohol). Surface wave velocity and attenuation measurements were made on alcohol-saturated porous sintered glass at 100 kHz. The experimental results show clear evidence of the new ''slow'' surface mode predicted by Feng and Johnson
Impact of Reservoir Fluid Saturation on Seismic Parameters: Endrod Gas Field, Hungary
El Sayed, Abdel Moktader A.; El Sayed, Nahla A.
2017-12-01
Outlining the reservoir fluid types and saturation is the main object of the present research work. 37 core samples were collected from three different gas bearing zones in the Endrod gas field in Hungary. These samples are belonging to the Miocene and the Upper - Lower Pliocene. These samples were prepared and laboratory measurements were conducted. Compression and shear wave velocity were measured using the Sonic Viewer-170-OYO. The sonic velocities were measured at the frequencies of 63 and 33 kHz for compressional and shear wave respectively. All samples were subjected to complete petrophysical investigations. Sonic velocities and mechanical parameters such as young’s modulus, rigidity, and bulk modulus were measured when samples were saturated by 100%-75%-0% brine water. Several plots have been performed to show the relationship between seismic parameters and saturation percentages. Robust relationships were obtained, showing the impact of fluid saturation on seismic parameters. Seismic velocity, Poisson’s ratio, bulk modulus and rigidity prove to be applicable during hydrocarbon exploration or production stages. Relationships among the measured seismic parameters in gas/water fully and partially saturated samples are useful to outline the fluid type and saturation percentage especially in gas/water transitional zones.
Micro-poromechanics model of fluid-saturated chemically active fibrous media.
Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette
2015-02-01
We have developed a micromechanics based model for chemically active saturated fibrous media that incorporates fiber network microstructure, chemical potential driven fluid flow, and micro-poromechanics. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's volume averaging. The advantage of this approach is that the resultant continuum model accounts for the discrete nature of the individual fibers while retaining a form suitable for porous materials. As a result, the model is able to predict the influence of micro-scale phenomena, such as the fiber pre-strain caused by osmotic effects and evolution of fiber network structure with loading, on the overall behavior and in particular, on the poromechanics parameters. Additionally, the model can describe fluid-flow related rate-dependent behavior under confined and unconfined conditions and varying chemical environments. The significance of the approach is demonstrated by simulating unconfined drained monotonic uniaxial compression under different surrounding fluid bath molarity, and fluid-flow related creep and relaxation at different loading-levels and different surrounding fluid bath molarity. The model predictions conform to the experimental observations for saturated soft fibrous materials. The method can potentially be extended to other porous materials such as bone, clays, foams and concrete.
On the micromechanics of slip events in sheared, fluid-saturated fault gouge
Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan
2017-06-01
We used a three-dimensional discrete element method coupled with computational fluid dynamics to study the poromechanical properties of dry and fluid-saturated granular fault gouge. The granular layer was sheared under dry conditions to establish a steady state condition of stick-slip dynamic failure, and then fluid was introduced to study its effect on subsequent failure events. The fluid-saturated case showed increased stick-slip recurrence time and larger slip events compared to the dry case. Particle motion induces fluid flow with local pressure variation, which in turn leads to high particle kinetic energy during slip due to increased drag forces from fluid on particles. The presence of fluid during the stick phase of loading promotes a more stable configuration evidenced by higher particle coordination number. Our coupled fluid-particle simulations provide grain-scale information that improves understanding of slip instabilities and illuminates details of phenomenological, macroscale observations.
Surface wave propagation in a fluid-saturated incompressible ...
Indian Academy of Sciences (India)
dilatational and one rotational elastic waves in fluid-saturated porous solids. Biot theory ..... If the pore liquid is absent or gas is filled in the pores, then ρF ..... Biot M A (1962) Mechanics of deformation and acoustic propagation in porous media.
International Nuclear Information System (INIS)
Pazetti, Bruno; Davolio, Alessandra; Schiozer, Denis J
2015-01-01
The integration of 4D seismic (4DS) attributes and reservoir simulation is used to reduce risks in the management of petroleum fields. One possible alternative is the saturation and pressure domain. In this case, we use estimations of saturation and pressure changes from 4D seismic data as input in history matching processes to yield more reliable production predictions in simulation models. The estimation of dynamic changes from 4DS depends on the knowledge of reservoir rock and fluid properties that are uncertain in the process of estimation. This paper presents a study of the impact of rock and fluid uncertainties on the estimation of saturation and pressure changes achieved through a 4D petro-elastic inversion. The term impact means that the saturation and pressure estimation can be perturbed by the rock and fluid uncertainties. The motivation for this study comes from the necessity to estimate uncertainties in saturation and pressure variation to incorporate them in the history matching procedures, avoiding the use of deterministic values from 4DS, which may not be reliable. The study is performed using a synthetic case with known response from where it is possible to show that the errors of estimated saturation and pressure depend on the magnitude of rock and fluid uncertainties jointly with the reservoir dynamic changes. The main contribution of this paper is to show how uncertain reservoir properties can affect the reliability of pressure and saturation estimation from 4DS and how it depends on reservoir changes induced by production. This information can be used in future projects which use quantitative inversion to integrate reservoir simulation and 4D seismic data. (paper)
A coupled deformation-diffusion theory for fluid-saturated porous solids
Henann, David; Kamrin, Ken; Anand, Lallit
2012-02-01
Fluid-saturated porous materials are important in several familiar applications, such as the response of soils in geomechanics, food processing, pharmaceuticals, and the biomechanics of living bone tissue. An appropriate constitutive theory describing the coupling of the mechanical behavior of the porous solid with the transport of the fluid is a crucial ingredient towards understanding the material behavior in these varied applications. In this work, we formulate and numerically implement in a finite-element framework a large-deformation theory for coupled deformation-diffusion in isotropic, fluid-saturated porous solids. The theory synthesizes the classical Biot theory of linear poroelasticity and the more-recent Coussy theory of poroplasticity in a large deformation framework. In this talk, we highlight several salient features of our theory and discuss representative examples of the application of our numerical simulation capability to problems of consolidation as well as deformation localization in granular materials.
Lebedev, M.; Clennell, B.; Pervukhina, M.; Shulakova, V.; Mueller, T.; Gurevich, B.
2009-04-01
Porous rocks in hydrocarbon reservoirs are often saturated with a mixture of two or more fluids. Interpretation of exploration seismograms requires understanding of the relationship between distribution of the fluids patches and acoustic properties of rocks. The sizes of patches as well as their distribution affect significantly the seismic response. If the size of the fluid patch is smaller than the diffusion wavelength then pressure equilibration is achieved and the bulk modulus of the rock saturated with a mixture is defined by the Gassmann equations (Gassmann, 1951) with the saturation-weighted average of the fluid bulk modulus given by Wood's law (Wood, 1955, Mavko et al., 1998). If the fluid patch size is much larger than the diffusion wavelength then there is no pressure communication between different patches. In this case, fluid-flow effects can be neglected and the overall rock may be considered equivalent to an elastic composite material consisting of homogeneous parts whose properties are given by Gassmann theory with Hill's equation for the bulk modulus (Hill, 1963, Mavko et al., 1998). At intermediate values of fluid saturation the velocity-saturation relationship is significantly affected by the fluid patch distribution. In order to get an improved understanding of factors influencing the patch distribution and the resulting seismic wave response we performed simultaneous measurements of P-wave velocities and rock sample CT imaging. The CT imaging allows us to map the fluid distribution inside rock sample during saturation (water imbibition). We compare the experimental results with theoretical predictions. In this paper we will present results of simultaneous measurements of longitudinal wave velocities and imaging mapping of fluid distribution inside rock sample during sample saturation. We will report results of two kinds of experiments: "dynamic" and "quasi static" saturation. In both experiments Casino Cores Otway Basin sandstone, Australia core
Grain scale observations of stick-slip dynamics in fluid saturated granular fault gouge
Johnson, P. A.; Dorostkar, O.; Guyer, R. A.; Marone, C.; Carmeliet, J.
2017-12-01
We are studying granular mechanics during slip. In the present work, we conduct coupled computational fluid dynamics (CFD) and discrete element method (DEM) simulations to study grain scale characteristics of slip instabilities in fluid saturated granular fault gouge. The granular sample is confined with constant normal load (10 MPa), and sheared with constant velocity (0.6 mm/s). This loading configuration is chosen to promote stick-slip dynamics, based on a phase-space study. Fluid is introduced in the beginning of stick phase and characteristics of slip events i.e. macroscopic friction coefficient, kinetic energy and layer thickness are monitored. At the grain scale, we monitor particle coordination number, fluid-particle interaction forces as well as particle and fluid kinetic energy. Our observations show that presence of fluids in a drained granular fault gouge stabilizes the layer in the stick phase and increases the recurrence time. In saturated model, we observe that average particle coordination number reaches higher values compared to dry granular gouge. Upon slip, we observe that a larger portion of the granular sample is mobilized in saturated gouge compared to dry system. We also observe that regions with high particle kinetic energy are correlated with zones of high fluid motion. Our observations highlight that spatiotemporal profile of fluid dynamic pressure affects the characteristics of slip instabilities, increasing macroscopic friction coefficient drop, kinetic energy release and granular layer compaction. We show that numerical simulations help characterize the micromechanics of fault mechanics.
International Nuclear Information System (INIS)
Wang, J.S.Y.; Narasimhan, T.N.
1984-10-01
In contrast to the saturated zone where fluid moves rapidly along fractures, the fractures (with apertures large relative to the size of matrix pores) will desaturate first during drainage process and the bulk of fluid flow would be through interconnected pores in the matrix. Within a partially drained fracture, the presence of a relatively continuous air phase will produce practically an infinite resistance to liquid flow in the direction parallel to the fracture. The residual liquid will be held by capillary force in regions around fracture contact areas where the apertures are small. Normal to the fracture surfaces, the drained portion of the fractures will reduce the effective area for liquid flow from one matrix block to another matrix block. A general statistical theory is constructed for flow along the fracture and for flow between the matrix blocks to the fractures under partially saturated conditions. Results are obtained from an aperture distribution model for fracture saturation, hydraulic conductivity, and effective matrix-fracture flow areas as functions of pressure. Drainage from a fractured tuff column is simulated. The parameters for the simulations are deduced from fracture surface characteristics, spacings and orientations based on core analyses, and from matrix characteristics curve based on laboratory measurements. From the cases simulated for the fractured, porous column with discrete vertical and horizontal fractures and porous matrix blocks explicitly taken into account, it is observed that the highly transient changes from fully saturated conditions to partially saturated conditions are extremely sensitive to the fracture properties. However, the quasi-steady changes of the fluid flow of a partially saturated, fractured, porous system could be approximately simulated without taking the fractures into account. 22 references, 16 figures
Energy Technology Data Exchange (ETDEWEB)
Costa, V.A.F. [Departamento de Engenharia Mecanica, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)
2006-07-15
Care needs to be taken when considering the viscous dissipation in the energy conservation formulation of the natural convection problem in fluid-saturated porous media. The unique energy formulation compatible with the First Law of Thermodynamics informs us that if the viscous dissipation term is taken into account, also the work of pressure forces term needs to be taken into account. In integral terms, the work of pressure forces must equal the energy dissipated by viscous effects, and the net energy generation in the overall domain must be zero. If only the (positive) viscous dissipation term is considered in the energy conservation equation, the domain behaves as a heat multiplier, with an heat output greater than the heat input. Only the energy formulation consistent with the First Law of Thermodynamics leads to the correct flow and temperature fields, as well as of the heat transfer parameters characterizing the involved porous device. Attention is given to the natural convection problem in a square enclosure filled with a fluid-saturated porous medium, using the Darcy Law to describe the fluid flow, but the main ideas and conclusions apply equally for any general natural or mixed convection heat transfer problem. It is also analyzed the validity of the Oberbeck-Boussinesq approximation when applied to natural convection problems in fluid-saturated porous media. (author)
Shan, Zhendong; Ling, Daosheng; Jing, Liping; Li, Yongqiang
2018-05-01
In this paper, transient wave propagation is investigated within a fluid/saturated porous medium halfspace system with a planar interface that is subjected to a cylindrical P-wave line source. Assuming the permeability coefficient is sufficiently large, analytical solutions for the transient response of the fluid/saturated porous medium halfspace system are developed. Moreover, the analytical solutions are presented in simple closed forms wherein each term represents a transient physical wave, especially the expressions for head waves. The methodology utilised to determine where the head wave can emerge within the system is also given. The wave fields within the fluid and porous medium are first defined considering the behaviour of two compressional waves and one tangential wave in the saturated porous medium and one compressional wave in the fluid. Substituting these wave fields into the interface continuity conditions, the analytical solutions in the Laplace domain are then derived. To transform the solutions into the time domain, a suitable distortion of the contour is provided to change the integration path of the solution, after which the analytical solutions in the Laplace domain are transformed into the time domain by employing Cagniard's method. Numerical examples are provided to illustrate some interesting features of the fluid/saturated porous medium halfspace system. In particular, the interface wave and head waves that propagate along the interface between the fluid and saturated porous medium can be observed.
International Nuclear Information System (INIS)
Sharma, D.
1982-01-01
This paper presents the formulation and applications of a mathematical model designed to predict the fluid dynamics and associated mass transfers in variably saturated porous media. Novelties in the formulation are emphasized and demonstrated to provide several computational advantages. The numerical procedure employed is of the integrated finite-difference variety which employs a hybrid differencing scheme. This procedure, while solving the coupled governing equations in conservative form, permits accommodation of substantial heterogeneities and anisotropies in material properties of the porous media. Accordingly, it is capable of making reliable predictions of steeply varying moisture and chemical-specie concentration fronts. The paper provides several examples of application of the model to the solution of practical problems. It is demonstrated that economical solutions to highly non-linear problems associated with solid and liquid waste disposal practices can be obtained
Micro-analysis of plaque fluid from single-site fasted plaque
International Nuclear Information System (INIS)
Vogel, G.L.; Carey, C.M.; Chow, L.C.; Tatevossian, A.
1990-01-01
Despite the site-specific nature of caries, nearly all data on the concentration of ions relevant to the level of saturation of plaque fluid with respect to calcium phosphate minerals or enamel are from studies that used pooled samples. A procedure is described for the collection and analysis of inorganic ions relevant to these saturation levels in plaque fluid samples collected from a single surface on a single tooth. Various methods for examining data obtained by this procedure are described, and a mathematical procedure employing potential plots is recommended
Borehole guided waves in a non-Newtonian (Maxwell) fluid-saturated porous medium
International Nuclear Information System (INIS)
Zhi-Wen, Cui; Jin-Xia, Liu; Ke-Xie, Wang; Gui-Jin, Yao
2010-01-01
The property of acoustic guided waves generated in a fluid-filled borehole surrounded by a non-Newtonian (Maxwell) fluid-saturated porous formation with a permeable wall is investigated. The influence of non-Newtonian effects on acoustic guided waves such as Stoneley waves, pseudo-Rayleigh waves, flexural waves, and screw waves propagations in a fluid-filled borehole is demonstrated based on the generalized Biot–Tsiklauri model by calculating their velocity dispersion and attenuation coefficients. The corresponding acoustic waveforms illustrate their properties in time domain. The results are also compared with those based on generalized Biot's theory. The results show that the influence of non-Newtonian effect on acoustic guided wave, especially on the attenuation coefficient of guided wave propagation in borehole is noticeable. (classical areas of phenomenology)
Effective Hydro-Mechanical Properties of Fluid-Saturated Fracture Networks
Pollmann, N.; Vinci, C.; Renner, J.; Steeb, H.
2015-12-01
Consideration of hydro-mechanical processes is essential for the characterization of liquid-resources as well as for many engineering applications. Furthermore, the modeling of seismic waves in fractured porous media finds application not only in geophysical exploration but also reservoir management. Fractures exhibit high-aspect-ratio geometries, i.e. they constitute thin and long hydraulic conduits. Motivated by this peculiar geometry, the investigation of the hydro-mechanically coupled processes is performed by means of a hybrid-dimensional modeling approach. The effective material behavior of domains including complex fracture patterns in a porous rock is assessed by investigating the fluid pressure and the solid displacement of the skeleton saturated by compressible fluids. Classical balance equations are combined with a Poiseuille-type flow in the dimensionally reduced fracture. In the porous surrounding rock, the classical Biot-theory is applied. For simple geometries, our findings show that two main fluid-flow processes occur, leak-off from fractures to the surrounding rock and fracture flow within and between the connected fractures. The separation of critical frequencies of the two flow processes is not straightforward, in particular for systems containing a large number of fractures. Our aim is to model three dimensional hydro-mechanically coupled processes within complex fracture patterns and in particular determine the frequency-dependent attenuation characteristics. Furthermore, the effect of asperities of the fracture surfaces on the fracture stiffness and on the hydraulic conductivity will be added to the approach.
Control procedure for fluid kicks in hydrocarbons wells
Energy Technology Data Exchange (ETDEWEB)
Gavignet, A
1989-02-10
This invention is a control procedure of the fluids inflows coming from an underground formation during a drill. These inflows happen when a drill reaches a permeable area containing a high pressure fluid. The latter will engulf into the well which may cause a catastrophic eruption, if nothing is done. Therefore is it necessary to know as soon as possible the physical nature of the fluids inflows. The proposed method consists in calculating the fluids characteristic through the measure of the pressures and debits of injection and return of the drilling mud.
Determination of saturation functions and wettability for chalk based on measured fluid saturations
Energy Technology Data Exchange (ETDEWEB)
Olsen, D.; Bech, N.; Moeller Nielsen, C.
1998-08-01
The end effect of displacement experiments on low permeable porous media is used for determination of relative permeability functions and capillary pressure functions. Saturation functions for a drainage process are determined from a primary drainage experiment. A reversal of the flooding direction creates an intrinsic imbibition process in the sample, which enables determination if imbibition saturation functions. The saturation functions are determined by a parameter estimation technique. Scanning effects are modelled by the method of Killough. Saturation profiles are determined by NMR. (au)
Energy Technology Data Exchange (ETDEWEB)
Pazanin, Igor [Zagreb Univ. (Croatia). Dept. of Mathematics; Siddheshwar, Pradeep G. [Bangalore Univ., Bengaluru (India). Dept. of Mathematics
2017-06-01
In this article we investigate the fluid flow through a thin fracture modelled as a fluid-saturated porous medium. We assume that the fracture has constrictions and that the flow is governed by the prescribed pressure drop between the edges of the fracture. The problem is described by the Darcy-Lapwood-Brinkman model acknowledging the Brinkman extension of the Darcy law as well as the flow inertia. Using asymptotic analysis with respect to the thickness of the fracture, we derive the explicit higher-order approximation for the velocity distribution. We make an error analysis to comment on the order of accuracy of the method used and also to provide rigorous justification for the model.
Energy Technology Data Exchange (ETDEWEB)
Bhadauria, Beer S. [Babasaheb Bhimrao Ambedkar Univ., Lucknow (India). Dept. of Applied Mathematics and Statistics; Banaras Hindu Univ., Varanasi (India). Dept. of Mathematics; Srivastava, Atul K. [Banaras Hindu Univ., Varanasi (India). Dept. of Mathematics; Sacheti, Nirmal C.; Chandran, Pallath [Sultan Qaboos Univ., Muscat (Oman). Dept. of Mathematics
2012-01-15
The present paper deals with a thermal instability problem in a viscoelastic fluid saturating an anisotropic porous medium under gravity modulation. To find the gravity modulation effect, the gravity field is considered in two parts: a constant part and an externally imposed time-dependent periodic part. The time-dependent part of the gravity field, which can be realized by shaking the fluid, has been represented by a sinusoidal function. Using Hill's equation and the Floquet theory, the convective threshold has been obtained. It is found that gravity modulation can significantly affect the stability limits of the system. Further, we find that there is a competition between the synchronous and subharmonic modes of convection at the onset of instability. Effects of various parameters on the onset of instability have also been discussed. (orig.)
Pore Structure Model for Predicting Elastic Wavespeeds in Fluid-Saturated Sandstones
Zimmerman, R. W.; David, E. C.
2011-12-01
During hydrostatic compression, in the elastic regime, ultrasonic P and S wave velocities measured on rock cores generally increase with pressure, and reach asymptotic values at high pressures. The pressure dependence of seismic velocities is generally thought to be due to the closure of compliant cracks, in which case the high-pressure velocities must reflect only the influence of the non-closable, equant "pores". Assuming that pores can be represented by spheroids, we can relate the elastic properties to the pore structure using an effective medium theory. Moreover, the closure pressure of a thin crack-like pore is directly proportional to its aspect ratio. Hence, our first aim is to use the pressure dependence of seismic velocities to invert the aspect ratio distribution. We use a simple analytical algorithm developed by Zimmerman (Compressibility of Sandstones, 1991), which can be used for any effective medium theory. Previous works have used overly restrictive assumptions, such as assuming that the stiff pores are spherical, or that the interactions between pores can be neglected. Here, we assume that the rock contains an exponential distribution of crack aspect ratios, and one family of stiff pores having an aspect ratio lying somewhere between 0.01 and 1. We develop our model in two versions, using the Differential Scheme, and the Mori-Tanaka scheme. The inversion is done using data obtained in dry experiments, since pore fluids have a strong effect on velocities and tend to mask the effect of the pore geometry. This avoids complicated joint inversion of dry and wet data, such as done by Cheng and Toksoz (JGR, 1979). Our results show that for many sets of data on sandstones, we can fit very well the dry velocities. Our second aim is to predict the saturated velocities from our pore structure model, noting that at a given differential stress, the pore structure should be the same as for a dry test. Our results show that the Biot-Gassmann predictions always
Directory of Open Access Journals (Sweden)
Zhixin Yang
Full Text Available The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer is studied when the fluid and solid phase are not in local thermal equilibrium. The modified Darcy model is used for the momentum equation and a two-field model is used for energy equation each representing the fluid and solid phases separately. The effect of thermal non-equilibrium on the onset of double diffusive convection is discussed. The critical Rayleigh number and the corresponding wave number for the exchange of stability and over-stability are obtained, and the onset criterion for stationary and oscillatory convection is derived analytically and discussed numerically.
Aspects of the use of saturated fluorocarbon fluids in high energy physics
Energy Technology Data Exchange (ETDEWEB)
Hallewell, G., E-mail: Gregory.Hallewell@cern.c [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, Case 907, 13288 Marseille Cedex 09 (France)
2011-05-21
The excellent dielectric properties of saturated fluorocarbons have allowed their use in direct immersion liquid cooling of electronics, including supercomputers and as heat transfer media in vapour phase soldering and burn-in testing of electronics. Their high density, UV transparency, non-flammability, non-toxicity and radiation tolerance have led to their use as liquid and gas radiator media for RICH detectors in numerous particle physics experiments. Systems to circulate and purify saturated fluorocarbon Cherenkov radiator vapours often rely on thermodynamic evaporation-condensation cycles similar to those used in refrigeration. Their use as evaporative refrigerants was pioneered for the ATLAS silicon tracker, and they are now also used as evaporative coolants in ALICE and TOTEM and as liquid coolants in ATLAS and CMS. Ultrasonic techniques for vapour phase analysis of fluorocarbon mixtures-developed for the SLAC SLD barrel CRID radiator during the 1980s as an alternative to UV refractometry are again under development for the ATLAS tracker evaporative cooling system. Examples of fluorocarbon circulation systems, together with purification and analysis techniques for these versatile fluids are mentioned.
Aspects of the use of saturated fluorocarbon fluids in high energy physics
International Nuclear Information System (INIS)
Hallewell, G.
2011-01-01
The excellent dielectric properties of saturated fluorocarbons have allowed their use in direct immersion liquid cooling of electronics, including supercomputers and as heat transfer media in vapour phase soldering and burn-in testing of electronics. Their high density, UV transparency, non-flammability, non-toxicity and radiation tolerance have led to their use as liquid and gas radiator media for RICH detectors in numerous particle physics experiments. Systems to circulate and purify saturated fluorocarbon Cherenkov radiator vapours often rely on thermodynamic evaporation-condensation cycles similar to those used in refrigeration. Their use as evaporative refrigerants was pioneered for the ATLAS silicon tracker, and they are now also used as evaporative coolants in ALICE and TOTEM and as liquid coolants in ATLAS and CMS. Ultrasonic techniques for vapour phase analysis of fluorocarbon mixtures-developed for the SLAC SLD barrel CRID radiator during the 1980s as an alternative to UV refractometry are again under development for the ATLAS tracker evaporative cooling system. Examples of fluorocarbon circulation systems, together with purification and analysis techniques for these versatile fluids are mentioned.
Experimental Characterization of Dielectric Properties in Fluid Saturated Artificial Shales
Directory of Open Access Journals (Sweden)
Roman Beloborodov
2017-01-01
Full Text Available High dielectric contrast between water and hydrocarbons provides a useful method for distinguishing between producible layers of reservoir rocks and surrounding media. Dielectric response at high frequencies is related to the moisture content of rocks. Correlations between the dielectric permittivity and specific surface area can be used for the estimation of elastic and geomechanical properties of rocks. Knowledge of dielectric loss-factor and relaxation frequency in shales is critical for the design of techniques for effective hydrocarbon extraction and production from unconventional reservoirs. Although applicability of dielectric measurements is intriguing, the data interpretation is very challenging due to many factors influencing the dielectric response. For instance, dielectric permittivity is determined by mineralogical composition of solid fraction, volumetric content and composition of saturating fluid, rock microstructure and geometrical features of its solid components and pore space, temperature, and pressure. In this experimental study, we investigate the frequency dependent dielectric properties of artificial shale rocks prepared from silt-clay mixtures via mechanical compaction. Samples are prepared with various clay contents and pore fluids of different salinity and cation compositions. Measurements of dielectric properties are conducted in two orientations to investigate the dielectric anisotropy as the samples acquire strongly oriented microstructures during the compaction process.
Dispersion of extensional waves in fluid-saturated porous cylinders at ultrasonic frequencies
International Nuclear Information System (INIS)
Berryman, J.G.
1983-01-01
Ultrasonic dispersion of extensional waves in fluid-saturated porous cylinders is studied by analyzing generalized Pochhammer equations derived using Biot's theory. Cases with open-pore surface and closed-pore surface boundary conditions are considered. For both cases, the dispersion of the fast extensional wave does not differ much qualitatively from the dispersion expected for extensional waves in isotropic elastic cylinders. A slow extensional wave propagates in the case with a closed-pore surface but not in the case with an open-pore surface. The propagating slow wave has very weak dispersion and its speed is always lower than, but close to, the bulk slow wave speed
A method for eliminating sulfur compounds from fluid, saturated, aliphatic hydrocarbons
Energy Technology Data Exchange (ETDEWEB)
Fakhriev, A.M.; Galiautdinov, N.G.; Kashevarov, L.A.; Mazgarov, A.M.
1982-01-01
The method for eliminating sulfur compounds from fluid, saturated, aliphatic hydrocarbons, which involves extracting hydrocarbons using a dimethylsulfoxide extractant, is improved by using a dimethylsulfoxide blend and 10-60 percent (by volume) diethylenetriamine or polyethylenepolyamine which contains diethylenetriamine, triethylenetetramine and tetraethylenepentamine, in order to eliminate the above compounds. Polyethylenepolyamine is produced as a by-product during the production of ethylenediamine. Elimination is performed at 0-50 degrees and 1-60 atmospheres of pressure. Here, the extractant may contain up to 10 percent water. The use of the proposed method, rather than the existing method, will make it possible to increase hydrocarbon elimination from mercaptans by 40 percent and from H/sub 2/S by 10 percent when the same amount is eliminated from dialkylsulfides.
Coral calcifying fluid aragonite saturation states derived from Raman spectroscopy
Directory of Open Access Journals (Sweden)
T. M. DeCarlo
2017-11-01
Full Text Available Quantifying the saturation state of aragonite (ΩAr within the calcifying fluid of corals is critical for understanding their biomineralization process and sensitivity to environmental changes including ocean acidification. Recent advances in microscopy, microprobes, and isotope geochemistry enable the determination of calcifying fluid pH and [CO32−], but direct quantification of ΩAr (where ΩAr = [CO32−][Ca2+]∕Ksp has proved elusive. Here we test a new technique for deriving ΩAr based on Raman spectroscopy. First, we analysed abiogenic aragonite crystals precipitated under a range of ΩAr from 10 to 34, and we found a strong dependence of Raman peak width on ΩAr with no significant effects of other factors including pH, Mg∕Ca partitioning, and temperature. Validation of our Raman technique for corals is difficult because there are presently no direct measurements of calcifying fluid ΩAr available for comparison. However, Raman analysis of the international coral standard JCp-1 produced ΩAr of 12.3 ± 0.3, which we demonstrate is consistent with published skeletal Mg∕Ca, Sr∕Ca, B∕Ca, δ11B, and δ44Ca data. Raman measurements are rapid ( ≤ 1 s, high-resolution ( ≤ 1 µm, precise (derived ΩAr ± 1 to 2 per spectrum depending on instrument configuration, accurate ( ±2 if ΩAr < 20, and require minimal sample preparation, making the technique well suited for testing the sensitivity of coral calcifying fluid ΩAr to ocean acidification and warming using samples from natural and laboratory settings. To demonstrate this, we also show a high-resolution time series of ΩAr over multiple years of growth in a Porites skeleton from the Great Barrier Reef, and we evaluate the response of ΩAr in juvenile Acropora cultured under elevated CO2 and temperature.
Gran, M.; Zahasky, C.; Garing, C.; Pollyea, R. M.; Benson, S. M.
2017-12-01
One way to reduce CO2 emissions is to capture CO2 generated in power plants and other industrial sources to inject it into a geological formation. Sedimentary basins are the ones traditionally used to store CO2 but the emission sources are not always close to these type of basins. In this case, basalt rocks present a good storage alternative due their extent and also their potential for mineral trapping. Flow through basaltic rocks is governed by the permeable paths provided by rock fractures. Hence, knowing the behavior of the multiphase flow in these fractures becomes crucial. With the aim to describe how aperture and liquid-gas interface changes in the fracture affect relative permeability and what are the implications of permeability stress dependency, a series of core experiments were conducted. To calculate fracture apertures and fluid saturations, core flooding experiments combined with medical X-Ray CT scanner and micro-PET imaging (Micro Positron Emission Tomography) were performed. Capillary pressure and relative permeability drainage curves were simultaneously measured in a fractured basalt core under typical storage reservoir pressures and temperatures. The X-Ray scanner allows fracture apertures to be measured quite accurately even for fractures as small as 30 µ, but obtaining fluid saturations is not straightforward. The micro-PET imaging provides dynamic measurements of tracer distributions which can be used to calculate saturation. Here new experimental data is presented and the challenges associated with measuring fluid saturations using both X-Rays and micro-PET are discussed.
International Nuclear Information System (INIS)
Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom
2002-01-01
This paper presents a method for combining seismic and electromagnetic measurements to predict changes in water saturation, pressure, and CO 2 gas/oil ratio in a reservoir undergoing CO 2 flood. Crosswell seismic and electromagnetic data sets taken before and during CO 2 flooding of an oil reservoir are inverted to produce crosswell images of the change in compressional velocity, shear velocity, and electrical conductivity during a CO 2 injection pilot study. A rock properties model is developed using measured log porosity, fluid saturations, pressure, temperature, bulk density, sonic velocity, and electrical conductivity. The parameters of the rock properties model are found by an L1-norm simplex minimization of predicted and observed differences in compressional velocity and density. A separate minimization, using Archie's law, provides parameters for modeling the relations between water saturation, porosity, and the electrical conductivity. The rock-properties model is used to generate relationships between changes in geophysical parameters and changes in reservoir parameters. Electrical conductivity changes are directly mapped to changes in water saturation; estimated changes in water saturation are used along with the observed changes in shear wave velocity to predict changes in reservoir pressure. The estimation of the spatial extent and amount of CO 2 relies on first removing the effects of the water saturation and pressure changes from the observed compressional velocity changes, producing a residual compressional velocity change. This velocity change is then interpreted in terms of increases in the CO 2 /oil ratio. Resulting images of the CO 2 /oil ratio show CO 2 -rich zones that are well correlated to the location of injection perforations, with the size of these zones also correlating to the amount of injected CO 2 . The images produced by this process are better correlated to the location and amount of injected CO 2 than are any of the individual
Elastoplastic model for unsaturated, quasi-saturated and fully saturated fine soils
Directory of Open Access Journals (Sweden)
Lai Ba Tien
2016-01-01
Full Text Available In unsaturated soils, the gaseous phase is commonly assumed to be continuous. This assumption is no more valid at high saturation ratio. In that case, air bubbles and pockets can be trapped in the porous network by the liquid phase and the gas phase becomes discontinuous. This trapped air reduces the apparent compressibility of the pore fluid and affect the mechanical behavior of the soil. Although it is trapped in the pores, its dissolution can take place. Dissolved air can migrate through the pore space, either by following the flow of the fluid or by diffusion. In this context, this paper present a hydro mechanical model that separately considers the kinematics and the mechanical behavior of each fluid species (eg liquid water, dissolved air, gaseous air and the solid matrix. This new model was implemented in a C++ code. Some numerical simulations are performed to demonstrate the ability of this model to reproduce a continuous transition of unsaturated to saturated states.
Extension of Generalized Fluid System Simulation Program's Fluid Property Database
Patel, Kishan
2011-01-01
This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.
Ravazzoli, C L; Santos, J E; Carcione, J M
2003-04-01
We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.
Lipid order, saturation and surface property relationships: a study of human meibum saturation.
Mudgil, Poonam; Borchman, Douglas; Yappert, Marta C; Duran, Diana; Cox, Gregory W; Smith, Ryan J; Bhola, Rahul; Dennis, Gary R; Whitehall, John S
2013-11-01
Tear film stability decreases with age however the cause(s) of the instability are speculative. Perhaps the more saturated meibum from infants may contribute to tear film stability. The meibum lipid phase transition temperature and lipid hydrocarbon chain order at physiological temperature (33 °C) decrease with increasing age. It is reasonable that stronger lipid-lipid interactions could stabilize the tear film since these interactions must be broken for tear break up to occur. In this study, meibum from a pool of adult donors was saturated catalytically. The influence of saturation on meibum hydrocarbon chain order was determined by infrared spectroscopy. Meibum is in an anhydrous state in the meibomian glands and on the surface of the eyelid. The influence of saturation on the surface properties of meibum was determined using Langmuir trough technology. Saturation of native human meibum did not change the minimum or maximum values of hydrocarbon chain order so at temperatures far above or below the phase transition of human meibum, saturation does not play a role in ordering or disordering the lipid hydrocarbon chains. Saturation did increase the phase transition temperature in human meibum by over 20 °C, a relatively high amount. Surface pressure-area studies showing the late take off and higher maximum surface pressure of saturated meibum compared to native meibum suggest that the saturated meibum film is quite molecularly ordered (stiff molecular arrangement) and elastic (molecules are able to rearrange during compression and expansion) compared with native meibum films which are more fluid agreeing with the infrared spectroscopic results of this study. In saturated meibum, the formation of compacted ordered islands of lipids above the surfactant layer would be expected to decrease the rate of evaporation compared to fluid and more loosely packed native meibum. Higher surface pressure observed with films of saturated meibum compared to native meibum
Bulk elastic wave propagation in partially saturated porous solids
International Nuclear Information System (INIS)
Berryman, J.G.; Thigpen, L.; Chin, R.C.Y.
1988-01-01
The linear equations of motion that describe the behavior of small disturbances in a porous solid containing both liquid and gas are solved for bulk wave propagation. The equations have been simplified by neglecting effects due to changes in capillary pressure. With this simplifying assumption, the equations reduce to two coupled (vector) equations of the form found in Biot's equations (for full saturation) but with more complicated coefficients. As in fully saturated solids, two shear waves with the same speed but different polarizations exist as do two compressional waves with distinct speeds. Attenuation effects can be enhanced in the partially saturated solid, depending on the distribution of gas in the pore space. Two models of the liquid/gas spatial distribution are considered: a segregated-fluids model and a mixed-fluids model. The two models predict comparable attentuation when the gas saturation is low, but the segregated-fluids model predicts a more rapid roll-off of attenuation as the gas saturation increases
Li, Jia; Zhang, Gencheng; Holtby, Helen; Guerguerian, Anne-Marie; Cai, Sally; Humpl, Tilman; Caldarone, Christopher A; Redington, Andrew N; Van Arsdell, Glen S
2008-01-01
Ischemic brain injury is an important morbidity in neonates after the Norwood procedure. Its relationship to systemic hemodynamic oxygen transport is poorly understood. Sixteen neonates undergoing the Norwood procedure were studied. Continuous cerebral oxygen saturation was measured by near-infrared spectroscopy. Continuous oxygen consumption was measured by respiratory mass spectrometry. Pulmonary and systemic blood flow, systemic vascular resistance, oxygen delivery, and oxygen extraction ratio were derived with measurements of arterial, and superior vena cava and pulmonary venous gases and pressures at 2- to 4-hour intervals during the first 72 hours in the intensive care unit. Mean cerebral oxygen saturation was 66% +/- 12% before the operation, reduced to 51% +/- 13% on arrival in the intensive care unit, and remained low during the first 8 hours; it increased to 56% +/- 9% at 72 hours, still significantly lower than the preoperative level (P blood flow and oxygen delivery (P blood flow (P = .001) and hemoglobin (P = .02) and negatively correlated with systemic vascular resistance (P = .003). It was not correlated with oxygen consumption (P > .05). Cerebral oxygen saturation decreased significantly in neonates during the early postoperative period after the Norwood procedure and was significantly influenced by systemic hemodynamic and metabolic events. As such, hemodynamic interventions to modify systemic oxygen transport may provide further opportunities to reduce the risk of cerebral ischemia and improve neurodevelopmental outcomes.
Mysen, B. O.
2012-12-01
Hydrogen isotope fractionation between water-saturated silicate melt and silicate-saturated aqueous fluid has been determined experimentally, in-situ with the samples in the 450-800C and 101-1567 MPa temperature and pressure range, respectively. The temperatures are, therefore higher than those where hydrogen bonding in fluids and melts is important [1]. The experiments were conducted with a hydrothermal diamond anvil cell (HDAC) as the high-temperature/-pressure tool and vibrational spectroscopy to determine D/H fractionation. Compositions were along the haploandesite join, Na2Si4O9 - Na2(NaAl)4O9 [Al/(Al+Si)=0-0.1], and a 50:50 (by volume) H2O:D2O fluid mixture as starting material. Platinum metal was used to enhance equilibration rate. Isotopic equilibrium was ascertained by using variable experimental duration at given temperature and pressure. In the Al-free Na-silicate system, the enthalpy change of the (D/H) equilibrium of fluid is 3.1±0.7 kJ/mol, whereas for coexisting melt, ΔH=0 kJ/mol within error. With Al/(Al+Si)=0.1, ΔH=5.2±0.9 kJ/mol for fluid and near 0 within error for coexisting melt melt. For the exchange equilibrium between melt and fluid, H2O(melt)+D2O(fluid)=H2O(fluid)+D2O(melt), the ΔH=4.6±0.7 and 6.5±0.7 kJ/mol for the two Al-free and Al-bearing compositions, respectively, respectively. The D/H equilibration within fluids and melts and, therefore, D/H partitioning between coexisting fluid and melt reflect the influence of dissolved H2O(D2O) in melts and dissolved silicate components in H2O(D2O) fluid on their structure. The positive temperature- and pressure-dependence of silicate solubility and on silicate structure in silicate-saturated aqueous fluid governs the D/H fractionation in the fluid because increasing silicate solute concentration in fluid results in silicate polymerization [2]. These structural effects may be analogous to observed solute-dependent oxygen isotope fractionation between brine and CO2 [3]. In the temperature
Low-cost but accurate radioactive logging for determining gas saturation in a reservior
International Nuclear Information System (INIS)
Neuman, C.H.
1976-01-01
A method is disclosed for determining gas saturation in a petroleum reservoir using logging signals indirectly related to the abundances of oxygen and carbon nuclei in the reservoir rock. The first step of the invention is to record first and second logs sensitive to the abundance of oxygen and carbon nuclei, respectively, after the region surrounding the well bore is caused to have fluid saturations representative of the bulk of the reservoir. A purposeful change is then made in the fluid saturations in the region surrounding the well bore by injecting a liquid capable of displacing substantially all of the original fluids. The logs are recorded a second time. The displacing fluid is then itself displaced by brine, and a third suite of logs is recorded. The total fluid and oil saturations are then determined from the differences between respective corresponding logs and from known fractional volume oxygen and carbon contents of the reservoir brine and oil and the first injected liquid. Gas saturation is then calculated from differences between total fluid and oil saturation values. It is not necessary that the log responses be independent of the material in the borehole, the casing, the casing cement, or the reservoir rock. It is only necessary that changes in formation fluids content cause proportional changes in log responses. 7 Claims, 4 Figures
Saturated poroelastic actuators generated by topology optimization
DEFF Research Database (Denmark)
Andreasen, Casper Schousboe; Sigmund, Ole
2011-01-01
the coupling of internal fluid pressure and elastic shear stresses a slab of the optimized porous material deflects/deforms when a pressure is imposed and an actuator is created. Several phenomenologically based constraints are imposed in order to get a stable force transmitting actuator.......In this paper the fluid-structure interaction problem of a saturated porous media is considered. The pressure coupling properties of porous saturated materials change with the microstructure and this is utilized in the design of an actuator using a topology optimized porous material. By maximizing...
Kashani, Jamal; Pettet, Graeme John; Gu, YuanTong; Zhang, Lihai; Oloyede, Adekunle
2017-10-01
Single-phase porous materials contain multiple components that intermingle up to the ultramicroscopic level. Although the structures of the porous materials have been simulated with agent-based methods, the results of the available methods continue to provide patterns of distinguishable solid and fluid agents which do not represent materials with indistinguishable phases. This paper introduces a new agent (hybrid agent) and category of rules (intra-agent rule) that can be used to create emergent structures that would more accurately represent single-phase structures and materials. The novel hybrid agent carries the characteristics of system's elements and it is capable of changing within itself, while also responding to its neighbours as they also change. As an example, the hybrid agent under one-dimensional cellular automata formalism in a two-dimensional domain is used to generate patterns that demonstrate the striking morphological and characteristic similarities with the porous saturated single-phase structures where each agent of the ;structure; carries semi-permeability property and consists of both fluid and solid in space and at all times. We conclude that the ability of the hybrid agent to change locally provides an enhanced protocol to simulate complex porous structures such as biological tissues which could facilitate models for agent-based techniques and numerical methods.
International Nuclear Information System (INIS)
Berge, P.A.; Bonner, B.P.; Roberts, J.J.; Wildenschild, D.; Aracne-Ruddle, C.M.; Berryman, J.G.; Bertete-Aguirre, H.; Boro, C.O.; Carlberg, E.D.
2000-01-01
Our goal is to improve geophysical imaging of the vadose zone. We will achieve this goal by providing new methods to improve interpretation of field data. The purpose of this EMSP project is to develop relationships between laboratory measured geophysical properties and porosity, saturation, and fluid distribution, for partially saturated soils. Algorithms for relationships between soil composition, saturation, and geophysical measurements will provide new methods to interpret geophysical field data collected in the vadose zone at sites such as Hanford, WA. This report summarizes work after 10 months of a 3-year project. We have modified a laboratory ultrasonics apparatus developed in a previous EMSP project (No.55411) so that we can make velocity measurements for partially-saturated samples rather than fully-saturated or dry samples. We are testing the measurement apparatus using standard laboratory sand samples such as Ottawa sand samples. Preliminary results indicate that we can measure both compressional and shear velocities in these sand samples. We have received Hanford soil samples (sands from split-spoon cores from an uncontaminated site) and expect to make ultrasonic measurements on them also. We have used the LLNL x-ray facility to perform x-ray computed tomography (XCT) imaging for several partially-saturated Ottawa sand and Lincoln sand samples, and have also used the DOE Advance Photon Source at Argonne National Laboratory to make higher-resolution images of some sand samples. Preliminary results indicate that we can image amount and distribution of fluids in homogeneous sand samples. Continuing work from the previous EMSP project, we are testing a new data analysis method for seismic data that is expected to improve interpretation of seismic data from the vadose zone by showing how partial saturation affects seismic parameters. Our results suggest that the planned approach for this research is appropriate, that microstructure is an important factor
Higuchi, A.; Watanabe, T.
2013-12-01
Pore-fluid pressure in seismogenic zones can play a key role in the occurrence of earthquakes (e.g., Sibson, 2009). Its evaluation via geophysical observations can lead to a good understanding of seismic activities. The evaluation requires a thorough understanding of the influence of the pore-fluid pressure on geophysical observables like seismic velocity and electrical conductivity. We have studied the influence of pore-fluid pressure on elastic wave velocity and electrical conductivity in water-saturated rocks. Fine grained (100-500μm) biotite granite (Aji, Kagawa pref., Japan) was used as rock samples. The density is 2.658-2.668 g/cm3, and the porosity 0.68-0.87%. The sample is composed of 52.8% plagioclase, 36.0% Quartz, 3.0% K-feldspar, 8.2% biotite. SEM images show that a lot of grain boundaries are open. Few intracrystalline cracks were observed. Following the method proposed by David and Zimmerman (2012), the distribution function of crack aspect ratio was evaluated from the pressure dependence of compressional and shear wave velocities in a dry sample. Cylindrical sample has dimensions of 25 mm in diameter and 30 mm in length, and saturated with 0.01 mol/l KCl aqueous solution. Compressional and shear wave velocities were measured with the pulse transmission technique (PZT transducers, f=2 MHz), and electrical conductivity the two-electrode method (Ag-AgCl electrodes, f=1 Hz-100 kHz). Simultaneous measurements of velocities and conductivity were made using a 200 MPa hydrostatic pressure vessel, in which confining and pore-fluid pressures can be separately controlled. The pore-fluid is electrically insulated from the metal work of the pressure vessel by using a newly designed plastic device (Watanabe and Higuchi, 2013). The confining pressure was progressively increased up to 25 MPa, while the pore-fluid pressure was kept at 0.1 MPa. It took five days or longer for the electrical conductivity to become stationary after increasing the confining pressure
Electrical conductivity modeling in fractal non-saturated porous media
Wei, W.; Cai, J.; Hu, X.; Han, Q.
2016-12-01
The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.
TRUST: A Computer Program for Variably Saturated Flow in Multidimensional, Deformable Media
Energy Technology Data Exchange (ETDEWEB)
Reisenauer, A. E.; Key, K. T.; Narasimhan, T. N.; Nelson, R. W.
1982-01-01
The computer code, TRUST. provides a versatile tool to solve a wide spectrum of fluid flow problems arising in variably saturated deformable porous media. The governing equations express the conservation of fluid mass in an elemental volume that has a constant volume of solid. Deformation of the skeleton may be nonelastic. Permeability and compressibility coefficients may be nonlinearly related to effective stress. Relationships between permeability and saturation with pore water pressure in the unsaturated zone may include hysteresis. The code developed by T. N. Narasimhan grew out of the original TRUNP code written by A. L. Edwards. The code uses an integrated finite difference algorithm for numerically solving the governing equation. Narching in time is performed by a mixed explicit-implicit numerical procedure in which the time step is internally controlled. The time step control and related feature in the TRUST code provide an effective control of the potential numerical instabilities that can arise in the course of solving this difficult class of nonlinear boundary value problem. This document brings together the equations, theory, and users manual for the code as well as a sample case with input and output.
A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis
Jagad, P. I.; Puranik, B. P.; Date, A. W.
2018-01-01
A unified cell-centered unstructured mesh finite volume procedure is presented for fluid flow, heat transfer and solid-body stress analysis. An in-house procedure (A. W. Date, Solution of Transport Equations on Unstructured Meshes with Cell
Li, Dongqing; Wei, Jianxin; Di, Bangrang; Ding, Pinbo; Huang, Shiqi; Shuai, Da
2018-03-01
Understanding the influence of lithology, porosity, permeability, pore structure, fluid content and fluid distribution on the elastic wave properties of porous rocks is of great significance for seismic exploration. However, unlike conventional sandstones, the petrophysical characteristics of tight sandstones are more complex and less understood. To address this problem, we measured ultrasonic velocity in partially saturated tight sandstones under different effective pressures. A new model is proposed, combining the Mavko-Jizba-Gurevich relations and the White model. The proposed model can satisfactorily simulate and explain the saturation dependence and pressure dependence of velocity in tight sandstones. Under low effective pressure, the relationship of P-wave velocity to saturation is pre-dominantly attributed to local (pore scale) fluid flow and inhomogeneous pore-fluid distribution (large scale). At higher effective pressure, local fluid flow gradually decreases, and P-wave velocity gradually shifts from uniform saturation towards patchy saturation. We also find that shear modulus is more sensitive to saturation at low effective pressures. The new model includes wetting ratio, an adjustable parameter that is closely related to the relationship between shear modulus and saturation.
Theory of wave propagation in partially saturated double-porosity rocks: a triple-layer patchy model
Sun, Weitao; Ba, Jing; Carcione, José M.
2016-04-01
Wave-induced local fluid flow is known as a key mechanism to explain the intrinsic wave dissipation in fluid-saturated rocks. Understanding the relationship between the acoustic properties of rocks and fluid patch distributions is important to interpret the observed seismic wave phenomena. A triple-layer patchy (TLP) model is proposed to describe the P-wave dissipation process in a double-porosity media saturated with two immiscible fluids. The double-porosity rock consists of a solid matrix with unique host porosity and inclusions which contain the second type of pores. Two immiscible fluids are considered in concentric spherical patches, where the inner pocket and the outer sphere are saturated with different fluids. The kinetic and dissipation energy functions of local fluid flow (LFF) in the inner pocket are formulated through oscillations in spherical coordinates. The wave propagation equations of the TLP model are based on Biot's theory and the corresponding Lagrangian equations. The P-wave dispersion and attenuation caused by the Biot friction mechanism and the local fluid flow (related to the pore structure and the fluid distribution) are obtained by a plane-wave analysis from the Christoffel equations. Numerical examples and laboratory measurements indicate that P-wave dispersion and attenuation are significantly influenced by the spatial distributions of both, the solid heterogeneity and the fluid saturation distribution. The TLP model is in reasonably good agreement with White's and Johnson's models. However, differences in phase velocity suggest that the heterogeneities associated with double-porosity and dual-fluid distribution should be taken into account when describing the P-wave dispersion and attenuation in partially saturated rocks.
Chaotic Darcy-Brinkman convection in a fluid saturated porous layer subjected to gravity modulation
Directory of Open Access Journals (Sweden)
Moli Zhao
2018-06-01
Full Text Available On the basis of Darcy-Brinkman model, the chaotic convection in a couple stress fluid saturated porous media under gravity modulation is investigated using the nonlinear stability analyses. The transition from steady convection to chaos is analysed with the effect of Darcy-Brinkman couple stress parameter and the gravity modulation. The results show that the chaotic behavior is connected with the critical value of Rayleigh number which is dependent upon the oscillation frequency and the Darcy-Brinkman couple stress parameter. If the oscillation frequency Ω is not zero, the Rayleigh number value R of the chaotic behavior increases with the increase of the Darcy-Brinkman couple stress parameter. The Darcy-Brinkman couple stress parameter and the gravity modulation decrease the rate of heat transfer. Keywords: Darcy-Brinkman model, Gravity modulation, Nonlinear stability, Chaotic convection
Directory of Open Access Journals (Sweden)
G Rana
2016-09-01
Full Text Available In this paper, the effect of suspended particles on thermal convection in Couple-Stress fluid saturating a porous medium is considered. By applying linear stability theory and normal mode analysis method, a mathematical theorem is derived which states that the viscoelastic thermal convection at marginal state, cannot manifest as stationary convection if the thermal Rayleigh number R, the medium permeability parameter Pl, the couple-stress parameter F and suspended particles parameter B, satisfy the inequality
Quantitative 1D saturation profiles on chalk by NMR
DEFF Research Database (Denmark)
Olsen, Dan; Topp, Simon; Stensgaard, Anders
1996-01-01
Quantitative one-dimensional saturation profiles showing the distribution of water and oil in chalk core samples are calculated from NMR measurements utilizing a 1D CSI spectroscopy pulse sequence. Saturation profiles may be acquired under conditions of fluid flow through the sample. Results reveal...
Automatic NAA. Saturation activities
International Nuclear Information System (INIS)
Westphal, G.P.; Grass, F.; Kuhnert, M.
2008-01-01
A system for Automatic NAA is based on a list of specific saturation activities determined for one irradiation position at a given neutron flux and a single detector geometry. Originally compiled from measurements of standard reference materials, the list may be extended also by the calculation of saturation activities from k 0 and Q 0 factors, and f and α values of the irradiation position. A systematic improvement of the SRM approach is currently being performed by pseudo-cyclic activation analysis, to reduce counting errors. From these measurements, the list of saturation activities is recalculated in an automatic procedure. (author)
International Nuclear Information System (INIS)
Wang, J.S.Y.; Narasimhan, T.N.
1993-06-01
This report discusses conceptual models and mathematical equations, analyzes distributions and correlations among hydrological parameters of soils and tuff, introduces new path integration approaches, and outlines scaling procedures to model potential-driven fluid flow in heterogeneous media. To properly model the transition from fracture-dominated flow under saturated conditions to matrix-dominated flow under partially saturated conditions, characteristic curves and permeability functions for fractures and matrix need to be improved and validated. Couplings from two-phase flow, heat transfer, solute transport, and rock deformation to liquid flow are also important. For stochastic modeling of alternating units of welded and nonwelded tuff or formations bounded by fault zones, correlations and constraints on average values of saturated permeability and air entry scaling factor between different units need to be imposed to avoid unlikely combinations of parameters and predictions. Large-scale simulations require efficient and verifiable numerical algorithms. New path integration approaches based on postulates of minimum work and mass conservation to solve flow geometry and potential distribution simultaneously are introduced. This verifiable integral approach, together with fractal scaling procedures to generate statistical realizations with parameter distribution, correlation, and scaling taken into account, can be used to quantify uncertainties and generate the cumulative distribution function for groundwater travel times
A new through-tubing oil-saturation measurement system
International Nuclear Information System (INIS)
Roscoe, B.A.; Adolph, R.A.; Bontemy, Y.; Cheeseborough, J.C. III; Hall, J.S.; McKeon, D.C.; Pittman, D.; Seeman, B.; Thomas, S.R. Jr.
1991-01-01
This paper reports on carbon-oxygen logging which is used primarily to estimate oil saturation in cased-hole conditions when the formation water is fresh or unknown. The drawbacks of current techniques are: slow logging speed, large tool diameter, and excessive sensitivity to borehole fluid composition. A new, slim, neutron-induced gamma ray spectroscopy logging system has been developed to overcome some of these limitations. The new logging service is called the Reservoir Saturation (RST) Tool. Initial field tests are being carried out in the Middle East. The RST tool uses multiple detectors to separate the signal contributions from the borehole and the formation. Therefore, even when the borehole fluid composition is unknown, oil saturation can be determined in addition to the borehole oil fraction. This presents the possibility of logging flowing wells, which ensures that reinvasion and crossflow will not affect the results, and eliminates the costs of well preparation
Shear dilatancy and acoustic emission in dry and saturated granular materials
Brodsky, E. E.; Siman-Tov, S.
2017-12-01
Shearing of granular materials plays a strong role in naturally sheared systems as landslides and faults. Many works on granular flows have concentrated on dry materials, but relatively little work has been done on water saturated sands. Here we experimentally investigate dry versus saturated quartz-rich sand to understand the effect of the fluid medium on the rheology and acoustic waves emission of the sheared sand. The sand was sheared in a rotary shear rheometer under applied constant normal stress boundary at low (100 µm/s) to high (1 m/s) velocities. Mechanical, acoustic data and deformation were continuously recorded and imaged. For dry and water saturated experiments the granular volume remains constant for low shear velocities ( 10-3 m/s) and increases during shearing at higher velocities ( 1 m/s). Continuous imaging of the sheared sand show that the steady state shear band thickness is thicker during the high velocity steps. No significant change observed in the shear band thickness between dry and water saturated experiments. In contrast, the amount of dilation during water saturated experiments is about half the value measured for dry material. The measured decrease cannot be explained by shear band thickness change as such is not exist. However, the reduced dilation is supported by our acoustic measurements. In general, the event rate and acoustic event amplitudes increase with shear velocity. While isolated events are clearly detected during low velocities at higher the events overlap, resulting in a noisy signal. Although detection is better for saturated experiments, during the high velocity steps the acoustic energy measured from the signal is lower compared to that recorded for dry experiments. We suggest that the presence of fluid suppresses grain motion and particles impacts leading to mild increase in the internal pressure and therefore for the reduced dilation. In addition, the viscosity of fluids may influence the internal pressure via
Tiraboschi, Carla; Tumiati, Simone; Sverjensky, Dimitri; Pettke, Thomas; Ulmer, Peter; Poli, Stefano
2018-01-01
We experimentally investigated the dissolution of forsterite, enstatite and magnesite in graphite-saturated COH fluids, synthesized using a rocking piston cylinder apparatus at pressures from 1.0 to 2.1 GPa and temperatures from 700 to 1200 °C. Synthetic forsterite, enstatite, and nearly pure natural magnesite were used as starting materials. Redox conditions were buffered by Ni-NiO-H2O (ΔFMQ = - 0.21 to - 1.01), employing a double-capsule setting. Fluids, binary H2O-CO2 mixtures at the P, T, and fO2 conditions investigated, were generated from graphite, oxalic acid anhydrous (H2C2O4) and water. Their dissolved solute loads were analyzed through an improved version of the cryogenic technique, which takes into account the complexities associated with the presence of CO2-bearing fluids. The experimental data show that forsterite + enstatite solubility in H2O-CO2 fluids is higher compared to pure water, both in terms of dissolved silica ( mSiO2 = 1.24 mol/kgH2O versus mSiO2 = 0.22 mol/kgH2O at P = 1 GPa, T = 800 °C) and magnesia ( mMgO = 1.08 mol/kgH2O versus mMgO = 0.28 mol/kgH2O) probably due to the formation of organic C-Mg-Si complexes. Our experimental results show that at low temperature conditions, a graphite-saturated H2O-CO2 fluid interacting with a simplified model mantle composition, characterized by low MgO/SiO2 ratios, would lead to the formation of significant amounts of enstatite if solute concentrations are equal, while at higher temperatures these fluid, characterized by MgO/SiO2 ratios comparable with that of olivine, would be less effective in metasomatizing the surrounding rocks. However, the molality of COH fluids increases with pressure and temperature, and quintuplicates with respect to the carbon-free aqueous fluids. Therefore, the amount of fluid required to metasomatize the mantle decreases in the presence of carbon at high P- T conditions. COH fluids are thus effective carriers of C, Mg and Si in the mantle wedge up to the shallowest
Effective constants for wave propagation through partially saturated porous media
International Nuclear Information System (INIS)
Berryman, J.G.; Thigpen, L.
1985-01-01
The multipole scattering coefficients for elastic wave scattering from a spherical inhomogeneity in a fluid-saturated porous medium have been calculated. These coefficients may be used to obtain estimates of the effective macroscopic constants for long-wavelength propagation of elastic waves through partially saturated media. If the volume average of the single scattering from spherical bubbles of gas and liquid is required to vanish, the resulting equations determine the effective bulk modulus, density, and viscosity of the multiphase fluid filling the pores. The formula for the effective viscosity during compressional wave excitation is apparently new
DEFF Research Database (Denmark)
Sørensen, Morten Kanne; Fabricius, Ida Lykke
2017-01-01
The elastic bulk modulus of a sandstone is affected by the fluid saturation as compression induces a pressure in the fluid thus increasing the bulk modulus of the sandstone as a whole. Assuming a uniform induced pressure and no interaction between the saturating fluid and the solid rock the fluid...... contribution to the elastic bulk modulus is quantified by Gassmann's equations. Experimental measurements of the fluid contribution to the elastic moduli are, however often much larger than predicted within the assumptions of Gassmann. Clay-rich low-mobility sandstones are especially prone to having elastic...... moduli highly sensitive to the fluid saturation. The presence of clay in a sandstone can affect two of the underlying assumptions to Gassmann's equations: decreased fluid mobility can cause pressure gradients and fluid-clay interactions are common. The elastic and petrophysical properties of clay...
Micromechanics of non-active clays in saturated state and DEM modelling
Directory of Open Access Journals (Sweden)
Pagano Arianna Gea
2017-01-01
Full Text Available The paper presents a conceptual micromechanical model for 1-D compression behaviour of non-active clays in saturated state. An experimental investigation was carried out on kaolin clay samples saturated with fluids of different pH and dielectric permittivity. The effect of pore fluid characteristics on one-dimensional compressibility behaviour of kaolin was investigated. A three dimensional Discrete Element Method (DEM was implemented in order to simulate the response of saturated kaolin observed during the experiments. A complex contact model was introduced, considering both the mechanical and physico-chemical microscopic interactions between clay particles. A simple analysis with spherical particles only was performed as a preliminary step in the DEM study in the elastic regime.
Tumiati, S.; Tiraboschi, C.; Recchia, S.; Poli, S.
2014-12-01
The quantitative assessment of species in COH fluids is crucial in modelling mantle processes. For instance, H2O/CO2 ratio in the fluid phase influences the location of the solidus and of carbonation/decarbonation reactions in peridotitic systems . In the scientific literature, the speciation of COH fluids has been generally assumed on the basis of thermodynamic calculations using equations of state of simple H2O-non-polar gas systems (e.g., H2O-CO2-CH4). Only few authors dealt with the experimental determination of high-pressure COH fluid species at different conditions, using diverse experimental and analytical approaches (e.g., piston cylinder+capsule-piercing+gas-chromatography/mass-spectrometry; cold-seal+silica glass capsules+Raman). We performed experiments on COH fluids using a capsule-piercing device coupled with a quadrupole mass spectrometry. This type of analyzer ensures superior performances in terms of selectivity of molecules to be detected, high acquisition rates and extended linear response range. Experiments were carried out in a rocking piston cylinder apparatus at pressure of 1 GPa and temperatures from 800 to 900°C. Carbon-saturated fluids were generated through the addition of oxalic acid dihydrate and graphite. Single/double capsules and different packing materials (BN and MgO) were used to evaluate the divergence from the thermodynamic speciation model. Moreover, to assess the effect of solutes on COH fluid speciation we also performed a set of experiments adding synthetic forsterite to the charge. To determine the speciation we assembled a capsule-piercing device that allows to puncture the capsule in a gas-tight vessel at 80°C. The extraction Teflon vessel is composed of a base part, where the capsule is allocated on a steel support, and a top part where a steel drill is mounted. To release the quenched fluids from the capsule, the base part of vessel is hand-tighten to the top part, allowing the steel pointer to pierce the capsule. The
Numerical Study of Frequency-dependent Seismoelectric Coupling in Partially-saturated Porous Media
Directory of Open Access Journals (Sweden)
Djuraev Ulugbek
2017-01-01
Full Text Available The seismoelectric phenomenon associated with propagation of seismic waves in fluid-saturated porous media has been studied for many decades. The method has a great potential to monitor subsurface fluid saturation changes associated with production of hydrocarbons. Frequency of the seismic source has a significant impact on measurement of the seismoelectric effects. In this paper, the effects of seismic wave frequency and water saturation on the seismoelectric response of a partially-saturated porous media is studied numerically. The conversion of seismic wave to electromagnetic wave was modelled by extending the theoretically developed seismoelectric coupling coefficient equation. We assumed constant values of pore radius and zeta-potential of 80 micrometers and 48 microvolts, respectively. Our calculations of the coupling coefficient were conducted at various water saturation values in the frequency range of 10 kHz to 150 kHz. The results show that the seismoelectric coupling is frequency-dependent and decreases exponentially when frequency increases. Similar trend is seen when water saturation is varied at different frequencies. However, when water saturation is less than about 0.6, the effect of frequency is significant. On the other hand, when the water saturation is greater than 0.6, the coupling coefficient shows monotonous trend when water saturation is increased at constant frequency.
Akcan, Esma; Polat, Sevinç
2016-06-17
The aim of this randomized controlled experimental study was to evaluate the effect of the smells of amniotic fluid, breast milk, and lavender on the pain of newborns during heel lance. The sample of the study consisted of 102 newborn infants who complied with the sampling criteria between August and November, 2011. The newborns smelled the samples (lavender, breast milk, amniotic fluid, and distilled water) for 5 minutes before the heel lance until 5 minutes afterward. The Neonatal Infant Pain Scale (NIPS), heart rate, and oxygen saturation were evaluated 1 minute before, during, and 1 minute after the heel lance. Data were evaluated by descriptive statistics, chi-square, intraclass correlation analysis, Spearman's rho correlation, Bonferroni's advanced analysis, Shapiro-Wilk, Kruskal-Wallis, Mann-Whitney U, Friedman, and Dunnett's tests. The newborns in the control group had severe pain and the newborns in the breast milk, amniotic fluid, and lavender groups had moderate pain during the heel lance (p lance, it was lower in the breast milk and amniotic fluid groups than the lavender group afterward. The lowest falls in oxygen saturation and increased in heart rate were in the breast milk and lavender groups during heel the lance. The smells of lavender and breast milk prevent the increased heart rates, NIPS, falling oxygen saturation, and reduced pain during the invasive procedures in newborns more than amniotic fluid or control group.
Zhao, Luanxiao; Yuan, Hemin; Yang, Jingkang; Han, De-hua; Geng, Jianhua; Zhou, Rui; Li, Hui; Yao, Qiuliang
2017-11-01
Conventional seismic analysis in partially saturated rocks normally lays emphasis on estimating pore fluid content and saturation, typically ignoring the effect of mobility, which decides the ability of fluids moving in the porous rocks. Deformation resulting from a seismic wave in heterogeneous partially saturated media can cause pore fluid pressure relaxation at mesoscopic scale, thereby making the fluid mobility inherently associated with poroelastic reflectivity. For two typical gas-brine reservoir models, with the given rock and fluid properties, the numerical analysis suggests that variations of patchy fluid saturation, fluid compressibility contrast, and acoustic stiffness of rock frame collectively affect the seismic reflection dependence on mobility. In particular, the realistic compressibility contrast of fluid patches in shallow and deep reservoir environments plays an important role in determining the reflection sensitivity to mobility. We also use a time-lapse seismic data set from a Steam-Assisted Gravity Drainage producing heavy oil reservoir to demonstrate that mobility change coupled with patchy saturation possibly leads to seismic spectral energy shifting from the baseline to monitor line. Our workflow starts from performing seismic spectral analysis on the targeted reflectivity interface. Then, on the basis of mesoscopic fluid pressure diffusion between patches of steam and heavy oil, poroelastic reflectivity modeling is conducted to understand the shift of the central frequency toward low frequencies after the steam injection. The presented results open the possibility of monitoring mobility change of a partially saturated geological formation from dissipation-related seismic attributes.
Khechiba, Khaled; Mamou, Mahmoud; Hachemi, Madjid; Delenda, Nassim; Rebhi, Redha
2017-06-01
The present study is focused on Lapwood convection in isotropic porous media saturated with non-Newtonian shear thinning fluid. The non-Newtonian rheological behavior of the fluid is modeled using the general viscosity model of Carreau-Yasuda. The convection configuration consists of a shallow porous cavity with a finite aspect ratio and subject to a vertical constant heat flux, whereas the vertical walls are maintained impermeable and adiabatic. An approximate analytical solution is developed on the basis of the parallel flow assumption, and numerical solutions are obtained by solving the full governing equations. The Darcy model with the Boussinesq approximation and energy transport equations are solved numerically using a finite difference method. The results are obtained in terms of the Nusselt number and the flow fields as functions of the governing parameters. A good agreement is obtained between the analytical approximation and the numerical solution of the full governing equations. The effects of the rheological parameters of the Carreau-Yasuda fluid and Rayleigh number on the onset of subcritical convection thresholds are demonstrated. Regardless of the aspect ratio of the enclosure and thermal boundary condition type, the subcritical convective flows are seen to occur below the onset of stationary convection. Correlations are proposed to estimate the subcritical Rayleigh number for the onset of finite amplitude convection as a function of the fluid rheological parameters. Linear stability of the convective motion, predicted by the parallel flow approximation, is studied, and the onset of Hopf bifurcation, from steady convective flow to oscillatory behavior, is found to depend strongly on the rheological parameters. In general, Hopf bifurcation is triggered earlier as the fluid becomes more and more shear-thinning.
Double-diffusive convection in a Darcy porous medium saturated with a couple-stress fluid
International Nuclear Information System (INIS)
Malashetty, M S; Kollur, Premila; Pal, Dulal
2010-01-01
The onset of double-diffusive convection in a couple-stress fluid-saturated horizontal porous layer is studied using linear and weak nonlinear stability analyses. The modified Darcy equation that includes the time derivative term and the inertia term is used to model the momentum equation. The expressions for stationary, oscillatory and finite-amplitude Rayleigh number are obtained as a function of the governing parameters. The effect of couple-stress parameter, solute Rayleigh number, Vadasz number and diffusivity ratio on stationary, oscillatory and finite-amplitude convection is shown graphically. It is found that the couple-stress parameter and the solute Rayleigh number have a stabilizing effect on stationary, oscillatory and finite-amplitude convection. The diffusivity ratio has a destabilizing effect in the case of stationary and finite-amplitude modes, with a dual effect in the case of oscillatory convection. The Vadasz number advances the onset of oscillatory convection. The heat and mass transfer decreases with an increase in the values of couple-stress parameter and diffusivity ratio, while both increase with an increase in the value of the solute Rayleigh number.
Fully implicit, coupled procedures in computational fluid dynamics an engineer's resource book
Mazhar, Zeka
2016-01-01
This book introduces a new generation of superfast algorithms for the treatment of the notoriously difficult velocity-pressure coupling problem in incompressible fluid flow solutions. It provides all the necessary details for the understanding and implementation of the procedures. The derivation and construction of the fully-implicit, block-coupled, incomplete decomposition mechanism are given in a systematic, but easy fashion. Worked-out solutions are included, with comparisons and discussions. A complete program code is included for faster implementation of the algorithm. A brief literature review of the development of the classical solution procedures is included as well. .
Evaluation of the Seismic Characterision of Select Engineered Nanoparticles in Saturated Glass Beads
A laboratory testing apparatus was developed for the study of seismic body wave propagation through nanoparticles dispersed in pore fluid that is essentially saturating glass beads. First, the responses of water-saturated glass bead specimens were studied to establish baseline si...
El-Amin, Mohamed
2012-06-02
The problem of thermal dispersion effects on unsteady free convection from an isothermal horizontal circular cylinder to a non-Newtonian fluid saturating a porous medium is examined numerically. The Darcy-Brinkman-Forchheimer model is employed to describe the flow field. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The simultaneous development of the momentum and thermal boundary layers are obtained by using finite difference method. The stability conditions are determined for each difference equation. Using an explicit finite difference scheme, solutions at each time-step have been found and then stepped forward in time until reaching steady state solution. Velocity and temperature profiles are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach the steady state values.
El-Amin, Mohamed; Salama, Amgad; Sun, Shuyu
2012-01-01
The problem of thermal dispersion effects on unsteady free convection from an isothermal horizontal circular cylinder to a non-Newtonian fluid saturating a porous medium is examined numerically. The Darcy-Brinkman-Forchheimer model is employed to describe the flow field. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The simultaneous development of the momentum and thermal boundary layers are obtained by using finite difference method. The stability conditions are determined for each difference equation. Using an explicit finite difference scheme, solutions at each time-step have been found and then stepped forward in time until reaching steady state solution. Velocity and temperature profiles are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach the steady state values.
Recipe for residual oil saturation determination
Energy Technology Data Exchange (ETDEWEB)
Guillory, A.J.; Kidwell, C.M.
1979-01-01
In 1978, Shell Oil Co., in conjunction with the US Department of Energy, conducted a residual oil saturation study in a deep, hot high-pressured Gulf Coast Reservoir. The work was conducted prior to initiation of CO/sub 2/ tertiary recovery pilot. Many problems had to be resolved prior to and during the residual oil saturation determination. The problems confronted are outlined such that the procedure can be used much like a cookbook in designing future studies in similar reservoirs. Primary discussion centers around planning and results of a log-inject-log operation used as a prime method to determine the residual oil saturation. Several independent methods were used to calculate the residual oil saturation in the subject well in an interval between 12,910 ft (3935 m) and 12,020 ft (3938 m). In general, these numbers were in good agreement and indicated a residual oil saturation between 22% and 24%. 10 references.
Amirov, Elnur
2016-04-01
Sperry-Sun (Sperry Drilling Services) is the leader in MWD/LWD reliability, has developed the industry's first LWD NMR/MRIL-WD (nuclear magnetic resonance) tool. The MRIL-WD (magnetic resonance imaging logging-while-drilling) service directly measures the T1 component of hydrogen in subsurface rock units while drilling to obtain total reservoir porosity and to dissect the observed total porosity into its respective components of free fluid and bound fluid porosity. These T1 data are used to secure accurate total, free-fluid, capillary-bound water, and clay-bound water porosity of the reservoir sections which can be drilled in the several Runs. Over the last decade, results from Magnetic Resonance Imaging logs (NMR) have added significant value to petrophysical analysis and understanding by providing total, free-fluid and bound-fluid porosities, combined with fluid typing capabilities. With MRIL-WD very valuable Real-Time or Recorded Memory data/information is now available during or shortly after the drilling operation (formation properties measurement can be taken right after a drill bit penetration), while trip in and trip out as well. A key point in utilizing MRIL in an LWD environment is motion-tolerant measurements. Recent MRIL-WD logging runs from the Shah Deniz wells located in the Khazarian-Caspian Sea of the Azerbaijan Republic helped to delineate and assess hydrocarbon bearing zones. Acquired results demonstrate how MRIL data can be acquired while-drilling and provide reliable/high quality measurements. Magnetic Resonance Imaging logs at some developments wells have become a cornerstone in formation evaluation and petrophysical understanding. By providing total, free-fluid, and bound-fluid porosities together with fluid typing, MRIL results have significantly added to the assessment of reservoirs. In order to reduce NPT (Non-Productive Time) and save the rig operations time, there is always the desire to obtain logging results as soon as possible
Saturated hydraulic conductivity values of some forest soils of ...
African Journals Online (AJOL)
A simple falling-head method is presented for the laboratory determination of saturated hydraulic conductivity of some forest soils of Ghana. Using the procedure, it was found that saturated hydraulic conductivity was positively and negatively correlated with sand content and clay content, respectively, both at P = 0.05 level.
A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis
Jagad, P. I.
2018-04-12
A unified cell-centered unstructured mesh finite volume procedure is presented for fluid flow, heat transfer and solid-body stress analysis. An in-house procedure (A. W. Date, Solution of Transport Equations on Unstructured Meshes with Cell-Centered Colocated Variables. Part I: Discretization, International Journal of Heat and Mass Transfer, vol. 48 (6), 1117-1127, 2005) is extended to include the solid-body stress analysis. The transport terms for a cell-face are evaluated in a structured grid-like manner. The Cartesian gradients at the center of each cell-face are evaluated using the coordinate transformation relations. The accuracy of the procedure is demonstrated by solving several benchmark problems involving different boundary conditions, source terms, and types of loading.
Mud-filtrate correction of sonic logs by fluid substitution
DEFF Research Database (Denmark)
Sørensen, Morten Kanne
structures. Making reliable discoveries in challenging conditions requires an increasing level of detail in seismic interpretation. Advanced seismic processing as Amplitude-Versus-Offset (AVO) analysis, have become commonplace in seismic interpretation. These techniques involves comparison with synthetic...... of wetting phase saturation, and the clay content. When the water saturation is at the irreducible water saturation or higher only the effect of clay on the elastic velocities have a differential effect on the elastic velocities. Mixed saturations are fluid substituted using effective fluid moduli formulated...... as a set of bounds by Mavko and Mukerji (1998). Ultrasonic velocity data from the literature shows that these bounds applies most accurately to sandstones with a simple pore-space, as reflected in a high permeability and low clay fraction....
Directory of Open Access Journals (Sweden)
Mahmood H. Ali
2015-02-01
Full Text Available A numerical study of non-Darcian natural convection heat transfer in a rectangular enclosure filled with porous medium saturated with viscous fluid was carried out. The effects of medium Rayleigh number, porosity, particle to fluid thermal conductivity ratio, Darcy number and enclosure aspect ratio on heat transfer were examined to demonstrate the ability of using this construction in thermal insulation of buildings walls.A modified Brinkman-Forchheimer-extended Darcy flow model was used and no-slip boundary conditions were imposed for velocity at the walls and the governing equations were expressed in dimensionless stream function, vorticity, and temperature formulation. The resulting algebraic equations obtained from finite difference discritization of vorticity and temperature equations are solved using (ADI method which uses Three Diagonal Matrix Algorithm (TDMA in each direction, while that of the stream function equation solved using successive iteration method.The study was done for the range of enclosure aspect ratio ( which is in the tall layers region at medium Rayleigh number ( , Darcy number (Da=10-3, 10-4, 10-5 , porosity (e=0.35, 0.45, 0.55, particle to fluid thermal conductivity (kS/kf=5.77, 38.5, 1385.5.The results showed that the Nusselt number is direct proportional to medium Rayleigh number and porosity and reversely proportional to Darcy number, ratio of particle to fluid thermal conductivity and enclosure aspect ratio. The variables that affect the heat transfer in the above arrangement was correlated in a mathematical equation that account better for their affects on heat transfer which is represented by mean Nusselt number (Nu.
Simulation of uncompressible fluid flow through a porous media
International Nuclear Information System (INIS)
Ramirez, A.; Gonzalez, J.L.; Carrillo, F.; Lopez, S.
2009-01-01
Recently, a great interest has been focused for investigations about transport phenomena in disordered systems. One of the most treated topics is fluid flow through anisotropic materials due to the importance in many industrial processes like fluid flow in filters, membranes, walls, oil reservoirs, etc. In this work is described the formulation of a 2D mathematical model to simulate the fluid flow behavior through a porous media (PM) based on the solution of the continuity equation as a function of the Darcy's law for a percolation system; which was reproduced using computational techniques reproduced using a random distribution of the porous media properties (porosity, permeability and saturation). The model displays the filling of a partially saturated porous media with a new injected fluid showing the non-defined advance front and dispersion of fluids phenomena.
Saturation of drift instabilities by ExB advection of resonant electrons
International Nuclear Information System (INIS)
Dimits, A.M.
1990-01-01
Saturation of the collisionless and weakly collisional drift instabilities by nonlinear ExB advection of resonant electrons is considered. The nonlinear ExB advection of the resonant electrons around the O points and X points of the potential shuts off the linear phase shift between the electron density and the potential, and hence the linear growth, and produces residual oscillations at the ExB-trapping frequency. Two analytical solutions of a three-mode model of Lee et al. [Phys. Fluids 27, 2652 (1984)], which describes the saturation of drift waves by this mechanism, are found. The first is an exact solution in the form of a steadily propagating wave of constant amplitude, and is relevant when electron pitch-angle scattering is present. The second is an approximate time-dependent analytical solution, obtained using the method of O'Neil [Phys. Fluids 8, 2255 (1965)], and is relevant to the collisionless case. The predictions that follow from this solution for the saturation level and for the amplitude oscillation frequency are in excellent agreement with the direct numerical solutions of the three-mode system
CT-scan-monitored electrical-resistivity measurements show problems achieving homogeneous saturation
International Nuclear Information System (INIS)
Sprunt, E.S.; Davis, R.M.; Muegge, E.L.; Desai, K.P.
1991-01-01
This paper reports on x-ray computerized tomography (CT) scans obtained during measurement of the electrical resistivity of core samples which revealed some problems in obtaining uniform saturation along the lengths of the samples. The electrical resistivity of core samples is measured as a function of water saturation to determine the saturation exponent used in electric-log interpretation. An assumption in such tests is that the water saturation is uniformly distributed. Failure of this assumption can result in errors in the determination of the saturation exponent. Three problems were identified in obtaining homogeneous water saturation in two samples of a Middle Eastern carbonate grainstone: a stationary front formed in one sample at 1-psi oil/brine capillary pressure, a moving front formed at oil/brine capillary pressure ≤4 psi in samples tested in fresh mixed-wettability and cleaned water-wet states, and the heterogeneous fluid distribution caused by a rapidly moving front did not dissipate when the capillary pressure was eliminated in the samples
Finite element procedures for coupled linear analysis of heat transfer, fluid and solid mechanics
Sutjahjo, Edhi; Chamis, Christos C.
1993-01-01
Coupled finite element formulations for fluid mechanics, heat transfer, and solid mechanics are derived from the conservation laws for energy, mass, and momentum. To model the physics of interactions among the participating disciplines, the linearized equations are coupled by combining domain and boundary coupling procedures. Iterative numerical solution strategy is presented to solve the equations, with the partitioning of temporal discretization implemented.
El-Amin, Mohamed
2011-05-14
In this paper, a finite difference scheme is developed to solve the unsteady problem of combined heat and mass transfer from an isothermal curved surface to a porous medium saturated by a non-Newtonian fluid. The curved surface is kept at constant temperature and the power-law model is used to model the non-Newtonian fluid. The explicit finite difference method is used to solve simultaneously the equations of momentum, energy and concentration. The consistency of the explicit scheme is examined and the stability conditions are determined for each equation. Boundary layer and Boussinesq approximations have been incorporated. Numerical calculations are carried out for the various parameters entering into the problem. Velocity, temperature and concentration profiles are shown graphically. It is found that as time approaches infinity, the values of wall shear, heat transfer coefficient and concentration gradient at the wall, which are entered in tables, approach the steady state values.
Simulation of uncompressible fluid flow through a porous media
Energy Technology Data Exchange (ETDEWEB)
Ramirez, A. [Instituto Politecnico Nacional (SEPI-ESIQIE-IPN), Unidad Profesional Zacatenco, Laboratorio de Analisis Met. (Edif. ' Z' y Edif. ' 6' P.B.), Mexico City (Mexico)], E-mail: adaramil@yahoo.com.mx; Gonzalez, J.L. [Instituto Politecnico Nacional (SEPI-ESIQIE-IPN), Unidad Profesional Zacatenco, Laboratorio de Analisis Met. (Edif. ' Z' y Edif. ' 6' P.B.), Mexico City (Mexico); Carrillo, F. [Instituto Politecnico Nacional (SEPI-CICATA-IPN), Unidad Altamira Tamaulipas, Mexico (Mexico); Lopez, S. [Instituto Mexicano del Petroleo (I.M.P.-D.F.), Mexico (Mexico)
2009-02-28
Recently, a great interest has been focused for investigations about transport phenomena in disordered systems. One of the most treated topics is fluid flow through anisotropic materials due to the importance in many industrial processes like fluid flow in filters, membranes, walls, oil reservoirs, etc. In this work is described the formulation of a 2D mathematical model to simulate the fluid flow behavior through a porous media (PM) based on the solution of the continuity equation as a function of the Darcy's law for a percolation system; which was reproduced using computational techniques reproduced using a random distribution of the porous media properties (porosity, permeability and saturation). The model displays the filling of a partially saturated porous media with a new injected fluid showing the non-defined advance front and dispersion of fluids phenomena.
Intraoperative Fluids and Fluid Management for Ambulatory Dental Sedation and General Anesthesia.
Saraghi, Mana
2015-01-01
Intravenous fluids are administered in virtually every parenteral sedation and general anesthetic. The purpose of this article is to review the physiology of body-water distribution and fluid dynamics at the vascular endothelium, evaluation of fluid status, calculation of fluid requirements, and the clinical rationale for the use of various crystalloid and colloid solutions. In the setting of elective dental outpatient procedures with minor blood loss, isotonic balanced crystalloid solutions are the fluids of choice. Colloids, on the other hand, have no use in outpatient sedation or general anesthesia for dental or minor oral surgery procedures but may have several desirable properties in long and invasive maxillofacial surgical procedures where advanced hemodynamic monitoring may assess the adequacy of intravascular volume.
Bhadauria, B. S.; Singh, M. K.; Singh, A.; Singh, B. K.; Kiran, P.
2016-12-01
In this paper, we investigate the combined effect of internal heating and time periodic gravity modulation in a viscoelastic fluid saturated porous medium by reducing the problem into a complex non-autonomous Ginzgburg-Landau equation. Weak nonlinear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number is obtained in terms of the amplitude for oscillatory mode of convection. The influence of viscoelastic parameters on heat transfer has been discussed. Gravity modulation is found to have a destabilizing effect at low frequencies and a stabilizing effect at high frequencies. Finally, it is found that overstability advances the onset of convection, more with internal heating. The conditions for which the complex Ginzgburg-Landau equation undergoes Hopf bifurcation and the amplitude equation undergoes supercritical pitchfork bifurcation are studied.
Relationships between fluid pressure and capillary pressure in ...
African Journals Online (AJOL)
In this work, the Bower's and Gardner's technique of velocity-to fluid pressure gradient methods were applied on seismic reflection data in order to predict fluid pressure of an X- oil field in Niger Delta Basin. Results show significant deflection common with fluid pressure zones . With average connate water saturation Swc ...
Seismoelectric couplings in a poroelastic material containing two immiscible fluid phases
Jardani, A.; Revil, A.
2015-08-01
A new approach of seismoelectric imaging has been recently proposed to detect saturation fronts in which seismic waves are focused in the subsurface to scan its heterogeneous nature and determine saturation fronts. Such type of imaging requires however a complete modelling of the seismoelectric properties of porous media saturated by two immiscible fluid phases, one being usually electrically insulating (for instance water and oil). We combine an extension of Biot dynamic theory, valid for porous media containing two immiscible Newtonian fluids, with an extension of the electrokinetic theory based on the notion of effective volumetric charge densities dragged by the flow of each fluid phase. These effective charge densities can be related directly to the permeability and saturation of each fluid phase. The coupled partial differential equations are solved with the finite element method. We also derive analytically the transfer function connecting the macroscopic electrical field to the acceleration of the fast P wave (coseismic electrical field) and we study the influence of the water content on this coupling. We observe that the amplitude of the co-seismic electrical disturbance is very sensitive to the water content with an increase in amplitude with water saturation. We also investigate the seismoelectric conversions (interface effect) occurring at the water table. We show that the conversion response at the water table can be identifiable only when the saturation contrasts between the vadose and saturated zones are sharp enough. A relatively dry vadose zone represents the best condition to identify the water table through seismoelectric measurements. Indeed, in this case, the coseismic electrical disturbances are vanishingly small compared to the seismoelectric interface response.
Benchmarking variable-density flow in saturated and unsaturated porous media
Guevara Morel, Carlos Roberto; Cremer, Clemens; Graf, Thomas
2015-04-01
In natural environments, fluid density and viscosity can be affected by spatial and temporal variations of solute concentration and/or temperature. These variations can occur, for example, due to salt water intrusion in coastal aquifers, leachate infiltration from waste disposal sites and upconing of saline water from deep aquifers. As a consequence, potentially unstable situations may exist in which a dense fluid overlies a less dense fluid. This situation can produce instabilities that manifest as dense plume fingers that move vertically downwards counterbalanced by vertical upwards flow of the less dense fluid. Resulting free convection increases solute transport rates over large distances and times relative to constant-density flow. Therefore, the understanding of free convection is relevant for the protection of freshwater aquifer systems. The results from a laboratory experiment of saturated and unsaturated variable-density flow and solute transport (Simmons et al., Transp. Porous Medium, 2002) are used as the physical basis to define a mathematical benchmark. The HydroGeoSphere code coupled with PEST are used to estimate the optimal parameter set capable of reproducing the physical model. A grid convergency analysis (in space and time) is also undertaken in order to obtain the adequate spatial and temporal discretizations. The new mathematical benchmark is useful for model comparison and testing of variable-density variably saturated flow in porous media.
CCC, Heat Flow and Mass Flow in Liquid Saturated Porous Media
International Nuclear Information System (INIS)
Mangold, D.C.; Lippmann, M.J.; Bodvarsson, G.S.
1982-01-01
1 - Description of problem or function: The numerical model CCC (conduction-convection-consolidation) solves the heat and mass flow equations for a fully, liquid-saturated, anisotropic porous medium and computes one-dimensional (vertical) consolidation of the simulated systems. The model has been applied to problems in the fields of geothermal reservoir engineering, aquifer thermal energy storage, well testing, radioactive waste isolation, and in situ coal combustion. The code has been validated against analytic solutions for fluid and heat flow, and against a field experiment for underground storage of hot water. 2 - Method of solution: The model employs the Integrated Finite Difference Method (IFDM) in discretizing the saturated porous medium and formulating the governing equations. The sets of equations are sol- ved by an iterative solution technique. The vertical deformation of the medium is calculated using the one-dimensional consolidation theory of Terzaghi. 3 - Restrictions on the complexity of the problem: Maximum of 12 materials. It is assumed that: (a) Darcy's law adequately describes fluid movement through fractured and porous media. (b) The rock and fluid are in thermal equilibrium at any given time. (c) Energy changes due to the fluid compressibility, acceleration and viscous dissipation are neglected. (d) One-dimensional consolidation theory adequately describes the vertical deformation of the medium
Supercritical Fluid Chromatographic Separation of Dimethylpolysiloxane Polymer
Energy Technology Data Exchange (ETDEWEB)
Pyo, Dong Jin; Lim, Chang Hyun [Kangwon National University, Chuncheon (Korea, Republic of)
2005-02-15
Water was used as a polar modifier and a μ-porasil column as a saturator column. The μ-porasil column was inserted between the pump outlet and the injection valve. During the passage of the supercritical fluid mobile phase through the silica column, a polar modifier (water) can be dissolved in the pressurized supercritical fluid. Dimethylpolysiloxane polymer has been known as more polar polymer than polystyrene polymer. Dimethylpolysiloxane polymer has never been separated using water modified mobile phase. In this paper, using a μ-porasil column as a saturator column, excellent supercritical fluid chromatograms of dimethylpolysiloxane oligomers were obtained. The use of compressed (dense) gases and supercritical fluids as chromatographic mobile phases in conjunction with liquid chromatographic (LC)-type packed columns was first reported by Klesper et al. in 1962. During its relatively short history, supercritical fluid chromatography (SFC) has become an attractive alternative to GC and LC in certain industrially important applications. SFC gives the advantage of high efficiency and allows the analysis of nonvolatile or thermally labile mixtures.
Supercritical Fluid Chromatographic Separation of Dimethylpolysiloxane Polymer
International Nuclear Information System (INIS)
Pyo, Dong Jin; Lim, Chang Hyun
2005-01-01
Water was used as a polar modifier and a μ-porasil column as a saturator column. The μ-porasil column was inserted between the pump outlet and the injection valve. During the passage of the supercritical fluid mobile phase through the silica column, a polar modifier (water) can be dissolved in the pressurized supercritical fluid. Dimethylpolysiloxane polymer has been known as more polar polymer than polystyrene polymer. Dimethylpolysiloxane polymer has never been separated using water modified mobile phase. In this paper, using a μ-porasil column as a saturator column, excellent supercritical fluid chromatograms of dimethylpolysiloxane oligomers were obtained. The use of compressed (dense) gases and supercritical fluids as chromatographic mobile phases in conjunction with liquid chromatographic (LC)-type packed columns was first reported by Klesper et al. in 1962. During its relatively short history, supercritical fluid chromatography (SFC) has become an attractive alternative to GC and LC in certain industrially important applications. SFC gives the advantage of high efficiency and allows the analysis of nonvolatile or thermally labile mixtures
Mixed Fluid Conditions: Capillary Phenomena
Santamarina, Carlos
2017-07-06
Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration, and surfactant concentration; on the other hand, the contact angle responds to interfacial tensions, surface topography, invasion velocity, and chemical interactions. Interfaces are not isolated but interact through the fluid pressure and respond to external fields. Jumps, snap-offs and percolating wetting liquids along edges and crevices are ubiquitous in real, non-cylindrical porous networks. Pore- and macroscale instabilities together with pore structure variability-and-correlation favor fluid trapping and hinder recovery efficiency. The saturation-pressure characteristic curve is affected by the saturation-history, flow-rate, the mechanical response of the porous medium, and time-dependent reactive and diffusive processes; in addition, there are salient differences between unsaturation by internal gas nucleation and gas invasion. Capillary forces add to other skeletal forces in the porous medium and can generate open-mode discontinuities when the capillary entry pressure is high relative to the effective stress. Time emerges as an important variable in mixed-fluid conditions and common quasi-static analyses may fail to capture the system response.
A numerical toolkit to understand the mechanics of partially saturated granular materials
Roux , Jean-Noël
2015-01-01
``Focus on Fluids'' section; International audience; The mechanisms by which a wetting, non-saturating liquid bestows macroscopic cohesion and strength to a granular material are usually not accessible to micromechanical investigations for saturations exceeding the pendular regime of isolated menisci, easily studied by discrete element models. The " JFM-Rapids " paper (vol. 762, R5, 2015) by Delenne, Richefeu and Radja¨ıRadja¨ı, exploiting a multiphase Lattice Boltzmann approach, pioneers the...
International Nuclear Information System (INIS)
Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.
1984-11-01
We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous rock. Formation parameters were chosen as representative of the potential repository horizon in the Topopah Spring Unit of the Yucca Mountain tuffs. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator ''TOUGH'' used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions for handling the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 35 refs., 14 figs., 4 tabs
Saturation volume changes and resistivity changes in nickel
International Nuclear Information System (INIS)
Birtcher, R.C.; Blewitt, T.H.
1976-01-01
Saturation defect concentrations generated by thermal neutron irradiation of 235 U doped nickel at liquid helium temperature were measured by changes in electrical resistivity and volume. The experimental procedure is described
On the propagation of a coupled saturation and pressure front
Energy Technology Data Exchange (ETDEWEB)
Vasco, D. W.
2010-12-01
Using an asymptotic technique, valid for a medium with smoothly varying heterogeneity, I derive an expression for the velocity of a propagating, coupled saturation and pressure front. Due to the nonlinearity of the governing equations, the velocity of the propagating front depends upon the magnitude of the saturation and pressure changes across the front in addition to the properties of the medium. Thus, the expression must be evaluated in conjunction with numerical reservoir simulation. The propagation of the two-phase front is governed by the background saturation distribution, the saturation-dependent component of the fluid mobility, the porosity, the permeability, the capillary pressure function, the medium compressibility, and the ratio of the slopes of the relative permeability curves. Numerical simulation of water injection into a porous layer saturated with a nonaqueous phase liquid indicates that two modes of propagation are important. The fastest mode of propagation is a pressure-dominated disturbance that travels through the saturated layer. This is followed, much later, by a coupled mode with a large saturation change. These two modes are also observed in a simulation using a heterogeneous porous layer. A comparison between the propagation times estimated from the results of the numerical simulation and predictions from the asymptotic expression indicates overall agreement.
CT-scan-monitored electrical resistivity measurements show problems achieving homogeneous saturation
International Nuclear Information System (INIS)
Sprunt, E.S.; Coles, M.E.; Davis, R.M.; Muegge, E.L.; Desai, K.P.
1991-01-01
X-ray CT scans obtained during measurement of the electrical resistivity of core samples revealed some problems in obtaining uniform saturation along the length of the sample. In this paper the electrical resistivity of core samples is measured as a function of water saturation to determine the saturation exponent, which is used in electric log interpretation. An assumption in such tests is that the water saturation is uniformly distributed. Failure of this assumption can result in errors in the determination of the saturation exponent. Three problems were identified in obtaining homogeneous water saturation in two samples of a Middle Eastern carbonate grainstone. A stationary front formed in one sample at 1 psi oil/brine capillary pressure. A moving front formed at oil/brine capillary pressures of 4 psi or less in both samples tested, in both a fresh mixed-wettability state and in a cleaned water-wet state. In these samples, the heterogeneous fluid distribution caused by a rapidly moving front did not dissipate when the capillary pressure was eliminated
Control of optical transport parameters of 'porous medium – supercritical fluid' systems
Energy Technology Data Exchange (ETDEWEB)
Zimnyakov, D A; Ushakova, O V; Yuvchenko, S A [Yuri Gagarin State Technical University of Saratov, Saratov (Russian Federation); Bagratashvili, V N [M. V. Lomonosov Moscow State University, Moscow (Russian Federation)
2015-11-30
The possibility of controlling optical transport parameters (in particular, transport scattering coefficient) of porous systems based on polymer fibres, saturated with carbon dioxide in different phase states (gaseous, liquid and supercritical) has been experimentally studied. An increase in the pressure of the saturating medium leads to a rise of its refractive index and, correspondingly, the diffuse-transmission coefficient of the system due to the decrease in the transport scattering coefficient. It is shown that, in the case of subcritical saturating carbon dioxide, the small-angle diffuse transmission of probed porous layers at pressures close to the saturated vapour pressure is determined by the effect of capillary condensation in pores. The immersion effect in 'porous medium – supercritical fluid' systems, where the fluid pressure is used as a control parameter, is considered. The results of reconstructing the values of transport scattering coefficient of probed layers for different refractive indices of a saturating fluid are presented. (radiation scattering)
Directory of Open Access Journals (Sweden)
Bhadauria B.S.
2016-12-01
Full Text Available In this paper, we investigate the combined effect of internal heating and time periodic gravity modulation in a viscoelastic fluid saturated porous medium by reducing the problem into a complex non-autonomous Ginzgburg-Landau equation. Weak nonlinear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number is obtained in terms of the amplitude for oscillatory mode of convection. The influence of viscoelastic parameters on heat transfer has been discussed. Gravity modulation is found to have a destabilizing effect at low frequencies and a stabilizing effect at high frequencies. Finally, it is found that overstability advances the onset of convection, more with internal heating. The conditions for which the complex Ginzgburg-Landau equation undergoes Hopf bifurcation and the amplitude equation undergoes supercritical pitchfork bifurcation are studied.
International Nuclear Information System (INIS)
Cavazzini, G.; Bari, S.; Pavesi, G.; Ardizzon, G.
2017-01-01
The present paper focuses on the thermodynamic optimization of a sub-critical ORC for heat source temperatures in the range between 80 and 150 °C. The most significant novelty of the optimization procedure is that the optimization algorithm was modified for this particular application in order to allow the swarm particles to dynamically choose the working fluid among a list of 37 candidates during their heuristic movement, by continuously and dynamically modifying the search domain of each particle iteration-by-iteration due to the different vapour saturation lines of the chosen working fluid. The significant amount of data obtained by the optimization procedure highlighted the dependency of the system efficiency on two main parameters: the Jakob number related to the optimized cycle (Ja_o_p_t) and the ratio between the critical temperature of the working fluid and the inlet heat source temperature. At closer inspection, a third new parameter Ω was identified, resulting from the combination of the previous two, whose minimization is correlated to the maximization of system efficiency. A procedure for the preliminary estimation of the optimal cycle allowing to estimate with good accuracy the Jakob number Ja_o_p_t and the corresponding value of Ω was also developed. - Highlights: • An PSO algorithm allowing for the dynamic choice of the working fluid is presented. • Thermodynamic optimizations for several heat source temperatures were carried out. • An effective parameter for choosing the best performing working fluids is presented.
Application of infrared thermography for temperature distributions in fluid-saturated porous media
DEFF Research Database (Denmark)
Imran, Muhammad; Nick, Hamid; Schotting, Ruud J.
2016-01-01
is achieved with a combination of invasive sensors which are inserted into the medium and non-invasive thermal sensors in which sensors are not inserted to measure temperatures but it works through the detection of infrared radiation emitted from the surface. Thermocouples of relatively thin diameter are used......Infrared thermography has increasingly gained importance because of environmental and technological advancements of this method and is applied in a variety of disciplines related to non-isothermal flow. However, it has not been used so far for quantitative thermal analysis in saturated porous media....... This article suggests infrared thermographic approach to obtain the entire surface temperature distribution(s) in water-saturated porous media. For this purpose, infrared thermal analysis is applied with in situ calibration for a better understanding of the heat transfer processes in porous media. Calibration...
Oxygen general saturation after bronchography under general ...
African Journals Online (AJOL)
Thirty-six patients undergoing bronchography or bronchoscopy under general anaesthesia were continuously monitored by pulse oximetry for 5 hours after these procedures. Significant falls in oxygen saturation were observed in the first hour and were of most clinical relevance in patients with preexisting pulmonary ...
Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs
Energy Technology Data Exchange (ETDEWEB)
Michael Batzle
2006-04-30
During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and
Estimating pore-space gas hydrate saturations from well log acoustic data
Lee, Myung W.; Waite, William F.
2008-07-01
Relating pore-space gas hydrate saturation to sonic velocity data is important for remotely estimating gas hydrate concentration in sediment. In the present study, sonic velocities of gas hydrate-bearing sands are modeled using a three-phase Biot-type theory in which sand, gas hydrate, and pore fluid form three homogeneous, interwoven frameworks. This theory is developed using well log compressional and shear wave velocity data from the Mallik 5L-38 permafrost gas hydrate research well in Canada and applied to well log data from hydrate-bearing sands in the Alaskan permafrost, Gulf of Mexico, and northern Cascadia margin. Velocity-based gas hydrate saturation estimates are in good agreement with Nuclear Magneto Resonance and resistivity log estimates over the complete range of observed gas hydrate saturations.
International Nuclear Information System (INIS)
Cheng, L.; Kuznetsov, A.V.
2005-01-01
This paper presents the first attempt to investigate numerically heat transfer in a helical pipe filled with a fluid saturated porous medium; the analysis is based on the full momentum equation for porous media that accounts for the Brinkman and Forchheimer extensions of the Darcy law as well as for the flow inertia. Numerical computations are performed in an orthogonal helical coordinate system. The effects of the Darcy number, the Forchheimer coefficient as well as the Dean and Germano numbers on the axial flow velocity, secondary flow, temperature distribution, and the Nusselt number are investigated. (authors)
Energy Technology Data Exchange (ETDEWEB)
Cheng, L.; Kuznetsov, A.V. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Mechanical and Aerospace Engineering
2005-07-01
This paper presents the first attempt to investigate numerically heat transfer in a helical pipe filled with a fluid saturated porous medium; the analysis is based on the full momentum equation for porous media that accounts for the Brinkman and Forchheimer extensions of the Darcy law as well as for the flow inertia. Numerical computations are performed in an orthogonal helical coordinate system. The effects of the Darcy number, the Forchheimer coefficient as well as the Dean and Germano numbers on the axial flow velocity, secondary flow, temperature distribution, and the Nusselt number are investigated. (authors)
Two-fluid effects on pressure-driven modes in a heliotron device
International Nuclear Information System (INIS)
Miura, H.; Ito, A.; Sato, M.; Goto, R.; Hatori, T.
2014-10-01
Two-fluid effects on the ballooning or pressure-driven unstable modes are studied numerically to understand physics in linear and nonlinear evolution of them in a heliotron device. Full 3D simulations for β 0 = 5% unstable magnetic configuration of the large helical device show that the introduction of the two-fluid term brings about broader radial profile and higher growth rate in the linear stage of the evolution, weakened parallel heat conduction, and lead to a saturation profile worse than that in the single-fluid MHD simulation. The numerical results show that suppression of high wave-number modes enhance the growth of low wave-number modes. The two-fluid effects and a plausible mild saturation of ballooning modes is discussed. (author)
Fuchs, Sven; Schütz, Felina; Förster, Andrea; Förster, Hans-Jürgen
2013-04-01
The thermal conductivity (TC) of a rock is, in collaboration with the temperature gradient, the basic parameter to determine the heat flow from the Earth interior. Moreover, it forms the input into models targeted on temperature prognoses for geothermal reservoirs at those depths not yet reached by boreholes. Thus, rock TC is paramount in geothermal exploration and site selection. Most commonly, TC of a rock is determined in the laboratory on samples that are either dry or water-saturated. Because sample saturation is time-consuming, it is desirable, especially if large numbers of samples need to be assessed, to develop an approach that quickly and reliably converts dry-measured bulk TC into the respective saturated value without applying the saturation procedure. Different petrophysical models can be deployed to calculate the matrix TC of a rock from the bulk TC and vice versa, if the effective porosity is known (e.g., from well logging data) and the TC of the saturation fluid (e.g., gas, oil, water) is considered. We have studied for a large suite of different sedimentary rocks the performance of two-component (rock matrix, porosity) models that are widely used in geothermics (arithmetic mean, geometric mean, harmonic mean, Hashin and Shtrikman mean, and effective medium theory mean). The data set consisted of 1147 TC data from three different sedimentary basins (North German Basin, Molasse Basin, Mesozoic platform sediments of the northern Sinai Microplate in Israel). Four lithotypes (sandstone, mudstone, limestone, dolomite) were studied exhibiting bulk TC in the range between 1.0 and 6.5 W/(mK). The quality of fit between measured (laboratory) and calculated bulk TC values was studied separately for the influence of lithotype, saturation fluid (water and isooctane), and rock anisotropy (parallel and perpendicular to bedding). The geometric mean model displays the best correspondence between calculated and measured bulk TC, however, the relation is not
International Nuclear Information System (INIS)
Ohnishi, Y.; Shibata, H.; Kobayashi, A.
1985-01-01
A model is presented which describes fully coupled thermo-hydro-mechanical behavior of porous geologic medium. The mathematical formulation for the model utilizes the Biot theory for the consolidation and the energy balance equation. The medium is in the condition of saturated-unsaturated flow, then the free surfaces are taken into consideration in the model. The model, incorporated in a finite element numerical procedure, was implemented in a two-dimensional computer code. The code was developed under the assumptions that the medium is poro-elastic and in plane strain condition; water in the ground does not change its phase; heat is transferred by conductive and convective flow. Analytical solutions pertaining to consolidation theory for soils and rocks, thermoelasticity for solids and hydrothermal convection theory provided verification of stress and fluid flow couplings, respectively in the coupled model. Several types of problems are analyzed. The one is a study of some of the effects of completely coupled thermo-hydro-mechanical behavior on the response of a saturated-unsaturated porous rock containing a buried heat source. Excavation of an underground opening which has radioactive wastes at elevated temperatures is modeled and analyzed. The results shows that the coupling phenomena can be estimated at some degree by the numerical procedure. The computer code has a powerful ability to analyze of the repository the complex nature of the repository
Directory of Open Access Journals (Sweden)
Fotev Vasko G.
2017-01-01
Full Text Available This article presents innovative method for increasing the speed of procedure which includes complex computational fluid dynamic calculations for finding the distance between flame openings of atmospheric gas burner that lead to minimal NO pollution. The method is based on standard features included in commercial computational fluid dynamic software and shortens computer working time roughly seven times in this particular case.
Modeling fluid transport in 2d paper networks
Tirapu Azpiroz, Jaione; Fereira Silva, Ademir; Esteves Ferreira, Matheus; Lopez Candela, William Fernando; Bryant, Peter William; Ohta, Ricardo Luis; Engel, Michael; Steiner, Mathias Bernhard
2018-02-01
Paper-based microfluidic devices offer great potential as a low-cost platform to perform chemical and biochemical tests. Commercially available formats such as dipsticks and lateral-flow test devices are widely popular as they are easy to handle and produce fast and unambiguous results. While these simple devices lack precise control over the flow to enable integration of complex functionality for multi-step processes or the ability to multiplex several tests, intense research in this area is rapidly expanding the possibilities. Modeling and simulation is increasingly more instrumental in gaining insight into the underlying physics driving the processes inside the channels, however simulation of flow in paper-based microfluidic devices has barely been explored to aid in the optimum design and prototyping of these devices for precise control of the flow. In this paper, we implement a multiphase fluid flow model through porous media for the simulation of paper imbibition of an incompressible, Newtonian fluid such as when water, urine or serum is employed. The formulation incorporates mass and momentum conservation equations under Stokes flow conditions and results in two coupled Darcy's law equations for the pressures and saturations of the wetting and non-wetting phases, further simplified to the Richard's equation for the saturation of the wetting fluid, which is then solved using a Finite Element solver. The model tracks the wetting fluid front as it displaces the non-wetting fluid by computing the time-dependent saturation of the wetting fluid. We apply this to the study of liquid transport in two-dimensional paper networks and validate against experimental data concerning the wetting dynamics of paper layouts of varying geometries.
Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions
Directory of Open Access Journals (Sweden)
Chung Hae ePARK
2015-04-01
Full Text Available In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.
TECHNIQUES OF EVALUATION OF HEMOGLOBIN OXYGEN SATURATION IN CLINICAL OPHTHALMOLOGY
Directory of Open Access Journals (Sweden)
S. Yu. Petrov
2016-01-01
Full Text Available Oxygen content in body fluids and tissues is an important indicator of life support functions. A number of ocular pathologies, e.g. glaucoma, are of presumable vascular origin which means altered blood supply and oxygen circulation. Most oxygen is transported in the blood in the association with hemoglobin. When passing through the capillaries, hemoglobin releases oxygen, converting from oxygenated form to deoxygenated form. This process is accompanied by the changes in spectral characteristics of hemoglobin which result in different colors of arterial and venous blood. Photometric technique for the measurement of oxygen saturation in blood is based on the differences in light absorption by different forms of hemoglobin. The measurement of saturation is called oximetry. Pulse oximetry with assessment of tissue oxygenation is the most commonly used method in medicine. The degree of hemoglobin oxygen saturation in the eye blood vessels is the most accessible for noninvasive studies during ophthalmoscopy and informative. Numerous studies showed the importance of this parameter for the diagnosis of retinopathy of various genesis, metabolic status analysis in hyperglycemia, diagnosis and control of treatment of glaucoma and other diseases involving alterations in eye blood supply. The specific method for evaluation of oxygen concentration is the measurement of pressure of oxygen dissolved in the blood, i.e. partial pressure of oxygen. In ophthalmological practice, this parameter is measured in anterior chamber fluid evaluating oxygen level for several ophthalmopathies including different forms of glaucoma, for instillations of hypotensive eye drops as well as in vitreous body near to the optic disc under various levels of intraocular pressure. Currently, monitoring of oxygen saturation in retinal blood vessels, i.e. retinal oximetry, is well developed. This technique is based on the assessment of light absorption by blood depending on
Directory of Open Access Journals (Sweden)
A.S. Eegunjobi
Full Text Available Numerical analysis of the intrinsic irreversibility of a mixed convection hydromagnetic flow of an electrically conducting couple stress fluid through upright channel filled with a saturated porous medium and radiative heat transfer was carried out. The thermodynamics first and second laws were employed to examine the problem. We obtained the dimensionless nonlinear differential equations and solves numerically with shooting procedure joined with a fourth order Runge-Kutta-Fehlberg integration scheme. The temperature and velocity obtained, used to analyse the entropy generation rate together with some various physical parameters of the flow. Our results are presented graphically and talk over. Keywords: MHD channel flow, Couple stress fluid, Porous medium, Thermal radiation, Entropy generation, Injection/suction
DEFF Research Database (Denmark)
Snaebjornsdottir, Sandra O.; Oelkers, Eric H.; Mesfin, Kiflom
2017-01-01
is supersaturated prior to and during the mixed gas injection and in the following months. In July 2013, the HN-04 fluid sampling pump broke down due to calcite precipitation, verifying the carbonation of the injected CO2. Mass balance calculations, based on the recovery of non-reactive tracers co......-gas mixture were sequentially injected into basaltic rocks at the CarbFix site at Hellisheidi, SW-Iceland from January to August 2012. This paper reports the chemistry and saturation states with respect to potential secondary minerals of sub-surface fluids sampled prior to, during, and after...
Textural evidence for jamming and dewatering of a sub-surface, fluid-saturated granular flow
Sherry, T. J.; Rowe, C. D.; Kirkpatrick, J. D.; Brodsky, E. E.
2011-12-01
Sand injectites are spectacular examples of large-scale granular flows involving migration of hundreds of cubic meters of sand slurry over hundreds of meters to kilometers in the sub-surface. By studying the macro- and microstructural textures of a kilometer-scale sand injectite, we interpret the fluid flow regimes during emplacement and define the timing of formation of specific textures in the injected material. Fluidized sand sourced from the Santa Margarita Fm., was injected upward into the Santa Cruz Mudstone, Santa Cruz County, California. The sand injectite exposed at Yellow Bank Beach records emplacement of both hydrocarbon and aqueous sand slurries. Elongate, angular mudstone clasts were ripped from the wall rock during sand migration, providing evidence for high velocity, turbid flow. However, clast long axis orientations are consistently sub-horizontal suggesting the slurry transitioned to a laminar flow as the flow velocity decreased in the sill-like intrusion. Millimeter to centimeter scale laminations are ubiquitous throughout the sand body and are locally parallel to the mudstone clast long axes. The laminations are distinct in exposure because alternating layers are preferentially cemented with limonite sourced from later groundwater infiltration. Quantitative microstructural analyses show that the laminations are defined by subtle oscillations in grain alignment between limonite and non-limonite stained layers. Grain packing, size and shape distributions do not vary. The presence of limonite in alternating layers results from differential infiltration of groundwater, indicating permeability changes between the layers despite minimal grain scale differences. Convolute dewatering structures deform the laminations. Dolomite-cemented sand, a signature of hydrocarbon saturation, forms irregular bodies that cross-cut the laminations and dewatering structures. Laminations are not formed in the dolomite-cemented sand. The relative viscosity difference
Transport of synthetic colloids through single saturated fractures: A literature review
International Nuclear Information System (INIS)
Reimus, P.W.
1995-07-01
Colloids having the same surface charge sign as the bulk of the geologic media in a groundwater system may be able to travel through the system faster than soluble species because they will follow fluid streamlines more closely and they should have less tendency to diffuse into pores or dead spaces in the media than soluble species. Synthetic colloids with uniform, controlled properties may be ideal for serving as open-quotes worst-caseclose quotes tracers that provide lower-bound estimates of contaminant travel times in hydrologic systems. This report discusses a review of the literature pertaining to colloid transport in single saturated natural fractures. After a brief background discussion to put the literature review in perspective, the phenomenon of colloid transport in saturated fractures is divided into three major topics, each of which is reviewed in detail: (1) saturated fluid flow through fractures; (2) colloid transport by convection, diffusion, and force fields; and (3) colloid interactions with surfaces. It is suggested that these phenomena be accounted for in colloid transport models by using (1) lubrication theory to describe water flow through fractures, (2) particle tracking methods to describe colloid transport in fractures, and (3) a kinetic boundary layer approximation to describe colloid interactions with fracture walls. These methods offer better computational efficiency and better experimental accessibility to model parameters than rigorously solving the complete governing equations
Li, Zi; Galindo-Torres, Sergio; Yan, Guanxi; Scheuermann, Alexander; Li, Ling
2018-06-01
Simulations of simultaneous steady-state two-phase flow in the capillary force-dominated regime were conducted using the state-of-the-art Shan-Chen multi-component lattice Boltzmann model (SCMC-LBM) based on two-dimensional porous media. We focused on analyzing the fluid distribution (i.e., WP fluid-solid, NP fluid-solid and fluid-fluid interfacial areas) as well as the capillary pressure versus saturation curve which was affected by fluid and geometrical properties (i.e., wettability, adhesive strength, pore size distribution and specific surface area). How these properties influenced the relative permeability versus saturation relation through apparent effective permeability and threshold pressure gradient was also explored. The SCMC-LBM simulations showed that, a thin WP fluid film formed around the solid surface due to the adhesive fluid-solid interaction, resulting in discrete WP fluid distributions and reduction of the WP fluid mobility. Also, the adhesive interaction provided another source of capillary pressure in addition to capillary force, which, however, did not affect the mobility of the NP fluid. The film fluid effect could be enhanced by large adhesive strength and fine pores in heterogeneous porous media. In the steady-state infiltration, not only the NP fluid but also the WP fluid were subjected to the capillary resistance. The capillary pressure effect could be alleviated by decreased wettability, large average pore radius and improved fluid connectivity in heterogeneous porous media. The present work based on the SCMC-LBM investigations elucidated the role of film fluid as well as capillary pressure in the two-phase flow system. The findings have implications for ways to improve the macroscopic flow equation based on balance of force for the steady-state infiltration.
Schramm, P; Tzanova, I; Hagen, F; Berres, M; Closhen, D; Pestel, G; Engelhard, K
2016-10-01
Neurosurgical operations in the dorsal cranium often require the patient to be positioned in a sitting position. This can be associated with decreased cardiac output and cerebral hypoperfusion, and possibly, inadequate cerebral oxygenation. In the present study, cerebral oxygen saturation was measured during neurosurgery in the sitting position and correlated with cardiac output. Perioperative cerebral oxygen saturation was measured continuously with two different monitors, INVOS ® and FORE-SIGHT ® . Cardiac output was measured at eight predefined time points using transoesophageal echocardiography. Forty patients were enrolled, but only 35 (20 female) were eventually operated on in the sitting position. At the first time point, the regional cerebral oxygen saturation measured with INVOS ® was 70 (sd 9)%; thereafter, it increased by 0.0187% min -1 (P<0.01). The cerebral tissue oxygen saturation measured with FORE-SIGHT ® started at 68 (sd 13)% and increased by 0.0142% min -1 (P<0.01). The mean arterial blood pressure did not change. Cardiac output was between 6.3 (sd 1.3) and 7.2 (1.8) litre min -1 at the predefined time points. Cardiac output, but not mean arterial blood pressure, showed a positive and significant correlation with cerebral oxygen saturation. During neurosurgery in the sitting position, the cerebral oxygen saturation slowly increases and, therefore, this position seems to be safe with regard to cerebral oxygen saturation. Cerebral oxygen saturation is stable because of constant CO and MAP, while the influence of CO on cerebral oxygen saturation seems to be more relevant. NCT01275898. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Directory of Open Access Journals (Sweden)
Shen Min
2016-01-01
Full Text Available Magnetrohelogical fluids (MRFs represent a class of smart materials whose rheological properties change in response to the magnetic field, which resulting in the drastic change of the acoustic impedance. This paper presents an acoustic propagation model that approximates a fluid-saturated porous medium as a fluid with a bulk modulus and effective density (EDFM to study the acoustic propagation in the MRF materials under magnetic field. The effective density fluid model derived from the Biot’s theory. Some minor changes to the theory had to be applied, modeling both fluid-like and solid-like state of the MRF material. The attenuation and velocity variation of the MRF are numerical calculated. The calculated results show that for the MRF material the attenuation and velocity predicted with this effective density fluid model are close agreement with the previous predictions by Biot’s theory. We demonstrate that for the MRF material acoustic prediction the effective density fluid model is an accurate alternative to full Biot’s theory and is much simpler to implement.
Effective stress principle for partially saturated media
International Nuclear Information System (INIS)
McTigue, D.F.; Wilson, R.K.; Nunziato, J.W.
1984-04-01
In support of the Nevada Nuclear Waste Storage Investigation (NNWSI) Project, we have undertaken a fundamental study of water migration in partially saturated media. One aspect of that study, on which we report here, has been to use the continuum theory of mixtures to extend the classical notion of effective stress to partially saturated media. Our analysis recovers previously proposed phenomenological representations for the effective stress in terms of the capillary pressure. The theory is illustrated by specializing to the case of linear poroelasticity, for which we calculate the deformation due to the fluid pressure in a static capillary fringe. We then examine the transient consolidation associated with liquid flow induced by an applied surface load. Settlement accompanies this flow as the liquid is redistributed by a nonlinear diffusion process. For material properties characteristic of tuff from the Nevada Test Site, these effects are found to be vanishingly small. 14 references, 7 figures, 1 table
Dynamic Analysis procedure for fluid kicks in hydrocarbon wells
Energy Technology Data Exchange (ETDEWEB)
Gavignet, A
1989-02-10
A method for analyzing fluid kicks in wells during drilling, in order to assess the risk of a blowout, is presented. An automatic data acquisition and processing system is used to analyze pressure data from transient flow regimes of the drill slurries to determine the nature of the fluid in the borehole (gas, liquid, mixture). The method can be used even if the fluid flowing into the borehole is in an horizontal section of the well.
Analysis of a microscale 'Saturation Phase-change Internal Carnot Engine'
International Nuclear Information System (INIS)
Lurie, Eli; Kribus, Abraham
2010-01-01
A micro heat engine, based on a cavity filled with a stationary working fluid under liquid-vapor saturation conditions and encapsulated by two membranes, is described and analyzed. This engine design is easy to produce using MEMS technologies and is operated with external heating and cooling. The motion of the membranes is controlled such that the internal pressure and temperature are constant during the heat addition and removal processes, and thus the fluid executes a true internal Carnot cycle. A model of this Saturation Phase-change Internal Carnot Engine (SPICE) was developed including thermodynamic, mechanical and heat transfer aspects. The efficiency and maximum power of the engine are derived. The maximum power point is fixed in a three-parameter space, and operation at this point leads to maximum power density that scales with the inverse square of the engine dimension. Inclusion of the finite heat capacity of the engine wall leads to a strong dependence of performance on engine frequency, and the existence of an optimal frequency. Effects of transient reverse heat flow, and 'parasitic heat' that does not participate in the thermodynamic cycle are observed.
Numerical simulation of vertical infiltration for leaching fluid in situ
International Nuclear Information System (INIS)
Li Jinxuan; Shi Weijun; Zhang Weimin
1998-01-01
Based on the analysis of movement law of leaching fluid in breaking and leaching experiment in situ, the movement of leaching fluid can be divided into two main stages in the leaching process in situ: Vertical Infiltration in unsaturation zone and horizontal runoff in saturation zone. The corresponding mathematics models are sep up, and the process of vertical infiltration of leaching fluid is numerically simulated
Development of synchronous generator saturation model from steady-state operating data
Energy Technology Data Exchange (ETDEWEB)
Jadric, Martin; Despalatovic, Marin; Terzic, Bozo [FESB University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split (Croatia)
2010-11-15
A new method to estimate and model the saturated synchronous reactances of hydroturbine generators from operating data is presented. For the estimation process, measurements of only the generator steady-state variables are required. First, using a specific procedure, the field to armature turns ratio is estimated from measured steady-state variables at constant power generation and various excitation conditions. Subsequently, for each set of steady-state operating data, saturated synchronous reactances are identified. Fitting surfaces, defined as polynomial functions in two variables, are later used to model these saturated reactances. It is shown that the simpler polynomial functions may be used to model saturation at the steady-state than at the dynamic conditions. The developed steady-state model is validated with measurements performed on the 34 MVA hydroturbine generator. (author)
A corresponding states treatment of the liquid-vapor saturation line
International Nuclear Information System (INIS)
Srinivasan, K.; Ng, K.C.; Velasco, S.; White, J.A.
2012-01-01
Highlights: → Correlations arising from the maxima of products of properties in the coexistence line. → Analysis of maxima along the vapor pressure curve. → Correlations for the maximum of the saturated vapor enthalpy curve. → Prediction of properties of the new low GWP refrigerants HFO 1234yf and HFO 1234ze (E). - Abstract: In this work we analyze correlations for the maxima of products of some liquid-vapor saturation properties. These points define new characteristic properties of each fluid that are shown to exhibit linear correlations with the critical properties. We also demonstrate that some of these properties are well correlated with the acentric factor. An application is made to predict the properties of two new low global warming potential (GWP) refrigerants.
Simulation of consolidation in partially saturated soil materials
International Nuclear Information System (INIS)
Narasimhan, T.N.
1982-03-01
Partially saturated soil materials undergo consolidation, heave, collapse and failure due to changes in pore fluid pressure. The precise nature of the mechanics of such deformations is only poorly understood at present. Experimental evidence has shown that the volume change behavior of unsaturated soils cannot be adequately explained through changes in effective stress, even when a saturation dependent parameter is incorporated into the definition of effective stress. Two independent stress-state variables, involving combinations of total stress, pore air pressure and pore water pressure, are required to characterize volume changes and saturation changes in the partially saturated state. In general, two coupled conservation equations, one for the water-phase and the other for the air-phase need to be solved in order to predict the deformation behavior of unsaturated soils. If directional displacements and changes in the stress-field are required, then the conservation equations are to be integrated with an additional set of multi-dimensional force balance equations. For lack of a sufficient understanding of elastic constants such as Poisson's Ratio and Lame's constants as applied to unsaturated soils, little has been achieved so far in integrating the conservation equations and the force balance equations. For the long-term modeling of consolidation with respect to uranium mill tailings, it may be acceptable and economical to solve a single conservation equation for water, assuming that the air-phase is continuous and is at atmospheric pressure everywhere in the soil. The greatest challenge to modeling consolidation in the unsaturated zone at the presnt time is to develop enough experimental data defining the variation of void ratio and saturation with reference to the two chosen stress-state variables
Modelling and simulation of a natural convection flow in a saturated porous cavity
International Nuclear Information System (INIS)
Costa, M.L.M.; Sampaio, R.; Gama, R.M.S. da.
1991-09-01
The natural convection flow in a two-dimensional fluid-saturated porous cavity is modelled by means of a Theory of Mixtures viewpoint in which fluid and porous medium are regarded as continuous constituents of a binary mixture, coexisting superposed. A local description, that allows distinct temperature profiles for both fluid and solid constituents is obtained. The model, simplified by the Boussinesq approximation, is simulated with the help of the Control Volumes Method. The effect of some usual parameters like Rayleigh, Darcy and Prandtl numbers and of a new dimensionless number, relating coefficients associated to the heat exchange between fluid and solid constituents (due to its temperature difference) and coefficients of heat conduction for each constituent, is considered. Stream lines for the fluid constituent and isotherms for both fluid and solid constituents are presented for some cases. Qualitative agreement with results using the classical approach (Darcy's law and additional terms to account for boundary and inertia effects, used as momentum equation) was obtained. (author)
International Nuclear Information System (INIS)
Hassan, Ashraf Aly; Li, Zhen; Sahle-Demessie, Endalkachew; Sorial, George A.
2013-01-01
Highlights: ► Breakthrough curves used to study fate of NPs in slow sand filters (SSF). ► CFD simulate transport, attachment/detachment of NPs in SSFs. ► CFD predicted spatial and temporal changes for transient concentrations of NPs. ► CFD predicts low concentrations and steady NP influx would not be retained by SSFs. ► Pulse input is retained with outlet concentration of 0.2% of the inlet. -- Abstract: Experimental and computational investigation of the transport parameters of nanoparticles (NPs) flowing through porous media has been made. This work intends to develop a simulation applicable to the transport and retention of NPs in saturated porous media for investigating the effect of process conditions and operating parameters such, as ion strength, and filtration efficiency. Experimental data obtained from tracer and nano-ceria, CeO 2 , breakthrough studies were used to characterize dispersion of nanoparticle with the flow and their interaction with sand packed columns with different heights. Nanoparticle transport and concentration dynamics were solved using the Eulerian computational fluid dynamics (CFD) solver ANSYS/FLUENT ® based on a scaled down flow model. A numerical study using the Navier–Stokes equation with second order interaction terms was used to simulate the process. Parameters were estimated by fitting tracer, experimental NP transport data, and interaction of NP with the sand media. The model considers different concentrations of steady state inflow of NPs and different amounts of spike concentrations. Results suggest that steady state flow of dispersant-coated NPs would not be retained by a sand filter, while spike concentrations could be dampened effectively. Unlike analytical solutions, the CFD allows estimating flow profiles for structures with complex irregular geometry and uneven packing
Energy Technology Data Exchange (ETDEWEB)
Hassan, Ashraf Aly [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Li, Zhen [School of Energy, Environmental, Biological, and Medical Engineering, Environmental Engineering Program, University of Cincinnati, Cincinnati, OH (United States); Sahle-Demessie, Endalkachew, E-mail: sahle-demessie.endalkachew@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Sorial, George A. [School of Energy, Environmental, Biological, and Medical Engineering, Environmental Engineering Program, University of Cincinnati, Cincinnati, OH (United States)
2013-01-15
Highlights: ► Breakthrough curves used to study fate of NPs in slow sand filters (SSF). ► CFD simulate transport, attachment/detachment of NPs in SSFs. ► CFD predicted spatial and temporal changes for transient concentrations of NPs. ► CFD predicts low concentrations and steady NP influx would not be retained by SSFs. ► Pulse input is retained with outlet concentration of 0.2% of the inlet. -- Abstract: Experimental and computational investigation of the transport parameters of nanoparticles (NPs) flowing through porous media has been made. This work intends to develop a simulation applicable to the transport and retention of NPs in saturated porous media for investigating the effect of process conditions and operating parameters such, as ion strength, and filtration efficiency. Experimental data obtained from tracer and nano-ceria, CeO{sub 2}, breakthrough studies were used to characterize dispersion of nanoparticle with the flow and their interaction with sand packed columns with different heights. Nanoparticle transport and concentration dynamics were solved using the Eulerian computational fluid dynamics (CFD) solver ANSYS/FLUENT{sup ®} based on a scaled down flow model. A numerical study using the Navier–Stokes equation with second order interaction terms was used to simulate the process. Parameters were estimated by fitting tracer, experimental NP transport data, and interaction of NP with the sand media. The model considers different concentrations of steady state inflow of NPs and different amounts of spike concentrations. Results suggest that steady state flow of dispersant-coated NPs would not be retained by a sand filter, while spike concentrations could be dampened effectively. Unlike analytical solutions, the CFD allows estimating flow profiles for structures with complex irregular geometry and uneven packing.
International Nuclear Information System (INIS)
Fernandez, F.J.; Prieto, M.M.; Suarez, I.
2011-01-01
A recent novel adjustment of the Span-Wagner equation of state for siloxanes, used as working fluids in high-temperature organic Rankine cycles, is applied in a mathematical model to solve cycles under several working conditions. The proposed scheme includes a thermo-oil intermediate heat circuit between the heat source and the organic Rankine cycle. Linear and cyclic siloxanes are assayed in saturated, superheated and supercritical cycles. The cycle includes an internal heat exchanger (regenerative cycle), although a non-regenerative scheme is also solved. In the first part of the study, a current of combustion gases cooled to close to their dew point temperature is taken as the reference heat source. In the second part, the outlet temperature of the heat source is varied over a wide range, determining appropriate fluids and schemes for each thermal level. Simple linear (MM, MDM) siloxanes in saturated regenerative schemes show good efficiencies and ensure thermal stability of the working fluid. -- Highlights: → Organic Rankine cycles with polymethylsiloxanes as working fluids were modelled. → The cycle scheme is regenerative and includes an intermediate heat transfer fluid. → The fluid properties were calculated by means of the Span-Wagner equation of state. → Vapour conditions to the expander and source thermal level were analysed. → Siloxanes MM, MDM and D 4 under saturated conditions were the best options.
Standing torsional waves in a fully saturated, porous, circular cylinder
Solorza, S; 10.1111/j.1365-246X.2004.02198.x
2004-01-01
For dynamic measurement of the elastic moduli of a porous material saturated with viscous fluid using the resonance-bar technique, one also observes attenuation. In this article we have carried out the solution of the boundary-value problem associated with standing torsional oscillations of a finite, poroelastic, circular cylinder cast in the framework of volume-averaged theory of poroelasticity. Analysing this solution by eigenvalue perturbation approach we are able to develop expressions for torsional resonance and temporal attenuation frequencies in which the dependence upon the material properties are transparent. It shows how the attenuation is controlled by the permeability and the fluid properties, and how the resonance frequency drops over its value for the dry solid-frame due to the drag effect of fluid mass. Based upon this work we have a firm basis to determine solid-frame shear modulus, permeability, and tortuosity factor from torsional oscillation experiments.
Shear weakening for different lithologies observed at different saturation stages
Diethart-Jauk, Elisabeth; Gegenhuber, Nina
2018-01-01
For this study, samples from different lithologies ("Leitha"-limestone, "Dachstein"-limestone, "Haupt"-dolomite, "Bunt"-sandstone, Grey Berea sandstone, granite, quartzite and basalt) were selected. Samples were dried at 70 °C, respectively 105 °C and were saturated with brine. Mass, porosity, permeability, compressional and shear wave velocity were determined from dry and brine saturated samples at laboratory conditions, based on an individual measurement program. Shear modulus was calculated to find out, if shear weakening exists for the dataset. Shear weakening means that shear modulus of dry samples is higher than of saturated samples, but it is assumed that shear modulus is unaffected by saturation. "Dachstein"-limestone and basalt show shear weakening, quartzite samples show both weakening and hardening. Granite samples are affected by temperature, after drying with 105 °C no change can be observed anymore. "Bunt"-sandstone samples show a change in the shear modulus in a small extent, although they may contain clay minerals. The other lithologies show no effect. Explanations for carbonate samples can be the complicated pore structure, for basalt it could be that weathering creates clay minerals which are known as causes for a change of the shear modulus. Fluid viscosity can also be an important factor.
Site-Scale Saturated Zone Flow Model
International Nuclear Information System (INIS)
G. Zyvoloski
2003-01-01
The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being
Emerson, Jane F; Emerson, Scott S
2005-01-01
A standardized urinalysis and manual microscopic cell counting system was evaluated for its potential to reduce intra- and interoperator variability in urine and cerebrospinal fluid (CSF) cell counts. Replicate aliquots of pooled specimens were submitted blindly to technologists who were instructed to use either the Kova system with the disposable Glasstic slide (Hycor Biomedical, Inc., Garden Grove, CA) or the standard operating procedure of the University of California-Irvine (UCI), which uses plain glass slides for urine sediments and hemacytometers for CSF. The Hycor system provides a mechanical means of obtaining a fixed volume of fluid in which to resuspend the sediment, and fixes the volume of specimen to be microscopically examined by using capillary filling of a chamber containing in-plane counting grids. Ninety aliquots of pooled specimens of each type of body fluid were used to assess the inter- and intraoperator reproducibility of the measurements. The variability of replicate Hycor measurements made on a single specimen by the same or different observers was compared with that predicted by a Poisson distribution. The Hycor methods generally resulted in test statistics that were slightly lower than those obtained with the laboratory standard methods, indicating a trend toward decreasing the effects of various sources of variability. For 15 paired aliquots of each body fluid, tests for systematically higher or lower measurements with the Hycor methods were performed using the Wilcoxon signed-rank test. Also examined was the average difference between the Hycor and current laboratory standard measurements, along with a 95% confidence interval (CI) for the true average difference. Without increasing labor or the requirement for attention to detail, the Hycor method provides slightly better interrater comparisons than the current method used at UCI. Copyright 2005 Wiley-Liss, Inc.
Rangel-Kuoppa, Victor-Tapio; Albor-Aguilera, María-de-Lourdes; Hérnandez-Vásquez, César; Flores-Márquez, José-Manuel; González-Trujillo, Miguel-Ángel; Contreras-Puente, Gerardo-Silverio
2018-04-01
A new proposal for the extraction of the shunt resistance (R sh ) and saturation current (I sat ) of a current-voltage (I-V) measurement of a solar cell, within the one-diode model, is given. First, the Cheung method is extended to obtain the series resistance (R s ), the ideality factor (n) and an upper limit for I sat . In this article which is Part 1 of two parts, two procedures are proposed to obtain fitting values for R sh and I sat within some voltage range. These two procedures are used in two simulated I-V curves (one in darkness and the other one under illumination) to recover the known solar cell parameters R sh , R s , n, I sat and the light current I lig and test its accuracy. The method is compared with two different common parameter extraction methods. These three procedures are used and compared in Part 2 in the I-V curves of CdS-CdTe and CIGS-CdS solar cells.
Flow and fracture in water-saturated, unconstrained granular beds
Directory of Open Access Journals (Sweden)
Germán eVaras
2015-06-01
Full Text Available The injection of gas in a liquid-saturated granular bed gives rise to a wide variety of invasion patterns. Many studies have focused on constrained porous media, in which the grains are fixed in the bed and only the interstitial fluid flows when the gas invades the system. With a free upper boundary, however, the grains can be entrained by the ascending gas or fluid motion, and the competition between the upward motion of grains and sedimentation leads to new patterns. We propose a brief review of the experimental investigation of the dynamics of air rising through a water-saturated, unconstrained granular bed, in both two and three dimensions. After describing the invasion pattern at short and long time, a tentative regime-diagram is proposed. We report original results showing a dependence of the fluidized zone shape, at long times, on the injection flow rate and grain size. A method based on image analysis makes it possible to detect not only the fluidized zone profile in the stationary regime, but also to follow the transient dynamics of its formation. Finally, we describe the degassing dynamics inside the fluidized zone, in the stationary regime. Depending on the experimental conditions, regular bubbling, continuous degassing, intermittent regime or even spontaneous flow-to-fracture transition are observed.
Energy Technology Data Exchange (ETDEWEB)
Tanis, Elizabeth A.; Simon, Adam; Tschauner, Oliver; Chow, Paul; Xiao, Yuming; Burnley, Pamela; Cline II, Christopher J.; Hanchar, John M.; Pettke, Thomas; Shen, Guoyin; Zhao, Yusheng (MUN); (Michigan); (CIW); (UNLV); (Bern)
2015-08-26
Rutile (TiO₂) is an important host phase for high field strength elements (HFSE) such as Nb in metamorphic and subduction zone environments. The observed depletion of Nb in arc rocks is often explained by the hypothesis that rutile sequesters HFSE in the subducted slab and overlying sediment, and is chemically inert with respect to aqueous fluids evolved during prograde metamorphism in the forearc to subarc environment. However, field observations of exhumed terranes, and experimental studies, indicate that HFSE may be soluble in complex aqueous fluids at high pressure (i.e., >0.5 GPa) and moderate to high temperature (i.e., >300 °C). In this study, we investigated experimentally the mobility of Nb in NaCl- and NaF-bearing aqueous fluids in equilibrium with Nb-bearing rutile at pressure-temperature conditions applicable to fluid evolution in arc environments. Niobium concentrations in aqueous fluid at rutile saturation were measured directly by using a hydrothermal diamond-anvil cell (HDAC) and synchrotron X-ray fluorescence (SXRF) at 2.1 to 6.5 GPa and 300–500 °C, and indirectly by performing mass loss experiments in a piston-cylinder (PC) apparatus at ~1 GPa and 700–800 °C. The concentration of Nb in a 10 wt% NaCl aqueous fluid increases from 6 to 11 μg/g as temperature increases from 300 to 500 °C, over a pressure range from 2.1 to 2.8 GPa, consistent with a positive temperature dependence. The concentration of Nb in a 20 wt% NaCl aqueous fluid varies from 55 to 150 μg/g at 300 to 500 °C, over a pressure range from 1.8 to 6.4 GPa; however, there is no discernible temperature or pressure dependence. The Nb concentration in a 4 wt% NaF-bearing aqueous fluid increases from 180 to 910 μg/g as temperature increases from 300 to 500 °C over the pressure range 2.1 to 6.5 GPa. The data for the F-bearing fluid indicate that the Nb content of the fluid exhibits a dependence on temperature between 300 and 500 °C at ≥2 GPa, but there is no observed
Application of the finite volume method in the simulation of saturated flows of binary mixtures
International Nuclear Information System (INIS)
Murad, M.A.; Gama, R.M.S. da; Sampaio, R.
1989-12-01
This work presents the simulation of saturated flows of an incompressible Newtonian fluid through a rigid, homogeneous and isotropic porous medium. The employed mathematical model is derived from the Continuum Theory of Mixtures and generalizes the classical one which is based on Darcy's Law form of the momentum equation. In this approach fluid and porous matrix are regarded as continuous constituents of a binary mixture. The finite volume method is employed in the simulation. (author) [pt
Modelling and simulation of an energy transport phenomenon in a solid-fluid mixture
International Nuclear Information System (INIS)
Costa, M.L.M.; Sampaio, R.; Gama, R.M.S. da.
1989-08-01
In the present work a model for a local description of the energy transfer phenomenon in a binary (solid-fluid) saturated mixture is proposed. The heat transfer in a saturated flow (through a porous medium) between two parallel plates is simulated by using the Finite Volumes Method. (author) [pt
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten
2004-01-01
TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between ...
Directory of Open Access Journals (Sweden)
Li Zhong-Sen
2016-01-01
Full Text Available The present research is funded by the French National Project « TerreDurable », which is dedicated to the study of soils in quasi-saturated conditions (close to saturation for the analysis of stability and settlement of earth structures such as embankment, dams. A global presentation of the drying-wetting test shows the volume change, air entry and soil-water characteristics of the soil at slurry and oven-dried conditions. Unsaturated undrained triaxial test was carried out in order to investigate the variation of pore-water pressure from quasi-saturated domain to saturation. The experimental results of the triaxial test are then modeled using a two-dimensional explicit finite difference program (Flac 2D. A constitutive law developed in the TerreDurable project allows better understanding the behaviour of quasi-saturated soils using the water retention curve of quasi-saturated domain proposed by Boutonnier (2007, 2010. A simple effective stress model is used (Cam Clay by taking into account both the suction and the compressibility of equivalent fluid (water + air. The results from numerical calculation and experimental measurements are compared.
Measurement of peritoneal fluid pH in patients with non-serosal invasive gastric cancer.
Noh, Seung Moo
2003-02-01
The accurate pH range of peritoneal fluid is clinically valuable for the evaluation of some pathological conditions of the body, however, it is not easy to measure in healthy individuals. The aim of this study was to measure; pH, pCO2, pO2, Na+, K++, Ca++, HCO3-, and O2 saturation of the peritoneal fluid in patients with non-serosal invasive gastric cancer. One hundred and thirty four patients (86 men and 48 women), ranging in age from 24 to 91 years were enrolled in this study. After opening the abdominal wall, the probe of a portable pH meter was placed in the peritoneal fluid in the subhepatic space. In addition, I collected the peritoneal fluid from the subhepatic space to measure, pH, pCO2, pO2, Na+, K++, Ca++, HCO3-, and O2 saturation using an autoanalyzer. The pHs of the peritoneal fluids tested has a mean of 7.73 (range 7.46 - 8.10), and the other parameters were pCO2, 22.81 mmHg; pO2, 136.49 mmHg; Na+, 146.57 mmol/L; K++, 4.80 mmol/L; Ca++, 0.89 mmol/L; HCO3-, 30.54 mmol/L, and O2 saturation, 99.74%. This study describes a practical method of measuring the pH of peritoneal fluid. The result obtained reflects the normal adult peritoneal pH value, which I propose as a reference value.
Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette
2013-01-01
The authors have derived macroscale poromechanics parameters for chemically active saturated fibrous media by combining microstructure-based homogenization with Hill's volume averaging. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's Lemmas. The advantage of this approach is that the resultant continuum model assumes a form suited to study porous materials, while retaining the effect of discrete fiber deformation. As a result, the model is able to predict the influence of microscale phenomena such as fiber buckling on the overall behavior, and in particular, on the poromechanics constants. The significance of the approach is demonstrated using the effect of drainage and fiber nonlinearity on monotonic compressive stress-strain behavior. The model predictions conform to the experimental observations for articular cartilage. The method can potentially be extended to other porous materials such as bone, clays, foams, and concrete.
The effect of fluids on the frictional behavior of calcite gouge
Rempe, M.; Di Toro, G.; Mitchell, T. M.; Hirose, T.; Smith, S. A. F.; Renner, J.
2016-12-01
The presence of fluids in fault zones affects the faults' strength and the nucleation and propagation of earthquakes due to mechanical or physico-chemical weakening effects. To better understand the effect of pore fluids on the frictional behavior of gouge-bearing faults, a series of intermediate- to high-velocity experiments was conducted using the Phv rotary-shear apparatus (Kochi Core Center, Japan) equipped with a servo-controlled pore-fluid pressure system. Calcite gouge was sheared up to several meters displacement at room-humidity (dry) and water-saturated conditions. The pore-fluid factor, λ=pf/σn, ranged from 0.15 to 0.7 and the effective normal stress, σn,eff=σn-pf, from 1 to 12 MPa. Sheared samples were analyzed using scanning electron microscopy and Raman spectroscopy. The steady-state shear stress is lower for saturated than for dry gouges sliding at V=1 mm/s, possibly due to higher intergranular lubrication and/or accelerated subcritical crack growth, as evidenced also by the observed higher degree of compaction. At V=1 m/s, dry gouges show a pronounced strengthening phase preceding the onset of dynamic weakening; saturated gouges weaken abruptly. The higher λ, the lower the peak and steady-state shear stress, but -counterintuitively- the less localized deformation. Degree of weakening and localization might be influenced by insufficient drainage at high λ. In undrained experiments, the shear stress is slightly decreased likely due to thermal pressurization of the pore fluid, but the onset of dynamic weakening is not accelerated, indicating that dynamic weakening is due to more efficient mechanisms. For example, amorphous carbon may lubricate the slip surfaces of dry and saturated calcite gouges and cause dynamic weakening, yet Raman spectra only show the presence of disordered carbon on the principal slip surface. Furthermore, the presence of small recrystallized grains suggests that strain accommodation during steady-state slip might occur by
Finch, Anthony J; Benson, Jamie M; Donnelly, Patrick E; Torzilli, Peter A
2017-06-01
Objective Many in vivo procedures to repair chondral defects use ultraviolet (UV)-photoinitiated in situ polymerization within the cartilage matrix. Chemical species that absorb UV light might reduce the effectiveness of these procedures by acting as light absorption barriers. This study evaluated whether any of the individual native biochemical components in cartilage and synovial fluid interfered with the absorption of light by common scaffolding photosensitizers. Materials UV-visible spectroscopy was performed on each major component of cartilage in solution, on bovine synovial fluid, and on four photosensitizers, riboflavin, Irgacure 2959, quinine, and riboflavin-5'-phosphate. Molar extinction and absorption coefficients were calculated at wavelengths of maximum absorbance and 365 nm. Intact articular cartilage was also examined. Results The individual major biochemical components of cartilage, Irgacure 2959, and quinine did not exhibit a significant absorption at 365 nm. Riboflavin and riboflavin-5'-phosphate were more effectual light absorbers at 365 nm, compared with the individual native species. Intact cartilage absorbed a significantly greater amount of UV light in comparison with the native species. Conclusion Our results indicate that none of the individual native species in cartilage will interfere with the absorption of UV light at 365 nm by these commonly used photoinitiators. Intact cartilage slices exhibited significant light absorption at 365 nm, while also having distinct absorbance peaks at wavelengths less than 300 nm. Determining the UV absorptive properties of the biomolecules native to articular cartilage and synovial fluid will aid in optimizing scaffolding procedures to ensure sufficient scaffold polymerization at a minimum UV intensity.
Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.
2017-12-01
We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness
Directory of Open Access Journals (Sweden)
Vernay Mathilde
2016-01-01
Full Text Available The effect of the pore fluid compressibility on liquefaction has been studied by various authors. But few papers have been published about the role of suction in cyclic behavior of unsaturated soils. Most of these works use Skempton coefficient B as a reference in terms of saturation degree to analyze their results. The use of B in experimental conditions is convenient, but is not accurate when studying liquefaction behavior, since effects of suction are neglected. In this paper, the influence of saturation degree on mechanical behavior of a soil under dynamic loads is studied. Cyclic undrained triaxial tests were performed on sand samples, under various levels of saturation. Soil-water characteristic curve was used, in order to study influence of suction. The first results confirm that when the degree of saturation decreases, the resistance increases. Initial positive suction tends to stiffen the soil. It also appears that the presence of air delays the occurrence of liquefaction, but doesn’t prevent it. Indeed, liquefaction is observed, whether the soil is saturated or not.
Pimienta, Lucas; Borgomano, Jan V. M.; Fortin, Jérôme; Guéguen, Yves
2017-12-01
Because measuring the frequency dependence of elastic properties in the laboratory is a technical challenge, not enough experimental data exist to test the existing theories. We report measurements of three fluid-saturated sandstones over a broad frequency band: Wilkenson, Berea, and Bentheim sandstones. Those sandstones samples, chosen for their variable porosities and mineral content, are saturated by fluids of varying viscosities. The samples elastic response (Young's modulus and Poisson's ratio) and hydraulic response (fluid flow out of the sample) are measured as a function of frequency. Large dispersion and attenuation phenomena are observed over the investigated frequency range. For all samples, the variation at lowest frequency relates to a large fluid flow directly measured out of the rock samples. These are the cause (i.e., fluid flow) and consequence (i.e., dispersion/attenuation) of the transition between drained and undrained regimes. Consistently, the characteristic frequency correlates with permeability for each sandstone. Beyond this frequency, a second variation is observed for all samples, but the rocks behave differently. For Berea sandstone, an onset of dispersion/attenuation is expected from both Young's modulus and Poisson's ratio at highest frequency. For Bentheim and Wilkenson sandstones, however, only Young's modulus shows dispersion/attenuation phenomena. For Wilkenson sandstone, the viscoelastic-like dispersion/attenuation response is interpreted as squirt flow. For Bentheim sandstone, the second effect does not fully follow such response, which could be due to a lower accuracy in the measured attenuation or to the occurence of another physical effect in this rock sample.
Energy Technology Data Exchange (ETDEWEB)
Yang Dong, E-mail: dyang@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi Province 710049 (China); Pan Jie; Wu Yanhua; Chen Tingkuan [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi Province 710049 (China); Zhou, Chenn Q. [Department of Mechanical Engineering, Purdue University Calumet, Hammond, IN 46323 (United States)
2011-08-15
Highlights: > A model is developed for the prediction of flow boiling in vertical porous tubes. > The model assumes that the nucleate boiling plays an important role. > The present model can predict most of the experimental values within {+-}20%. > The results indicate the nucleate boiling contribution decreases from 50% to 15%. - Abstract: A semi-analytical model is developed for the prediction of flow boiling heat transfer inside vertical porous coated tubes. The model assumes that the forced convection and nucleate boiling coexist together in the annular flow regime. Conservations of mass, momentum, and energy are used to solve for the liquid film thickness and temperature. The heat flux due to nucleate boiling consists of those inside and outside micro-tunnels. To close the equations, a detailed analysis of various forces acting on the bubble is presented to predict its mean departure diameter. The active nucleation site density of porous layer is determined from the pool boiling correlation by introducing suppression factor. The flow boiling heat transfer coefficients of organic fluid (cumene) with high saturation temperature in a vertical flame-spraying porous coated tube are studied numerically. It is shown that the present model can predict most of the experimental values within {+-}20%. The numerical results also indicate that the nucleate boiling contribution to the overall heat transfer coefficient decreases from 50% to 15% with vapor quality increasing from 0.1 to 0.5.
Modelling of Cortical Bone Tissue as a Fluid Saturated Double-Porous Material - Parametric Study
Directory of Open Access Journals (Sweden)
Jana TURJANICOVÁ
2013-06-01
Full Text Available In this paper, the cortical bone tissue is considered as a poroelastic material with periodic structure represented at microscopic and mesoscopic levels. The pores of microscopic scale are connected with the pores of mesoscopic scale creating one system of connected network filled with compressible fluid. The method of asymptotic homogenization is applied to upscale the microscopic model of the fluid-solid interaction under a static loading. Obtained homogenized coefficients describe material properties of the poroelastic matrix fractured by fluid-filled pores whose geometry is described at the mesoscopic level. The second-level upscaling provides homogenized poroelastic coefficients relevant on the macroscopic scale. Furthermore, we study the dependence of these coefficients on geometrical parameters on related microscopic and macroscopic scales.
LLUVIA-II: A program for two-dimensional, transient flow through partially saturated porous media
International Nuclear Information System (INIS)
Eaton, R.R.; Hopkins, P.L.
1992-08-01
LLUVIA-II is a program designed for the efficient solution of two- dimensional transient flow of liquid water through partially saturated, porous media. The code solves Richards equation using the method-of-lines procedure. This document describes the solution procedure employed, input data structure, output, and code verification
Analysis of a microscale 'Saturation Phase-change Internal Carnot Engine'
Energy Technology Data Exchange (ETDEWEB)
Lurie, Eli [School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Kribus, Abraham, E-mail: kribus@eng.tau.ac.i [School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)
2010-06-15
A micro heat engine, based on a cavity filled with a stationary working fluid under liquid-vapor saturation conditions and encapsulated by two membranes, is described and analyzed. This engine design is easy to produce using MEMS technologies and is operated with external heating and cooling. The motion of the membranes is controlled such that the internal pressure and temperature are constant during the heat addition and removal processes, and thus the fluid executes a true internal Carnot cycle. A model of this Saturation Phase-change Internal Carnot Engine (SPICE) was developed including thermodynamic, mechanical and heat transfer aspects. The efficiency and maximum power of the engine are derived. The maximum power point is fixed in a three-parameter space, and operation at this point leads to maximum power density that scales with the inverse square of the engine dimension. Inclusion of the finite heat capacity of the engine wall leads to a strong dependence of performance on engine frequency, and the existence of an optimal frequency. Effects of transient reverse heat flow, and 'parasitic heat' that does not participate in the thermodynamic cycle are observed.
Energy Technology Data Exchange (ETDEWEB)
Krizmanic, K; Peric, M
1973-01-01
The aim of this study is to acquaint the reader with the essential physical and production properties of the Sandrovac oil field. Extreme containment of carbon dioxide in fluids was encountered. Ranging in some places to 80%, this greatly influences physical properties of saturating fluids, and requires the study of the closest association of the content of carbon dioxide and physical parameters of fluids. At the same time, it enables the application of a qualitatively new and very efficient method of increasing the fluid recovery method of oil displacement by carbon dioxide. Principles and methods of calculating and processing the PVT data, capillary pressure, fluid saturations, relative permeabilities, and material balance calculations for tectonic blocks and hydrodynamic units, are given. (11 refs.)
Effect of pore geometry on the compressibility of a confined simple fluid
Dobrzanski, Christopher D.; Maximov, Max A.; Gor, Gennady Y.
2018-02-01
Fluids confined in nanopores exhibit properties different from the properties of the same fluids in bulk; among these properties is the isothermal compressibility or elastic modulus. The modulus of a fluid in nanopores can be extracted from ultrasonic experiments or calculated from molecular simulations. Using Monte Carlo simulations in the grand canonical ensemble, we calculated the modulus for liquid argon at its normal boiling point (87.3 K) adsorbed in model silica pores of two different morphologies and various sizes. For spherical pores, for all the pore sizes (diameters) exceeding 2 nm, we obtained a logarithmic dependence of fluid modulus on the vapor pressure. Calculation of the modulus at saturation showed that the modulus of the fluid in spherical pores is a linear function of the reciprocal pore size. The calculation of the modulus of the fluid in cylindrical pores appeared too scattered to make quantitative conclusions. We performed additional simulations at higher temperature (119.6 K), at which Monte Carlo insertions and removals become more efficient. The results of the simulations at higher temperature confirmed both regularities for cylindrical pores and showed quantitative difference between the fluid moduli in pores of different geometries. Both of the observed regularities for the modulus stem from the Tait-Murnaghan equation applied to the confined fluid. Our results, along with the development of the effective medium theories for nanoporous media, set the groundwork for analysis of the experimentally measured elastic properties of fluid-saturated nanoporous materials.
Benzaouia, Abdellah
2012-01-01
Saturated Switching Systems treats the problem of actuator saturation, inherent in all dynamical systems by using two approaches: positive invariance in which the controller is designed to work within a region of non-saturating linear behaviour; and saturation technique which allows saturation but guarantees asymptotic stability. The results obtained are extended from the linear systems in which they were first developed to switching systems with uncertainties, 2D switching systems, switching systems with Markovian jumping and switching systems of the Takagi-Sugeno type. The text represents a thoroughly referenced distillation of results obtained in this field during the last decade. The selected tool for analysis and design of stabilizing controllers is based on multiple Lyapunov functions and linear matrix inequalities. All the results are illustrated with numerical examples and figures many of them being modelled using MATLAB®. Saturated Switching Systems will be of interest to academic researchers in con...
International Nuclear Information System (INIS)
Liu Moubin; Meakin, Paul; Huang Hai
2007-01-01
Multiphase fluid motion in unsaturated fractures and fracture networks involves complicated fluid dynamics, which is difficult to model using grid-based continuum methods. In this paper, the application of dissipative particle dynamics (DPD), a relatively new mesoscale method to simulate fluid motion in unsaturated fractures is described. Unlike the conventional DPD method that employs a purely repulsive conservative (non-dissipative) particle-particle interaction to simulate the behavior of gases, we used conservative particle-particle interactions that combine short-range repulsive and long-range attractive interactions. This new conservative particle-particle interaction allows the behavior of multiphase systems consisting of gases, liquids and solids to be simulated. Our simulation results demonstrate that, for a fracture with flat parallel walls, the DPD method with the new interaction potential function is able to reproduce the hydrodynamic behavior of fully saturated flow, and various unsaturated flow modes including thin film flow, wetting and non-wetting flow. During simulations of flow through a fracture junction, the fracture junction can be fully or partially saturated depending on the wetting property of the fluid, the injection rate and the geometry of the fracture junction. Flow mode switching from a fully saturated flow to a thin film flow can also be observed in the fracture junction
Thermodynamically coupled mass transport processes in a saturated clay
International Nuclear Information System (INIS)
Carnahan, C.L.
1984-01-01
Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimension transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 refs., 8 figs
Thermodynamically coupled mass transport processes in a saturated clay
International Nuclear Information System (INIS)
Carnahan, C.L.
1984-11-01
Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table
Energy Technology Data Exchange (ETDEWEB)
Kim, Jihoon; Um, Evan; Moridis, George
2014-12-01
We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostly filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow
Studies of non-isothermal flow in saturated and partially saturated porous media
International Nuclear Information System (INIS)
Ho, C.K.; Maki, K.S.; Glass, R.J.
1993-01-01
Physical and numerical experiments have been performed to investigate the behavior of nonisothermal flow in two-dimensional saturated and partially saturated porous media. The physical experiments were performed to identify non-isothermal flow fields and temperature distributions in fully saturated, half-saturated, and residually saturated two-dimensional porous media with bottom heating and top cooling. Two counter-rotating liquid-phase convective cells were observed to develop in the saturated regions of all three cases. Gas-phase convection was also evidenced in the unsaturated regions of the partially saturated experiments. TOUGH2 numerical simulations of the saturated case were found to be strongly dependent on the assumed boundary conditions of the physical system. Models including heat losses through the boundaries of the test cell produced temperature and flow fields that were in better agreement with the observed temperature and flow fields than models that assumed insulated boundary conditions. A sensitivity analysis also showed that a reduction of the bulk permeability of the porous media in the numerical simulations depressed the effects of convection, flattening the temperature profiles across the test cell
Quétel, Christophe R; Zampella, Mariavittoria; Brown, Richard J C; Ent, Hugo; Horvat, Milena; Paredes, Eduardo; Tunc, Murat
2014-08-05
Data most commonly used at present to calibrate measurements of mercury vapor concentrations in air come from a relationship known as the "Dumarey equation". It uses a fitting relationship to experimental results obtained nearly 30 years ago. The way these results relate to the international system of units (SI) is not known. This has caused difficulties for the specification and enforcement of limit values for mercury concentrations in air and in emissions to air as part of national or international legislation. Furthermore, there is a significant discrepancy (around 7% at room temperature) between the Dumarey data and data calculated from results of mercury vapor pressure measurements in the presence of only liquid mercury. As an attempt to solve some of these problems, a new measurement procedure is described for SI traceable results of gaseous Hg concentrations at saturation in milliliter samples of air. The aim was to propose a scheme as immune as possible to analytical biases. It was based on isotope dilution (ID) in the liquid phase with the (202)Hg enriched certified reference material ERM-AE640 and measurements of the mercury isotope ratios in ID blends, subsequent to a cold vapor generation step, by inductively coupled plasma mass spectrometry. The process developed involved a combination of interconnected valves and syringes operated by computer controlled pumps and ensured continuity under closed circuit conditions from the air sampling stage onward. Quantitative trapping of the gaseous mercury in the liquid phase was achieved with 11.5 μM KMnO4 in 2% HNO3. Mass concentrations at saturation found from five measurements under room temperature conditions were significantly higher (5.8% on average) than data calculated from the Dumarey equation, but in agreement (-1.2% lower on average) with data based on mercury vapor pressure measurement results. Relative expanded combined uncertainties were estimated following a model based approach. They ranged from 2
Estimation of changes in saturation and pressure from 4D seismic AVO and time-shift analysis
Trani, M.; Arts, R.; Leeuwenburgh, O.; Brouwer, J.
2011-01-01
A reliable estimate of reservoir pressure and fluid saturation changes from time-lapse seismic data is difficult to obtain. Existing methods generally suffer from leakage between the estimated parameters. We propose a new method using different combinations of time-lapse seismic attributes based on
Transformation of seismic velocity data to extract porosity and saturation values for rocks
International Nuclear Information System (INIS)
Berryman, James G.; Berge, Patricia A.; Bonner, Brian P.
2000-01-01
For wave propagation at low frequencies in a porous medium, the Gassmann-Domenico relations are well-established for homogeneous partial saturation by a liquid. They provide the correct relations for seismic velocities in terms of constituent bulk and shear moduli, solid and fluid densities, porosity and saturation. It has not been possible, however, to invert these relations easily to determine porosity and saturation when the seismic velocities are known. Also, the state (or distribution) of saturation, i.e., whether or not liquid and gas are homogeneously mixed in the pore space, is another important variable for reservoir evaluation. A reliable ability to determine the state of saturation from velocity data continues to be problematic. It is shown how transforming compressional and shear wave velocity data to the (ρ/λ,μ/λ)-plane (where λ and μ are the Lame parameters and ρ is the total density) results in a set of quasi-orthogonal coordinates for porosity and liquid saturation that greatly aids in the interpretation of seismic data for the physical parameters of most interest. A second transformation of the same data then permits isolation of the liquid saturation value, and also provides some direct information about the state of saturation. By thus replotting the data in the (λ/μ, ρ/μ)-plane, inferences can be made concerning the degree of patchy (inhomogeneous) versus homogeneous saturation that is present in the region of the medium sampled by the data. Our examples include igneous and sedimentary rocks, as well as man-made porous materials. These results have potential applications in various areas of interest, including petroleum exploration and reservoir characterization, geothermal resource evaluation, environmental restoration monitoring, and geotechnical site characterization. (c) 2000 Acoustical Society of America
Fluid-Rock Characterization and Interactions in NMR Well Logging
Energy Technology Data Exchange (ETDEWEB)
Hirasaki, George J.; Mohanty, Kishore K.
2003-02-10
The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.
Modeling of carbon sequestration in coal-beds: A variable saturated simulation
International Nuclear Information System (INIS)
Liu Guoxiang; Smirnov, Andrei V.
2008-01-01
Storage of carbon dioxide in deep coal seams is a profitable method to reduce the concentration of green house gases in the atmosphere while the methane as a byproduct can be extracted during carbon dioxide injection into the coal seam. In this procedure, the key element is to keep carbon dioxide in the coal seam without escaping for a long term. It is depended on many factors such as properties of coal basin, fracture state, phase equilibrium, etc., especially the porosity, permeability and saturation of the coal seam. In this paper, a variable saturation model was developed to predict the capacity of carbon dioxide sequestration and coal-bed methane recovery. This variable saturation model can be used to track the saturation variability with the partial pressures change caused by carbon dioxide injection. Saturation variability is a key factor to predict the capacity of carbon dioxide storage and methane recovery. Based on this variable saturation model, a set of related variables including capillary pressure, relative permeability, porosity, coupled adsorption model, concentration and temperature equations were solved. From results of the simulation, historical data agree with the variable saturation model as well as the adsorption model constructed by Langmuir equations. The Appalachian basin, as an example, modeled the carbon dioxide sequestration in this paper. The results of the study and the developed models can provide the projections for the CO 2 sequestration and methane recovery in coal-beds within different regional specifics
D'Aniello, Andrea; Hartog, Niels; Sweijen, Thomas; Pianese, Domenico
2018-02-01
Mercury is a contaminant of global concern due to its harmful effects on human health and for the detrimental consequences of its release in the environment. Sources of liquid elemental mercury are usually anthropogenic, such as chlor-alkali plants. To date insight into the infiltration behaviour of liquid elemental mercury in the subsurface is lacking, although this is critical for assessing both characterization and remediation approaches for mercury DNAPL contaminated sites. Therefore, in this study the infiltration behaviour of elemental mercury in fully and partially water saturated systems was investigated using column experiments. The properties affecting the constitutive relations governing the infiltration behaviour of liquid Hg0, and PCE for comparison, were determined using Pc(S) experiments with different granular porous media (glass beads and sands) for different two- and three-phase configurations. Results showed that, in water saturated porous media, elemental mercury, as PCE, acted as a non-wetting fluid. The required entry head for elemental mercury was higher (from about 5 to 7 times). However, due to the almost tenfold higher density of mercury, the required NAPL entry heads of 6.19 cm and 12.51 cm for mercury to infiltrate were 37.5% to 20.7% lower than for PCE for the same porous media. Although Leverett scaling was able to reproduce the natural tendency of Hg0 to be more prone than PCE to infiltrate in water saturated porous media, it considerably underestimated Hg0 infiltration capacity in comparison with the experimental results. In the partially water saturated system, in contrast with PCE, elemental mercury also acted as a nonwetting fluid, therefore having to overcome an entry head to infiltrate. The required Hg0 entry heads (10.45 and 15.74 cm) were considerably higher (68.9% and 25.8%) than for the water saturated porous systems. Furthermore, in the partially water saturated systems, experiments showed that elemental mercury displaced
Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A
2017-05-01
The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.
International Nuclear Information System (INIS)
Lee, Hoseong; Hwang, Yunho; Song, Ilguk; Jang, Kilsang
2015-01-01
A transient thermal model of a passenger car's cabin is developed to investigate the dynamic behavior of cabin thermal conditions. The model is developed based on a lumped-parameter model and solved using integral methods. Solar radiation, engine heat through the firewall, and engine heat to the air ducts are all considered. Using the thermal model, transient temperature profiles of the interior mass and cabin air are obtained. This model is used to investigate the transient behavior of the cabin under various operating conditions: the recirculation mode in the idling state, the fresh air mode in the idling state, the recirculation mode in the driving state, and fresh air mode in the driving state. The developed model is validated by comparing with experimental data and is within 5% of deviation. The validated model is then applied for evaluating the mobile air conditioning system's design. The study found that a saturation cycle concept (four-stage cycle with two-phase refrigerant injection) could improve the system efficiency by 23.9% and reduce the power consumption by 19.3%. Lastly, several alternative refrigerants are applied and their performance is discussed. When the saturation cycle concept is applied, R1234yf MAC (mobile air conditioning) shows the largest COP (coefficient of performance) improvement and power consumption reduction. - Highlights: • The transient thermal model of the passenger car cabin is developed. • The developed model is validated with experimental data and showed 5% deviation. • Saturation cycle concept is applied to the developed cabin model. • There is 24% COP improvement by applying the saturation cycle concept. • R1234yf showed the highest potential when it is applied to the saturation cycle.
International Nuclear Information System (INIS)
Gajo, A.
2011-01-01
A general approach is proposed for defining the macroscopic free energy density function (and its complement, the free enthalpy) of a saturated porous medium submitted to finite deformations under non-isothermal conditions, in the case of compressible fluid and solid constituents. Reference is made to an elementary volume treated as an 'open system', moving with the solid skeleton. The proposed free energy depends on the generalised strains (namely an appropriate measure of the strain of the solid skeleton and the variation in fluid mass content) and the absolute temperatures of the solid and fluid phases (which are assumed to differ from each other for the sake of generality). This macroscopic energy proves to be a potential for the generalised stresses (namely the associated measure of the total stress and the free enthalpy of the pore fluid per unit mass) and the entropies of the solid and fluid phases. In contrast with mixture theories, the resulting free energy is not the simple sum of the free energies of the single constituents. Two simplified cases are examined in detail, i.e. the semi-linear theory (originally proposed for isothermal conditions and extended here to non-isothermal problems) and the linear theory. The proposed approach paves the way to the consistent non-isothermal-hyper-elastic-plastic modelling of saturated porous media with a compressible fluid and solid constituents. (authors)
International Nuclear Information System (INIS)
Ohnishi, Y.; Shibata, H.; Kobsayashi, A.
1987-01-01
A model is presented which describes fully coupled thermo-hydro-mechanical behavior of a porous geologic medium. The mathematical formulation for the model utilizes the Biot theory for the consolidation and the energy balance equation. If the medium is in the condition of saturated-unsaturated flow, then the free surfaces are taken into consideration in the model. The model, incorporated in a finite element numerical procedure, was implemented in a two-dimensional computer code. The code was developed under the assumptions that the medium is poro-elastic and in the plane strain condition; that water in the ground does not change its phase; and that heat is transferred by conductive and convective flow. Analytical solutions pertaining to consolidation theory for soils and rocks, thermoelasticity for solids and hydrothermal convection theory provided verification of stress and fluid flow couplings, respectively, in the coupled model. Several types of problems are analyzed
A Landau fluid model for dissipative trapped electron modes
International Nuclear Information System (INIS)
Hedrick, C.L.; Leboeuf, J.N.; Sidikman, K.L.
1995-09-01
A Landau fluid model for dissipative trapped electron modes is developed which focuses on an improved description of the ion dynamics. The model is simple enough to allow nonlinear calculations with many harmonics for the times necessary to reach saturation. The model is motivated by a discussion that starts with the gyro-kinetic equation and emphasizes the importance of simultaneously including particular features of magnetic drift resonance, shear, and Landau effects. To ensure that these features are simultaneously incorporated in a Landau fluid model with only two evolution equations, a new approach to determining the closure coefficients is employed. The effect of this technique is to reduce the matching of fluid and kinetic responses to a single variable, rather than two, and to allow focusing on essential features of the fluctuations in question, rather than features that are only important for other types of fluctuations. Radially resolved nonlinear calculations of this model, advanced in time to reach saturation, are presented to partially illustrate its intended use. These calculations have a large number of poloidal and toroidal harmonics to represent the nonlinear dynamics in a converged steady state which includes cascading of energy to both short and long wavelengths
Zhang, Yan-Hong; Ye, Shu-Jun; Wu, Ji-Chun
2014-06-01
Based on light transmission method in quantification of liquid saturation and its application in two-phase flow system, two groups of sandbox experiments were set up to study the migration of gas or Dense Non-Aqueous Phase Liquids (DNAPLs) in water saturated porous media. The migration of gas or DNAPL was monitored in the study. Two modified Light Intensity-Saturation (LIS) models for water/gas two-phase system were applied and verified by the experiment data. Moreover two new LIS models for NAPL/water system were developed and applied to simulate the DNAPL infiltration experiment data. The gas injection experiment showed that gas moved upward to the top of the sandbox in the form of 'fingering' and finally formed continuous distribution. The results of DNAPL infiltration experiment showed that TCE mainly moved downward as the result of its gravity, eventually formed irregular plume and accumulated at the bottom of the sandbox. The outcomes of two LIS models for water/gas system (WG-A and WG-B) were consistent to the measured data. The results of two LIS models for NAPL/water system (NW-A and NW-B) fit well with the observations, and Model NW-A based on assumption of individual drainage gave better results. It could be a useful reference for quantification of NAPL/water saturation in porous media system.
Rigid Body Sampling and Individual Time Stepping for Rigid-Fluid Coupling of Fluid Simulation
Directory of Open Access Journals (Sweden)
Xiaokun Wang
2017-01-01
Full Text Available In this paper, we propose an efficient and simple rigid-fluid coupling scheme with scientific programming algorithms for particle-based fluid simulation and three-dimensional visualization. Our approach samples the surface of rigid bodies with boundary particles that interact with fluids. It contains two procedures, that is, surface sampling and sampling relaxation, which insures uniform distribution of particles with less iterations. Furthermore, we present a rigid-fluid coupling scheme integrating individual time stepping to rigid-fluid coupling, which gains an obvious speedup compared to previous method. The experimental results demonstrate the effectiveness of our approach.
Energy Technology Data Exchange (ETDEWEB)
Hader, J.; Moloney, J. V. [Nonlinear Control Strategies, Inc., 3542 N. Geronimo Ave., Tucson, Arizona 85705 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Yang, H.-J.; Scheller, M. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Koch, S. W. [Department of Physics and Materials Sciences Center, Philipps Universität Marburg, Renthof 5, 35032 Marburg (Germany)
2016-02-07
Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.
Seismic response analysis of the deep saturated soil deposits in Shanghai
Huang, Yu; Ye, Weimin; Chen, Zhuchang
2009-01-01
The quaternary deposits in Shanghai are horizontal soil layers of thickness up to about 280 m in the urban area with an annual groundwater table between 0.5 and 0.7 m from the surface. The characteristics of deep saturated deposits may have important influences upon seismic response of the ground in Shanghai. Based on the Biot theory for porous media, the water-saturated soil deposits are modeled as a two-phase porous system consisting of solid and fluid phases, in this paper. A nonlinear constitutive model for predicting the seismic response of the ground is developed to describe the dynamic characters of the deep-saturated soil deposits in Shanghai. Subsequently, the seismic response of a typical site with 280 m deep soil layers, which is subjected to four base excitations (El Centro, Taft, Sunan, and Tangshan earthquakes), is analyzed in terms of an effective stress-based finite element method with the proposed constitutive model. Special emphasis is given to the computed results of accelerations, excess pore-water pressures, and settlements during the seismic excitations. It has been found that the analysis can capture fundamental aspects of the ground response and produce preliminary results for seismic assessment.
Transient response of a cylindrical cavity in viscoelastic saturated porous medium
Directory of Open Access Journals (Sweden)
LIU Tao
2016-10-01
Full Text Available The study on dynamic characteristics for fluid-solid coupling system in saturated porous medium is of significant academic value and potential application foreground.In this paper,the transient response of a cylindrical cavity in infinite viscoelastic saturated porous medium with the circular lining is studied,and the corresponding results can be used in the design of foundation engineering,such as the tunnel analyses in saturated soil,the nuclear waste disposal engineering,and the exploitation and utilization of geothermal reservoirs and so on.Firstly,based on the porous media theory,the governing equations of coupled system are presented,and the corresponding boundary conditions,initial conditions as well as the joint conditions are derived.Then,the differential quadrature element method and the second-order backward difference scheme are applied to discretize the governing differential equations of the coupled system on the spatial and temporal domains,respectively.Finally,the Newton-Raphson method is adopted to solve the discretization equations with the initial conditions,the transient responses of the coupled system are analyzed,the effects of the parameters are considered,and the validity of the numerical method is verified.
Directory of Open Access Journals (Sweden)
WANG Hua-cheng
2013-02-01
Full Text Available Background The diagnosis of encephalitis depends on the finding of pathogens in the brain parenchyma or cerebrospinal fluid (CSF. But the success rates of finding pathogens by microscope are low by the traditional specimens handling procedure in which pathogens are detected by direct centrifugation of CSF getting from lumbar puncture. The process of pathogen collection from the CSF such as centrifugation and washing would cause the destruction and loss of pathogens, resulting in a lower rate of pathogen discovery. Therefore, in order to increase the detection rate of pathogenic microorganisms in CSF, these traditional steps need to be improved. Methods CSF samples of 23 patients with suspected viral encephalitis and 10 control patients with fracture were prepared by two methods: traditional specimens handling procedure (TSHP and improved specimens handling procedure (ISHP. In the ISHP, a final concentration of 2.5% glutaraldehyde was added to CSF in a glass tube, mixed and kept not moving in 4 ℃ for 2 to 4 h or in 37 ℃for 1 h. Then a smear was made from the sediment formed in the tube to check pathogens by microscope. As for the TSHP, pathogens were collected by direct centrifugation of CSF which had not been treated after lumbar puncture, and checked through Gimenze staining. Results There was no statistically significant difference between the two dealing procedures in the control group ( P = 1.000. As for the case group, there were 10 cases showing positive in Pandy test after TSHP, and visible sediments were seen in all the 23 cases after ISHP. There was statistically significant difference between two kinds of CSF treatment for the finding of pathogens (P = 0.000. Seven cases presented pathogen growth in CSF and were diagosed as rickettsial infections by Gimenze staining, immunofluorescence assay (IFA and polymerase chain reaction (PCR. Conclusion Improved specimens handling procedures of CSF contribute to the seperation of cells
The relation between oxygen saturation level and retionopathy of prematurity
Directory of Open Access Journals (Sweden)
Mohammad Gharavi Fard
2016-03-01
Full Text Available Introduction: Oxygen therapy used for preterm infant disease might be associated with oxygen toxicity or oxidative stress. The exact oxygen concentration to control and maintain the arterial oxygen saturation balance is not certainly clear. We aimed to compare the efficacy of higher or lower oxygen saturations on the development of severe retinopathy of prematurity which is a major cause of blindness in preterm neonates. Methods: PubMed was searched for obtaining the relevant articles. A total of seven articles were included after studying the titles, abstracts, and the full text of retrieved articles at initial search. Inclusion criteria were all the English language human clinical randomized controlled trials with no time limitation, which studied the efficacy of low versus high oxygen saturation measured by pulse oximetry in preterm infants.Result: It can be suggested that lower limits of oxygen saturations have higher efficacy at postmesetural age of ≤28 weeks in preterm neonates. This relation has been demonstrated in five large clinical trials including three Boost trials, COT, and Support.Discussion: Applying higher concentrations of oxygen supplementations at mesentural age ≥32 weeks reduced the development of retinopathy of prematurity. Lower concentrations of oxygen saturation decreased the incidence and the development of retinopathy of prematurity in preterm neonates while applied soon after the birth.Conclusions: Targeting levels of oxygen saturation in the low or high range should be performed cautiously with attention to the postmesentural age in preterm infants at the time of starting the procedures.
International Nuclear Information System (INIS)
Benson, A.K.; Wu, J.
2000-01-01
Two of the needed elastic parameters for predicting velocities in porous, fluid-filled rocks, the bulk modulus of the empty, porous rock and the shear modulus of the rock, are very difficult to obtain in situ. A novel modeling approach is developed by inverting the Biot-Geertsma-Gassmann (BGG) and shear-wave equations to generate values for the bulk and shear moduli, respectively, by using available velocity and porosity data obtained from borehole logs and/or cores from water/brine-saturated rocks. These values of bulk and shear moduli, along with reasonable in-situ estimates of rock-matrix and fluid parameters generated from the Batzle-Wang formulation, are then used to predict compressional and shear-wave velocities, compressional-shear wave ratios, and reflection coefficients at the interfaces between host rocks and fluid-saturated rocks, either fully or partially saturated with hydrocarbons or water, as a function of depth and/or porosity
Korolev, E.; Eskin, A.; Kolchugin, A.; Morozov, V.; Khramchenkov, M.; Gabdelvalieva, R.
2018-05-01
Ashalchinskoye bitumen deposit is an experimental platform for testing technology of high-viscosity oil extraction from reservoir rocks. Last time for enhanced of oil recovery in reservoir used pressurization a water vapor with a temperature of ∼ 180 ° C (SAGD technology). However, what happens in sandstone reservoir is little known. We did a study of the effects of water vapor on the structural components of bitumen saturated sandstone. In paper were studied the rock samples at base condition and after one week exposure by water vapour. The thermal analysis showed that steaming helps to removes light and middle oil fractions with a boiling point up to 360 ° C from oil saturated sandstones. Content of heavy oil fractions virtually unchanged. Studying the composition of water extractions of samples showed that the process of aquathermolysis of oil is accompanied by a lowering of the pH of the pore solution from 7.4 to 6.5 and rise content in several times of mobile cations Ca2+, Mg2+ and HCO3 -, SO4 2- anions. Follows from this that the thermal steam effect by bitumen saturated sandstones leads to partial oxidation of hydrocarbons with to form a carbon dioxide. The source of sulfate ions were oxidized pyrite aggregates. Due to the increasing acidity of condensed water, which fills the pore space of samples, pore fluid becomes aggressive to calcite and dolomite cement of bitumen saturated sandstones. As a result of the dissolution of carbonate cement the pore fluid enriched by calcium and magnesium cations. Clearly, that the process is accompanied by reduction of contact strength between fragments of minerals and rocks. Resulting part of compounds is separated from the outer side of samples and falls to bottom of water vapor container. Decreasing the amount of calcite and dolomite anions in samples in a steam-treated influence is confirmed by X-Ray analysis. X-Ray analysis data of study adscititious component of rocks showed that when influenced of water vapor to
Energy Technology Data Exchange (ETDEWEB)
Braz Filho, Francisco A.; Caldeira, Alexandre D.; Borges, Eduardo M., E-mail: fbraz@ieav.cta.b, E-mail: alexdc@ieav.cta.b, E-mail: eduardo@ieav.cta.b [Instituto de Estudos Avancados (IEAv/CTA), Sao Jose dos Campos, SP (Brazil). Div. de Energia Nuclear
2011-07-01
In a heated vertical channel, the subcooled flow boiling regime occurs when the bulk fluid temperature is lower than the saturation temperature, but the fluid temperature reaches the saturation point near the channel wall. This phenomenon produces a significant increase in heat flux, limited by the critical heat flux. This study is particularly important to the thermal-hydraulics analysis of pressurized water reactors. The purpose of this work is the validation of a multidimensional model to analyze the subcooled flow boiling comparing the results with experimental data found in literature. The computational fluid dynamics code FLUENT was used with Eulerian multiphase model option. The calculated values of wall temperature in the liquid-solid interface presented an excellent agreement when compared to the experimental data. Void fraction calculations presented satisfactory results in relation to the experimental data in pressures of 15, 30 and 45 bars. (author)
International Nuclear Information System (INIS)
Braz Filho, Francisco A.; Caldeira, Alexandre D.; Borges, Eduardo M.
2011-01-01
In a heated vertical channel, the subcooled flow boiling regime occurs when the bulk fluid temperature is lower than the saturation temperature, but the fluid temperature reaches the saturation point near the channel wall. This phenomenon produces a significant increase in heat flux, limited by the critical heat flux. This study is particularly important to the thermal-hydraulics analysis of pressurized water reactors. The purpose of this work is the validation of a multidimensional model to analyze the subcooled flow boiling comparing the results with experimental data found in literature. The computational fluid dynamics code FLUENT was used with Eulerian multiphase model option. The calculated values of wall temperature in the liquid-solid interface presented an excellent agreement when compared to the experimental data. Void fraction calculations presented satisfactory results in relation to the experimental data in pressures of 15, 30 and 45 bars. (author)
Berasategi, Joanes; Gomez, Ainara; Mounir Bou-Ali, M.; Gutiérrez, Jon; Barandiarán, Jose Manuel; Beketov, Igor V.; Safronov, Aleksander P.; Kurlyandskaya, Galina V.
2018-04-01
Iron magnetic nanoparticles were produced by the technique of the electric explosion of a wire (EEW). The major crystalline phase (95 ± 1%) was α-Fe with lattice parameter a = 0.2863(3) nm. The size of the coherent diffraction domains of this phase was 77 ± 3 nm. The EEW MNPs presented a large saturation magnetization value, reaching about 87% of the saturation magnetization of the bulk iron. EEW NMPs demonstrated an improved magnetic performance when used in magnetorheological (MR) fluids with respect to the commercial carbonyl iron particles (CIPs) micron-sized particles studied for comparison. The MR fluids composed with the EEW nanoparticles showed larger yield stress values than those with CIP micron-sized particles, so proving that the EEW MNPs have a high potential for MR fluids applications.
Low-frequency asymptotic analysis of seismic reflection from afluid-saturated medium
Energy Technology Data Exchange (ETDEWEB)
Silin, D.B.; Korneev, V.A.; Goloshubin, G.M.; Patzek, T.W.
2004-04-14
Reflection of a seismic wave from a plane interface betweentwo elastic media does not depend on the frequency. If one of the mediais poroelastic and fluid-saturated, then the reflection becomesfrequency-dependent. This paper presents a low-frequency asymptoticformula for the reflection of seismic plane p-wave from a fluid-saturatedporous medium. The obtained asymptotic scaling of the frequency-dependentcomponent of the reflection coefficient shows that it is asymptoticallyproportional to the square root of the product of the reservoir fluidmobility and the frequency of the signal. The dependence of this scalingon the dynamic Darcy's law relaxation time is investigated as well.Derivation of the main equations of the theory of poroelasticity from thedynamic filtration theory reveals that this relaxation time isproportional to Biot's tortuosity parameter.
Modeling studies of multiphase fluid and heat flow processes in nuclear waste isolation
International Nuclear Information System (INIS)
Pruess, K.
1989-01-01
Multiphase fluid and heat flow plays an important role in many problems relating to the disposal of nuclear wastes in geologic media. Examples include boiling and condensation processes near heat-generating wastes, flow of water and formation gas in partially saturated formations, evolution of a free gas phase from waste package corrosion in initially water-saturated environments, and redistribution (dissolution, transport and precipitation) of rock minerals in non-isothermal flow fields. Such processes may strongly impact upon waste package and repository design considerations and performance. This paper summarizes important physical phenomena occurring in multiphase and nonisothermal flows, as well as techniques for their mathematical modeling and numerical simulation. Illustrative applications are given for a number of specific fluid and heat flow problems, including: thermohydrologic conditions near heat-generating waste packages in the unsaturated zone; repositorywide convection effects in the unsaturated zone; effects of quartz dissolution and precipitation for disposal in the saturated zone; and gas pressurization and flow effects from corrosion of low-level waste packages
Nothias, Louis-Félix; Boutet-Mercey, Stéphanie; Cachet, Xavier; De La Torre, Erick; Laboureur, Laurent; Gallard, Jean-François; Retailleau, Pascal; Brunelle, Alain; Dorrestein, Pieter C; Costa, Jean; Bedoya, Luis M; Roussi, Fanny; Leyssen, Pieter; Alcami, José; Paolini, Julien; Litaudon, Marc; Touboul, David
2017-10-27
A supercritical fluid chromatography-based targeted purification procedure using tandem mass spectrometry and molecular networking was developed to analyze, annotate, and isolate secondary metabolites from complex plant extract mixture. This approach was applied for the targeted isolation of new antiviral diterpene esters from Euphorbia semiperfoliata whole plant extract. The analysis of bioactive fractions revealed that unknown diterpene esters, including jatrophane esters and phorbol esters, were present in the samples. The purification procedure using semipreparative supercritical fluid chromatography led to the isolation and identification of two new jatrophane esters (13 and 14) and one known (15) and three new 4-deoxyphorbol esters (16-18). The structure and absolute configuration of compound 16 were confirmed by X-ray crystallography. This compound was found to display antiviral activity against Chikungunya virus (EC 50 = 0.45 μM), while compound 15 proved to be a potent and selective inhibitor of HIV-1 replication in a recombinant virus assay (EC 50 = 13 nM). This study showed that a supercritical fluid chromatography-based protocol and molecular networking can facilitate and accelerate the discovery of bioactive small molecules by targeting molecules of interest, while minimizing the use of toxic solvents.
Davis, Bradley; Welch, Katherine; Walsh-Hart, Sharon; Hanseman, Dennis; Petro, Michael; Gerlach, Travis; Dorlac, Warren; Collins, Jocelyn; Pritts, Timothy
2014-08-01
Critical Care Air Transport Teams (CCATTs) are a critical component of the United States Air Force evacuation paradigm. This study was conducted to assess the incidence of task saturation in simulated CCATT missions and to determine if there are predictable performance domains. Sixteen CCATTs were studied over a 6-month period. Performance was scored using a tool assessing eight domains of performance. Teams were also assessed during critical events to determine the presence or absence of task saturation and its impact on patient care. Sixteen simulated missions were reviewed and 45 crisis events identified. Task saturation was present in 22/45 (49%) of crisis events. Scoring demonstrated that task saturation was associated with poor performance in teamwork (odds ratio [OR] = 1.96), communication (OR = 2.08), and mutual performance monitoring (OR = 1.9), but not maintenance of guidelines, task management, procedural skill, and equipment management. We analyzed the effect of task saturation on adverse patient outcomes during crisis events. Adverse outcomes occurred more often when teams were task saturated as compared to non-task-saturated teams (91% vs. 23%; RR 4.1, p < 0.0001). Task saturation is observed in simulated CCATT missions. Nontechnical skills correlate with task saturation. Task saturation is associated with worsening physiologic derangements in simulated patients. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.
A correction procedure for thermally two-way coupled point-particles
Horwitz, Jeremy; Ganguli, Swetava; Mani, Ali; Lele, Sanjiva
2017-11-01
Development of a robust procedure for the simulation of two-way coupled particle-laden flows remains a challenge. Such systems are characterized by O(1) or greater mass of particles relative to the fluid. The coupling of fluid and particle motion via a drag model means the undisturbed fluid velocity evaluated at the particle location (which is needed in the drag model) is no longer equal to the interpolated fluid velocity at the particle location. The same issue arises in problems of dispersed flows in the presence of heat transfer. The heat transfer rate to each particle depends on the difference between the particle's temperature and the undisturbed fluid temperature. We borrow ideas from the correction scheme we have developed for particle-fluid momentum coupling by developing a procedure to estimate the undisturbed fluid temperature given the disturbed temperature field created by a point-particle. The procedure is verified for the case of a particle settling under gravity and subject to radiation. The procedure is developed in the low Peclet, low Boussinesq number limit, but we will discuss the applicability of the same correction procedure outside of this regime when augmented by appropriate drag and heat exchange correlations. Supported by DOE, J. H. Supported by NSF GRF
Inelastic neutron scattering reactions in fluid saturated rock as exploited in oil well logging
International Nuclear Information System (INIS)
Underwood, M.C.; Dyos, C.J.
1986-01-01
Oil saturated sandstone and limestone targets have been irradiated with 14 MeV neutrons. Gamma-ray spectra were accumulated and the γ-ray intensities arising from inelastic neutron scattering reactions upon carbon and oxygen measured. The results are compared with the predictions of a simple model. They enable some features of the response of (n,γ) tools used in oil well logging to be established and current uncertainties in understanding to be highlighted. (author)
Working fluid selection for organic Rankine cycles - Impact of uncertainty of fluid properties
DEFF Research Database (Denmark)
Frutiger, Jerome; Andreasen, Jesper Graa; Liu, Wei
2016-01-01
of processmodels and constraints 2) selection of property models, i.e. Penge Robinson equation of state 3)screening of 1965 possible working fluid candidates including identification of optimal process parametersbased on Monte Carlo sampling 4) propagating uncertainty of fluid parameters to the ORC netpower output......This study presents a generic methodology to select working fluids for ORC (Organic Rankine Cycles)taking into account property uncertainties of the working fluids. A Monte Carlo procedure is described as a tool to propagate the influence of the input uncertainty of the fluid parameters on the ORC....... The net power outputs of all the feasible working fluids were ranked including their uncertainties. The method could propagate and quantify the input property uncertainty of the fluidproperty parameters to the ORC model, giving an additional dimension to the fluid selection process. In the given analysis...
International Nuclear Information System (INIS)
Chuang, Y.; Haldeman, W.R.; Rasmussen, T.C.; Evans, D.D.
1990-02-01
Laboratory techniques are developed that allow concurrent measurement of unsaturated matrix hydraulic conductivity and fracture transmissivity of fractured rock blocks. Two Apache Leap tuff blocks with natural fractures were removed from near Superior, Arizona, shaped into rectangular prisms, and instrumented in the laboratory. Porous ceramic plates provided solution to block tops at regulated pressures. Infiltration tests were performed on both test blocks. Steady flow testing of the saturated first block provided estimates of matrix hydraulic conductivity and fracture transmissivity. Fifteen centimeters of suction applied to the second block top showed that fracture flow was minimal and matrix hydraulic conductivity was an order of magnitude less than the first block saturated matrix conductivity. Coated-wire ion-selective electrodes monitored aqueous chlorided breakthrough concentrations. Minute samples of tracer solution were collected with filter paper. The techniques worked well for studying transport behavior at near-saturated flow conditions and also appear to be promising for unsaturated conditions. Breakthrough curves in the fracture and matrix, and a concentration map of chloride concentrations within the fracture, suggest preferential flows paths in the fracture and substantial diffusion into the matrix. Average travel velocity, dispersion coefficient and longitudinal dispersivity in the fracture are obtained. 67 refs., 54 figs., 23 tabs
Gluon saturation in a saturated environment
International Nuclear Information System (INIS)
Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan
2011-01-01
A bootstrap equation for self-quenched gluon shadowing leads to a reduced magnitude of broadening for partons propagating through a nucleus. Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. In nucleus-nucleus collisions all participating nucleons acquire enhanced gluon density at small x, which boosts further the saturation scale. Solution of the reciprocity equations for central collisions of two heavy nuclei demonstrate a significant, up to several times, enhancement of Q sA 2 , in AA compared with pA collisions.
Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites
Martinez, Amos; Al Araimi, Mohammed; Dmitriev, Artemiy; Lutsyk, Petro; Li, Shen; Mou, Chengbo; Rozhin, Alexey; Sumetsky, Misha; Turitsyn, Sergei
2017-12-01
The emergence of low-dimensional materials has opened new opportunities in the fabrication of compact nonlinear photonic devices. Single-walled carbon nanotubes were among the first of those materials to attract the attention of the photonics community owing to their high third order susceptibility, broadband operation, and ultrafast response. Saturable absorption, in particular, has become a widespread application for nanotubes in the mode-locking of a fiber laser where they are used as nonlinear passive amplitude modulators to initiate pulsed operation. Numerous approaches have been proposed for the integration of nanotubes in fiber systems; these can be divided into those that rely on direct interaction (where the nanotubes are sandwiched between fiber connectors) and those that rely on lateral interaction with the evanescence field of the propagating wave. Tapered fibers, in particular, offer excellent flexibility to adjust the nonlinearity of nanotube-based devices but suffer from high losses (typically exceeding 50%) and poor saturable to non-saturable absorption ratios (typically above 1:5). In this paper, we propose a method to fabricate carbon nanotube saturable absorbers with controllable saturation power, low-losses (as low as 15%), and large saturable to non-saturable loss ratios approaching 1:1. This is achieved by optimizing the procedure of embedding tapered fibers in low-refractive index polymers. In addition, this study sheds light in the operation of these devices, highlighting a trade-off between losses and saturation power and providing guidelines for the design of saturable absorbers according to their application.
Sadovskii, Vladimir; Sadovskaya, Oxana
2017-04-01
A thermodynamically consistent approach to the description of linear and nonlinear wave processes in a blocky medium, which consists of a large number of elastic blocks interacting with each other via pliant interlayers, is proposed. The mechanical properties of interlayers are defined by means of the rheological schemes of different levels of complexity. Elastic interaction between the blocks is considered in the framework of the linear elasticity theory [1]. The effects of viscoelastic shear in the interblock interlayers are taken into consideration using the Pointing-Thomson rheological scheme. The model of an elastic porous material is used in the interlayers, where the pores collapse if an abrupt compressive stress is applied. On the basis of the Biot equations for a fluid-saturated porous medium, a new mathematical model of a blocky medium is worked out, in which the interlayers provide a convective fluid motion due to the external perturbations. The collapse of pores is modeled within the generalized rheological approach, wherein the mechanical properties of a material are simulated using four rheological elements. Three of them are the traditional elastic, viscous and plastic elements, the fourth element is the so-called rigid contact [2], which is used to describe the behavior of materials with different resistance to tension and compression. Thermodynamic consistency of the equations in interlayers with the equations in blocks guarantees fulfillment of the energy conservation law for a blocky medium in a whole, i.e. kinetic and potential energy of the system is the sum of kinetic and potential energies of the blocks and interlayers. As a result of discretization of the equations of the model, robust computational algorithm is constructed, that is stable because of the thermodynamic consistency of the finite difference equations at a discrete level. The splitting method by the spatial variables and the Godunov gap decay scheme are used in the blocks, the
Energy Technology Data Exchange (ETDEWEB)
Haartsen, M.W.; Mikhailov, O.V.; Queen, J.H. [and others
1997-07-01
The U.S. Department of Energy funded the M.I.T. Earth Resources Laboratory to investigate electroseismic phenomena. Because electroseismic phenomena in fluid-saturated porous media provide geophysicists with a unique opportunity to detect a seismic-wave-generated flow of pore fluid with respect to the porous matrix. The term {open_quotes}electroseismic{close_quotes} describes phenomena in which a seismic wave induces an electrical field or causes radiation of an electromagnetic wave. Electroseismic phenomena take place in fluid-saturated porous rocks, because the pore fluid carries an excess electrical charge. When the charged pore fluid is forced to flow through the rock by pressure gradients within a seismic wave, a streaming electrical current is generated. This electrical current results in charge separation, which induces an electrical field. Measuring this seismic-wave-induced electrical field allows detection of the fluid flow generated by the wave in the porous medium. In turn, detecting the fluid flow allows characterization of fluid transport properties of the medium. The major contribution of our research is in the following three areas: (1) Theory. Theoretical models of various electroseismic phenomena in fluid-saturated porous media were developed. Numerical algorithms were developed for modeling electroseismic measurements in surface (Paper 1 in this report) and VSP (Paper 2) geometries. A closed-form analytical expression was obtained for the logging geometry (Paper 8). The major result is the theoretical models` prediction that porosity, permeability, and fluid chemistry can be characterized using electroseismic measurements; (2) Laboratory Experiments. A number of laboratory experiments were performed in surface (Paper 4), VSP (Paper 4), and logging (Paper 5) geometries. In addition, conversion of electrical energy into seismic energy was investigated (Paper 6), and (3) Field Measurements.
David, C.; Dautriat, J. D.; Sarout, J.; Macault, R.; Bertauld, D.
2014-12-01
Water weakening is a well-known phenomenon which can lead to subsidence during the production of hydrocarbon reservoirs. The example of the Ekofisk oil field in the North Sea has been well documented for years. In order to assess water weakening effects in reservoir rocks, previous studies have focused on changes in the failure envelopes derived from mechanical tests conducted on rocks saturated either with water or with inert fluids. However, little attention has been paid so far on the mechanical behaviour during the fluid injection stage, like in enhanced oil recovery operations. We studied the effect of fluid injection on the mechanical behaviour of Sherwood sandstone, a weakly-consolidated sandstone sampled at Ladram Bay in UK. In order to highlight possible weakening effects, water and inert oil have been injected into critically-loaded samples to assess their effect on strength and elastic properties and to derive the acoustic signature of the saturation front for each fluid. The specimens were instrumented with 16 ultrasonic P-wave transducers for both passive and active acoustic monitoring during fluid injection and loading. After conducting standard triaxial tests on three samples saturated with air, water and oil respectively, mechanical creep tests were conducted on dry samples loaded at 80% of the compressive strength of the dry rock. While these conditions are kept constant, a fluid is injected at the bottom end of the sample with a low back pressure (0.5 MPa) to minimize effective stress variations during injection. Both water and oil were used as the injected pore fluid in two experiments. As soon as the fluids start to flow into the samples, creep is taking place with a much higher strain rate for water injection compared to oil injection. A transition from secondary creep to tertiary creep is observed in the water injection test whereas in the oil injection test no significant creep acceleration is observed after one pore volume of oil was
Mills, G A; Walker, V
2000-12-01
Solid-phase microextraction (SPME) is a new solventless sample preparation technique that is finding wide usage. This review provides updated information on headspace SPME with gas chromatographic separation for the extraction and measurement of volatile and semivolatile analytes in biological fluids and materials. Firstly the background to the technique is given in terms of apparatus, fibres used, extraction conditions and derivatisation procedures. Then the different matrices, urine, blood, faeces, breast milk, hair, breath and saliva are considered separately. For each, methods appropriate for the analysis of drugs and metabolites, solvents and chemicals, anaesthetics, pesticides, organometallics and endogenous compounds are reviewed and the main experimental conditions outlined with specific examples. Then finally, the future potential of SPME for the analysis of biological samples in terms of the development of new devices and fibre chemistries and its coupling with high-performance liquid chromatography is discussed.
An XFEM Model for Hydraulic Fracturing in Partially Saturated Rocks
Directory of Open Access Journals (Sweden)
Salimzadeh Saeed
2016-01-01
Full Text Available Hydraulic fracturing is a complex multi-physics phenomenon. Numerous analytical and numerical models of hydraulic fracturing processes have been proposed. Analytical solutions commonly are able to model the growth of a single hydraulic fracture into an initially intact, homogeneous rock mass. Numerical models are able to analyse complex problems such as multiple hydraulic fractures and fracturing in heterogeneous media. However, majority of available models are restricted to single-phase flow through fracture and permeable porous rock. This is not compatible with actual field conditions where the injected fluid does not have similar properties as the host fluid. In this study we present a fully coupled hydro-poroelastic model which incorporates two fluids i.e. fracturing fluid and host fluid. Flow through fracture is defined based on lubrication assumption, while flow through matrix is defined as Darcy flow. The fracture discontinuity in the mechanical model is captured using eXtended Finite Element Method (XFEM while the fracture propagation criterion is defined through cohesive fracture model. The discontinuous matrix fluid velocity across fracture is modelled using leak-off loading which couples fracture flow and matrix flow. The proposed model has been discretised using standard Galerkin method, implemented in Matlab and verified against several published solutions. Multiple hydraulic fracturing simulations are performed to show the model robustness and to illustrate how problem parameters such as injection rate and rock permeability affect the hydraulic fracturing variables i.e. injection pressure, fracture aperture and fracture length. The results show the impact of partial saturation on leak-off and the fact that single-phase models may underestimate the leak-off.
Fluid simulations of toroidal ion temperature gradient turbulence
International Nuclear Information System (INIS)
Sandberg, I.; Isliker, H.; Pavlenko, V.P.; Hizanidis, K.; Vlahos, L.
2006-01-01
The evolution of the toroidal ion temperature gradient mode instability is numerically studied by using the equations based on the standard reactive fluid model. The long-term dynamics of the instability are investigated using random-phase, small-amplitude fluctuations for initial conditions. The main events during the evolution of the instability that lead to the formation of large-scale coherent structures are described and the role of the dominant nonlinearities is clarified. The polarization drift nonlinearity leads to the inverse energy cascade while the convective ion heat nonlinearity is responsible for the saturation of the instability. Finally, the sensitivity of the saturated state to the initial plasma conditions is examined
Fluid Dynamics Theory, Computation, and Numerical Simulation
Pozrikidis, Constantine
2009-01-01
Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...
Design guide for calculating fluid damping for circular cylindrical structures
International Nuclear Information System (INIS)
Chen, S.S.
1983-06-01
Fluid damping plays an important role for structures submerged in fluid, subjected to flow, or conveying fluid. This design guide presents a summary of calculational procedures and design data for fluid damping for circular cylinders vibrating in quiescent fluid, crossflow, and parallel flow
Bali, Enikő; Audétat, Andreas; Keppler, Hans
2011-04-01
The solubility of U and Th in aqueous solutions at P-T-conditions relevant for subduction zones was studied by trapping uraninite or thorite saturated fluids as synthetic fluid inclusions in quartz and analyzing their composition by Laser Ablation-ICPMS. Uranium is virtually insoluble in aqueous fluids at Fe-FeO buffer conditions, whereas its solubility increases both with oxygen fugacity and with salinity to 960 ppm at 26.1 kbar, Re-ReO2 buffer conditions and 14.1 wt% NaCl in the fluid. At 26.1 kbar and 800°C, uranium solubility can be reproduced by the equation: log {{U}} = 2.681 + 0.1433log f{{O}}2 + 0.594{{Cl,}} where fO2 is the oxygen fugacity, and Cl is the chlorine content of the fluid in molality. In contrast, Th solubility is generally low (uranium increases strongly both with oxygen fugacity and with salinity. We show that reducing or NaCl-free fluids cannot produce primitive arc magmas with U/Th ratio higher than MORB. However, the dissolution of several wt% of oxidized, saline fluids in arc melts can produce U/Th ratios several times higher than in MORB. We suggest that observed U/Th ratios in arc magmas provide tight constraints on both the salinity and the oxidation state of subduction zone fluids.
Energy Technology Data Exchange (ETDEWEB)
Nelson, J.T. (California Univ., Berkeley, CA (USA). Dept. of Mechanical Engineering Lawrence Berkeley Lab., CA (USA))
1988-11-01
A theoretical model for acoustic emission in a vertically heterogeneous porous layer bounded by semi-infinite solid regions is developed using linearized equations of motion for a fluid/solid mixture and a reflectivity method. Green's functions are derived for both point loads and moments. Numerically integrated propagators represent solutions for intermediate heterogeneous layers in the porous region. These are substituted into a global matrix for solution by Gaussian elimination and back-substitution. Fluid partial stress and seismic responses to dislocations associated with fracturing of a layer of rock with a hydraulically conductive fracture network are computed with the model. A constitutive model is developed for representing the fractured rock layer as a porous material, using commonly accepted relationships for moduli. Derivations of density, tortuosity, and sinuosity are provided. The main results of the model application are the prediction of a substantial fluid partial stress response related to a second mode wave for the porous material. The response is observable for relatively large distances, on the order of several tens of meters. The visco-dynamic transition frequency associated with parabolic versus planar fluid velocity distributions across micro-crack apertures is in the low audio or seismic range, in contrast to materials with small pore size, such as porous rocks, for which the transition frequency is ultrasonic. Seismic responses are predicted for receiver locations both in the layer and in the outlying solid regions. In the porous region, the seismic response includes both shear and dilatational wave arrivals and a second-mode arrival. The second-mode arrival is not observable outside of the layer because of its low velocity relative to the dilatational and shear wave propagation velocities of the solid region.
Working fluid selection for organic Rankine cycles - Impact of uncertainty of fluid properties
DEFF Research Database (Denmark)
Frutiger, Jerome; Andreasen, Jesper Graa; Liu, Wei
2016-01-01
This study presents a generic methodology to select working fluids for ORC (Organic Rankine Cycles)taking into account property uncertainties of the working fluids. A Monte Carlo procedure is described as a tool to propagate the influence of the input uncertainty of the fluid parameters on the ORC...... modeloutput, and provides the 95%-confidence interval of the net power output with respect to the fluid property uncertainties. The methodology has been applied to a molecular design problem for an ORCusing a low-temperature heat source and consisted of the following four parts: 1) formulation...... of processmodels and constraints 2) selection of property models, i.e. Penge Robinson equation of state 3)screening of 1965 possible working fluid candidates including identification of optimal process parametersbased on Monte Carlo sampling 4) propagating uncertainty of fluid parameters to the ORC netpower output...
Microstructural effects on the overall poroelastic properties of saturated porous media
International Nuclear Information System (INIS)
Bouhlel, M; Jamei, M; Geindreau, C
2010-01-01
At the macroscopic scale, the quasi-static deformation of an elastic porous medium saturated by an incompressible Newtonian fluid is described by the well-known Biot's model, which involves four effective parameters. In this work, the three effective poroelastic properties and the permeability of two periodic microstructures of saturated cohesive granular media, i.e. simple cubic (SC) and body-centered cubic (BCC) arrays of overlapping spheres, are computed by solving, over the representative elementary volume, boundary-value problems arising from the homogenization process. The influence of microstructure properties, i.e. solid volume fraction, arrangement of spheres, number of contacts as well as the intrinsic properties of the solid phase on the overall properties, is highlighted. Numerical results are then compared with rigorous bounds, self-consistent estimations, exact expansions and experimental results on ceramics and metals available in the literature. Finally, the capability of the obtained results on such periodic microstructures to describe the poroelastic properties of real porous media is discussed
HAMOC: a computer program for fluid hammer analysis
International Nuclear Information System (INIS)
Johnson, H.G.
1975-12-01
A computer program has been developed for fluid hammer analysis of piping systems attached to a vessel which has undergone a known rapid pressure transient. The program is based on the characteristics method for solution of the partial differential equations of motion and continuity. Column separation logic is included for situations in which pressures fall to saturation values
International Nuclear Information System (INIS)
Graf, U.
1986-01-01
A combination of several numerical methods is used to construct a procedure for effective calculation of complex three-dimensional fluid flow problems. The split coefficient matrix (SCM) method is used so that the differenced equations of the hyperbolic system do not disturb correct signal propagation. The semi-discretisation of the equations of the SCM method is done with the asymmetric, separated region, weighted residual (ASWR) method to give accurate solutions on a relatively coarse mesh. For the resulting system of ordinary differential equations, a general-purpose ordinary differential equation solver is used in conjunction with a method of fractional steps for an economic solution of the large system of linear equations. (orig.) [de
Modeling studies for multiphase fluid and heat flow processes in nuclear waste isolation
International Nuclear Information System (INIS)
Pruess, K.
1988-07-01
Multiphase fluid and heat flow plays an important role in many problems relating to the disposal of nuclear wastes in geologic media. Examples include boiling and condensation processes near heat-generating wastes, flow of water and formation gas in partially saturated formations, evolution of a free gas phase from waste package corrosion in initially water-saturated environments, and redistribution (dissolution, transport, and precipitation) of rock minerals in non-isothermal flow fields. Such processes may strongly impact upon waste package and repository design considerations and performance. This paper summarizes important physical phenomena occurring in multiphase and nonisothermal flows, as well as techniques for their mathematical modeling and numerical simulation. Illustrative applications are given for a number of specific fluid and heat flow problems, including: thermohydrologic conditions near heat-generating waste packages in the unsaturated zone; repository-wide convection effects in the unsaturated zone; effects of quartz dissolution and precipitation for disposal in the saturated zone; and gas pressurization and flow corrosion of low-level waste packages. 34 refs; 7 figs; 2 tabs
Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites
Directory of Open Access Journals (Sweden)
Amos Martinez
2017-12-01
Full Text Available The emergence of low-dimensional materials has opened new opportunities in the fabrication of compact nonlinear photonic devices. Single-walled carbon nanotubes were among the first of those materials to attract the attention of the photonics community owing to their high third order susceptibility, broadband operation, and ultrafast response. Saturable absorption, in particular, has become a widespread application for nanotubes in the mode-locking of a fiber laser where they are used as nonlinear passive amplitude modulators to initiate pulsed operation. Numerous approaches have been proposed for the integration of nanotubes in fiber systems; these can be divided into those that rely on direct interaction (where the nanotubes are sandwiched between fiber connectors and those that rely on lateral interaction with the evanescence field of the propagating wave. Tapered fibers, in particular, offer excellent flexibility to adjust the nonlinearity of nanotube-based devices but suffer from high losses (typically exceeding 50% and poor saturable to non-saturable absorption ratios (typically above 1:5. In this paper, we propose a method to fabricate carbon nanotube saturable absorbers with controllable saturation power, low-losses (as low as 15%, and large saturable to non-saturable loss ratios approaching 1:1. This is achieved by optimizing the procedure of embedding tapered fibers in low-refractive index polymers. In addition, this study sheds light in the operation of these devices, highlighting a trade-off between losses and saturation power and providing guidelines for the design of saturable absorbers according to their application.
Effect of fluid-solid friction on the stiffness of chalk
DEFF Research Database (Denmark)
Alam, Mohammad Monzurul; Nguh Akam, Hosea; Fabricius, Ida Lykke
2011-01-01
Chalks behave weaker at water saturated condition. We studied this softening effect as a function of Biot’s frequency ratio, which is a ratio between measured ultrasonic wave frequency and Biot critical frequency, fc. Kinematic viscosity of fluid and permeability of rock determines fc. We observe...
Goldfarb, E. J.; Ikeda, K.; Tisato, N.
2017-12-01
Seismic and ultrasonic velocities of rocks are function of several variables including fluid saturation and type. Understanding the effect of each variable on elastic waves can be valuable when using seismic methods for subsurface modeling. Fluid type and saturation are of specific interest to volcanology, water, and hydrocarbon exploration. Laboratory testing is often employed to understand the effects of fluids on elastic waves. However, laboratory testing is expensive and time consuming. It normally requires cutting rare samples into regular shapes. Fluid injection can also destroy specimens as removing the fluid after testing can prove difficult. Another option is theoretical modeling, which can be used to predict the effect of fluids on elastic properties, but it is often inaccurate. Alternatively, digital rock physics (DRP) can be used to investigate the effect of fluid substitution. DRP has the benefit of being non invasive, as it does not require regular sample shapes or fluid injection. Here, we compare the three methods for dry and saturated Berea sandstone to test the reliability of DRP. First, ultrasonic velocities were obtained from laboratory testing. Second, for comparison, we used a purely theoretical approach - i.e., Hashin-Shtrikman and Biot theory - to estimate the wave speeds at dry and wet conditions. Third, we used DRP. The dry sample was scanned with micro Computed Tomography (µCT), and a three dimensional (3D) array was recorded. We employed a segmentation-less method to convert each 3D array value to density, porosity, elastic moduli, and wave speeds. Wave propagation was simulated numerically at similar frequency as the laboratory. To simulate fluid substitution, we numerically substituted air values for water and repeated the simulation. The results from DRP yielded similar velocities to the laboratory, and accurately predicted the velocity change from fluid substitution. Theoretical modeling could not accurately predict velocity, and
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2001-01-01
Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...
FLASH: A finite element computer code for variably saturated flow
International Nuclear Information System (INIS)
Baca, R.G.; Magnuson, S.O.
1992-05-01
A numerical model was developed for use in performance assessment studies at the INEL. The numerical model, referred to as the FLASH computer code, is designed to simulate two-dimensional fluid flow in fractured-porous media. The code is specifically designed to model variably saturated flow in an arid site vadose zone and saturated flow in an unconfined aquifer. In addition, the code also has the capability to simulate heat conduction in the vadose zone. This report presents the following: description of the conceptual frame-work and mathematical theory; derivations of the finite element techniques and algorithms; computational examples that illustrate the capability of the code; and input instructions for the general use of the code. The FLASH computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of Energy Order 5820.2A
Mechanics of non-saturated soils
International Nuclear Information System (INIS)
Coussy, O.; Fleureau, J.M.
2002-01-01
This book presents the different ways to approach the mechanics of non saturated soils, from the physico-chemical aspect to the mechanical aspect, from the experiment to the theoretical modeling, from the laboratory to the workmanship, and from the microscopic scale to the macroscopic one. Content: water and its representation; experimental bases of the behaviour of non-saturated soils; transfer laws in non-saturated environment; energy approach of the behaviour of non-saturated soils; homogenization for the non-saturated soils; plasticity and hysteresis; dams and backfilling; elaborated barriers. (J.S.)
SATCAP-B: a program for thermal-hydraulic design of 'Saturated Temperature Capsule'
International Nuclear Information System (INIS)
Harayama, Yasuo; Someya, Hiroyuki; Niimi, Motoji
1989-11-01
As an advanced irradiation technique, the JMTR (Japan Materials Testing Reactor) project is developing a 'Saturated Temperature Capsule' which water is injected in and boiled. When the water is kept at a constant pressure, the water temperature does not become higher than the saturated temperature. This type capsule is based on the conception of keeping the coolant to the saturated temperature and using the temperature control. In designing the capsule in which the inner coolant is injected, thermal performances have to be understood as exactly as possible. Then, a program (named SATCAP) was compiled to graps the thermal performance within the capsule. On the other hand, a 'Saturated Temperature Capsule' was made and irradiated in the JMTR core. It was indicated from supplied water temperatures recorded by thermo-couples attached in the capsule that heat transfer coefficients prefered models due to natural convection to models incorporated in the initial version of the program. Then, the program was revised by adding mainly heat transfer model based on natural convection. The present report describes the calculation procedure and guides of input and output for the revised program (SATCAP version-B). (author)
Sensorial saturation for infants' pain.
Bellieni, Carlo Valerio; Tei, Monica; Coccina, Francesca; Buonocore, Giuseppe
2012-04-01
Sensorial saturation (SS) is a multisensorial stimulation consisting of delicate tactile, gustative, auditory and visual stimuli. This procedure consists of simultaneously: attracting the infant's attention by massaging the infant's face; speaking to the infant gently, but firmly, and instilling a sweet solution on the infant's tongue. We performed a systematic Medline search of for articles focusing on human neonatal studies related to SS. The search was performed within the last 10 years and was current as of January 2012. We retrieved 8 articles that used a complete form of SS and 2 articles with an incomplete SS. Data show that the use of SS is effective in relieving newborns' pain. Oral solution alone are less effective than SS, but the stimuli without oral sweet solution are ineffective. the partial forms of SS have some effectiveness, but minor than the complete SS. Only one article showed lack of SS as analgesic method, after endotracheal suctioning. SS can be used for all newborns undergoing blood samples or other minor painful procedures. It is more effective than oral sugar alone. SS also promotes interaction between nurse and infant and is a simple effective form of analgesia for the neonatal intensive care unit.
A methodology to calibrate water saturation estimated from 4D seismic data
International Nuclear Information System (INIS)
Davolio, Alessandra; Maschio, Célio; José Schiozer, Denis
2014-01-01
Time-lapse seismic data can be used to estimate saturation changes within a reservoir, which is valuable information for reservoir management as it plays an important role in updating reservoir simulation models. The process of updating reservoir properties, history matching, can incorporate estimated saturation changes qualitatively or quantitatively. For quantitative approaches, reliable information from 4D seismic data is important. This work proposes a methodology to calibrate the volume of water in the estimated saturation maps, as these maps can be wrongly estimated due to problems with seismic signals (such as noise, errors associated with data processing and resolution issues). The idea is to condition the 4D seismic data to known information provided by engineering, in this case the known amount of injected and produced water in the field. The application of the proposed methodology in an inversion process (previously published) that estimates saturation from 4D seismic data is presented, followed by a discussion concerning the use of such data in a history matching process. The methodology is applied to a synthetic dataset to validate the results, the main of which are: (1) reduction of the effects of noise and errors in the estimated saturation, yielding more reliable data to be used quantitatively or qualitatively and (2) an improvement in the properties update after using this data in a history matching procedure. (paper)
Markiewicz, B; Sajnóg, A; Lorenc, W; Hanć, A; Komorowicz, I; Suliburska, J; Kocyłowski, R; Barałkiewicz, D
2017-11-01
Amniotic fluid is the substantial factor in the development of an embryo and fetus due to the fact that water and solutes contained in it penetrate the fetal membranes in an hydrostatic and osmotic way as well as being swallowed by the fetus. Elemental composition of amniotic fluid influences the growth and health of the fetus, therefore, an analysis of amniotic fluid is important because the results would indicate abnormal levels of minerals or toxic elements. Inductively coupled plasma mass spectroscopy (ICP-MS) is often used for determination of trace and ultra-trace level elements in a wide range of matrices including biological samples because of its unique analytical capabilities. In the case of trace and ultra-trace level analysis detailed characteristics of analytical procedure as well as properties of the analytical result are particularly important. The purpose of this study was to develop a new analytical procedure for multielemental analysis of 18 elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Mg, Mn, Ni, Pb, Sb, Se, Sr, U, V and Zn) in amniotic fluid samples using ICP-MS. Dynamic reaction cell (DRC) with two reaction gases, ammonia and oxygen, was involved in the experiment to eliminate spectral interferences. Detailed validation was conducted using 3 certified reference mterials (CRMs) and real amniotic fluid samples collected from patients. Repeatability for all analyzed analytes was found to range from 0.70% to 8.0% and for intermediate precision results varied from 1.3% to 15%. Trueness expressed as recovery ranged from 80% to 125%. Traceability was assured through the analyses of CRMs. Uncertainty of the results was also evaluated using single-laboratory validation approach. The obtained expanded uncertainty (U) results for CRMs, expressed as a percentage of the concentration of an analyte, were found to be between 8.3% for V and 45% for Cd. Standard uncertainty of the precision was found to have a greater influence on the combined standard uncertainty
Fast Propagation in Fluid Transport Models with Evolution of Turbulence Saturation
International Nuclear Information System (INIS)
Lopez-Bruna, D.
2012-01-01
This report compiles and extends two works on models that reproduce the experimental facts of non local transport and pulse propagation in magnetically confined fusion plasmas. The works are based on fluid transport models, originally designed to explain the formation of edge or internal transport barriers, that include fast evolution equations for the particle and heat fluxes. The heating of the plasma core in response to a sudden edge cooling or the propagation of turbulent fronts around transport barriers are a consequence of the competing roles of linear drive and non-linear reduction of the turbulent fluxes. Possibilities to use the models to interpret TJ-II plasmas are discussed. (Author) 62 refs.
Fast Propagation in Fluid Transport Models with Evolution of Turbulence Saturation
Energy Technology Data Exchange (ETDEWEB)
Lopez-Bruna, D.
2012-07-01
This report compiles and extends two works on models that reproduce the experimental facts of non local transport and pulse propagation in magnetically confined fusion plasmas. The works are based on fluid transport models, originally designed to explain the formation of edge or internal transport barriers, that include fast evolution equations for the particle and heat fluxes. The heating of the plasma core in response to a sudden edge cooling or the propagation of turbulent fronts around transport barriers are a consequence of the competing roles of linear drive and non-linear reduction of the turbulent fluxes. Possibilities to use the models to interpret TJ-II plasmas are discussed. (Author) 62 refs.
Rinaldi, E.
2015-01-01
The new generation of power plants based on innovative thermodynamic cycles operating with unconventional working fluids, such as CO2 close to its thermodynamic critical point or organic fluids close to their vapour saturation line, is an attractive option for high efficiency conversion of
Do dental procedures affect lung function and arterial oxygen saturation in asthmatic patients?
Directory of Open Access Journals (Sweden)
Magdy Mahmoud Emara
2013-04-01
Conclusion: Asthmatic patients may be at a higher risk of developing oxygen desaturation after dental procedures regardless of their type with and without local anesthesia and a decrease in PEF after dental procedures with local anesthesia.
Fluid substitution studies for North Sea chalk logging data
DEFF Research Database (Denmark)
Gommesen, Lars; Mavko, G.; Mukerji, T.
2002-01-01
We have tested the application of respectively the Kuster-Toksöz and the Gassmann theory as a tool for predicting pore fluid from the elastic properties of brine-saturated North Sea reservoir chalk. We confirm that the Kuster-Toksöz model predicts a larger fluid effect thant the Gassmann model......, and show that the Kuster-Toksöz model fails to predict the presence of hydrocarbons. The Gassmann prediction for the near and potentially invaded zone corresponds more closely to logging data, than the Gassmann prediction for the far, virgin zone. We hereby conclude that the Gassmann theory predicts...
Jiang, Lanlan; Wu, Bohao; Li, Xingbo; Wang, Sijia; Wang, Dayong; Zhou, Xinhuan; Zhang, Yi
2018-04-01
To study on microscale distribution of CO2 and brine during two-phase flow is crucial for understanding the trapping mechanisms of CO2 storage. In this study, CO2-brine flow experiments in porous media were conducted using X-ray computed tomography. The porous media were packed with glass beads. The pore structure (porosity/tortuosity) and flow properties at different flow rates and flow fractions were investigated. The results showed that porosity of the packed beads differed at different position as a result of heterogeneity. The CO2 saturation is higher at low injection flow rates and high CO2 fractions. CO2 distribution at the pore scale was also visualized. ∅ Porosity of porous media CT brine_ sat grey value of sample saturated with brine CT dry grey value of sample saturated with air CT brine grey value of pure brine CT air grey value of pure air CT flow grey values of sample with two fluids occupying the pore space {CT}_{CO_2_ sat} grey value of sample saturated with CO2 {f}_{CO_2}({S}_{CO_2}) CO2 fraction {q}_{CO_2} the volume flow rate for CO2 q brine the volume flow rate for brine L Thickness of the porous media, mm L e a bundle of capillaries of equal length, mm τ Tortuosity, calculated from L e / L.
Femoral venous oxygen saturation is no surrogate for central venous oxygen saturation
van Beest, Paul A.; van der Schors, Alice; Liefers, Henriëtte; Coenen, Ludo G. J.; Braam, Richard L.; Habib, Najib; Braber, Annemarije; Scheeren, Thomas W. L.; Kuiper, Michaël A.; Spronk, Peter E.
2012-01-01
Objective: The purpose of our study was to determine if central venous oxygen saturation and femoral venous oxygen saturation can be used interchangeably during surgery and in critically ill patients. Design: Prospective observational controlled study. Setting: Nonacademic university-affiliated
Toward multiscale modelings of grain-fluid systems
Chareyre, Bruno; Yuan, Chao; Montella, Eduard P.; Salager, Simon
2017-06-01
Computationally efficient methods have been developed for simulating partially saturated granular materials in the pendular regime. In contrast, one hardly avoid expensive direct resolutions of 2-phase fluid dynamics problem for mixed pendular-funicular situations or even saturated regimes. Following previous developments for single-phase flow, a pore-network approach of the coupling problems is described. The geometry and movements of phases and interfaces are described on the basis of a tetrahedrization of the pore space, introducing elementary objects such as bridge, meniscus, pore body and pore throat, together with local rules of evolution. As firmly established local rules are still missing on some aspects (entry capillary pressure and pore-scale pressure-saturation relations, forces on the grains, or kinetics of transfers in mixed situations) a multi-scale numerical framework is introduced, enhancing the pore-network approach with the help of direct simulations. Small subsets of a granular system are extracted, in which multiphase scenario are solved using the Lattice-Boltzman method (LBM). In turns, a global problem is assembled and solved at the network scale, as illustrated by a simulated primary drainage.
[Diagnosis: synovial fluid analysis].
Gallo Vallejo, Francisco Javier; Giner Ruiz, Vicente
2014-01-01
Synovial fluid analysis in rheumatological diseases allows a more accurate diagnosis in some entities, mainly infectious and microcrystalline arthritis. Examination of synovial fluid in patients with osteoarthritis is useful if a differential diagnosis will be performed with other processes and to distinguish between inflammatory and non-inflammatory forms. Joint aspiration is a diagnostic and sometimes therapeutic procedure that is available to primary care physicians. Copyright © 2014 Elsevier España, S.L. All rights reserved.
Mixed convection in fluid superposed porous layers
Dixon, John M
2017-01-01
This Brief describes and analyzes flow and heat transport over a liquid-saturated porous bed. The porous bed is saturated by a liquid layer and heating takes place from a section of the bottom. The effect on flow patterns of heating from the bottom is shown by calculation, and when the heating is sufficiently strong, the flow is affected through the porous and upper liquid layers. Measurements of the heat transfer rate from the heated section confirm calculations. General heat transfer laws are developed for varying porous bed depths for applications to process industry needs, environmental sciences, and materials processing. Addressing a topic of considerable interest to the research community, the brief features an up-to-date literature review of mixed convection energy transport in fluid superposed porous layers.
Femoral venous oxygen saturation is no surrogate for central venous oxygen saturation
van Beest, Paul A.; van der Schors, Alice; Liefers, Henriette; Coenen, Ludo G. J.; Braam, Richard L.; Habib, Najib; Braber, Annemarije; Scheeren, Thomas W. L.; Kuiper, Michael A.; Spronk, Peter E.
2012-01-01
Objective: The purpose of our study was to determine if central venous oxygen saturation and femoral venous oxygen saturation can be used interchangeably during surgery and in critically ill patients. Design: Prospective observational controlled study. Setting: Nonacademic university-affiliated
Calculation of piping loads due to filling procedures
International Nuclear Information System (INIS)
Swidersky, Harald; Thiele, Thomas
2012-01-01
Filling procedures in piping systems are usually not load cases that are studied by fluid dynamic and structure dynamic analyses with respect to the integrity of pipes and supports. Although, their frequency is higher than that of postulated accidental transients, therefore they have to be considered for fatigue analyses. The piping and support loads due to filling procedures are caused by the density differences if the transported fluids, for instance in flows with the transport of gas bubbles. The impact duration of the momentum forces is defined by the flow velocity and the length of discontinuities in the piping segments. Filling procedures end very often with a shock pressure, caused by the impact and decelerating of the fluid front at smaller cross sections. The suitability of the thermally hydraulics program RELAP/MOD3.3 for the calculation of realistic loads from filling procedures was studied, the results compared with experimental data. It is shown that dependent on the discretization level the loads are partial significantly underestimated.
Strength and Biot's coefficient for high-porosity oil- or water-saturated chalk
DEFF Research Database (Denmark)
Andreassen, Katrine Alling
. The Biot coefficient states the degree of cementation or how the pore pressure contributes to the strain resulting from an external load for a porous material. It is here calculated from dynamic measurements and correlated with the strength of outcrop chalk characterized by the onset of pore collapse...... during hydrostatic loading. The hypothesis is that the Biot coefficient and the theory of poroelasticity may cover the fluid effect by including the increased fluid bulk modulus from oil to water. A high number of test results for both oil- and water-saturated high-porosity outcrop chalk show correlation......In the petroleum industry it is relevant to know the Biot coefficient for establishing the effective stresses present in both the overburden and for the reservoir interval. When depleting a reservoir it is important to estimate the settlement through the strain imposed by the effective stress. Also...
Directory of Open Access Journals (Sweden)
Yakhlef O.
2017-06-01
Full Text Available A fixed point algorithmis proposed to solve a fluid-structure interaction problem with the supplementary constraint that the structure displacements are limited by a rigid obstacle. Fictitious domain approach with penalization is used for the fluid equations. The surface forces from the fluid acting on the structure are computed using the fluid solution in the structure domain. The continuity of the fluid and structure velocities is imposed through the penalization parameter. The constraint of non-penetration of the elastic structure into the rigid obstacle is treated weakly. A convex constrained optimization problem is solved in order to get the structure displacements. Numerical results are presented.
Salama, Amgad
2013-02-01
Some sort of controversy is associated with the problem of viscous dissipation in saturated porous media for which we try to present a comparison study between the influences of the different terms contributing to this phenomenon. We consider viscous dissipation by studying the case of semi-infinite flat plate embedded in saturated porous medium and is kept at constant, higher temperature compared with the surrounding fluid. The fluid is induced to move upwards by natural convection during which viscous dissipation is considered. The boundary layer assumptions are considered to simplify the treatment and to highlight the influencing parameters. The behavior of temperature, and velocity fields in the neighborhood of the vertical flat plate were used to highlight the effects of these parameters. Three terms were considered to contribute to viscous dissipation, namely Darcy\\'s term, the Forchheimer term and Al-Hadharami\\'s term. Although there are no unanimous agreements between researchers to include the Forchhemier term in the dissipation function, some researchers argued it might have an indirect effect and hence for this sake and for completion purposes, we include it in this comparison study. Dimensional considerations reveal that Darcy\\'s term is influenced by Gebhart number, the Forchheimer term is controlled by the non-Darcy parameter and Al-Hadharami\\'s term is influenced by Darcy\\'s number. The governing, non-dimensional set of equations together with the imposed boundary conditions is numerically investigated by finite element method. The results for the details of the governing parameters are presented and investigated. It is found that the irreversible process of transforming the kinetic energy of the moving fluid to heat energy via the viscosity of the moving fluid (i.e., viscous dissipation) is very much influenced by the relative magnitude of these dimensionless parameters. © 2012 Elsevier Masson SAS. All rights reserved.
Elastic wave attenuation in rocks containing fluids
International Nuclear Information System (INIS)
Berryman, J.G.
1986-01-01
The low-frequency limit of Biot's theory of fluid-saturated porous media predicts that the coefficients for viscous attenuation of shear waves and of the fast compressional wave are proportional to the fluid permeability. Although the observed attenuation is generally in qualitative agreement with the theory, the magnitude of the observed attenuation coefficient in rocks is often more than an order of magnitude higher than expected. This apparent dilemma can be resolved without invoking other attenuation mechanisms if the intrinsic permeability of the rock is inhomogeneous and varies widely in magnitude. A simple calculation of the overall behavior of a layered porous material using local-flow Biot theory shows that the effective permeability for attenuation is the mean of the constituent permeabilities while the effective permeability for fluid flow is the harmonic mean. When the range of variation in the local permeability is one or more orders of magnitude, this difference in averaging method can easily explain some of the observed discrepancies
Radar Mapping of Fractures and Fluids in Hydrocarbon Reservoirs
Stolarczyk, L. G.; Wattley, G. G.; Caffey, T. W.
2001-05-01
A stepped-frequency radar has been developed for mapping of fractures and fluids within 20 meters of the wellbore. The operating range has been achieved by using a radiating magnetic dipole operating in the low- and medium-frequency bands. Jim Wait has shown that the electromagnetic (EM) wave impedance in an electrically conductive media is largely imaginary, enabling energy to be stored in the near field instead of dissipated, as in the case for an electric dipole. This fact, combined with the low attenuation rate of a low-frequency band EM wave, enables radiation to penetrate deeply into the geology surrounding the wellbore. The radiation pattern features a vertical electric field for optimum electric current induction into vertical fractures. Current is also induced in sedimentary rock creating secondary waves that propagate back to the wellbore. The radiation pattern is electrically driven in azimuth around the wellbore. The receiving antenna is located in the null field of the radiating antenna so that the primary wave is below the thermal noise of the receiver input. By stepping the frequency through the low- and medium-frequency bands, the depth of investigation is varied, and enables electrical conductivity profiling away from the wellbore. Interpretation software has been developed for reconstructive imaging in dipping sedimentary layers. Because electrical conductivity can be related to oil/water saturation, both fractures and fluids can be mapped. Modeling suggests that swarms of fractures can be imaged and fluid type determined. This information will be useful in smart fracking and sealing. Conductivity tomography images will indicate bed dip, oil/water saturation, and map fluids. This paper will provide an overview of the technology development program.
Effects of spinal immobilization at a 20° angle on cerebral oxygen saturations measured by INVOS™.
Aksel, Gökhan
2018-01-01
In this study, we aimed to investigate whether performing the immobilization at 20° instead of 0° changes cerebral oxygenation. 33 volunteers were put in a hard cervical collar and backboard at 0° and immobilized for 30min. The cerebral oxygen saturations of the volunteers were measured at 1, 5, and 30min after the start of the procedure (Group 1). The volunteers were asked to return the day after the Group 1 procedure but at the same time. Serial cerebral oxygen saturations were obtained at the same time intervals as in Group 1, but for Group 2, the backboard was set to 20°. When the cerebral oxygen saturations of the two groups were compared, there was a slight decrease when the backboard position was changed from 0° to 20°, but it was not statistically significant (P=0.220 and P=0.768, respectively). The results revealed that immobilizing the patients with a spinal backboard at 20° instead of 0° did not alter the cerebral oxygen saturations. Our study results revealed that spinal immobilization at 20°, which was a new suggestion for spinal immobilization following a report that this position reduced the decrease in pulmonary function secondary to spinal immobilization, did not alter the cerebral oxygenation, so this suggestion is safe at least from the standpoint of cerebral oxygenation. Copyright © 2017 Elsevier Inc. All rights reserved.
Slow Waves in Fractures Filled with Viscous Fluid
Energy Technology Data Exchange (ETDEWEB)
Korneev, Valeri
2008-01-08
Stoneley guided waves in a fluid-filled fracture generally have larger amplitudes than other waves, and therefore, their properties need to be incorporated in more realistic models. In this study, a fracture is modeled as an infinite layer of viscous fluid bounded by two elastic half-spaces with identical parameters. For small fracture thickness, I obtain a simple dispersion equation for wave-propagation velocity. This velocity is much smaller than the velocity of a fluid wave in a Biot-type solution, in which fracture walls are assumed to be rigid. At seismic prospecting frequencies and realistic fracture thicknesses, the Stoneley guided wave has wavelengths on the order of several meters and an attenuation Q factor exceeding 10, which indicates the possibility of resonance excitation in fluid-bearing rocks. The velocity and attenuation of Stoneley guided waves are distinctly different at low frequencies for water and oil. The predominant role of fractures in fluid flow at field scales is supported by permeability data showing an increase of several orders of magnitude when compared to values obtained at laboratory scales. These data suggest that Stoneley guided waves should be taken into account in theories describing seismic wave propagation in fluid-saturated rocks.
Differentiated-effect shims for medium field levels and saturation
International Nuclear Information System (INIS)
Richie, A.
1976-01-01
The arrangement of shims on the upstream and downstream ends of magnets may be based on the independent effects of variations in the geometric length and degree of saturation at the edges of the poles. This technique can be used to match the bending strength of an accelerator's magnets at two field levels (medium fields and maximum fields) and thus save special procedures (mixing the laminations, local compensation for errors by arranging the magnets in the appropriate order) and special devices (for instance, correcting dipoles) solely for correcting bending strengths at low field levels. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Alix, P.
1997-10-03
In the case of a confinement loss (breakage of a connection piece) on a pressurized liquefied gas tank, a critical two-phase (liquid-vapour) flow is generated. This thesis is aimed at the validation of models describing these flows with various fluids (water, R 11, methanol, ethyl acetate, pure butane, commercial butane), using a pilot experimental plant. Results show that reduced upstream pressure is the main parameter, thus indicating that a model can be validated using minimal fluids. The homogenous models DEM and HRM appear to be more precise
Wang, Xiujuan; Hutchinson, Deborah R.; Wu, Shiguo; Yang, Shengxiong; Guo, Yiqun
2011-01-01
Gas hydrate saturations were estimated using five different methods in silt and silty clay foraminiferous sediments from drill hole SH2 in the South China Sea. Gas hydrate saturations derived from observed pore water chloride values in core samples range from 10 to 45% of the pore space at 190–221 m below seafloor (mbsf). Gas hydrate saturations estimated from resistivity (Rt) using wireline logging results are similar and range from 10 to 40.5% in the pore space. Gas hydrate saturations were also estimated by P wave velocity obtained during wireline logging by using a simplified three-phase equation (STPE) and effective medium theory (EMT) models. Gas hydrate saturations obtained from the STPE velocity model (41.0% maximum) are slightly higher than those calculated with the EMT velocity model (38.5% maximum). Methane analysis from a 69 cm long depressurized core from the hydrate-bearing sediment zone indicates that gas hydrate saturation is about 27.08% of the pore space at 197.5 mbsf. Results from the five methods show similar values and nearly identical trends in gas hydrate saturations above the base of the gas hydrate stability zone at depths of 190 to 221 mbsf. Gas hydrate occurs within units of clayey slit and silt containing abundant calcareous nannofossils and foraminifer, which increase the porosities of the fine-grained sediments and provide space for enhanced gas hydrate formation. In addition, gas chimneys, faults, and fractures identified from three-dimensional (3-D) and high-resolution two-dimensional (2-D) seismic data provide pathways for fluids migrating into the gas hydrate stability zone which transport methane for the formation of gas hydrate. Sedimentation and local canyon migration may contribute to higher gas hydrate saturations near the base of the stability zone.
SITE-SCALE SATURATED ZONE TRANSPORT
International Nuclear Information System (INIS)
S. KELLER
2004-01-01
This work provides a site-scale transport model for calculating radionuclide transport in the saturated zone (SZ) at Yucca Mountain, for use in the abstractions model in support of ''Total System Performance Assessment for License Application'' (TSPA-LA). The purpose of this model report is to provide documentation for the components of the site-scale SZ transport model in accordance with administrative procedure AP-SIII.10Q, Models. The initial documentation of this model report was conducted under the ''Technical Work Plan For: Saturated Zone Flow and Transport Modeling and Testing'' (BSC 2003 [DIRS 163965]). The model report has been revised in accordance with the ''Technical Work Plan For: Natural System--Saturated Zone Analysis and Model Report Integration'', Section 2.1.1.4 (BSC 2004 [DIRS 171421]) to incorporate Regulatory Integration Team comments. All activities listed in the technical work plan that are appropriate to the transport model are documented in this report and are described in Section 2.1.1.4 (BSC 2004 [DIRS 171421]). This report documents: (1) the advection-dispersion transport model including matrix diffusion (Sections 6.3 and 6.4); (2) a description and validation of the transport model (Sections 6.3 and 7); (3) the numerical methods for simulating radionuclide transport (Section 6.4); (4) the parameters (sorption coefficient, Kd ) and their uncertainty distributions used for modeling radionuclide sorption (Appendices A and C); (5) the parameters used for modeling colloid-facilitated radionuclide transport (Table 4-1, Section 6.4.2.6, and Appendix B); and (6) alternative conceptual models and their dispositions (Section 6.6). The intended use of this model is to simulate transport in saturated fractured porous rock (double porosity) and alluvium. The particle-tracking method of simulating radionuclide transport is incorporated in the finite-volume heat and mass transfer numerical analysis (FEHM) computer code, (FEHM V2.20, STN: 10086
Makhanon, Metta; Tummaruk, Padet; Thongkamkoon, Pacharee; Thanawongnuwech, Roongroje; Prapasarakul, Nuvee
2012-02-01
The aim of this study was to investigate whether direct PCR (DP) gave similar results to culture prior to PCR (CPP) for detecting mycoplasmas in different types of pig tissues. A total of 724 samples obtained from lungs, tonsils, or synovial fluids from 270 slaughtered pigs were used. The history of clinical signs, lung score, and the presence of joint lesions were recorded during sample collection. The rates of detection of Mycoplasma hyopneumoniae, Mycoplasma hyosynoviae, and Mycoplasma hyorhinis using both procedures were evaluated. The overall prevalences of M. hyopneumoniae, M. hyosynoviae, and M. hyorhinis were 40.3%, 12.3%, and 64.6%, respectively, and the detection rate depended on the sample type and the procedure used. With lung tissue, DP gave a higher detection rate for M. hyopneumoniae (77.4%) than CPP (38.5%). M. hyorhinis was detected by CPP at 15.6% and 18.1% and by DP at 31.5% and 5.2%, respectively. The positive rate derived from tonsil from CPP was closed to that of DP. Using synovial fluid could not yield any positive M. hyorhinis from CPP whereas 37.2% was positive from DP. In contrast, using sample tissue from lung and tonsil by CPP could show much higher positive number than that of DP. There was a significant relationship between joint lesion and M. hyorhinis detection by DP (P hyopneumoniae and M. hyorhinis detection by DP and CPP, respectively. Tonsil was likely the community of persistent M. hyosynoviae and M. hyorhinis with highly detection by CPP. Synovial fluid was apparently unsuitable for mycoplasmal culture. The accuracy of mycoplasmal detection may depend upon the type of sample relevant to the detection procedure used.
Size Reduction of a DC Link Choke Using Saturation Gap and Biasing with Permanent Magnets
DEFF Research Database (Denmark)
Aguilar, Andres Revilla; Munk-Nielsen, Stig; Zuccherato, Marco
2014-01-01
This document describes the design procedure of permanent magnet biased DC inductors using the Saturation-gap technique [1]. This biasing configuration can provide a 50% reduction in either the core volume or the number of turns, while meeting its current and inductance requirements. A design exa...
SATURATED ZONE IN-SITU TESTING
Energy Technology Data Exchange (ETDEWEB)
P.W. REIMUS
2004-11-08
The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass
SATURATED ZONE IN-SITU TESTING
International Nuclear Information System (INIS)
REIMUS, P.W.
2004-01-01
The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and colloid
Heat transfer to MHD oscillatory dusty fluid flow in a channel filled ...
Indian Academy of Sciences (India)
In this paper, we examine the combined effects of thermal radiation, buoyancy force and magnetic field on oscillatory flow of a conducting optically thin dusty fluid through a vertical channel filled with a saturated porous medium. The governing partial differential equations are obtained and solved analytically by variable ...
STAFAN, Fluid Flow, Mechanical Stress in Fractured Rock of Nuclear Waste Repository
International Nuclear Information System (INIS)
Huyakorn, P.; Golis, M.J.
1989-01-01
1 - Description of program or function: STAFAN (Stress And Flow Analysis) is a two-dimensional, finite-element code designed to model fluid flow and the interaction of fluid pressure and mechanical stresses in a fractured rock surrounding a nuclear waste repository. STAFAN considers flow behavior of a deformable fractured system with fracture-porous matrix interactions, the coupling effects of fluid pressure and mechanical stresses in a medium containing discrete joints, and the inelastic response of the individual joints of the rock mass subject to the combined fluid pressure and mechanical loading. 2 - Restrictions on the complexity of the problem: STAFAN does not presently contain thermal coupling, and it is unable to simulate inelastic deformation of the rock mass and variably saturated or two-phase flow in the fractured porous medium system
International Nuclear Information System (INIS)
Kantzas, A.
1990-01-01
Computer assisted tomography is becoming a very attractive tool for petroleum engineers. The method can give an image of a core in two or three dimensions with a very fine resolution and high accuracy. The image data can be processed to give information about the physical properties of the core (density, porosity, mineralogy, heterogeneities) and the fluids within the core (saturation and saturation profiles). This paper presents a software package that uses the CAT scanner output data as input for petrographic and dynamic modelling of a porous rock. Core samples up to 10 cm in diameter are scanned at different x-ray energy levels using an EMI CT5005 full body scanner. The scanner computer is producing an array of normalized linear attenuation coefficients per scanned slice. The resolution is 0.75 mm x 0.75 mm while the slice thickness can vary from 15 mm down to 1 mm depending on the bulk density and size of the sample. The developed package analyzes the CAT scanner data for bulk and grain density, effective atomic number, static and dynamic porosity and fluid saturations for up to three fluids present. The capabilities and limitations of the presented algorithm are discussed and characteristic examples are presented
Freezing heat transfer within water-saturated porous media
International Nuclear Information System (INIS)
Sasaki, Akira; Aiba, Shinya; Fukusako, Shoichiro.
1990-01-01
In the present study, analytical and experimental investigations were performed so as to clarify the characteristics of freezing heat transfer in porous media saturated with water in a vertical rectangular cavity. In order to establish the momentum equation, the law of conservation of momentum was applied to the fluid in our control volume, and the equation took into account Forchheimer's extension as the resistance to flow in the porous media. Three different sizes of glass, iron and copper beads were used as the porous media in this study. The temperature of the cold wall was kept at -10degC, while that of the hot wall was varied from 2degC to 22 degC. Comparisons between the analytical results and the experimental ones show good agreement with the exception of the copper bead results. (author)
Surgeon-patient communication during awake procedures.
Smith, Claire S; Guyton, Kristina; Pariser, Joseph J; Siegler, Mark; Schindler, Nancy; Langerman, Alexander
2017-06-01
Surgeons are increasingly performing procedures on awake patients. Communication during such procedures is complex and underexplored in the literature. Surgeons were recruited from the faculty of 2 hospitals to participate in an interview regarding their approaches to communication during awake procedures. Three researchers used the constant comparative method to transcribe, code, and review interviews until saturation was reached. Twenty-three surgeons described the advantages and disadvantages of awake procedures, their communication with the awake patient, their interactions with staff and with trainees, the environment of awake procedures, and how communication in this context is taught and learned. Surgeons recognized communication during awake procedures as important and reported varied strategies for ensuring patient comfort in this context. However, they also acknowledged challenges with multiparty communication during awake procedures, especially in balancing commitments to teaching with their duty to comfort the patient. Copyright © 2016 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Barth, J.
1977-01-01
An artificial rumen and simulated abomasal and intestinal fluids procedure was used to study the alimentary availability of plutonium-238. When plutonium-238 was administered as plutonium nitrate, 10.1% remained soluble following the artificial rumen incubation period and 15.3% following the abomasal period; 30.1% and 32.7% remained soluble when the fluid was held at pH 4 and 5, respectively, during the duodenal phase. The solubility increased to 60.1% following the addition of bile and enzymes with adjustment of the pH to 6 to simulate the jejunum. The increase in plutonium solubility in the simulated jejunal fluid was found to be due to the presence of bile. Plutonium administered as a citrate-buffered plutonium solution was 9.0% soluble following the rumen incubation period, 13.1% following the abomasal period, and 22.5% and 24.8% when held at pH 4 and 5, respectively, in the duodenal phase. The solubility increased to 59.6% following the addition of bile and enzymes with adjustment of the pH to 6. Plutonium administered as 0.06-μm plutonium dioxide spheres was 1.5% soluble following the rumen incubation period, 2.3% following the abomasal period, and 3.6% and 3.9% when held at pH 4 and 5, respectively, in the duodenal phase. Solubility increased to 7.4% following the addition of bile and enzymes with adjustment of the pH to 6. Rumen contents of cattle grazing on plutonium-contaminated desert vegetation at the Nevada Test Site, Area 13, were collected quarterly and incubated in simulated bovine gastrointestinal fluids to study the alimentary availability of field-deposited plutonium-238, plutonium-239, and americium-241. Results to date indicate that the highest concentrations of plutonium and americium in the rumen contents occurred during the late summer or fall
Percutaneous catheter drainage of intrapulmonary fluid collection
International Nuclear Information System (INIS)
Park, E. D.; Kim, H. J.; Choi, P. Y.; Jung, S. H.
1994-01-01
With the success of percutaneous abdominal abscess drainage, attention is now being focused on the use of similar techniques in the thorax. We studied to evaluate the effect of percutaneous drainage in parenchymal fluid collections in the lungs. We performed percutaneous drainage of abscesses and other parenchymal fluid collections of the lungs in 15 patients. All of the procedures were performed under the fluoroscopic guidance with an 18-gauge Seldinger needle and coaxial technique with a 8-10F drainage catheter. Among 10 patients with lung abscess, 8 patients improved by percutaneous catheter drainage. In one patient, drainage was failed by the accidental withdrawal of the catheter before complete drainage. One patient died of sepsis 5 hours after the procedure. Among three patients with complicated bulla, successful drainage was done in two patients, but in the remaining patient, the procedure was failed. In one patient with intrapulmonary bronchogenic cyst, the drainage was not successful due to the thick internal contents. In one patient with traumatic hematoma, after the drainage of old blood clots, the signs of infection disappeared. Overally, of 14 patients excluding one who died, 11 patients improved with percutaneous catheter drainage and three patients did not. There were no major complications during and after the procedure. We conclude that percutaneous catheter drainage is effective and safe procedure for the treatment of parenchymal fluid collections of the lung in patients unresponsive to the medical treatment
Percutaneous catheter drainage of intrapulmonary fluid collection
Energy Technology Data Exchange (ETDEWEB)
Park, E. D.; Kim, H. J.; Choi, P. Y.; Jung, S. H. [Gyeongsang National University Hospital, Chinju (Korea, Republic of)
1994-01-15
With the success of percutaneous abdominal abscess drainage, attention is now being focused on the use of similar techniques in the thorax. We studied to evaluate the effect of percutaneous drainage in parenchymal fluid collections in the lungs. We performed percutaneous drainage of abscesses and other parenchymal fluid collections of the lungs in 15 patients. All of the procedures were performed under the fluoroscopic guidance with an 18-gauge Seldinger needle and coaxial technique with a 8-10F drainage catheter. Among 10 patients with lung abscess, 8 patients improved by percutaneous catheter drainage. In one patient, drainage was failed by the accidental withdrawal of the catheter before complete drainage. One patient died of sepsis 5 hours after the procedure. Among three patients with complicated bulla, successful drainage was done in two patients, but in the remaining patient, the procedure was failed. In one patient with intrapulmonary bronchogenic cyst, the drainage was not successful due to the thick internal contents. In one patient with traumatic hematoma, after the drainage of old blood clots, the signs of infection disappeared. Overally, of 14 patients excluding one who died, 11 patients improved with percutaneous catheter drainage and three patients did not. There were no major complications during and after the procedure. We conclude that percutaneous catheter drainage is effective and safe procedure for the treatment of parenchymal fluid collections of the lung in patients unresponsive to the medical treatment.
The Dependence of Water Permeability in Quartz Sand on Gas Hydrate Saturation in the Pore Space
Kossel, E.; Deusner, C.; Bigalke, N.; Haeckel, M.
2018-02-01
Transport of fluids in gas hydrate bearing sediments is largely defined by the reduction of the permeability due to gas hydrate crystals in the pore space. Although the exact knowledge of the permeability behavior as a function of gas hydrate saturation is of crucial importance, state-of-the-art simulation codes for gas production scenarios use theoretically derived permeability equations that are hardly backed by experimental data. The reason for the insufficient validation of the model equations is the difficulty to create gas hydrate bearing sediments that have undergone formation mechanisms equivalent to the natural process and that have well-defined gas hydrate saturations. We formed methane hydrates in quartz sand from a methane-saturated aqueous solution and used magnetic resonance imaging to obtain time-resolved, three-dimensional maps of the gas hydrate saturation distribution. These maps were fed into 3-D finite element method simulations of the water flow. In our simulations, we tested the five most well-known permeability equations. All of the suitable permeability equations include the term (1-SH)n, where SH is the gas hydrate saturation and n is a parameter that needs to be constrained. The most basic equation describing the permeability behavior of water flow through gas hydrate bearing sand is k = k0 (1-SH)n. In our experiments, n was determined to be 11.4 (±0.3). Results from this study can be directly applied to bulk flow analysis under the assumption of homogeneous gas hydrate saturation and can be further used to derive effective permeability models for heterogeneous gas hydrate distributions at different scales.
Rowins, S. M.; Yeats, C. J.; Ryan, C. G.
2002-05-01
Nondestructive proton-induced X-ray emission (PIXE) studies of magmatic fluid inclusions in granite-related Sn-W deposits [1] reveal that copper transport out of reduced felsic magmas is favored by low-salinity vapor and not co-existing high-salinity liquid (halite-saturated brine). Copper transport by magmatic vapor also has been documented in oxidized porphyry Cu-Au deposits, but the magnitude of Cu partitioning into the vapor compared to the brine generally is less pronounced than in the reduced magmatic Sn-W systems [2]. Consideration of these microanalytical data leads to the hypothesis that Cu and, by inference, Au in the recently established "reduced porphyry copper-gold" (RPCG) subclass should partition preferentially into vapor and not high-salinity liquid exsolving directly from fluid-saturated magmas [3-4]. To test this hypothesis, PIXE microanalysis of primary fluid inclusions in quartz-sulfide (pyrite, pyrrhotite & chalcopyrite) veins from two RPCG deposits was undertaken using the CSIRO-GEMOC nuclear microprobe. PIXE microanalysis for the ~30 Ma San Anton deposit (Mexico) was done on halite-saturated aqueous brine (deposit (W. Australia) was done on halite-saturated "aqueous" inclusions, which contain a small (deposits of the new RPCG subclass demonstrate the greater potential of these systems, compared to the classically oxidized porphyry Cu-Au systems, to transport Cu and probably precious metals in a magmatic aqueous vapor phase. These PIXE data also support the possibility that Cu partitions preferentially into an immiscible CO2-rich magmatic fluid. References: [1] Heinrich, C.A. et al. (1992) Econ. Geol., 87, 1566-1583. [2] Heinrich, C.A. et al. (1999) Geology, 27, 755-758. [3] Rowins, S.M. (2000) Geology, 28, 491-494. [4] Rowins, S.M. (2000) The Gangue, GAC-MDD Newsletter, 67, 1-7 (www.gac.ca). [5] Rowins, S.M. et al. (1993) Geol. Soc. Australia Abs., 34, 68-70.
Fault tolerant control of systems with saturations
DEFF Research Database (Denmark)
Niemann, Hans Henrik
2013-01-01
This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture in connec......This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture...... in connection with faulty systems including input saturation gives an additional YJBK transfer function related to the input saturation. In the fault free case, this additional YJBK transfer function can be applied directly for optimizing the feedback loop around the input saturation. In the faulty case......, the design problem is a mixed design problem involved both parametric faults and input saturation....
Joekar-Niasar, Vahid
2012-02-23
The capillary pressure-saturation (P c-S w) relationship is one of the central constitutive relationships used in two-phase flow simulations. There are two major concerns regarding this relation. These concerns are partially studied in a hypothetical porous medium using a dynamic pore-network model called DYPOSIT, which has been employed and extended for this study: (a) P c-S w relationship is measured empirically under equilibrium conditions. It is then used in Darcy-based simulations for all dynamic conditions. This is only valid if there is a guarantee that this relationship is unique for a given flow process (drainage or imbibition) independent of dynamic conditions; (b) It is also known that P c-S w relationship is flow process dependent. Depending on drainage and imbibition, different curves can be achieved, which are referred to as "hysteresis". A thermodynamically derived theory (Hassanizadeh and Gray, Water Resour Res 29: 3389-3904, 1993a) suggests that, by introducing a new state variable, called the specific interfacial area (a nw, defined as the ratio of fluid-fluid interfacial area to the total volume of the domain), it is possible to define a unique relation between capillary pressure, saturation, and interfacial area. This study investigates these two aspects of capillary pressure-saturation relationship using a dynamic pore-network model. The simulation results imply that P c-S w relation not only depends on flow process (drainage and imbibition) but also on dynamic conditions for a given flow process. Moreover, this study attempts to obtain the first preliminary insights into the global functionality of capillary pressure-saturation-interfacial area relationship under equilibrium and non-equilibrium conditions and the uniqueness of P c-S w-a nw relationship. © 2012 The Author(s).
Effect of paraffin saturation in a crude oil on operation of a field
Energy Technology Data Exchange (ETDEWEB)
Trebin, G F; Kapyrin, Yu V
1968-11-01
Both theoretical and practical studies in recent years have shown that in planning operational procedures for an oil field, the paraffin saturation of the crude oil must be considered. If the crude oil is essentially saturated with paraffin at reservoir condition, then paraffin deposition can occur around the well and in the well. Temperature in the reservoir can be lowered by 2 mechanisms: (1) by injection of water below reservoir temperature, and (2) by expansion of produced gas and consequent cooling of the produced oil. Possible application of these principles to several Soviet oil fields is discussed. In the Uzen field, a preliminary investigation is under way to test the feasibility of heating the injection water to prevent paraffin deposition in the reservoir.
DEFF Research Database (Denmark)
Sørensen, Morten Kanne; Fabricius, Ida Lykke
2011-01-01
. The purpose of this study is to investigate if frame parameters can be extracted from air saturated measurements in sandstones, because earlier studies have shown that air may have a non-negligible effect on carbonates due to the high kinematic viscosity of air (Fabricius et al., 2010)....
Directory of Open Access Journals (Sweden)
Alireza Mahoori
2013-08-01
Full Text Available Background: Pulseoximetry is widely used in the critical care setting, currently used to guide therapeutic interventions. Few studies have evaluated the accuracy of SPO2 (puls-eoximetry oxygen saturation in intensive care unit after cardiac surgery. Our objective was to compare pulseoximetry with arterial oxygen saturation (SaO2 during clinical routine in such patients, and to examine the effect of mild acidosis on this relationship.Methods: In an observational prospective study 80 patients were evaluated in intensive care unit after cardiac surgery. SPO2 was recorded and compared with SaO2 obtained by blood gas analysis. One or serial arterial blood gas analyses (ABGs were performed via a radial artery line while a reliable pulseoximeter signal was present. One hundred thirty seven samples were collected and for each blood gas analyses, SaO2 and SPO2 we recorded.Results: O2 saturation as a marker of peripheral perfusion was measured by Pulseoxim-etry (SPO2. The mean difference between arterial oxygen saturation and pulseoximetry oxygen saturation was 0.12%±1.6%. A total of 137 paired readings demonstrated good correlation (r=0.754; P<0.0001 between changes in SPO2 and those in SaO2 in samples with normal hemoglobin. Also in forty seven samples with mild acidosis, paired readings demonstrated good correlation (r=0.799; P<0.0001 and the mean difference between SaO2 and SPO2 was 0.05%±1.5%.Conclusion: Data showed that in patients with stable hemodynamic and good signal quality, changes in pulseoximetry oxygen saturation reliably predict equivalent changes in arterial oxygen saturation. Mild acidosis doesn’t alter the relation between SPO2 and SaO2 to any clinically important extent. In conclusion, the pulse oximeter is useful to monitor oxygen saturation in patients with stable hemodynamic.
Flow of a non-Newtonian fluid through channels with permeable wall
Energy Technology Data Exchange (ETDEWEB)
Martins-Costa, Maria Laura [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica. Lab. de Matematica Teorica e Aplicada]. E-mail: laura@mec.uff.br; Gama, Rogerio M. Saldanha da [Laboratorio Nacional de Computacao Cientifica (LNCC), Petropolis, RJ (Brazil)]. E-mail: rsgama@domain.com.br; Frey, Sergio [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Mecanica. Grupo de Estudos Termicos e Energeticos
2000-07-01
In the present work the momentum transport in two adjacent flow regions is described by means of a continuum theory of mixtures, specially developed to model multiphase phenomena. A generalized Newtonian fluid flows through the permeable wall channel, originating a pure fluid region and a mixture region - where the fluid saturates the porous matrix. The fluid and the porous matrix are treated as continuous constituents of a binary mixture coexisting superposed, each of them occupying simultaneously the whole volume of the mixture. An Ostwald-de Waele behavior is assumed for both the fluid constituent (in the mixture region) and the fluid (in the so-called pure fluid region), while the porous matrix, represented by the solid constituent, is assumed rigid, homogeneous, isotropic and at rest. Compatibility conditions at the interface (pure fluid-mixture) for momentum transfer are proposed and discussed. Assuming no flow across the interface, the velocity should be zero on the solid parts of the boundary and should match the fluid diffusing velocity on the fluid parts of the boundary. Also the shear stress at the pure fluid region is to be balanced by a multiple of the partial shear stress at the mixture region. A minimum principle for the above-described problem, assuming fully developed flow in both regions, is presented, providing an easy and reliable way for carrying out numerical simulations. (author)
Nonlinear Saturation Amplitude in Classical Planar Richtmyer–Meshkov Instability
International Nuclear Information System (INIS)
Liu Wan-Hai; Jiang Hong-Bin; Ma Wen-Fang; Wang Xiang
2016-01-01
The classical planar Richtmyer–Meshkov instability (RMI) at a fluid interface supported by a constant pressure is investigated by a formal perturbation expansion up to the third order, and then according to definition of nonlinear saturation amplitude (NSA) in Rayleigh–Taylor instability (RTI), the NSA in planar RMI is obtained explicitly. It is found that the NSA in planar RMI is affected by the initial perturbation wavelength and the initial amplitude of the interface, while the effect of the initial amplitude of the interface on the NSA is less than that of the initial perturbation wavelength. Without marginal influence of the initial amplitude, the NSA increases linearly with wavelength. The NSA normalized by the wavelength in planar RMI is about 0.11, larger than that corresponding to RTI. (paper)
International Nuclear Information System (INIS)
Amin Attarzadeh; Mohammad Kamal Ghassem Al Askari; Tagy Bayat
2009-01-01
To introduce the application of nuclear logging, it is appropriate to provide a motivation for the use of nuclear measurement techniques in well logging. Importance aspects of the geological sciences are for instance grain and porosity structure and porosity volume of the rocks, as well as the transport properties of a fluid in the porous media. Nuclear measurements are, as a rule non-intrusive. Namely, a measurement does not destroy the sample, and it does not interfere with the process to be measured. Also, non- intrusive measurements are often much faster than the radiation methods, and can also be applied in field measurements. A common type of nuclear measurement employs neutron irradiation. It is powerful technique for geophysical analysis. In this research we illustrate the detail of this technique and it's applications to well logging and oil industry. Experiments have been performed to investigate the possibilities of using neutron attenuation measurements to determine water and oil content of rock sample. A beam of 14 MeV neutrons produced by a 150 KV neutron generator was attenuated by different samples and subsequently detected with plastic scintillators NE102 (Fast counter). Each sample was saturated with water and oil. The difference in neutron attenuation between dry and wet samples was compared with the fluid content determined by mass balance of the sample. In this experiment we were able to determine 3% of humidity in standard sample model (SiO 2 ) and estimate porosity in geological samples when saturated with different fluids. (Author)
Yu, Jimin; Yang, Chenchen; Tang, Xiaoming; Wang, Ping
2018-03-01
This paper investigates the H ∞ control problems for uncertain linear system over networks with random communication data dropout and actuator saturation. The random data dropout process is modeled by a Bernoulli distributed white sequence with a known conditional probability distribution and the actuator saturation is confined in a convex hull by introducing a group of auxiliary matrices. By constructing a quadratic Lyapunov function, effective conditions for the state feedback-based H ∞ controller and the observer-based H ∞ controller are proposed in the form of non-convex matrix inequalities to take the random data dropout and actuator saturation into consideration simultaneously, and the problem of non-convex feasibility is solved by applying cone complementarity linearization (CCL) procedure. Finally, two simulation examples are given to demonstrate the effectiveness of the proposed new design techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Prediction of subcooled flow boiling characteristics using two-fluid Eulerian CFD model
Energy Technology Data Exchange (ETDEWEB)
Braz Filho, Francisco A.; Ribeiro, Guilherme B., E-mail: gbribeiro@ieav.cta.br; Caldeira, Alexandre D.
2016-11-15
Highlights: • CFD multiphase model is used to predict subcooled flow boiling characteristics. • Better agreement is achieved for higher saturation pressures. • Onset of nucleate boiling and saturated boiling are well predicted. • CFD multiphase model tends to underestimate the void fraction. • Factors were adjusted in order to improve the void fraction results. - Abstract: The present study concerns a detailed analysis of flow boiling phenomena under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. Two different uniform heat fluxes and three saturation pressures were applied to the channel wall, whereas water mass flux of 900 kg/m{sup 2} s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of the CFD technique for estimation of the wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Changes in factors applied in the modeling of the interfacial heat transfer coefficient and bubble departure frequency were suggested, allowing a better prediction of the void fraction along the heated channel. The commercial CFD solver FLUENT 14.5 was used for the model implementation.
Prediction of subcooled flow boiling characteristics using two-fluid Eulerian CFD model
International Nuclear Information System (INIS)
Braz Filho, Francisco A.; Ribeiro, Guilherme B.; Caldeira, Alexandre D.
2016-01-01
Highlights: • CFD multiphase model is used to predict subcooled flow boiling characteristics. • Better agreement is achieved for higher saturation pressures. • Onset of nucleate boiling and saturated boiling are well predicted. • CFD multiphase model tends to underestimate the void fraction. • Factors were adjusted in order to improve the void fraction results. - Abstract: The present study concerns a detailed analysis of flow boiling phenomena under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. Two different uniform heat fluxes and three saturation pressures were applied to the channel wall, whereas water mass flux of 900 kg/m"2 s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of the CFD technique for estimation of the wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Changes in factors applied in the modeling of the interfacial heat transfer coefficient and bubble departure frequency were suggested, allowing a better prediction of the void fraction along the heated channel. The commercial CFD solver FLUENT 14.5 was used for the model implementation.
International Nuclear Information System (INIS)
Chernikova, E A; Glukhov, L M; Krasovskiy, V G; Kustov, L M; Vorobyeva, M G; Koroteev, A A
2015-01-01
The practical aspects and prospects of application of ionic liquids as heat transfer fluids are discussed. The physicochemical properties of ionic liquids (heat capacity, thermal conductivity, thermal and radiation stability, viscosity, density, saturated vapour pressure and corrosion activity) are compared with the properties of some commercial heat transfer fluids. The issues of toxicity of ionic liquids are considered. Much attention is paid to known organosilicon heat transfer fluids, which are considered to have much in common with ionic liquids in the set of properties and are used in the review as reference materials. The bibliography includes 132 references
International Nuclear Information System (INIS)
Woehl, Taylor J.; Jungjohann, Katherine L.; Evans, James E.; Arslan, Ilke; Ristenpart, William D.; Browning, Nigel D.
2013-01-01
Scanning transmission electron microscopy of various fluid and hydrated nanomaterial samples has revealed multiple imaging artifacts and electron beam–fluid interactions. These phenomena include growth of crystals on the fluid stage windows, repulsion of particles from the irradiated area, bubble formation, and the loss of atomic information during prolonged imaging of individual nanoparticles. Here we provide a comprehensive review of these fluid stage artifacts, and we present new experimental evidence that sheds light on their origins in terms of experimental apparatus issues and indirect electron beam sample interactions with the fluid layer. A key finding is that many artifacts are a result of indirect electron beam interactions, such as production of reactive radicals in the water by radiolysis, and the associated crystal growth. The results presented here will provide a methodology for minimizing fluid stage imaging artifacts and acquiring quantitative in situ observations of nanomaterial behavior in a liquid environment
Energy Technology Data Exchange (ETDEWEB)
Woehl, Taylor J., E-mail: tjwoehl@ucdavis.edu [Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616 (United States); Jungjohann, Katherine L. [Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616 (United States); Evans, James E. [Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616 (United States); Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Arslan, Ilke [Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616 (United States); Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Ristenpart, William D. [Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616 (United States); Department of Food Science and Technology, University of California, Davis, Davis, CA 95616 (United States); Browning, Nigel D. [Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616 (United States); Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616 (United States); Pacific Northwest National Laboratory, Richland, WA 99352 (United States)
2013-04-15
Scanning transmission electron microscopy of various fluid and hydrated nanomaterial samples has revealed multiple imaging artifacts and electron beam–fluid interactions. These phenomena include growth of crystals on the fluid stage windows, repulsion of particles from the irradiated area, bubble formation, and the loss of atomic information during prolonged imaging of individual nanoparticles. Here we provide a comprehensive review of these fluid stage artifacts, and we present new experimental evidence that sheds light on their origins in terms of experimental apparatus issues and indirect electron beam sample interactions with the fluid layer. A key finding is that many artifacts are a result of indirect electron beam interactions, such as production of reactive radicals in the water by radiolysis, and the associated crystal growth. The results presented here will provide a methodology for minimizing fluid stage imaging artifacts and acquiring quantitative in situ observations of nanomaterial behavior in a liquid environment.
nitrogen saturation in stream ecosystems
Earl, S. R.; Valett, H. M.; Webster, J. R.
2006-01-01
The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer ((NO3)-N-15-N) to measure uptake. Experiments were conducted in streams spanning a gradient ...
Dynamic fluid connectivity during steady-state multiphase flow in a sandstone.
Reynolds, Catriona A; Menke, Hannah; Andrew, Matthew; Blunt, Martin J; Krevor, Samuel
2017-08-01
The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term "dynamic connectivity," using fast pore-scale X-ray imaging. We image the flow of N 2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.
Semiconductor saturable absorbers for ultrafast terahertz signals
DEFF Research Database (Denmark)
Hoffmann, Matthias C.; Turchinovich, Dmitry
2010-01-01
states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse......We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...
On Love's approximation for fluid-filled elastic tubes
International Nuclear Information System (INIS)
Caroli, E.; Mainardi, F.
1980-01-01
A simple procedure is set up to introduce Love's approximation for wave propagation in thin-walled fluid-filled elastic tubes. The dispersion relation for linear waves and the radial profile for fluid pressure are determined in this approximation. It is shown that the Love approximation is valid in the low-frequency regime. (author)
Xie, Chengyu; Jia, Nan; Shi, Dongping; Lu, Hao
2017-10-01
In order to study the slurry diffusion law during grouting, Richards unsaturated-saturated model was introduced, the definition of the grouting model is clear, the Richards model control equation was established, And the BP neural network was introduced, the improved fluid-solid coupling model was constructed, Through the use of saturated - unsaturated seepage flow model, As well as the overflow boundary iterative solution of the mixed boundary conditions, the free surface is calculated. Engineering practice for an example, with the aid of multi - field coupling analysis software, the diffusion law of slurry was simulated numerically. The results show that the slurry diffusion rule is affected by grouting material, initial pressure and other factors. When the slurry starts, it flows in the cracks along the upper side of the grouting hole, when the pressure gradient is reduced to the critical pressure, that is, to the lower side of the flow, when the slurry diffusion stability, and ultimately its shape like an 8. The slurry is spread evenly from the overall point of view, from the grouting mouth toward the surrounding evenly spread, it gradually reaches saturation by non-saturation, and it is not a purely saturated flow, when the slurry spread and reach a saturated state, the diffusion time is the engineering grouting time.
CSIR Research Space (South Africa)
Malan, AG
2011-08-01
Full Text Available to modelling both forced convection as well as heat transfer and fluid flow through heterogeneous saturated porous materials via an edge-based finite volume discretization scheme. A volume-averaged set of local thermal disequilibrium governing equations...
Nitrogen saturation in stream ecosystems.
Earl, Stevan R; Valett, H Maurice; Webster, Jackson R
2006-12-01
The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.
DEFF Research Database (Denmark)
Alderliesten, Thomas; De Vis, Jill B; Lemmers, Petra Ma
2017-01-01
saturation in the sagittal sinus (R(2 )= 0.49, p = 0.023), but no significant correlations could be demonstrated with frontal and whole brain cerebral blood flow. These results suggest that measuring oxygen saturation by T2-prepared blood imaging of oxygen saturation is feasible, even in neonates. Strong...... sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy (R(2 )= 0.64, p ..., and magnetic resonance imaging measures of frontal cerebral blood flow, whole brain cerebral blood flow and venous oxygen saturation in the sagittal sinus (R(2 )= 0.71, 0.50, 0.65; p
H∞ Loop Shaping Control of Input Saturated Systems with Norm-Bounded Parametric Uncertainty
Directory of Open Access Journals (Sweden)
Renan Lima Pereira
2015-01-01
Full Text Available This paper proposes a gain-scheduling control design strategy for a class of linear systems with the presence of both input saturation constraints and norm-bounded parametric uncertainty. LMI conditions are derived in order to obtain a gain-scheduled controller that ensures the robust stability and performance of the closed loop system. The main steps to obtain such a controller are given. Differently from other gain-scheduled approaches in the literature, this one focuses on the problem of H∞ loop shaping control design with input saturation nonlinearity and norm-bounded uncertainty to reduce the effect of the disturbance input on the controlled outputs. Here, the design problem has been formulated in the four-block H∞ synthesis framework, in which it is possible to describe the parametric uncertainty and the input saturation nonlinearity as perturbations to normalized coprime factors of the shaped plant. As a result, the shaped plant is represented as a linear parameter-varying (LPV system while the norm-bounded uncertainty and input saturation are incorporated. This procedure yields a linear parameter-varying structure for the controller that ensures the stability of the polytopic LPV shaped plant from the vertex property. Finally, the effectiveness of the method is illustrated through application to a physical system: a VTOL “vertical taking-off landing” helicopter.
Space Charge Saturated Sheath Regime and Electron Temperature Saturation in Hall Thrusters
International Nuclear Information System (INIS)
Raitses, Y.; Staack, D.; Smirnov, A.; Fisch, N.J.
2005-01-01
Secondary electron emission in Hall thrusters is predicted to lead to space charge saturated wall sheaths resulting in enhanced power losses in the thruster channel. Analysis of experimentally obtained electron-wall collision frequency suggests that the electron temperature saturation, which occurs at high discharge voltages, appears to be caused by a decrease of the Joule heating rather than by the enhancement of the electron energy loss at the walls due to a strong secondary electron emission
Application of the principle of similarity fluid mechanics
International Nuclear Information System (INIS)
Hendricks, R.C.; Sengers, J.V.
1979-01-01
Possible applications of the principle of similarity to fluid mechanics is described and illustrated. In correlating thermophysical properties of fluids, the similarity principle transcends the traditional corresponding states principle. In fluid mechanics the similarity principle is useful in correlating flow processes that can be modeled adequately with one independent variable (i.e., one-dimensional flows). In this paper we explore the concept of transforming the conservation equations by combining similarity principles for thermophysical properties with those for fluid flow. We illustrate the usefulness of the procedure by applying such a transformation to calculate two phase critical mass flow through a nozzle
Saturated Zone Colloid-Facilitated Transport
International Nuclear Information System (INIS)
Wolfsberg, A.; Reimus, P.
2001-01-01
The purpose of the Saturated Zone Colloid-Facilitated Transport Analysis and Modeling Report (AMR), as outlined in its Work Direction and Planning Document (CRWMS MandO 1999a), is to provide retardation factors for colloids with irreversibly-attached radionuclides, such as plutonium, in the saturated zone (SZ) between their point of entrance from the unsaturated zone (UZ) and downgradient compliance points. Although it is not exclusive to any particular radionuclide release scenario, this AMR especially addresses those scenarios pertaining to evidence from waste degradation experiments, which indicate that plutonium and perhaps other radionuclides may be irreversibly attached to colloids. This report establishes the requirements and elements of the design of a methodology for calculating colloid transport in the saturated zone at Yucca Mountain. In previous Total Systems Performance Assessment (TSPA) analyses, radionuclide-bearing colloids were assumed to be unretarded in their migration. Field experiments in fractured tuff at Yucca Mountain and in porous media at other sites indicate that colloids may, in fact, experience retardation relative to the mean pore-water velocity, suggesting that contaminants associated with colloids should also experience some retardation. Therefore, this analysis incorporates field data where available and a theoretical framework when site-specific data are not available for estimating plausible ranges of retardation factors in both saturated fractured tuff and saturated alluvium. The distribution of retardation factors for tuff and alluvium are developed in a form consistent with the Performance Assessment (PA) analysis framework for simulating radionuclide transport in the saturated zone. To improve on the work performed so far for the saturated-zone flow and transport modeling, concerted effort has been made in quantifying colloid retardation factors in both fractured tuff and alluvium. The fractured tuff analysis used recent data
Mechanics of magnetic fluid column in strong magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Polunin, V.M.; Ryapolov, P.A., E-mail: r-piter@yandex.ru; Platonov, V.B.
2017-06-01
Elastic-and magnetic properties of magnetic fluid confined by ponderomotive force in a tube fixed in horizontal position are considered. The system is placed in a strong magnetic field under the influence of external static and dynamic perturbations. An experimental setup has been developed. A theoretical basis of the processes of magnetic colloid elastic deformation has been proposed. The values of the static ponderomotive elasticity coefficient and the elasticity coefficient under dynamic action are experimentally determined. The calculations of the saturation magnetization for two magnetic fluid samples, carried out according to the equation containing the dynamic elasticity coefficient, are in good agreement with the experimental magnetization curve. The described method is of interest when studying magnetophoresis and aggregation of nanoparticles in magnetic colloids.
Nonlinear damping for vibration isolation of microsystems using shear thickening fluid
Iyer, S. S.; Vedad-Ghavami, R.; Lee, H.; Liger, M.; Kavehpour, H. P.; Candler, R. N.
2013-06-01
This work reports the measurement and analysis of nonlinear damping of micro-scale actuators immersed in shear thickening fluids (STFs). A power-law damping term is added to the linear second-order model to account for the shear-dependent viscosity of the fluid. This nonlinear model is substantiated by measurements of oscillatory motion of a torsional microactuator. At high actuation forces, the vibration velocity amplitude saturates. The model accurately predicts the nonlinear damping characteristics of the STF using a power-law index extracted from independent rheology experiments. This result reveals the potential to use STFs as adaptive, passive dampers for vibration isolation of microelectromechanical systems.
Numerical study of coupled fluid-structure interaction for combustion system
Khatir, Z.; Pozarlik, Artur Krzysztof; Cooper, R.K.; Watterson, J.W.; Kok, Jacobus B.W.
2007-01-01
The computation of fluid–structure interaction (FSI) problems requires solving simultaneously the coupled fluid and structure equations. A partitioned approach using a volume spline solution procedure is applied for the coupling of fluid dynamics and structural dynamics codes. For comparative study,
Hamiltonian description of the ideal fluid
International Nuclear Information System (INIS)
Morrison, P.J.
1994-01-01
Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems
Assessing species saturation: conceptual and methodological challenges.
Olivares, Ingrid; Karger, Dirk N; Kessler, Michael
2018-05-07
Is there a maximum number of species that can coexist? Intuitively, we assume an upper limit to the number of species in a given assemblage, or that a lineage can produce, but defining and testing this limit has proven problematic. Herein, we first outline seven general challenges of studies on species saturation, most of which are independent of the actual method used to assess saturation. Among these are the challenge of defining saturation conceptually and operationally, the importance of setting an appropriate referential system, and the need to discriminate among patterns, processes and mechanisms. Second, we list and discuss the methodological approaches that have been used to study species saturation. These approaches vary in time and spatial scales, and in the variables and assumptions needed to assess saturation. We argue that assessing species saturation is possible, but that many studies conducted to date have conceptual and methodological flaws that prevent us from currently attaining a good idea of the occurrence of species saturation. © 2018 Cambridge Philosophical Society.
Evaluation of Working Fluids for Organic Rankine Cycle Based on Exergy Analysis
Setiawan, D.; Subrata, I. D. M.; Purwanto, Y. A.; Tambunan, A. H.
2018-05-01
One of the crucial aspects to determine the performance of Organic Rankine Cycle (ORC) is the selection of appropriate working fluids. This paper describes the simulative performance of several organic fluid and water as working fluid of an ORC based on exergy analysis with a heat source from waste heat recovery. The simulation was conducted by using Engineering Equation Solver (EES). The effect of several parameters and thermodynamic properties of working fluid was analyzed, and part of them was used as variables for the simulation in order to determine their sensitivity to the exergy efficiency changes. The results of this study showed that water is not appropriate to be used as working fluid at temperature lower than 130 °C, because the expansion process falls in saturated area. It was also found that Benzene had the highest exergy efficiency, i.e. about 10.49%, among the dry type working fluid. The increasing turbine inlet temperature did not lead to the increase of exergy efficiency when using organic working fluids with critical temperature near heat source temperature. Meanwhile, exergy efficiency decreasing linearly with the increasing condenser inlet temperature. In addition, it was found that working fluid with high latent heat of vaporization and specific heat exert in high exergy efficiency.
Physiologic effects of intravenous fluid administration in healthy volunteers
DEFF Research Database (Denmark)
Holte, Kathrine; Jensen, Peter; Kehlet, Henrik
2003-01-01
, infusion of the fluid over 3 h in the morning, and additionally 24-h hospitalization under standardized conditions. Primary outcome assessments were pulmonary function (spirometry), exercise capacity (submaximal treadmill test), balance function (BalanceMaster), and weight. Infusion of 40 mL/kg of lactated...... by fluid administration. These findings may serve as a basis for clinical studies applying the same type of fluid in different amounts to determine the optimal amount of perioperative fluid in various surgical procedures. IMPLICATIONS: Infusion of 40 mL/kg of lactated Ringer's solution in volunteers led...
Misconceptions in Reporting Oxygen Saturation
Toffaletti, John; Zijlstra, Willem G.
2007-01-01
BACKGROUND: We describe some misconceptions that have become common practice in reporting blood gas and cooximetry results. In 1980, oxygen saturation was incorrectly redefined in a report of a new instrument for analysis of hemoglobin (Hb) derivatives. Oxygen saturation (sO(2)) was redefined as the
SURGTANK, Steam Pressure, Saturation Temperature or Reactor Surge Tank
International Nuclear Information System (INIS)
Gorman, D.J.; Gupta, R.K.
2001-01-01
1 - Description of problem or function: SURGTANK generates the steam pressure, saturation temperature, and ambient temperature history for a nuclear reactor steam surge tank (pressurizer) in a state of thermodynamic equilibrium subjected to a liquid insurge described by a specified time history of liquid levels. It is capable also of providing the pressure and saturation temperature history, starting from thermodynamic equilibrium conditions, for the same tank subjected to an out-surge described by a time history of liquid levels. Both operations are available for light- or heavy- water nuclear reactor systems. The tank is assumed to have perfect thermal insulation on its outer wall surfaces. 2 - Method of solution: Surge tank geometry and initial liquid level and saturation pressure are provided as input for the out-surge problem, along with the prescribed time-sequence level history. SURGTANK assumes a reduced pressure for the end of the first change in liquid level and determines the associated change of entropy for the closed system. The assumed pressure is adjusted and the associated change in entropy recalculated until a pressure is attained for which no change occurs. This pressure is recorded and used as the beginning pressure for the next level increment. The system is then re-defined to exclude the small amount of liquid which has left the tank, and a solution for the pressure at the end of the second level increment is obtained. The procedure is terminated when the pressure at the end of the final increment has been determined. Surge tank geometry, thermal conductivity, specific heat, and density of tank walls, initial liquid level, and saturation pressure are provided as input for the insurge problem, along with the prescribed time-sequence level history. SURGTANK assumes a slightly in- creased pressure for the end of the first level, the inner tank sur- face is assumed to follow saturation temperature, linearly with time, throughout the interval, and
Landsliding in partially saturated materials
Godt, J.W.; Baum, R.L.; Lu, N.
2009-01-01
[1] Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials. Copyright 2009 by the American Geophysical Union.
DEFF Research Database (Denmark)
Chater, E.; Giri, F.; Guerrero, Josep M.
2014-01-01
We consider the problem of controlling plants that are subject to multiple saturation constraints. Especially, we are interested in linear systems whose input is subject to amplitude and rate constraints of saturation type. Furthermore, the considered systems output is also subject to an intrinsi...
Schlueter, S.; Sheppard, A.; Wildenschild, D.
2013-12-01
Imaging of fluid interfaces in three-dimensional porous media via x-ray microtomography is an efficient means to test thermodynamically derived predictions on the relationship between capillary pressure, fluid saturation and specific interfacial area (Pc-Sw-Anw) in partially saturated porous media. Various experimental studies exist to date that validate the uniqueness of the Pc-Sw-Anw relationship under static conditions and with current technological progress direct imaging of moving interfaces under dynamic conditions is also becoming available. Image acquisition and subsequent image processing currently involves many steps each prone to operator bias, like merging different scans of the same sample obtained at different beam energies into a single image or the generation of isosurfaces from the segmented multiphase image on which the interface properties are usually calculated. We demonstrate that with recent advancements in (i) image enhancement methods, (ii) multiphase segmentation methods and (iii) methods of structural analysis we can considerably decrease the time and cost of image acquisition and the uncertainty associated with the measurement of interfacial properties. In particular, we highlight three notorious problems in multiphase image processing and provide efficient solutions for each: (i) Due to noise, partial volume effects, and imbalanced volume fractions, automated histogram-based threshold detection methods frequently fail. However, these impairments can be mitigated with modern denoising methods, special treatment of gray value edges and adaptive histogram equilization, such that most of the standard methods for threshold detection (Otsu, fuzzy c-means, minimum error, maximum entropy) coincide at the same set of values. (ii) Partial volume effects due to blur may produce apparent water films around solid surfaces that alter the specific fluid-fluid interfacial area (Anw) considerably. In a synthetic test image some local segmentation methods
Synthesizing and characterization of bilayer ferro fluid
International Nuclear Information System (INIS)
Akhavan, M.; Ghominezhad, M.
1997-01-01
Adsorption role of the sodium dodecyl sulfate (SDS) as the second layer surfactant in a double layer surfactant ferro fluid is investigated. Preparation of the solid phase is based on the growth of the magnetic oxide by dehydration of the salt solution of FeCl sub 2 and FeCl sub 3 in an identical molar ratio. The particle size was determined through the magnetic measurements by VSM to be about 8-10 nm. The data show that in a certain thermal interval, a local maxima appears in the magnetic oxide concentration which is a function of the stirring time and the SDS concentration. Increasing temperature, causes surface oxidation which decreases the magnetization, similar to what happens in the monolayer ferro fluids. In addition, in the double layer systems, the solubility of the layers into each other varies. This has a more profound effect on the saturation magnetization. (author)
Cytologic examination of hemorrhagic fluid by capillary centrifugation: a new technique.
Agarwal, Padam Kumari
2009-01-01
To develop a simplified technique for processing hemorrhagic body fluids, allowing elimination of red blood cells (RBCs) to obtain tumor cell-rich cytosmears for accurate diagnosis of malignancy. Hemorrhagic fluid is collected with ethylenediamine tetraacetic acid anticoagulant. The cells are separated by centrifugation in glass capillaries into 3 layers, with the uppermost containing supernatant, middle buffy coat and lowermost dark layer of RBCs. The smears of the buffy coat are prepared by breaking the capillaries at the junction of buffy coat and RBC layer. The procedure is named capillary centrifugation technique. This procedure was developed in the cytology laboratory at King George's Medical College, Lucknow, India in 1974. Cell yield is good and cellular details are well preserved. No cell debris is present on the slides. The background of the smears is absolutely clear. Any number of slides may be prepared for special study for exact typing of tumor cells This is a simple, economical procedure and a good substitute for a cytocentrifuge machine for preparing smears from small amount of fluids. Technicians learn it quickly and are quite comfortable with the procedure.
Saturated flow boiling heat transfer in water-heated vertical annulus
International Nuclear Information System (INIS)
Sun Licheng; Yan Changqi; Sun Zhonning
2005-01-01
This paper describes the saturated flow boiling heat transfer characteristics of water at 1 atm and low velocities in water-heated vertical annuli with equivalent diameters of 10 mm and 6 mm. Test section is consisted of two concentric circular tubes outer of which is made of quartz, so the whole test courses can be visualized. There are three main flow patterns of bubble flow, churn flow and churn-annular flow in the annuli, most important of which is churn flow. Flooding is the mechanism of churn flow and churn can enhance the heat transport between steam and water; Among the three factors of mass flux, inlet subcooling and annulus width, the last one has great effect on heat transport, moderately decreasing the annulus width can enhance the heat transfer; Combined annular flow model with theory of flooding and turbulent Prandtl Number, the numerical value of heat flux is given, the shape of test boiling curve and that of calculated by model is very alike, but there is large discrepancy between test data and calculated results, the most possible reason is that some parameters given by fluid flooding model are based on experimental data of common circular tubes, but not of annuli. Doing more research on flooding in annulus, particularly narrow annulus, is necessary for calculating the saturated boiling in annulus. (authors)
Topology optimization of fluid-structure-interaction problems in poroelasticity
DEFF Research Database (Denmark)
Andreasen, Casper Schousboe; Sigmund, Ole
2013-01-01
This paper presents a method for applying topology optimization to fluid-structure interaction problems in saturated poroelastic media. The method relies on a multiple-scale method applied to periodic media. The resulting model couples the Stokes flow in the pores of the structure with the deform...... by topology optimization in order to optimize the performance of a shock absorber and test the pressure loading capabilities and optimization of an internally pressurized lid. © 2013 Published by Elsevier B.V....
Delaney, P.
1984-01-01
Analytical solutions are developed for the pressurization, expansion, and flow of one- and two-phase liquids during heating of fully saturated and hydraulically open Darcian half-spaces subjected to a step rise in temperature at its surface. For silicate materials, advective transfer is commonly unimportant in the liquid region; this is not always the case in the vapor region. Volume change is commonly more important than heat of vaporization in determining the position of the liquid-vapor interface, assuring that the temperatures cannot be determined independently of pressures. Pressure increases reach a maximum near the leading edge of the thermal front and penetrate well into the isothermal region of the body. Mass flux is insensitive to the hydraulic properties of the half-space. ?? 1984.
Directory of Open Access Journals (Sweden)
Erick Ogam
2011-09-01
Full Text Available A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory (MBT and plane-wave decomposition using orthogonal cylindrical functions is developed. The model is employed to recover from real data acquired in an anechoic chamber, the poromechanical properties of a soft cellular melamine cylinder submitted to an audible acoustic radiation. The inverse problem of acoustic diffraction is solved by constructing the objective functional given by the total square of the difference between predictions from the MBT interaction model and diffracted field data from experiment. The faculty of retrieval of the intrinsic poromechanical parameters from the diffracted acoustic fields, indicate that a wave initially propagating in a light fluid (air medium, is able to carry in the absence of mechanical excitation of the specimen, information on the macroscopic mechanical properties which depend on the microstructural and intrinsic properties of the solid phase.
International Nuclear Information System (INIS)
1980-01-01
A procedure is described for the preparation of an Ausup(195m) containing fluid by adsorbing the parent isotope Hgsup(195m) onto an adsorption material and then eluting the radioactive daughter isotope Ausup(195m). The packing materials for the chromatographic column are silica gel, porous and massive glass beads. The adsorption materials for Hg 195 are hydrated manganese dioxide, silver, and zinc, cadmium, silver or zirconium sulfides. The procedure for depositing these materials in the packing material is outlined and the most suitable eluting fluid for each adsorption material is presented. The procedure has applications in the execution of a radiodiagnostic examination using an Ausup(195m) labelled fluid. (C.F.)
Geometrical approach to fluid models
International Nuclear Information System (INIS)
Kuvshinov, B.N.; Schep, T.J.
1997-01-01
Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical notion of invariance is introduced in terms of Lie derivatives and a general procedure for the construction of local and integral fluid invariants is presented. The solutions of the equations for invariant fields can be written in terms of Lagrange variables. A generalization of the Hamiltonian formalism for finite-dimensional systems to continuous media is proposed. Analogously to finite-dimensional systems, Hamiltonian fluids are introduced as systems that annihilate an exact two-form. It is shown that Euler and ideal, charged fluids satisfy this local definition of a Hamiltonian structure. A new class of scalar invariants of Hamiltonian fluids is constructed that generalizes the invariants that are related with gauge transformations and with symmetries (Noether). copyright 1997 American Institute of Physics
International Nuclear Information System (INIS)
Das, Amita; Sen, Abhijit; Kaw, Predhiman; Benkadda, S.; Beyer, Peter
2005-01-01
Three-dimensional electromagnetic fluid simulations of the magnetic-curvature-driven Rayleigh-Taylor instability are presented. Issues related to the existence of nonlinear saturated states and the nature of the temporal evolution to such states from random initial conditions are addressed. It is found that nonlinear saturated states arising from generation of zonal shear flows continue to exist in certain parametric domains but their spectrum and spatial characteristics have important differences from earlier two-dimensional results reported in Phys. Plasmas 4, 1018 (1997) and Phys. Plasmas 8, 5104 (2001). In particular, the three-dimensional nonlinear states possess a significant power level in short scales and the spatial structures of the potential and density fluctuations appear not to develop any functional correlations. Electromagnetic effects are found to inhibit the formation of zonal flows and thereby to considerably restrict the parametric domain of nonlinear stabilization. The role of finite k parallel and the contribution of the unstable drift wave branch are also discussed and delineated through a number of simulation studies carried out in special simplified limits
Vapour loss (``boiling'') as a mechanism for fluid evolution in metamorphic rocks
Trommsdorff, Volkmar; Skippen, George
1986-11-01
The calculation of fluid evolution paths during reaction progress is considered for multicomponent systems and the results applied to the ternary system, CO2-H2O-NaCl. Fluid evolution paths are considered for systems in which a CO2-rich phase of lesser density (vapour) is preferentially removed from the system leaving behind a saline aqueous phase (liquid). Such “boiling” leads to enrichment of the residual aqueous phase in dissolved components and, for certain reaction stoichiometries, to eventual saturation of the fluids in salt components. Distinctive textures, particularly radiating growths of prismatic minerals such as tremolite or diopside, are associated with saline fluid inclusions and solid syngenetic salt inclusions at a number of field localities. The most thoroughly studied of these localities is Campolungo, Switzerland, where metasomatic rocks have developed in association with fractures and veins at 500° C and 2,000 bars of pressure. The petrography of these rocks suggests that fluid phase separation into liquid and vapour has been an important process during metasomatism. Fracture systems with fluids at pressure less than lithostatic may facilitate the loss of the less dense vapour phase to conditions of the amphibolite facies.
A preliminary study on method of saturated curve
International Nuclear Information System (INIS)
Cao Liguo; Chen Yan; Ao Qi; Li Huijuan
1987-01-01
It is an effective method to determine directly the absorption coefficient of sample with the matrix effect correction. The absorption coefficient is calculated using the relation of the characteristic X-ray intensity with the thickness of samples (saturated curve). The method explains directly the feature of the sample and the correction of the enhanced effect in certain condition. The method is not as same as the usual one in which the determination of the absorption coefficient of sample is based on the procedure of absorption of X-ray penetrating sample. The sensitivity factor KI 0 is discussed. The idea of determinating KI o by experiment and quasi-absoluted measurement of absorption coefficient μ are proposed. The experimental results with correction in different condition are shown
Saturation and linear transport equation
International Nuclear Information System (INIS)
Kutak, K.
2009-03-01
We show that the GBW saturation model provides an exact solution to the one dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Adam, J; Green, T H [Macquarie Univ., North Ryde, NSW (Australia). School of Earth Sciences; Sie, S H [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience
1997-12-31
A series of experiments were performed to examine the capacity of H{sub 2}O-fluids to concentrate and transport incompatible elements through peridotitic mantle and metamorphosed (eclogitic) ocean crust. Two naturally occurring rock compositions, trondhjemitic and basanitic, were used in experiments. The proton microprobe was used to determine the trace element concentrations in the solutes from H{sub 2}O-fluids equilibrated at 900-1100 degree C, 2.0 GPa with water saturated melts of trondhjemitic and basanitic compositions. Partitioning data for H{sub 2}O-fluids and silicate melts show that H{sub 2}O-fluids equilibrated with mantle peridotites will not be strongly enriched in trace elements relative to their wallrocks, and thus they melts do not strongly concentrate alkaline earths Th and U, relative to high-field strength elements. 3 refs., 1 tab., 2 figs.
Energy Technology Data Exchange (ETDEWEB)
Adam, J.; Green, T.H. [Macquarie Univ., North Ryde, NSW (Australia). School of Earth Sciences; Sie, S.H. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience
1996-12-31
A series of experiments were performed to examine the capacity of H{sub 2}O-fluids to concentrate and transport incompatible elements through peridotitic mantle and metamorphosed (eclogitic) ocean crust. Two naturally occurring rock compositions, trondhjemitic and basanitic, were used in experiments. The proton microprobe was used to determine the trace element concentrations in the solutes from H{sub 2}O-fluids equilibrated at 900-1100 degree C, 2.0 GPa with water saturated melts of trondhjemitic and basanitic compositions. Partitioning data for H{sub 2}O-fluids and silicate melts show that H{sub 2}O-fluids equilibrated with mantle peridotites will not be strongly enriched in trace elements relative to their wallrocks, and thus they melts do not strongly concentrate alkaline earths Th and U, relative to high-field strength elements. 3 refs., 1 tab., 2 figs.
Dynamic conductivity and partial ionization in dense fluid hydrogen
Zaghoo, Mohamed
2018-04-01
A theoretical description for optical conduction experiments in dense fluid hydrogen is presented. Different quantum statistical approaches are used to describe the mechanism of electronic transport in hydrogen's high-temperature dense phase. We show that at the onset of the metallic transition, optical conduction could be described by a strong rise in atomic polarizability, due to increased ionization, whereas in the highly degenerate limit, the Ziman weak scattering model better accounts for the observed saturation of reflectance. The inclusion of effects of partial ionization in the highly degenerate region provides great agreement with experimental results. Hydrogen's fluid metallic state is revealed to be a partially ionized free-electron plasma. Our results provide some of the first theoretical transport models that are experimentally benchmarked, as well as an important guide for future studies.
Sesti, Erika L.; Alaniva, Nicholas; Rand, Peter W.; Choi, Eric J.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Barnes, Alexander B.
2018-01-01
We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1H saturation recovery experiments show a 1H T1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells.
International Nuclear Information System (INIS)
Chieh, J. J.; Hong, C. Y.; Yang, S. Y.; Horng, H. E.; Yang, H. C.
2010-01-01
We propose two optical fiber-based schemes using two magnetic fluid optical fiber modulators in series or in parallel for optical logic signal processing and operation. Here, each magnetic fluid optical fiber modulator consists of a bare multimode fiber surrounded by magnetic fluid in which the refractive index is adjustable by applying external magnetic fields amplifying the input electrical signal to vary the transmission intensity of the optical fiber-based scheme. The physical mechanisms for the performances of the magnetic fluid optical fiber devices, such as the transmission loss related to Boolean number of the logic operation as well as the dynamic response, are studied by the characteristics of superparamagnetic nanoparticles and magnetic fluids. For example, in the dynamic response composed of the retarding and response sub-procedures except the response times of the actuation coil, the theoretical evaluation of the retarding time variation with cladding magnetic fluids length has good agreement with the experimental results.
Mathematical modeling for laminar flow of power law fluid in porous media
Energy Technology Data Exchange (ETDEWEB)
Silva, Renato A.; Mesquita, Maximilian S. [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Engenharias e Computacao
2010-07-01
In this paper, the macroscopic equations for laminar power-law fluid flow is obtained for a porous medium starting from traditional equations (Navier-Stokes). Then, the volume averaging is applied in traditional transport equations with the power-law fluid model. This procedure leads to macroscopic transport equations set for non-Newtonian fluid. (author)
CERN. Geneva
2016-01-01
In this work, a Computational Fluid-Dynamics (CFD) approach to model this phenomenon inside throttling devices is proposed. To validate CFD results, different nozzle geometries are analyzed, comparing numerical results with experimental data. Two cases are studied: Case 1: saturation steam/water mixture flow inside 2D convergent-divergent nozzle (inlet, outlet and throat diameter of nozzle are 0.1213m, 0.0452m and 0.0191m respectively). In this benchmark, a range of total inle...
Evaluation of magnetorheological fluid augmented fabric as a fragment barrier material
International Nuclear Information System (INIS)
Son, Kwon Joong; Fahrenthold, Eric P
2012-01-01
The augmentation of high strength fabrics with non-Newtonian fluids has been suggested as a means for improving the ballistic performance of fragment barrier materials widely used in fan blade containment, body armor, orbital debris shielding, and other applications. Magnetorheological (MR) fluids have attracted particular interest, in view of their controllability and proven effectiveness in a variety of damping applications. In a basic research investigation of the MR fluid augmented fabric barrier concept, the authors have fabricated MR fluid saturated Kevlar targets and measured the ballistic performance of these targets both with and without an applied magnetic field. The experimental results show that magnetization of the MR fluid does, when considered in isolation, improve the ability of the augmented fabric to absorb impact energy. However, the benefits of plastic and viscous energy dissipation in the magnetized semi-solid are more than offset by the detrimental effects of yarn lubrication associated with the fluid’s hydrocarbon carrier. An analytical model developed to assist in the interpretation of the experimental data suggests that frictional interaction of the yarns is significantly more effective than magnetorheological augmentation of the fabric in distributing projectile loads away from the point of impact. (paper)
Complex intravenous anesthesia in interventional procedures
International Nuclear Information System (INIS)
Xie Zonggui; Hu Yuanming; Huang Yunlong; You Yong; Wu Juan; Huang Zengping; Li Jian
2006-01-01
Objective: To evaluate the value and safety of Diprivan and Fentany intravenous administration of analgesia in interventional procedures. Methods: Diprivan with Fentany intravenous administration for analgesia was used in eighty interventional procedures of sixty-five patients, without tracheal tube insertion. Vital signs including HR, BP, arterial oxygen saturation (SpO 2 ) and patients' reaction to operating were recorded. Results: Intravenous anesthesia was cared out successfully in eighty interventional procedures, with patients under sleeping condition during the operation, together with no pain and no agony memory of the procedure. The amount of Diprivan was 500±100 mg and Fentany was 0.2±0.025 mg. Mean arterial pressure and SpO 2 were 11.4±2.2 kPa, 10.6±2.1 kPa and 98±1.0, 96±1.5 respectively before and after ten minutes of the operation, with no significant difference. Conclusions: Diprivan with Fentany intravenous administration for interventional procedure analgesia possess good safety, painless and no agony memory of the procedure; therefor ought to be recommended. (authors)
Persistent Homology to describe Solid and Fluid Structures during Multiphase Flow
Herring, A. L.; Robins, V.; Liu, Z.; Armstrong, R. T.; Sheppard, A.
2017-12-01
The question of how to accurately and effectively characterize essential fluid and solid distributions and structures is a long-standing topic within the field of porous media and fluid transport. For multiphase flow applications, considerable research effort has been made to describe fluid distributions under a range of conditions; including quantification of saturation levels, fluid-fluid pressure differences and interfacial areas, and fluid connectivity. Recent research has effectively used topological metrics to describe pore space and fluid connectivity, with researchers demonstrating links between pore-scale nonwetting phase topology to fluid mobilization and displacement mechanisms, relative permeability, fluid flow regimes, and thermodynamic models of multiphase flow. While topology is clearly a powerful tool to describe fluid distribution, topological metrics by definition provide information only on the connectivity of a phase, not its geometry (shape or size). Physical flow characteristics, e.g. the permeability of a fluid phase within a porous medium, are dependent on the connectivity of the pore space or fluid phase as well as the size of connections. Persistent homology is a technique which provides a direct link between topology and geometry via measurement of topological features and their persistence from the signed Euclidean distance transform of a segmented digital image (Figure 1). We apply persistent homology analysis to measure the occurrence and size of pore-scale topological features in a variety of sandstones, for both the dry state and the nonwetting phase fluid during two-phase fluid flow (drainage and imbibition) experiments, visualized with 3D X-ray microtomography. The results provide key insights into the dominant topological features and length scales of a media which control relevant field-scale engineering properties such as fluid trapping, absolute permeability, and relative permeability.
International Nuclear Information System (INIS)
Janecky, D.R.; Rundberg, R.S.; Ott, M.; Mitchell, A.
1990-11-01
This report summarizes the results of continuing experiments on the behavior of tracers during fracture flow in saturated, welded tuff. These experiments were completed during the past year as part of the Dynamic Transport Task of geochemical investigations for the Yucca Mountain Project sponsored by the US Department of Energy. These experiments are designed to investigate the effects of fluid movement in fractures when coupled with matrix diffusion and sorption but isolated from the effects of capillary suction and two-phase flow characteristic of unsaturated conditions. The experiments reported here are continuations of experimental efforts reported previously. The behavior of three tracers [HTO (tritiated water), TcO 4 - (pertechnetate), and sulforhodamine B dye] have been investigated during flow through a saturated column of densely welded tuff from the Topopah Spring Member of the Paintbrush Tuff, Yucca Mountain, Nye County, southern Nevada. 31 refs., 26 figs., 2 tabs
Liu, Yu; Xue, Ziqiu; Park, Hyuck; Kiyama, Tamotsu; Zhang, Yi; Nishizawa, Osamu; Chae, Kwang-seok
2015-12-01
Complex electrical impedance measurements were performed on a brine-saturated Berea sandstone core while oil and CO2 were injected at different pressures and temperatures. The saturations of brine, oil, and CO2 in the core were simultaneously estimated using an X-ray computed tomography scanner. The formation factor of this Berea core and the resistivity indexes versus the brine saturations were calculated using Archie's law. The experimental results found different flow patterns of oil under different pressures and temperatures. Fingers were observed for the first experiment at 10 MPa and 40 °C. The fingers were restrained as the viscosity ratio of oil and water changed in the second (10 MPa and 25 °C) and third (5 MPa and 25 °C) experiments. The resistivity index showed an exponential increase with a decrease in brine saturation. The saturation exponent varied from 1.4 to 4.0 at different pressure and temperature conditions. During the oil injection procedure, the electrical impedance increased with oil saturation and was significantly affected by different oil distributions; therefore, the impedance varied whether the finger was remarkable or not, even if the oil saturation remained constant. During the CO2 injection steps, the impedance showed almost no change with CO2 saturation because the brine in the pores became immobile after the oil injection.
Energy Technology Data Exchange (ETDEWEB)
Sichtermann, Ernst
2016-12-15
The fundamental structure of nucleons and nuclear matter is described by the properties and dynamics of quarks and gluons in quantum chromodynamics. Electron-nucleon collisions are a powerful method to study this structure. As one increases the energy of the collisions, the interaction process probes regions of progressively higher gluon density. This density must eventually saturate. An high-energy polarized Electron-Ion Collider (EIC) has been proposed to observe and study the saturated gluon density regime. Selected measurements will be discussed, following a brief introduction.
Technical Competencies Applied in Experimental Fluid Dynamics
Tagg, Randall
2017-11-01
The practical design, construction, and operation of fluid dynamics experiments require a broad range of competencies. Three types are instrumental, procedural, and design. Respective examples would be operation of a spectrum analyzer, soft-soldering or brazing flow plumbing, and design of a small wind tunnel. Some competencies, such as the selection and installation of pumping systems, are unique to fluid dynamics and fluids engineering. Others, such as the design and construction of electronic amplifiers or optical imaging systems, overlap with other fields. Thus the identification and development of learning materials and methods for instruction are part of a larger effort to identify competencies needed in active research and technical innovation.
Remij, E.W.; Remmers, J.J.C.; Huyghe, J.M.R.J.; Smeulders, D.M.J.
2015-01-01
In this paper, we present an enhanced local pressure model for modelling fluid pressure driven fractures in porous saturated materials. Using the partition-of-unity property of finite element shape functions, we describe the displacement and pressure fields across the fracture as a strong
The Direct Effect of Flexible Walls on Fontan Connection Fluid Dynamics
Tree, Mike; Fagan, Kiley; Yoganathan, Ajit
2014-11-01
The current standard treatment for sufferers of congenital heart defects is the palliative Fontan procedure. The Fontan procedure results in an anastomosis of major veins directly to the branched pulmonary arteries bypassing the dysfunctional ventricle. This total cavopulmonary connection (TCPC) extends life past birth, but Fontan patients still suffer long-term complications like decreased exercise capacity, protein-losing enteropathy, and pulmonary arteriovenous malformations (PAVM). These complications have direct ties to fluid dynamics within the connection. Previous experimental and computation studies of Fontan connection fluid dynamics employed rigid vessel models. More recent studies utilize flexible models, but a direct comparison of the fundamental fluid dynamics between rigid and flexible vessels only exists for a computational model, without a direct experimental validation. Thus, this study was a direct comparison of fluid dynamics within a rigid and two compliant idealized TCPCs. 2D particle image velocimetry measurements were collected at the connection center plane. Results include power loss, hepatic flow distribution, fluid shear stress, and flow structure recognition. The effect of flexible walls on these values and clinical impact will be discussed.
Energy Technology Data Exchange (ETDEWEB)
Thekkayil, Remyamol [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, C.V. Raman Avenue, Bangalore 560 080 (India); Gopinath, Pramod [Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India); John, Honey, E-mail: honey@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India)
2014-08-01
Solid films of cube-like polyaniline synthesized by inverse microemulsion polymerization method have been fabricated in a transparent PMMA host by an in situ free radical polymerization technique, and are characterized by spectroscopic and microscopic techniques. The nonlinear optical properties are studied by open aperture Z-scan technique employing 5 ns (532 nm) and 100 fs (800 nm) laser pulses. At the relatively lower laser pulse energy of 5 μJ, the film shows saturable absorption both in the nanosecond and femtosecond excitation domains. An interesting switchover from saturable absorption to reverse saturable absorption is observed at 532 nm when the energy of the nanosecond laser pulses is increased. The nonlinear absorption coefficient increases with increase in polyaniline concentration, with low optical limiting threshold, as required for a good optical limiter. - Highlights: • Synthesized cube-like polyaniline nanostructures. • Fabricated polyaniline/PMMA nanocomposite films. • At 5 μJ energy, saturable absorption is observed both at ns and fs regime. • Switchover from SA to RSA is observed as energy of laser beam increases. • Film (0.1 wt % polyaniline) shows high β{sub eff} (230 cm GW{sup −1}) and low limiting threshold at 150 μJ.
International Nuclear Information System (INIS)
Montemagno, C.D.
1997-01-01
'There is a fundamental knowledge gap associated with the in situ remediation of non-aqueous phase pollutants. Currently it is not possible to accurately determine the interfacial surface area of non-aqueous contaminants. As a result it is impossible to (1) accurately establish the health and environmental risk associated with the pollution: (2) precisely quantify and evaluate the potential efficacy of various in situ treatment technologies; and (3) conduct reliable performance assessments of the applied remediation technology during and after the clean-up. The global goal of this investigation is to try to remedy these shortcomings through the development of a formalized functional relationship between interfacial area (a), phase saturation (S) and capillary pressure (P). The development of this relationship will allow the direct determination of the fluid-fluid interfacial area from field measurements. Quantitative knowledge of the surface area of the non-aqueous phase pollutant facilitates accurate predictions of both the rate of dissolution and the contact area available for treatment. In addition. if saturation and capillary pressure measurements are made during the remediation process. both the spatial and temporal effectiveness of the remediation technology can be quantified. This information can then be used to optimize the restoration program. The project objective will be achieved through an integrated and focused research program that is comprised of theoretical computational and experimental efforts. These efforts are organized into a framework of four tasks: (1) improve on newly developed laboratory techniques to quantify and directly measure the functional relationship between phase interfacial area (a), saturation (S) and capillary pressure (P). (2) Develop new computational algorithms in conjunction with laboratory measurements to predict P, S and a. (3) Test existing theory and develop new theory to describe the relationship between P, S and a at
The effect of the pore-fluid factor on strength and failure mechanism of Wilkeson sandstone
Kätker, A. K.; Rempe, M.; Renner, J.
2016-12-01
The effective stress law, σn,eff = σn - αpf, is a central tool in analysing phenomena related to hydromechanical coupling, such as fluid-induced seismicity or aftershock activity. The effective-stress coefficient α assumes different values for specific physical properties and may deviate from 1. The limited number of studies suggest that brittle compressive strength obeys an effective-stress law when effective drainage is achieved. Yet, open questions remain regarding, e.g., the role of the loading path. We performed suites of triaxial compression tests on samples of Wilkeson sandstone at a range of pore-fluid pressures but identical effective confining pressure (60, 100, and 120 MPa) maintaining the pore-fluid factor λ = pf / pc constant (0.05, 0.2, 0.4, 0.55) during the isostatic loading stage to ensure uniform loading paths. Samples were shortened with a strain rate of 4×10-7 s-1 yielding drained conditions. All tests were terminated at a total axial strain of 4.5% for comparability of microstructures. The tests also included continuous permeability determination and ultrasonic p-wave-velocity measurements to monitor microstructural evolution. Results from experiments conducted at peff = 100 MPa show that dry samples exhibit a higher peak strength and brittle failure while water-saturated samples tend to deform at lower stress by cataclastic flow indicating physico-chemical weakening. Regardless of pore-fluid factor, the saturated experiments exhibit similar peak and residual strength. Differences in failure mechanism (degree of macroscopic localization) and volumetric strain evolution are however noticed, albeit without systematic relation to pore-fluid factor. Microstructure analyses by optical and scanning electron microscopy revealed an evolution from localized shear zones in dry experiments and experiments with a low pore-fluid factor to rather distributed cataclastic flow for experiments with high pore fluid factors. Yet, mechanical and structural
Modeling Study of High Pressure and High Temperature Reservoir Fluids
DEFF Research Database (Denmark)
Varzandeh, Farhad
properties like saturation pressures, densities at reservoir temperature and Stock TankviOil (STO) densities, while keeping the n-alkane limit of the correlations unchanged. Apart from applying this general approach to PC-SAFT, we have also shown that the approach can be applied to classical cubic models...... approach to characterizing reservoir fluids for any EoS. The approach consists in developing correlations of model parameters first with a database for well-defined components and then adjusting the correlations with a large PVT database. The adjustment is made to minimize the deviation in key PVT...... method to SRK and PR improved the saturation pressure calculation in comparisonto the original characterization method for SRK and PR. Using volume translationtogether with the new characterization approach for SRK and PR gives comparable results for density and STO density to that of original...
Pathophysiology and clinical implications of peroperative fluid management in elective surgery
DEFF Research Database (Denmark)
Holte, Kathrine
2010-01-01
The purpose of this thesis was to describe pathophysiological aspects of perioperative fluid administration and create a rational background for future, clinical outcome studies. In laparoscopic cholecystectomy, we have found "liberal" crystalloid administration ( approximately 3 liters) to improve....... Based on the current evidence, administration of liters intravenous fluid without specific indication in major surgical procedures should be avoided, while administration of liters in patients with anastomoses may not be recommended, an issue needing clarification in large-scale clinical studies...... perioperative physiology and clinical outcome, which has implication for fluid management in other laparoscopic procedures such as laparoscopic fundoplication, laparoscopic repair of ventral hernia, hysterectomy etc., where 2-3 liters crystalloid should be administered based on the present evidence. That equal...
Frictional strength of wet and dry montmorillonite
Morrow, C. A.; Moore, D. E.; Lockner, D. A.
2017-05-01
Montmorillonite is a common mineral in fault zones, and its low strength relative to other common gouge minerals is important in many models of fault rheology. However, the coefficient of friction, μ, varies with degree of saturation and is not well constrained in the literature due to the difficulty of establishing fully drained or fully dried states in the laboratory. We measured μ of both saturated and oven-dried montmorillonite at normal stresses up to 700 MPa. Care was taken to shear saturated samples slowly enough to avoid pore fluid overpressure. For saturated samples, μ increased from 0.10 to 0.28 with applied effective normal stress, while for dry samples μ decreased from 0.78 to 0.45. The steady state rate dependence of friction, (a - b), was positive, promoting stable sliding. The wide disparity in reported frictional strengths can be attributed to experimental procedures that promote differing degrees of partial saturation or overpressured pore fluid conditions.
Application of x-ray microtomography to environmental fluid flow problems
International Nuclear Information System (INIS)
Wildenschild, D.; Culligan, K.A.; Christensen, B.S.B.
2005-01-01
Many environmental processes are controlled by the micro-scale interaction of water and air with the solid phase (soils, sediments, rock) in pore spaces within the subsurface. The distribution in time and space of fluids in pores ultimately controls subsurface flow and contaminant transport relevant to groundwater resource management, contaminant remediation, and agriculture. Many of these physical processes operative at the pore-scale cannot be directly investigated using conventional hydrologic techniques, however recent developments in synchrotron-based micro-imaging have made it possible to observe and quantify pore-scale processes non-invasively. Micron-scale resolution makes it possible to track fluid flow within individual pores and therefore facilitates previously unattainable measurements. We report on experiments performed at the GSECARS** (Advanced Photon Source) microtomography facility and have measured properties such as porosity, fluid saturation and distribution within the pore space, as well as interfacial characteristics of the fluids involved (air, water, contaminant). Different image processing techniques were applied following mathematical reconstruction to produce accurate measurements of the physical flow properties. These new micron-scale measurements make it possible to test existing and new theory, as well as emerging numerical modeling schemes aimed at the pore scale.
Weenink, R. P.; Hollmann, M. W.; Stevens, M. F.; Kager, J.; van Gulik, T. M.; van Hulst, R. A.
2014-01-01
Cerebral air emboli occur as a complication of invasive medical procedures. The sensitivity of cerebral monitoring methods for the detection of air emboli is not known. This study investigates the utility of electroencephalography and non-invasively measured cerebral oxygen saturation in the
Single-source gamma radiation procedures for improved calibration and measurements in porous media
International Nuclear Information System (INIS)
Oostrom, M.; Hofstee, C.; Dane, H.; Lenhard, R.J.
1998-01-01
When dual-energy gamma radiation systems are employed for measurements in porous media, count rates from both sources are often used to compute parameter values. However, for several applications, the count rates of just one source are insufficient. These applications include the determination of volumetric liquid content values in two-liquid systems and salt concentration values in water-saturated porous media. Single-energy gamma radiation procedures for three applications are described in this paper. Through an error analysis, single-source procedures are shown to reduce the probable error in the determinations considerably. Example calculations and simple column experiments were conducted for each application to compare the performance of the new single-source and standard dual-source methods. In all cases, the single-source methods provided more reliable data than the traditional dual-source methods. In addition, a single-source calibration procedure is proposed to determine incident count rates indirectly. This procedure, which requires packing under saturated conditions, can be used in all single- and dual-source applications and yields accurate porosity and dry bulk density values
Analytical Chemistry Laboratory (ACL) procedure compendium
International Nuclear Information System (INIS)
1993-01-01
This volume contains the interim change notice for the safety operation procedure for hot cell. It covers the master-slave manipulators, dry waste removal, cell transfers, hoists, cask handling, liquid waste system, and physical characterization of fluids
A sampling-based Bayesian model for gas saturation estimationusing seismic AVA and marine CSEM data
Energy Technology Data Exchange (ETDEWEB)
Chen, Jinsong; Hoversten, Michael; Vasco, Don; Rubin, Yoram; Hou,Zhangshuan
2006-04-04
We develop a sampling-based Bayesian model to jointly invertseismic amplitude versus angles (AVA) and marine controlled-sourceelectromagnetic (CSEM) data for layered reservoir models. The porosityand fluid saturation in each layer of the reservoir, the seismic P- andS-wave velocity and density in the layers below and above the reservoir,and the electrical conductivity of the overburden are considered asrandom variables. Pre-stack seismic AVA data in a selected time windowand real and quadrature components of the recorded electrical field areconsidered as data. We use Markov chain Monte Carlo (MCMC) samplingmethods to obtain a large number of samples from the joint posteriordistribution function. Using those samples, we obtain not only estimatesof each unknown variable, but also its uncertainty information. Thedeveloped method is applied to both synthetic and field data to explorethe combined use of seismic AVA and EM data for gas saturationestimation. Results show that the developed method is effective for jointinversion, and the incorporation of CSEM data reduces uncertainty influid saturation estimation, when compared to results from inversion ofAVA data only.
Hort, Ryan D; Revil, André; Munakata-Marr, Junko
2014-09-01
Time lapse resistivity surveys could potentially improve monitoring of permanganate-based in situ chemical oxidation (ISCO) of organic contaminants such as trichloroethene (TCE) by tracking changes in subsurface conductivity that result from injection of permanganate and oxidation of the contaminant. Bulk conductivity and pore fluid conductivity changes during unbuffered TCE oxidation using permanganate are examined through laboratory measurements and conductivity modeling using PHREEQC in fluid samples and porous media samples containing silica sand. In fluid samples, oxidation of one TCE molecule produces three chloride ions and one proton, resulting in an increase in fluid electrical conductivity despite the loss of two permanganate ions in the reaction. However, in saturated sand samples in which up to 8mM TCE was oxidized, at least 94% of the fluid conductivity associated with the presence of protons was removed within 3h of sand contact, most likely through protonation of silanol groups found on the surface of the sand grains. Minor conductivity effects most likely associated with pH-dependent reductive dissolution of manganese dioxide were also observed but not accounted for in pore-fluid conductivity modeling. Unaccounted conductivity effects resulted in an under-calculation of post-reaction pore fluid conductivity of 2.1% to 5.5%. Although small increases in the porous media formation factor resulting from precipitation of manganese dioxide were detected (about 3%), these increases could not be confirmed to be statistically significant. Both injection of permanganate and oxidation of TCE cause increases in bulk conductivity that would be detectable through time-lapse resistivity surveys in field conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
The radioimmunoassay of biologically active compounds in parotid fluid and plasma
International Nuclear Information System (INIS)
Walker, R.F.; Read, G.F.; Riad-Fahmy, D.
1978-01-01
Parotid fluid collection is a simple stress-free procedure. The potential value of parotid fluid estimations of clomipramine, a tricyclic antidepressant, d-norgestrel, a synthetic contraceptive steroid and cortisol have been evaluated for assessment of clinical status and patient compliance. These compounds circulate bound largely to plasma proteins. Their concentration in parotid fluid, which reflects the non-protein bound fraction, is low but assay sensitivity (10, 1 and 30 pg/tube respectively) is adequate. Excellent agreement (r>0.9) was observed when parotid fluid samples were assayed with and without chromatographic purification. Clomipramine levels following oral dosage (150 mg) rose steadily to a maximum in plasma but showed wide fluctuations in parotid fluid. Clomipramine therapy can only be assessed by plasma assays, but patient compliance may be checked by parotid fluid concentrations. Following an oral dose of d-norgestrel (0.3 mg), parotid fluid levels rose steadily to a maximum but plasma response was biphasic making correlation impossible. The sensitivity and high throughput of the d-norgestrel methodology suggests its use in evaluating patient compliance in large-scale fertility control programmes. Changes in circulating cortisol concentrations were rapidly and accurately reflected in parotid fluid in normal volunteers. Parotid fluid cortisol showed a marked diurnal rhythm, suppression to low levels after dexamethasone, and elevation following Synacthen. Low levels after Synacthen stimulation in a patient with secondary adrenal atrophy and constant high levels in Cushingoid patients indicate that parotid fluid cortisol levels could be used for accurate adrenocortical evaluation. The value in rapid screening procedures is stressed since the assay can be performed directly on only 10 μl of parotid fluid. (author)
Serum albumin--a non-saturable carrier
DEFF Research Database (Denmark)
Brodersen, R; Honoré, B; Larsen, F G
1984-01-01
The shape of binding isotherms for sixteen ligands to human serum albumin showed no signs of approaching saturation at high ligand concentrations. It is suggested that ligand binding to serum albumin is essentially different from saturable binding of substrates to enzymes, of oxygen to haemoglobi...
International Nuclear Information System (INIS)
Chamkha, Ali J.; Ismael, Muneer A.
2013-01-01
The conjugate natural convection-conduction heat transfer in a square domain composed of nano-fluids filled porous cavity heated by a triangular solid wall is studied under steady-state conditions. The vertical and horizontal walls of the triangular solid wall are kept isothermal and at the same hot temperature Th. The other boundaries surrounding the porous cavity are kept adiabatic except the right vertical wall where it is kept isothermally at the lower temperature T c . Equations governing the heat transfer in the triangular wall and heat and nano-fluid flow, based on the Darcy model, in the nano-fluid-saturated porous medium together with the derived relation of the interface temperature are solved numerically using the over-successive relaxation finite-difference method. A temperature independent nano-fluids properties model is adopted. Three nano-particle types dispersed in one base fluid (water) are investigated. The investigated parameters are the nano-particles volume fraction φ (0-0.2), Rayleigh number Ra (10-1000), solid wall to base-fluid saturated porous medium thermal conductivity ratio K ro (0.44, 1, 23.8), and the triangular wall thickness D (0.1-1). The results are presented in the conventional form; contours of streamlines and isotherms and the local and average Nusselt numbers. At a very low Rayleigh number Ra = 10, a significant enhancement in heat transfer within the porous cavity with φ is observed. Otherwise, the heat transfer may be enhanced or deteriorated with φ depending on the wall thickness D and the Rayleigh number Ra. At high Rayleigh numbers and low conductivity ratios, critical values of D, regardless of 4, are observed and accounted. (authors)
Saturation and forward jets at HERA
International Nuclear Information System (INIS)
Marquet, C.; Peschanski, R.; Royon, C.
2004-01-01
We analyse forward-jet production at HERA in the framework of the Golec-Biernat and Wusthoff saturation models. We obtain a good description of the forward-jet cross-sections measured by the H1 and ZEUS Collaborations in the two-hard-scale region (k T∼ Q >> Λ QCD ) with two different parametrizations with either significant or weak saturation effects. The weak saturation parametrization gives a scale compatible with the one found for the proton structure function F2. We argue that Mueller-Navelet jets at the Tevatron and the LHC could help distinguishing between both options
International Nuclear Information System (INIS)
Yilmaz, C.; Akkas, N.
1979-01-01
In previous studies a fluid element is incorporated in the widely used general purpose finite element program SAPIV. This type of problem is of interest in the design of nuclear components involving geometric complexities and nonlinearities. The elasticity matrix of a general-purpose finite element program is modified in such a way that it becomes possible to idealize fluid as a structural finite element with zero shear modulus and a given bulk modules. Using the modified version of SAPIV, several solid-fluid interactions problems are solved. The numerical solutions are compared with the available analytical solutions. They are shown to be in reasonable aggrement. It is also shown that by solving an exterior-fluid interaction problem, the pressure wave propagation in the acoustic medium can be solved with the same approach. In this study, two of the problem not studied in the previous work will be presented. These problems are namely the effects of the link elements used at solid-fluid interfaces and of the concentrated loads on the response of the fluid medium. Truss elements are used as the link elements. After these investigations, it is decided that general purpose finite element programs with slight modifications can be used in the safety analysis of nuclear reactor plants. By this procedure it is possible to handle two-dimensional plane strain and tridimensional axisymmetric problems of this type. (orig.)
Correcting saturation of detectors for particle/droplet imaging methods
International Nuclear Information System (INIS)
Kalt, Peter A M
2010-01-01
Laser-based diagnostic methods are being applied to more and more flows of theoretical and practical interest and are revealing interesting new flow features. Imaging particles or droplets in nephelometry and laser sheet dropsizing methods requires a trade-off of maximized signal-to-noise ratio without over-saturating the detector. Droplet and particle imaging results in lognormal distribution of pixel intensities. It is possible to fit a derived lognormal distribution to the histogram of measured pixel intensities. If pixel intensities are clipped at a saturated value, it is possible to estimate a presumed probability density function (pdf) shape without the effects of saturation from the lognormal fit to the unsaturated histogram. Information about presumed shapes of the pixel intensity pdf is used to generate corrections that can be applied to data to account for saturation. The effects of even slight saturation are shown to be a significant source of error on the derived average. The influence of saturation on the derived root mean square (rms) is even more pronounced. It is found that errors on the determined average exceed 5% when the number of saturated samples exceeds 3% of the total. Errors on the rms are 20% for a similar saturation level. This study also attempts to delineate limits, within which the detector saturation can be accurately corrected. It is demonstrated that a simple method for reshaping the clipped part of the pixel intensity histogram makes accurate corrections to account for saturated pixels. These outcomes can be used to correct a saturated signal, quantify the effect of saturation on a derived average and offer a method to correct the derived average in the case of slight to moderate saturation of pixels
Multiscale Behavior of Viscous Fluids Dynamics: Experimental Observations
Arciniega-Ceballos, Alejandra; Spina, Laura; Scheu, Bettina; Dingwell, Donald B.
2016-04-01
The dynamics of Newtonian fluids with viscosities of mafic to intermediate silicate melts (10-1000 Pa s) during slow decompression present multi-time scale processes. To observe these processes we have performed several experiments on silicon oil saturated with Argon gas for 72 hours, in a Plexiglas autoclave. The slow decompression, dropping from 10 MPa to ambient pressure, acting as the excitation mechanism, triggered several processes with their own distinct timescales. These processes generate complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit flanked by high-speed video recordings. The analysis in time and frequency of these time series and their correlation with the associated high-speed imaging enables the characterization of distinct phases and the extraction of the individual processes during the evolution of decompression of these viscous fluids. We have observed fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution along the conduit. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the conduit system. Our observations point to the great potential of this experimental approach in the understanding of volcanic conduit dynamics and volcanic seismicity.
Fluid structure interaction with sloshing
International Nuclear Information System (INIS)
Belytschko, T.B.; Liu, W.K.
1983-01-01
In this paper, three different formulations for fluid-structure interaction with sloshing are discussed. When the surface displacements are large, the problems are nonlinear, and Arbitrary Lagrangian Eulerian (ALE) methods and direct time integration are most appropriate. Explicit direct time integration has the disadvantage of a limited time-step whereas implicit method has the disadvantage of nonconvergence and high computational cost. A mixed time method which employs E-mE (explicit-multiple explicit) integration for obtaining the velocity and free surface displacement and I-mI (implicit-multiple implicit) integration for obtaining the pressure is described. An iterative solution procedure is used to enhance the efficiency of the implicit solution procedure as well as to reduce the computer storage. For linear problems, the surface wave effects can be approximated by a perturbation method on the body force term if the surface displacements are small. Furthermore, if the fluid can be idealized as inviscid, incompressible and irrotational, the pressure, velocity, and free surface displacement variables can be eliminated via a velocity potential formulation. (orig.)
Ultrafast THz Saturable Absorption in Semiconductors
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hoffmann, Matthias C.
2011-01-01
We demonstrate THz saturable absorption in n-doped semiconductors GaAs, GaP, and Ge in a nonlinear THz time-domain spectroscopy experiment. Saturable absorption is caused by sample conductivity modulation due to electron heating and satellite valley scattering in the field of a strong THz pulse....
Energy Technology Data Exchange (ETDEWEB)
Swidersky, Harald; Thiele, Thomas [TUeV Sued Industrie Service GmbH, Muenchen (Germany)
2012-11-01
Filling procedures in piping systems are usually not load cases that are studied by fluid dynamic and structure dynamic analyses with respect to the integrity of pipes and supports. Although, their frequency is higher than that of postulated accidental transients, therefore they have to be considered for fatigue analyses. The piping and support loads due to filling procedures are caused by the density differences if the transported fluids, for instance in flows with the transport of gas bubbles. The impact duration of the momentum forces is defined by the flow velocity and the length of discontinuities in the piping segments. Filling procedures end very often with a shock pressure, caused by the impact and decelerating of the fluid front at smaller cross sections. The suitability of the thermally hydraulics program RELAP/MOD3.3 for the calculation of realistic loads from filling procedures was studied, the results compared with experimental data. It is shown that dependent on the discretization level the loads are partial significantly underestimated.
Freed, K S; Paulson, E K; Frederick, M G; Keogan, M T; Pappas, T N
1997-06-01
To evaluate the postoperative computed tomographic (CT) appearance, complications, and potential pitfalls after a Puestow procedure (lateral side-to-side pancreaticojejunostomy). Forty CT examinations were performed after the Puestow procedure in 20 patients. Images were retrospectively reviewed by three radiologists. The pancreaticojejunal anastomosis was identified at 30 examinations and was immediately anterior to the pancreatic body or tail. The anastomosis contained fluid or gas on 11 scans and oral contrast material on four scans. On 15 scans, the anastomosis appeared as collapsed bowel without gas, fluid, or oral contrast material. The Roux-en-Y loop was identified on 28 (70%) scans and contained fluid or gas on 16 scans and oral contrast material on six scans. The Roux-en-Y loop appeared as collapsed bowel on six scans. When the anastomosis or Roux-en-Y loop contained fluid and gas, the appearance mimicked that of a pancreatic or parapancreatic abscess. Peripancreatic stranding was present on 28 scans and was due to either ongoing pancreatitis or postoperative change. Complications included 15 transient fluid collections, three abscesses, four pseudocysts, one hematoma, and one small-bowel and Roux-en-Y obstruction. Knowledge of the anatomy after a Puestow procedure is essential for accurate interpretation of CT scans.
Experimental thermodynamics experimental thermodynamics of non-reacting fluids
Neindre, B Le
2013-01-01
Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids focuses on experimental methods and procedures in the study of thermophysical properties of fluids. The selection first offers information on methods used in measuring thermodynamic properties and tests, including physical quantities and symbols for physical quantities, thermodynamic definitions, and definition of activities and related quantities. The text also describes reference materials for thermometric fixed points, temperature measurement under pressures, and pressure measurements. The publicatio
Effective description of dark matter as a viscous fluid
Floerchinger, S.; Tetradis, N.; Wiedemann, U.A.
2016-10-28
Treating dark matter at large scales as an effectively viscous fluid provides an improved framework for the calculation of the density and velocity power spectra compared to the standard assumption of an ideal pressureless fluid. We discuss how this framework can be made concrete through an appropriate coarse-graining procedure. We also review results that demonstrate that it improves the convergence of cosmological perturbation theory.
Effective description of dark matter as a viscous fluid
International Nuclear Information System (INIS)
Floerchinger, Stefan; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim
2016-01-01
Treating dark matter at large scales as an effectively viscous fluid provides an improved framework for the calculation of the density and velocity power spectra compared to the standard assumption of an ideal pressureless fluid. We discuss how this framework can be made concrete through an appropriate coarse-graining procedure. We also review results that demonstrate that it improves the convergence of cosmological perturbation theory
Fluid biomarkers in multiple system atrophy
DEFF Research Database (Denmark)
Laurens, Brice; Constantinescu, Radu; Freeman, Roy
2015-01-01
Despite growing research efforts, no reliable biomarker currently exists for the diagnosis and prognosis of multiple system atrophy (MSA). Such biomarkers are urgently needed to improve diagnostic accuracy, prognostic guidance and also to serve as efficacy measures or surrogates of target...... engagement for future clinical trials. We here review candidate fluid biomarkers for MSA and provide considerations for further developments and harmonization of standard operating procedures. A PubMed search was performed until April 24, 2015 to review the literature with regard to candidate blood...... and cerebrospinal fluid (CSF) biomarkers for MSA. Abstracts of 1760 studies were retrieved and screened for eligibility. The final list included 60 studies assessing fluid biomarkers in patients with MSA. Most studies have focused on alpha-synuclein, markers of axonal degeneration or catecholamines. Their results...
Directory of Open Access Journals (Sweden)
Alireza Zarasvandi
2015-10-01
from drill cores DH01, DH02, DH06, and DH07, and outcrop samples. Microthermometric data were obtained by freezing and heating of fluid inclusions on a Linkam THMSG600 mounted on an Olympus microscope at Lorestan University. Results 1 Five main veintypes were identified, belonging to three stages of mineralization:type (I: barren quartz, type (II: quartz + pyrite + chalcopyrite ± bornite ± chalcocite ± covelite, type (III: quartz + magnetite ± chalcopyrite, type (IV: K-feldspar± quartz ± chalcopyrite, type (V: chlorite + biotite. 2 Seven groups of fluid inclusionswere observed: (IA liquid-rich mono-phase, (IB vapor-rich mono-phase, (IIA liquid-rich two-phase (liquid + vapor, (IIB vapor-rich two-phase (vapor + liquid, (IIIA high salinity simple fluids (liquid + vapor + halite, (IIIB high salinity opaque mineral-bearing fluids (liquid + vapor + halite + pyrite + chalcopyrite + hematite, (IIIAB multi-phase fluids (liquid + vapor + halite + sylvite + hematite + magnetite + pyrite + chalcopyrite ± erythrosiderite 3 Multiphase fluid inclusions with predominant homogenization temperatures 420 to 620˚C and predominant salinities 70 to 75 wt.%NaCl, are thought to be the early fluids involved in mineralization. 4 The coexistence of high saline liquid and vapor rich fluid inclusions (IIIAB, IIIB, IIIA and IIA types resulted either from fluid entrapment during the boiling process or the co-presence of two immiscible fluids generated from the magma. 5 Dalliporphyry Cu-Au deposit was formed in a magmatic-meteoric system. Discussion Two conventional thermometric procedures, freezing and heating, were employed for the measurement of temperature of homogenization and approximate salinity. Freezing was conducted mainly for halite-under saturated inclusions (types IIA and IIB, to measure the initial melting temperature (Te and the last melting point (Tmice, whereas heating was carried out on the halite-bearing inclusions (types IIIA, IIIB and IIIAB. Based on the microthermometric
Energy Technology Data Exchange (ETDEWEB)
Yada, N. (Kanagawa Institute of Technology, Kanagawa (Japan)); Watanabe, K. (Keio University, Tokyo (Japan). Faculty of Science and Technology)
1991-12-25
The paper makes a correlation expressing dew- and bubble-point curves using measured values for seven binary refrigerant freon-mixtures. In most binary systems at the same temperature, the pressure shows a different value between in a saturated vapor state (dew-point pressure) and in a saturated liquid state (bubble-point pressure). The target is such correlation as has as simple a function form as possible and is able to estimate even near the critical point where it used to be difficult to estimate. The pressure difference between measured values of the dew- and bubble-point pressure and values calculated from Raoult's law showing an ideal mixture of fluid is expressed by a simple function form of reduced temperature Tr and molar fraction. Tr is thermodynamic temperature/critical temperature. Reproducibility of this correlation is less than {plus minus}3% of the pressure deviation. Concerning also the arbitary composition range and near the critical point, the dew- and bubble-point pressure can be calculated accurately. 24 refs., 4 figs., 5 tabs.
Mccarty, R. D.
1980-01-01
The thermodynamic and transport properties of selected cryogens had programmed into a series of computer routines. Input variables are any two of P, rho or T in the single phase regions and either P or T for the saturated liquid or vapor state. The output is pressure, density, temperature, entropy, enthalpy for all of the fluids and in most cases specific heat capacity and speed of sound. Viscosity and thermal conductivity are also given for most of the fluids. The programs are designed for access by remote terminal; however, they have been written in a modular form to allow the user to select either specific fluids or specific properties for particular needs. The program includes properties for hydrogen, helium, neon, nitrogen, oxygen, argon, and methane. The programs include properties for gaseous and liquid states usually from the triple point to some upper limit of pressure and temperature which varies from fluid to fluid.
Development of precipitator of fluid film type
International Nuclear Information System (INIS)
Liu Yupu
1987-01-01
The precipitator of fluid film type is developed for the determination of fuel element cladding failure of water-cooled reactor. It integrates the scrubber, precipitator and detector. The jet of element cooling water automatically circulates carrier gas and the flow water film transfers precipitates onto the surface of centre electrode. Three different types are designed. On the special test loop, the uranium sample pellets of simulating cladding failure is measured. The sensitivity of precipitators, saturated precipitation voltage, incremental speed of signal, speed of driving out precipitates and the contents of the precipitates are determined. The test shows that the precipitators are highly sensitive, reliable, cheap and easy to operate
A computational approach for fluid queues driven by truncated birth-death processes.
Lenin, R.B.; Parthasarathy, P.R.
2000-01-01
In this paper, we analyze fluid queues driven by truncated birth-death processes with general birth and death rates. We compute the equilibrium distribution of the content of the fluid buffer by providing efficient numerical procedures to compute the eigenvalues and the eigenvectors of the
Isbarn, Hendrik; Briganti, Alberto; De Visschere, Pieter J L; Fütterer, Jurgen J; Ghadjar, Pirus; Giannarini, Gianluca; Ost, Piet; Ploussard, Guillaume; Sooriakumaran, Prasanna; Surcel, Christian I; van Oort, Inge M; Yossepowitch, Ofer; van den Bergh, Roderick C N
2015-04-01
Prostate biopsy (PB) is the gold standard for the diagnosis of prostate cancer (PCa). However, the optimal number of biopsy cores remains debatable. We sought to compare contemporary standard (10-12 cores) vs. saturation (=18 cores) schemes on initial as well as repeat PB. A non-systematic review of the literature was performed from 2000 through 2013. Studies of highest evidence (randomized controlled trials, prospective non-randomized studies, and retrospective reports of high quality) comparing standard vs saturation schemes on initial and repeat PB were evaluated. Outcome measures were overall PCa detection rate, detection rate of insignificant PCa, and procedure-associated morbidity. On initial PB, there is growing evidence that a saturation scheme is associated with a higher PCa detection rate compared to a standard one in men with lower PSA levels (40 cc), or lower PSA density values (sampling is associated with a high rate of acute urinary retention, whereas other severe adverse events, such as sepsis, appear not to occur more frequently with saturation schemes. Current evidence suggests that saturation schemes are associated with a higher PCa detection rate compared to standard ones on initial PB in men with lower PSA levels or larger prostates, and on repeat PB. Since most data are derived from retrospective studies, other endpoints such as detection rate of insignificant disease - especially on repeat PB - show broad variations throughout the literature and must, thus, be interpreted with caution. Future prospective controlled trials should be conducted to compare extended templates with newer techniques, such as image-guided sampling, in order to optimize PCa diagnostic strategy.
Observability of linear systems with saturated outputs
Koplon, R.; Sontag, E.D.; Hautus, M.L.J.
1994-01-01
We present necessary and sufficient conditions for observability of the class of output-saturated systems. These are linear systems whose output passes through a saturation function before it can be measured.
Saturated Zone In-Situ Testing
International Nuclear Information System (INIS)
Reimus, P. W.; Umari, M. J.
2003-01-01
The purpose of this scientific analysis is to document the results and interpretations of field experiments that have been conducted to test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain. The test interpretations provide estimates of flow and transport parameters that are used in the development of parameter distributions for Total System Performance Assessment (TSPA) calculations. These parameter distributions are documented in the revisions to the SZ flow model report (BSC 2003 [ 162649]), the SZ transport model report (BSC 2003 [ 162419]), the SZ colloid transport report (BSC 2003 [162729]), and the SZ transport model abstraction report (BSC 2003 [1648701]). Specifically, this scientific analysis report provides the following information that contributes to the assessment of the capability of the SZ to serve as a barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvium Testing Complex (ATC), which is located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and
Saturated Zone In-Situ Testing
Energy Technology Data Exchange (ETDEWEB)
P. W. Reimus; M. J. Umari
2003-12-23
The purpose of this scientific analysis is to document the results and interpretations of field experiments that have been conducted to test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain. The test interpretations provide estimates of flow and transport parameters that are used in the development of parameter distributions for Total System Performance Assessment (TSPA) calculations. These parameter distributions are documented in the revisions to the SZ flow model report (BSC 2003 [ 162649]), the SZ transport model report (BSC 2003 [ 162419]), the SZ colloid transport report (BSC 2003 [162729]), and the SZ transport model abstraction report (BSC 2003 [1648701]). Specifically, this scientific analysis report provides the following information that contributes to the assessment of the capability of the SZ to serve as a barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvium Testing Complex (ATC), which is located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and
International Nuclear Information System (INIS)
Kwicklis, E.M.; Healy, R.W.; Thamir, F.; Hampson, D.
1998-01-01
Numerical models of water movement through variably saturated, fractured tuff have undergone little testing against experimental data collected from relatively well-controlled and characterized experiments. This report used the results of a multistage experiment on a block of variably saturated, fractured, welded tuff and associated core samples to investigate if those results could be explained using models and concepts currently used to simulate water movement in variably saturated, fractured tuff at Yucca Mountain, Nevada, the potential location of a high-level nuclear-waste repository. Aspects of the experiment were modeled with varying degrees of success. Imbibition experiments performed on cores of various lengths and diameters were adequately described by models using independently measured permeabilities and moisture-characteristic curves, provided that permeability reductions resulting from the presence of entrapped air were considered. Entrapped gas limited maximum water saturations during imbibition to approximately 0.70 to 0,80 of the fillable porosity values determined by vacuum saturation. A numerical simulator developed for application to fluid flow problems in fracture networks was used to analyze the results of air-injection tests conducted within the tuff block through 1.25-cm-diameter boreholes. These analyses produced estimates of transmissivity for selected fractures within the block. Transmissivities of other fractures were assigned on the basis of visual similarity to one of the tested fractures. The calibrated model explained 53% of the observed pressure variance at the monitoring boreholes (with the results for six outliers omitted) and 97% of the overall pressure variance (including monitoring and injection boreholes) in the subset of air-injection tests examined
Glove Perforations During Interventional Radiological Procedures
International Nuclear Information System (INIS)
Leena, R. V.; Shyamkumar, N. K.
2010-01-01
Intact surgical gloves are essential to avoid contact with blood and other body fluids. The objective of this study was to estimate the incidence of glove perforations during interventional radiological procedures. In this study, a total of 758 gloves used in 94 interventional radiological procedures were examined for perforations. Eleven perforations were encountered, only one of which was of occult type. No significant difference in the frequency of glove perforation was found between the categories with varying time duration.
SATURATION OF MAGNETOROTATIONAL INSTABILITY THROUGH MAGNETIC FIELD GENERATION
International Nuclear Information System (INIS)
Ebrahimi, F.; Prager, S. C.; Schnack, D. D.
2009-01-01
The saturation mechanism of magnetorotational instability (MRI) is examined through analytical quasi-linear theory and through nonlinear computation of a single mode in a rotating disk. We find that large-scale magnetic field is generated through the α-effect (the correlated product of velocity and magnetic field fluctuations) and causes the MRI mode to saturate. If the large-scale plasma flow is allowed to evolve, the mode can also saturate through its flow relaxation. In astrophysical plasmas, for which the flow cannot relax because of gravitational constraints, the mode saturates through field generation only.
Physiologic effects of intravenous fluid administration in healthy volunteers
DEFF Research Database (Denmark)
Holte, Kathrine; Jensen, Peter; Kehlet, Henrik
2003-01-01
Dose regimens in perioperative fluid management are rarely evidence based. Therefore, we investigated responses to an IV fluid infusion in healthy volunteers to assess basic physiologic effects of a fluid infusion per se. In a prospective, double-blinded, cross-randomized study, 12 healthy...... volunteers with a median age of 63 yr (range, 59-67 yr) received an infusion of lactated Ringer's solution 40 mL/kg (median, 2820 mL) or 5 mL/kg (median, 353 mL; background infusion) in random order on two separate occasions. The study was designed to mimic the perioperative course with preoperative fasting...... by fluid administration. These findings may serve as a basis for clinical studies applying the same type of fluid in different amounts to determine the optimal amount of perioperative fluid in various surgical procedures. IMPLICATIONS: Infusion of 40 mL/kg of lactated Ringer's solution in volunteers led...
Natural Convection Heat Transfer in Concentric Horizontal Annuli Containing a Saturated Porous Medi
Directory of Open Access Journals (Sweden)
Ahmed F. Alfahaid, R.Y. Sakr
2012-10-01
Full Text Available Natural convection in horizontal annular porous media has become a subject receiving increasing attention due to its practical importance in the problem of insulators, such as ducting system in high temperature gas-cooled reactors, heating systems, thermal energy storage systems, under ground cable systems, etc. This paper presents a numerical study for steady state thermal convection in a fully saturated porous media bounded by two horizontal concentric cylinders, the cylinders are impermeable to fluid motion and maintained at different, uniform temperatures. The solution scheme is based on two-dimensional model, which is governed by Darcy-Oberbeck-Boussinesq equations. The finite element method using Galerkin technique is developed and employed to solve the present problem. A numerical simulation is carried out to examine the parametric effects of Rayleigh number and radius ratio on the role played by natural convection heat transfer in the porous annuli. The numerical results obtained from the present model were compared with the available published results and good agreement is observed. The average Nusselt number at the heating surface of the inner cylinder is correlated to Rayleigh number and radius ratio.Keywords: Natural convection, numerical investigation, saturated porous media, finite element method, concentric horizontal annuli.
Fluid collection after partial pancreatectomy: EUS drainage and long-term follow-up.
Caillol, Fabrice; Godat, Sebastien; Turrini, Olivier; Zemmour, Christophe; Bories, Erwan; Pesenti, Christian; Ratone, Jean Phillippe; Ewald, Jacques; Delpero, Jean Robert; Giovannini, Marc
2018-03-29
Postoperative fluid collection due to pancreatic leak is the most frequent complication after pancreatic surgery. Endoscopic ultrasound (EUS)-guided drainage of post-pancreatic surgery fluid collection is the gold standard procedure; however, data on outcomes of this procedure are limited. The primary endpoint of our study was relapse over longterm followup, and the secondary endpoint was the efficiency and safety of EUS-guided drainage of post-pancreatic surgery fluid collection. This retrospective study was conducted at a single center from December 2008 to April 2016. Global morbidity was defined as the occurrence of an event involving additional endoscopic procedures, hospitalization, or interventional radiologic or surgical procedures. EUS-guided drainage was considered a clinical failure if surgery was required to treat a relapse after stent removal. Fortyone patients were included. The technical success rate was 100%. Drainage was considered a clinical success in 93% (39/41) of cases. Additionally, 19 (46%) complications were identified as global morbidity. The duration between surgery and EUS-guided drainage was not a significantly related factor for morbidity rate (P = 0.8); however, bleeding due to arterial injuries (splenic artery and gastroduodenal artery) from salvage drainage procedures occurred within 25 days following the initial surgery. There was no difference in survival between patients with and without complications. No relapse was reported during the followup (median: 44.75 months; range: 29.24 to 65.74 months). EUSguided drainage for post-pancreatic surgery fluid collection was efficient with no relapse during longterm followup. Morbidity rate was independent of the duration between the initial surgery and EUS-guided drainage; however, bleeding risk was likely more important in cases of early drainage.
Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS
Morway, Eric D.; Niswonger, Richard G.; Langevin, Christian D.; Bailey, Ryan T.; Healy, Richard W.
2013-01-01
The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated-zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume-averaged approach in which Lagrangian-based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF-MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two- and three-dimensional simulations also were investigated to ensure unsaturated-saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large-scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF-MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three-dimensional variably saturated flow and transport simulations revealed UZF-MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide-spread use of both MODFLOW and MT3DMS, the added capability of unsaturated-zone transport in this familiar modeling framework stands to benefit a broad user-ship.
Chen, Zhongjiang; Yang, Sihua; Xing, Da
2012-08-15
A method for noninvasively detecting hemoglobin oxygen saturation (SO2) and carboxyhemoglobin saturation (SCO) in subcutaneous microvasculature with multiwavelength photoacoustic microscopy is presented. Blood samples mixed with different concentrations of carboxyhemoglobin were used to test the feasibility and accuracy of photoacoustic microscopy compared with the blood-gas analyzer. Moreover, fixed-point detection of SO2 and SCO in mouse ear was obtained, and the changes from normoxia to carbon monoxide hypoxia were dynamically monitored in vivo. Experimental results demonstrate that multiwavelength photoacoustic microscopy can detect SO2 and SCO, which has future potential clinical applications.
International Nuclear Information System (INIS)
Rüegger, Christoph M.; Makki, Malek I.; Capel, Cyrille; Gondry-Jouet, Catherine; Baledent, Olivier
2014-01-01
•An innovative sat-pulse based cine PC-MRI to investigate complex CSF dynamic.•Compared to conventional sequence and validated in the PPC of hydrocephalus patients.•No compromise neither on temporal nor on spatial resolution.•Compared to conventional exam: the PPC has same area but lower flow stroke volume.•It contributes to a better follow-up of patients with altered CSF circulation. An innovative sat-pulse based cine PC-MRI to investigate complex CSF dynamic. Compared to conventional sequence and validated in the PPC of hydrocephalus patients. No compromise neither on temporal nor on spatial resolution. Compared to conventional exam: the PPC has same area but lower flow stroke volume. It contributes to a better follow-up of patients with altered CSF circulation. Accurate measurements of the cerebrospinal fluid that flows through the prepontine cistern (PPC) are challenging due to artefacts originating from basilar artery blood flow. We aim to accurately quantify cerebrospinal fluid (CSF) flow and stroke volume in the PPC, which is essential before endoscopic third ventriculostomy. We developed a new PC-MRI sequence prepared with Hadamard saturation bands to accurately quantify CSF flow in the PPC by suppressing the blood signal in the surrounding vessels. In total, 28 adult hydrocephalic patients (age 59 ± 20 years) were scanned using conventional PC-MRI and our developed sequence. CSF was separately extracted from the PPC and the foramen of Magendie, and flow (min and max) and stroke volume were quantified. Our modifications result in a complete deletion of signal from flowing blood, resulting in significantly reduced CSF stroke volume (Conv = 446 ± 113 mm 3 , Dev = 390 ± 119 mm 3 , p = 0.006) and flow, both minimum (Conv = −1630 ± 486 mm 3 /s, Dev = −1430 ± 406 mm 3 /s, p = 0.005) and maximum (Conv = 2384 ± 657 mm 3 /s, Dev = 1971 ± 62 mm 3 /s, p = 0.002) compared with the conventional sequence, whereas no change in the area of interest was
Composition of COH fluids at 1 GPa: an experimental study on speciation and solubility
Tiraboschi, Carla; Tumiati, Simone; Recchia, Sandro; Ulmer, Peter; Pettke, Thomas; Fumagalli, Patrizia; Poli, Stefano
2014-05-01
COH fluids play a fundamental role in many geological processes, controlling the location of melting in subduction zones and promoting mass transfer from the subducting litosphere to the overlying mantle wedge. The properties of COH fluids are strictly dependent on the composition of the fluid in subduction systems, i.e., the speciation of the volatile components of the fluid itself and the presence of solutes deriving from the dissolution of rock-forming minerals. In the scientific literature, the speciation of COH fluids has been generally determined through thermodynamic calculations using equations of state of simple H2O-non-polar gas systems (e.g., H2O-CO2-CH4), equations that do not consider the complexity related to dissolution processes, which are substantially unexplored in COH fluids and limited so far to aqueous fluids (Newton & Manning, 2002). The aim of this work is to investigate experimentally the speciation and the dissolution of mantle minerals in carbon-saturated COH fluids at buffered fO2 conditions. Our experimental approach relies on two different techniques: 1) analysis by means of quadrupole mass spectrometer (QMS) of the fluids from pierced run capsules to retrieve speciation of volatile components and 2) analysis of frozen COH fluid with laser-ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) to measure the amount of solutes. Experiments were conducted at pressure of 1 GPa and temperatures from 800 to 900° C using a rocking piston cylinder apparatus. Mantle minerals in equilibrium with COH fluid are represented by synthetic forsterite. fO2 conditions were controlled using the double capsule technique and NNO buffer (ΔFMQ=-0.61 at 800° C; ΔFMQ =-0.98 at 900° C). For the speciation experiments, oxalic acid dihydrate and graphite have been used to generate carbon-saturated COH fluid. The speciation was determined by analyzing the quenched COH fluid, retrieved by piercing the capsule in a gas-tight vessel at T =80° C and
Saturation of bentonite dependent upon temperature
International Nuclear Information System (INIS)
Hausmannova, Lucie; Vasicek, Radek
2010-01-01
Document available in extended abstract form only. The fundamental idea behind the long-term safe operation of a deep repository is the use of the Multi-barrier system principle. Barriers may well differ according to the type of host rock in which the repository is located. It is assumed that the buffer in the granitic host rock environment will consist of swelling clays which boast the ideal properties for such a function i.e. low permeability, high swelling pressure, self-healing ability etc. all of which are affected primarily by mineralogy and dry density. Water content plays a crucial role in the activation of swelling pressure as well as, subsequently, in the potential self healing of the various contact areas of the numerous buffer components made from bentonite. In the case of a deep repository, a change in water content is not only connected with the possible intake of water from the host rock, but also with its redistribution owing to changes in temperature after the insertion of the heat source (disposal waste package containing spent fuel) into the repository 'nest'. The principal reason for the experimental testing of this high dry density material is the uncertainty with regard to its saturation ability (final water content or the degree of saturation) at higher temperatures. The results of the Mock-Up-CZ experiment showed that when the barrier is constantly supplied with a saturation medium over a long time period the water content in the barrier as well as the degree of saturation settle independently of temperature. The Mock-Up-CZ experiment was performed at temperatures of 30 deg. - 90 deg. C in the barrier; therefore it was decided to experimentally verify this behaviour by means of targeted laboratory tests. A temperature of 110 deg. C was added to the set of experimental temperatures resulting in samples being tested at 25 deg. C, 95 deg. C and 110 deg. C. The degree of saturation is defined as the ratio of pore water volume to pore
3D Printing of Fluid Flow Structures
Taira, Kunihiko; Sun, Yiyang; Canuto, Daniel
2017-01-01
We discuss the use of 3D printing to physically visualize (materialize) fluid flow structures. Such 3D models can serve as a refreshing hands-on means to gain deeper physical insights into the formation of complex coherent structures in fluid flows. In this short paper, we present a general procedure for taking 3D flow field data and producing a file format that can be supplied to a 3D printer, with two examples of 3D printed flow structures. A sample code to perform this process is also prov...
Minimum K_2,3-saturated Graphs
Chen, Ya-Chen
2010-01-01
A graph is K_{2,3}-saturated if it has no subgraph isomorphic to K_{2,3}, but does contain a K_{2,3} after the addition of any new edge. We prove that the minimum number of edges in a K_{2,3}-saturated graph on n >= 5 vertices is sat(n, K_{2,3}) = 2n - 3.
Hydraulic Properties of Porous Media Saturated with Nanoparticle-Stabilized Air-Water Foam
Directory of Open Access Journals (Sweden)
Xianglei Zheng
2016-12-01
Full Text Available The foam generated by the mixture of air and water has a much higher viscosity and lower mobility than those of pure water or gas that constitutes the air-water foam. The possibility of using the air-water foam as a flow barrier for the purpose of groundwater and soil remediation is explored in this paper. A nanoparticle-stabilized air-water foam was fabricated by vigorously stirring the nano-fluid in pressurized condition. The foam bubble size distribution was analyzed with a microscope. The viscosities of foams generated with the solutions with several nanoparticle concentrations were measured as a function of time. The breakthrough pressure of foam-saturated microfluidic chips and sand columns were obtained. The hydraulic conductivity of a foam-filled sand column was measured after foam breakthrough. The results show that: (1 bubble coalescence and the Ostwald ripening are believed to be the reason of bubble size distribution change; (2 the viscosity of nanoparticle-stabilized foam and the breakthrough pressures decreased with time once the foam was generated; (3 the hydraulic conductivity of the foam-filled sand column was almost two orders of magnitude lower than that of a water-saturated sand column even after the foam-breakthrough. Based on the results in this study, the nanoparticle-stabilized air-water foam could be injected into contaminated soils to generate vertical barriers for temporary hydraulic conductivity reduction.
Modeling of strongly heat-driven flow in partially saturated fractured porous media
International Nuclear Information System (INIS)
Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.
1985-01-01
The authors have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for their flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. They model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, they develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables
Modeling of strongly heat-driven flow in partially saturated fractured porous media
International Nuclear Information System (INIS)
Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.
1984-10-01
We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account for fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables
Linnen, Robert L.; Williams-Jones, Anthony E.
1994-01-01
The Nong Sua aplite-pergmatite complex contains two dominant styles of Sn-W-Ta-Nb mineralization. Cassiterite ± Nb-Ta-Ti oxide minerals are disseminated in the pegmatite, and cassiterite and wolframite are hosted by quartz-tourmaline veins which are contained solely within aplite. The orthomagmatic fluid at Nong Sua is preserved as primary fluid inclusions in the cores of magmatic garnet crystals that have high tin concentrations (garnet cores without fluid inclusions do not contain elevated tin concentrations). These fluid inclusions have a composition of 3 wt% NaCl eq. The low salinity suggests that, at vapor saturation, tin was partitioned in favour of the melt, which allowed cassiterite to initially crystallize directly from the melt. Primary, pseudosecondary, and secondary fluid inclusions in cassiterite, tourmaline, and quartz record three-component mixing of the orthomagmatic fluid with high salinity aqueous and with CO 2-rich fluids. The orthomagmatic water is interpreted to have had δ 18O value of +8.7 to +9.9 per mil and a δD value of -72 to -78 per mil from δ18O analyses of muscovite and quartz, and δD of muscovite. The δ18O composition of muscovite decreased from 10.1 to 8.0 per mil and δD increased from - 106 to - 85 per mil, from the magmatic to the hydrothermal stages of pegmatite evolution. These changes are consistent with an influx of metamorphic fluids or evolved meteoric waters. We consider that the saturation of the melt with vapor caused the pressure in the pegmatite to rise to approximately 3.8 kbar, at a temperature of 650°C. Fluid overpressure caused the aplite to fracture, and veins to form from fluids which migrated into the fracture-induced low pressure zones. This event can be modeled by an isothermal decompression to 2.7 kbar. Cassiterite deposition was probably controlled by increasing fO 2, whereas wolframite deposition resulted from the mixing of W-rich with Fe-Mn-rich fluids. In both cases decompression, cooling, and
Jafarian, Yaser; Ghorbani, Ali; Ahmadi, Omid
2014-09-01
Lateral deformation of liquefiable soil is a cause of much damage during earthquakes, reportedly more than other forms of liquefaction-induced ground failures. Researchers have presented studies in which the liquefied soil is considered as viscous fluid. In this manner, the liquefied soil behaves as non-Newtonian fluid, whose viscosity decreases as the shear strain rate increases. The current study incorporates computational fluid dynamics to propose a simplified dynamic analysis for the liquefaction-induced lateral deformation of earth slopes. The numerical procedure involves a quasi-linear elastic model for small to moderate strains and a Bingham fluid model for large strain states during liquefaction. An iterative procedure is considered to estimate the strain-compatible shear stiffness of soil. The post-liquefaction residual strength of soil is considered as the initial Bingham viscosity. Performance of the numerical procedure is examined by using the results of centrifuge model and shaking table tests together with some field observations of lateral ground deformation. The results demonstrate that the proposed procedure predicts the time history of lateral ground deformation with a reasonable degree of precision.
Equilibres de phases dans les systèmes fluides petroliers-eau Phase Equilibria in Oil-Water Systems
Directory of Open Access Journals (Sweden)
Peneloux A.
2006-11-01
Full Text Available Nous présentons quelques résultats obtenus à partir du logiciel FHYD qui permet le traitement des mélanges eau-fluides pétroliers, avec la détermination de la nature des phases (huile-gaz-eau-hydrate thermodynamiquement stables dans des conditions données de température et de pression, ainsi que de la quantité, de la composition de ces différentes phases et de leurs propriétés. Ce logiciel permet le tracé automatique des diagrammes de phases et nous présentons des exemples, depuis les systèmes binaires (eau-éthane, ternaires (eau-méthane-propane jusqu'aux fluides les plus complexes. La présence de sels (chlorure de sodium dissous est envisagée, ainsi que le calcul des conditions de dépôt du sel solide. Des exemples de problèmes pétroliers sont cités (gaz de séparateur saturé en eau, huile saturée en eau dans les conditions de gisement, huile en présence d'eau salée. Les estimations sur les quantités d'hydrate formées et leurs compositions sont comparées à des données expérimentales et aux résultats obtenus par d'autres logiciels. Le programme FHYD pourrait permettre une représentation plus réaliste de l'évolution des fluides pétroliers et des propriétés de transport de leurs différentes phases dans les modèles de simulation des conduites polyphasiques. This article presents a selection of results obtained with the FHYD program. This software allows simulation of mixtures composed of petroleum fluids and water, with determination of the nature of thermodynamically stable phases (oil-gas-water-hydrate under given conditions of temperature and pressure, along with the quantity, composition and properties of these different phases. Additionally, the program can automatically produce phase diagrams. Several examples of these have been included here, ranging from binary systems (water-ethane and ternary systems (water-methane-propane to the most complex petroleum fluids. The presence of dissolved salts
Fluid/structure interaction in BERDYNE (Level 4)
International Nuclear Information System (INIS)
Fox, M.J.H.
1988-02-01
A fluid-structure interaction capability has been developed for Level 4 of the finite element dynamics code BERDYNE, as part of the BERSAFE structural analysis system. This permits analysis of small amplitude free or forced vibration of systems comprising elastic structural components and inviscid volumes of possibly compressible fluid. Free fluid surfaces under the influence of gravity may be present. The formulation chosen uses the rigid walled fluid modes, calculated in a preliminary stage, as a basis for description of the coupled system, providing symmetric system matrices for which efficient solution procedures are available. The inclusion of the fluid modal variables within the system matrices is carried out through the use of the BERDYNE 'substructuring' feature, which allows the inclusion of very general 'super-elements' among the normal structural elements. The program also has a seismic analysis capability, used for the analysis of fluid-structure systems subjected to a specified support acceleration time history. In this case analysis is carried out in terms of relative structural motions, but absolute fluid pressures. Application of the BERDYNE fluid/structure interaction capability to some simple test cases produced results in good agreement with results obtained by analytic or independent numerical techniques. Full instructions on the use of the facility will be included in the BERDYNE Level 4 documentation. Interim documentation for the pre-release version is available from the author. (author)
Xia, Kewei; Huo, Wei
2016-05-01
This paper presents a robust adaptive neural networks control strategy for spacecraft rendezvous and docking with the coupled position and attitude dynamics under input saturation. Backstepping technique is applied to design a relative attitude controller and a relative position controller, respectively. The dynamics uncertainties are approximated by radial basis function neural networks (RBFNNs). A novel switching controller consists of an adaptive neural networks controller dominating in its active region combined with an extra robust controller to avoid invalidation of the RBFNNs destroying stability of the system outside the neural active region. An auxiliary signal is introduced to compensate the input saturation with anti-windup technique, and a command filter is employed to approximate derivative of the virtual control in the backstepping procedure. Globally uniformly ultimately bounded of the relative states is proved via Lyapunov theory. Simulation example demonstrates effectiveness of the proposed control scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Gawdzińska K.
2017-09-01
Full Text Available Diagnostics of composite castings, due to their complex structure, requires that their characteristics are tested by an appropriate description method. Any deviation from the specific characteristic will be regarded as a material defect. The detection of defects in composite castings sometimes is not sufficient and the defects have to be identified. This study classifies defects found in the structures of saturated metallic composite castings and indicates those stages of the process where such defects are likely to be formed. Not only does the author determine the causes of structural defects, describe methods of their detection and identification, but also proposes a schematic procedure to be followed during detection and identification of structural defects of castings made from saturated reinforcement metallic composites. Alloys examination was conducted after technological process, while using destructive (macroscopic tests, light and scanning electron microscopy and non-destructive (ultrasonic and X-ray defectoscopy, tomography, gravimetric method methods. Research presented in this article are part of author’s work on castings quality.
Spin echo SPI methods for quantitative analysis of fluids in porous media.
Li, Linqing; Han, Hui; Balcom, Bruce J
2009-06-01
Fluid density imaging is highly desirable in a wide variety of porous media measurements. The SPRITE class of MRI methods has proven to be robust and general in their ability to generate density images in porous media, however the short encoding times required, with correspondingly high magnetic field gradient strengths and filter widths, and low flip angle RF pulses, yield sub-optimal S/N images, especially at low static field strength. This paper explores two implementations of pure phase encode spin echo 1D imaging, with application to a proposed new petroleum reservoir core analysis measurement. In the first implementation of the pulse sequence, we modify the spin echo single point imaging (SE-SPI) technique to acquire the k-space origin data point, with a near zero evolution time, from the free induction decay (FID) following a 90 degrees excitation pulse. Subsequent k-space data points are acquired by separately phase encoding individual echoes in a multi-echo acquisition. T(2) attenuation of the echo train yields an image convolution which causes blurring. The T(2) blur effect is moderate for porous media with T(2) lifetime distributions longer than 5 ms. As a robust, high S/N, and fast 1D imaging method, this method will be highly complementary to SPRITE techniques for the quantitative analysis of fluid content in porous media. In the second implementation of the SE-SPI pulse sequence, modification of the basic measurement permits fast determination of spatially resolved T(2) distributions in porous media through separately phase encoding each echo in a multi-echo CPMG pulse train. An individual T(2) weighted image may be acquired from each echo. The echo time (TE) of each T(2) weighted image may be reduced to 500 micros or less. These profiles can be fit to extract a T(2) distribution from each pixel employing a variety of standard inverse Laplace transform methods. Fluid content 1D images are produced as an essential by product of determining the
Lo, Wei-Cheng; Sposito, Garrison; Huang, Yu-Han
2012-03-01
Seismic stimulation, the application of low-frequency stress-pulsing to the boundary of a porous medium containing water and a non-aqueous fluid to enhance the removal of the latter, shows great promise for both contaminated groundwater remediation and enhanced oil recovery, but theory to elucidate the underlying mechanisms lag significantly behind the progress achieved in experimental research. We address this conceptual lacuna by formulating a boundary-value problem to describe pore-pressure pulsing at seismic frequencies that is based on the continuum theory of poroelasticity for an elastic porous medium permeated by two immiscible fluids. An exact analytical solution is presented that is applied numerically using elasticity parameters and hydraulic data relevant to recent proof-of-principle laboratory experiments investigating the stimulation-induced mobilization of trichloroethene (TCE) in water flowing through a compressed sand core. The numerical results indicated that significant stimulation-induced increases of the TCE concentration in effluent can be expected from pore-pressure pulsing in the frequency range of 25-100 Hz, which is in good agreement with what was observed in the laboratory experiments. Sensitivity analysis of our numerical results revealed that the TCE concentration in the effluent increases with the porous medium framework compressibility and the pulsing pressure. Increasing compressibility also leads to an optimal stimulation response at lower frequencies, whereas changing the pulsing pressure does not affect the optimal stimulation frequency. Within the context of our model, the dominant physical cause for enhancement of non-aqueous fluid mobility by seismic stimulation is the dilatory motion of the porous medium in which the solid and fluid phases undergo opposite displacements, resulting in stress-induced changes of the pore volume.
Ligand screening by saturation-transfer difference (STD) NMR spectroscopy.
Energy Technology Data Exchange (ETDEWEB)
Krishnan, V V
2005-04-26
NMR based methods to screen for high-affinity ligands have become an indispensable tool for designing rationalized drugs, as these offer a combination of good experimental design of the screening process and data interpretation methods, which together provide unprecedented information on the complex nature of protein-ligand interactions. These methods rely on measuring direct changes in the spectral parameters, that are often simpler than the complex experimental procedures used to study structure and dynamics of proteins. The goal of this review article is to provide the basic details of NMR based ligand-screening methods, with particular focus on the saturation transfer difference (STD) experiment. In addition, we provide an overview of other NMR experimental methods and a practical guide on how to go about designing and implementing them.
Scintillation probe with photomultiplier tube saturation indicator
International Nuclear Information System (INIS)
Ruch, J.F.; Urban, D.J.
1996-01-01
A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated. 2 figs
International Nuclear Information System (INIS)
Abdesslem, Jbara; Khalifa, Slimi; Abdelaziz, Nasr; Abdallah, Mhimid
2013-01-01
The present article deals with a numerical study of coupled fluid flow and heat transfer by transient natural convection and thermal radiation in a porous bed confined between two-vertical hot plates and saturated by a homogeneous and isotropic fluid phase. The main objective is to study the effects of radiative properties on fluid flow and heat transfer behavior inside the porous material. The numerical results show that the temperature, the axial velocity, the volumetric flow rate and the convective heat flux exchanged at the channel's exit are found to be increased when the particle emissivity (ε) and/or the absorption coefficient (κ) increase or when the scattering coefficient (σ s ) and/or the single scattering albedo (ω) decrease. Furthermore, the amount of heat (Q c ) transferred to fluid and the energetic efficiency E c are found to be increased when there is a raise in the particle emissivity values. In order to improve the performance of heat exchanger, we proposed the model of a porous heat exchanger which includes a porous bed of large spherical particles with high emissivity as a practical application of the current study. - Highlights: • The temperature increases with the particle emissivity ε. • The volumetric flow rate and the convective heat flux exchanged increase with the particle emissivity ε. • The amount of heat transferred to fluid and the energetic efficiency increase with the particle emissivity ε. • A heat exchanger including a porous bed of spherical particles with high emissivity is proposed like a practical application
Rejection of Erroneous Saturation Data in Optical Pulse Oximetry in Newborn Patients
Scalise, L.; Marchionni, Paolo; Carnielli, Virgilio P.
2011-08-01
Pulse oximetry (PO) is extensively used in intensive care unit (ICU); this is mainly due to the fact that it is a non-invasive and real-time monitoring method. PO allows to measure arterial oxygen saturation (SaO2) and in particular hemoglobin oxygenation. Optical PO is typically realized by the use of a clip (to be applied on the ear or on the finger top) containing a couple of monochromatic LED sources and a photodiode. The main drawback with the use of PO is the presence of movement artifacts or disturbance due to optical sources and skin, causing erroneous saturation data. The aim of this work is to present the measurement procedure based on a specially developed algorithm able to reject erroneous oxygen saturation data during long lasting monitoring of patients in ICU and to compare measurement data with reference data provided by EGA. We have collected SaO2 data from a standard PO and used an intensive care unit monitor to collect data. This device was connected to our acquisition system and heart rate (HR) and SaO2 data were acquired and processed by our specially developed algorithm and directly reproduced on the PC screen for use by the clinicians. The algorithm here used for the individuation and rejection of erroneous saturation data is based on the assessment of the difference between the Heart Rate (HR) measured by respectively by the ECG and PO. We have used an emogasanalyzer (EGA) for comparison of the measured data. The study was carried out in a neonatal intensive care unit (NICU), using 817 data coming from 24 patients and the observation time was of about 10000 hours. Results show a reduction in the maximum difference between the SaO2 data measured, simultaneously, on the same patient by the EGA and by the proposed method of 14.20% and of the 4.76% in average over the 817 samples. The measurement method proposed is therefore able to individuate and eliminate the erroneous saturation data due to motion artifacts and reported by the pulse oxymeter
Extended fluid transport theory in the tokamak plasma edge
Stacey, W. M.
2017-06-01
Fluid theory expressions for the radial particle and energy fluxes and the radial distributions of pressure and temperature in the edge plasma are derived from fundamental conservation (particle, energy, momentum) relations, taking into account kinetic corrections arising from ion orbit loss, and integrated to illustrate the dependence of the observed edge pedestal profile structure on fueling, heating, and electromagnetic and thermodynamic forces. Solution procedures for the fluid plasma and associated neutral transport equations are discussed.
Chen, Huaizhen; Zhang, Guangzhi
2017-05-01
Fracture detection and fluid identification are important tasks for a fractured reservoir characterization. Our goal is to demonstrate a direct approach to utilize azimuthal seismic data to estimate fluid bulk modulus, porosity, and dry fracture weaknesses, which decreases the uncertainty of fluid identification. Combining Gassmann's (Vier. der Natur. Gesellschaft Zürich 96:1-23, 1951) equations and linear-slip model, we first establish new simplified expressions of stiffness parameters for a gas-bearing saturated fractured rock with low porosity and small fracture density, and then we derive a novel PP-wave reflection coefficient in terms of dry background rock properties (P-wave and S-wave moduli, and density), fracture (dry fracture weaknesses), porosity, and fluid (fluid bulk modulus). A Bayesian Markov chain Monte Carlo nonlinear inversion method is proposed to estimate fluid bulk modulus, porosity, and fracture weaknesses directly from azimuthal seismic data. The inversion method yields reasonable estimates in the case of synthetic data containing a moderate noise and stable results on real data.
Alliss, Randall J.; Raman, Sethu
1995-11-01
Cloudiness derived from surface observations and the Geostationary Operational Environmental Satellite VISSR (Visible Infrared Spin Scan Radiometer) Atmospheric Sounder (VAS) are compared with thermodynamic properties derived from upper-air soundings over the Gulf Stream locale during a developing winter storm. The Gulf Stream locale covers the United States mid-Atlantic coastal states, the Gulf Stream, and portions of the Sargasso Sea. Cloudiness is found quite frequently in this region. Cloud-top pressures are derived from VAS using the CO2 slicing technique and a simple threshold procedure. Cloud-base heights and cloud fractions are obtained from National Weather Service hourly reporting stations. The saturation pressure differences, defined as the difference between air parcel pressure and saturation-level pressure (lifted condensation level), are derived from upper-air soundings. Collocated comparisons with VAS and surface observations are also made. Results indicate that cloudiness is observed nearly all of the time during the 6-day period, well above the 8-yr mean. High, middle, and low opaque cloudiness are found approximately equally. Furthermore, of the high- and midlevel cloudiness observed, a considerable amount is determined to be semitransparent to terrestrial radiation. Comparisons of satellite-inferred cloudiness with surface observations indicate that the satellite can complement surface observations of cloud cover, particularly above 700 mb.Surface-observed cloudiness is segregated according to a composite cloud fraction and compared to the mean saturation pressure difference for a 1000 600-mb layer. The analysis suggests that this conserved variable may be a good indicator for estimating cloud fraction. Large negative values of saturation pressure difference correlate highly with clear skies, while those approaching zero correlate with overcast conditions. Scattered and broken cloud fractions are associated with increasing values of the
Endoscopic Management of Pancreatic Fluid Collections in Children.
Nabi, Zaheer; Talukdar, Rupjyoti; Reddy, D Nageshwar
2017-07-15
The incidence of acute pancreatitis in children has increased over the last few decades. The development of pancreatic fluid collection is not uncommon after severe acute pancreatitis, although its natural course in children and adolescents is poorly understood. Asymptomatic fluid collections can be safely observed without any intervention. However, the presence of clinically significant symptoms warrants the drainage of these fluid collections. Endoscopic management of pancreatic fluid collection is safe and effective in adults. The use of endoscopic ultrasound (EUS)-guided procedure has improved the efficacy and safety of drainage of pancreatic fluid collections, which have not been well studied in pediatric populations, barring a scant volume of small case series. Excellent results of EUS-guided drainage in adult patients also need to be verified in children and adolescents. Endoprostheses used to drain pancreatic fluid collections include plastic and metal stents. Metal stents have wider lumens and become clogged less often than plastic stents. Fully covered metal stents specifically designed for pancreatic fluid collection are available, and initial studies have shown encouraging results in adult patients. The future of endoscopic management of pancreatic fluid collection in children appears promising. Prospective studies with larger sample sizes are required to establish their definitive role in the pediatric age group.
Lattice Boltzmann Methods for Fluid Structure Interaction
2012-09-01
Integration Approach . . . . . . . . . . . . . . . . . 77 2. Momentum Response Approach . . . . . . . . . . . . . . . 78 C. COUPLING PROCEDURE...Euler- Bernoulli Beam. . . . . . . . . . . . . . . . . . . . . . . . . . 80 Figure 47. Schematic of 2D converging and diverging duct...vortex regions. . . . . . . . . . . . . . . 121 Figure 79. Momentum and density fields for fluid 1 at steady-state; Re=1000. . . 122 Figure 80. Plot of
Danny, Riethorst; Amitava, Mitra; Filippos, Kesisoglou; Wei, Xu; Jan, Tack; Joachim, Brouwers; Patrick, Augustijns
2018-05-23
In addition to individual intestinal fluid components, colloidal structures are responsible for enhancing the solubility of lipophilic compounds. The present study investigated the link between as well as the variability in the ultrastructure of fed state human intestinal fluids (FeHIF) and their solubilizing capacity for lipophilic compounds. For this purpose, FeHIF samples from 10 healthy volunteers with known composition and ultrastructure were used to determine the solubility of four lipophilic compounds. In light of the focus on solubility and ultrastructure, the study carefully considered the methodology of solubility determination in relation to colloid composition and solubilizing capacity of FeHIF. To determine the solubilizing capacity of human and simulated intestinal fluids, the samples were saturated with the compound of interest, shaken for 24 h, and centrifuged. When using FeHIF, solubilities were determined in the micellar layer of FeHIF, i.e. after removing the upper (lipid) layer (standard procedure), as well as in 'full' FeHIF (without removal of the upper layer). Compound concentrations were determined using HPLC-UV/fluorescence. To link the solubilizing capacity with the ultrastructure, all human and simulated fluids were imaged using transmission electron microscopy (TEM) before and after centrifugation and top layer (lipid) removal. Comparing the ultrastructure and solubilizing capacity of individual FeHIF samples demonstrated a high intersubject variability in postprandial intestinal conditions. Imaging of FeHIF after removal of the upper layer clearly showed that only micellar structures remain in the lower layer. This observation suggests that larger colloids such as vesicles and lipid droplets are contained in the upper, lipid layer. The solubilizing capacity of most FeHIF samples substantially increased with inclusion of this lipid layer. The relative increase in solubilizing capacity upon inclusion of the lipid layer was most pronounced
Simulation of the saturation process of a radwaste storage cell
International Nuclear Information System (INIS)
Robbe, M.F.; Clouard, A.
2001-01-01
This paper presents a simulation of the saturation of the barrier and the plug of a storage cell by the surrounding host rock. Generally speaking, the unsaturated barrier and plug start saturating immediately in the vicinity of the quasi-saturated host rock. Then the saturation front propagates towards the canisters and the symmetry axis. Apart from the part in contact with the plug, the barrier is saturated at about 30 years. The part of the barrier near the plug is saturated around 80 years. If the top of the plug is saturated very soon, the part in the corner near the gallery and the symmetry axis is not completely saturated after 100 years. In the site, we observe a small desaturation during the first month, at the limit with the plug and the barrier, and especially in the corner limited by both FoCa clay pieces. This transient phenomenon may be assigned to the time difference between the immediate suction of water by the unsaturated materials and the delayed water flows coming from the saturated host rock to compensate the water suction. The purpose of this computation was at once to estimate the time necessary for the saturation of the clay layers surrounding the radwaste canisters and to evaluate the hydro-mechanical behaviour of the storage cell during the saturation process. Therefore a mechanical simulation was performed using the present hydraulic results to initiate the mechanical computation. (authors)
Korhan, Esra Akin; Yönt, Gülendam Hakverdioğlu; Khorshid, Leyla
2011-01-01
The aim of this study was to compare semiexperimentally the pulse oximetry values obtained from a finger on restrained or unrestrained sides of the body. The pulse oximeter provides a noninvasive measurement of the oxygen saturation of hemoglobin in arterial blood. One of the procedures most frequently applied to patients in intensive care units is the application of physical restraint. Circulation problems are the most important complication in patients who are physically restrained. Evaluation of oxygen saturation from body parts in which circulation is impeded or has deteriorated can cause false results. The research sample consisted of 30 hospitalized patients who participated in the study voluntarily and who were concordant with the inclusion criteria of the study. Patient information and patient follow-up forms were used for data collection. Pulse oximetry values were measured simultaneously using OxiMax Nellcor finger sensors from fingers on the restrained and unrestrained sides of the body. Numeric and percentile distributions were used in evaluating the sociodemographic properties of patients. A significant difference was found between the oxygen saturation values obtained from a finger of an arm that had been physically restrained and a finger of an arm that had not been physically restrained. The mean oxygen saturation value measured from a finger of an arm that had been physically restrained was found to be 93.40 (SD, 2.97), and the mean oxygen saturation value measured from a finger of an arm that had not been physically restrained was found to be 95.53 (SD, 2.38). The results of this study indicate that nurses should use a finger of an arm that is not physically restrained when evaluating oxygen saturation values to evaluate them correctly.
DEFF Research Database (Denmark)
Bjerregaard, Lars Stryhn; Møller-Sørensen, Hasse; Hansen, Kristoffer Lindskov
2015-01-01
the use of central venous oxygen saturation and intended low urine output to guide therapy in the early postoperative period. Here we evaluate the consequences of our changes. METHODS: Retrospective, observational study of 30 consecutive patients undergoing EPP; 18 who had surgery before and 12 who had...... surgery after the changes. Data were collected from patient files and from institutional databases. Outcome measures included: Volumes of administered fluids, fluid balances, length of stays and postoperative complications. Dichotomous variables were compared with Fisher's exact test, whereas continuous...... increasing the incidence of postoperative complications. Mean length of stay in the intensive care unit (LOSI) was reduced from three to one day (p = 0.04) after the changes. CONCLUSION: The use of clinical parameters to balance fluid restriction and a sufficient circulation in patients undergoing EPP...
Procedure-specific pain management and outcome strategies
DEFF Research Database (Denmark)
Joshi, Girish P; Schug, Stephan A; Kehlet, Henrik
2014-01-01
Optimal dynamic pain relief is a prerequisite for optimizing post-operative recovery and reducing morbidity and convalescence. Procedure-specific pain management initiative aims to overcome the limitations of conventional guidelines and provide health-care professionals with practical recommendat......, optimizing fluid therapy and optimizing post-operative nursing care with early mobilization and oral feeding are utilized....... recommendations formulated in a way that facilitates clinical decision making across all the stages of the perioperative period. The procedure-specific evidence is supplemented with data from other similar surgical procedures and clinical practices to balance benefits and risks of each analgesic technique...
Fluid simulations of ∇Te-driven turbulence and transport in boundary plasmas
International Nuclear Information System (INIS)
Xu, X.Q.
1992-01-01
It is clear that the edge plasma plays a crucial role in global tokamak confinement. This paper is a report on simulations of a new drift wave type instability driven by the electron temperature gradient in tokamak scrapeoff-layers (SOL). A 2d fluid code has been developed in order to explore the anomalous transport in the boundary plasmas. The simulation consists of a set of fluid equations for the vorticity ∇ perpendicular 2 φ, the electron density n c and the temperature T c in a shearless plasma slab confined by a uniform, straight magnetic field B z with two divertor (or limiter) plates intercepting the magnetic field. The model has two regions separated by a magnetic separatrix: in the edge region inside the separatrix, the model is periodic along the magnetic field while in the SOL region outside the separatrix, the magnetic field is taken to be of finite length with model boundary conditions at diverter plates. The simulation results show that the observed linear instability agrees well with theory, and that a saturated state of turbulence is reached. In saturated turbulence, clear evidence of the expected long-wavelength mode penetration into the edge is seen, an inverse cascade of wave energy is observed. The simulation results also show that amplitudes of potential and the electron temperature fluctuations are somewhat above and the heat flux are somewhat below those of the simplest mixing-length estimates, and furthermore the large-scale radial structures of fluctuation quantities indicate that the cross-field transport is not diffusive. After saturation, the electron density and temperature profiles are flattened. A self-consistent simulation to determine the microturbulent SOL electron temperature profile has been done, the results of which reasonably agree with the experimental measurements
Saturation Detection-Based Blocking Scheme for Transformer Differential Protection
Directory of Open Access Journals (Sweden)
Byung Eun Lee
2014-07-01
Full Text Available This paper describes a current differential relay for transformer protection that operates in conjunction with a core saturation detection-based blocking algorithm. The differential current for the magnetic inrush or over-excitation has a point of inflection at the start and end of each saturation period of the transformer core. At these instants, discontinuities arise in the first-difference function of the differential current. The second- and third-difference functions convert the points of inflection into pulses, the magnitudes of which are large enough to detect core saturation. The blocking signal is activated if the third-difference of the differential current is larger than the threshold and is maintained for one cycle. In addition, a method to discriminate between transformer saturation and current transformer (CT saturation is included. The performance of the proposed blocking scheme was compared with that of a conventional harmonic blocking method. The test results indicate that the proposed scheme successfully discriminates internal faults even with CT saturation from the magnetic inrush, over-excitation, and external faults with CT saturation, and can significantly reduce the operating time delay of the relay.
DEFF Research Database (Denmark)
Andreassen, Katrine Alling; Fabricius, Ida Lykke
2010-01-01
Injection of water into chalk hydrocarbon reservoirs has led to mechanical yield and failure. Laboratory experiments on chalk samples correspondingly show that the mechanical properties of porous chalk depend on pore fluid and temperature. In case of water-saturated samples, the concentration...... is controlled by solid-fluid friction. The reference frequency is thus a measure of this friction, and we propose that the fluid effect on mechanical properties of chalk may be the result of liquid-solid friction. We reviewed 622 published experiments on mechanical properties of porous chalk. The data include...... chalk samples that were tested at temperatures from 20 °C to 130 °C with the following pore fluids: fresh water, synthetic seawater, glycol, and oil of varying viscosity. The critical frequency is calculated for each experiment. For each specimen, we calculate the thickness to the slipping plane outside...
Chaotic convection of viscoelastic fluids in porous media
Energy Technology Data Exchange (ETDEWEB)
Sheu, L.-J. [Department of Mechanical Engineering, Chung Hua University, Hsinchu, Taiwan (China)], E-mail: ljsheu@chu.edu.tw; Tam, L.-M. [Department of Electromechanical Engineering, University of Macau, Macau (China)], E-mail: fstlmt@umac.mo; Chen, J.-H. [Department of Mechanical Engineering, Chung Hua University, Hsinchu, Taiwan (China)], E-mail: chen@chu.edu.tw; Chen, H.-K. [Department of Industrial Engineering and Management, Hsiuping Institute of Technology, Taichung, Taiwan (China)], E-mail: kanechen@giga.net.tw; Lin, K.-T. [Department of Mechanical Engineering, Chung Yuan Christian University, Chung Li, Taiwan (China)], E-mail: willie@nanya.edu.tw; Kang Yuan [Department of Mechanical Engineering, Chung Yuan Christian University, Chung Li, Taiwan (China)], E-mail: yk@cycu.edu.tw
2008-07-15
Buoyancy-induced convection in a viscoelastic fluid-saturated porous medium was analyzed using an Oldroydian-type constitutive relation. An autonomous system with four differential equations was deduced by applying the truncated Galerkin expansion to the momentum and heat transfer equations. The four-dimensional system can be reduced to many systems provided in the literature such as the Lorenz system, Vadasz system, Khayat system, and Akhatov system. Depending on the flow parameters, the asymptotic behavior can be stationary, periodic, or chaotic. Generation of a four-scroll, or two-'butterfly', chaotic attractor was observed. Results also show that stress relaxation tends to precipitate the onset of chaos.
Fluid management in infants and children during intracranial surgery
Directory of Open Access Journals (Sweden)
Hemangi S Karnik
2017-01-01
Full Text Available Fluid management in neurosurgical paediatric patients can be a real challenge due to their different pathophysiology, sensitivity to fluid loss, inability to accurately judge the degree of abnormality and adequacy of replacement in face of limited monitoring. For infants and children undergoing neurosurgical procedures, isotonic fluids should be used for maintenance and replacement to avoid increase in intracranial pressure and maintain cerebral perfusion. Routine use of added dextrose is not needed, but blood glucose monitoring should be done in high risk population. Preoperative deficits and intraoperative blood loss should be closely monitored and treated. Hyponataemia and other electrolyte derangements are common and should be monitored.
Criteria for saturated magnetization loop
International Nuclear Information System (INIS)
Harres, A.; Mikhov, M.; Skumryev, V.; Andrade, A.M.H. de; Schmidt, J.E.; Geshev, J.
2016-01-01
Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe_3O_4 and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.
Criteria for saturated magnetization loop
Energy Technology Data Exchange (ETDEWEB)
Harres, A. [Departamento de Física, UFSM, Santa Maria, 97105-900 Rio Grande do Sul (Brazil); Mikhov, M. [Faculty of Physics, University of Sofia, 1164 Sofia (Bulgaria); Skumryev, V. [Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona (Spain); Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Andrade, A.M.H. de; Schmidt, J.E. [Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil); Geshev, J., E-mail: julian@if.ufrgs.br [Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil)
2016-03-15
Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe{sub 3}O{sub 4} and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.
Demetriou, Eleni; Tachrount, Mohamed; Zaiss, Moritz; Shmueli, Karin; Golay, Xavier
2018-03-05
To develop a new MRI technique to rapidly measure exchange rates in CEST MRI. A novel pulse sequence for measuring chemical exchange rates through a progressive saturation recovery process, called PRO-QUEST (progressive saturation for quantifying exchange rates using saturation times), has been developed. Using this method, the water magnetization is sampled under non-steady-state conditions, and off-resonance saturation is interleaved with the acquisition of images obtained through a Look-Locker type of acquisition. A complete theoretical framework has been set up, and simple equations to obtain the exchange rates have been derived. A reduction of scan time from 58 to 16 minutes has been obtained using PRO-QUEST versus the standard QUEST. Maps of both T 1 of water and B 1 can simply be obtained by repetition of the sequence without off-resonance saturation pulses. Simulations and calculated exchange rates from experimental data using amino acids such as glutamate, glutamine, taurine, and alanine were compared and found to be in good agreement. The PRO-QUEST sequence was also applied on healthy and infarcted rats after 24 hours, and revealed that imaging specificity to ischemic acidification during stroke was substantially increased relative to standard amide proton transfer-weighted imaging. Because of the reduced scan time and insensitivity to nonchemical exchange factors such as direct water saturation, PRO-QUEST can serve as an excellent alternative for researchers and clinicians interested to map pH changes in vivo. © 2018 International Society for Magnetic Resonance in Medicine.
Extraperitoneal Fluid Collection due to Chronic Pancreatitis
Directory of Open Access Journals (Sweden)
Takeo Yasuda
2013-08-01
Full Text Available A 39-year-old man was referred to our hospital for the investigation of abdominal fluid collection. He was pointed out to have alcoholic chronic pancreatitis. Laboratory data showed inflammation and slightly elevated serum direct bilirubin and amylase. An abdominal computed tomography demonstrated huge fluid collection, multiple pancreatic pseudocysts and pancreatic calcification. The fluid showed a high level of amylase at 4,490 IU/l. Under the diagnosis of pancreatic ascites, endoscopic pancreatic stent insertion was attempted but was unsuccessful, so surgical treatment (Frey procedure and cystojejunostomy was performed. During the operation, a huge amount of fluid containing bile acid (amylase at 1,474 IU/l and bilirubin at 13.5 mg/dl was found to exist in the extraperitoneal space (over the peritoneum, but no ascites was found. His postoperative course was uneventful and he shows no recurrence of the fluid. Pancreatic ascites is thought to result from the disruption of the main pancreatic duct, the rupture of a pancreatic pseudocyst, or possibly leakage from an unknown site. In our extremely rare case, the pancreatic pseudocyst penetrated into the hepatoduodenal ligament with communication to the common bile duct, and the fluid flowed into the round ligament of the liver and next into the extraperitoneal space.
Experimental observation of fluid echoes in a non-neutral plasma
International Nuclear Information System (INIS)
Yu, Jonathan H.; Driscoll, C. Fred
2002-01-01
Experimental observation of a nonlinear fluid echo is presented which demonstrates the reversible nature of spatial Landau damping, and that non-neutral plasmas behave as nearly ideal 2D fluids. These experiments are performed on UCSD's CamV Penning-Malmberg trap with magnetized electron plasmas. An initial m i =2 diocotron wave is excited, and the received wall signal damps away in about 5 wave periods. The density perturbation filaments are observed to wrap up as the wave is spatially Landau damped. An m t =4 'tickler' wave is then excited, and this wave also Landau damps. The echo consists of a spontaneous appearance of a third m e =2 wave after the responses to the first two waves have inviscidly damped away. The appearance time of the echo agrees with theory, and data suggests the echo is destroyed at least partly due to saturation
Williams, H. M.; Prytulak, J.; Woodhead, J. D.; Kelley, K. A.; Brounce, M.; Plank, T.
2018-04-01
Subduction zone systems are central to a multitude of processes from the evolution of the continental crust to the concentration of metals into economically viable deposits. The interplay between oxygen fugacity, sulfur saturation, fluid exsolution and fractionating mineral assemblages that gives rise to typical arc magma chemical signatures is, however, still poorly understood and novel geochemical approaches are required to make further progress. Here we examine a well-characterized suite of arc lavas from the Marianas (W. Pacific) for their stable Fe isotope composition. In agreement with previous work and mass balance considerations, contributions from sediments and/or fluids are shown to have negligible effect on Fe isotopes. Instead, we focus on disentangling processes occurring during basalt through dacite differentiation using a sample suite from the island of Anatahan. Anatahan whole rock Fe isotope compositions (δ57Fe) range from -0.05 ± 0.05 to 0.17 ± 0.03 (2 S.D.)‰. A fractionation model is constructed, where three distinct stages of differentiation are required to satisfy the combined major and trace element and isotopic observations. In particular, the sequestration of isotopically heavy Fe into magnetite and isotopically light Fe into sulfide melts yields important constraints. The data require that lavas are first undersaturated with respect to crystalline or molten sulfide, followed by the crystallisation of magnetite, which then triggers late sulfide saturation. The model demonstrates that the final stage of removal of liquid or crystalline sulfide can effectively sequester Cu (and presumably other chalcophiles) and that late stage exsolution of magmatic fluids or brines may not be required to do this, although these processes are not mutually exclusive. Finally, the new Fe isotope data are combined with previous Tl-Mo-V stable isotope determinations on the same samples. Importantly, the multi-valent transition metal stable isotope systems of
Pancreatic tissue fluid pressure during drainage operations for chronic pancreatitis
DEFF Research Database (Denmark)
Ebbehøj, N; Borly, L; Madsen, P
1990-01-01
Pancreatic tissue fluid pressure was measured in 10 patients undergoing drainage operations for painful chronic pancreatitis. The pressure was measured by the needle technique in the three anatomic regions of the pancreas before and at different stages of the drainage procedure, and the results...... a decrease in pancreatic tissue fluid pressure during drainage operations for pain in chronic pancreatitis. Regional pressure decrease were apparently unrelated to ERCP findings....
Analysis of an SEIR Epidemic Model with Saturated Incidence and Saturated Treatment Function
Directory of Open Access Journals (Sweden)
Jinhong Zhang
2014-01-01
Full Text Available The dynamics of SEIR epidemic model with saturated incidence rate and saturated treatment function are explored in this paper. The basic reproduction number that determines disease extinction and disease survival is given. The existing threshold conditions of all kinds of the equilibrium points are obtained. Sufficient conditions are established for the existence of backward bifurcation. The local asymptotical stability of equilibrium is verified by analyzing the eigenvalues and using the Routh-Hurwitz criterion. We also discuss the global asymptotical stability of the endemic equilibrium by autonomous convergence theorem. The study indicates that we should improve the efficiency and enlarge the capacity of the treatment to control the spread of disease. Numerical simulations are presented to support and complement the theoretical findings.
International Nuclear Information System (INIS)
Fertl, W.H.
1975-01-01
A logging tool (pulsed neutron or neutron-gamma ray) whose response indicates formation water saturation value, is run through an opening extending through a portion of a drill stem test string. A sample portion of the formation fluid in the zone of interest is removed and another logging run is made. The differences between the plots of the two logging runs indicate the formation potential productivity in the zone of interest
Calibration of the Site-Scale Saturated Zone Flow Model
International Nuclear Information System (INIS)
Zyvoloski, G. A.
2001-01-01
The purpose of the flow calibration analysis work is to provide Performance Assessment (PA) with the calibrated site-scale saturated zone (SZ) flow model that will be used to make radionuclide transport calculations. As such, it is one of the most important models developed in the Yucca Mountain project. This model will be a culmination of much of our knowledge of the SZ flow system. The objective of this study is to provide a defensible site-scale SZ flow and transport model that can be used for assessing total system performance. A defensible model would include geologic and hydrologic data that are used to form the hydrogeologic framework model; also, it would include hydrochemical information to infer transport pathways, in-situ permeability measurements, and water level and head measurements. In addition, the model should include information on major model sensitivities. Especially important are those that affect calibration, the direction of transport pathways, and travel times. Finally, if warranted, alternative calibrations representing different conceptual models should be included. To obtain a defensible model, all available data should be used (or at least considered) to obtain a calibrated model. The site-scale SZ model was calibrated using measured and model-generated water levels and hydraulic head data, specific discharge calculations, and flux comparisons along several of the boundaries. Model validity was established by comparing model-generated permeabilities with the permeability data from field and laboratory tests; by comparing fluid pathlines obtained from the SZ flow model with those inferred from hydrochemical data; and by comparing the upward gradient generated with the model with that observed in the field. This analysis is governed by the Office of Civilian Radioactive Waste Management (OCRWM) Analysis and Modeling Report (AMR) Development Plan ''Calibration of the Site-Scale Saturated Zone Flow Model'' (CRWMS M and O 1999a)
Clint, Oswald Conan
Natural electrical potential signals have been recorded from numerous seismically active areas around the world and therefore have been proposed as a potential earthquake prediction tool. The streaming potential is being used to locate sub-surface water reservoirs, to monitor steam fronts during enhanced oil recovery techniques, and to delineate the anisotropy of fractures in geothermal and oil reservoirs. The generating mechanism for these signals is still unclear although plausible theories include: - Piezoelectric fields produced through stress changes on piezoelectric materials, such as quartz, found in many rocks. - Electrokinetic currents induced through a pressure gradient and caused by electrical charge transport within a moving fluid. - Less well-established theories for instance involving current carrying mobile O' charges. To investigate the relative significance of these mechanisms, I have measured the direct current electrical potential and acoustic emissions during constant strain rate rock deformation under simulated crustal conditions of pressure and pore fluid pressure. Some sixty-one experiments were done on rock samples of quartz rich Darley Dale and Bentheim sandstone and quartz free basalt from Iceland. A computer and servo-controlled conventional triaxial cell was used to deform dry, water-saturated and brine-saturated rock samples at confining pressures between 20 and 200MPa, pore fluid pressures between 10 and 50MPa and strain rates from 10-4 s-1 to 10-6 s-1 I identify the primary sources of the electrical potential signals as being generated by (i) piezoelectricity in dry sandstone experiments and (ii) electrokinetic effect in saturated basalt experiments. I show that electrical potential signals from the other proposed methods are not detectable above the background noise level. It can therefore be argued that the electrokinetic effect is the main electrical potential generating mechanism within the upper crust.Both precursory and
Saturation of the turbulent dynamo.
Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S
2015-08-01
The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.
Directory of Open Access Journals (Sweden)
Simon Heru Prassetyo
2018-04-01
Full Text Available Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical (H-M interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit (ADE scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in non-uniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourth-order finite difference (FD approximation to the spatial derivatives of the axisymmetric fluid–diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps, giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua (FLAC. This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%–50% that of FLAC's basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%
Pauk, Volodymyr; Pluháček, Tomáš; Havlíček, Vladimír; Lemr, Karel
2017-10-09
The ultra-high performance supercritical fluid chromatography-mass spectrometry (UHPSFC/MS) procedure for analysis of native monosaccharides was developed. Chromatographic conditions were investigated to separate a mixture of four hexoses, three pentoses, two deoxyhexoses and two uronic acids. Increasing water content in methanol modifier to 5% and formic acid to 4% improved peak shapes of neutral monosaccharides and allowed complete elution of highly polar uronic acids in a single run. An Acquity HSS C18SB column outperformed other three tested stationary phases (BEH (silica), BEH 2-ethylpyridine, CSH Fluoro-Phenyl) in terms of separation of isomers and analysis time (4.5 min). Limits of detection were in the range 0.01-0.12 ng μL -1 . Owing to separation of anomers, identification of critical pairs (arabinose-xylose and glucose-galactose) was possible. Feasibility of the new method was demonstrated on plant-derived polysaccharide binders. Samples of watercolor paints, painted paper and three plant gums widely encountered in painting media (Arabic, cherry and tragacanth) were decomposed prior the analysis by microwave-assisted hydrolysis at 40 bar initial pressure using 2 mol L -1 trifluoroacetic acid. Among tested temperatures, 120 °C ensured appropriate hydrolysis efficiency for different types of gum and avoided excessive degradation of labile monosaccharides. Procedure recovery tested on gum Arabic was 101% with an RSD below 8%. Aqueous hydrolysates containing monosaccharides in different ratios specific to each type of plant gum were diluted or analyzed directly. Filtration of samples before hydrolysis reduced interferences from a paper support and identification of gum Arabic in watercolor-painted paper samples was demonstrated. Successful identification of pure gum Arabic was confirmed for sample quantities as little as 1 μg. Two classification approaches were compared and principal component analysis was superior to analysis based on peak area
Utility of CT-guided abdominal aspiration procedures
International Nuclear Information System (INIS)
Sundaram, M.; Wolverson, M.K.; Heiberg, E.; Pilla, T.; Vas, W.G.; Shields, J.B.
1982-01-01
Over 200 consecutive diagnostic needle aspiration procedures of the abdomen were performed under computed tomographic (CT) guidance. Biopsies were done of the liver in 88 patients, the pancreas in 28, the kidney in 20, and the retroperitoneum in 32; 30 underwent an aspiration procedure for characterization of an intraabdominal fluid collection. Accuracy of diagnosis was very high for hepatic (99%) and renal (100%) biopsies and in characterization of fluid collections (100%). Accuracy for retroperitoneal biopsy was 87.5% and for pancreatic biopsy 82%. Overall accuracy for all sites was 95%. There were one false-negative diagnosis for the liver and five false-negative diagnoses for the pancreas. Insufficient material was obtained for diagnosis in four instances of retroperitoneal biopsy. There were no false positives. The technique is facilitated by rapid CT scan time, large aperture gantry, and rapid CT image reconstruction. Twenty gauge needles were used more frequently than 22 gauge needles because of their greater rigidity and ease of control. CT-guided diagnostic aspiration procedures are particularly useful for diagnosis of small, deep-seated lesions and in evaluation of lesions found in severely ill patients. An experienced cytologist is essential to the success of the technique
Guan, Zhonghui; Baker, Keith; Sandberg, Warren S
2009-11-01
We report a small case series in which misaligned disposable pulse oximeter sensors gave falsely low saturation readings. In each instance, the sensor performed well during preinduction oxygen administration and the early part of the case, most notably by producing a plethysmographic trace rated as high quality by the oximeter software. The reported pulse oximeter oxygen saturation eventually decreased to concerning levels in each instance, but the anesthesiologists, relying on the reported high-quality signal, initially sought other causes for apparent hypoxia. They undertook maneuvers and diagnostic procedures later deemed unnecessary. When the malpositioned sensors were discovered and repositioned, the apparent hypoxia was quickly relieved in each case. We then undertook a survey of disposable oximeter sensors as patients entered the recovery room, and discovered malposition of more than 1 cm in approximately 20% of all sensors, without apparent consequence. We conclude that the technology is quite robust, but that the diagnosis of apparent hypoxia should include a quick check of oximeter position early on.
On the water saturation calculation in hydrocarbon sandstone reservoirs
Energy Technology Data Exchange (ETDEWEB)
Stalheim, Stein Ottar
2002-07-01
The main goal of this work was to identify the most important uncertainty sources in water saturation calculation and examine the possibility for developing new S{sub w} - equations or possibility to develop methods to remove weaknesses and uncertainties in existing S{sub w} - equations. Due to the need for industrial applicability of the equations we aimed for results with the following properties: The accuracy in S{sub w} should increase compared with existing S{sub w} - equations. The equations should be simple to use in petrophysical evaluations. The equations should be based on conventional logs and use as few as possible input parameters. The equations should be numerical stable. This thesis includes an uncertainty and sensitivity analysis of the most common S{sub w} equations. The results are addressed in chapter 3 and were intended to find the most important uncertainty sources in water saturation calculation. To increase the knowledge of the relationship between R{sub t} and S{sub w} in hydrocarbon sandstone reservoirs and to understand how the pore geometry affects the conductivity (n and m) of the rock a theoretical study was done. It was also an aim to examine the possibility for developing new S{sub w} - equations (or investigation an effective medium model) valid inhydrocarbon sandstone reservoirs. The results are presented in paper 1. A new equation for water saturation calculation in clean sandstone oil reservoirs is addressed in paper 2. A recommendation for best practice of water saturation calculation in non water wet formation is addressed in paper 3. Finally a new equation for water saturation calculation in thinly interbedded sandstone/mudstone reservoirs is presented in paper 4. The papers are titled: 1) Is the saturation exponent n a constant. 2) A New Model for Calculating Water Saturation In 3) Influence of wettability on water saturation modeling. 4) Water Saturation Calculations in Thinly Interbedded Sandstone/mudstone Reservoirs. A
THE SEARCH FOR SUPER-SATURATION IN CHROMOSPHERIC EMISSION
International Nuclear Information System (INIS)
Christian, Damian J.; Arias, Tersi; Mathioudakis, Mihalis; Jess, David B.; Jardine, Moira
2011-01-01
We investigate if the super-saturation phenomenon observed at X-ray wavelengths for the corona exists in the chromosphere for rapidly rotating late-type stars. Moderate resolution optical spectra of fast-rotating EUV- and X-ray-selected late-type stars were obtained. Stars in α Per were observed in the northern hemisphere with the Isaac Newton 2.5 m telescope and Intermediate Dispersion Spectrograph. Selected objects from IC 2391 and IC 2602 were observed in the southern hemisphere with the Blanco 4 m telescope and R-C spectrograph at CTIO. Ca II H and K fluxes were measured for all stars in our sample. We find the saturation level for Ca II K at log (L CaK /L bol ) = -4.08. The Ca II K flux does not show a decrease as a function of increased rotational velocity or smaller Rossby number as observed in the X-ray. This lack of 'super-saturation' supports the idea of coronal stripping as the cause of saturation and super-saturation in stellar chromospheres and coronae, but the detailed underlying mechanism is still under investigation.
Directory of Open Access Journals (Sweden)
Chand Ramesh
2015-12-01
Full Text Available Thermal instability in a horizontal layer of Oldroydian visco-elastic fluid in a porous medium is investigated. For porous medium the Brinkman–Darcy model is considered. A linear stability analysis based upon perturbation method and normal mode technique is used to find solution of the fluid layer confined between two free-free boundaries. The onset criterion for stationary and oscillatory convection is derived analytically. The influence of the Brinkman–Darcy, Prandtl–Darcy number, stress relaxation parameter on the stationary and oscillatory convection is studied both analytically and graphically. The sufficient condition for the validity of PES has also been derived.
Standard Practices for Sampling for Particles in Aerospace Fluids and Components
American Society for Testing and Materials. Philadelphia
2008-01-01
1.1 These practices cover sampling procedures for use in determining the particle cleanliness of liquids and liquid samples from components. Three practices, A, B, and C, have been developed on the basis of component geometry in order to encompass the wide variety of configurations. These practices establish guidelines to be used in preparing detailed procedures for sampling specific components. Note 1—The term cleanliness used in these practices refers to solid particles in the liquid. It does not generally cover other foreign matter such as gases, liquids, and products of chemical degradation. Cleanliness with respect to particulate contamination does not necessarily give any indication of the other types of contamination. 1.2 All components, regardless of application, may be tested provided (1) the fluid medium selected is completely compatible with the materials, packing and fluid used in the test component, and test apparatus, and (2) the fluid is handled in accordance with the manufacturer's recom...
Fluid aspects of electron streaming instability in electron-ion plasmas
International Nuclear Information System (INIS)
Jao, C.-S.; Hau, L.-N.
2014-01-01
Electrons streaming in a background electron and ion plasma may lead to the formation of electrostatic solitary wave (ESW) and hole structure which have been observed in various space plasma environments. Past studies on the formation of ESW are mostly based on the particle simulations due to the necessity of incorporating particle's trapping effects. In this study, the fluid aspects and thermodynamics of streaming instabilities in electron-ion plasmas including bi-streaming and bump-on-tail instabilities are addressed based on the comparison between fluid theory and the results from particle-in-cell simulations. The energy closure adopted in the fluid model is the polytropic law of d(pρ −γ )/dt=0 with γ being a free parameter. Two unstable modes are identified for the bump-on-tail instability and the growth rates as well as the dispersion relation of the streaming instabilities derived from the linear theory are found to be in good agreement with the particle simulations for both bi-streaming and bump-on-tail instabilities. At the nonlinear saturation, 70% of the electrons are trapped inside the potential well for the drift velocity being 20 times of the thermal velocity and the pρ −γ value is significantly increased. Effects of ion to electron mass ratio on the linear fluid theory and nonlinear simulations are also examined
Piccoli, P. M.; Candela, P. A.
2006-05-01
It has been recognized for some time that sulfide phases, although common in intermediate-felsic volcanic rocks, are not as common in their plutonic equivalents. That sulfide crystallization, or the lack thereof, is important in the protracted magmatic history of porphyry Cu and related systems is supported by the work of e.g., Rowins (2000). Candela and Holland (1986) suggested that sulfide crystallization could moderate the ore metal concentrations in porphyry environments. Experiments show clearly that Au and Cu can partition into Cl-bearing vapor and brine. This effect can be enhanced by S (Simon, this session). However, in some instances enhances this effect. That is, the partitioning of Au and Cu into vapor+brine is highly efficient (e.g. Simon et al. 2003; Frank et al 2003). This suggests that if sulfides do not sequester ore metals early during the history of a magma body from the melt, they will partition strongly into the volatile phases. Whether volatile release occurs in the porphyry ore environment, or at deeper levels upon magma rise, is a yet unsolved question. Little is known about deep release of volatiles (during magma transport at lower- to mid-crustal levels). Saturation of melts with a CO2-bearing fluid could happen at levels much deeper than those typical of ore formation. CO2 is released preferentially, so a high CO2 concentration in fluids in the porphyry ore environment argues against deep fluid release. Of course, this depends upon the specific processes of crystallization and fluid release, which may be complex. Our experiments on sulfides have concentrated on pyrrhotite and Iss. Our partitioning data for Po/melt exhibit wide variations from metal to metal: Cu (2600); Co (170); Au (140); Ni (100); Bi, Zn and Mn (2). These results suggest that crystallization of Po can contribute to variable ore metal ratios (e.g. Cu/Au). Other sulfides behave differently. If a melt is Iss (Cpy) saturated, then Cu will be buffered at a high value, and Au
DEFF Research Database (Denmark)
Rahmioglu, Nilufer; Fassbender, Amelie; Vitonis, Allison F.
2014-01-01
ObjectiveTo harmonize standard operating procedures (SOPs) and standardize the recording of associated data for collection, processing, and storage of fluid biospecimens relevant to endometriosis.......ObjectiveTo harmonize standard operating procedures (SOPs) and standardize the recording of associated data for collection, processing, and storage of fluid biospecimens relevant to endometriosis....
Magnetic field saturation in the Riga dynamo experiment.
Gailitis, A; Lielausis, O; Platacis, E; Dement'ev, S; Cifersons, A; Gerbeth, G; Gundrum, T; Stefani, F; Christen, M; Will, G
2001-04-02
After the dynamo experiment in November 1999 [A. Gailitis et al., Phys. Rev. Lett. 84, 4365 (2000)] had shown magnetic field self-excitation in a spiraling liquid metal flow, in a second series of experiments emphasis was placed on the magnetic field saturation regime as the next principal step in the dynamo process. The dependence of the strength of the magnetic field on the rotation rate is studied. Various features of the saturated magnetic field are outlined and possible saturation mechanisms are discussed.
Simulation of the saturation curve of the ionization chamber in overlapping pulsed radiation
International Nuclear Information System (INIS)
Park, Se Hwan; Kim, Yong Kyun; Kim, Han Soo; Kang, Sang Mook; Ha, Jang Ho
2006-01-01
Procedures for determination of collection efficiency in ionization chambers have been studied by numerous investigators. If the theoretical approach for air-filled ionization chambers exposed to continuous radiation is considered, the result in the near-saturation region is a linear relationship between ) (1/I(V) vs 1/V 2 , where I(V) is the current measured with the ionization chamber at a given polarization voltage V . For pulsed radiation beams, Boag developed a model and the resulted in a linear relationship between ) (1/I(V) and 1/V when the collection efficiency, f , is larger than 0.9. The assumption of the linear relationship of ) (1/I(V) with 1/V or 1/V 2 in the near-saturation region makes the determination of the saturation current simple, since the linear relationship may be determined with only two measured data points. The above discussion of the collection efficiency of the ionization chamber exposed to the pulsed radiation is valid only if each pulse is cleared before the next one occurs. The transit times of the ions in the chamber must be shorter than the time interval between the radiation pulses. Most of the previous works concerning the characteristics of the saturation curve of an ionization chamber in the pulsed beam were done for the case where the transit times of the ions were shorter than the interval between the radiation pulses. However, the experimental data for the intermediate case, where the ion transit time was comparable to the interval between the radiation pulses or the ion transit time was slightly longer than the interval between the radiation pulses, were rare. The saturation curves of the ionization chambers in the pulsed radiation were measured with the pulse beamed electron accelerator at the Korea Atomic Energy Research Institute (KAERI), where the ion transit times in the ionization chambers were longer than the time interval between the radiation pulses. We used two ionization chambers: one was a commercial thimble
International Nuclear Information System (INIS)
Beckermann, C.; Ramadhyani, S.; Viskanta, R.
1986-01-01
A numerical and experimental study is performed to analyze the steady-state natural convection fluid flow and heat transfer in a vertical rectangular enclosure that is partially filled with a vertical layer of a fluid-saturated porous medium. The flow in the porous layer is modeled utilizing the Brinkman-Forchheimer-extended Darcy equations. The numerical model is verified by conducting a number of experiments with spherical glass beads as the porous medium and water and glycerin as the fluids in rectangular test-cells. The agreement between the flow visualization results and temperature measurements and the numerical model is, in general, good. It is found that the amount of fluid penetrating from the fluid region into the porous layer depends strongly on the Darcy (Da) and Rayleigh (Ra) numbers. For a relatively low product of Ra x Da, the flow takes place primarily in the fluid layer, and heat transfer in the porous layer is by conduction only. On the other hand, fluid penetrating into a relatively highly permeable porous layer has a significant impact on the natural convection flow patterns in the entire enclosure
The role of meson dynamics in nuclear matter saturation
International Nuclear Information System (INIS)
Goncalves, E.
1988-01-01
The problem of the saturation of nuclea matter in the non-relativistic limit of the model proposed by J.D. Walecka is studied. In the original context nuclear matter saturation is obtained as a direct consequence of relativistic effects and both scalar and vector mesons are treated statically. In the present work we investigate the effect of the meson dynamics for the saturation using a Born-Oppenheimer approximation for the ground state. An upper limit for the saturation curve of nuclear matter and are able to decide now essential is the relativistic treatment of the nucleons for this problem, is obtained. (author) [pt
Two-dimensional convection and interchange motions in fluids and magnetized plasmas
DEFF Research Database (Denmark)
Garcia, O.E.; Bian, N.H.; Naulin, V.
2006-01-01
fluids, emphasizing its relation to interchange motions of non- uniformly magnetized plasmas. This is followed by a review of the theories for the onset of convection and quasi-linear saturation in driven-dissipative systems. Non-linear numerical simulations which result in stationary convective states...... behaviour of the fluctuation level which is associated with relaxation oscillations in the kinetic energy of the azimuthally mean flows. This leads to a state of large-scale intermittency manifested by exponential tails in the single-point probability distribution function of the dependent variables...
Interger multiplication with overflow detection or saturation
Energy Technology Data Exchange (ETDEWEB)
Schulte, M.J.; Balzola, P.I.; Akkas, A.; Brocato, R.W.
2000-01-11
High-speed multiplication is frequently used in general-purpose and application-specific computer systems. These systems often support integer multiplication, where two n-bit integers are multiplied to produce a 2n-bit product. To prevent growth in word length, processors typically return the n least significant bits of the product and a flag that indicates whether or not overflow has occurred. Alternatively, some processors saturate results that overflow to the most positive or most negative representable number. This paper presents efficient methods for performing unsigned or two's complement integer multiplication with overflow detection or saturation. These methods have significantly less area and delay than conventional methods for integer multiplication with overflow detection and saturation.
Zanden, van der A.J.J.; Taher, A.
2014-01-01
A new procedure is presented with which the diffusion coefficient of water in partially saturated porous materials can be measured. The first step in the procedure is the creation of a non-equilibrium situation inside a sample by placing it into a centrifuge. In the second step, the mass of the
Directory of Open Access Journals (Sweden)
Matuszewska Dominika
2014-01-01
Full Text Available An existence of low stability region in the dense vapours and its influence on some peculiarities in behaviour of selected dry and isentropic ORC fluids is discussed. The retrograde phenomena in the flow of BZT fluids [1.] can be simply related to the mechanical and thermodynamic stability parameters. These new refrigerant and their properties have been analysed based on the software tools REFPROP v.9.1 [2.]. Test examples have confirmed an importance of low thermodynamic stability area in the vicinity of saturation boundary line and neighbourhood of critical point of the fluid. The analytical results have been obtained for selected pure fluids applicable in the ORC and heat pump technology such C4H10, C6H5CH3, C12H26, R123, R134a, R227ea, R245fa, low GWP hydrofluoroolefins (R1234xxXand a group of linear and cyclic siloxanes.
Lagrangians for plasmas in drift-fluid approximation
International Nuclear Information System (INIS)
Pfirsch, D.; Correa-Restrepo, D.
1996-10-01
For drift waves and related instabilities conservation laws can play a crucial role. In an ideal theory these conservation laws are guaranteed when a Lagrangian can be found from which the equations for the various quantities result by Hamilton's principle. Such a Lagrangian for plasmas in drift-fluid approximation was obtained by a heuristic method in a recent paper by Pfirsch and Correa-Restrepo. In the present paper the same Lagrangian is derived from the exact multi-fluid Lagrangian via an iterative approximation procedure which resembles the standard method usually applied to the equations of motion. That method, however, does not guarantee all the conservation laws to hold. (orig.)
Current aspects of perioperative fluid handling in vascular surgery
Jacob, Matthias; Chappell, Daniel; Hollmann, Markus W.
2009-01-01
Purpose of review Perioperative fluid management influences patient outcome. Vascular surgery unites various surgical procedures, mainly with a high impact on patients who often have relevant preexisting illnesses. There are only scarce data on this specialty, forcing the clinician to extrapolate
Retinal oxygen saturation before and after glaucoma surgery.
Nitta, Eri; Hirooka, Kazuyuki; Shimazaki, Takeru; Sato, Shino; Ukegawa, Kaori; Nakano, Yuki; Tsujikawa, Akitaka
2017-08-01
This study compared retinal vessel oxygen saturation before and after glaucoma surgery. Retinal oxygen saturation in glaucoma patients was measured using a non-invasive spectrophotometric retinal oximeter. Adequate image quality was found in 49 of the 108 consecutive glaucoma patients recruited, with 30 undergoing trabeculectomy, 11 EX-PRESS and eight trabeculotomy. Retinal oxygen saturation measurements in the retinal arterioles and venules were performed at 1 day prior to and at approximately 10 days after surgery. Statistical analysis was performed using a Student's t-test. After glaucoma surgery, intraocular pressure (IOP) decreased from 19.8 ± 7.7 mmHg to 9.0 ± 5.7 mmHg (p glaucoma surgery had an effect on the retinal venous oxygen saturation. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Delayed system control in presence of actuator saturation
Directory of Open Access Journals (Sweden)
A. Mahjoub
2014-09-01
Full Text Available The paper is introducing a new design method for systems’ controllers with input delay and actuator saturations and focuses on how to force the system output to track a reference input not necessarily saturation-compatible. We propose a new norm based on the way we quantify tracking performance as a function of saturation errors found using the same norm. The newly defined norm is related to signal average power making possible to account for most common reference signals e.g. step, periodic. It is formally shown that, whatever the reference shape and amplitude, the achievable tracking quality is determined by a well defined reference tracking mismatch error. This latter depends on the reference rate and its compatibility with the actuator saturation constraint. In fact, asymptotic output-reference tracking is achieved in the presence of constraint-compatible step-like references.
A numerical method for a transient two-fluid model
International Nuclear Information System (INIS)
Le Coq, G.; Libmann, M.
1978-01-01
The transient boiling two-phase flow is studied. In nuclear reactors, the driving conditions for the transient boiling are a pump power decay or/and an increase in heating power. The physical model adopted for the two-phase flow is the two fluid model with the assumption that the vapor remains at saturation. The numerical method for solving the thermohydraulics problems is a shooting method, this method is highly implicit. A particular problem exists at the boiling and condensation front. A computer code using this numerical method allow the calculation of a transient boiling initiated by a steady state for a PWR or for a LMFBR
Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion
International Nuclear Information System (INIS)
Kyriacou, P A; Shafqat, K; Pal, S K
2007-01-01
Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO 2 ) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Pulse oximeters estimate arterial oxygen saturation by shining light at two different wavelengths, red and infrared, through vascular tissue. In this method the ac pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed to be attributable solely to the arterial blood component. The amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc photoplethysmographic components, arterial blood oxygen saturation (SpO 2 ) is estimated. Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are detected as photoplethysmographic (PPG) signals. The aim of this study was to investigate the effect of pressure cuff-induced hypoperfusion on photoplethysmographic signals and arterial blood oxygen saturation using a custom made finger blood oxygen saturation PPG/SpO 2 sensor and a commercial finger pulse oximeter. Blood oxygen saturation values from the custom oxygen saturation sensor and a commercial finger oxygen saturation sensor were recorded from 14 healthy volunteers at various induced brachial pressures. Both pulse
Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion
Kyriacou, P. A.; Shafqat, K.; Pal, S. K.
2007-10-01
Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO2) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Pulse oximeters estimate arterial oxygen saturation by shining light at two different wavelengths, red and infrared, through vascular tissue. In this method the ac pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed to be attributable solely to the arterial blood component. The amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc photoplethysmographic components, arterial blood oxygen saturation (SpO2) is estimated. Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are detected as photoplethysmographic (PPG) signals. The aim of this study was to investigate the effect of pressure cuff-induced hypoperfusion on photoplethysmographic signals and arterial blood oxygen saturation using a custom made finger blood oxygen saturation PPG/SpO2 sensor and a commercial finger pulse oximeter. Blood oxygen saturation values from the custom oxygen saturation sensor and a commercial finger oxygen saturation sensor were recorded from 14 healthy volunteers at various induced brachial pressures. Both pulse
Hachay, Olga; Khachay, Andrey; Khachay, Oleg
2016-04-01
The processes of oil extraction from deposit are linked with the movement of multi-phase multi-component media, which are characterized by non-equilibrium and non-linear rheological features. The real behavior of layered systems is defined by the complexity of the rheology of moving fluids and the morphology structure of the porous medium, and also by the great variety of interactions between the fluid and the porous medium [Hasanov and Bulgakova, 2003]. It is necessary to take into account these features in order to informatively describe the filtration processes due to the non-linearity, non-equilibrium and heterogeneity that are features of real systems. In this way, new synergetic events can be revealed (namely, a loss of stability when oscillations occur, and the formation of ordered structures). This allows us to suggest new methods for the control and management of complicated natural systems that are constructed on account of these phenomena. Thus the layered system, from which it is necessary to extract the oil, is a complicated dynamical hierarchical system. A comparison is provided of non-equilibrium effects of the influence of independent hydrodynamic and electromagnetic induction on an oil layer and the medium which it surrounds. It is known that by drainage and steeping the hysteresis effect on curves of the relative phase permeability in dependence on the porous medium's water saturation in some cycles of influence (drainage-steep-drainage) is observed. Using the earlier developed 3D method of induction electromagnetic frequency geometric monitoring, we showed the possibility of defining the physical and structural features of a hierarchical oil layer structure and estimating the water saturation from crack inclusions. This effect allows managing the process of drainage and steeping the oil out of the layer by water displacement. An algorithm was constructed for 2D modeling of sound diffraction on a porous fluid-saturated intrusion of a hierarchical
Nonlinear acoustics of water-saturated marine sediments
DEFF Research Database (Denmark)
Jensen, Leif Bjørnø
1976-01-01
Interest in the acoustic qualities of water-saturated marine sediments has increased considerably during recent years. The use of sources of high-intensity sound in oil propsecting, in geophysical and geological studies of bottom and subbottom materials and profiles and recently in marine...... archaeology has emphasized the need of information about the nonlinear acoustic qualities of water-saturated marine sediments. While the acoustic experiments and theoretical investigations hitherto performed have concentrated on a determination of the linear acoustic qualities of water-saturated marine...... sediments, their parameters of nonlinear acoustics are still unexplored. The strong absorption, increasing about linearly with frequency, found in most marine sediments and the occurrence of velocity dispersion by some marine sediments restrict the number of nonlinear acoustic test methods traditionally...
Fluid-flow monitoring using electromagnetic probing
International Nuclear Information System (INIS)
Lytle, R.J.; Lager, D.L.; Laine, E.F.; Salisbury, J.D.; Okada, J.T.
1979-01-01
High-frequency electromagnetic probing is used to monitor the rate and direction of flow of fluids injected into the ground. This method shows the potential for providing more detailed information than procedures presently used. The experimental technique and the test-of-concept experimental results are discussed. This technique has applications in oil-reservoir engineering and in hydrology studies concerning storage of chemical and nuclear wastes. 11 figures
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Kazumasa, E-mail: naka@sss.fukushima-u.ac.jp [Materials Science Area, Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan); Okuyama, Kyoko [Materials Science Area, Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan); Takase, Tsugiko [Institute of Environmental Radioactivity (IER), Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan)
2017-03-01
Magnetic glass-like carbons that were heat-treated at different temperatures or were filled with different magnetic nanoparticle contents were prepared from furan resin alloyed with magnetic fluid (MF) or Fe{sub 3}O{sub 4} powder in their liquid-phase states during mixing. Compared to the Fe{sub 3}O{sub 4} powder-alloyed carbon, the MF-alloyed carbon has highly dispersed the nanoparticles, and has the excellent saturation magnetization and coercivity. It is implied that saturation magnetizations are related to changes in the types of phases for the nanoparticles and the relative intensities of X-ray diffraction peaks for iron and iron-containing compounds in the carbons. Additionally, the coercivities are possibly affected by the size and crystallinity of the nanoparticles, the relative amounts of iron, and the existence of amorphous compounds on the carbon surfaces. - Highlights: • Magnetic glass-like carbons were prepared from furan resin alloyed with magnetic fluid. • The nanoparticles of MF-alloyed GLCs were highly dispersed. • MF-alloyed GLCs had excellent magnetic properties compared to powder-alloyed ones. • The magnetic properties changed with treatment temperature and nanoparticle content. • The changes in magnetic properties were investigated with XRD and FE-SEM.
Thermal status of saturation divers during operational dives in the North Sea
Energy Technology Data Exchange (ETDEWEB)
Mekjavic, I.B.; Golden, F.St.C.; Eglin, C.M.; Tipton, M.J.
1999-08-01
This report summarises the findings of a study investigating the body temperature responses of divers at different depths, seasons, and locations in order to evaluated the effectiveness of current equipment and diving procedures and especially that of the thermal protection to maintain the safety of the diver. Details of the thermal monitoring system and the field study examining diving suit microclimate temperature, skin temperature, core temperature, thermal comfort, and fluid balance are outlined, and recommendations are given.
Saturation and postsaturation phenomena of Rayleigh-Taylor instability with adjacent modes
International Nuclear Information System (INIS)
Ikegawa, Tadashi; Nishihara, Katsunobu
2003-01-01
A weakly nonlinear theory has been developed for the classical Rayleigh-Taylor instability with a finite bandwidth taken into account self-consistently. The theory includes up to third order nonlinearity, which results in the saturation of linear growth and determines subsequent weakly nonlinear growth. Analytical results are shown to agree fairly well with two-dimensional hydrodynamic simulations. There are generally many local peaks of a perturbation with a finite bandwidth due to the interference of modes. Since a local amplitude is determined from phases among the modes as well as the bandwidth, we have investigated an onset of the linear growth saturation and the subsequent weakly nonlinear growth for different bandwidths and phases. It is shown that the saturation of the linear growth occurs locally, i.e., each of the local maximum amplitudes (LMAs) grows exponentially until it reaches almost the same saturation amplitude. In the random phase case, the root mean square amplitude thus saturates with almost the same amplitude as the LMA, after most of the LMAs have saturated. The saturation amplitude of the LMA is found to be independent of the bandwidth and depends on the Atwood number. We derive a formula of the saturation amplitude of modes based on the results obtained, and discuss its relation with Haan's formula [Phys. Rev. A 39, 5812 (1989)]. The LMAs grow linearly in time after the saturation and their speeds are approximated by the product of the linear growth rate and the saturation amplitude. We investigate the Atwood number dependence of both the saturation amplitude and the weakly nonlinear growth
Comparison of empirical models and laboratory saturated hydraulic ...
African Journals Online (AJOL)
Numerous methods for estimating soil saturated hydraulic conductivity exist, which range from direct measurement in the laboratory to models that use only basic soil properties. A study was conducted to compare laboratory saturated hydraulic conductivity (Ksat) measurement and that estimated from empirical models.
Shearing of saturated clays in rock joints at high confining pressures
International Nuclear Information System (INIS)
Wang, C.; Mao, N.
1979-01-01
Saturated clays are sheared between rock joints at various pore water pressures and at confining pressures up to 3 kb (300 Mpa). Sliding on these joints is stable. For a given clay, the shear stress required to initiate sliding increases linearly with the effective normal stress across the sliding surface, with a slope of 0.08 +- 0.01 for joints filled with saturated montmorillonite, 0.12 +- 0.01 with saturated chlorite, 0.15 +- 0.01 with saturated kaolinite, and 0.22 +- 0.02 with saturated silty illite. Thus at high confining pressures the shear stress required to initiate sliding on joints filled with saturated clays are very much smaller than that required to initiate sliding on clean rock joints or on joints filled with dry gouge materials. In the crust, saturation of gouge materials along active faults would greatly lower the frictional resistance to faulting and would stabilize fault movement. Different fault behaviors such as stable creep along some faults and intermittent but sudden slip along others may reflect in part different degrees of saturation of fault zones at depth
Preparation and Characterization of Water-Based Nano-fluids for Nuclear Applications
International Nuclear Information System (INIS)
Williams, W.C.; Forrest, E.; Hu, L.W.; Buongiorno, J.
2006-01-01
As part of an effort to evaluate water-based nano-fluids for nuclear applications, preparation and characterization has been performed for nano-fluids being considered for MIT's nano-fluid heat transfer experiments. Three methods of generating these nano-fluids are available: creating them from chemical precipitation, purchasing the nano-particles in powder form and mixing them with the base fluid, and direct purchase of prepared nano-fluids. Characterization of nano-fluids includes colloidal stability, size distribution, concentration, and elemental composition. Quality control of the nano-fluids to be used for heat transfer testing is crucial; an exact knowledge of the fluid constituents is essential to uncovering mechanisms responsible for heat transport enhancement. Testing indicates that nano-fluids created by mixing a liquid with nano-particles in powder form are often not stable, although some degree of stabilization is obtainable with pH control and/or surfactant addition. Some commercially available prepared nano-fluids have been found to contain unacceptable levels of impurities and/or include a different weight percent of nano-particles compared to vendor specifications. Tools utilized to characterize and qualify nano-fluids for this study include neutron activation analysis (NAA), inductively-coupled plasma spectroscopy (ICP), transmission electron microscopy (TEM) imaging, thermogravimetric analysis (TGA) and dynamic light scattering (DLS). Preparation procedures and characterization results for selected nano-fluids will be discussed in detail. (authors)
A demonstration experiment for studying the properties of saturated vapor
Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V.
2017-11-01
The paper proposes an important demonstration experiment that can be used at secondary schools in physics. The described experiment helps students learn the main concepts of the topic ‘saturated vapor’, namely, evaporation, condensation, dynamic equilibrium, saturation vapor, partial pressure, and the dependence of saturated vapor pressure on temperature.
Chirico, G; Cabano, R; Villa, G; Bigogno, A; Ardesi, M; Dioni, E
2017-10-01
Alleviating pain in neonates should be the goal of all caregivers. We evaluated whether recorded maternal voices were safe and effective in limiting pain in preterm infants undergoing heel lance procedures in the neonatal intensive care unit of an Italian children's hospital. This prospective, controlled study took place from December 2013 to December 2015. We enrolled 40 preterm infants, born at a 26-34 weeks of gestation, at a corrected gestational age 29-36 weeks and randomised them to listen or not listen to a recording of their mother's voice during a painful, routine heel lance for blood collection. Changes in the infants' Premature Infant Pain Profile, heart rate, oxygen saturation and blood pressure during the procedure were compared by analysis of variance. Possible side effects, of apnoea, bradycardia, seizures and vomiting, were also recorded. Both groups showed a marked increase in PIPP scores and decrease in oxygen saturation during the procedure, but infants in the treatment group had significantly lower PIPP scores (p = 0.00002) and lower decreases in oxygen saturation (p = 0.0283). No significant side effects were observed. Using recorded maternal voices to limit pain in preterm infants undergoing heel lance procedures appeared safe and effective. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
A new theoretical interpretation of Archie's saturation exponent
Directory of Open Access Journals (Sweden)
P. W. J. Glover
2017-07-01
Full Text Available This paper describes the extension of the concepts of connectedness and conservation of connectedness that underlie the generalized Archie's law for n phases to the interpretation of the saturation exponent. It is shown that the saturation exponent as defined originally by Archie arises naturally from the generalized Archie's law. In the generalized Archie's law the saturation exponent of any given phase can be thought of as formally the same as the phase (i.e. cementation exponent, but with respect to a reference subset of phases in a larger n-phase medium. Furthermore, the connectedness of each of the phases occupying a reference subset of an n-phase medium can be related to the connectedness of the subset itself by Gi = GrefSini. This leads naturally to the idea of the term Sini for each phase i being a fractional connectedness, where the fractional connectednesses of any given reference subset sum to unity in the same way that the connectednesses sum to unity for the whole medium. One of the implications of this theory is that the saturation exponent of any phase can be now be interpreted as the rate of change of the fractional connectedness with saturation and connectivity within the reference subset.
Arciniega-Ceballos, A.; Spina, L.; Scheu, B.; Dingwell, D. B.
2015-12-01
We have investigated the dynamics of Newtonian fluids with viscosities (10-1000 Pa s; corresponding to mafic to intermediate silicate melts) during slow decompression, in a Plexiglas shock tube. As an analogue fluid we used silicon oil saturated with Argon gas for 72 hours. Slow decompression, dropping from 10 MPa to ambient pressure, acts as the excitation mechanism, initiating several processes with their own distinct timescales. The evolution of this multi-timescale phenomenon generates complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit. Correlation analysis of these time series with the associated high-speed imaging enables characterization of distinct phases of the dynamics of these viscous fluids and the extraction of the time and the frequency characteristics of the individual processes. We have identified fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution in space. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the system. Our observations point to the great potential of this experimental approach in the understanding of volcanic processes and volcanic seismicity.
International Nuclear Information System (INIS)
Pana, P.
1975-12-01
A mathematical model is derived to describe the fluid-dynamics for the region of subcooled water. The qualitative changes, when crossing the saturation line, from the wet-steam region to the subcooled region, are discussed with respect to thermodynamical considerations, and the change of state in the subcooled region is treated detailled, showing the limitation of validity for the theoretical model. (orig./TK) [de
High speed drying of saturated steam
International Nuclear Information System (INIS)
Marty, C.; Peyrelongue, J.P.
1993-01-01
This paper describes the development of the drying process for the saturated steam used in the PWR nuclear plant turbines in order to prevent negative effects of water on turbine efficiency, maintenance costs and equipment lifetime. The high speed drying concept is based on rotating the incoming saturated steam in order to separate water which is more denser than the steam; the water film is then extracted through an annular slot. A multicellular modular equipment has been tested. Applications on high and low pressure extraction of various PWR plants are described (Bugey, Loviisa)
Pool boiling performance of NovecTM 649 engineered fluid
International Nuclear Information System (INIS)
Forrest, Eric; Buongiorno, Jacopo; McKrell, Thomas; Hu, Lin-Wen
2009-01-01
A new fluorinated ketone, C 2 F 5 C(O)CF(CF 3 ) 2 , is currently being considered as an environmentally friendly alternative for power electronics cooling applications due to its high dielectric strength and low global warming potential (GWP). Sold commercially by the 3M Company as Novec TM 649 Engineered Fluid, C 2 F 5 C(O)CF(CF 3 ) 2 exhibits very low acute toxicity while maintaining long-term stability. To assess the general two-phase heat transfer performance of Novec TM 649, pool boiling tests were conducted by resistively heating a 0.01 in. diameter nickel wire at the fluid's atmospheric saturation temperature of 49 deg C. The nucleate boiling heat transfer coefficient and critical heat flux (CHF) obtained for the fluorinated ketone compare favorably with results obtained for FC-72, a fluorocarbon widely used for the direct cooling of electronic devices. Initial results indicate that Novec TM 649 may prove to be a viable alternative to FC-72 and other halo alkanes for the cooling of high power density electronic devices. (author)
Molybdenite saturation in silicic magmas: Occurrence and petrological implications
Audetat, A.; Dolejs, D.; Lowenstern, J. B.
2011-01-01
We identified molybdenite (MoS2) as an accessory magmatic phase in 13 out of 27 felsic magma systems examined worldwide. The molybdenite occurs as small (molybdenite-saturated samples reveal 1-13 ppm Mo in the melt and geochemical signatures that imply a strong link to continental rift basalt-rhyolite associations. In contrast, arc-associated rhyolites are rarely molybdenite-saturated, despite similar Mo concentrations. This systematic dependence on tectonic setting seems to reflect the higher oxidation state of arc magmas compared with within-plate magmas. A thermodynamic model devised to investigate the effects of T, f O2 and f S2 on molybdenite solubility reliably predicts measured Mo concentrations in molybdenite-saturated samples if the magmas are assumed to have been saturated also in pyrrhotite. Whereas pyrrhotite microphenocrysts have been observed in some of these samples, they have not been observed from other molybdenite-bearing magmas. Based on the strong influence of f S2 on molybdenite solubility we calculate that also these latter magmas must have been at (or very close to) pyrrhotite saturation. In this case the Mo concentration of molybdenite-saturated melts can be used to constrain both magmatic f O2 and f S2 if temperature is known independently (e.g. by zircon saturation thermometry). Our model thus permits evaluation of magmatic f S2, which is an important variable but is difficult to estimate otherwise, particularly in slowly cooled rocks. ?? The Author 2011. Published by Oxford University Press. All rights reserved.
Oil base fluids without tensoactive additives; Fluidos a base de oleo sem tensoativos
Energy Technology Data Exchange (ETDEWEB)
Machado, Jose Carlos V; Aragao, Atila Fernando L [PETROBRAS, XX (Brazil). Centro de Desenvolvimento de Recursos Humanos Norte e Nordeste
1990-12-31
The goal of this paper is to define an ideal oil base fluid composition without tensoactive additives, since these may cause damage to producing formation during drilling or well completion. We investigated the rheological, filtrating and phase separation properties of the systems composed of diesel oil, organophilic clay and a polar agent (water or ethyl alcohol). In order to to that, we used the 286 Baroid digital rotating viscometer, filtrating cells standardized according to the American Petroleum Institute (AP) for temperatures of 25 deg C to 149 deg C and pressures of 6,89 x 10{sup 5} Pa (100 psig) to 3,44 x 10{sup 6} (500 psig), and the setting method, according to the determinations of respectively rheological, filtrating and phase separation parameters. Results proved that the composition: diesel oil-94% v/v, Na Cl saturated solution - 6% v/v and bentone - 17,1 to 22,8 kg/m{sup 3} (6 to 8 lb/bbl), is ideal to meet the properties required for drilling and well completion operations for low densities, that is 0,84% to 1,02 (6,9 to 8,5 ib/gal). In order to obtain densities in the interval of 1,02 to 1,14 (8,5 to 9,5 ib/gal) the system should be condensed with calcite (Ca CO{sub 3}) and the base fluid composition should be : diesel oil-94 to 98% v/v, Na Cl saturated solution - 2 to 6% v/v and bentone 17,1 to 22,8 kg/m{sup 3} (6 to 8 ib/bbl). The average cost per barrel for the systems studied here is of the same order of conventional oil base fluids (with tensoactive additives). (author) 13 refs., 7 figs., 3 tabs.
Oil base fluids without tensoactive additives; Fluidos a base de oleo sem tensoativos
Energy Technology Data Exchange (ETDEWEB)
Machado, Jose Carlos V.; Aragao, Atila Fernando L. [PETROBRAS, XX (Brazil). Centro de Desenvolvimento de Recursos Humanos Norte e Nordeste
1989-12-31
The goal of this paper is to define an ideal oil base fluid composition without tensoactive additives, since these may cause damage to producing formation during drilling or well completion. We investigated the rheological, filtrating and phase separation properties of the systems composed of diesel oil, organophilic clay and a polar agent (water or ethyl alcohol). In order to to that, we used the 286 Baroid digital rotating viscometer, filtrating cells standardized according to the American Petroleum Institute (AP) for temperatures of 25 deg C to 149 deg C and pressures of 6,89 x 10{sup 5} Pa (100 psig) to 3,44 x 10{sup 6} (500 psig), and the setting method, according to the determinations of respectively rheological, filtrating and phase separation parameters. Results proved that the composition: diesel oil-94% v/v, Na Cl saturated solution - 6% v/v and bentone - 17,1 to 22,8 kg/m{sup 3} (6 to 8 lb/bbl), is ideal to meet the properties required for drilling and well completion operations for low densities, that is 0,84% to 1,02 (6,9 to 8,5 ib/gal). In order to obtain densities in the interval of 1,02 to 1,14 (8,5 to 9,5 ib/gal) the system should be condensed with calcite (Ca CO{sub 3}) and the base fluid composition should be : diesel oil-94 to 98% v/v, Na Cl saturated solution - 2 to 6% v/v and bentone 17,1 to 22,8 kg/m{sup 3} (6 to 8 ib/bbl). The average cost per barrel for the systems studied here is of the same order of conventional oil base fluids (with tensoactive additives). (author) 13 refs., 7 figs., 3 tabs.
On the viscous dissipation modeling of thermal fluid flow in a porous medium
Salama, Amgad
2011-02-24
The problem of viscous dissipation and thermal dispersion in saturated porous medium is numerically investigated for the case of non-Darcy flow regime. The fluid is induced to flow upward by natural convection as a result of a semi-infinite vertical wall that is immersed in the porous medium and is kept at constant higher temperature. The boundary layer approximations were used to simplify the set of the governing, nonlinear partial differential equations, which were then non-dimensionalized and solved using the finite elements method. The results for the details of the governing parameters are presented and investigated. It is found that the irreversible process of transforming the kinetic energy of the moving fluid to heat energy via the viscosity of the moving fluid (i.e.; viscous dissipation) resulted in insignificant generation of heat for the range of parameters considered in this study. On the other hand, thermal dispersion has shown to disperse heat energy normal to the wall more effectively compared with the normal diffusion mechanism. © 2011 Springer-Verlag.
The mechanism of reequilibration of solids in the presence of a fluid phase
International Nuclear Information System (INIS)
Putnis, Andrew; Putnis, Christine V.
2007-01-01
The preservation of morphology (pseudomorphism) and crystal structure during the transformation of one solid phase to another is regularly used as a criterion for a solid-state mechanism, even when there is a fluid phase present. However, a coupled dissolution-reprecipitation mechanism also preserves the morphology and transfers crystallographic information from parent to product by epitaxial nucleation. The generation of porosity in the product phase is a necessary condition for such a mechanism as it allows fluid to maintain contact with a reaction interface which moves through the parent phase from the original surface. We propose that interface-coupled dissolution-reprecipitation is a general mechanism for reequilibration of solids in the presence of a fluid phase. - Graphical abstract: A single crystal of KBr is transformed to a porous single crystal of KCl by immersion in saturated KCl solution. The image shows partial transformation of a crystal of KBr (core) to KCl (porous, milky rim) by an interface coupled dissolution-reprecipitation mechanism. The external dimensions and crystallographic orientation of the original crystal are preserved, while a reaction interface moves through the crystal
Nuclear determination of saturation profiles in core plugs
International Nuclear Information System (INIS)
Sletsgaard, J.; Oelgaard, P.L.
1997-01-01
A method to determine liquid saturations in core plugs during flooding is of importance when the relative permeability and capillary pressure function are to be determined. This part of the EFP-95 project uses transmission of γ-radiation to determine these saturations. In γ-transmission measurements, the electron density of the given substance is measured. This is an advantage as compared to methods that use electric conductivity, since neither oil nor gas conducts electricity. At the moment a single 137 Cs-source is used, but a theoretical investigation of whether it is possible to determine three saturations, using two radioactive sources with different γ-energies, has been performed. Measurements were made on three core plugs. To make sure that the measurements could be reproduced, all the plugs had a point of reference, i.e. a mark so that it was possible to place the plug same way every time. Two computer programs for calculation of saturation and porosity and the experimental setup are listed. (EG)
Solid phase double-antibody radioimmunoassay procedure
International Nuclear Information System (INIS)
Niswender, G.D.
1977-01-01
The present invention is concerned with the radioimmunoassay (RIA) procedure for assaying body fluid content of an antigenic substance which may either be an antigen itself or a hapten capable of being converted, such as by means of reaction with a protein, to an antigenic material. The present invention is concerned with a novel and improved modification of a double-antibody RIA technique in which there is a first antibody that is specific to the antigenic substance suspected to be present in a body fluid from which the assay is intended. The second antibody, however, is not specific to the antigenic substance or analyte, but is an antibody against the first antibody
Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion
Energy Technology Data Exchange (ETDEWEB)
Kyriacou, P A [School of Engineering and Mathematical Sciences, City University, London EC1V 0HB (United Kingdom); Shafqat, K [School of Engineering and Mathematical Sciences, City University, London EC1V 0HB (United Kingdom); Pal, S K [St Andrew' s Centre for Plastic Surgery and Burns, Broomfield Hospital, Chelmsford, CM1 7ET (United Kingdom)
2007-10-15
Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO{sub 2}) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Pulse oximeters estimate arterial oxygen saturation by shining light at two different wavelengths, red and infrared, through vascular tissue. In this method the ac pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed to be attributable solely to the arterial blood component. The amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc photoplethysmographic components, arterial blood oxygen saturation (SpO{sub 2}) is estimated. Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are detected as photoplethysmographic (PPG) signals. The aim of this study was to investigate the effect of pressure cuff-induced hypoperfusion on photoplethysmographic signals and arterial blood oxygen saturation using a custom made finger blood oxygen saturation PPG/SpO{sub 2} sensor and a commercial finger pulse oximeter. Blood oxygen saturation values from the custom oxygen saturation sensor and a commercial finger oxygen saturation sensor were recorded from 14 healthy volunteers at various induced brachial pressures
International Nuclear Information System (INIS)
Coronado Parra, Carlos Alberto; Escobar Remolina, Juan Carlos M
2005-01-01
In recent years, the use of nitrogen has increased as gas injection to recover oil fluids near the critical point. The behavior of hydrocarbon mixture phases in the critical region shows very interesting complex phenomena when facing a recovery project with nitrogen. Therefore, it is important to have experimental information of the PVTx thermodynamic variable, often scarce, for this type of critical phenomena. This paper reports the experimental measures of the volumetric behavior and phases of synthetic fluid in a nitrogen injection process. The experiment was performed at laboratory scale, and it obtained variations on the saturation pressure, gas oil ratio, density and composition of the hydrocarbon phase when nitrogen was injected at molars of 10,20,30 and 40% on different volumetric portions of the mother sample. In addition, the data obtained experimentally was used to demonstrate the capacity of tune to compositional models. The data provided represents a valuable contribution to the understanding of phenomena associated with retrograde and near critical regions, as well as their use in tuning and developing more elaborate models such as Cubic Equations of State (EOS). It is worth highlighting the importance of this data in the potential processes of nitrogen, CO 2 , and lean gas injection, which require knowledge of the gas-oil ratio, saturation pressures, density and composition of the fluid in current production. The identification of the phenomena shown, represent a potential application to the modeling of displacements and maintaining the pressure in the improved recovery when scaling up the laboratory data to the field / reservoir conditions
Coupled problems in transient fluid and structural dynamics in nuclear engineering
International Nuclear Information System (INIS)
Krieg, R.
1978-01-01
Some important problems in coupled fluid-structural dynamics which occur in safety investigations of liquid metal fast breeder reactors (LMFBR). light water reactors and nuclear reprocessing plants are discussed and a classification of solution methods is introduced. A distinction is made between the step by step solution procedure, where available computer codes in fluid and structural dynamics are coupled, and advanced simultaneous solution methods, where the coupling is carried out at the level of the fundamental equations. Results presented include the transient deformation of a two-row pin bundle surrounded by an infinite fluid field, vapour explosions in a fluid container and containment distortions due to bubble collapse in the pressure suppression system of a boiling water reactor. A recently developed simultaneous solution method is presented in detail. Here the fluid dynamics (inviscid, incompressible fluid) is described by a singularity method which reduces the three-dimensional fluid dynamics problems to a two-dimensional formulation. In this way the three-dynamics fluid dynamics as well as the structural (shell) dynamics can be described essentially by common unknowns at the fluid-structural interface. The resulting equations for the coupled fluid-structural dynamics are analogous to to the equations of motion of the structural dynamics alone. (author)
Semiconductor saturable absorbers for ultrafast THz signals
DEFF Research Database (Denmark)
Hoffmann, Matthias C.; Turchinovich, Dmitry
We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths.......We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths....
A Quality Function Deployment-Based Model for Cutting Fluid Selection
Directory of Open Access Journals (Sweden)
Kanika Prasad
2016-01-01
Full Text Available Cutting fluid is applied for numerous reasons while machining a workpiece, like increasing tool life, minimizing workpiece thermal deformation, enhancing surface finish, flushing away chips from cutting surface, and so on. Hence, choosing a proper cutting fluid for a specific machining application becomes important for enhanced efficiency and effectiveness of a manufacturing process. Cutting fluid selection is a complex procedure as the decision depends on many complicated interactions, including work material’s machinability, rigorousness of operation, cutting tool material, metallurgical, chemical, and human compatibility, reliability and stability of fluid, and cost. In this paper, a decision making model is developed based on quality function deployment technique with a view to respond to the complex character of cutting fluid selection problem and facilitate judicious selection of cutting fluid from a comprehensive list of available alternatives. In the first example, HD-CUTSOL is recognized as the most suitable cutting fluid for drilling holes in titanium alloy with tungsten carbide tool and in the second example, for performing honing operation on stainless steel alloy with cubic boron nitride tool, CF5 emerges out as the best honing fluid. Implementation of this model would result in cost reduction through decreased manpower requirement, enhanced workforce efficiency, and efficient information exploitation.
Thermosolutal convection in saturated porous enclosure with concentrated energy and solute sources
Energy Technology Data Exchange (ETDEWEB)
Liu, Di; Zhao, Fu-Yun; Tang, Guang-Fa [College of Civil Engineering, Hunan University, Changsha (China)
2008-01-15
Double diffusive natural convection within a vertical porous enclosure with localized heating and salting from one side is numerically studied by the finite element based finite volume method. In the formulation of the problem, use is made of the Darcy model, which allows the slip boundary condition on a solid wall to be satisfied. Comparisons with benchmark solutions for natural convection in fluid saturated porous enclosures are first presented to validate the code. Following that, an extensive series of numerical simulations is conducted in the range of -55 {<=} N {<=} + 55 and 0.125 {<=} L {<=} 0.875, where N and L are the buoyancy ratio and the element location, respectively. Streamlines, heatlines, masslines, isotherms and iso-concentrations in the system are produced to illustrate the flow structure transition from solutal dominated opposing to thermal dominated and solutal dominated aiding flows, respectively. The computed average Nusselt and Sherwood numbers provide guidance for locating the heating and salting element. (author)
Thermosolutal convection in saturated porous enclosure with concentrated energy and solute sources
Energy Technology Data Exchange (ETDEWEB)
Liu Di [College of Civil Engineering, Hunan University, Changsha (China)], E-mail: liudi66@163.com; Zhao Fuyun [College of Civil Engineering, Hunan University, Changsha (China)], E-mail: zfycfdnet@163.com; Tang Guangfa [College of Civil Engineering, Hunan University, Changsha (China)], E-mail: gftangcfd@163.com
2008-01-15
Double diffusive natural convection within a vertical porous enclosure with localized heating and salting from one side is numerically studied by the finite element based finite volume method. In the formulation of the problem, use is made of the Darcy model, which allows the slip boundary condition on a solid wall to be satisfied. Comparisons with benchmark solutions for natural convection in fluid saturated porous enclosures are first presented to validate the code. Following that, an extensive series of numerical simulations is conducted in the range of -55 {<=} N {<=} + 55 and 0.125 {<=} L {<=} 0.875, where N and L are the buoyancy ratio and the element location, respectively. Streamlines, heatlines, masslines, isotherms and iso-concentrations in the system are produced to illustrate the flow structure transition from solutal dominated opposing to thermal dominated and solutal dominated aiding flows, respectively. The computed average Nusselt and Sherwood numbers provide guidance for locating the heating and salting element.
Mizuno, Ju; Matsuki, Michiko; Gouda, Yoshinori; Nishiyama, Tomoki; Hanaoka, Kazuo
2003-09-01
Cardiorespiratory adverse effects are often observed in patients undergoing upper gastrointestinal endoscopy with sedation. In this study, we examined hemodynamics, oxygen saturation and memory during upper gastrointestinal endoscopy under sedation with intravenous midazolam. Eight healthy outpatients without any obvious complications received intravenous midazolam 5 mg for sedation for upper gastrointestinal endoscopy. Blood pressure, heart rate and percutaneous arterial oxygen saturation (SpO2) were measured before, during and after endoscopy. After the arousal by intravenous flumazenil, we inquired the patients about the level of memory during the endoscopy. Blood pressure decreased significantly two minutes after midazolam administration, but increased significantly after the insertion of an endoscope which was not different from the control value. Heart rate increased significantly one and three minutes after the insertion of the endoscope. SpO2 decreased significantly after midazolam administration and stayed at around 95%. No patients remembered the procedure. Sedation with intravenous midazolam during upper gastrointestinal endoscopy is useful to control the cardiovascular responses, and to obtain amnesia. However, a decrease in SpO2 should be watched carefully.
Gogacz, Marek; Gałczyński, Krzysztof; Romanek-Piva, Katarzyna; Winkler, Izabela; Rechberger, Tomasz; Adamiak-Godlewska, Aneta
2015-03-01
Endometriosis is a sex hormone-dependent and successively progressing gynecological disease, characterized by the presence of endometrial tissue outside the uterus. The etiology of endometriosis is known to be multifactorial, and its growth depends on immunological, hormonal, genetic and environmental factors. Angiogenesis plays a key role in implantation and growth of endometriotic lesions, as well as in adhesion formation. Physiologically angiogenesis is responsible for neoangiogenesis and recruitment of new capillaries from the already existing capillaries. It is well-documented that altered angiogenesis provokes improper follicular maturation, infertility recurrent miscarriages, ovarian hyperstimulation syndrome, and carcinogenesis. Factors stimulating angionesis include angiogenin, vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). The aim of the study was to analyze angiogenic factor concentration (angiogenin, VEGF, FGF) in blood serum and peritoneal fluid in patients with diagnosed endometriosis and idiopathic infertility. A total of 39 patients were recruited for the study including 19 patients (study group) diagnosed with endometriosis during the laparoscopic procedure and 20 patients (control group) with idiopathic infertility and no morphologic changes within the pelvis revealed during the laparoscopic procedure. All patients underwent laparoscopy during the follicular phase of the menstrual cycle. Vein blood sample was obtained before the procedure and during laparoscopy the entire peritoneal fluid was aspirated for further measurement of VEGF, FGF and angiogenin concentrations. Angiogenin concentration in peritoneal fluid was statistically higher in patient with idiopathic infertility in comparison to endometriosis (pendometriosis, but no statistical significance was found. VEGF and FGF concentration in blood serum and peritoneal fluid was similar in both groups (p>0.05). There were no significant differences between serum
Fluid Flow in Low Permeable, Porous Media Écoulements fluides dans un milieu poreux peu perméable
Directory of Open Access Journals (Sweden)
Dutta N. C.
2006-11-01
Full Text Available Migration of hydrocarbons deals with the subsequent movement of petroleum after expulsion from the source rock through water saturated reservoirs or through permeability created by fractures and faults. Although the underlying principles that control the fluid movement in porous media (reservoirs are well understood by reservoir engineers, less is known about the flow characteristics in low-permeable, porous media, such as clays and shales. For flow considerations, the primary parameters are porosity, permeability and the fluid potential gradients. For clays and shales, these parameters are poorly known; yet these control the time periods during which fluid flow occurs in sedimentary basins (100 years to 100 million years. In this paper, I examine the parametric dependence of the time constantsof fluid flow in low permeability sediments on its porosity and permeability. This is accomplished in two parts. In the first part, a technique is presented to investigate the effect of fluid flow in shales which causes undercompaction and buildup of fluid pressures in excess of normal hydrostatic pressure. The technique is pre-drill in nature; it uses seismic velocity analysis of common depth point gather of surface seismic data and is based on the concept developed by Hottmann and Johnson (1965 and Pennebaker (1968. In the second part of the paper, the flow characteristics are discussed in the basin scale. I develop a model that describes the fluid flow in a continuously accreting and subsiding clastics basins, such as the Gulf of Mexico. I examine the pressure characteristics of such a basin by digital simulations and study the effect of the permeability variation of shales on the geologic time dependence of the fluid flux in the sediments, the basin subsidence rate and the pressure buildup with depth. The model incorporates both mechanical compaction and burial diagenesis involving smectite to illite conversion of shales. The latter is based on a
Nonlinear evolution of magnetic islands in a two fluid torus
International Nuclear Information System (INIS)
Sugiyama, L.E.; Park, W.
1996-01-01
A numerical model MH3D-T for the two fluid description of macroscopic evolution in a full three dimensional torus has been developed. Based on the perturbative drift ordering, generalized to arbitrary perturbation size, the model follows the full temperature evolution, including the thermal equilibration along the magnetic field. It contains the diamagnetic drifts, ion gyroviscous stress tensor, and the Hall term in Ohm's law. Electron inertia is neglected. The numerical model solves the same equations in a torus and in several simplified configurations. It has been benchmarked against the diamagnetic ω* i stabilization of the resistive m = 1, n = 1 reconnecting mode in a cylinder. The nonlinear evolution of resistive magnetic islands with m,n ≠ 1,1 in a cylinder is found to agree with previous analytic and reduced-torus results, which show that the diamagnetic rotation vanishes early in the island evolution and the saturated island size is determined by the same external driving factor Δ' as in MHD. The two fluid evolution in a full torus, however, differs from that in a cylinder and from the resistive MHD evolution. The poloidal rotation velocity undergoes a degree of poloidal momentum damping in the torus, even without neoclassical effects. The two fluid magnetic island grows faster, nonlinearly, than the resistive MHD island, and also couples different toroidal harmonics more effectively. Plasma compressibility and processes operating along the magnetic field play a much more important role than in MHD or in simple geometry. The two fluid model contains all the important neoclassical fluid effects except for the b circ ∇ circ Π parallelj viscous force terms. The addition of these terms is in progress
Fluid mechanics in fluids at rest.
Brenner, Howard
2012-07-01
Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.
Radioimmunological evidence for beta-endorphin in human cerebrospinal fluid
International Nuclear Information System (INIS)
Graf, M.
1982-01-01
Both-endomorphin-like immunoreactivity in human cerebrospinal fluid was determined by two different radioimmunoassays. Measurements made using a bought RIA-kit (Immuno Nuclear Corporation) produced results which were too high compared to results from the literature. The procedure for the beta-endophin radioimmunoassay of Hoellt et al. was followed, the various steps studied and in part modified. Here both beta endorphin and beta-lipotropin were labelled with I-125 and a new method introduced for separating I - -125 following labelling. Studies on the specificity of the method revealed that, in addition to beta-endorphin, beta-lipotropin and two further non-identified fluid fractions were also determined but that the specificity of the RIA's could be significantly increased by prior extraction of the fluid with silicic acid. Determinations of beta-endorphin-like immunoreactivity in 28 different human fluids using this RIA gave values from below 20 pg/ml to 70 pg/ml thus confirming literature values. (orig.) [de
Optimized CO{sub 2} miscible hydrocarbon fracturing fluids
Energy Technology Data Exchange (ETDEWEB)
Taylor, R.S.; Funkhouser, G.P.; Fyten, G.; Attaway, D.; Watkins, H. [Halliburton Energy Services, Calgary, AB (Canada); Lestz, R.S. [Chevron Canada Resources, Calgary, AB (Canada); Loree, D. [FracEx Inc. (Canada)
2006-07-01
Carbon dioxide (CO{sub 2}) miscible hydrocarbon fracturing fluids address issues of fluid retention in low-permeability gas reservoirs, including undersaturated and underpressured reservoirs. An optimized surfactant gel technology using carbon dioxide (CO{sub 2}) hydrocarbon fracturing fluids applicable to all gas-well stimulation applications was discussed in this paper. The crosslinked surfactant gel technology improved proppant transport, leakoff control, and generation of effective fracture half-length. Tests indicated that application of the surfactant cooled the fracture face, which had the effect of extending break times and increasing viscosity during pumping periods. Rapid recovery of the fracturing fluid eliminated the need for swabbing in some cases, and the fluid system was not adversely affected by shear. However, rheological test equipment capable of mixing liquid CO{sub 2} and viscosified hydrocarbons at downhole temperatures is required to determine rheology and required chemical concentrations. It was recommended that to achieve an effective methane-drive cleanup mechanism, treatments should be designed so that the gellant system can be effective with up to 50 per cent CO{sub 2} dissolved in oil. It was concluded that it should be possible to apply the technology to low permeability gas reservoirs. Viscosity curves and friction data were presented. Issues concerning the selection of tubulars and flowback procedures were also discussed. It was suggested that the cost of the hydrocarbon fracturing fluid can be recovered by the sale of recovered load fluid. 6 refs., 4 figs.
Ultrafast THz Saturable Absorption in Doped Semiconductors
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hoffmann, Matthias C.
2011-01-01
We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields.......We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields....
Saturable absorption in detonation nanodiamond dispersions
Vanyukov, Viatcheslav; Mikheev, Gennady; Mogileva, Tatyana; Puzyr, Alexey; Bondar, Vladimir; Lyashenko, Dmitry; Chuvilin, Andrey
2017-07-01
We report on a saturable absorption in aqueous dispersions of nanodiamonds with femtosecond laser pulse excitation at a wavelength of 795 nm. The open aperture Z-scan experiments reveal that in a wide range of nanodiamond particle sizes and concentrations, a light-induced increase of transmittance occurs. The transmittance increase originates from the saturation of light absorption and is associated with a light absorption at 1.5 eV by graphite and dimer chains (Pandey dimer chains). The obtained key nonlinear parameters of nanodiamond dispersions are compared with those of graphene and carbon nanotubes, which are widely used for the mode-locking.
On the saturation of astrophysical dynamos
DEFF Research Database (Denmark)
Dorch, Bertil; Archontis, Vasilis
2004-01-01
In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate in the li......In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate...
User manual of the multicompenent variably - saturated flow and transport model HP1
International Nuclear Information System (INIS)
Jacques, D.; Simunek, J.
2005-06-01
This report describes a new comprehensive simulation tool HP1 (HYDRUS1D-PHREEQC) that was obtained by coupling the HYDRUS-1D one-dimensional variably-saturated water flow and solute transport model with the PHREEQC geochemical code. The HP1 code incorporates modules simulating (1) transient water flow in variably-saturated media, (2) transport of multiple components, and (3) mixed equilibrium/kinetic geochemical reactions. The program numerically solves the Richards equation for variably-saturated water flow and advection-dispersion type equations for heat and solute transport. The flow equation incorporates a sink term to account for water uptake by plant roots. The heat transport equation considers transport due to conduction and convection with flowing water. The solute transport equations consider advective-dispersive transport in the liquid phase. The program can simulate a broad range of low-temperature biogeochemical reactions in water, soil and ground water systems including interactions with minerals, gases, exchangers, and sorption surfaces, based on thermodynamic equilibrium, kinetics, or mixed equilibrium-kinetic reactions. The program may be used to analyze water and solute movement in unsaturated, partially saturated, or fully saturated porous media. The flow region may be composed of nonuniform soils or sediments. Flow and transport can occur in the vertical, horizontal, or a generally inclined direction. The water flow part of the model can deal with prescribed head and flux boundaries, boundaries controlled by atmospheric conditions, as well as free drainage boundary conditions. The governing flow and transport equations were solved numerically using Galerkin-type linear finite element schemes. To test the accuracy of the coupling procedures implemented in HP1, simulation results were compared with (i) HYDRUS-1D for transport problems of multiple components subject to sequential first-order decay, (ii) PHREEQC for steady-state flow conditions, and
The viscosity of the refrigerant 1,1-difluoroethane along the saturation line
van der Gulik, P. S.
1993-07-01
The viscosity coefficient of the refrigerant R152a (1,1-difluoroethane) has been measured along the saturation line both in the saturated liquid and in the saturated vapor. The data have been obtained every 10 K from 243 up to 393 K by means of a vibrating-wire viscometer using the free damped oscillation method. The density along the saturation line was calculated from the equation of state given by Tamatsu et al. with application of the saturated vapor-pressure correlation given by Higashi et al. An interesting result is that in the neighborhood of the critical point, the kinematic viscosity of the saturated liquid seems to coincide with that of the saturated vapor. The results for the saturated liquid are in satisfying agreement with those of Kumagai and Takahashi and of Phillips and Murphy. A comparison of the saturatedvaport data with the unsaturated-vapor data of Takahashi et al. shows some discrepancies.
Cellular Biotechnology Operations Support System Fluid Dynamics Investigation
2003-01-01
Aboard the International Space Station (ISS), the Tissue Culture Medium (TCM) is the bioreactor vessel in which cell cultures are grown. With its two syringe ports, it is much like a bag used to administer intravenous fluid, except it allows gas exchange needed for life. The TCM contains cell culture medium, and when frozen cells are flown to the ISS, they are thawed and introduced to the TCM through the syringe ports. In the Cellular Biotechnology Operations Support System-Fluid Dynamics Investigation (CBOSS-FDI) experiment, several mixing procedures are being assessed to determine which method achieves the most uniform mixing of growing cells and culture medium.
Experimental and numerical study on thermal conductivity of partially saturated unconsolidated sands
Lee, Youngmin; Keehm, Youngseuk; Kim, Seong-Kyun; Shin, Sang Ho
2016-04-01
A class of problems in heat flow applications requires an understanding of how water saturation affects thermal conductivity in the shallow subsurface. We conducted a series of experiments using a sand box to evaluate thermal conductivity (TC) of partially saturated unconsolidated sands under varying water saturation (Sw). We first saturated sands fully with water and varied water saturation by drainage through the bottom of the sand box. Five water-content sensors were integrated vertically into the sand box to monitor water saturation changes and a needle probe was embedded to measure thermal conductivity of partially saturated sands. The experimental result showed that thermal conductivity decreases from 2.5 W/mK for fully saturated sands to 0.7 W/mK when water saturation is 5%. We found that the decreasing trend is quite non-linear: highly sensitive at very high and low water saturations. However, the boundary effects on the top and the bottom of the sand box seemed to be responsible for this high nonlinearity. We also found that the determination of water saturation is quite important: the saturation by averaging values from all five sensors and that from the sensor at the center position, showed quite different trends in the TC-Sw domain. In parallel, we conducted a pore-scale numerical modeling, which consists of the steady-state two-phase Lattice-Boltzmann simulator and FEM thermal conduction simulator on digital pore geometry of sand aggregation. The simulation results showed a monotonous decreasing trend, and are reasonably well matched with experimental data when using average water saturations. We concluded that thermal conductivity would decrease smoothly as water saturation decreases if we can exclude boundary effects. However, in dynamic conditions, i.e. imbibition or drainage, the thermal conductivity might show hysteresis, which can be investigated with pore-scale numerical modeling with unsteady-state two-phase flow simulators in our future work.
Fluids of the lower crust and upper mantle: deep is different
Manning, C. E.
2017-12-01
Deep fluids are important for the evolution and properties of the lower crust and upper mantle in tectonically active settings. Uncertainty about their chemistry has led past workers to use upper crustal fluids as analogues. However, recent results show that fluids at >15 km differ fundamentally from shallow fluids and help explain high-pressure metasomatism and resistivity patterns. Deep fluids are comprised of four components: H2O, non-polar gases (chiefly CO2), salts (mostly alkali chlorides), and rock-derived solutes (dominated by aluminosilicates and related components). The first three generally define the solvent properties of the fluid, and models must account for observations that H2O activity may be quite low. The contrasting behavior of H2O-gas and H2O-salt mixtures yields immiscibility in the ternary system, which can lead to separation of two phases with fundamentally different chemical and transport properties. Thermodynamic modeling of equilibrium between rocks and H2O using simple ionic species known from shallow-crustal systems yields solutions possessing total dissolved solids and ionic strength that are too low to be consistent with experiments and resistivity surveys. Addition of CO2 further lowers bulk solubility and conductivity. Therefore, additional species must be present in H2O, and H2O-salt solutions likely explain much of the evidence for fluid action in high-P settings. At low salinity, H2O-rich fluids are powerful solvents for aluminosilicate rock components that are dissolved as previously unrecognized polymerized clusters. Experiments show that, near H2O-saturated melting, Al-Si polymers comprise >80% of solutes. The stability of these species facilitates critical critical mixing in rock-H2O systems. Addition of salt (e.g., NaCl) changes solubility patterns, but aluminosilicate contents remain high. Thermodynamic models indicate that the ionic strength of fluids with Xsalt = 0.05 to 0.4 and equilibrated with model crustal rocks have
Performance Analysis of IEEE 802.11 DCF and IEEE 802.11e EDCA in Non-saturation Condition
Kim, Tae Ok; Kim, Kyung Jae; Choi, Bong Dae
We analyze the MAC performance of the IEEE 802.11 DCF and 802.11e EDCA in non-saturation condition where device does not have packets to transmit sometimes. We assume that a flow is not generated while the previous flow is in service and the number of packets in a flow is geometrically distributed. In this paper, we take into account the feature of non-saturation condition in standards: possibility of transmission performed without preceding backoff procedure for the first packet arriving at the idle station. Our approach is to model a stochastic behavior of one station as a discrete time Markov chain. We obtain four performance measures: normalized channel throughput, average packet HoL (head of line) delay, expected time to complete transmission of a flow and packet loss probability. Our results can be used for admission control to find the optimal number of stations with some constraints on these measures.
Verification of vertically rotating flume using non-newtonian fluids
Huizinga, R.J.
1996-01-01
Three tests on non-Newtonian fluids were used to verify the use of a vertically rotating flume (VRF) for the study of the rheological properties of debris flow. The VRF is described and a procedure for the analysis of results of tests made with the VRF is presented. The major advantages of the VRF are a flow field consistent with that found in nature, a large particle-diameter threshold, inexpensive operation, and verification using several different materials; the major limitations are a lack of temperature control and a certain error incurred from the use of the Bingham plastic model to describe a more complex phenomenon. Because the VRF has been verified with non-Newtonian fluids as well as Newtonian fluids, it can be used to measure the rheological properties of coarse-grained debris-flow materials.
Multi-temperature mixture of fluids
Directory of Open Access Journals (Sweden)
Ruggeri Tommaso
2009-01-01
Full Text Available We present a survey on some recent results concerning the different models of a mixture of compressible fluids. In particular we discuss the most realistic case of a mixture when each constituent has its own temperature (MT and we first compare the solutions of this model with the one with a unique common temperature (ST . In the case of Eulerian fluids it will be shown that the corresponding (ST differential system is a principal subsystem of the (MT one. Global behavior of smooth solutions for large time for both systems will also be discussed through the application of the Shizuta-Kawashima condition. Then we introduce the concept of the average temperature of mixture based upon the consideration that the internal energy of the mixture is the same as in the case of a single-temperature mixture. As a consequence, it is shown that the entropy of the mixture reaches a local maximum in equilibrium. Through the procedure of Maxwellian iteration a new constitutive equation for non-equilibrium temperatures of constituents is obtained in a classical limit, together with the Fick's law for the diffusion flux. Finally, to justify the Maxwellian iteration, we present for dissipative fluids a possible approach of a classical theory of mixture with multi-temperature and we prove that the differences of temperatures between the constituents imply the existence of a new dynamical pressure even if the fluids have a zero bulk viscosity.
The effect of rock electrical parameters on the calculation of reservoir saturation
International Nuclear Information System (INIS)
Li, Xiongyan; Qin, Ruibao; Liu, Chuncheng; Mao, Zhiqiang
2013-01-01
The error in calculating a reservoir saturation caused by the error in the cementation exponent, m, and the saturation exponent, n, should be analysed. In addition, the influence of m and n on the reservoir saturation should be discussed. Based on the Archie formula, the effect of variables m and n on the reservoir saturation is analysed, while the formula for the error in calculating the reservoir saturation, caused by the error in m and n, is deduced, and the main factors affecting the error in reservoir saturation are illustrated. According to the physical meaning of m and n, it can be interpreted that they are two independent parameters, i.e., there is no connection between m and n. When m and n have the same error, the impact of the variables on the calculation of the reservoir saturation should be compared. Therefore, when the errors of m and n are respectively equal to 0.2, 0.4 and 0.6, the distribution range of the errors in calculating the reservoir saturation is analysed. However, in most cases, the error of m and n is about 0.2. When the error of m is 0.2, the error in calculating the reservoir saturation ranges from 0% to 35%. Meanwhile, when the error in n is 0.2, the error in calculating the reservoir saturation is almost always below 5%. On the basis of loose sandstone, medium sandstone, tight sandstone, conglomerate, tuff, breccia, basalt, andesite, dacite and rhyolite, this paper first analyses the distribution range and change amplitude of m and n. Second, the impact of m and n on the calculation of reservoir saturation is elaborated upon. With regard to each lithology, the distribution range and change amplitude of m are greater than those of n. Therefore, compared with n, the effect of m on the reservoir saturation is stronger. The influence of m and n on the reservoir saturation is determined, and the error in calculating the reservoir saturation caused by the error of m and n is calculated. This is theoretically and practically significant for
Soil aquifer treatment of artificial wastewater under saturated conditions
Essandoh, H. M K; Tizaoui, Chedly; Mohamed, Mostafa H A; Amy, Gary L.; Brdjanovic, Damir
2011-01-01
A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen
Saturated Zone Flow and Transport Expert Elicitation Project
Energy Technology Data Exchange (ETDEWEB)
Coppersmith, Kevin J.; Perman, Roseanne C.
1998-01-01
This report presents results of the Saturated Zone Flow and Transport Expert Elicitation (SZEE) project for Yucca Mountain, Nevada. This project was sponsored by the US Department of Energy (DOE) and managed by Geomatrix Consultants, Inc. (Geomatrix), for TRW Environmental Safety Systems, Inc. The DOE's Yucca Mountain Site Characterization Project (referred to as the YMP) is intended to evaluate the suitability of the site for construction of a mined geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. The SZEE project is one of several that involve the elicitation of experts to characterize the knowledge and uncertainties regarding key inputs to the Yucca Mountain Total System Performance Assessment (TSPA). The objective of the current project was to characterize the uncertainties associated with certain key issues related to the saturated zone system in the Yucca Mountain area and downgradient region. An understanding of saturated zone processes is critical to evaluating the performance of the potential high-level nuclear waste repository at Yucca Mountain. A major goal of the project was to capture the uncertainties involved in assessing the saturated flow processes, including uncertainty in both the models used to represent the physical processes controlling saturated zone flow and transport, and the parameter values used in the models. So that the analysis included a wide range of perspectives, multiple individual judgments were elicited from members of an expert panel. The panel members, who were experts from within and outside the Yucca Mountain project, represented a range of experience and expertise. A deliberate process was followed in facilitating interactions among the experts, in training them to express their uncertainties, and in eliciting their interpretations. The resulting assessments and probability distributions, therefore, provide a reasonable aggregate representation of the knowledge and
Directory of Open Access Journals (Sweden)
Coussy O.
2006-11-01
Full Text Available Ce travail comporte deux parties. La première partie concerne la théorie de la propagation des ondes acoustiques dans les milieux poreux saturés. Une revue des différentes méthodes existantes est faite et un développement critique de la théorie de Biot est exposé en détail. On examine en particulier les différents résultats auxquels cette théorie conduit et on regarde, dans quelles conditions et sur quels problèmes géophysiques, les phénomènes physiques mis en évidence peuvent jouer de manière notable. Dans la deuxième partie, on présente une vérification expérimentale due à Plona (1980 de la théorie de Biot. Après une introduction qualitative de l'expérience mise en place, on expose les résultats obtenus pour un grand nombre de matériaux de porosités différentes. La notion de tortuosité d'un milieu poreux est introduite théoriquement et discutée expérimentalement. This article is in two parts. The first part has to do with the theory of acoustic wave propagation in saturated porous media. Different existing methods are reviewed, and Biot's theory is critically developed in detail. In particular, the different results to which this theory leads are examined, and the conditions and geophysical problems on which the physical phenomena involved may have an appreciable effect are considered. The second part is devoted to the experimental check made by Plona (1980 of Biot's theory. After a qualitative introduction of the experimental procedure, the results obtained for many materials of different porosities are described. The concept of the tortuosity of a porous medium is introduced theoretically and discussed experimentally.
Prediction of saturation using the carbon/oxygen log
Energy Technology Data Exchange (ETDEWEB)
Horner, S.C.; Sanyal, S.K.
1984-09-01
This project investigates the nature of Dresser-Atlas Carbon/Oxygen Log gamma ray spectra. It presents an attempt to improve the signal-to-noise ratio of the C/O and Si/Ca parameters used by Dresser-Atlas to determine oil saturation. Two techniques were developed to subtract the Compton background from the spectral data. Neither technique significantly improves the accuracy of the cased-hole prediction of oil saturation. However, it has been shown that it is possible to develop a satisfactory correlation for oil saturation on a well-by-well basis. This correlation can then be used to generate oil-in-place from the C/O and Si/Ca ratios. 17 references.
Rajaram, H.; Birdsell, D.; Lackey, G.; Karra, S.; Viswanathan, H. S.; Dempsey, D.
2015-12-01
The dramatic increase in the extraction of unconventional oil and gas resources using horizontal wells and hydraulic fracturing (fracking) technologies has raised concerns about potential environmental impacts. Large volumes of hydraulic fracturing fluids are injected during fracking. Incidents of stray gas occurrence in shallow aquifers overlying shale gas reservoirs have been reported; whether these are in any way related to fracking continues to be debated. Computational models serve as useful tools for evaluating potential environmental impacts. We present modeling studies of hydraulic fracturing fluid and gas migration during the various stages of well operation, production, and subsequent plugging. The fluid migration models account for overpressure in the gas reservoir, density contrast between injected fluids and brine, imbibition into partially saturated shale, and well operations. Our results highlight the importance of representing the different stage