WorldWideScience

Sample records for pro-inflammatory gene expressions

  1. Ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory chemokine ligand 2 gene in humans

    Directory of Open Access Journals (Sweden)

    Fischer Alexandra

    2012-10-01

    Full Text Available Abstract Background Coenzyme Q10 is an essential cofactor in the respiratory chain and serves in its reduced form, ubiquinol, as a potent antioxidant. Studies in vitro and in vivo provide evidence that ubiquinol reduces inflammatory processes via gene expression. Here we investigate the putative link between expression and DNA methylation of ubiquinol sensitive genes in monocytes obtained from human volunteers supplemented with 150 mg/ day ubiquinol for 14 days. Findings Ubiquinol decreases the expression of the pro-inflammatory chemokine (C-X-C motif ligand 2 gene (CXCL2 more than 10-fold. Bisulfite-/ MALDI-TOF-based analysis of regulatory regions of the CXCL2 gene identified six adjacent CpG islands which showed a 3.4-fold decrease of methylation status after ubiquinol supplementation. This effect seems to be rather gene specific, because ubiquinol reduced the expression of two other pro-inflammatory genes (PMAIP1, MMD without changing the methylation pattern of the respective gene. Conclusion In conclusion, ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory CXCL2 gene in humans. Current Controlled Trials ISRCTN26780329.

  2. Mindfulness-Based Stress Reduction training reduces loneliness and pro-inflammatory gene expression in older adults: a small randomized controlled trial.

    Science.gov (United States)

    Creswell, J David; Irwin, Michael R; Burklund, Lisa J; Lieberman, Matthew D; Arevalo, Jesusa M G; Ma, Jeffrey; Breen, Elizabeth Crabb; Cole, Steven W

    2012-10-01

    Lonely older adults have increased expression of pro-inflammatory genes as well as increased risk for morbidity and mortality. Previous behavioral treatments have attempted to reduce loneliness and its concomitant health risks, but have had limited success. The present study tested whether the 8-week Mindfulness-Based Stress Reduction (MBSR) program (compared to a Wait-List control group) reduces loneliness and downregulates loneliness-related pro-inflammatory gene expression in older adults (N = 40). Consistent with study predictions, mixed effect linear models indicated that the MBSR program reduced loneliness, compared to small increases in loneliness in the control group (treatment condition × time interaction: F(1,35) = 7.86, p = .008). Moreover, at baseline, there was an association between reported loneliness and upregulated pro-inflammatory NF-κB-related gene expression in circulating leukocytes, and MBSR downregulated this NF-κB-associated gene expression profile at post-treatment. Finally, there was a trend for MBSR to reduce C Reactive Protein (treatment condition × time interaction: (F(1,33) = 3.39, p = .075). This work provides an initial indication that MBSR may be a novel treatment approach for reducing loneliness and related pro-inflammatory gene expression in older adults. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity

    Science.gov (United States)

    Bollmann, Franziska; Art, Julia; Henke, Jenny; Schrick, Katharina; Besche, Verena; Bros, Matthias; Li, Huige; Siuda, Daniel; Handler, Norbert; Bauer, Florian; Erker, Thomas; Behnke, Felix; Mönch, Bettina; Härdle, Lorena; Hoffmann, Markus; Chen, Ching-Yi; Förstermann, Ulrich; Dirsch, Verena M.; Werz, Oliver; Kleinert, Hartmut; Pautz, Andrea

    2014-01-01

    Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol. PMID:25352548

  4. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    Energy Technology Data Exchange (ETDEWEB)

    Erez, Neta, E-mail: netaerez@post.tau.ac.il [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Glanz, Sarah [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Raz, Yael [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Obstetrics and Gynecology, LIS Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Avivi, Camilla [Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Barshack, Iris [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel)

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  5. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    International Nuclear Information System (INIS)

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-01-01

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics

  6. Gene array analysis of PD-1H overexpressing monocytes reveals a pro-inflammatory profile

    Directory of Open Access Journals (Sweden)

    Preeti Bharaj

    2018-02-01

    Full Text Available We have previously reported that overexpression of Programmed Death -1 Homolog (PD-1H in human monocytes leads to activation and spontaneous secretion of multiple pro inflammatory cytokines. Here we evaluate changes in monocytes gene expression after enforced PD-1H expression by gene array. The results show that there are significant alterations in 51 potential candidate genes that relate to immune response, cell adhesion and metabolism. Genes corresponding to pro-inflammatory cytokines showed the highest upregulation, 7, 3.2, 3.0, 5.8, 4.4 and 3.1 fold upregulation of TNF-α, IL-1 β, IFN-α, γ, λ and IL-27 relative to vector control. The data are in agreement with cytometric bead array analysis showing induction of proinflammatory cytokines, IL-6, IL-1β and TNF-α by PD-1H. Other genes related to inflammation, include transglutaminase 2 (TG2, NF-κB (p65 and p50 and toll like receptors (TLR 3 and 4 were upregulated 5, 4.5 and 2.5 fold, respectively. Gene set enrichment analysis (GSEA also revealed that signaling pathways related to inflammatory response, such as NFκB, AT1R, PYK2, MAPK, RELA, TNFR1, MTOR and proteasomal degradation, were significantly upregulated in response to PD-1H overexpression. We validated the results utilizing a standard inflammatory sepsis model in humanized BLT mice, finding that PD-1H expression was highly correlated with proinflammatory cytokine production. We therefore conclude that PD-1H functions to enhance monocyte activation and the induction of a pro-inflammatory gene expression profile.

  7. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Harpa Karadottir

    2015-12-01

    Full Text Available Mechanical ventilation (MV of patients can cause damage to bronchoalveolar epithelium, leading to a sterile inflammatory response, infection and in severe cases sepsis. Limited knowledge is available on the effects of MV on the innate immune defense system in the human lung. In this study, we demonstrate that cyclic stretch of the human bronchial epithelial cell lines VA10 and BCi NS 1.1 leads to down-regulation of cathelicidin antimicrobial peptide (CAMP gene expression. We show that treatment of VA10 cells with vitamin D3 and/or 4-phenyl butyric acid counteracted cyclic stretch mediated down-regulation of CAMP mRNA and protein expression (LL-37. Further, we observed an increase in pro-inflammatory responses in the VA10 cell line subjected to cyclic stretch. The mRNA expression of the genes encoding pro-inflammatory cytokines IL-8 and IL-1β was increased after cyclic stretching, where as a decrease in gene expression of chemokines IP-10 and RANTES was observed. Cyclic stretch enhanced oxidative stress in the VA10 cells. The mRNA expression of toll-like receptor (TLR 3, TLR5 and TLR8 was reduced, while the gene expression of TLR2 was increased in VA10 cells after cyclic stretch. In conclusion, our in vitro results indicate that cyclic stretch may differentially modulate innate immunity by down-regulation of antimicrobial peptide expression and increase in pro-inflammatory responses.

  8. RNA-seq methods for identifying differentially expressed gene in human pancreatic islet cells treated with pro-inflammatory cytokines.

    Science.gov (United States)

    Li, Bo; Bi, Chang Long; Lang, Ning; Li, Yu Ze; Xu, Chao; Zhang, Ying Qi; Zhai, Ai Xia; Cheng, Zhi Feng

    2014-01-01

    Type 1 diabetes is a chronic autoimmune disease in which pancreatic beta cells are killed by the infiltrating immune cells as well as the cytokines released by these cells. Many studies indicate that inflammatory mediators have an essential role in this disease. In the present study, we profiled the transcriptome in human islets of langerhans under control conditions or following exposure to the pro-inflammatory cytokines based on the RNA sequencing dataset downloaded from SRA database. After filtered the low-quality ones, the RNA readers was aligned to human genome hg19 by TopHat and then assembled by Cufflinks. The expression value of each transcript was calculated and consequently differentially expressed genes were screened out. Finally, a total of 63 differentially expressed genes were identified including 60 up-regulated and three down-regulated genes. GBP5 and CXCL9 stood out as the top two most up-regulated genes in cytokines treated samples with the log2 fold change of 12.208 and 10.901, respectively. Meanwhile, PTF1A and REG3G were identified as the top two most down-regulated genes with the log2 fold change of -3.759 and -3.606, respectively. Of note, we also found 262 lncRNAs (long non-coding RNA), 177 of which were inferred as novel lncRNAs. Further in-depth follow-up analysis of the transcriptional regulation reported in this study may shed light on the specific function of these lncRNA.

  9. The Pro-inflammatory Effects of Glucocorticoids in the Brain

    Science.gov (United States)

    Duque, Erica de Almeida; Munhoz, Carolina Demarchi

    2016-01-01

    Glucocorticoids are a class of steroid hormones derived from cholesterol. Their actions are mediated by the glucocorticoid and mineralocorticoid receptors, members of the superfamily of nuclear receptors, which, once bound to their ligands, act as transcription factors that can directly modulate gene expression. Through protein–protein interactions with other transcription factors, they can also regulate the activity of many genes in a composite or tethering way. Rapid non-genomic signaling was also demonstrated since glucocorticoids can act through membrane receptors and activate signal transduction pathways, such as protein kinases cascades, to modulate other transcriptions factors and activate or repress various target genes. By all these different mechanisms, glucocorticoids regulate numerous important functions in a large variety of cells, not only in the peripheral organs but also in the central nervous system during development and adulthood. In general, glucocorticoids are considered anti-inflammatory and protective agents due to their ability to inhibit gene expression of pro-inflammatory mediators and other possible damaging molecules. Nonetheless, recent studies have uncovered situations in which these hormones can act as pro-inflammatory agents depending on the dose, chronicity of exposure, and the structure/organ analyzed. In this review, we will provide an overview of the conditions under which these phenomena occur, a discussion that will serve as a basis for exploring the mechanistic foundation of glucocorticoids pro-inflammatory gene regulation in the brain. PMID:27445981

  10. Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells

    Directory of Open Access Journals (Sweden)

    BA Walter

    2016-07-01

    Full Text Available The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4 ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease.

  11. Epigenetic Regulation of Inflammatory Gene Expression in Macrophages by Selenium

    Science.gov (United States)

    Narayan, Vivek; Ravindra, Kodihalli C.; Liao, Chang; Kaushal, Naveen; Carlson, Bradley A.; Prabhu, K. Sandeep

    2014-01-01

    Acetylation of histone and non-histone proteins by histone acetyltransferases plays a pivotal role in the expression of pro-inflammatory genes. Given the importance of dietary selenium in mitigating inflammation, we hypothesized that selenium supplementation may regulate inflammatory gene expression at the epigenetic level. The effect of selenium towards histone acetylation was examined in both in vitro and in vivo models of inflammation by chromatin immunoprecipitation (ChIP) assays and immunoblotting. Our results indicated that selenium supplementation, as selenite, decreased acetylation of histone H4 at K12 and K16 in COX-2 and TNF promoters, and of the p65 subunit of the redox sensitive transcription factor NFκB in primary and immortalized macrophages. On the other hand, selenomethionine had a much weaker effect. Selenite treatment of HIV-1 infected human monocytes also significantly decreased the acetylation of H4 at K12 and K16 on the HIV-1 promoter, supporting the downregulation of proviral expression by selenium. A similar decrease in histone acetylation was also seen in the colonic extracts of mice treated with dextran sodium sulfate that correlated well with the levels of selenium in the diet. Bone marrow-derived macrophages from Trspfl/flCreLysM mice that lack expression of selenoproteins in macrophages confirmed the important role of selenoproteins in the inhibition of histone H4 acetylation. Our studies suggest that the ability of selenoproteins to skew the metabolism of arachidonic acid to contribute, in part, to their ability to inhibit histone acetylation. In summary, our studies suggest a new role for selenoproteins in the epigenetic modulation of pro-inflammatory genes. PMID:25458528

  12. Tenocytes, pro-inflammatory cytokines and leukocytes: a relationship?

    OpenAIRE

    Al-Sadi, Onays; Schulze-Tanzil, Gundula; Kohl, Benjamin; Lohan, Anke; Lemke, Marion; Ertel, Wolfgang; John, Thilo

    2012-01-01

    Leukocyte derived pro-inflammatory mediators could be involved in tendon healing and scar formation. Hence, the effect of autologous leukocytes (PBMCs, peripheral blood mononuclear cells and neutrophils) on primary rabbit Achilles tenocytes gene expression was tested in insert assisted co-cultures.

  13. Induction of intestinal pro-inflammatory immune responses by lipoteichoic acid

    Directory of Open Access Journals (Sweden)

    Zadeh Mojgan

    2012-03-01

    Full Text Available Abstract Background The cellular and molecular mechanisms of inflammatory bowel disease are not fully understood; however, data indicate that uncontrolled chronic inflammation induced by bacterial gene products, including lipoteichoic acid (LTA, may trigger colonic inflammation resulting in disease pathogenesis. LTA is a constituent glycolipid of Gram-positive bacteria that shares many inflammatory properties with lipopolysaccharide and plays a critical role in the pathogenesis of severe inflammatory responses via Toll-like receptor 2. Accordingly, we elucidate the role of LTA in immune stimulation and induced colitis in vivo. Methods To better understand the molecular mechanisms utilized by the intestinal microbiota and their gene products to induce or subvert inflammation, specifically the effect(s of altered surface layer protein expression on the LTA-mediated pro-inflammatory response, the Lactobacillus acidophilus surface layer protein (Slp genes encoding SlpB and SlpX were deleted resulting in a SlpB- and SlpX- mutant that continued to express SlpA (assigned as NCK2031. Results Our data show profound activation of dendritic cells by NCK2031, wild-type L. acidophilus (NCK56, and purified Staphylococcus aureus-LTA. In contrary to the LTA-deficient strain NCK2025, the LTA-expressing strains NCK2031 and NCK56, as well as S. aureus-LTA, induce pro-inflammatory innate and T cell immune responses in vivo. Additionally, neither NCK2031 nor S. aureus-LTA supplemented in drinking water protected mice from DSS-colitis, but instead, induced significant intestinal inflammation resulting in severe colitis and tissue destruction. Conclusions These findings suggest that directed alteration of two of the L. acidophilus NCFM-Slps did not ameliorate LTA-induced pro-inflammatory signals and subsequent colitis.

  14. Suppression of pro-inflammatory and pro-survival biomarkers in oral cancer patients consuming a black raspberry phytochemical-rich troche

    Science.gov (United States)

    Knobloch, Thomas J.; Uhrig, Lana K.; Pearl, Dennis K.; Casto, Bruce C.; Warner, Blake M.; Clinton, Steven K.; Sardo-Molmenti, Christine L.; Ferguson, Jeanette M.; Daly, Brett T.; Riedl, Kenneth; Schwartz, Steven J.; Vodovotz, Yael; Buchta, Anthony J.; Schuller, David E.; Ozer, Enver; Agrawal, Amit; Weghorst, Christopher M.

    2016-01-01

    Black raspberries (BRBs) demonstrate potent inhibition of aerodigestive tract carcinogenesis in animal models. However, translational clinical trials evaluating the ability of BRB phytochemicals to impact molecular biomarkers in the oral mucosa remain limited. The present phase 0 study addresses a fundamental question for oral cancer food-based prevention: Do BRB phytochemicals successfully reach the targeted oral tissues and reduce pro-inflammatory and anti-apoptotic gene expression profiles? Patients with biopsy-confirmed oral squamous cell carcinomas (OSCCs) administered oral troches containing freeze-dried BRB powder from the time of enrollment to the date of curative intent surgery (13.9 ± 1.27 days). Transcriptional biomarkers were evaluated in patient-matched OSCCs and non-involved high at-risk mucosa (HARM) for BRB-associated changes. Significant expression differences between baseline OSCC and HARM tissues were confirmed using a panel of genes commonly deregulated during oral carcinogenesis. Following BRB troche administration, the expression of pro-survival genes (AURKA, BIRC5, EGFR) and pro-inflammatory genes (NFKB1, PTGS2) were significantly reduced. There were no BRB-associated Grade 3–4 toxicities or adverse events and 79.2% (N = 30) of patients successfully completed the study with high levels of compliance (97.2%). The BRB phytochemicals cyanidin-3-rutinoside and cyanidin-3-xylosylrutinoside were detected in all OSCC tissues analyzed, demonstrating that bioactive components were successfully reaching targeted OSCC tissues. We confirmed that hallmark anti-apoptotic and pro-inflammatory molecular biomarkers were over-expressed in OSCCs and that their gene expression was significantly reduced following BRB troche administration. Since these molecular biomarkers are fundamental to oral carcinogenesis and are modifiable, they may represent emerging biomarkers of molecular efficacy for BRB-mediated oral cancer chemoprevention. PMID:26701664

  15. Glucocorticoid-induced reversal of interleukin-1β-stimulated inflammatory gene expression in human oviductal cells.

    Directory of Open Access Journals (Sweden)

    Stéphanie Backman

    Full Text Available Studies indicate that high-grade serous ovarian carcinoma (HGSOC, the most common epithelial ovarian carcinoma histotype, originates from the fallopian tube epithelium (FTE. Risk factors for this cancer include reproductive parameters associated with lifetime ovulatory events. Ovulation is an acute inflammatory process during which the FTE is exposed to follicular fluid containing both pro- and anti-inflammatory molecules, such as interleukin-1 (IL1, tumor necrosis factor (TNF, and cortisol. Repeated exposure to inflammatory cytokines may contribute to transforming events in the FTE, with glucocorticoids exerting a protective effect. The global response of FTE cells to inflammatory cytokines or glucocorticoids has not been investigated. To examine the response of FTE cells and the ability of glucocorticoids to oppose this response, an immortalized human FTE cell line, OE-E6/E7, was treated with IL1β, dexamethasone (DEX, IL1β and DEX, or vehicle and genome-wide gene expression profiling was performed. IL1β altered the expression of 47 genes of which 17 were reversed by DEX. DEX treatment alone altered the expression of 590 genes, whereas combined DEX and IL1β treatment altered the expression of 784 genes. Network and pathway enrichment analysis indicated that many genes altered by DEX are involved in cytokine, chemokine, and cell cycle signaling, including NFκΒ target genes and interacting proteins. Quantitative real time RT-PCR studies validated the gene array data for IL8, IL23A, PI3 and TACC2 in OE-E6/E7 cells. Consistent with the array data, Western blot analysis showed increased levels of PTGS2 protein induced by IL1β that was blocked by DEX. A parallel experiment using primary cultured human FTE cells indicated similar effects on PTGS2, IL8, IL23A, PI3 and TACC2 transcripts. These findings support the hypothesis that pro-inflammatory signaling is induced in FTE cells by inflammatory mediators and raises the possibility that

  16. The truncated splice variant of peroxisome proliferator-activated receptor alpha, PPARα-tr, autonomously regulates proliferative and pro-inflammatory genes

    International Nuclear Information System (INIS)

    Thomas, Maria; Bayha, Christine; Klein, Kathrin; Müller, Simon; Weiss, Thomas S.; Schwab, Matthias; Zanger, Ulrich M.

    2015-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) controls lipid/energy homeostasis and inflammatory responses. The truncated splice variant PPARα-tr was suggested to exert a dominant negative function despite being unable to bind consensus PPARα DNA response elements. The distribution and variability factor of each PPARα variant were assessed in the well-characterized cohort of human liver samples (N = 150) on the mRNA and protein levels. Specific siRNA-mediated downregulation of each transcript as well as specific overexpression with subsequent qRT-PCR analysis of downstream genes was used for investigation of specific functional roles of PPARα-wt and PPARα-tr forms in primary human hepatocytes. Bioinformatic analyses of genome-wide liver expression profiling data suggested a possible role of PPARα-tr in downregulating proliferative and pro-inflammatory genes. Specific gene silencing of both forms in primary human hepatocytes showed that induction of metabolic PPARα-target genes by agonist WY14,643 was prevented by PPARα-wt knock-down but neither prevented nor augmented by PPARα-tr knock-down. WY14,643 treatment did not induce proliferative genes including MYC, CDK1, and PCNA, and knock-down of PPARα-wt had no effect, while PPARα-tr knock-down caused up to 3-fold induction of these genes. Similarly, induction of pro-inflammatory genes IL1B, PTGS2, and CCL2 by IL-6 was augmented by knock-down of PPARα-tr but not of PPARα-wt. In contrast to human proliferative genes, orthologous mouse genes were readily inducible by WY14,643 in PPARα-tr non-expressing AML12 mouse hepatocytes. Induction was augmented by overexpression of PPARα-wt and attenuated by overexpression of PPARα-tr. Pro-inflammatory genes including IL-1β, CCL2 and TNFα were induced by WY14,643 in mouse and human cells and both PPARα forms attenuated induction. As potential mechanism of PPARα-tr inhibitory action we suggest crosstalk with WNT/β-catenin pathway. Finally

  17. Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung

    International Nuclear Information System (INIS)

    Ruebe, C.E.; Wilfert, F.; Palm, J.; Burdak-Rothkamm, S.; Ruebe, C.; Koenig, J.; Liu Li; Schuck, A.; Willich, N.

    2004-01-01

    Background and purpose: the precise pathophysiological mechanisms of radiation-induced lung injury are poorly understood, but have been shown to correlate with dysregulation of different cytokines. The purpose of this study was to evaluate the time course of the pro-inflammatory cytokines tumor necrosis factor-(TNF-)α, interleukin-(IL)-1α and IL-6 after whole-lung irradiation. Material and methods: the thoraces of C57BL/6J mice were irradiated with 12 Gy. Treated and control mice were sacrificed at 0.5, 1, 3, 6, 12, 24, 48, 72 h, 1, 2, 4, 8, 16, and 24 weeks post irradiation (p.i.). Real-time multiplex RT-PCR (reverse transcriptase polmyerase chain reaction) was established to evaluate the expression of TNF-α, IL-1α and IL-6 in the lung tissue of the mice. For histological analysis, lung tissue sections were stained by hematoxylin and eosin. Results: multiplex RT-PCR analysis revealed a biphasic expression of these pro-inflammatory cytokines in the lung tissue after irradiation. After an initial increase at 1 h p.i. for TNF-α and at 6 h p.i. for IL-1α and IL-6, the mRNA expression of these pro-inflammatory cytokines returned to basal levels (48 h, 72 h, 1 week, 2 weeks p.i.). During the pneumonic phase, TNF-α, IL-1α and IL-6 were significantly elevated and revealed their maximum at 8 weeks p.i. Histopathologic evaluation of the lung sections obtained within 4 weeks p.i. revealed only minor lung damage in 5-30% of the lung tissue. By contrast, at 8, 16, and 24 weeks p.i., 70-90% of the lung tissue revealed histopathologically detectable organizing alveolitis. Conclusion: irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung. The initial transitory cytokine response occurred within the first hours after lung irradiation with no detectable histopathologic alterations. The second, more persistent cytokine elevation coincided with the onset of histologically discernible organizing acute pneumonitis. (orig.)

  18. Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Ruebe, C.E.; Wilfert, F.; Palm, J.; Burdak-Rothkamm, S.; Ruebe, C. [Dept. of Radiotherapy - Radiooncology, Saarland Univ., Homburg/Saar (Germany); Koenig, J. [Inst. of Medical Biometrics, Epidemiology and Medical Informatics, Saarland Univ., Homburg/Saar (Germany); Liu Li [Dept. of Radiotherapy - Radiooncology, Saarland Univ., Homburg/Saar (Germany); Cancer Center, Union Hospital Tongji Medical Coll., Huazhong Univ. of Science and Technology, Wuhan (China); Schuck, A.; Willich, N. [Dept. of Radiotherapy - Radiooncology, Univ. of Muenster (Germany)

    2004-07-01

    Background and purpose: the precise pathophysiological mechanisms of radiation-induced lung injury are poorly understood, but have been shown to correlate with dysregulation of different cytokines. The purpose of this study was to evaluate the time course of the pro-inflammatory cytokines tumor necrosis factor-(TNF-){alpha}, interleukin-(IL)-1{alpha} and IL-6 after whole-lung irradiation. Material and methods: the thoraces of C57BL/6J mice were irradiated with 12 Gy. Treated and control mice were sacrificed at 0.5, 1, 3, 6, 12, 24, 48, 72 h, 1, 2, 4, 8, 16, and 24 weeks post irradiation (p.i.). Real-time multiplex RT-PCR (reverse transcriptase polmyerase chain reaction) was established to evaluate the expression of TNF-{alpha}, IL-1{alpha} and IL-6 in the lung tissue of the mice. For histological analysis, lung tissue sections were stained by hematoxylin and eosin. Results: multiplex RT-PCR analysis revealed a biphasic expression of these pro-inflammatory cytokines in the lung tissue after irradiation. After an initial increase at 1 h p.i. for TNF-{alpha} and at 6 h p.i. for IL-1{alpha} and IL-6, the mRNA expression of these pro-inflammatory cytokines returned to basal levels (48 h, 72 h, 1 week, 2 weeks p.i.). During the pneumonic phase, TNF-{alpha}, IL-1{alpha} and IL-6 were significantly elevated and revealed their maximum at 8 weeks p.i. Histopathologic evaluation of the lung sections obtained within 4 weeks p.i. revealed only minor lung damage in 5-30% of the lung tissue. By contrast, at 8, 16, and 24 weeks p.i., 70-90% of the lung tissue revealed histopathologically detectable organizing alveolitis. Conclusion: irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung. The initial transitory cytokine response occurred within the first hours after lung irradiation with no detectable histopathologic alterations. The second, more persistent cytokine elevation coincided with the onset of histologically discernible organizing acute

  19. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    International Nuclear Information System (INIS)

    Taylor, Cormac T.; Kent, Brian D.; Crinion, Sophie J.; McNicholas, Walter T.; Ryan, Silke

    2014-01-01

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmented inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key

  20. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Cormac T. [School of Medicine and Medical Science, The Conway Institute, University College Dublin (Ireland); Kent, Brian D.; Crinion, Sophie J.; McNicholas, Walter T. [School of Medicine and Medical Science, The Conway Institute, University College Dublin (Ireland); Pulmonary and Sleep Disorders Unit, St. Vincent’s University Hospital, Dublin (Ireland); Ryan, Silke, E-mail: silke.ryan@ucd.ie [School of Medicine and Medical Science, The Conway Institute, University College Dublin (Ireland); Pulmonary and Sleep Disorders Unit, St. Vincent’s University Hospital, Dublin (Ireland)

    2014-05-16

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmented inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key

  1. Muscle contractures in patients with cerebral palsy and acquired brain injury are associated with extracellular matrix expansion, pro-inflammatory gene expression, and reduced rRNA synthesis.

    Science.gov (United States)

    von Walden, Ferdinand; Gantelius, Stefan; Liu, Chang; Borgström, Hanna; Björk, Lars; Gremark, Ola; Stål, Per; Nader, Gustavo A; Pontén, Eva

    2018-03-23

    Children with cerebral palsy (CP) and acquired brain injury (ABI) commonly develop muscle contractures with advancing age. An underlying growth defect contributing to skeletal muscle contracture formation in CP/ABI has been suggested. The biceps muscles of children and adolescents with CP/ABI (n=20) and typically developing controls (n=10) were investigated. We used immunohistochemistry, qRT-PCR and western blotting to assess gene expression relevant to growth and size homeostasis. Classical pro-inflammatory cytokines and genes involved in extracellular matrix production were elevated in skeletal muscle of children with CP/ABI. Intramuscular collagen content was increased and satellite cell number decreased and this was associated with reduced levels of RNA polymerase (POL) I transcription factors, 45s pre-rRNA and 28S rRNA. The present study provides novel data suggesting a role for pro-inflammatory cytokines and reduced ribosomal production in the development/maintenance of muscle contractures; possibly underlying stunted growth and perimysial extracellular matrix expansion. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  2. Effects of dietary polyphenol-rich plant products from grape or hop on pro-inflammatory gene expression in the intestine, nutrient digestibility and faecal microbiota of weaned pigs.

    Science.gov (United States)

    Fiesel, Anja; Gessner, Denise K; Most, Erika; Eder, Klaus

    2014-09-04

    Feeding polyphenol-rich plant products has been shown to increase the gain:feed ratio in growing pigs. The reason for this finding has not yet been elucidated. In order to find the reasons for an increase of the gain:feed ratio, this study investigated the effect of two polyphenol-rich dietary supplements, grape seed and grape marc meal extract (GSGME) or spent hops (SH), on gut morphology, apparent digestibility of nutrients, microbial composition in faeces and the expression of pro-inflammatory genes in the intestine of pigs. Pigs fed GSGME or SH showed an improved gain:feed ratio in comparison to the control group (P value, lower levels of volatile fatty acids and lower counts of Streptococcus spp. and Clostridium Cluster XIVa in the faecal microbiota (P pro-inflammatory genes in duodenum, ileum and colon than the control group (P present study suggests that dietary plant products rich in polyphenols are able to improve the gain:feed ratio in growing pigs. It is assumed that an alteration in the microbial composition and anti-inflammatory effects of the polyphenol-rich plant products in the intestine might contribute to this effect.

  3. Adherent Human Alveolar Macrophages Exhibit a Transient Pro-Inflammatory Profile That Confounds Responses to Innate Immune Stimulation

    Science.gov (United States)

    Tomlinson, Gillian S.; Booth, Helen; Petit, Sarah J.; Potton, Elspeth; Towers, Greg J.; Miller, Robert F.; Chain, Benjamin M.; Noursadeghi, Mahdad

    2012-01-01

    Alveolar macrophages (AM) are thought to have a key role in the immunopathogenesis of respiratory diseases. We sought to test the hypothesis that human AM exhibit an anti-inflammatory bias by making genome-wide comparisons with monocyte derived macrophages (MDM). Adherent AM obtained by bronchoalveolar lavage of patients under investigation for haemoptysis, but found to have no respiratory pathology, were compared to MDM from healthy volunteers by whole genome transcriptional profiling before and after innate immune stimulation. We found that freshly isolated AM exhibited a marked pro-inflammatory transcriptional signature. High levels of basal pro-inflammatory gene expression gave the impression of attenuated responses to lipopolysaccharide (LPS) and the RNA analogue, poly IC, but in rested cells pro-inflammatory gene expression declined and transcriptional responsiveness to these stimuli was restored. In comparison to MDM, both freshly isolated and rested AM showed upregulation of MHC class II molecules. In most experimental paradigms ex vivo adherent AM are used immediately after isolation. Therefore, the confounding effects of their pro-inflammatory profile at baseline need careful consideration. Moreover, despite the prevailing view that AM have an anti-inflammatory bias, our data clearly show that they can adopt a striking pro-inflammatory phenotype, and may have greater capacity for presentation of exogenous antigens than MDM. PMID:22768282

  4. Real-time gene expression analysis in carp (Cyprinus carpio) skin: inflammatory responses to injury mimicking infection with ectoparasites

    NARCIS (Netherlands)

    Gonzalez, S.F.; Huising, M.O.; Stakauska, R.; Forlenza, M.; Verburg-van Kemenade, B.M.L.; Buchmann, K.; Nielsen, M.E.; Wiegertjes, G.F.

    2007-01-01

    We studied a predictive model of gene expression induced by mechanical injury of fish skin, to resolve the confounding effects on the immune system induced by injury and skin parasite-specific molecules. We applied real time quantitative PCR (RQ-PCR) to measure the expression of the pro-inflammatory

  5. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation

    Directory of Open Access Journals (Sweden)

    MI Oliveira

    2012-07-01

    Full Text Available Macrophages and dendritic cells (DC share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch, with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration.

  6. A novel pleiotropic effect of aspirin: Beneficial regulation of pro- and anti-inflammatory mechanisms in microglial cells.

    Science.gov (United States)

    Kata, Diana; Földesi, Imre; Feher, Liliana Z; Hackler, Laszlo; Puskas, Laszlo G; Gulya, Karoly

    2017-06-01

    Aspirin, one of the most widely used non-steroidal anti-inflammatory drugs, has extensively studied effects on the cardiovascular system. To reveal further pleiotropic, beneficial effects of aspirin on a number of pro- and anti-inflammatory microglial mechanisms, we performed morphometric and functional studies relating to phagocytosis, pro- and anti-inflammatory cytokine production (IL-1β, tumor necrosis factor-α (TNF-α) and IL-10, respectively) and analyzed the expression of a number of inflammation-related genes, including those related to the above functions, in pure microglial cells. We examined the effects of aspirin (0.1mM and 1mM) in unchallenged (control) and bacterial lipopolysaccharide (LPS)-challenged secondary microglial cultures. Aspirin affected microglial morphology and functions in a dose-dependent manner as it inhibited LPS-elicited microglial activation by promoting ramification and the inhibition of phagocytosis in both concentrations. Remarkably, aspirin strongly reduced the pro-inflammatory IL-1β and TNF-α production, while it increased the anti-inflammatory IL-10 level in LPS-challenged cells. Moreover, aspirin differentially regulated the expression of a number of inflammation-related genes as it downregulated such pro-inflammatory genes as Nos2, Kng1, IL1β, Ptgs2 or Ccr1, while it upregulated some anti-inflammatory genes such as IL10, Csf2, Cxcl1, Ccl5 or Tgfb1. Thus, the use of aspirin could be beneficial for the prophylaxis of certain neurodegenerative disorders as it effectively ameliorates inflammation in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. TLR4 Gene Expression and Pro-Inflammatory Cytokines in Alzheimer's Disease and in Response to Hippocampal Deafferentation in Rodents.

    Science.gov (United States)

    Miron, Justin; Picard, Cynthia; Frappier, Josée; Dea, Doris; Théroux, Louise; Poirier, Judes

    2018-01-01

    One important aspect in Alzheimer's disease pathology is the presence of chronic inflammation. Considering its role as a key receptor in the microglial innate immune system, TLR4 was shown to regulate the binding and phagocytosis of amyloid plaques by microglia in several mouse models of amyloidosis, as well as the production of pro-inflammatory cytokines. To our knowledge, TLR4 and its association with cytokines have not been thoroughly examined in the brains of subjects affected with Alzheimer's disease. Using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in postmortem human brains, we observed increased expression for the TLR4 and TNF genes (p = 0.001 and p = 0.025, respectively), as well as a trend for higher IL6 gene expression in the frontal cortex of AD subjects when compared to age-matched controls. Similarly, using a mouse model of hippocampal deafferentation without amyloidosis, (i.e., the entorhinal cortex lesioned mouse), we observed significant increases in the expression of both the Tlr4 (p = 0.0367 and p = 0.0193 compared to sham-lesioned mice or to the contralateral side, respectively) and Il1b (p = 0.0055 and p = 0.0066 compared to sham-lesioned mice or to the contralateral side, respectively) genes in the deafferentation phase, but not during the ensuing reinnervation process. In conclusion, we suggest that the modulation of cytokines by TLR4 is differentially regulated whether by the presence of amyloid plaques or by the ongoing deafferentation process.

  8. Tumor necrosis factor-alpha activates signal transduction in hypothalamus and modulates the expression of pro-inflammatory proteins and orexigenic/anorexigenic neurotransmitters.

    Science.gov (United States)

    Amaral, Maria E; Barbuio, Raquel; Milanski, Marciane; Romanatto, Talita; Barbosa, Helena C; Nadruz, Wilson; Bertolo, Manoel B; Boschero, Antonio C; Saad, Mario J A; Franchini, Kleber G; Velloso, Licio A

    2006-07-01

    Tumor necrosis factor-alpha (TNF-alpha) is known to participate in the wastage syndrome that accompanies cancer and severe infectious diseases. More recently, a role for TNF-alpha in the pathogenesis of type 2 diabetes mellitus and obesity has been shown. Much of the regulatory action exerted by TNF-alpha upon the control of energy stores depends on its action on the hypothalamus. In this study, we show that TNF-alpha activates canonical pro-inflammatory signal transduction pathways in the hypothalamus of rats. These signaling events lead to the transcriptional activation of an early responsive gene and to the induction of expression of cytokines and a cytokine responsive protein such as interleukin-1beta, interleukin-6, interleukin-10 and suppressor of cytokine signalling-3, respectively. In addition, TNF-alpha induces the expression of neurotransmitters involved in the control of feeding and thermogenesis. Thus, TNF-alpha may act directly in the hypothalamus inducing a pro-inflammatory response and the modulation of expression of neurotransmitters involved in energy homeostasis.

  9. Real-time gene expression analysis in carp (Cyprinus carpio L.) skin: Inflammatory responses to injury mimicking infection with ectoparasites

    NARCIS (Netherlands)

    Gonzalez, S.F.; Huising, M.O.; Stakauskas, R.; Forlenza, M.; Verburg-van Kemenade, B.M.L.; Buchmann, K.; Nielsen, M.E.; Wiegertjes, G.F.

    2007-01-01

    We studied a predictive model of gene expression induced by mechanical injury of fish skin, to resolve the confounding effects on the immune system induced by injury and skin parasite-specific molecules. We applied real time quantitative PCR (RQ-PCR) to measure the expression of the pro-inflammatory

  10. Gene Expression Profiling of Human Vaginal Cells In Vitro Discriminates Compounds with Pro-Inflammatory and Mucosa-Altering Properties: Novel Biomarkers for Preclinical Testing of HIV Microbicide Candidates.

    Directory of Open Access Journals (Sweden)

    Irina A Zalenskaya

    Full Text Available Inflammation and immune activation of the cervicovaginal mucosa are considered factors that increase susceptibility to HIV infection. Therefore, it is essential to screen candidate anti-HIV microbicides for potential mucosal immunomodulatory/inflammatory effects prior to further clinical development. The goal of this study was to develop an in vitro method for preclinical evaluation of the inflammatory potential of new candidate microbicides using a microarray gene expression profiling strategy.To this end, we compared transcriptomes of human vaginal cells (Vk2/E6E7 treated with well-characterized pro-inflammatory (PIC and non-inflammatory (NIC compounds. PICs included compounds with different mechanisms of action. Gene expression was analyzed using Affymetrix U133 Plus 2 arrays. Data processing was performed using GeneSpring 11.5 (Agilent Technologies, Santa Clara, CA.Microarraray comparative analysis allowed us to generate a panel of 20 genes that were consistently deregulated by PICs compared to NICs, thus distinguishing between these two groups. Functional analysis mapped 14 of these genes to immune and inflammatory responses. This was confirmed by the fact that PICs induced NFkB pathway activation in Vk2 cells. By testing microbicide candidates previously characterized in clinical trials we demonstrated that the selected PIC-associated genes properly identified compounds with mucosa-altering effects. The discriminatory power of these genes was further demonstrated after culturing vaginal cells with vaginal bacteria. Prevotella bivia, prevalent bacteria in the disturbed microbiota of bacterial vaginosis, induced strong upregulation of seven selected PIC-associated genes, while a commensal Lactobacillus gasseri associated to vaginal health did not cause any changes.In vitro evaluation of the immunoinflammatory potential of microbicides using the PIC-associated genes defined in this study could help in the initial screening of candidates prior

  11. Childhood and later life stressors and increased inflammatory gene expression at older ages.

    Science.gov (United States)

    Levine, M E; Cole, S W; Weir, D R; Crimmins, E M

    2015-04-01

    Adverse experiences in early life have the ability to "get under the skin" and affect future health. This study examined the relative influence of adversities during childhood and adulthood in accounting for individual differences in pro-inflammatory gene expression in late life. Using a pilot-sample from the Health and Retirement Study (N = 114) aged from 51 to 95, OLS regression models were run to determine the association between a composite score from three proinflammatory gene expression levels (PTGS2, ILIB, and IL8) and 1) childhood trauma, 2) childhood SES, 3) childhood health, 4) adult traumas, and 5) low SES in adulthood. Our results showed that only childhood trauma was found to be associated with increased inflammatory transcription in late life. Furthermore, examination of interaction effects showed that childhood trauma exacerbated the influence of low SES in adulthood on elevated levels of inflammatory gene expression-signifying that having low SES in adulthood was most damaging for persons who had experienced traumatic events during their childhood. Overall our study suggests that traumas experienced during childhood may alter the stress response, leading to more sensitive reactivity throughout the lifespan. As a result, individuals who experienced greater adversity in early life may be at higher risk of late life health outcomes, particularly if adulthood adversity related to SES persists. Copyright © 2015. Published by Elsevier Ltd.

  12. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    International Nuclear Information System (INIS)

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana; Klegeris, Andis; Little, Jonathan P.

    2014-01-01

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes

  13. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana [School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC (Canada); Klegeris, Andis [Department of Biology, University of British Columbia Okanagan, Kelowna, BC (Canada); Little, Jonathan P., E-mail: jonathan.little@ubc.ca [School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC (Canada)

    2014-03-28

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.

  14. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics

    Science.gov (United States)

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Fontana, Luis; Gil, Angel

    2014-01-01

    interleukins and lead mainly to an anti-inflammatory response in cultured enterocytes. In addition, the interaction of commensal bacteria and probiotics with the surface of antigen-presenting cells in vitro results in the downregulation of pro-inflammatory genes that are linked to inflammatory signaling pathways, whereas other anti-inflammatory genes are upregulated. The effects of probiotics have been extensively investigated in animal models ranging from fish to mice, rats and piglets. These bacteria induce a tolerogenic and hyporesponsive immune response in which many genes that are related to the immune system, in particular those genes expressing anti-inflammatory cytokines, are upregulated. By contrast, information related to gene expression in human intestinal cells mediated by the action of probiotics is scarce. There is a need for further clinical studies that evaluate the mechanism of action of probiotics both in healthy humans and in patients with chronic diseases. These types of clinical studies are necessary for addressing the influence of these microorganisms in gene expression for different pathways, particularly those that are associated with the immune response, and to better understand the role that probiotics might have in the prevention and treatment of disease. PMID:25400447

  15. Activation of AMPK in human fetal membranes alleviates infection-induced expression of pro-inflammatory and pro-labour mediators.

    Science.gov (United States)

    Lim, R; Barker, G; Lappas, M

    2015-04-01

    In non-gestational tissues, the activation of adenosine monophosphate (AMP)-activated kinase (AMPK) is associated with potent anti-inflammatory actions. Infection and/or inflammation, by stimulating pro-inflammatory cytokines and matrix metalloproteinase (MMP)-9, play a central role in the rupture of fetal membranes. However, no studies have examined the role of AMPK in human labour. Fetal membranes, from term and preterm, were obtained from non-labouring and labouring women, and after preterm pre-labour rupture of membranes (PPROM). AMPK activity was assessed by Western blotting of phosphorylated AMPK expression. To determine the effect of AMPK activators on pro-inflammatory cytokines, fetal membranes were pre-treated with AMPK activators then stimulated with bacterial products LPS and flagellin or viral dsDNA analogue poly(I:C). Primary amnion cells were used to determine the effect of AMPK activators on IL-1β-stimulated MMP-9 expression. AMPK activity was decreased with term labour. There was no effect of preterm labour. AMPK activity was also decreased in preterm fetal membranes, in the absence of labour, with PROM compared to intact membranes. AMPK activators AICAR, phenformin and A769662 significantly decreased IL-6 and IL-8 stimulated by LPS, flagellin and poly(I:C). Primary amnion cells treated with AMPK activators significantly decreased IL-1β-induced MMP-9 expression. The decrease in AMPK activity in fetal membranes after spontaneous term labour and PPROM indicates an anti-inflammatory role for AMPK in human labour and delivery. The use of AMPK activators as possible therapeutics for threatened preterm labour would be an exciting future avenue of research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. c-Myc is essential to prevent endothelial pro-inflammatory senescent phenotype.

    Directory of Open Access Journals (Sweden)

    Victoria Florea

    Full Text Available The proto-oncogene c-Myc is vital for vascular development and promotes tumor angiogenesis, but the mechanisms by which it controls blood vessel growth remain unclear. In the present work we investigated the effects of c-Myc knockdown in endothelial cell functions essential for angiogenesis to define its role in the vasculature. We provide the first evidence that reduction in c-Myc expression in endothelial cells leads to a pro-inflammatory senescent phenotype, features typically observed during vascular aging and pathologies associated with endothelial dysfunction. c-Myc knockdown in human umbilical vein endothelial cells using lentivirus expressing specific anti-c-Myc shRNA reduced proliferation and tube formation. These functional defects were associated with morphological changes, increase in senescence-associated-β-galactosidase activity, upregulation of cell cycle inhibitors and accumulation of c-Myc-deficient cells in G1-phase, indicating that c-Myc knockdown in endothelial cells induces senescence. Gene expression analysis of c-Myc-deficient endothelial cells showed that senescent phenotype was accompanied by significant upregulation of growth factors, adhesion molecules, extracellular-matrix components and remodeling proteins, and a cluster of pro-inflammatory mediators, which include Angptl4, Cxcl12, Mdk, Tgfb2 and Tnfsf15. At the peak of expression of these cytokines, transcription factors known to be involved in growth control (E2f1, Id1 and Myb were downregulated, while those involved in inflammatory responses (RelB, Stat1, Stat2 and Stat4 were upregulated. Our results demonstrate a novel role for c-Myc in the prevention of vascular pro-inflammatory phenotype, supporting an important physiological function as a central regulator of inflammation and endothelial dysfunction.

  17. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Directory of Open Access Journals (Sweden)

    Tongfang Tang

    Full Text Available BACKGROUND: Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD through alternation of liver innate immune response. AIMS: The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. METHODS: Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. RESULTS: High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4 expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. CONCLUSION: High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  18. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Science.gov (United States)

    Tang, Tongfang; Sui, Yongheng; Lian, Min; Li, Zhiping; Hua, Jing

    2013-01-01

    Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response. The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  19. Gene-gene, gene-environment, gene-nutrient interactions and single nucleotide polymorphisms of inflammatory cytokines.

    Science.gov (United States)

    Nadeem, Amina; Mumtaz, Sadaf; Naveed, Abdul Khaliq; Aslam, Muhammad; Siddiqui, Arif; Lodhi, Ghulam Mustafa; Ahmad, Tausif

    2015-05-15

    Inflammation plays a significant role in the etiology of type 2 diabetes mellitus (T2DM). The rise in the pro-inflammatory cytokines is the essential step in glucotoxicity and lipotoxicity induced mitochondrial injury, oxidative stress and beta cell apoptosis in T2DM. Among the recognized markers are interleukin (IL)-6, IL-1, IL-10, IL-18, tissue necrosis factor-alpha (TNF-α), C-reactive protein, resistin, adiponectin, tissue plasminogen activator, fibrinogen and heptoglobins. Diabetes mellitus has firm genetic and very strong environmental influence; exhibiting a polygenic mode of inheritance. Many single nucleotide polymorphisms (SNPs) in various genes including those of pro and anti-inflammatory cytokines have been reported as a risk for T2DM. Not all the SNPs have been confirmed by unifying results in different studies and wide variations have been reported in various ethnic groups. The inter-ethnic variations can be explained by the fact that gene expression may be regulated by gene-gene, gene-environment and gene-nutrient interactions. This review highlights the impact of these interactions on determining the role of single nucleotide polymorphism of IL-6, TNF-α, resistin and adiponectin in pathogenesis of T2DM.

  20. Upregulation of inflammatory genes and downregulation of sclerostin gene expression are key elements in the early phase of fragility fracture healing.

    Directory of Open Access Journals (Sweden)

    Joana Caetano-Lopes

    Full Text Available BACKGROUND: Fracture healing is orchestrated by a specific set of events that culminates in the repair of bone and reachievement of its biomechanical properties. The aim of our work was to study the sequence of gene expression events involved in inflammation and bone remodeling occurring in the early phases of callus formation in osteoporotic patients. METHODOLOGY/PRINCIPAL FINDINGS: Fifty-six patients submitted to hip replacement surgery after a low-energy hip fracture were enrolled in this study. The patients were grouped according to the time interval between fracture and surgery: bone collected within 3 days after fracture (n = 13; between the 4(th and 7(th day (n = 33; and after one week from the fracture (n = 10. Inflammation- and bone metabolism-related genes were assessed at the fracture site. The expression of pro-inflammatory cytokines was increased in the first days after fracture. The genes responsible for bone formation and resorption were upregulated one week after fracture. The increase in RANKL expression occurred just before that, between the 4(th-7(th days after fracture. Sclerostin expression diminished during the first days after fracture. CONCLUSIONS: The expression of inflammation-related genes, especially IL-6, is highest at the very first days after fracture but from day 4 onwards there is a shift towards bone remodeling genes, suggesting that the inflammatory phase triggers bone healing. We propose that an initial inflammatory stimulus and a decrease in sclerostin-related effects are the key components in fracture healing. In osteoporotic patients, cellular machinery seems to adequately react to the inflammatory stimulus, therefore local promotion of these events might constitute a promising medical intervention to accelerate fracture healing.

  1. Pro-inflammatory stimulation of meniscus cells increases production of matrix metalloproteinases and additional catabolic factors involved in osteoarthritis pathogenesis

    Science.gov (United States)

    Stone, Austin V.; Loeser, Richard F.; Vanderman, Kadie S.; Long, David L.; Clark, Stephanie C.; Ferguson, Cristin M.

    2014-01-01

    Objective Meniscus injury increases the risk of osteoarthritis; however, the biologic mechanism remains unknown. We hypothesized that pro-inflammatory stimulation of meniscus would increase production of matrix-degrading enzymes, cytokines and chemokines which cause joint tissue destruction and could contribute to osteoarthritis development. Design Meniscus and cartilage tissue from healthy tissue donors and total knee arthroplasties was cultured. Primary cell cultures were stimulated with pro-inflammatory factors [IL-1β, IL-6, or fibronectin fragments (FnF)] and cellular responses were analyzed by real-time PCR, protein arrays and immunoblots. To determine if NF-κB was required for MMP production, meniscus cultures were treated with inflammatory factors with and without the NF-κB inhibitor, hypoestoxide. Results Normal and osteoarthritic meniscus cells increased their MMP secretion in response to stimulation, but specific patterns emerged that were unique to each stimulus with the greatest number of MMPs expressed in response to FnF. Meniscus collagen and connective tissue growth factor gene expression was reduced. Expression of cytokines (IL-1α, IL-1β, IL-6), chemokines (IL-8, CXCL1, CXCL2, CSF1) and components of the NF-κB and tumor necrosis factor (TNF) family were significantly increased. Cytokine and chemokine protein production was also increased by stimulation. When primary cell cultures were treated with hypoestoxide in conjunction with pro-inflammatory stimulation, p65 activation was reduced as were MMP-1 and MMP-3 production. Conclusions Pro-inflammatory stimulation of meniscus cells increased matrix metalloproteinase production and catabolic gene expression. The meniscus could have an active biologic role in osteoarthritis development following joint injury through increased production of cytokines, chemokines, and matrix-degrading enzymes. PMID:24315792

  2. Personality and gene expression: Do individual differences exist in the leukocyte transcriptome?

    Science.gov (United States)

    Vedhara, Kavita; Gill, Sana; Eldesouky, Lameese; Campbell, Bruce K; Arevalo, Jesusa M G; Ma, Jeffrey; Cole, Steven W

    2015-02-01

    The temporal and situational stability of personality has led generations of researchers to hypothesize that personality may have enduring effects on health, but the biological mechanisms of such relationships remain poorly understood. In the present study, we utilized a functional genomics approach to examine the relationship between the 5 major dimensions of personality and patterns of gene expression as predicted by 'behavioural immune response' theory. We specifically focussed on two sets of genes previously linked to stress, threat, and adverse socio-environmental conditions: pro-inflammatory genes and genes involved in Type I interferon and antibody responses. An opportunity sample of 121 healthy individuals was recruited (86 females; mean age 24 years). Individuals completed a validated measure of personality; questions relating to current health behaviours; and provided a 5ml sample of peripheral blood for gene expression analysis. Extraversion was associated with increased expression of pro-inflammatory genes and Conscientiousness was associated with reduced expression of pro-inflammatory genes. Both associations were independent of health behaviours, negative affect, and leukocyte subset distributions. Antiviral and antibody-related gene expression was not associated with any personality dimension. The present data shed new light on the long-observed epidemiological associations between personality, physical health, and human longevity. Further research is required to elucidate the biological mechanisms underlying these associations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Fluoride exposure abates pro-inflammatory response and induces in vivo apoptosis rendering zebrafish (Danio rerio) susceptible to bacterial infections.

    Science.gov (United States)

    Singh, Rashmi; Khatri, Preeti; Srivastava, Nidhi; Jain, Shruti; Brahmachari, Vani; Mukhopadhyay, Asish; Mazumder, Shibnath

    2017-04-01

    The present study describes the immunotoxic effect of chronic fluoride exposure on adult zebrafish (Danio rerio). Zebrafish were exposed to fluoride (71.12 mg/L; 1/10 LC 50 ) for 30 d and the expression of selected genes studied. We observed significant elevation in the detoxification pathway gene cyp1a suggesting chronic exposure to non-lethal concentration of fluoride is indeed toxic to fish. Fluoride mediated pro-oxidative stress is implicated with the downregulation in superoxide dismutase 1 and 2 (sod1/2) genes. Fluoride affected DNA repair machinery by abrogating the expression of the DNA repair gene rad51 and growth arrest and DNA damage inducible beta a gene gadd45ba. The upregulated expression of casp3a coupled with altered Bcl-2 associated X protein/B-cell lymphoma 2 ratio (baxa/bcl2a) clearly suggested chronic fluoride exposure induced the apoptotic cascade in zebrafish. Fluoride-exposed zebrafish when challenged with non-lethal dose of fish pathogen A. hydrophila revealed gross histopathology in spleen, bacterial persistence and significant mortality. We report that fluoride interferes with system-level output of pro-inflammatory cytokines tumour necrosis factor-α, interleukin-1β and interferon-γ, as a consequence, bacteria replicate efficiently causing significant fish mortality. We conclude, chronic fluoride exposure impairs the redox balance, affects DNA repair machinery with pro-apoptotic implications and suppresses pro-inflammatory cytokines expression abrogating host immunity to bacterial infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Macrophage Expression of Inflammatory Genes in Response to EMCV Infection

    Directory of Open Access Journals (Sweden)

    Zachary R. Shaheen

    2015-08-01

    Full Text Available The expression and production of type 1 interferon is the classic cellular response to virus infection. In addition to this antiviral response, virus infection also stimulates the production of proinflammatory mediators. In this review, the pathways controlling the induction of inflammatory genes and the roles that these inflammatory mediators contribute to host defense against viral pathogens will be discussed. Specific focus will be on the role of the chemokine receptor CCR5, as a signaling receptor controlling the activation of pathways leading to virus-induced inflammatory gene expression.

  5. Ultraviolet Radiation and the Slug Transcription Factor Induce Pro inflammatory and Immunomodulatory Mediator Expression in Melanocytes

    International Nuclear Information System (INIS)

    Shirley, S. H.; Kusewitt, D. F.; Grimm, E. A.

    2012-01-01

    Despite extensive investigation, the precise contribution of the ultraviolet radiation (UVR) component of sunlight to melanoma etiology remains unclear. UVR induces keratinocytes to secrete pro inflammatory and immunomodulatory mediators that promote inflammation and skin tumor development; expression of the slug transcription factor in keratinocytes is required for maximal production of these mediators. In the present studies we examined the possibility that UVR-exposed melanocytes also produce pro inflammatory mediators and that Slug is important in this process. Micro array studies revealed that both UVR exposure and Slug overexpression altered transcription of a variety of pro inflammatory mediators by normal human melanocytes; some of these mediators are also known to stimulate melanocyte growth and migration. There was little overlap in the spectra of cytokines produced by the two stimuli. However IL-20 was similarly induced by both stimuli and the NFκB pathway appeared to be important in both circumstances. Further exploration of UVR-induced and Slug-dependent pathways of cytokine induction in melanocytes may reveal novel targets for melanoma therapy.

  6. Evaluation of a nanotechnology-based approach to induce gene-expression in human THP-1 macrophages under inflammatory conditions.

    Science.gov (United States)

    Bernal, Laura; Alvarado-Vázquez, Abigail; Ferreira, David Wilson; Paige, Candler A; Ulecia-Morón, Cristina; Hill, Bailey; Caesar, Marina; Romero-Sandoval, E Alfonso

    2017-02-01

    Macrophages orchestrate the initiation and resolution of inflammation by producing pro- and anti-inflammatory products. An imbalance in these mediators may originate from a deficient or excessive immune response. Therefore, macrophages are valid therapeutic targets to restore homeostasis under inflammatory conditions. We hypothesize that a specific mannosylated nanoparticle effectively induces gene expression in human macrophages under inflammatory conditions without undesirable immunogenic responses. THP-1 macrophages were challenged with lipopolysaccharide (LPS, 5μg/mL). Polyethylenimine (PEI) nanoparticles grafted with a mannose receptor ligand (Man-PEI) were used as a gene delivery method. Nanoparticle toxicity, Man-PEI cellular uptake rate and gene induction efficiency (GFP, CD14 or CD68) were studied. Potential immunogenic responses were evaluated by measuring the production of tumor necrosis factor-alpha (TNF-α), Interleukin (IL)-6 and IL-10. Man-PEI did not produce cytotoxicity, and it was effectively up-taken by THP-1 macrophages (69%). This approach produced a significant expression of GFP (mRNA and protein), CD14 and CD68 (mRNA), and transiently and mildly reduced IL-6 and IL-10 levels in LPS-challenged macrophages. Our results indicate that Man-PEI is suitable for inducing an efficient gene overexpression in human macrophages under inflammatory conditions with limited immunogenic responses. Our promising results set the foundation to test this technology to induce functional anti-inflammatory genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Inflammatory Gene Expression in Whole Peripheral Blood at Early Stages of Sporadic Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Pol Andrés-Benito

    2017-10-01

    Full Text Available ObjectiveCharacterization of altered expression of selected transcripts linked to inflammation in the peripheral blood of sporadic amyotrophic lateral sclerosis (sALS patients at early stage of disease to increase knowledge about peripheral inflammatory response in sALS.MethodsRNA expression levels of 45 genes were assessed by RT-qPCR in 22 sALS cases in parallel with 13 age-matched controls. Clinical and serum parameters were assessed at the same time.ResultsUpregulation of genes coding for factors involved in leukocyte extravasation (ITGB2, INPP5D, SELL, and ICAM1 and extracellular matrix remodeling (MMP9 and TIMP2, as well as downregulation of certain chemokines (CCL5 and CXC5R, anti-inflammatory cytokines (IL10, TGFB2, and IL10RA, pro-inflammatory cytokines (IL-6, and T-cell regulators (CD2 and TRBC1 was found in sALS cases independently of gender, clinical symptoms at onset (spinal, respiratory, or bulbar, progression, peripheral leukocyte number, and integrity of RNA. MMP9 levels positively correlated with age, whereas CCR5, CCL5, and TRBC1 negatively correlated with age in sALS but not in controls. Relatively higher TNFA expression levels correlate with higher creatinine kinase protein levels in plasma.ConclusionPresent findings show early inflammatory responses characterized by upregulation of factors enabling extravasation of leukocytes and extracellular matrix remodeling in blood in sALS cases, in addition to increased TNFA levels paralleling skeletal muscle damage.

  8. Effects of low molecular weight fungal compounds on inflammatory gene transcription and expression in mouse alveolar macrophages.

    Science.gov (United States)

    Rand, Thomas G; Dipenta, J; Robbins, C; Miller, J D

    2011-04-25

    The inflammatory potential and molecular mechanisms underscoring inflammatory responses of lung cells to compounds from fungi that grow on damp building materials is poorly understood in vitro. In this study we evaluated the effect of pure fungal compounds on potentiating acute inflammatory response in primary mouse alveolar macrophages (AMs) and tested the hypothesis that AM responses to low molecular weight fungal compounds exhibit temporal and compound specificity that mimic that observed in the whole lung. Transcriptional responses of 13 inflammation/respiratory burst-associated genes (KC=Cxcl1, Cxcl2, Cxcl5, Cxcl10, Ccl3, Ccl112, Ccl20, IL-1β, Il-6, ifi27 Tnfα, iNOS and Blvrb) were evaluated in mouse AMs exposed to a 1ml (10(-8)mol) dose of either pure atranone C, brevianimide, cladosporin, curdlan, LPS, neoechinulin A & B, sterigmatocystin or TMC-120A for 2h, 4h and 12h PE using customized reverse transcription (RT)-PCR based arrays. Multianalyte ELISA was used to measure expression of 6 pro-inflammatory cytokines common to the transcriptional assays (Cxcl1, Cxcl10, Ccl3, IL1β, Ifn-λ and Tnf-α) to determine whether gene expression corresponded to the transcription data. Compared to controls, all of these compounds induced significant (≥2.5-fold or ≤-2.5-fold change at p≤0.05) time- and compound-specific transcriptional gene alterations in treatment AMs. The highest number of transcribed genes were in LPS treatment AMs at 12h PE (12/13) followed by neoechinulin B at 4h PE (11/13). Highest fold change values (>30) were associated with KC, Cxcl2, Cxcl5 and IL1β genes in cells exposed to LPS. Compound exposures also induced significant (p≤0.05) time- and compound-specific pro-inflammatory responses manifest as differentially elevated Cxcl1, Cxcl10, Ccl3, Ifn-λ and Tnf-α concentrations in culture supernatant of treatment AMs. Dissimilarity in transcriptional responses in AMs and our in vivo model of lung disease is likely attributable to whole lung

  9. Effect of re-expansion after short-period lung collapse on pulmonary capillary permeability and pro-inflammatory cytokine gene expression in isolated rabbit lungs.

    Science.gov (United States)

    Funakoshi, T; Ishibe, Y; Okazaki, N; Miura, K; Liu, R; Nagai, S; Minami, Y

    2004-04-01

    Re-expansion pulmonary oedema is a rare complication caused by rapid re-expansion of a chronically collapsed lung. Several cases of pulmonary oedema associated with one-lung ventilation (OLV) have been reported recently. Elevated levels of pro-inflammatory cytokines in pulmonary oedema fluid are suggested to play important roles in its development. Activation of cytokines after re-expansion of collapsed lung during OLV has not been thoroughly investigated. Here we investigated the effects of re-expansion of the collapsed lung on pulmonary oedema formation and pro-inflammatory cytokine expression. Lungs isolated from female white Japanese rabbits were perfused and divided into a basal (BAS) group (n=7, baseline measurement alone), a control (CONT) group (n=9, ventilated without lung collapse for 120 min) and an atelectasis (ATEL) group (n=9, lung collapsed for 55 min followed by re-expansion and ventilation for 65 min). Pulmonary vascular resistance (PVR) and the coefficient of filtration (Kfc) were measured at baseline and 60 and 120 min. At the end of perfusion, bronchoalveolar lavage fluid/plasma protein ratio (B/P), wet/dry lung weight ratio (W/D) and mRNA expressions of tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta and myeloperoxidase (MPO) were determined. TNF-alpha and IL-1beta mRNA were significantly up-regulated in lungs of the ATEL group compared with BAS and CONT, though no significant differences were noted in PVR, Kfc, B/P and W/D within and between groups. MPO increased at 120 min in CONT and ATEL groups. Pro-inflammatory cytokines were up-regulated upon re-expansion and ventilation after short-period lung collapse, though no changes were noted in pulmonary capillary permeability.

  10. Temporal patterns of inflammatory gene expression in local tissues after banding or burdizzo castration in cattle

    Directory of Open Access Journals (Sweden)

    Sweeney Torres

    2009-09-01

    Full Text Available Abstract Background Castration of male cattle has been shown to elicit inflammatory reactions and acute inflammation is initiated and sustained by the participation of cytokines. Methods Sixty continental × beef bulls (Mean age 12 ± (s.e. 0.2 months; Mean weight 341 ± (s.e. 3.0 kg were blocked by weight and randomly assigned to one of three treatments (n = 20 animals per treatment: 1 untreated control (Con; 2 banding castration at 0 min (Band; 3 Burdizzo castration at 0 min (Burd. Samples of the testis, epididymis and scrotal skin were collected surgically from 5 animals from each group at 12 h, 24 h, 7 d, and 14 d post-treatment, and analysed using real-time PCR. A repeated measurement analysis (Proc GLM was performed using SAS. If there was no treatment and time interaction, main effects of treatment by time were tested by ANOVA. Results Electrophoresis data showed that by 7 d post-castration RNA isolated from all the testicle samples of the Burd castrated animals, the epididymis and middle scrotum samples from Band castrates were degraded. Transitory effects were observed in the gene expression of IFN-γ, IL-6, IL-8 and TNF-α at 12 h and 24 h post treatment. Burd castrates had greater (P Conclusion Banding castration caused more inflammatory associated gene expression changes to the epididymis and scrotum than burdizzo. Burdizzo caused more severe acute inflammatory responses, in terms of pro-inflammatory cytokine gene expression, in the testis and epididymis than banding.

  11. The SaeR/S gene regulatory system induces a pro-inflammatory cytokine response during Staphylococcus aureus infection.

    Directory of Open Access Journals (Sweden)

    Robert L Watkins

    Full Text Available Community-associated methicillin-resistant Staphylococcus aureus accounts for a large portion of the increased staphylococcal disease incidence and can cause illness ranging from mild skin infections to rapidly fatal sepsis syndromes. Currently, we have limited understanding of S. aureus-derived mechanisms contributing to bacterial pathogenesis and host inflammation during staphylococcal disease. Herein, we characterize an influential role for the saeR/S two-component gene regulatory system in mediating cytokine induction using mouse models of S. aureus pathogenesis. Invasive S. aureus infection induced the production of localized and systemic pro-inflammatory cytokines, including tumor necrosis factor alpha (TNF-α, interferon gamma (IFN-γ, interleukin (IL-6 and IL-2. In contrast, mice infected with an isogenic saeR/S deletion mutant demonstrated significantly reduced pro-inflammatory cytokine levels. Additionally, secreted factors influenced by saeR/S elicited pro-inflammatory cytokines in human blood ex vivo. Our study further demonstrated robust saeR/S-mediated IFN-γ production during both invasive and subcutaneous skin infections. Results also indicated a critical role for saeR/S in promoting bacterial survival and enhancing host mortality during S. aureus peritonitis. Taken together, this study provides insight into specific mechanisms used by S. aureus during staphylococcal disease and characterizes a relationship between a bacterial global regulator of virulence and the production of pro-inflammatory mediators.

  12. Pro-/anti-inflammatory cytokine gene polymorphisms and chronic kidney disease: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Okada Rieko

    2012-01-01

    Full Text Available Abstract Background The aim of this study was to explore the associations between common potential functional promoter polymorphisms in pro-/anti-inflammatory cytokine genes and kidney function/chronic kidney disease (CKD prevalence in a large Japanese population. Methods A total of 3,323 subjects aged 35-69 were genotyped for all 10 single nucleotide polymorphisms (SNPs in the promoter regions of candidate genes with minor allele frequencies of > 0.100 in Japanese populations. The estimated glomerular filtration rate (eGFR and CKD prevalence (eGFR 2 of the subjects were compared among the genotypes. Results A higher eGFR and lower prevalence of CKD were observed for the homozygous variants of IL4 -33CC (high IL-4 [anti-inflammatory cytokine]-producing genotype and IL6 -572GG (low IL-6 [pro-inflammatory cytokine]-producing genotype. Subjects with IL4 CC + IL6 GG showed the highest mean eGFR (79.1 ml/min/1.73 m2 and lowest CKD prevalence (0.0%, while subjects carrying IL4 TT + IL6 CC showed the lowest mean eGFR (73.4 ml/min/1.73 m2 and highest CKD prevalence (17.9%. Conclusions The functional promoter polymorphisms IL4 T-33C (rs2070874 and IL6 C-572G (rs1800796, which are the only SNPs that affect the IL-4 and IL-6 levels in Japanese subjects, were associated with kidney function and CKD prevalence in a large Japanese population.

  13. Ibuprofen abates cypermethrin-induced expression of pro-inflammatory mediators and mitogen-activated protein kinases and averts the nigrostriatal dopaminergic neurodegeneration.

    Science.gov (United States)

    Singh, Ashish; Tripathi, Pratibha; Prakash, Om; Singh, Mahendra Pratap

    2016-12-01

    Cypermethrin induces oxidative stress, microglial activation, inflammation and apoptosis leading to Parkinsonism in rats. While ibuprofen, a non-steroidal anti-inflammatory drug, relieves from inflammation, its efficacy against cypermethrin-induced Parkinsonism has not yet been investigated. The study aimed to explore the protective role of ibuprofen in cypermethrin-induced Parkinsonism, an environmentally relevant model of Parkinson's disease (PD), along with its underlying mechanism. Animals were treated with/without cypermethrin in the presence/absence of ibuprofen. Behavioural, immunohistochemical and biochemical parameters of Parkinsonism and expression of pro-inflammatory and pro-apoptotic proteins along with mitogen-activated protein kinases (MAPKs) were determined. Ibuprofen resisted cypermethrin-induced behavioural impairments, striatal dopamine depletion, oxidative stress in the nigrostriatal tissues and loss of the nigral dopamine producing cells and increase in microglial activation along with atypical expression of pro-inflammatory and apoptotic proteins that include cyclooxygenase-2, tumour necrosis factor-α, MAPKs (c-Jun N-terminal kinase, p38 and extracellular signal-regulated kinase), B cell lymphoma 2-associated protein X, tumour suppressor protein p53, cytochrome c and caspase-3 in the nigrostriatal tissue. The results obtained thus demonstrate that ibuprofen lessens inflammation and regulates MAPKs expression thereby averts cypermethrin-induced Parkinsonism.

  14. Histone deacetylase 2 is decreased in peripheral blood pro-inflammatory CD8+ T and NKT-like lymphocytes following lung transplant.

    Science.gov (United States)

    Hodge, Greg; Hodge, Sandra; Holmes-Liew, Chien-Li; Reynolds, Paul N; Holmes, Mark

    2017-02-01

    Immunosuppression therapy following lung transplantation fails to prevent chronic rejection in many patients, which is associated with lack of suppression of cytotoxic mediators and pro-inflammatory cytokines in peripheral blood T and natural killer T (NKT)-like cells. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) upregulate/downregulate pro-inflammatory gene expression, respectively; however, differences in the activity of these enzymes following lung transplant are unknown. We hypothesized decreased HDAC2 expression and increased HAT expression in pro-inflammatory lymphocytes following lung transplant. Blood was collected from 18 stable lung transplant patients and 10 healthy age-matched controls. Intracellular pro-inflammatory cytokines and HAT/HDAC2 expression were determined in lymphocyte subsets following culture using flow cytometry. A loss of HDAC2 in cluster of differentiation (CD) 8+ T and NKT-like cells in transplant patients compared with controls was noted (CD8+ T: 28 ± 10 (45 ± 10), CD8+NKT-like: 30 ± 13 (54 ± 16) (mean ± SD transplant) (control)). Loss of HDAC2 was associated with an increased percentage of CD8+ T and NKT-like cells expressing perforin, granzyme b, interferon gamma (IFN-γ) and TNF-α (no change in HAT expression in any lymphocyte subset). There was a negative correlation between loss of HDAC2 expression by CD8+ T cells with cumulative dose of prednisolone and time post-transplant. Treatment with 10 mg/L theophylline + 1 µmol/L prednisolone or 2.5 ng/mL cyclosporine A synergistically upregulated HDAC2 and inhibited IFN-γ and TNF-α production by CD8+ T and NKT-like lymphocytes. HDAC2 is decreased in CD8+ T and NKT-like pro-inflammatory lymphocytes following lung transplant. Treatment options that increase HDAC2 may improve graft survival. © 2016 Asian Pacific Society of Respirology.

  15. LuFLA1PRO and LuBGAL1PRO promote gene expression in the phloem fibres of flax (Linum usitatissimum).

    Science.gov (United States)

    Hobson, Neil; Deyholos, Michael K

    2013-04-01

    Cell type-specific promoters were identified that drive gene expression in an industrially important product. To identify flax (Linum usitatissimum) gene promoters, we analyzed the genomic regions upstream of a fasciclin-like arabinogalactan protein (LuFLA1) and a beta-galactosidase (LuBGAL1). Both of these genes encode transcripts that have been found to be highly enriched in tissues bearing phloem fibres. Using a beta-glucuronidase (GUS) reporter construct, we found that a 908-bp genomic sequence upstream of LuFLA1 (LuFLA1PRO) directed GUS expression with high specificity to phloem fibres undergoing secondary cell wall development. The DNA sequence upstream of LuBGAL1 (LuBGAL1PRO) likewise produced GUS staining in phloem fibres with developing secondary walls, as well as in tissues of developing flowers and seed bolls. These data provide further evidence of a specific role for LuFLA1 in phloem fibre development, and demonstrate the utility of LuFLA1PRO and LuBGAL1PRO as tools for biotechnology and further investigations of phloem fibre development.

  16. Carbon monoxide induced PPARγ SUMOylation and UCP2 block inflammatory gene expression in macrophages.

    Directory of Open Access Journals (Sweden)

    Arvand Haschemi

    Full Text Available Carbon monoxide (CO dampens pro-inflammatory responses in a peroxisome proliferator-activated receptor-γ (PPARγ and p38 mitogen-activated protein kinase (MAPK dependent manner. Previously, we demonstrated that CO inhibits lipopolysaccharide (LPS-induced expression of the proinflammatory early growth response-1 (Egr-1 transcription factor in macrophages via activation of PPARγ. Here, we further characterize the molecular mechanisms by which CO modulates the activity of PPARγ and Egr-1 repression. We demonstrate that CO enhances SUMOylation of PPARγ which we find was attributed to mitochondrial ROS generation. Ectopic expression of a SUMOylation-defective PPARγ-K365R mutant partially abolished CO-mediated suppression of LPS-induced Egr-1 promoter activity. Expression of a PPARγ-K77R mutant did not impair the effect of CO. In addition to PPARγ SUMOylation, CO-activated p38 MAPK was responsible for Egr-1 repression. Blocking both CO-induced PPARγ SUMOylation and p38 activation, completely reversed the effects of CO on inflammatory gene expression. In primary macrophages isolated form C57/BL6 male mice, we identify mitochondrial ROS formation by CO as the upstream trigger for the observed effects on Egr-1 in part through uncoupling protein 2 (UCP2. Macrophages derived from bone marrow isolated from Ucp2 gene Knock-Out C57/BL6 mice (Ucp2(-/-, produced significantly less ROS with CO exposure versus wild-type macrophages. Moreover, absence of UCP2 resulted in a complete loss of CO mediated Egr-1 repression. Collectively, these results indentify p38 activation, PPARγ-SUMOylation and ROS formation via UCP2 as a cooperative system by which CO impacts the inflammatory response.

  17. HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers

    Directory of Open Access Journals (Sweden)

    Lehto Kirsi

    2011-04-01

    Full Text Available Abstract Background RNA silencing is used in plants as a major defence mechanism against invasive nucleic acids, such as viruses. Accordingly, plant viruses have evolved to produce counter defensive RNA-silencing suppressors (RSSs. These factors interfere in various ways with the RNA silencing machinery in cells, and thereby disturb the microRNA (miRNA mediated endogene regulation and induce developmental and morphological changes in plants. In this study we have explored these effects using previously characterized transgenic tobacco plants which constitutively express (under CaMV 35S promoter the helper component-proteinase (HC-Pro derived from a potyviral genome. The transcript levels of leaves and flowers of these plants were analysed using microarray techniques (Tobacco 4 × 44 k, Agilent. Results Over expression of HC-Pro RSS induced clear phenotypic changes both in growth rate and in leaf and flower morphology of the tobacco plants. The expression of 748 and 332 genes was significantly changed in the leaves and flowers, respectively, in the HC-Pro expressing transgenic plants. Interestingly, these transcriptome alterations in the HC-Pro expressing tobacco plants were similar as those previously detected in plants infected with ssRNA-viruses. Particularly, many defense-related and hormone-responsive genes (e.g. ethylene responsive transcription factor 1, ERF1 were differentially regulated in these plants. Also the expression of several stress-related genes, and genes related to cell wall modifications, protein processing, transcriptional regulation and photosynthesis were strongly altered. Moreover, genes regulating circadian cycle and flowering time were significantly altered, which may have induced a late flowering phenotype in HC-Pro expressing plants. The results also suggest that photosynthetic oxygen evolution, sugar metabolism and energy levels were significantly changed in these transgenic plants. Transcript levels of S

  18. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice.

    Science.gov (United States)

    Alarcon-Aguilar, F J; Almanza-Perez, Julio; Blancas, Gerardo; Angeles, Selene; Garcia-Macedo, Rebeca; Roman, Ruben; Cruz, Miguel

    2008-12-03

    Fat tissue plays an important role in the regulation of inflammatory processes. Increased visceral fat has been associated with a higher production of cytokines that triggers a low-grade inflammatory response, which eventually may contribute to the development of insulin resistance. In the present study, we investigated whether glycine, an amino acid that represses the expression in vitro of pro-inflammatory cytokines in Kupffer and 3T3-L1 cells, can affect in vivo cytokine production in lean and monosodium glutamate-induced obese mice (MSG/Ob mice). Our data demonstrate that glycine treatment in lean mice suppressed TNF-alpha transcriptional expression in fat tissue, and serum protein levels of IL-6 were suppressed, while adiponectin levels were increased. In MSG/Ob mice, glycine suppressed TNF-alpha and IL-6 gene expression in fat tissue and significantly reduced protein levels of IL-6, resistin and leptin. To determine the role of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in the modulation of this inflammatory response evoked by glycine, we examined its expression levels in fat tissue. Glycine clearly increased PPAR-gamma expression in lean mice but not in MSG/Ob mice. Finally, to identify alterations in glucose metabolism by glycine, we also examined insulin levels and other biochemical parameters during an oral glucose tolerance test. Glycine significantly reduced glucose tolerance and raised insulin levels in lean but not in obese mice. In conclusion, our findings suggest that glycine suppresses the pro-inflammatory cytokines production and increases adiponectin secretion in vivo through the activation of PPAR-gamma. Glycine might prevent insulin resistance and associated inflammatory diseases.

  19. Synthesis of pro-inflammatory cytokines and adhesion molecules expression by the irradiated human monocyte/macrophage

    International Nuclear Information System (INIS)

    Pons, I.

    1997-09-01

    As lesions induced by ionizing radiations are essentially noticed in organs the functional and structural organisation of which depend on the highly proliferative stem cell pool, the author reports an in-vivo investigation of the effect of a gamma irradiation on the expression and secretion of pro-inflammatory cytokines par human monocytes/macrophages. In order to study the role of the cell environment in the radiation-induced inflammation, the author studied whether a co-stimulation of monocytes/macrophages by gamma irradiation, or the exposure of co-cultures of monocytes/macrophages and lymphocytes, could modulate the regulation of inflammatory cytokines. The author also studied the modulation of the expression of adhesion molecules mainly expressed by the monocyte/macrophage, and the membrane density of the CD14 receptor after irradiation of monocytes/macrophages during 24 hours, and of totally differentiated macrophages after seven days of culture

  20. Dyslipidemia rather than Type 2 Diabetes Mellitus or Chronic Periodontitis Affects the Systemic Expression of Pro- and Anti-Inflammatory Genes.

    Science.gov (United States)

    Nepomuceno, Rafael; Villela, Bárbara Scoralick; Corbi, Sâmia Cruz Tfaile; Bastos, Alliny De Souza; Dos Santos, Raquel Alves; Takahashi, Catarina Satie; Orrico, Silvana Regina Perez; Scarel-Caminaga, Raquel Mantuaneli

    2017-01-01

    A high percentage of type 2 diabetes mellitus (T2D) patients are also affected by dyslipidemia and chronic periodontitis (CP), but no studies have determined the gene expression in patients that are simultaneously affected by all three diseases. We investigated the systemic expression of immune-related genes in T2D, dyslipidemia, and CP patients. One hundred and fifty patients were separated into five groups containing 30 individuals each: (G1) poorly controlled T2D with dyslipidemia and CP; (G2) well-controlled T2D with dyslipidemia and CP; (G3) normoglycemic individuals with dyslipidemia and CP; (G4) healthy individuals with CP; (G5) systemic and periodontally healthy individuals. Blood analyses of lipid and glycemic profiles were carried out. The expression of genes, including IL10, JAK1, STAT3, SOCS3, IP10, ICAM1, IFNA, IFNG, STAT1, and IRF1, was investigated by RT-qPCR. Patients with dyslipidemia demonstrated statistically higher expression of the IL10 and IFNA genes, while IFNG, IP10, IRF1, JAK1, and STAT3 were lower in comparison with nondyslipidemic patients. Anti-inflammatory genes, such as IL10 , positively correlated with parameters of glucose, lipid, and periodontal profiles, while proinflammatory genes, such as IFNG , were negatively correlated with these parameters. We conclude that dyslipidemia appears to be the primary disease that is associated with gene expression of immune-related genes, while parameters of T2D and CP were correlated with the expression of these important immune genes.

  1. Temporal patterns of inflammatory gene expression in local tissues after banding or burdizzo castration in cattle.

    Science.gov (United States)

    Pang, Wanyong; Earley, Bernadette; Sweeney, Torres; Gath, Vivian; Crowe, Mark A

    2009-09-23

    Castration of male cattle has been shown to elicit inflammatory reactions and acute inflammation is initiated and sustained by the participation of cytokines. Sixty continental x beef bulls (Mean age 12 +/- (s.e.) 0.2 months; Mean weight 341 +/- (s.e.) 3.0 kg) were blocked by weight and randomly assigned to one of three treatments (n = 20 animals per treatment): 1) untreated control (Con); 2) banding castration at 0 min (Band); 3) Burdizzo castration at 0 min (Burd). Samples of the testis, epididymis and scrotal skin were collected surgically from 5 animals from each group at 12 h, 24 h, 7 d, and 14 d post-treatment, and analysed using real-time PCR. A repeated measurement analysis (Proc GLM) was performed using SAS. If there was no treatment and time interaction, main effects of treatment by time were tested by ANOVA. Electrophoresis data showed that by 7 d post-castration RNA isolated from all the testicle samples of the Burd castrated animals, the epididymis and middle scrotum samples from Band castrates were degraded. Transitory effects were observed in the gene expression of IFN-gamma, IL-6, IL-8 and TNF-alpha at 12 h and 24 h post treatment. Burd castrates had greater (P castrates had greater (P castrates at 12 h post-castration. Burd castrates had greater (P castration. In the epididymis, Burd castrates had greater (P castrates had greater (P = 0.049) IL-10 mRNA levels than Band castrates at 12 h post-castration. Banding castration caused more inflammatory associated gene expression changes to the epididymis and scrotum than burdizzo. Burdizzo caused more severe acute inflammatory responses, in terms of pro-inflammatory cytokine gene expression, in the testis and epididymis than banding.

  2. Global gene expression profile progression in Gaucher disease mouse models

    Directory of Open Access Journals (Sweden)

    Zhang Wujuan

    2011-01-01

    Full Text Available Abstract Background Gaucher disease is caused by defective glucocerebrosidase activity and the consequent accumulation of glucosylceramide. The pathogenic pathways resulting from lipid laden macrophages (Gaucher cells in visceral organs and their abnormal functions are obscure. Results To elucidate this pathogenic pathway, developmental global gene expression analyses were conducted in distinct Gba1 point-mutated mice (V394L/V394L and D409 V/null. About 0.9 to 3% of genes had altered expression patterns (≥ ± 1.8 fold change, representing several categories, but particularly macrophage activation and immune response genes. Time course analyses (12 to 28 wk of INFγ-regulated pro-inflammatory (13 and IL-4-regulated anti-inflammatory (11 cytokine/mediator networks showed tissue differential profiles in the lung and liver of the Gba1 mutant mice, implying that the lipid-storage macrophages were not functionally inert. The time course alterations of the INFγ and IL-4 pathways were similar, but varied in degree in these tissues and with the Gba1 mutation. Conclusions Biochemical and pathological analyses demonstrated direct relationships between the degree of tissue glucosylceramides and the gene expression profile alterations. These analyses implicate IFNγ-regulated pro-inflammatory and IL-4-regulated anti-inflammatory networks in differential disease progression with implications for understanding the Gaucher disease course and pathophysiology.

  3. Pro-inflammatory cytokines play a key role in the development of radiotherapy-induced gastrointestinal mucositis

    Directory of Open Access Journals (Sweden)

    Logan Richard M

    2010-03-01

    Full Text Available Abstract Background Mucositis is a toxic side effect of anti-cancer treatments and is a major focus in cancer research. Pro-inflammatory cytokines have previously been implicated in the pathophysiology of chemotherapy-induced gastrointestinal mucositis. However, whether they play a key role in the development of radiotherapy-induced gastrointestinal mucositis is still unknown. Therefore, the aim of the present study was to characterise the expression of pro-inflammatory cytokines in the gastrointestinal tract using a rat model of fractionated radiotherapy-induced toxicity. Methods Thirty six female Dark Agouti rats were randomly assigned into groups and received 2.5 Gys abdominal radiotherapy three times a week over six weeks. Real time PCR was conducted to determine the relative change in mRNA expression of pro-inflammatory cytokines IL-1β, IL-6 and TNF in the jejunum and colon. Protein expression of IL-1β, IL-6 and TNF in the intestinal epithelium was investigated using qualitative immunohistochemistry. Results Radiotherapy-induced sub-acute damage was associated with significantly upregulated IL-1β, IL-6 and TNF mRNA levels in the jejunum and colon. The majority of pro-inflammatory cytokine protein expression in the jejunum and colon exhibited minimal change following fractionated radiotherapy. Conclusions Pro-inflammatory cytokines play a key role in radiotherapy-induced gastrointestinal mucositis in the sub-acute onset setting.

  4. Caspase-8 regulates the expression of pro- and anti-inflammatory cytokines in human bone marrow-derived mesenchymal stromal cells.

    Science.gov (United States)

    Moen, Siv H; Westhrin, Marita; Zahoor, Muhammad; Nørgaard, Nikolai N; Hella, Hanne; Størdal, Berit; Sundan, Anders; Nilsen, Nadra J; Sponaas, Anne-Marit; Standal, Therese

    2016-09-01

    Mesenchymal stem cells, also called mesenchymal stromal cells, MSCs, have great potential in stem cell therapy partly due to their immunosuppressive properties. How these cells respond to chronic inflammatory stimuli is therefore of importance. Toll-like receptors (TLR)s are innate immune receptors that mediate inflammatory signals in response to infection, stress, and damage. Caspase-8 is involved in activation of NF-kB downstream of TLRs in immune cells. Here we investigated the role of caspase-8 in regulating TLR-induced cytokine production from human bone marrow-derived mesenchymal stromal cells (hBMSCs). Cytokine expression in hBMCs in response to poly(I:C) and LPS was evaluated by PCR, multiplex cytokine assay, and ELISA. TLR3, TRIF, and caspase-8 were silenced using siRNA. Caspase-8 was also inhibited using a caspase-8 inhibitor, z-IEDT. We found that TLR3 agonist poly(I:C) and TLR4 agonist LPS induced secretion of several pro-inflammatory cytokines in a TLR-dependent manner which required the TLR signaling adaptor molecule TRIF. Further, poly(I:C) reduced the expression of anti-inflammatory cytokines HGF and TGFβ whereas LPS reduced HGF expression only. Notably, caspase-8 was involved in the induction of IL- IL-1β, IL-6, CXCL10, and in the inhibition of HGF and TGFβ. Caspase-8 appears to modulate hBMSCs into gaining a pro-inflammatory phenotype. Therefore, inhibiting caspase-8 in hBMSCs might promote an immunosuppressive phenotype which could be useful in clinical applications to treat inflammatory disorders.

  5. IGF-1 attenuates LPS induced pro-inflammatory cytokines expression in buffalo (Bubalus bubalis) granulosa cells.

    Science.gov (United States)

    Onnureddy, K; Ravinder; Onteru, Suneel Kumar; Singh, Dheer

    2015-03-01

    Interaction between immune and endocrine system is a diverse process influencing cellular function and homeostasis in animals. Negative energy balance (NEB) during postpartum period in dairy animals usually suppresses these systems resulting in reproductive tract infection and infertility. These negative effects could be due to competition among endocrine and immune signaling pathways for common signaling molecules. The present work studied the effect of IGF-1 (50 ng/ml) on LPS (1 μg/ml) mediated pro-inflammatory cytokine expression (IL-1β, TNF-α, IL-6) and aromatase (CYP19A1) genes' expressions as well as proliferation of buffalo granulosa cells. The crosstalk between LPS and IGF-1 was also demonstrated through studying the activities of downstream signaling molecules (ERK1/2, Akt, NF-κB) by western blot and immunostaining. Gene expression analysis showed that IGF-1 significantly reduced the LPS induced expression of IL-1β, TNF-α and IL-6. LPS alone inhibited the CYP19A1 expression. However, co-treatment with IGF-1 reversed the inhibitory effect of LPS on CYP19A1 expression. LPS alone did not affect granulosa cell proliferation, but co-treatment with IGF-1, and IGF-1 alone enhanced the proliferation. Western blot results demonstrated that LPS caused the nuclear translocation of the NF-κB and increased the phosphorylation of ERK1/2 and Akt maximum at 15 min and 60 min, respectively. Nonetheless, co-treatment with IGF-1 delayed LPS induced phosphorylation of ERK1/2 (peak at 120 min), while promoting early Akt phosphorylation (peak at 5 min) with no effect on NF-κB translocation. Overall, IGF-1 delayed and reversed the effects of LPS, suggesting that high IGF-1 levels may combat infection during critical periods like NEB in postpartum dairy animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Increased Peripheral Blood Pro-Inflammatory/Cytotoxic Lymphocytes in Children with Bronchiectasis.

    Directory of Open Access Journals (Sweden)

    G Hodge

    Full Text Available Bronchiectasis (BE in children is common in some communities including Indigenous children in Australia. Relatively little is known about the nature of systemic inflammation in these children, especially the contribution of specific pro-inflammatory and cytotoxic lymphocyte subsets: T-cells, natural killer (NK cells and NKT-like cells. We have shown that these cells produce increased cytotoxic (granzyme b and perforin and inflammatory (IFNγ and TNFα mediators in several adult chronic lung diseases and hypothesised that similar changes would be evident in children with BE.Intracellular cytotoxic mediators perforin and granzyme b and pro-inflammatory cytokines were measured in T cell subsets, NKT-like and NK cells from blood and bronchoalveolar samples from 12 children with BE and 10 aged-matched control children using flow cytometry.There was a significant increase in the percentage of CD8+ T cells and T and NKT-like subsets expressing perforin/granzyme and IFNγ and TNFα in blood in BE compared with controls. There was a further increase in the percentage of pro-inflammatory cytotoxic T cells in Indigenous compared with non-Indigenous children. There was no change in any of these mediators in BAL.Childhood bronchiectasis is associated with increased systemic pro-inflammatory/cytotoxic lymphocytes in the peripheral blood. Future studies need to examine the extent to which elevated levels of pro-inflammatory cytotoxic cells predict future co-morbidities.

  7. Tumour-Derived Interleukin-1 Beta Induces Pro-inflammatory Response in Human Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Alajez, Nehad M; Al-toub, Mashael; Almusa, Abdulaziz

    ’ secreted factors as represented by a panel of human cancer cell lines (breast (MCF7 and MDA-MB-231); prostate (PC-3); lung (NCI-H522); colon (HT-29) and head & neck (FaDu)) on the biological characteristics of MSCs. Background Over the past several years, significant amount of research has emerged......, the goal of this study was to assess the cellular and molecular changes in MSCs in response to secreted factors present in conditioned media (CM) from a panel of human tumor cell lines covering a spectrum of human cancers (Breast, Prostate, Lung, colon, and head and neck). Research Morphological changes...... with bipolar processes. In association with phenotypic changes, genome-wide gene expression and bioinformatics analysis revealed an enhanced pro-inflammatory response of those MSCs. Pharmacological inhibitions of FAK and MAPKK severely impaired the pro-inflammatory response of MSCs to tumor CM (~80-99%, and 55...

  8. NNZ-2566 treatment inhibits neuroinflammation and pro-inflammatory cytokine expression induced by experimental penetrating ballistic-like brain injury in rats

    Directory of Open Access Journals (Sweden)

    Tortella Frank C

    2009-08-01

    Full Text Available Abstract Background Inflammatory cytokines play a crucial role in the pathophysiology of traumatic brain injury (TBI, exerting either deleterious effects on the progression of tissue damage or beneficial roles during recovery and repair. NNZ-2566, a synthetic analogue of the neuroprotective tripeptide Glypromate®, has been shown to be neuroprotective in animal models of brain injury. The goal of this study was to determine the effects of NNZ-2566 on inflammatory cytokine expression and neuroinflammation induced by penetrating ballistic-like brain injury (PBBI in rats. Methods NNZ-2566 or vehicle (saline was administered intravenously as a bolus injection (10 mg/kg at 30 min post-injury, immediately followed by a continuous infusion of NNZ-2566 (3 mg/kg/h, or equal volume of vehicle, for various durations. Inflammatory cytokine gene expression from the brain tissue of rats exposed to PBBI was evaluated using microarray, quantitative real time PCR (QRT-PCR, and enzyme-linked immunosorbent assay (ELISA array. Histopathology of the injured brains was examined using hematoxylin and eosin (H&E and immunocytochemistry of inflammatory cytokine IL-1β. Results NNZ-2566 treatment significantly reduced injury-mediated up-regulation of IL-1β, TNF-α, E-selectin and IL-6 mRNA during the acute injury phase. ELISA cytokine array showed that NZ-2566 treatment significantly reduced levels of the pro-inflammatory cytokines IL-1β, TNF-α and IFN-γ in the injured brain, but did not affect anti-inflammatory cytokine IL-6 levels. Conclusion Collectively, these results suggest that the neuroprotective effects of NNZ-2566 may, in part, be functionally attributed to the compound's ability to modulate expression of multiple neuroinflammatory mediators in the injured brain.

  9. Methylation and Expression of Immune and Inflammatory Genes in the Offspring of Bariatric Bypass Surgery Patients

    Directory of Open Access Journals (Sweden)

    Frédéric Guénard

    2013-01-01

    Full Text Available Background. Maternal obesity, excess weight gain and overnutrition during pregnancy increase risks of obesity, type 2 diabetes mellitus, and cardiovascular disease in the offspring. Maternal biliopancreatic diversion is an effective treatment for severe obesity and is beneficial for offspring born after maternal surgery (AMS. These offspring exhibit lower severe obesity prevalence and improved cardiometabolic risk factors including inflammatory marker compared to siblings born before maternal surgery (BMS. Objective. To assess relationships between maternal bariatric surgery and the methylation/expression of genes involved in the immune and inflammatory pathways. Methods. A differential gene methylation analysis was conducted in a sibling cohort of 25 BMS and 25 AMS offspring from 20 mothers. Following differential gene expression analysis (23 BMS and 23 AMS, pathway analysis was conducted. Correlations between gene methylation/expression and circulating inflammatory markers were computed. Results. Five immune and inflammatory pathways with significant overrepresentation of both differential gene methylation and expression were identified. In the IL-8 pathway, gene methylation correlated with both gene expression and plasma C-reactive protein levels. Conclusion. These results suggest that improvements in cardiometabolic risk markers in AMS compared to BMS offspring may be mediated through differential methylation of genes involved in immune and inflammatory pathways.

  10. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Feng [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Liu, Yuan [Department of Ophthalmology, Nanjing First Hospital, Nanjing Medical University, Nanjing (China); Wang, Xiujuan; Kong, Wei [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Zhao, Feng, E-mail: taixingzhaofeng163@163.com [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China)

    2016-01-29

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  11. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    International Nuclear Information System (INIS)

    Xi, Feng; Liu, Yuan; Wang, Xiujuan; Kong, Wei; Zhao, Feng

    2016-01-01

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  12. Anti-Inflammatory and Gastroprotective Roles of Rabdosia inflexa through Downregulation of Pro-Inflammatory Cytokines and MAPK/NF-κB Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Md Rashedunnabi Akanda

    2018-02-01

    Full Text Available Globally, gastric ulcer is a vital health hazard for a human. Rabdosia inflexa (RI has been used in traditional medicine for inflammatory diseases. The present study aimed to investigate the protective effect and related molecular mechanism of RI using lipopolysaccharide (LPS-induced inflammation in RAW 246.7 cells and HCl/EtOH-induced gastric ulcer in mice. We applied 3-(4,5-dimethyl-thiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT, nitric oxide (NO, reactive oxygen species (ROS, histopathology, malondialdehyde (MDA, quantitative real-time polymerase chain reaction (qPCR, immunohistochemistry (IHC, and Western blot analyses to evaluate the protective role of RI. Study revealed that RI effectively attenuated LPS-promoted NO and ROS production in RAW 246.7 cells. In addition, RI mitigated gastric oxidative stress by inhibiting lipid peroxidation, elevating NO, and decreasing gastric inflammation. RI significantly halted elevated gene expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, interleukin-6 (IL-6, inducible nitric oxide synthetase (iNOS, and cyclooxygenase-2 (COX-2 in gastric tissue. Likewise, RI markedly attenuated the mitogen-activated protein kinases (MAPKs phosphorylation, COX-2 expression, phosphorylation and degradation of inhibitor kappa B (IκBα and activation of nuclear factor kappa B (NF-κB. Thus, experimental findings suggested that the anti-inflammatory and gastroprotective activities of RI might contribute to regulating pro-inflammatory cytokines and MAPK/NF-κB signaling pathways.

  13. ß-Hydroxybutyrate Activates the NF-κB Signaling Pathway to Promote the Expression of Pro-Inflammatory Factors in Calf Hepatocytes

    Directory of Open Access Journals (Sweden)

    Xiaoxia Shi

    2014-01-01

    Full Text Available Background/Aims: ß-hydroxybutyrate (BHBA is the major component of ketone bodies in ketosis. Dairy cows with ketosis often undergo oxidative stress. BHBA is related to the inflammation involved in other diseases of dairy cattle. However, whether BHBA can induce inflammatory injury in dairy cow hepatocytes and the potential mechanism of this induction are not clear. The NF-κB pathway plays a vital role in the inflammatory response. Methods: Therefore, this study evaluated the oxidative stress, pro-inflammatory factors and NF-κB pathway in cultured calf hepatocytes treated with different concentrations of BHBA, pyrrolidine dithiocarbamate (PDTC, an NF-κB pathway inhibitor and N-acetylcysteine (NAC, antioxidant. Results: The results showed that BHBA could significantly increase the levels of oxidation indicators (MDA, NO and iNOS, whereas the levels of antioxidation indicators (GSH-Px, CAT and SOD were markedly decreased in hepatocytes. The IKKß activity and phospho-IκBa (p-IκBa contents were increased in BHBA-treated hepatocytes. This increase was accompanied by the increased expression level and transcription activity of p65. The expression levels of NF-κB-regulated inflammatory cytokines, namely TNF-a, IL-6 and IL-1ß, were markedly increased after BHBA treatment, while significantly decreased after NAC treatment. However, the p-IκBa level and the expression and activity of p65 and its target genes were markedly decreased in the PDTC + BHBA group compared with the BHBA (1.8 mM group. Moreover, immunocytofluorescence of p65 showed a similar trend. Conclusion: The present data indicate that higher concentrations of BHBA can induce cattle hepatocyte inflammatory injury through the NF-κB signaling pathway, which may be activated by oxidative stress.

  14. Effects of Bifidobacterium breve on inflammatory gene expression in neonatal and weaning rat intestine.

    Science.gov (United States)

    Ohtsuka, Yoshikazu; Ikegami, Takako; Izumi, Hirohisa; Namura, Mariko; Ikeda, Tomomi; Ikuse, Tamaki; Baba, Yosuke; Kudo, Takahiro; Suzuki, Ryuyo; Shimizu, Toshiaki

    2012-01-01

    To examine the immune-modulatory effects of probiotics during early infancy, Bifidobacterium breve M-16V (B. breve) was administered to rat pups during the newborn or weaning period, and the expression of inflammatory genes was investigated using a cDNA microarray and real-time PCR. After B. breve administration, significant increases in the numbers of Bifidobacterium in both the cecum and colon were confirmed during the newborn period. The numbers of upregulated and downregulated genes were greater during the weaning period than in the newborn period and were greatest in the colon, with fewer genes altered in the small intestine and the fewest in the spleen. The expression of inflammation-related genes, including lipoprotein lipase (Lpl), glutathione peroxidase 2 (Gpx2), and lipopolysaccharide-binding protein (Lbp), was significantly reduced in the colon during the newborn period. In weaning rat pups, the expression of CD3d, a cell surface receptor-linked signaling molecule, was significantly enhanced in the colon; however, the expression of co-stimulatory molecules was not enhanced. Our findings support a possible role for B. breve in mediating anti-inflammatory and antiallergic reactions by modulating the expression of inflammatory molecules during the newborn period and by regulating the expression of co-stimulatory molecules during the weaning period. Gene expression in the intestine was investigated after feeding 5 × 10(8) cfu of B. breve every day to the F344/Du rat from days 1 to 14 (newborn group) and from days 21 to 34 (weaning group). mRNA was extracted from intestine, and the expression of inflammatory gene was analyzed by microarray and real-time PCR.

  15. Green tea increases anti-inflammatory tristetraprolin and decreases pro-inflammatory tumor necrosis factor mRNA levels in rats

    Directory of Open Access Journals (Sweden)

    Roussel Anne M

    2007-01-01

    Full Text Available Abstract Background Tristetraprolin (TTP/ZFP36 family proteins have anti-inflammatory activity by binding to and destabilizing pro-inflammatory mRNAs such as Tnf mRNA, and represent a potential therapeutic target for inflammation-related diseases. Tea has anti-inflammatory properties but the molecular mechanisms have not been completely elucidated. We hypothesized that TTP and/or its homologues might contribute to the beneficial effects of tea as an anti-inflammatory product. Methods Quantitative real-time PCR was used to investigate the effects of green tea (0, 1, and 2 g solid extract/kg diet on the expression of Ttp family genes (Ttp/Tis11/Zfp36, Zfp36l1/Tis11b, Zfp36l2/Tis11d, Zfp36l3, pro-inflammatory genes (Tnf, Csf2/Gm-csf, Ptgs2/Cox2, and Elavl1/Hua/Hur and Vegf genes in liver and muscle of rats fed a high-fructose diet known to induce insulin resistance, oxidative stress, inflammation, and TNF-alpha levels. Results Ttp and Zfp36l1 mRNAs were the major forms in both liver and skeletal muscle. Ttp, Zfp36l1, and Zfp36l2 mRNA levels were more abundant in the liver than those in the muscle. Csf2/Gm-csf and Zfp36l3 mRNAs were undetectable in both tissues. Tea (1 g solid extract/kg diet increased Ttp mRNA levels by 50–140% but Tnf mRNA levels decreased by 30% in both tissues, and Ptgs2/Cox2 mRNA levels decreased by 40% in the muscle. Tea (2 g solid extract/kg diet increased Elavl1/Hua/Hur mRNA levels by 40% in the liver but did not affect any of the other mRNA levels in liver or muscle. Conclusion These results show that tea can modulate Ttp mRNA levels in animals and suggest that a post-transcriptional mechanism through TTP could partially account for tea's anti-inflammatory properties. The results also suggest that drinking adequate amounts of green tea may play a role in the prevention of inflammation-related diseases.

  16. Pro-inflammatory cytokines upregulate sympathoexcitatory mechanisms in the subfornical organ of the rat

    Science.gov (United States)

    Wei, Shun-Guang; Yu, Yang; Zhang, Zhi-Hua; Felder, Robert B.

    2015-01-01

    Our previous work indicated that the subfornical organ (SFO) is an important brain sensor of blood-borne pro-inflammatory cytokines, mediating their central effects on autonomic and cardiovascular function. However, the mechanisms by which SFO mediates the central effects of circulating pro-inflammatory cytokines remain unclear. We hypothesized that pro-inflammatory cytokines act within the SFO to upregulate the expression of excitatory and inflammatory mediators that drive sympathetic nerve activity. In urethane-anesthetized Sprague-Dawley rats, direct microinjection of TNF-α (25 ng) or IL-1β (25 ng) into SFO increased mean blood pressure, heart rate and renal sympathetic nerve activity within 15–20 minutes, mimicking the response to systemically administered pro-inflammatory cytokines. Pretreatment of SFO with microinjections of the angiotensin II type 1 receptor (AT1R) blocker losartan (1 µg), angiotensin-converting enzyme (ACE) inhibitor captopril (1 µg) or cyclooxygenase (COX)-2 inhibitor NS-398 (2 µg) attenuated those responses. Four hours after the SFO microinjection of TNF-α (25 ng) or IL-1β (25 ng), mRNA for ACE, AT1R, TNF-α and the p55 TNF-α receptor TNFR1, IL-1β and the IL-1R receptor, and COX-2 had increased in SFO, and mRNA for ACE, AT1R and COX-2 had increased downstream in the hypothalamic paraventricular nucleus. Confocal immunofluorescent images revealed that immunoreactivity for TNFR1 and the IL-1 receptor accessory protein, a subunit of the IL-1 receptor, co-localized with ACE, AT1R-like, COX-2 and prostaglandin E2 EP3 receptor immunoreactivity in SFO neurons. These data suggest that pro-inflammatory cytokines act within the SFO to upregulate the expression of inflammatory and excitatory mediators that drive sympathetic excitation. PMID:25776070

  17. Schistosome tegumental ecto-apyrase (SmATPDase1 degrades exogenous pro-inflammatory and pro-thrombotic nucleotides

    Directory of Open Access Journals (Sweden)

    Akram A. Da’dara

    2014-03-01

    Full Text Available Schistosomes are parasitic worms that can survive in the hostile environment of the human bloodstream where they appear refractory to both immune elimination and thrombus formation. We hypothesize that parasite migration in the bloodstream can stress the vascular endothelium causing this tissue to release chemicals alerting responsive host cells to the stress. Such chemicals are called damage associated molecular patterns (DAMPs and among the most potent is the proinflammatory mediator, adenosine triphosphate (ATP. Furthermore, the ATP derivative ADP is a pro-thrombotic molecule that acts as a strong activator of platelets. Schistosomes are reported to possess at their host interactive tegumental surface a series of enzymes that could, like their homologs in mammals, degrade extracellular ATP and ADP. These are alkaline phosphatase (SmAP, phosphodiesterase (SmNPP-5 and ATP diphosphohydrolase (SmATPDase1. In this work we employ RNAi to knock down expression of the genes encoding these enzymes in the intravascular life stages of the parasite. We then compare the abilities of these parasites to degrade exogenously added ATP and ADP. We find that only SmATPDase1-suppressed parasites are significantly impaired in their ability to degrade these nucleotides. Suppression of SmAP or SmNPP-5 does not appreciably affect the worms’ ability to catabolize ATP or ADP. These findings are confirmed by the functional characterization of the enzymatically active, full-length recombinant SmATPDase1 expressed in CHO-S cells. The enzyme is a true apyrase; SmATPDase1 degrades ATP and ADP in a cation dependent manner. Optimal activity is seen at alkaline pH. The Km of SmATPDase1 for ATP is 0.4 ± 0.02 mM and for ADP, 0.252 ± 0.02 mM. The results confirm the role of tegumental SmATPDase1 in the degradation of the exogenous pro-inflammatory and pro-thrombotic nucleotides ATP and ADP by live intravascular stages of the parasite. By degrading host inflammatory signals

  18. Effect of laser-assisted scaling and root planing on the expression of pro-inflammatory cytokines in the gingival crevicular fluid of patients with chronic periodontitis: A systematic review.

    Science.gov (United States)

    Kellesarian, Sergio Varela; Malignaggi, Vanessa Ros; Majoka, Hasham Abdullah; Al-Kheraif, Abdulaziz A; Kellesarian, Tammy Varela; Romanos, Georgios E; Javed, Fawad

    2017-06-01

    The aim of the present systematic review was to assess the efficacy of laser-assisted (low level laser therapy [LLLT], high intensity laser therapy [HILT], or antimicrobial photodynamic therapy [aPDT]) scaling and root planing (SRP) compared with SRP alone on the expression of inflammatory cytokines in the gingival crevicular (GCF) of patients with chronic periodontitis (CP). In order to address the focused question: "What is the efficacy of SRP with and without laser and/or aPDT on the expression of pro-inflammatory cytokines in the GCF of patients with CP?" an electronic search without time or language restrictions was conducted up to and including February 2017 in indexed databases using various key words. Twenty-two randomized control trials were included in the present systematic review. Nine studies and six studies assessed the efficacy of LLLT and HILT, as adjunct to SRP, respectively. Seven studies assessed the efficacy of aPDT as adjunct to SRP on down-regulating the expression of pro-inflammatory cytokines in the GCF among patients with CP. The outcomes of the studies included based upon the reduction in the levels of pro-inflammatory cytokines were inconsistent. The role of laser-assisted SRP on the expression of pro-inflammatory cytokines in the GCF of patients with CP remains unclear. Further long term and well-designed randomized clinical trials are needed in this regard. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Association of the gene expression variation of tumor necrosis factor-α and expressions changes of dopamine receptor genes in progression of diabetic severe foot ulcers

    Directory of Open Access Journals (Sweden)

    Hajar Vaseghi

    2017-11-01

    Full Text Available Objective(s:Regulation of pro-inflammatory factors such as TNF-, which are secreted by the immune cells through induction of their several receptors including dopamine receptors (especially DRD2 and DRD3 is one of the noticeable problems in diabetic severe foot ulcer healing. This study was conducted to evaluate the alteration of TNF- in plasma as well as DRD2 and DRD3 changes in PBMCs of diabetics with severe foot ulcers. Materials and Methods: Peripheral blood samples were collected from 31 subjects with ulcers, 29 without ulcers, and 25 healthy individuals. Total mRNA was extracted from PBMCs for the study of DRD2, DRD3, and TNF- gene expression variations. Expression patterns of these genes were evaluated by real-time PCR. Consequently, concentration of TNF- was investigated in plasma. Results: Significant decrease in gene expression and plasma concentration of TNF- in PBMCs was observed in both patient groups at P Conclusion: We concluded that DRD2 and DRD3 expression alteration and presence of new DRD3 transcripts can be effective in reduction of TNF-α expression as a pro-inflammatory factor. Performing complementary studies, may explain that variations in DRD2 and DRD3 are prognostic and effective markers attributed to the development of diabetes severe foot ulcers.

  20. Characteristic Changes in Decidual Gene Expression Signature in Spontaneous Term Parturition

    Directory of Open Access Journals (Sweden)

    Haidy El-Azzamy

    2017-05-01

    Full Text Available Background The decidua has been implicated in the “terminal pathway” of human term parturition, which is characterized by the activation of pro-inflammatory pathways in gestational tissues. However, the transcriptomic changes in the decidua leading to terminal pathway activation have not been systematically explored. This study aimed to compare the decidual expression of developmental signaling and inflammation-related genes before and after spontaneous term labor in order to reveal their involvement in this process. Methods Chorioamniotic membranes were obtained from normal pregnant women who delivered at term with spontaneous labor (TIL, n = 14 or without labor (TNL, n = 15. Decidual cells were isolated from snap-frozen chorioamniotic membranes with laser microdissection. The expression of 46 genes involved in decidual development, sex steroid and prostaglandin signaling, as well as pro- and anti-inflammatory pathways, was analyzed using high-throughput quantitative real-time polymerase chain reaction (qRT-PCR. Chorioamniotic membrane sections were immunostained and then semi-quantified for five proteins, and immunoassays for three chemokines were performed on maternal plasma samples. Results The genes with the highest expression in the decidua at term gestation included insulin-like growth factor-binding protein 1 (IGFBP1, galectin-1 (LGALS1, and progestogen-associated endometrial protein (PAEP; the expression of estrogen receptor 1 (ESR1, homeobox A11 (HOXA11, interleukin 1β (IL1B, IL8, progesterone receptor membrane component 2 (PGRMC2, and prostaglandin E synthase (PTGES was higher in TIL than in TNL cases; the expression of chemokine C-C motif ligand 2 (CCL2, CCL5, LGALS1, LGALS3, and PAEP was lower in TIL than in TNL cases; immunostaining confirmed qRT-PCR data for IL-8, CCL2, galectin-1, galectin-3, and PAEP; and no correlations between the decidual gene expression and the maternal plasma protein concentrations of CCL2, CCL5, and

  1. Loss of function mutations in the progranulin gene are related to pro-inflammatory cytokine dysregulation in frontotemporal lobar degeneration patients

    Directory of Open Access Journals (Sweden)

    Spalletta Gianfranco

    2011-06-01

    Full Text Available Abstract The progranulin gene (PGRN encodes a pleiotropic molecule with anti-inflammatory actions and neuronal protective effects. Accordingly, PGRN-deficient mice have been demonstrated to develop enhanced inflammation and progressive neurodegeneration. Loss of function mutations of the PGRN gene have been also reported to cause frontotemporal lobar degeneration (FTLD, a neurodegenerative disease leading to dementia generally in the presenium. Since neurodegeneration might be negatively impacted by chronic inflammation, the possible influence of PGRN defects on inflammatory pathways appears to be of great relevance for the understanding of neurodegeneration pathogenic processes in those patients. However, no data about the inflammatory profile of PGRN-defective subjects have been so far provided. In this study, we analyzed serum levels of the pro-inflammatory mediators IL-6, TNF-α and IL-18 in FTLD patients with or without PGRN mutations, at both pre-symptomatic and symptomatic stages. We provide evidence that circulating IL-6 is increased in PGRN-mutated FTLD patients, as compared to both PGRN non-mutated FTLD patients and controls. In contrast, levels of IL-6 were not altered in asymptomatic subjects carrying the PGRN mutations. Finally, TNF-α and IL-18 serum levels did not differ among all groups of included subjects. We conclude that the profile of circulating pro-inflammatory cytokines is altered in PGRN-related symptomatic FTLD. Thus, our findings point to IL-6 as a possible specific mediator and a potential therapeutic target in this monogenic disease, suggesting that an enhanced inflammatory response might be indeed involved in its progression.

  2. Decorin gene expression and its regulation in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Velez-DelValle, Cristina; Marsch-Moreno, Meytha; Castro-Munozledo, Federico [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico); Kuri-Harcuch, Walid, E-mail: walidkuri@gmail.com [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico)

    2011-07-22

    Highlights: {yields} We showed that cultured human diploid epidermal keratinocytes express and synthesize decorin. {yields} Decorin is found intracytoplasmic in suprabasal cells of cultures and in human epidermis. {yields} Decorin mRNA expression in cHEK is regulated by pro-inflammatory and proliferative cytokines. {yields} Decorin immunostaining of psoriatic lesions showed a lower intensity and altered intracytoplasmic arrangements. -- Abstract: In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.

  3. Ionizing Radiation Stimulates Expression of Pro-Osteoclastogenic Genes in Marrow and Skeletal Tissue

    Science.gov (United States)

    Alwood, J. S.; Shahnazari, M.; Chicana, B.; Schreurs, A. S.; Kumar, A.; Bartolini, A.; Shirazi-Fard, Y.; Globus, R. K.

    2015-01-01

    Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically-active, cancellous-bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total-body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16wk), male C57BL/6J mice were exposed to either 2Gy gamma rays (137Cs, 0.8Gy/min) or heavy ions (56Fe, 600MeV, 0.50-1.1Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total dose is =10Gy) or accumulates over long-duration, interplanetary missions. Serum, marrow, and mineralized tissue were harvested 4hrs-7d later. Gamma irradiation caused a prompt (2.6-fold within 4hrs) and persistent (peaking at 4.1-fold within 1d) rise in the expression of the obligate osteoclastogenic cytokine, receptor activator of nuclear factor kappaB-ligand (Rankl) within marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3d of iron exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (e.g., monocyte chemotactic protein-1 increased 11.9-fold, tumor necrosis factor-alpha increased 1.7- fold over controls). Marrow expression of the RANKL decoy receptor, osteoprotegerin (Opg), also rose after irradiation (11.3-fold). The ratio Rankl/Opg in marrow was increased 1.8-fold, a net pro-resorption balance. As expected, radiation increased a serum marker of resorption (tartrate resistant acid phosphatase) and led to cancellous bone loss (16% decrease in bone volume/total volume) through reduced trabecular struts. We conclude that total-body irradiation (gamma or heavy-ion) caused temporal, concerted regulation of gene expression within marrow and mineralized tissue for

  4. Impact of Sub-Inhibitory Concentrations of Amoxicillin on Streptococcus suis Capsule Gene Expression and Inflammatory Potential

    Directory of Open Access Journals (Sweden)

    Bruno Haas

    2016-04-01

    Full Text Available Streptococcus suis is an important swine pathogen and emerging zoonotic agent worldwide causing meningitis, endocarditis, arthritis and septicemia. Among the 29 serotypes identified to date, serotype 2 is mostly isolated from diseased pigs. Although several virulence mechanisms have been characterized in S. suis, the pathogenesis of S. suis infections remains only partially understood. This study focuses on the response of S. suis P1/7 to sub-inhibitory concentrations of amoxicillin. First, capsule expression was monitored by qRT-PCR when S. suis was cultivated in the presence of amoxicillin. Then, the pro-inflammatory potential of S. suis P1/7 culture supernatants or whole cells conditioned with amoxicillin was evaluated by monitoring the activation of the NF-κB pathway in monocytes and quantifying pro-inflammatory cytokines secreted by macrophages. It was found that amoxicillin decreased capsule expression in S. suis. Moreover, conditioning the bacterium with sub-inhibitory concentrations of amoxicillin caused an increased activation of the NF-κB pathway in monocytes following exposure to bacterial culture supernatants and to a lesser extent to whole bacterial cells. This was associated with an increased secretion of pro-inflammatory cytokines (CXCL8, IL-6, IL-1β by macrophages. This study identified a new mechanism by which S. suis may increase its inflammatory potential in the presence of sub-inhibitory concentrations of amoxicillin, a cell wall-active antibiotic, thus challenging its use for preventive treatments or as growth factor.

  5. Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice

    Directory of Open Access Journals (Sweden)

    Liu Zhihui

    2008-08-01

    Full Text Available Abstract Background Interleukin 1 beta (IL-1β plays an important role in a number of chronic and acute inflammatory diseases. To understand the role of IL-1β in disease processes and develop an in vivo screening system for anti-inflammatory drugs, a transgenic mouse line was generated which incorporated the transgene firefly luciferase gene driven by a 4.5-kb fragment of the human IL-1β gene promoter. Luciferase gene expression was monitored in live mice under anesthesia using bioluminescence imaging in a number of inflammatory disease models. Results In a LPS-induced sepsis model, dramatic increase in luciferase activity was observed in the mice. This transgene induction was time dependent and correlated with an increase of endogenous IL-1β mRNA and pro-IL-1β protein levels in the mice. In a zymosan-induced arthritis model and an oxazolone-induced skin hypersensitivity reaction model, luciferase expression was locally induced in the zymosan injected knee joint and in the ear with oxazolone application, respectively. Dexamethasone suppressed the expression of luciferase gene both in the acute sepsis model and in the acute arthritis model. Conclusion Our data suggest that the transgenic mice model could be used to study transcriptional regulation of the IL-1β gene expression in the inflammatory process and evaluation the effect of anti-inflammatory drug in vivo.

  6. The mRNA expression of pro- and anti-inflammatory cytokines in T regulatory cells in children with type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Maria Górska

    2010-06-01

    Full Text Available Type 1 diabetes mellitus (T1DM is caused by the autoimmune-mediated destruction of insulin-producing beta cells in the pancreas. T regulatory cells (Tregs represent an active mechanism of suppressing autoreactive T cells that escape central tolerance. The aim of our study was to test the hypothesis that T regulatory cells express pro- and anti-inflammatory cytokines, elements of cytotoxicity and OX40/4-1BB molecules. The examined group consisted of 50 children with T1DM. Fifty two healthy individuals (control group were enrolled into the study. A flow cytometric analysis of T-cell subpopulations was performed using the following markers: anti-CD3, anti-CD4, anti-CD25, anti-CD127, anti-CD134 and anti-CD137. Concurrently with the flow cytometric assessment of Tregs we separated CD4+CD25+CD127dim/- cells for further mRNA analysis. mRNA levels for transcription factor FoxP3, pro- and anti-inflammatory cytokines (interferon gamma, interleukin-2, interleukin-4, interleukin-10, transforming growth factor beta1 and tumor necrosis factor alpha, activatory molecules (OX40, 4-1BB and elements of cytotoxicity (granzyme B, perforin 1 were determined by real-time PCR technique. We found no alterations in the frequency of CD4+CD25highCD127low cells between diabetic and control children. Treg cells expressed mRNA for pro- and anti-inflammatory cytokines. Lower OX40 and higher 4-1BB mRNA but not protein levels in Treg cells in diabetic patients compared to the healthy children were noted. Our observations confirm the presence of mRNA for pro- and anti-inflammatory cytokines in CD4+CD25+CD127dim/- cells in the peripheral blood of children with T1DM. Further studies with the goal of developing new strategies to potentiate Treg function in autoimmune diseases are warranted.

  7. [Expression of plant antimicrobial peptide pro-SmAMP2 gene increases resistance of transgenic potato plants to Alternaria and Fusarium pathogens].

    Science.gov (United States)

    Vetchinkina, E M; Komakhina, V V; Vysotskii, D A; Zaitsev, D V; Smirnov, A N; Babakov, A V; Komakhin, R A

    2016-09-01

    The chickweed (Stellaria media L.) pro-SmAMP2 gene encodes the hevein-like peptides that have in vitro antimicrobial activity against certain harmful microorganisms. These peptides play an important role in protecting the chickweed plants from infection, and the pro-SmAMP2 gene was previously used to protect transgenic tobacco and Arabidopsis plants from phytopathogens. In this study, the pro-SmAMP2 gene under control of viral CaMV35S promoter or under control of its own pro-SmAMP2 promoter was transformed into cultivated potato plants of two cultivars, differing in the resistance to Alternaria: Yubiley Zhukova (resistant) and Skoroplodny (susceptible). With the help of quantitative real-time PCR, it was demonstrated that transgenic potato plants expressed the pro-SmAMP2 gene under control of both promoters at the level comparable to or exceeding the level of the potato actin gene. Assessment of the immune status of the transformants demonstrated that expression of antimicrobial peptide pro-SmAMP2 gene was able to increase the resistance to a complex of Alternaria sp. and Fusarium sp. phytopathogens only in potato plants of the Yubiley Zhukova cultivar. The possible role of the pro-SmAMP2 products in protecting potatoes from Alternaria sp. and Fusarium sp. is discussed.

  8. Fatigue and gene expression in human leukocytes: Increased NF-κB and decreased glucocorticoid signaling in breast cancer survivors with persistent fatigue

    Science.gov (United States)

    Bower, Julienne E.; Ganz, Patricia A.; Irwin, Michael R.; Arevalo, Jesusa M.G.; Cole, Steve W.

    2013-01-01

    Fatigue is highly prevalent in the general population and is one of the most common side effects of cancer treatment. There is growing evidence that pro-inflammatory cytokines play a role in cancer-related fatigue, although the molecular mechanisms for chronic inflammation and fatigue have not been determined. The current study utilized genome-wide expression microarrays to identify differences in gene expression and associated alterations in transcriptional activity in leukocytes from breast cancer survivors with persistent fatigue (n = 11) and non-fatigued controls (n = 10). We focused on transcription of inflammation-related genes, particularly those responsive to the pro-inflammatory NF-κB transcription control pathway. Further, given the role of glucocorticoids as key regulators of inflammatory processes, we examined transcription of glucocorticoid-responsive genes indicative of potential glucocorticoid receptor (GR) desensitization. Plasma levels of cortisol were also assessed. Consistent with hypotheses, results showed increased expression of transcripts with response elements for NF-κB, and reduced expression of transcripts with response elements for glucocorticoids (p < .05) in fatigued breast cancer survivors. No differences in plasma levels of cortisol were observed. These data indicate that increased activity of pro-inflammatory transcription factors may contribute to persistent cancer-related fatigue and provide insight into potential mechanisms for tonic increases in NF-κB activity, specifically decreased expression of GR anti-inflammatory transcription factors. PMID:20854893

  9. Antimicrobial peptides and pro-inflammatory cytokines are differentially regulated across epidermal layers following bacterial stimuli.

    Science.gov (United States)

    Percoco, Giuseppe; Merle, Chloé; Jaouen, Thomas; Ramdani, Yasmina; Bénard, Magalie; Hillion, Mélanie; Mijouin, Lily; Lati, Elian; Feuilloley, Marc; Lefeuvre, Luc; Driouich, Azeddine; Follet-Gueye, Marie-Laure

    2013-12-01

    The skin is a natural barrier between the body and the environment and is colonised by a large number of microorganisms. Here, we report a complete analysis of the response of human skin explants to microbial stimuli. Using this ex vivo model, we analysed at both the gene and protein level the response of epidermal cells to Staphylococcus epidermidis (S. epidermidis) and Pseudomonas fluorescens (P. fluorescens), which are present in the cutaneous microbiota. We showed that both bacterial species affect the structure of skin explants without penetrating the living epidermis. We showed by real-time quantitative polymerase chain reaction (qPCR) that S. epidermidis and P. fluorescens increased the levels of transcripts that encode antimicrobial peptides (AMPs), including human β defensin (hBD)2 and hBD3, and the pro-inflammatory cytokines interleukin (IL)-1α and (IL)-1-β, as well as IL-6. In addition, we analysed the effects of bacterial stimuli on the expression profiles of genes related to innate immunity and the inflammatory response across the epidermal layers, using laser capture microdissection (LCM) coupled to qPCR. We showed that AMP transcripts were principally upregulated in suprabasal keratinocytes. Conversely, the expression of pro-inflammatory cytokines was upregulated in the lower epidermis. These findings were confirmed by protein localisation using specific antibodies coupled to optical or electron microscopy. This work underscores the potential value of further studies that use LCM on human skin explants model to study the roles and effects of the epidermal microbiota on human skin physiology. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Cell-free culture supernatant of Bifidobacterium breve CNCM I-4035 decreases pro-inflammatory cytokines in human dendritic cells challenged with Salmonella typhi through TLR activation.

    Science.gov (United States)

    Bermudez-Brito, Miriam; Muñoz-Quezada, Sergio; Gomez-Llorente, Carolina; Matencio, Esther; Bernal, Maria J; Romero, Fernando; Gil, Angel

    2013-01-01

    Dendritic cells (DCs) constitute the first point of contact between gut commensals and our immune system. Despite growing evidence of the immunomodulatory effects of probiotics, the interactions between the cells of the intestinal immune system and bacteria remain largely unknown. Indeed,, the aim of this work was to determine whether the probiotic Bifidobacterium breve CNCM I-4035 and its cell-free culture supernatant (CFS) have immunomodulatory effects in human intestinal-like dendritic cells (DCs) and how they respond to the pathogenic bacterium Salmonella enterica serovar Typhi, and also to elucidate the molecular mechanisms involved in these interactions. Human DCs were directly challenged with B. breve/CFS, S. typhi or a combination of these stimuli for 4 h. The expression pattern of genes involved in Toll-like receptor (TLR) signaling pathway and cytokine secretion was analyzed. CFS decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with S. typhi. In contrast, the B. breve CNCM I-4035 probiotic strain was a potent inducer of the pro-inflammatory cytokines and chemokines tested, i.e., TNF-α, IL-8 and RANTES, as well as anti-inflammatory cytokines including IL-10. CFS restored TGF-β levels in the presence of Salmonella. Live B.breve and its supernatant enhanced innate immune responses by the activation of TLR signaling pathway. These treatments upregulated TLR9 gene transcription. In addition, CFS was a more potent inducer of TLR9 expression than the probiotic bacteria in the presence of S. typhi. Expression levels of CASP8 and IRAK4 were also increased by CFS, and both treatments induced TOLLIP gene expression. Our results indicate that the probiotic strain B. breve CNCM I-4035 affects the intestinal immune response, whereas its supernatant exerts anti-inflammatory effects mediated by DCs. This supernatant may protect immune system from highly infectious agents such as Salmonella typhi and can down-regulate pro-inflammatory

  11. Cell-free culture supernatant of Bifidobacterium breve CNCM I-4035 decreases pro-inflammatory cytokines in human dendritic cells challenged with Salmonella typhi through TLR activation.

    Directory of Open Access Journals (Sweden)

    Miriam Bermudez-Brito

    Full Text Available Dendritic cells (DCs constitute the first point of contact between gut commensals and our immune system. Despite growing evidence of the immunomodulatory effects of probiotics, the interactions between the cells of the intestinal immune system and bacteria remain largely unknown. Indeed,, the aim of this work was to determine whether the probiotic Bifidobacterium breve CNCM I-4035 and its cell-free culture supernatant (CFS have immunomodulatory effects in human intestinal-like dendritic cells (DCs and how they respond to the pathogenic bacterium Salmonella enterica serovar Typhi, and also to elucidate the molecular mechanisms involved in these interactions. Human DCs were directly challenged with B. breve/CFS, S. typhi or a combination of these stimuli for 4 h. The expression pattern of genes involved in Toll-like receptor (TLR signaling pathway and cytokine secretion was analyzed. CFS decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with S. typhi. In contrast, the B. breve CNCM I-4035 probiotic strain was a potent inducer of the pro-inflammatory cytokines and chemokines tested, i.e., TNF-α, IL-8 and RANTES, as well as anti-inflammatory cytokines including IL-10. CFS restored TGF-β levels in the presence of Salmonella. Live B.breve and its supernatant enhanced innate immune responses by the activation of TLR signaling pathway. These treatments upregulated TLR9 gene transcription. In addition, CFS was a more potent inducer of TLR9 expression than the probiotic bacteria in the presence of S. typhi. Expression levels of CASP8 and IRAK4 were also increased by CFS, and both treatments induced TOLLIP gene expression. Our results indicate that the probiotic strain B. breve CNCM I-4035 affects the intestinal immune response, whereas its supernatant exerts anti-inflammatory effects mediated by DCs. This supernatant may protect immune system from highly infectious agents such as Salmonella typhi and can down

  12. Coordinated gene expression of neuroinflammatory and cell signaling markers in dorsolateral prefrontal cortex during human brain development and aging.

    Science.gov (United States)

    Primiani, Christopher T; Ryan, Veronica H; Rao, Jagadeesh S; Cam, Margaret C; Ahn, Kwangmi; Modi, Hiren R; Rapoport, Stanley I

    2014-01-01

    Age changes in expression of inflammatory, synaptic, and neurotrophic genes are not well characterized during human brain development and senescence. Knowing these changes may elucidate structural, metabolic, and functional brain processes over the lifespan, as well vulnerability to neurodevelopmental or neurodegenerative diseases. Expression levels of inflammatory, synaptic, and neurotrophic genes in the human brain are coordinated over the lifespan and underlie changes in phenotypic networks or cascades. We used a large-scale microarray dataset from human prefrontal cortex, BrainCloud, to quantify age changes over the lifespan, divided into Development (0 to 21 years, 87 brains) and Aging (22 to 78 years, 144 brains) intervals, in transcription levels of 39 genes. Gene expression levels followed different trajectories over the lifespan. Many changes were intercorrelated within three similar groups or clusters of genes during both Development and Aging, despite different roles of the gene products in the two intervals. During Development, changes were related to reported neuronal loss, dendritic growth and pruning, and microglial events; TLR4, IL1R1, NFKB1, MOBP, PLA2G4A, and PTGS2 expression increased in the first years of life, while expression of synaptic genes GAP43 and DBN1 decreased, before reaching plateaus. During Aging, expression was upregulated for potentially pro-inflammatory genes such as NFKB1, TRAF6, TLR4, IL1R1, TSPO, and GFAP, but downregulated for neurotrophic and synaptic integrity genes such as BDNF, NGF, PDGFA, SYN, and DBN1. Coordinated changes in gene transcription cascades underlie changes in synaptic, neurotrophic, and inflammatory phenotypic networks during brain Development and Aging. Early postnatal expression changes relate to neuronal, glial, and myelin growth and synaptic pruning events, while late Aging is associated with pro-inflammatory and synaptic loss changes. Thus, comparable transcriptional regulatory networks that operate

  13. Chronic intermittent hypoxia exerts CNS region-specific effects on rat microglial inflammatory and TLR4 gene expression.

    Directory of Open Access Journals (Sweden)

    Stephanie M C Smith

    Full Text Available Intermittent hypoxia (IH during sleep is a hallmark of sleep apnea, causing significant neuronal apoptosis, and cognitive and behavioral deficits in CNS regions underlying memory processing and executive functions. IH-induced neuroinflammation is thought to contribute to cognitive deficits after IH. In the present studies, we tested the hypothesis that IH would differentially induce inflammatory factor gene expression in microglia in a CNS region-dependent manner, and that the effects of IH would differ temporally. To test this hypothesis, adult rats were exposed to intermittent hypoxia (2 min intervals of 10.5% O2 for 8 hours/day during their respective sleep cycles for 1, 3 or 14 days. Cortex, medulla and spinal cord tissues were dissected, microglia were immunomagnetically isolated and mRNA levels of the inflammatory genes iNOS, COX-2, TNFα, IL-1β and IL-6 and the innate immune receptor TLR4 were compared to levels in normoxia. Inflammatory gene expression was also assessed in tissue homogenates (containing all CNS cells. We found that microglia from different CNS regions responded to IH differently. Cortical microglia had longer lasting inflammatory gene expression whereas spinal microglial gene expression was rapid and transient. We also observed that inflammatory gene expression in microglia frequently differed from that in tissue homogenates from the same region, indicating that cells other than microglia also contribute to IH-induced neuroinflammation. Lastly, microglial TLR4 mRNA levels were strongly upregulated by IH in a region- and time-dependent manner, and the increase in TLR4 expression appeared to coincide with timing of peak inflammatory gene expression, suggesting that TLR4 may play a role in IH-induced neuroinflammation. Together, these data indicate that microglial-specific neuroinflammation may play distinct roles in the effects of intermittent hypoxia in different CNS regions.

  14. Gene expression profiling of cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2007-02-01

    Full Text Available Abstract Background Although the sequence of events leading to wound repair has been described at the cellular and, to a limited extent, at the protein level this process has yet to be fully elucidated. Genome wide transcriptional analysis tools promise to further define the global picture of this complex progression of events. Study Design This study was part of a placebo-controlled double-blind clinical trial in which basal cell carcinomas were treated topically with an immunomodifier – toll-like receptor 7 agonist: imiquimod. The fourteen patients with basal cell carcinoma in the placebo arm of the trial received placebo treatment consisting solely of vehicle cream. A skin punch biopsy was obtained immediately before treatment and at the end of the placebo treatment (after 2, 4 or 8 days. 17.5K cDNA microarrays were utilized to profile the biopsy material. Results Four gene signatures whose expression changed relative to baseline (before wound induction by the pre-treatment biopsy were identified. The largest group was comprised predominantly of inflammatory genes whose expression was increased throughout the study. Two additional signatures were observed which included preferentially pro-inflammatory genes in the early post-treatment biopsies (2 days after pre-treatment biopsies and repair and angiogenesis genes in the later (4 to 8 days biopsies. The fourth and smallest set of genes was down-regulated throughout the study. Early in wound healing the expression of markers of both M1 and M2 macrophages were increased, but later M2 markers predominated. Conclusion The initial response to a cutaneous wound induces powerful transcriptional activation of pro-inflammatory stimuli which may alert the host defense. Subsequently and in the absence of infection, inflammation subsides and it is replaced by angiogenesis and remodeling. Understanding this transition which may be driven by a change from a mixed macrophage population to predominately M2

  15. Cortical Astrocytes Acutely Exposed to the Monomethylarsonous Acid (MMAIII) Show Increased Pro-inflammatory Cytokines Gene Expression that is Consistent with APP and BACE-1: Over-expression.

    Science.gov (United States)

    Escudero-Lourdes, C; Uresti-Rivera, E E; Oliva-González, C; Torres-Ramos, M A; Aguirre-Bañuelos, P; Gandolfi, A J

    2016-10-01

    Long-term exposure to inorganic arsenic (iAs) through drinking water has been associated with cognitive impairment in children and adults; however, the related pathogenic mechanisms have not been completely described. Increased or chronic inflammation in the brain is linked to impaired cognition and neurodegeneration; iAs induces strong inflammatory responses in several cells, but this effect has been poorly evaluated in central nervous system (CNS) cells. Because astrocytes are the most abundant cells in the CNS and play a critical role in brain homeostasis, including regulation of the inflammatory response, any functional impairment in them can be deleterious for the brain. We propose that iAs could induce cognitive impairment through inflammatory response activation in astrocytes. In the present work, rat cortical astrocytes were acutely exposed in vitro to the monomethylated metabolite of iAs (MMA III ), which accumulates in glial cells without compromising cell viability. MMA III LD 50 in astrocytes was 10.52 μM, however, exposure to sub-toxic MMA III concentrations (50-1000 nM) significantly increased IL-1β, IL-6, TNF-α, COX-2, and MIF-1 gene expression. These effects were consistent with amyloid precursor protein (APP) and β-secretase (BACE-1) increased gene expression, mainly for those MMA III concentrations that also induced TNF-α over-expression. Other effects of MMA III on cortical astrocytes included increased proliferative and metabolic activity. All tested MMA III concentrations led to an inhibition of intracellular lactate dehydrogenase (LDH) activity. Results suggest that MMA III induces important metabolic and functional changes in astrocytes that may affect brain homeostasis and that inflammation may play a major role in cognitive impairment-related pathogenicity in As-exposed populations.

  16. Increased spinal prodynorphin gene expression in reinflammation-associated hyperalgesia after neonatal inflammatory insult

    Directory of Open Access Journals (Sweden)

    Wen Yeong-Ray

    2010-10-01

    Full Text Available Abstract Background Neuroplasticity induced by neonatal inflammation is the consequence of a combination of activity-dependent changes in neurons. We investigated neuronal sensitivity to a noxious stimulus in a rat model of neonatal hind-paw peripheral inflammation and assessed changes in pain behaviour at the physiological and molecular levels after peripheral reinflammation in adulthood. Results A decrease in paw withdrawal latency (PWL after a heat stimulus was documented in rats that received inflammatory injections in their left hind paws on postnatal day one (P1 and a reinflammation stimulus at postnatal 6-8 weeks of age, compared with normal rats. An increase in the expression of the prodynorphin (proDYN gene was noted after reinflammation in the spinal cord ipsilateral to the afferents of the neonatally treated hind paw. The involvement of the activation of extracellular signal-regulated kinases (ERK in peripheral inflammatory pain hypersensitivity was evidenced evident by the increase in phospho-ERK (pERK activity after reinflammation. Conclusions Our results indicate that peripheral inflammation in neonates can permanently alter the pain processing pathway during the subsequent sensory stimulation of the region. Elucidation of the mechanism underlying the developing pain circuitry will provide new insights into the understanding of the early pain behaviours and the subsequent adaptation to pain.

  17. TNF-α-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in intestinal epithelial cells

    Directory of Open Access Journals (Sweden)

    Griffiths Gareth

    2009-07-01

    Full Text Available Abstract Background Phosphatidylcholine (PC is a major lipid of the gastrointestinal mucus layer. We recently showed that mucus from patients suffering from ulcerative colitis has low levels of PC. Clinical studies reveal that the therapeutic addition of PC to the colonic mucus using slow release preparations is beneficial. The positive role of PC in this disease is still unclear; however, we have recently shown that PC has an intrinsic anti-inflammatory property. It could be demonstrated that the exogenous application of PC inhibits membrane-dependent actin assembly and TNF-α-induced nuclear NF-κB activation. We investigate here in more detail the hypothesis that the exogenous application of PC has anti-inflammatory properties. Methods PC species with different fatty acid side chains were applied to differentiated and non-differentiated Caco-2 cells treated with TNF-α to induce a pro-inflammatory response. We analysed TNF-α-induced NF-κB-activation via the transient expression of a NF-κB-luciferase reporter system. Pro-inflammatory gene transcription was detected with the help of a quantitative real time (RT-PCR analysis. We assessed the binding of TNF-α to its receptor by FACS and analysed lipid rafts by isolating detergent resistant membranes (DRMs. Results The exogenous addition of all PC species tested significantly inhibited TNF-α-induced pro-inflammatory signalling. The expression levels of IL-8, ICAM-1, IP-10, MCP-1, TNF-α and MMP-1 were significantly reduced after PC pre-treatment for at least two hours. The effect was comparable to the inhibition of NF-kB by the NF-kB inhibitor SN 50 and was not due to a reduced binding of TNF-α to its receptor or a decreased surface expression of TNF-α receptors. PC was also effective when applied to the apical side of polarised Caco-2 cultures if cells were stimulated from the basolateral side. PC treatment changed the compartmentation of the TNF-α-receptors 1 and 2 to DRMs. Conclusion PC

  18. Transferrin-derived synthetic peptide induces highly conserved pro-inflammatory responses of macrophages.

    Science.gov (United States)

    Haddad, George; Belosevic, Miodrag

    2009-02-01

    We examined the induction of macrophage pro-inflammatory responses by transferrin-derived synthetic peptide originally identified following digestion of transferrin from different species (murine, bovine, human N-lobe and goldfish) using elastase. The mass spectrometry analysis of elastase-digested murine transferrin identified a 31 amino acid peptide located in the N2 sub-domain of the transferrin N-lobe, that we named TMAP. TMAP was synthetically produced and shown to induce a number of pro-inflammatory genes by quantitative PCR. TMAP induced chemotaxis, a potent nitric oxide response, and TNF-alpha secretion in different macrophage populations; P338D1 macrophage-like cells, mouse peritoneal macrophages, mouse bone marrow-derived macrophages (BMDM) and goldfish macrophages. The treatment of BMDM cultures with TMAP stimulated the production of nine cytokines and chemokines (IL-6, MCP-5, MIP-1 alpha, MIP-1 gamma, MIP-2, GCSF, KC, VEGF, and RANTES) that was measured using cytokine antibody array and confirmed by Western blot. Our results indicate that transferrin-derived peptide, TMAP, is an immunomodulating molecule capable of inducing pro-inflammatory responses in lower and higher vertebrates.

  19. Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration.

    Science.gov (United States)

    Scholz, Rebecca; Sobotka, Markus; Caramoy, Albert; Stempfl, Thomas; Moehle, Christoph; Langmann, Thomas

    2015-11-17

    Microglia reactivity is a hallmark of retinal degenerations and overwhelming microglial responses contribute to photoreceptor death. Minocycline, a semi-synthetic tetracycline analog, has potent anti-inflammatory and neuroprotective effects. Here, we investigated how minocycline affects microglia in vitro and studied its immuno-modulatory properties in a mouse model of acute retinal degeneration using bright white light exposure. LPS-treated BV-2 microglia were stimulated with 50 μg/ml minocycline for 6 or 24 h, respectively. Pro-inflammatory gene transcription was determined by real-time RT-PCR and nitric oxide (NO) secretion was assessed using the Griess reagent. Caspase 3/7 levels were determined in 661W photoreceptors cultured with microglia-conditioned medium in the absence or presence of minocycline supplementation. BALB/cJ mice received daily intraperitoneal injections of 45 mg/kg minocycline, starting 1 day before exposure to 15.000 lux white light for 1 hour. The effect of minocycline treatment on microglial reactivity was analyzed by immunohistochemical stainings of retinal sections and flat-mounts, and messenger RNA (mRNA) expression of microglia markers was determined using real-time RT-PCR and RNA-sequencing. Optical coherence tomography (OCT) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) stainings were used to measure the extent of retinal degeneration and photoreceptor apoptosis. Stimulation of LPS-activated BV-2 microglia with minocycline significantly diminished the transcription of the pro-inflammatory markers CCL2, IL6, and inducible nitric oxide synthase (iNOS). Minocycline also reduced the production of NO and dampened microglial neurotoxicity on 661W photoreceptors. Furthermore, minocycline had direct protective effects on 661W photoreceptors by decreasing caspase 3/7 activity. In mice challenged with white light, injections of minocycline strongly decreased the number of amoeboid alerted microglia in the outer

  20. Selective targeting of pro-inflammatory Th1 cells by microRNA-148a-specific antagomirs in vivo.

    Science.gov (United States)

    Maschmeyer, Patrick; Petkau, Georg; Siracusa, Francesco; Zimmermann, Jakob; Zügel, Franziska; Kühl, Anja Andrea; Lehmann, Katrin; Schimmelpfennig, Sarah; Weber, Melanie; Haftmann, Claudia; Riedel, René; Bardua, Markus; Heinz, Gitta Anne; Tran, Cam Loan; Hoyer, Bimba Franziska; Hiepe, Falk; Herzog, Sebastian; Wittmann, Jürgen; Rajewsky, Nikolaus; Melchers, Fritz Georg; Chang, Hyun-Dong; Radbruch, Andreas; Mashreghi, Mir-Farzin

    2018-05-01

    In T lymphocytes, expression of miR-148a is induced by T-bet and Twist1, and is specific for pro-inflammatory Th1 cells. In these cells, miR-148a inhibits the expression of the pro-apoptotic protein Bim and promotes their survival. Here we use sequence-specific cholesterol-modified oligonucleotides against miR-148a (antagomir-148a) for the selective elimination of pro-inflammatory Th1 cells in vivo. In the murine model of transfer colitis, antagomir-148a treatment reduced the number of pro-inflammatory Th1 cells in the colon of colitic mice by 50% and inhibited miR-148a expression by 71% in the remaining Th1 cells. Expression of Bim protein in colonic Th1 cells was increased. Antagomir-148a-mediated reduction of Th1 cells resulted in a significant amelioration of colitis. The effect of antagomir-148a was selective for chronic inflammation. Antigen-specific memory Th cells that were generated by an acute immune reaction to nitrophenylacetyl-coupled chicken gamma globulin (NP-CGG) were not affected by treatment with antagomir-148a, both during the effector and the memory phase. In addition, antibody titers to NP-CGG were not altered. Thus, antagomir-148a might qualify as an effective drug to selectively deplete pro-inflammatory Th1 cells of chronic inflammation without affecting the protective immunological memory. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Neisseria meningitidis elicits a pro-inflammatory response involving IκBζ in a human blood-cerebrospinal fluid barrier model.

    Science.gov (United States)

    Borkowski, Julia; Li, Li; Steinmann, Ulrike; Quednau, Natascha; Stump-Guthier, Carolin; Weiss, Christel; Findeisen, Peter; Gretz, Norbert; Ishikawa, Hiroshi; Tenenbaum, Tobias; Schroten, Horst; Schwerk, Christian

    2014-09-13

    The human-specific, Gram-negative bacterium Neisseria meningitidis (Nm) is a leading cause of bacterial meningitis worldwide. The blood-cerebrospinal fluid barrier (BCSFB), which is constituted by the epithelial cells of the choroid plexus (CP), has been suggested as one of the potential entry sites of Nm into the CSF and can contribute to the inflammatory response during infectious diseases of the brain. Toll-like receptors (TLRs) are involved in mediating signal transduction caused by the pathogens. Using a recently established in vitro model of the human BCSFB based on human malignant CP papilloma (HIBCPP) cells we investigated the cellular response of HIBCPP cells challenged with the meningitis-causing Nm strain, MC58, employing transcriptome and RT-PCR analysis, cytokine bead array, and enzyme-linked immunosorbent assay (ELISA). In comparison, we analyzed the answer to the closely related unencapsulated carrier isolate Nm α14. The presence of TLRs in HIBCPP and their role during signal transduction caused by Nm was studied by RT-PCR and the use of specific agonists and mutant bacteria. We observed a stronger transcriptional response after infection with strain MC58, in particular with its capsule-deficient mutant MC58siaD-, which correlated with bacterial invasion levels. Expression evaluation and Gene Set Enrichment Analysis pointed to a NFκB-mediated pro-inflammatory immune response involving up-regulation of the transcription factor IκBζ. Infected cells secreted significant levels of pro-inflammatory chemokines and cytokines, including, among others, IL8, CXCL1-3, and the IκBζ target gene product IL6. The expression profile of pattern recognition receptors in HIBCPP cells and the response to specific agonists indicates that TLR2/TLR6, rather than TLR4 or TLR2/TLR1, is involved in the cellular reaction following Nm infection. Our data show that Nm can initiate a pro-inflammatory response in human CP epithelial cells probably involving TLR2/TLR6

  2. Differential cytokine gene expression according to outcome in a hamster model of leptospirosis.

    Directory of Open Access Journals (Sweden)

    Frédérique Vernel-Pauillac

    Full Text Available BACKGROUND: Parameters predicting the evolution of leptospirosis would be useful for clinicians, as well as to better understand severe leptospirosis, but are scarce and rarely validated. Because severe leptospirosis includes septic shock, similarities with predictors evidenced for sepsis and septic shock were studied in a hamster model. METHODOLOGY/PRINCIPAL FINDINGS: Using an LD50 model of leptospirosis in hamsters, we first determined that 3 days post-infection was a time-point that allowed studying the regulation of immune gene expression and represented the onset of the clinical signs of the disease. In the absence of tools to assess serum concentrations of immune effectors in hamsters, we determined mRNA levels of various immune genes, especially cytokines, together with leptospiraemia at this particular time-point. We found differential expression of both pro- and anti-inflammatory mediators, with significantly higher expression levels of tumor necrosis factor alpha, interleukin 1alpha, cyclo-oxygenase 2 and interleukin 10 genes in nonsurvivors compared to survivors. Higher leptospiraemia was also observed in nonsurvivors. Lastly, we demonstrated the relevance of these results by comparing their respective expression levels using a LD100 model or an isogenic high-passage nonvirulent variant. CONCLUSIONS/SIGNIFICANCE: Up-regulated gene expression of both pro- and anti-inflammatory immune effectors in hamsters with fatal outcome in an LD50 model of leptospirosis, together with a higher Leptospira burden, suggest that these gene expression levels could be predictors of adverse outcome in leptospirosis.

  3. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages

    Science.gov (United States)

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-01

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD+ has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD+ homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD+ levels and expression levels of NAD+ homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD+ levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD+ synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD+ homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD+ levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD+. The agonist-induced rise in NAD+ shows striking parallels to well-known second messengers and raises the possibility that NAD+ is acting in a similar manner in this model. PMID:26764408

  4. Involvement of Pro-Inflammatory Macrophages in Liver Pathology of Pirital Virus-Infected Syrian Hamsters

    Directory of Open Access Journals (Sweden)

    Corey L. Campbell

    2018-05-01

    Full Text Available New World arenaviruses cause fatal hemorrhagic disease in South America. Pirital virus (PIRV, a mammarenavirus hosted by Alston’s cotton rat (Sigmodon alstoni, causes a disease in Syrian golden hamsters (Mesocricetus auratus (biosafety level-3, BSL-3 that has many pathologic similarities to the South American hemorrhagic fevers (BSL-4 and, thus, is considered among the best small-animal models for human arenavirus disease. Here, we extend in greater detail previously described clinical and pathological findings in Syrian hamsters and provide evidence for a pro-inflammatory macrophage response during PIRV infection. The liver was the principal target organ of the disease, and signs of Kupffer cell involvement were identified in mortally infected hamster histopathology data. Differential expression analysis of liver mRNA revealed signatures of the pro-inflammatory response, hematologic dysregulation, interferon pathway and other host response pathways, including 17 key transcripts that were also reported in two non-human primate (NHP arenavirus liver-infection models, representing both Old and New World mammarenavirus infections. Although antigen presentation may differ among rodent and NHP species, key hemostatic and innate immune-response components showed expression parallels. Signatures of pro-inflammatory macrophage involvement in PIRV-infected livers included enrichment of Ifng, Nfkb2, Stat1, Irf1, Klf6, Il1b, Cxcl10, and Cxcl11 transcripts. Together, these data indicate that pro-inflammatory macrophage M1 responses likely contribute to the pathogenesis of acute PIRV infection.

  5. Differential gene expression in porcine SK6 cells infected with wild-type and SAP domain-mutant foot-and-mouth disease virus.

    Science.gov (United States)

    Ni, Zixin; Yang, Fan; Cao, Weijun; Zhang, Xiangle; Jin, Ye; Mao, Ruoqing; Du, Xiaoli; Li, Weiwei; Guo, Jianhong; Liu, Xiangtao; Zhu, Zixiang; Zheng, Haixue

    2016-06-01

    Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious disease in livestock. The viral proteinase L(pro) of FMDV is involved in pathogenicity, and mutation of the L(pro) SAP domain reduces FMDV pathogenicity in pigs. To determine the gene expression profiles associated with decreased pathogenicity in porcine cells, we performed transcriptome analysis using next-generation sequencing technology and compared differentially expressed genes in SK6 cells infected with FMDV containing L(pro) with either a wild-type or mutated version of the SAP domain. This analysis yielded 1,853 genes that exhibited a ≥ 2-fold change in expression and was validated by real-time quantitative PCR detection of several differentially expressed genes. Many of the differentially expressed genes correlated with antiviral responses corresponded to genes associated with transcription factors, immune regulation, cytokine production, inflammatory response, and apoptosis. Alterations in gene expression profiles may be responsible for the variations in pathogenicity observed between the two FMDV variants. Our results provided genes of interest for the further study of antiviral pathways and pathogenic mechanisms related to FMDV L(pro).

  6. Inflammatory bowel disease: the role of inflammatory cytokine gene polymorphisms

    Directory of Open Access Journals (Sweden)

    Joanna Balding

    2004-01-01

    Full Text Available THE mechanisms responsible for development of inflammatory bowel disease (IBD have not been fully elucidated, although the main cause of disease pathology is attributed to up-regulated inflammatory processes. The aim of this study was to investigate frequencies of polymorphisms in genes encoding pro-inflammatory and anti-inflammatory markers in IBD patients and controls. We determined genotypes of patients with IBD (n=172 and healthy controls (n=389 for polymorphisms in genes encoding various cytokines (interleukin (IL-1β, IL-6, tumour necrosis factor (TNF, IL-10, IL-1 receptor antagonist. Association of these genotypes to disease incidence and pathophysiology was investigated. No strong association was found with occurrence of IBD. Variation was observed between the ulcerative colitis study group and the control population for the TNF-α-308 polymorphism (p=0.0135. There was also variation in the frequency of IL-6-174 and TNF-α-308 genotypes in the ulcerative colitis group compared with the Crohn's disease group (p=0.01. We concluded that polymorphisms in inflammatory genes are associated with variations in IBD phenotype and disease susceptibility. Whether the polymorphisms are directly involved in regulating cytokine production, and consequently pathophysiology of IBD, or serve merely as markers in linkage disequilibrium with susceptibility genes remains unclear.

  7. Leptin regulates the pro-inflammatory response in human epidermal keratinocytes.

    Science.gov (United States)

    Lee, Moonyoung; Lee, Eunyoung; Jin, Sun Hee; Ahn, Sungjin; Kim, Sae On; Kim, Jungmin; Choi, Dalwoong; Lim, Kyung-Min; Lee, Seung-Taek; Noh, Minsoo

    2018-05-01

    The role of leptin in cutaneous wound healing process has been suggested in genetically obese mouse studies. However, the molecular and cellular effects of leptin on human epidermal keratinocytes are still unclear. In this study, the whole-genome-scale microarray analysis was performed to elucidate the effect of leptin on epidermal keratinocyte functions. In the leptin-treated normal human keratinocytes (NHKs), we identified the 151 upregulated and 53 downregulated differentially expressed genes (DEGs). The gene ontology (GO) enrichment analysis with the leptin-induced DEGs suggests that leptin regulates NHKs to promote pro-inflammatory responses, extracellular matrix organization, and angiogenesis. Among the DEGs, the protein expression of IL-8, MMP-1, fibronectin, and S100A7, which play roles in which is important in the regulation of cutaneous inflammation, was confirmed in the leptin-treated NHKs. The upregulation of the leptin-induced proteins is mainly regulated by the STAT3 signaling pathway in NHKs. Among the downregulated DEGs, the protein expression of nucleosome assembly-associated centromere protein A (CENPA) and CENPM was confirmed in the leptin-treated NHKs. However, the expression of CENPA and CENPM was not coupled with those of other chromosome passenger complex like Aurora A kinase, INCENP, and survivin. In cell growth kinetics analysis, leptin had no significant effect on the cell growth curves of NHKs in the normal growth factor-enriched condition. Therefore, leptin-dependent downregulation of CENPA and CENPM in NHKs may not be directly associated with mitotic regulation during inflammation.

  8. Maggot secretions skew monocyte-macrophage differentiation away from a pro-inflammatory to a pro-angiogenic type

    DEFF Research Database (Denmark)

    van der Plas, Mariena J A; van Dissel, Jaap T; Nibbering, Peter H

    2009-01-01

    BACKGROUND: Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. Earlier we reported maggot secretions to inhibit pro-inflammatory responses of human monocytes. The aim of this study was to investigate the effect of maggot secretions on the differentiation...... for 18 h. The expression of cell surface molecules and the levels of cytokines, chemokines and growth factors in supernatants were measured. Our results showed secretions to affect monocyte-macrophage differentiation leading to MØ-1 with a partial MØ-2-like morphology but lacking CD163, which...... is characteristic for MØ-2. In response to LPS or LTA, secretions-differentiated MØ-1 produced less pro-inflammatory cytokines (TNF-alpha, IL-12p40 and MIF) than control cells. Similar results were observed for MØ-2 when stimulated with low concentrations of LPS. Furthermore, secretions dose-dependently led to MØ-1...

  9. Oxygen and tissue culture affect placental gene expression.

    Science.gov (United States)

    Brew, O; Sullivan, M H F

    2017-07-01

    Placental explant culture is an important model for studying placental development and functions. We investigated the differences in placental gene expression in response to tissue culture, atmospheric and physiologic oxygen concentrations. Placental explants were collected from normal term (38-39 weeks of gestation) placentae with no previous uterine contractile activity. Placental transcriptomic expressions were evaluated with GeneChip ® Human Genome U133 Plus 2.0 arrays (Affymetrix). We uncovered sub-sets of genes that regulate response to stress, induction of apoptosis programmed cell death, mis-regulation of cell growth, proliferation, cell morphogenesis, tissue viability, and protection from apoptosis in cultured placental explants. We also identified a sub-set of genes with highly unstable pattern of expression after exposure to tissue culture. Tissue culture irrespective of oxygen concentration induced dichotomous increase in significant gene expression and increased enrichment of significant pathways and transcription factor targets (TFTs) including HIF1A. The effect was exacerbated by culture at atmospheric oxygen concentration, where further up-regulation of TFTs including PPARA, CEBPD, HOXA9 and down-regulated TFTs such as JUND/FOS suggest intrinsic heightened key biological and metabolic mechanisms such as glucose use, lipid biosynthesis, protein metabolism; apoptosis, inflammatory responses; and diminished trophoblast proliferation, differentiation, invasion, regeneration, and viability. These findings demonstrate that gene expression patterns differ between pre-culture and cultured explants, and the gene expression of explants cultured at atmospheric oxygen concentration favours stressed, pro-inflammatory and increased apoptotic transcriptomic response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Coordinated gene expression of neuroinflammatory and cell signaling markers in dorsolateral prefrontal cortex during human brain development and aging.

    Directory of Open Access Journals (Sweden)

    Christopher T Primiani

    Full Text Available Age changes in expression of inflammatory, synaptic, and neurotrophic genes are not well characterized during human brain development and senescence. Knowing these changes may elucidate structural, metabolic, and functional brain processes over the lifespan, as well vulnerability to neurodevelopmental or neurodegenerative diseases.Expression levels of inflammatory, synaptic, and neurotrophic genes in the human brain are coordinated over the lifespan and underlie changes in phenotypic networks or cascades.We used a large-scale microarray dataset from human prefrontal cortex, BrainCloud, to quantify age changes over the lifespan, divided into Development (0 to 21 years, 87 brains and Aging (22 to 78 years, 144 brains intervals, in transcription levels of 39 genes.Gene expression levels followed different trajectories over the lifespan. Many changes were intercorrelated within three similar groups or clusters of genes during both Development and Aging, despite different roles of the gene products in the two intervals. During Development, changes were related to reported neuronal loss, dendritic growth and pruning, and microglial events; TLR4, IL1R1, NFKB1, MOBP, PLA2G4A, and PTGS2 expression increased in the first years of life, while expression of synaptic genes GAP43 and DBN1 decreased, before reaching plateaus. During Aging, expression was upregulated for potentially pro-inflammatory genes such as NFKB1, TRAF6, TLR4, IL1R1, TSPO, and GFAP, but downregulated for neurotrophic and synaptic integrity genes such as BDNF, NGF, PDGFA, SYN, and DBN1.Coordinated changes in gene transcription cascades underlie changes in synaptic, neurotrophic, and inflammatory phenotypic networks during brain Development and Aging. Early postnatal expression changes relate to neuronal, glial, and myelin growth and synaptic pruning events, while late Aging is associated with pro-inflammatory and synaptic loss changes. Thus, comparable transcriptional regulatory networks

  11. Coordinated Gene Expression of Neuroinflammatory and Cell Signaling Markers in Dorsolateral Prefrontal Cortex during Human Brain Development and Aging

    Science.gov (United States)

    Primiani, Christopher T.; Ryan, Veronica H.; Rao, Jagadeesh S.; Cam, Margaret C.; Ahn, Kwangmi; Modi, Hiren R.; Rapoport, Stanley I.

    2014-01-01

    Background Age changes in expression of inflammatory, synaptic, and neurotrophic genes are not well characterized during human brain development and senescence. Knowing these changes may elucidate structural, metabolic, and functional brain processes over the lifespan, as well vulnerability to neurodevelopmental or neurodegenerative diseases. Hypothesis Expression levels of inflammatory, synaptic, and neurotrophic genes in the human brain are coordinated over the lifespan and underlie changes in phenotypic networks or cascades. Methods We used a large-scale microarray dataset from human prefrontal cortex, BrainCloud, to quantify age changes over the lifespan, divided into Development (0 to 21 years, 87 brains) and Aging (22 to 78 years, 144 brains) intervals, in transcription levels of 39 genes. Results Gene expression levels followed different trajectories over the lifespan. Many changes were intercorrelated within three similar groups or clusters of genes during both Development and Aging, despite different roles of the gene products in the two intervals. During Development, changes were related to reported neuronal loss, dendritic growth and pruning, and microglial events; TLR4, IL1R1, NFKB1, MOBP, PLA2G4A, and PTGS2 expression increased in the first years of life, while expression of synaptic genes GAP43 and DBN1 decreased, before reaching plateaus. During Aging, expression was upregulated for potentially pro-inflammatory genes such as NFKB1, TRAF6, TLR4, IL1R1, TSPO, and GFAP, but downregulated for neurotrophic and synaptic integrity genes such as BDNF, NGF, PDGFA, SYN, and DBN1. Conclusions Coordinated changes in gene transcription cascades underlie changes in synaptic, neurotrophic, and inflammatory phenotypic networks during brain Development and Aging. Early postnatal expression changes relate to neuronal, glial, and myelin growth and synaptic pruning events, while late Aging is associated with pro-inflammatory and synaptic loss changes. Thus, comparable

  12. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    Energy Technology Data Exchange (ETDEWEB)

    Marín-Prida, Javier [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Pavón-Fuentes, Nancy [International Centre for Neurological Restoration (CIREN), Ave. 25 e/ 158 y 160, Playa, PO Box: 11300, Havana (Cuba); Llópiz-Arzuaga, Alexey; Fernández-Massó, Julio R. [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Delgado-Roche, Liván [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Mendoza-Marí, Yssel; Santana, Seydi Pedroso; Cruz-Ramírez, Alieski; Valenzuela-Silva, Carmen; Nazábal-Gálvez, Marcelo; Cintado-Benítez, Alberto [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Pardo-Andreu, Gilberto L. [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Polentarutti, Nadia [Istituto Clinico Humanitas (IRCCS), Rozzano (Italy); Riva, Federica [Department of Veterinary Science and Public Health (DIVET), University of Milano (Italy); Pentón-Arias, Eduardo [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Pentón-Rol, Giselle [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba)

    2013-10-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H{sub 2}O{sub 2} and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H{sub 2}O{sub 2} and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy.

  13. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    International Nuclear Information System (INIS)

    Marín-Prida, Javier; Pavón-Fuentes, Nancy; Llópiz-Arzuaga, Alexey; Fernández-Massó, Julio R.; Delgado-Roche, Liván; Mendoza-Marí, Yssel; Santana, Seydi Pedroso; Cruz-Ramírez, Alieski; Valenzuela-Silva, Carmen; Nazábal-Gálvez, Marcelo; Cintado-Benítez, Alberto; Pardo-Andreu, Gilberto L.; Polentarutti, Nadia; Riva, Federica; Pentón-Arias, Eduardo; Pentón-Rol, Giselle

    2013-01-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H 2 O 2 and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H 2 O 2 and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy

  14. Cytokine responses in primary chicken embryo intestinal cells infected with Campylobacter jejuni strains of human and chicken origin and the expression of bacterial virulence-associated genes

    DEFF Research Database (Denmark)

    Li, Yiping; Ingmer, Hanne; Madsen, Mogens

    2008-01-01

    of the bacterial genes. We have investigated the invasiveness of primary chicken embryo intestinal cells (CEICs) by C. jejuni strains of human and chicken origins and the production of pro-inflammatory cytokines as well as the expression of the bacterial virulence-associated genes during co-cultivation. Results C......-free media from another co-cultivation experiment also increased the expression of the virulence-associated genes in the C. jejuni chicken isolate, indicating that the expression of bacterial genes is regulated by component(s) secreted upon co-cultivation of bacteria and CEICs. Conclusion We show that under...... in vitro culture condition C. jejuni strains of both human and chicken origins can invade avian host cells with a pro-inflammatory response and that the virulence-associated genes of C. jejuni may play a role in this process....

  15. Gene expression changes in mononuclear cells in patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil

    Directory of Open Access Journals (Sweden)

    Lopez-Miranda Jose

    2010-04-01

    Full Text Available Abstract Background Previous studies have shown that acute intake of high-phenol virgin olive oil reduces pro-inflammatory, pro-oxidant and pro-thrombotic markers compared with low phenols virgin olive oil, but it still remains unclear whether effects attributed to its phenolic fraction are exerted at transcriptional level in vivo. To achieve this goal, we aimed at identifying expression changes in genes which could be mediated by virgin olive oil phenol compounds in the human. Results Postprandial gene expression microarray analysis was performed on peripheral blood mononuclear cells during postprandial period. Two virgin olive oil-based breakfasts with high (398 ppm and low (70 ppm content of phenolic compounds were administered to 20 patients suffering from metabolic syndrome following a double-blinded, randomized, crossover design. To eliminate the potential effect that might exist in their usual dietary habits, all subjects followed a similar low-fat, carbohydrate rich diet during the study period. Microarray analysis identified 98 differentially expressed genes (79 underexpressed and 19 overexpressed when comparing the intake of phenol-rich olive oil with low-phenol olive oil. Many of these genes seem linked to obesity, dyslipemia and type 2 diabetes mellitus. Among these, several genes seem involved in inflammatory processes mediated by transcription factor NF-κB, activator protein-1 transcription factor complex AP-1, cytokines, mitogen-activated protein kinases MAPKs or arachidonic acid pathways. Conclusion This study shows that intake of virgin olive oil based breakfast, which is rich in phenol compounds is able to repress in vivo expression of several pro-inflammatory genes, thereby switching activity of peripheral blood mononuclear cells to a less deleterious inflammatory profile. These results provide at least a partial molecular basis for reduced risk of cardiovascular disease observed in Mediterranean countries, where virgin olive

  16. Intermittent Hypoxia Alters Gene Expression in Peripheral Blood Mononuclear Cells of Healthy Volunteers.

    Science.gov (United States)

    Polotsky, Vsevolod Y; Bevans-Fonti, Shannon; Grigoryev, Dmitry N; Punjabi, Naresh M

    2015-01-01

    Obstructive sleep apnea is associated with high cardiovascular morbidity and mortality. Intermittent hypoxia of obstructive sleep apnea is implicated in the development and progression of insulin resistance and atherosclerosis, which have been attributed to systemic inflammation. Intermittent hypoxia leads to pro-inflammatory gene up-regulation in cell culture, but the effects of intermittent hypoxia on gene expression in humans have not been elucidated. A cross-over study was performed exposing eight healthy men to intermittent hypoxia or control conditions for five hours with peripheral blood mononuclear cell isolation before and after exposures. Total RNA was isolated followed by gene microarrays and confirmatory real time reverse transcriptase PCR. Intermittent hypoxia led to greater than two fold up-regulation of the pro-inflammatory gene toll receptor 2 (TLR2), which was not increased in the control exposure. We hypothesize that up-regulation of TLR2 by intermittent hypoxia may lead to systemic inflammation, insulin resistance and atherosclerosis in patients with obstructive sleep apnea.

  17. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages

    Science.gov (United States)

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-01-01

    Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794

  18. Efficacy of Selenium Supplement on Gene Expression of Inflammatory Cytokines and Vascular Endothelial Growth Factor in Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Mehri Jamilian

    2018-01-01

    Full Text Available Abstract Background: Selenium supplement has multiple important effects, including anti-inflammatory effect. The aim of this study was to assess the effects of selenium supplement on gene expression of inflammatory cytokines and vascular endothelial growth factor in gestational diabetes. Materials and Methods: This randomized double blind placebo control trial was performed on 40 patients suffering from GDM aged 18–40 years old. Participants were randomly divided into interventional group receiving 200mg/day selenium supplements (n=20 and control group receiving placebo (n=20 for 6 weeks. Primary outcome was gene expression of inflammatory cytokines and VEGF which were assessed in lymphocyte of GDM patients by RT-PCR method. Results: After 6 weeks intervention, in comparison with the control group, interventional group showed down regulation of gene expression of tumor necrosis factor alpha (TNF–α (p=0.02 and transforming growth factor beta (TGF–β (p=0.01 and up-regulation of gene expression of vascular endothelial (VEGF (p = 0.03 in lymphocytes of GDM. There was not any significant change following intervention with selenium regarding gene expression of interleukin IL-1 β and IL-8 in lymphocytes of GDM patients. Conclusion: 6 weeks supplementation with selenium in patients with GDM can cause down regulated gene expression of TNF-α and TGF–β, and up regulated gene expression of VEGF. Selenium supplement had not any effect on gene expression of IL-1 β and IL-8.

  19. 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR attenuates the expression of LPS- and Aβ peptide-induced inflammatory mediators in astroglia

    Directory of Open Access Journals (Sweden)

    Giri Shailendra

    2005-09-01

    Full Text Available Abstract Background Alzheimer's disease (AD pathology shows characteristic 'plaques' rich in amyloid beta (Aβ peptide deposits. Inflammatory process-related proteins such as pro-inflammatory cytokines have been detected in AD brain suggesting that an inflammatory immune reaction also plays a role in the pathogenesis of AD. Glial cells in culture respond to LPS and Aβ stimuli by upregulating the expression of cytokines TNF-α, IL-1β, and IL-6, and also the expression of proinflammatory genes iNOS and COX-2. We have earlier reported that LPS/Aβ stimulation-induced ceramide and ROS generation leads to iNOS expression and nitric oxide production in glial cells. The present study was undertaken to investigate the neuroprotective function of AICAR (a potent activator of AMP-activated protein kinase in blocking the pro-oxidant/proinflammatory responses induced in primary glial cultures treated with LPS and Aβ peptide. Methods To test the anti-inflammatory/anti-oxidant functions of AICAR, we tested its inhibitory potential in blocking the expression of pro-inflammatory cytokines and iNOS, expression of COX-2, generation of ROS, and associated signaling following treatment of glial cells with LPS and Aβ peptide. We also investigated the neuroprotective effects of AICAR against the effects of cytokines and inflammatory mediators (released by the glia, in blocking neurite outgrowth inhibition, and in nerve growth factor-(NGF induced neurite extension by PC-12 cells. Results AICAR blocked LPS/Aβ-induced inflammatory processes by blocking the expression of proinflammatory cytokine, iNOS, COX-2 and MnSOD genes, and by inhibition of ROS generation and depletion of glutathione in astroglial cells. AICAR also inhibited down-stream signaling leading to the regulation of transcriptional factors such as NFκB and C/EBP which are critical for the expression of iNOS, COX-2, MnSOD and cytokines (TNF-α/IL-1β and IL-6. AICAR promoted NGF-induced neurite growth

  20. Expression of genes associated with immunity in the endometrium of cattle with disparate postpartum uterine disease and fertility

    Directory of Open Access Journals (Sweden)

    Herath Shan

    2009-05-01

    Full Text Available Abstract Background Contamination of the uterine lumen with bacteria is ubiquitous in cattle after parturition. Some animals develop endometritis and have reduced fertility but others have no uterine disease and readily conceive. The present study tested the hypothesis that postpartum cattle that develop persistent endometritis and infertility are unable to limit the inflammatory response to uterine bacterial infection. Methods Endometrial biopsies were collected several times during the postpartum period from animals that were subsequently infertile with persistent endometritis (n = 4 or had no clinical disease and conceived to first insemination (n = 4. Quantitative PCR was used to determine the expression of candidate genes in the endometrial biopsies, including the Toll-like receptor (TLR 1 to 10 family of innate immune receptors, inflammatory mediators and their cognate receptors. Selected proteins were examined by immunohistochemistry. Results The expression of genes encoding pro-inflammatory mediators such as interleukins (IL1A, IL1B and IL6, and nitric oxide synthase 2 (NOS2 were higher during the first week post partum than subsequently. During the first week post partum, there was higher gene expression in infertile than fertile animals of TLR4, the receptor for bacterial lipopolysaccharide, and the pro-inflammatory cytokines IL1A and IL1B, and their receptor IL1R2. The expression of genes encoding other Toll-like receptors, transforming growth factor beta receptor 1 (TGFBR1 or prostaglandin E2 receptors (PTGER2 and PTGER4 did not differ significantly between the animal groups. Gene expression did not differ significantly between infertile and fertile animals after the first week postpartum. However, there were higher ratios of IL1A or IL1B mRNA to the anti-inflammatory cytokine IL10, during the first week post partum in the infertile than fertile animals, and the protein products of these genes were mainly localised to the epithelium

  1. HP1330 Contributes to Streptococcus suis Virulence by Inducing Toll-Like Receptor 2- and ERK1/2-Dependent Pro-inflammatory Responses and Influencing In Vivo S. suis Loads

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2017-07-01

    Full Text Available Streptococcus suis 2 (SS2 has evolved into a highly invasive pathogen responsible for two large-scale outbreaks of streptococcal toxic shock-like syndrome (STSLS in China. Excessive inflammation stimulated by SS2 is considered a hallmark of STSLS, even it also plays important roles in other clinical symptoms of SS2-related disease, including meningitis, septicemia, and sudden death. However, the mechanism of SS2-caused excessive inflammation remains poorly understood. Here, a novel pro-inflammatory protein was identified (HP1330, which could induce robust expression of pro-inflammatory cytokines (TNF-α, MCP-1, and IL-1β in RAW264.7 macrophages. To evaluate the role of HP1330 in SS2 virulence, an hp1330-deletion mutant (Δhp1330 was constructed. In vitro, hp1330 disruption led to a decreased pro-inflammatory ability of SS2 in RAW 264.7 macrophages. In vivo, Δhp1330 showed reduced lethality, pro-inflammatory activity, and bacterial loads in mice. To further elucidate the mechanism of HP1330-induced pro-inflammatory cytokine production, antibody blocking and gene-deletion experiments with macrophages were performed. The results revealed that the pro-inflammatory activity of HP1330 depended on the recognition of toll-like receptor 2 (TLR2. Furthermore, a specific inhibitor of the extracellular signal-regulated kinase 1/2 (ERK1/2 pathways could significantly decrease HP1330-induced pro-inflammatory cytokine production, and western blot analysis showed that HP1330 could induce activation of the ERK1/2 pathway. Taken together, our findings demonstrate that HP1330 contributes to SS2 virulence by inducing TLR2- and ERK1/2-dependent pro-inflammatory cytokine production and influencing in vivo bacterial loads, implying that HP1330 may be associated with STSLS caused by SS2.

  2. Ureaplasma Species Differentially Modulate Pro- and Anti-Inflammatory Cytokine Responses in Newborn and Adult Human Monocytes Pushing the State Toward Pro-Inflammation

    Science.gov (United States)

    Glaser, Kirsten; Silwedel, Christine; Fehrholz, Markus; Waaga-Gasser, Ana M.; Henrich, Birgit; Claus, Heike; Speer, Christian P.

    2017-01-01

    Background: Ureaplasma species have been associated with chorioamnionitis and preterm birth and have been implicated in the pathogenesis of neonatal short and long-term morbidity. However, being mostly commensal bacteria, controversy remains on the pro-inflammatory capacity of Ureaplasma. Discussions are ongoing on the incidence and impact of prenatal, perinatal, and postnatal infection. The present study addressed the impact of Ureaplasma isolates on monocyte-driven inflammation. Methods: Cord blood monocytes of term neonates and adult monocytes, either native or LPS-primed, were cultured with Ureaplasma urealyticum (U. urealyticum) serovar 8 (Uu8) and Ureaplasma parvum serovar 3 (Up3). Using qRT-PCR, cytokine flow cytometry, and multi-analyte immunoassay, we assessed mRNA and protein expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-8, IL-12p40, IL-10, and IL-1 receptor antagonist (IL-1ra) as well as Toll-like receptor (TLR) 2 and TLR4. Results: Uu8 and Up3 induced mRNA expression and protein release of TNF-α, IL-1β and IL-8 in term neonatal and adult monocytes (p Ureaplasma-stimulated cells paralleled those results. Ureaplasma-induced cytokine levels did not significantly differ from LPS-mediated levels except for lower intracellular IL-1β in adult monocytes (Uu8: p ureaplasmas did not induce IL-12p40 response and promoted lower amounts of anti-inflammatory IL-10 and IL-1ra than LPS, provoking a cytokine imbalance more in favor of pro-inflammation (IL-1β/IL-10, IL-8/IL-10 and IL-8/IL-1ra: p Ureaplasma isolates in human monocytes. Stimulating pro-inflammatory cytokine responses while hardly inducing immunomodulatory and anti-inflammatory cytokines, ureaplasmas might push monocyte immune responses toward pro-inflammation. Inhibition of LPS-induced cytokines in adult monocytes in contrast to sustained inflammation in term neonatal monocytes indicates a differential modulation of host immune responses to a second stimulus. Modification of

  3. Pulsed ultrasound associated with gold nanoparticle gel reduces oxidative stress parameters and expression of pro-inflammatory molecules in an animal model of muscle injury

    Directory of Open Access Journals (Sweden)

    Victor Eduardo G

    2012-03-01

    Full Text Available Abstract Background Nanogold has been investigated in a wide variety of biomedical applications because of the anti-inflammatory properties. The purpose of this study was to evaluate the effects of TPU (Therapeutic Pulsed Ultrasound with gold nanoparticles (GNP on oxidative stress parameters and the expression of pro-inflammatory molecules after traumatic muscle injury. Materials and methods Animals were divided in nine groups: sham (uninjured muscle; muscle injury without treatment; muscle injury + DMSO; muscle injury + GNP; muscle injury + DMSO + GNP; muscle injury + TPU; muscle injury + TPU + DMSO; muscle injury + TPU + GNP; muscle injury + TPU + DMSO + GNP. The ROS production was determined by concentration of superoxide anion, modulation of antioxidant defenses was determined by the activity of superoxide dismutase, catalase and glutathione peroxidase enzymes, oxidative damage determined by formation of thiobarbituric acid-reactive substance and protein carbonyls. The levels of interleukin-1β (IL-1β and tumor necrosis factor-α (TNF-α were measured as inflammatory parameters. Results Compared to muscle injury without treatment group, the muscle injury + TPU + DMSO + GNP gel group promoted a significant decrease in superoxide anion production and lipid peroxidation levels (p Conclusions Our results suggest that TPU + DMSO + GNP gel presents beneficial effects on the muscular healing process, inducing a reduction in the production of ROS and also the expression of pro-inflammatory molecules.

  4. The importance of balanced pro-inflammatory and anti-inflammatory mechanisms in diffuse lung disease

    Directory of Open Access Journals (Sweden)

    Strieter Robert

    2002-01-01

    Full Text Available Abstract The lung responds to a variety of insults in a remarkably consistent fashion but with inconsistent outcomes that vary from complete resolution and return to normal to the destruction of normal architecture and progressive fibrosis. Increasing evidence indicates that diffuse lung disease results from an imbalance between the pro-inflammatory and anti-inflammatory mechanisms, with a persistent imbalance that favors pro-inflammatory mediators dictating the development of chronic diffuse lung disease. This review focuses on the mediators that influence this imbalance.

  5. Hydrolyzed fish proteins modulates both inflammatory and antioxidant gene expression as well as protein expression in a co culture model of liver and head kidney cells isolated from Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Holen, Elisabeth; He, Juyun; Araujo, Pedro; Seliussen, Jørgen; Espe, Marit

    2016-07-01

    Hydrolyzed fish proteins (H-pro) contain high concentrations of free amino acids and low molecular peptides that potentially may benefit fish health. The following study aimed to test whether the water-soluble phase of H-pro could attenuate lipopolysaccharide (LPS) provoked inflammation in liver cells and head kidney cells isolated from Atlantic salmon. Cells were grown as mono cultures or co cultures to assess possible crosstalk between immune cells and metabolic cells during treatments. Cells were added media with or without H-pro for 2 days before LPS exposure and harvested 24 h post LPS exposure. Respective cells without H-pro and LPS were used as controls. H-pro alone could affect expression of proteins directly as H-pro increased catalase protein expression in head kidney- and liver cells, regardless of culturing methods and LPS treatment. Leukotriene B4 (LTB4) production was also increased by H-pro in head kidney cells co cultured with liver cells. H-pro increased LPS induced interleukin 1β (IL-1β) transcription in liver cells co cultured with head kidney cells. All cultures of head kidney cells showed a significant increase in IL-1β transcription when treated with H-pro + LPS. H-pro decreased caspase-3 transcription in liver cells cultured co cultured with head kidney cells. Peroxisome proliferator activated receptor α (PPAR α) was upregulated, regardless of treatment, in liver cells co cultured with head kidney cells clearly showing that culturing method alone affected gene transcription. H-pro alone and together with LPS as an inflammation inducer, affect both antioxidant and inflammatory responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Collagen-derived N-acetylated proline-glycine-proline upregulates the expression of pro-inflammatory cytokines and extracellular matrix proteases in nucleus pulposus cells via the NF-κB and MAPK signaling pathways.

    Science.gov (United States)

    Feng, Chencheng; He, Jinyue; Zhang, Yang; Lan, Minghong; Yang, Minghui; Liu, Huan; Huang, Bo; Pan, Yong; Zhou, Yue

    2017-07-01

    N-acetylated proline-glycine-proline (N-Ac-PGP) is a chemokine involved in inflammatory diseases and is found to accumulate in degenerative discs. N-Ac-PGP has been demonstrated to have a pro-inflammatory effect on human cartilage endplate stem cells. However, the effect of N-Ac-PGP on human intervertebral disc cells, especially nucleus pulposus (NP) cells, remains unknown. The purpose of this study was to investigate the effect of N-Ac-PGP on the expression of pro-inflammatory factors and extracellular matrix (ECM) proteases in NP cells and the molecular mechanism underlying this effect. Therefore, Milliplex assays were used to detect the levels of various inflammatory cytokines in conditioned culture medium of NP cells treated with N-Ac-PGP, including interleukin-1β (IL-1β), IL-6, IL-17, tumor necrosis factor-α (TNF-α) and C-C motif ligand 2 (CCL2). RT-qPCR was also used to determine the expression of pro-inflammatory cytokines and ECM proteases in the NP cells treated with N-Ac-PGP. Moreover, the role of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in mediating the effect of N-Ac-PGP on the phenotype of NP cells was investigated using specific signaling inhibitors. Milliplex assays showed that NP cells treated with N-Ac-PGP (10 and 100 µg/ml) secreted higher levels of IL-1β, IL-6, IL-17, TNF-α and CCL2 compared with the control. RT-qPCR assays showed that NP cells treated with N-Ac-PGP (100 µg/ml) had markedly upregulated expression of matrix metalloproteinase 3 (MMP3), MMP13, a disintegrin and metalloproteinase with thrombospondin motif 4 (ADAMTS4), ADAMTS5, IL-6, CCL-2, CCL-5 and C-X-C motif chemokine ligand 10 (CXCL10). Moreover, N-Ac-PGP was shown to activate the MAPK and NF-κB signaling pathways in NP cells. MAPK and NF-κB signaling inhibitors suppressed the upregulation of proteases and pro-inflammatory cytokines in NP cells treated with N-Ac-PGP. In conclusion, N-Ac-PGP induces the

  7. Inflammatory and mitochondrial gene expression data in GPER-deficient cardiomyocytes from male and female mice

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2017-02-01

    Full Text Available We previously showed that cardiomyocyte-specific G protein-coupled estrogen receptor (GPER gene deletion leads to sex-specific adverse effects on cardiac structure and function; alterations which may be due to distinct differences in mitochondrial and inflammatory processes between sexes. Here, we provide the results of Gene Set Enrichment Analysis (GSEA based on the DNA microarray data from GPER-knockout versus GPER-intact (intact cardiomyocytes. This article contains complete data on the mitochondrial and inflammatory response-related gene expression changes that were significant in GPER knockout versus intact cardiomyocytes from adult male and female mice. The data are supplemental to our original research article “Cardiomyocyte-specific deletion of the G protein-coupled estrogen receptor (GPER leads to left ventricular dysfunction and adverse remodeling: a sex-specific gene profiling” (Wang et al., 2016 [1]. Data have been deposited to the Gene Expression Omnibus (GEO database repository with the dataset identifier GSE86843.

  8. A low dose lipid infusion is sufficient to induce insulin resistance and a pro-inflammatory response in human subjects.

    Science.gov (United States)

    Liang, Hanyu; Lum, Helen; Alvarez, Andrea; Garduno-Garcia, Jose de Jesus; Daniel, Benjamin J; Musi, Nicolas

    2018-01-01

    The root cause behind the low-grade inflammatory state seen in insulin resistant (obesity and type 2 diabetes) states is unclear. Insulin resistant subjects have elevations in plasma free fatty acids (FFA), which are ligands for the pro-inflammatory toll-like receptor (TLR)4 pathway. We tested the hypothesis that an experimental elevation in plasma FFA (within physiological levels) in lean individuals would upregulate TLR4 and activate downstream pathways (e.g., MAPK) in circulating monocytes. Twelve lean, normal glucose-tolerant subjects received a low dose (30 ml/h) 48 h lipid or saline infusion on two different occasions. Monocyte TLR4 protein level, MAPK phosphorylation, and expression of genes in the TLR pathway were determined before and after each infusion. The lipid infusion significantly increased monocyte TLR4 protein and phosphorylation of JNK and p38 MAPK. Lipid-mediated increases in TLR4 and p38 phosphorylation directly correlated with reduced peripheral insulin sensitivity (M value). Lipid increased levels of multiple genes linked to inflammation, including several TLRs, CD180, MAP3K7, and CXCL10. Monocytes exposed in vivo to lipid infusion exhibited enhanced in vitro basal and LPS-stimulated IL-1β secretion. In lean subjects, a small increase in plasma FFA (as seen in insulin resistant subjects) is sufficient to upregulate TLR4 and stimulate inflammatory pathways (MAPK) in monocytes. Moreover, lipids prime monocytes to endotoxin. We provide proof-of-concept data in humans indicating that the low-grade inflammatory state characteristic of obesity and type 2 diabetes could be caused (at least partially) by pro-inflammatory monocytes activated by excess lipids present in these individuals.

  9. Kaempferol modulates pro-inflammatory NF-κB activation by suppressing advanced glycation endproducts-induced NADPH oxidase

    Science.gov (United States)

    Kim, Ji Min; Lee, Eun Kyeong; Kim, Dae Hyun; Yu, Byung Pal

    2010-01-01

    Advanced glycation endproducts (AGE) are oxidative products formed from the reaction between carbohydrates and a free amino group of proteins that are provoked by reactive species (RS). It is also known that AGE enhance the generation of RS and that the binding of AGE to a specific AGE receptor (RAGE) induces the activation of the redox-sensitive, pro-inflammatory transcription factor, nuclear factor-kappa B (NF-ĸB). In this current study, we investigated the anti-oxidative effects of short-term kaempferol supplementation on the age-related formation of AGE and the binding activity of RAGE in aged rat kidney. We further investigated the suppressive action of kaempferol against AGE's ability to stimulate activation of pro-inflammatory NF-ĸB and its molecular mechanisms. For this study, we utilized young (6 months old), old (24 months old), and kaempferol-fed (2 and 4 mg/kg/day for 10 days) old rats. In addition, for the molecular work, the rat endothelial cell line, YPEN-1 was used. The results show that AGE and RAGE were increased during aging and that these increases were blunted by kaempferol. In addition, dietary kaempferol reduced age-related increases in NF-κB activity and NF-ĸB-dependant pro-inflammatory gene activity. The most significant new finding from this study is that kaempferol supplementation prevented age-related NF-κB activation by suppressing AGE-induced nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Taken together, our results demonstrated that dietary kaempferol exerts its anti-oxidative and anti-inflammatory actions by modulating the age-related NF-κB signaling cascade and its pro-inflammatory genes by suppressing AGE-induced NADPH oxidase activation. Based on these data, dietary kaempferol is proposed as a possible anti-AGE agent that may have the potential for use in anti-inflammation therapies. PMID:20431987

  10. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN) on monocytes/macrophages.

    Science.gov (United States)

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  11. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN on monocytes/macrophages.

    Directory of Open Access Journals (Sweden)

    Heng Ge

    Full Text Available Extracellular matrix metalloproteinase inducer (EMMPRIN is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages.The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway.1 It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN that increased after being exposed to inflammatory signals (PMA and H2O2. 2 Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG the simple type. 3 Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression.Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  12. Effect of hrHPV infection on anti-apoptotic gene and pro-apoptotic gene expression in cervical cancer tissue

    Directory of Open Access Journals (Sweden)

    Min-Er Tang

    2016-09-01

    Full Text Available Objective: To study the effect of hrHPV infection on anti-apoptotic gene and pro-apoptotic gene expression in cervical cancer tissue. Methods: A total of 56 patients with cervical cancer, 94 cases of patients with cervical intraepithelial neoplasia and 48 cases of patients with chronic cervicitis who were treated in our hospital from May 2013 to December 2015 were selected for study and included in malignant group, precancerous lesion group and benign group respectively. hrHPV infection as well as the expression of anti-apoptotic genes and proapoptotic genes in cervical tissue were detected. Results: hrHPV infection rate and viral load in cervical tissue of malignant group were significantly higher than those of precancerous lesion group and benign group; P27 and p16 levels in cervical tissue of malignant group were significantly lower than those of precancerous lesion group and benign group, and K-ras, c-myc, Prdx4 and TNFAIP8 levels were significantly higher than those of precancerous lesion group and benign group; the greater the HPV virus load, the lower the p27 and p16 levels and the higher the K-ras, c-myc, Prdx4 and TNFAIP8 levels in cervical tissue. Conclusions: hrHPV infection can result in tumor suppressor genes p27 and p16 expression deletion and increase the expression of proto-oncogene and apoptosis-inhibiting genes, and it is associated with the occurrence and development of cervical cancer.

  13. Inhibition of inflammatory gene expression in keratinocytes using a composition containing carnitine, thioctic Acid and saw palmetto extract.

    Science.gov (United States)

    Chittur, Sridar; Parr, Brian; Marcovici, Geno

    2011-01-01

    Chronic inflammation of the hair follicle (HF) is considered a contributing factor in the pathogenesis of androgenetic alopecia (AGA). Previously, we clinically tested liposterolic extract of Serenoa repens (LSESr) and its glycoside, β-sitosterol, in subjects with AGA and showed a highly positive response to treatment. In this study, we sought to determine whether blockade of inflammation using a composition containing LSESr as well as two anti-inflammatory agents (carnitine and thioctic acid) could alter the expression of molecular markers of inflammation in a well-established in vitro system. Using a well-validated assay representative of HF keratinocytes, specifically, stimulation of cultured human keratinocyte cells in vitro, we measured changes in gene expression of a spectrum of well-known inflammatory markers. Lipopolysaccharide (LPS) provided an inflammatory stimulus. In particular, we found that the composition effectively suppressed LPS-activated gene expression of chemokines, including CCL17, CXCL6 and LTB(4) associated with pathways involved in inflammation and apoptosis. Our data support the hypothesis that the test compound exhibits anti-inflammatory characteristics in a well-established in vitro assay representing HF keratinocyte gene expression. These findings suggest that 5-alpha reductase inhibitors combined with blockade of inflammatory processes could represent a novel two-pronged approach in the treatment of AGA with improved efficacy over current modalities.

  14. Ginseng Berry Extract Prevents Atherogenesis via Anti-Inflammatory Action by Upregulating Phase II Gene Expression

    Directory of Open Access Journals (Sweden)

    Chun-Ki Kim

    2012-01-01

    Full Text Available Ginseng berry possesses higher ginsenoside content than its root, which has been traditionally used in herbal medicine for many human diseases, including atherosclerosis. We here examined the antiatherogenic effects of the Korean ginseng berry extract (KGBE and investigated its underlying mechanism of action in vitro and in vivo. Administration of KGBE decreased atherosclerotic lesions, which was inversely correlated with the expression levels of phase II genes to include heme oxygenase-1 (HO-1 and glutamine-cysteine ligase (GCL. Furthermore, KGBE administration suppressed NF-κB-mediated expression of atherogenic inflammatory genes (TNF-α, IL-1β, iNOS, COX-2, ICAM-1, and VCAM-1, without altering serum cholesterol levels, in ApoE-/- mice fed a high fat-diet. Treatment with KGBE increased phase II gene expression and suppressed lipopolysaccharide-induced reactive oxygen species production, NF-κB activation, and inflammatory gene expression in primary macrophages. Importantly, these cellular events were blocked by selective inhibitors of HO-1 and GCL. In addition, these inhibitors reversed the suppressive effect of KGBE on TNF-α-mediated induction of ICAM-1 and VCAM-1, resulting in decreased interaction between endothelial cells and monocytes. These results suggest that KGBE ameliorates atherosclerosis by inhibiting NF-κB-mediated expression of atherogenic genes via upregulation of phase II enzymes and thus has therapeutic or preventive potential for atherosclerosis.

  15. Ureaplasma isolates stimulate pro-inflammatory CC chemokines and matrix metalloproteinase-9 in neonatal and adult monocytes

    Science.gov (United States)

    Silwedel, Christine; Fehrholz, Markus; Henrich, Birgit; Waaga-Gasser, Ana Maria; Claus, Heike; Speer, Christian P.

    2018-01-01

    Being generally regarded as commensal bacteria, the pro-inflammatory capacity of Ureaplasma species has long been debated. Recently, we confirmed Ureaplasma–driven pro-inflammatory cytokine responses and a disturbance of cytokine equilibrium in primary human monocytes in vitro. The present study addressed the expression of CC chemokines and matrix metalloproteinase-9 (MMP-9) in purified term neonatal and adult monocytes stimulated with serovar 8 of Ureaplasma urealyticum (Uu) and serovar 3 of U. parvum (Up). Using qRT-PCR and multi-analyte immunoassay, we assessed mRNA and protein expression of the monocyte chemotactic proteins 1 and 3 (MCP-1/3), the macrophage inflammatory proteins 1α and 1β (MIP-1α/β) as well as MMP-9. For the most part, both isolates stimulated mRNA expression of all given chemokines and MMP-9 in cord blood and adult monocytes (pUreaplasma isolates in vitro, adding to our previous data. Findings from co-stimulated cells indicate that Ureaplasma may modulate monocyte immune responses to a second stimulus. PMID:29558521

  16. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Itoi, Saori; Terao, Mika, E-mail: mterao@derma.med.osaka-u.ac.jp; Murota, Hiroyuki; Katayama, Ichiro

    2013-10-18

    Highlights: •We investigate the role of 11β-HSD1 in skin inflammation. •Various stimuli increase expression of 11β-HSD1 in keratinocytes. •11β-HSD1 knockdown by siRNA decreases cortisol levels in media. •11β-HSD1 knockdown abrogates the response to pro-inflammatory cytokines. •Low-dose versus high-dose cortisol has opposing effects on keratinocyte inflammation. -- Abstract: The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactive cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 10{sup −13} M cortisol, whereas 1 × 10{sup −5} M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic cortisol

  17. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes

    International Nuclear Information System (INIS)

    Itoi, Saori; Terao, Mika; Murota, Hiroyuki; Katayama, Ichiro

    2013-01-01

    Highlights: •We investigate the role of 11β-HSD1 in skin inflammation. •Various stimuli increase expression of 11β-HSD1 in keratinocytes. •11β-HSD1 knockdown by siRNA decreases cortisol levels in media. •11β-HSD1 knockdown abrogates the response to pro-inflammatory cytokines. •Low-dose versus high-dose cortisol has opposing effects on keratinocyte inflammation. -- Abstract: The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactive cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 10 −13 M cortisol, whereas 1 × 10 −5 M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic cortisol concentrations

  18. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  19. Pro-inflammatory cytokines derived from West Nile virus (WNV-infected SK-N-SH cells mediate neuroinflammatory markers and neuronal death

    Directory of Open Access Journals (Sweden)

    Nerurkar Vivek R

    2010-10-01

    Full Text Available Abstract Background WNV-associated encephalitis (WNVE is characterized by increased production of pro-inflammatory mediators, glial cells activation and eventual loss of neurons. WNV infection of neurons is rapidly progressive and destructive whereas infection of non-neuronal brain cells is limited. However, the role of neurons and pathological consequences of pro-inflammatory cytokines released as a result of WNV infection is unclear. Therefore, the objective of this study was to examine the role of key cytokines secreted by WNV-infected neurons in mediating neuroinflammatory markers and neuronal death. Methods A transformed human neuroblastoma cell line, SK-N-SH, was infected with WNV at multiplicity of infection (MOI-1 and -5, and WNV replication kinetics and expression profile of key pro-inflammatory cytokines were analyzed by plaque assay, qRT-PCR, and ELISA. Cell death was measured in SK-N-SH cell line in the presence and absence of neutralizing antibodies against key pro-inflammatory cytokines using cell viability assay, TUNEL and flow cytometry. Further, naïve primary astrocytes were treated with UV-inactivated supernatant from mock- and WNV-infected SK-N-SH cell line and the activation of astrocytes was measured using flow cytometry and ELISA. Results WNV-infected SK-N-SH cells induced the expression of IL-1β, -6, -8, and TNF-α in a dose- and time-dependent manner, which coincided with increase in virus-induced cell death. Treatment of cells with anti-IL-1β or -TNF-α resulted in significant reduction of the neurotoxic effects of WNV. Furthermore treatment of naïve astrocytes with UV-inactivated supernatant from WNV-infected SK-N-SH cell line increased expression of glial fibrillary acidic protein and key inflammatory cytokines. Conclusion Our results for the first time suggest that neurons are one of the potential sources of pro-inflammatory cytokines in WNV-infected brain and these neuron-derived cytokines contribute to WNV

  20. Gene-expression analysis of matrix metalloproteinases 1 and 2 and their tissue inhibitors in chronic periapical inflammatory lesions.

    Science.gov (United States)

    Hadziabdic, Naida; Kurtovic-Kozaric, Amina; Pojskic, Naris; Sulejmanagic, Nedim; Todorovic, Ljubomir

    2016-03-01

    Periapical inflammatory lesions have been investigated previously, but understanding of pathogenesis of these lesions (granulomas and radicular cysts) at the molecular level is still questionable. Matrix metalloproteinases (MMPs) are enzymes involved in the development of periapical pathology, specifically inflammation and tissue destruction. To elucidate pathogenesis of periapical granulomas and radicular cysts, we undertook a detailed analysis of gene expression of MMP-1, MMP-2 and their tissue inhibitors, TIMP-1 and TIMP-2. A total of 149 samples were analyzed using real-time PCR (59 radicular cysts, 50 periapical granulomas and 40 healthy gingiva samples as controls) for expression of MMP-1, MMP-2, TIMP-1 and TIMP-2 genes. The determination of best reference gene for expression analysis of periapical lesions was done using a panel of 12 genes. We have shown that β-actin and GAPDH are not the most stable reference controls for gene expression analysis of inflammatory periapical tissues and healthy gingiva. The most suitable reference gene was determined to be SDHA (a succinate dehydrogenase complex, subunit A, flavoprotein [Fp]). We found that granulomas (n = 50) and radicular cysts (n = 59) exhibited significantly higher expression of all four examined genes, MMP-1, MMP-2, TIMP-1, and TIMP-2, when compared to healthy gingiva (n = 40; P periapical inflammatory lesions. Since the abovementioned markers were not differentially expressed in periapical granulomas and radicular cysts, the challenge of finding the genetic differences between the two lesions still remains. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Methionine-supplemented diet affects the expression of cardiovascular disease-related genes and increases inflammatory cytokines in mice heart and liver.

    Science.gov (United States)

    Aissa, Alexandre Ferro; Amaral, Catia Lira do; Venancio, Vinicius Paula; Machado, Carla da Silva; Hernandes, Lívia Cristina; Santos, Patrick Wellington da Silva; Curi, Rui; Bianchi, Maria de Lourdes Pires; Antunes, Lusânia Maria Greggi

    2017-01-01

    Some important environmental factors that influence the development of cardiovascular diseases (CVD) include tobacco, excess alcohol, and unhealthy diet. Methionine obtained from the diet participates in the synthesis of DNA, proteins, lipids and affects homocysteine levels, which is associated with the elevated risk for CVD development. Therefore, the aim of this study was to investigate the manner in which dietary methionine might affect cellular mechanisms underlying CVD occurrence. Swiss albino mice were fed either control (0.3% DL-methionine), methionine-supplemented (2% DL-methionine), or a methionine-deprived diet (0% DL-methionine) over a 10-week period. The parameters measured included plasma homocysteine concentrations, oxidative stress by reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, levels of inflammatory cytokines IL-1ß, TNF-α, and IL-6, as well as expression of genes associated with CVD. The levels of apolipoprotein A5 (APOA5), a regulator of plasma triglycerides, were measured. The methionine-supplemented diet increased oxidative stress by lowering the GSH/GSSG ratio in heart tissues and decreased expression of the genes Apob, Ctgf, Serpinb2, Spp1, Il1b, and Sell, but elevated expression of Thbs4, Tgfb2, Ccr1, and Vegfa. Methionine-deprived diet reduced expression of Col3a1, Cdh5, Fabp3, Bax, and Hbegf and increased expression of Sell, Ccl5, Itga2, Birc3, Msr1, Bcl2a1a, Il1r2, and Selp. Methionine-deprived diet exerted pro-inflammatory consequences as evidenced by elevated levels of cytokines IL-1ß, TNF-α, and IL-6 noted in liver. Methionine-supplemented diet increased hepatic IL-6 and cardiac TNF-α. Both methionine supplementation and deprivation lowered hepatic levels of APOA5. In conclusion, data demonstrated that a methionine-supplemented diet modulated important biological processes associated with high risk of CVD development.

  2. Kefir-isolated bacteria and yeasts inhibit Shigella flexneri invasion and modulate pro-inflammatory response on intestinal epithelial cells.

    Science.gov (United States)

    Bolla, P A; Abraham, A G; Pérez, P F; de Los Angeles Serradell, M

    2016-02-01

    The aim of this work was to evaluate the ability of a kefir-isolated microbial mixture containing three bacterial and two yeast strains (MM) to protect intestinal epithelial cells against Shigella flexneri invasion, as well as to analyse the effect on pro-inflammatory response elicited by this pathogen. A significant decrease in S. flexneri strain 72 invasion was observed on both HT-29 and Caco-2 cells pre-incubated with MM. Pre-incubation with the individual strains Saccharomyces cerevisiae CIDCA 8112 or Lactococcus lactis subsp. lactis CIDCA 8221 also reduced the internalisation of S. flexneri into HT-29 cells although in a lesser extent than MM. Interestingly, Lactobacillus plantarum CIDCA 83114 exerted a protective effect on the invasion of Caco-2 and HT-29 cells by S. flexneri. Regarding the pro-inflammatory response on HT-29 cells, S. flexneri infection induced a significant activation of the expression of interleukin 8 (IL-8), chemokine (C-C motif) ligand 20 (CCL20) and tumour necrosis factor alpha (TNF-α) encoding genes (P<0.05), whereas incubation of cells with MM did not induce the expression of any of the mediators assessed. Interestingly, pre-incubation of HT-29 monolayer with MM produced an inhibition of S. flexneri-induced IL-8, CCL20 and TNF-α mRNA expression. In order to gain insight on the effect of MM (or the individual strains) on this pro-inflammatory response, a series of experiments using a HT-29-NF-κB-hrGFP reporter system were performed. Pre-incubation of HT-29-NF-κB-hrGFP cells with MM significantly dampened Shigella-induced activation. Our results showed that the contribution of yeast strain Kluyveromyces marxianus CIDCA 8154 seems to be crucial in the observed effect. In conclusion, results presented in this study demonstrate that pre-treatment with a microbial mixture containing bacteria and yeasts isolated from kefir, resulted in inhibition of S. flexneri internalisation into human intestinal epithelial cells, along with the

  3. Inhibition of Inflammatory Gene Expression in Keratinocytes Using a Composition Containing Carnitine, Thioctic Acid and Saw Palmetto Extract

    Directory of Open Access Journals (Sweden)

    Sridar Chittur

    2011-01-01

    Full Text Available Chronic inflammation of the hair follicle (HF is considered a contributing factor in the pathogenesis of androgenetic alopecia (AGA. Previously, we clinically tested liposterolic extract of Serenoa repens (LSESr and its glycoside, β-sitosterol, in subjects with AGA and showed a highly positive response to treatment. In this study, we sought to determine whether blockade of inflammation using a composition containing LSESr as well as two anti-inflammatory agents (carnitine and thioctic acid could alter the expression of molecular markers of inflammation in a well-established in vitro system. Using a well-validated assay representative of HF keratinocytes, specifically, stimulation of cultured human keratinocyte cells in vitro, we measured changes in gene expression of a spectrum of well-known inflammatory markers. Lipopolysaccharide (LPS provided an inflammatory stimulus. In particular, we found that the composition effectively suppressed LPS-activated gene expression of chemokines, including CCL17, CXCL6 and LTB(4 associated with pathways involved in inflammation and apoptosis. Our data support the hypothesis that the test compound exhibits anti-inflammatory characteristics in a well-established in vitro assay representing HF keratinocyte gene expression. These findings suggest that 5-alpha reductase inhibitors combined with blockade of inflammatory processes could represent a novel two-pronged approach in the treatment of AGA with improved efficacy over current modalities.

  4. Improved Sleep in Military Personnel is Associated with Changes in the Expression of Inflammatory Genes and Improvement in Depression Symptoms

    Directory of Open Access Journals (Sweden)

    Whitney S. Livingston

    2015-04-01

    Full Text Available Study Objectives: Sleep disturbances are common in military personnel and are associated with increased risk for psychiatric morbidity, including posttraumatic stress disorder and depression, as well as inflammation. Improved sleep quality is linked to reductions in inflammatory bio-markers; however, the underlying mechanisms remain elusive. Methods: In this study we examine whole genome expression changes related to improved sleep in 68 military personnel diagnosed with insomnia. Subjects were classified into the following groups and then compared: improved sleep (n=46, or non-improved sleep (n=22 following three months of standard of care treatment for insomnia. Within subject differential expression was determined from microarray data using the Partek Genomics Suite analysis program and the interactive pathway analysis was used to determine key regulators of observed expression changes. Changes in symptoms of depression and posttraumatic stress disorder were also compared. Results: At baseline both groups were similar in demographics, clinical characteristics, and gene-expression profiles. The microarray data revealed that 217 coding genes were differentially expressed at the follow-up-period compared to baseline in the participants with improved sleep. Expression of inflammatory cytokines were reduced including IL-1β, IL-6, IL-8 and IL-13, with fold changes ranging from -3.19 to -2.1, and there were increases in the expression of inflammatory regulatory genes including toll-like receptors 1, 4, 7, and 8 in the improved sleep group. Interactive pathway analysis revealed 6 gene networks, including ubiquitin which was a major regulator in these gene-expression changes. The improved sleep group also had a significant reduction in the severity of depressive symptoms.Conclusions: Interventions that restore sleep likely reduce the expression of inflammatory genes, which relate to ubiquitin genes and relate to reductions in depressive symptoms.

  5. Changes in rat spinal cord gene expression after inflammatory hyperalgesia of the joint and manual therapy.

    Science.gov (United States)

    Ruhlen, Rachel L; Singh, Vineet K; Pazdernik, Vanessa K; Towns, Lex C; Snider, Eric J; Sargentini, Neil J; Degenhardt, Brian F

    2014-10-01

    Mobilization of a joint affects local tissue directly but may also have other effects that are mediated through the central nervous system. To identify differential gene expression in the spinal cords of rats with or without inflammatory joint injury after manual therapy or no treatment. Rats were randomly assigned to 1 of 4 treatment groups: no injury and no touch (NI/NT), injury and no touch (I/NT), no injury and manual therapy (NI/MT), and injury and manual therapy (I/MT). We induced acute inflammatory joint injury in the rats by injecting carrageenan into an ankle. Rats in the no-injury groups did not receive carrageenan injection. One day after injury, rats received manual therapy to the knee of the injured limb. Rats in the no-touch groups were anesthetized without receiving manual therapy. Spinal cords were harvested 30 minutes after therapy or no touch, and spinal cord gene expression was analyzed by microarray for 3 comparisons: NI/NT vs I/NT, I/MT vs I/NT, and NI/NT vs NI/MT. Three rats were assigned to each group. Of 38,875 expressed sequence tags, 755 were differentially expressed in the NI/NT vs I/NT comparison. For the other comparisons, no expressed sequence tags were differentially expressed. Cluster analysis revealed that the differentially expressed sequence tags were over-represented in several categories, including ion homeostasis (enrichment score, 2.29), transmembrane (enrichment score, 1.55), and disulfide bond (enrichment score, 2.04). An inflammatory injury to the ankle of rats caused differential expression of genes in the spinal cord. Consistent with other studies, genes involved in ion transport were among those affected. However, manual therapy to the knees of injured limbs or to rats without injury did not alter gene expression in the spinal cord. Thus, evidence for central nervous system mediation of manual therapy was not observed. © 2014 The American Osteopathic Association.

  6. Imaging gene expression in gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, Leonard I. [Alberta Univ., Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-12-31

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on `suicide gene therapy` of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k{sup +}) has been use for `suicide` in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k{sup +} gene expression where the H S V-1 t k{sup +} gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([{sup 18} F]F H P G; [{sup 18} F]-A C V), and pyrimidine- ([{sup 123}/{sup 131} I]I V R F U; [{sup 124}/{sup 131I}]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [{sup 123}/{sup 131I}]I V R F U imaging with the H S V-1 t k{sup +} reporter gene will be presented

  7. Pro-inflammatory responses of RAW264.7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles

    International Nuclear Information System (INIS)

    Giovanni, Marcella; Yue, Junqi; Zhang, Lifeng; Xie, Jianping; Ong, Choon Nam; Leong, David Tai

    2015-01-01

    Highlights: • Ultralow levels of common nanoparticles exist in environment and consumer products. • Common nanoparticles at ultralow levels induce mild pro-inflammation by macrophages. • The nanoparticles are cytotoxic only at high doses. - Abstract: To cellular systems, nanoparticles are considered as foreign particles. Upon particles and cells contact, innate immune system responds by activating the inflammatory pathway. However, excessive inflammation had been linked to various diseases ranging from allergic responses to cancer. Common nanoparticles, namely silver, titanium dioxide, and zinc oxide exist in the environment as well as in consumer products at ultralow level of 10 −6 –10 −3 μg mL −1 . However, so far the risks of such low NPs concentrations remain unexplored. Therefore, we attempted to screen the pro-inflammatory responses after ultralow concentration treatments of the three nanoparticles on RAW264.7 macrophages, which are a part of the immune system, at both cellular and gene levels. Even though cytotoxicity was only observed at nanoparticles concentrations as high as 10 μg mL −1 , through the level of NF-κB and upregulation of pro-inflammatory genes, we observed activation of the induction of genes encoding pro-inflammatory cytokines starting already at 10 −7 μg mL −1 . This calls for more thorough characterization of nanoparticles in the environment as well as in consumer products to ascertain the health and safety of the consumers and living systems in general

  8. Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators.

    Science.gov (United States)

    Jin, Yiping; Arita, Makoto; Zhang, Qiang; Saban, Daniel R; Chauhan, Sunil K; Chiang, Nan; Serhan, Charles N; Dana, Reza

    2009-10-01

    Resolvins and lipoxins are lipid mediators generated from essential polyunsaturated fatty acids that are the first dual anti-inflammatory and pro-resolving signals identified in the resolution phase of inflammation. Here the authors investigated the potential of aspirin-triggered lipoxin (LX) A4 analog (ATLa), resolving (Rv) D1, and RvE1, in regulating angiogenesis in a murine model. ATLa and RvE1 receptor expression was tested in different corneal cell populations by RT-PCR. Corneal neovascularization (CNV) was induced by suture or micropellet (IL-1 beta, VEGF-A) placement. Mice were then treated with ATLa, RvD1, RvE1, or vehicle, subconjunctivally at 48-hour intervals. Infiltration of neutrophils and macrophages was quantified after immunofluorescence staining. The mRNA expression levels of inflammatory cytokines, VEGFs, and VEGFRs were analyzed by real-time PCR. CNV was evaluated intravitally and morphometrically. The receptors for LXA4, ALX/Fpr-rs-2 and for RvE1, ChemR23 were each expressed by epithelium, stromal keratocytes, and infiltrated CD11b(+) cells in corneas. Compared to the vehicle-treated eye, ATLa-, RvD1-, and RvE1-treated eyes had reduced numbers of infiltrating neutrophils and macrophages and reduced mRNA expression levels of TNF-alpha, IL-1 alpha, IL-1 beta, VEGF-A, VEGF-C, and VEGFR2. Animals treated with these mediators had significantly suppressed suture-induced or IL-1 beta-induced hemangiogenesis (HA) but not lymphangiogenesis. Interestingly, only the application of ATLa significantly suppressed VEGF-A-induced HA. ATLa, RvE1, and RvD1 all reduce inflammatory corneal HA by early regulation of resolution mechanisms in innate immune responses. In addition, ATLa directly inhibits VEGF-A-mediated angiogenesis and is the most potent inhibitor of NV among this new genus of dual anti-inflammatory and pro-resolving lipid mediators.

  9. The Daiokanzoto (TJ-84 Kampo Formulation Reduces Virulence Factor Gene Expression in Porphyromonas gingivalis and Possesses Anti-Inflammatory and Anti-Protease Activities.

    Directory of Open Access Journals (Sweden)

    Jade Fournier-Larente

    Full Text Available Kampo formulations used in Japan to treat a wide variety of diseases and to promote health are composed of mixtures of crude extracts from the roots, bark, leaves, and rhizomes of a number of herbs. The present study was aimed at identifying the beneficial biological properties of Daiokanzoto (TJ-84, a Kampo formulation composed of crude extracts of Rhubarb rhizomes and Glycyrrhiza roots, with a view to using it as a potential treatment for periodontal disease. Daiokanzoto dose-dependently inhibited the expression of major Porphyromonas gingivalis virulence factors involved in host colonization and tissue destruction. More specifically, Daiokanzoto reduced the expression of the fimA, hagA, rgpA, and rgpB genes, as determined by quantitative real-time PCR. The U937-3xκB-LUC monocyte cell line transfected with a luciferase reporter gene was used to evaluate the anti-inflammatory properties of Daiokanzoto. Daiokanzoto attenuated the P. gingivalis-mediated activation of the NF-κB signaling pathway. It also reduced the secretion of pro-inflammatory cytokines (IL-6 and CXCL8 by lipopolysaccharide-stimulated oral epithelial cells and gingival fibroblasts. Lastly, Daiokanzoto, dose-dependently inhibited the catalytic activity of matrix metalloproteinases (-1 and -9. In conclusion, the present study provided evidence that Daiokanzoto shows potential for treating and/or preventing periodontal disease. The ability of this Kampo formulation to act on both bacterial pathogens and the host inflammatory response, the two etiological components of periodontal disease, is of high therapeutic interest.

  10. Early growth response protein 1 (EGR1) regulates pro-inflammatory gene expression in response to palmitate and TNF alpha in human placenta cells and is induced in obese placenta

    Science.gov (United States)

    Maternal obesity has been hypothesized to induce a pro-inflammatory response in the placenta. However, the specific factors contributing to this pro-infalmmatory response are yet to be determined. Our objective was to examine the effects of palmitic acid (PA), tumor necrosis factor alpha (TNF alph...

  11. Synthesis of Gallic Acid Analogs as Histamine and Pro-Inflammatory Cytokine Inhibitors for Treatment of Mast Cell-Mediated Allergic Inflammation.

    Science.gov (United States)

    Fei, Xiang; Je, In-Gyu; Shin, Tae-Yong; Kim, Sang-Hyun; Seo, Seung-Yong

    2017-05-29

    Gallic acid (3,4,5-trihydroxybenzoic acid), is a natural product found in various foods and herbs that are well known as powerful antioxidants. Our previous report demonstrated that it inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. In this report, various amide analogs of gallic acid have been synthesized by introducing different amines through carbodiimide-mediated amide coupling and Pd/C-catalyzed hydrogenation. These compounds showed a modest to high inhibitory effect on histamine release and pro-inflammatory cytokine expression. Among them, the amide bearing ( S )-phenylglycine methyl ester 3d was found to be more active than natural gallic acid. Further optimization yielded several ( S )- and ( R )-phenylglycine analogs that inhibited histamine release in vitro. Our findings suggest that some gallamides could be used as a treatment for allergic inflammatory diseases.

  12. Cellular Mechanics of Primary Human Cervical Fibroblasts: Influence of Progesterone and a Pro-inflammatory Cytokine.

    Science.gov (United States)

    Shukla, Vasudha; Barnhouse, Victoria; Ackerman, William E; Summerfield, Taryn L; Powell, Heather M; Leight, Jennifer L; Kniss, Douglas A; Ghadiali, Samir N

    2018-01-01

    The leading cause of neonatal mortality, pre-term birth, is often caused by pre-mature ripening/opening of the uterine cervix. Although cervical fibroblasts play an important role in modulating the cervix's extracellular matrix (ECM) and mechanical properties, it is not known how hormones, i.e., progesterone, and pro-inflammatory insults alter fibroblast mechanics, fibroblast-ECM interactions and the resulting changes in tissue mechanics. Here we investigate how progesterone and a pro-inflammatory cytokine, IL-1β, alter the biomechanical properties of human cervical fibroblasts and the fibroblast-ECM interactions that govern tissue-scale mechanics. Primary human fibroblasts were isolated from non-pregnant cervix and treated with estrogen/progesterone, IL-1β or both. The resulting changes in ECM gene expression, matrix remodeling, traction force generation, cell-ECM adhesion and tissue contractility were monitored. Results indicate that IL-1β induces a significant reduction in traction force and ECM adhesion independent of pre-treatment with progesterone. These cell level effects altered tissue-scale mechanics where IL-1β inhibited the contraction of a collagen gel over 6 days. Interestingly, progesterone treatment alone did not modulate traction forces or gel contraction but did result in a dramatic increase in cell-ECM adhesion. Therefore, the protective effect of progesterone may be due to altered adhesion dynamics as opposed to altered ECM remodeling.

  13. Fast Green FCF Alleviates Pain Hypersensitivity and Down-Regulates the Levels of Spinal P2X4 Expression and Pro-inflammatory Cytokines in a Rodent Inflammatory Pain Model

    Directory of Open Access Journals (Sweden)

    Fang Xu

    2018-05-01

    Full Text Available Fast Green FCF (FGF, a biocompatible dye, recently drew attention as a potential drug to treat amyloid-deposit diseases due to its effects against amyloid fibrillogenesis in vitro and a high degree of safety. However, its role in inflammatory pain is unknown. Our study aimed to investigate the effect of FGF in the inflammatory pain model induced by complete Freund’s adjuvant (CFA and to identify the associated mechanisms. We found that systemic administration of FGF reversed mechanical and thermal pain hypersensitivity evoked by CFA in a dose-dependent manner. FGF treatment decreased purinergic spinal P2X4 expression in the spinal cord of CFA-inflamed mice. FGF also down-regulated spinal and peripheral pro-inflammatory cytokines [tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and interleukin-6 (IL-6], but did not alter the spinal level of nerve growth factor (NGF or brain-derived neurotrophic factor (BDNF. In conclusion, our results suggest the potential of FGF for controlling the progress of inflammatory pain.

  14. Pro-inflammatory responses of RAW264.7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Giovanni, Marcella [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585 (Singapore); Yue, Junqi; Zhang, Lifeng [PUB, 40 Scotts Road, Singapore 228231 (Singapore); Xie, Jianping [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585 (Singapore); Ong, Choon Nam [Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, Singapore 117549 (Singapore); NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411 (Singapore); Leong, David Tai, E-mail: cheltwd@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585 (Singapore)

    2015-10-30

    Highlights: • Ultralow levels of common nanoparticles exist in environment and consumer products. • Common nanoparticles at ultralow levels induce mild pro-inflammation by macrophages. • The nanoparticles are cytotoxic only at high doses. - Abstract: To cellular systems, nanoparticles are considered as foreign particles. Upon particles and cells contact, innate immune system responds by activating the inflammatory pathway. However, excessive inflammation had been linked to various diseases ranging from allergic responses to cancer. Common nanoparticles, namely silver, titanium dioxide, and zinc oxide exist in the environment as well as in consumer products at ultralow level of 10{sup −6}–10{sup −3} μg mL{sup −1}. However, so far the risks of such low NPs concentrations remain unexplored. Therefore, we attempted to screen the pro-inflammatory responses after ultralow concentration treatments of the three nanoparticles on RAW264.7 macrophages, which are a part of the immune system, at both cellular and gene levels. Even though cytotoxicity was only observed at nanoparticles concentrations as high as 10 μg mL{sup −1}, through the level of NF-κB and upregulation of pro-inflammatory genes, we observed activation of the induction of genes encoding pro-inflammatory cytokines starting already at 10{sup −7} μg mL{sup −1}. This calls for more thorough characterization of nanoparticles in the environment as well as in consumer products to ascertain the health and safety of the consumers and living systems in general.

  15. Curcumin is a potent modulator of microglial gene expression and migration

    Directory of Open Access Journals (Sweden)

    Aslanidis Alexander

    2011-09-01

    Full Text Available Abstract Background Microglial cells are important effectors of the neuronal innate immune system with a major role in chronic neurodegenerative diseases. Curcumin, a major component of tumeric, alleviates pro-inflammatory activities of these cells by inhibiting nuclear factor kappa B (NFkB signaling. To study the immuno-modulatory effects of curcumin on a transcriptomic level, DNA-microarray analyses were performed with resting and LPS-challenged microglial cells after short-term treatment with curcumin. Methods Resting and LPS-activated BV-2 cells were stimulated with curcumin and genome-wide mRNA expression patterns were determined using DNA-microarrays. Selected qRT-PCR analyses were performed to confirm newly identified curcumin-regulated genes. The migration potential of microglial cells was determined with wound healing assays and transwell migration assays. Microglial neurotoxicity was estimated by morphological analyses and quantification of caspase 3/7 levels in 661W photoreceptors cultured in the presence of microglia-conditioned medium. Results Curcumin treatment markedly changed the microglial transcriptome with 49 differentially expressed transcripts in a combined analysis of resting and activated microglial cells. Curcumin effectively triggered anti-inflammatory signals as shown by induced expression of Interleukin 4 and Peroxisome proliferator activated receptor α. Several novel curcumin-induced genes including Netrin G1, Delta-like 1, Platelet endothelial cell adhesion molecule 1, and Plasma cell endoplasmic reticulum protein 1, have been previously associated with adhesion and cell migration. Consequently, curcumin treatment significantly inhibited basal and activation-induced migration of BV-2 microglia. Curcumin also potently blocked gene expression related to pro-inflammatory activation of resting cells including Toll-like receptor 2 and Prostaglandin-endoperoxide synthase 2. Moreover, transcription of NO synthase 2 and

  16. Curcumin is a potent modulator of microglial gene expression and migration

    Science.gov (United States)

    2011-01-01

    Background Microglial cells are important effectors of the neuronal innate immune system with a major role in chronic neurodegenerative diseases. Curcumin, a major component of tumeric, alleviates pro-inflammatory activities of these cells by inhibiting nuclear factor kappa B (NFkB) signaling. To study the immuno-modulatory effects of curcumin on a transcriptomic level, DNA-microarray analyses were performed with resting and LPS-challenged microglial cells after short-term treatment with curcumin. Methods Resting and LPS-activated BV-2 cells were stimulated with curcumin and genome-wide mRNA expression patterns were determined using DNA-microarrays. Selected qRT-PCR analyses were performed to confirm newly identified curcumin-regulated genes. The migration potential of microglial cells was determined with wound healing assays and transwell migration assays. Microglial neurotoxicity was estimated by morphological analyses and quantification of caspase 3/7 levels in 661W photoreceptors cultured in the presence of microglia-conditioned medium. Results Curcumin treatment markedly changed the microglial transcriptome with 49 differentially expressed transcripts in a combined analysis of resting and activated microglial cells. Curcumin effectively triggered anti-inflammatory signals as shown by induced expression of Interleukin 4 and Peroxisome proliferator activated receptor α. Several novel curcumin-induced genes including Netrin G1, Delta-like 1, Platelet endothelial cell adhesion molecule 1, and Plasma cell endoplasmic reticulum protein 1, have been previously associated with adhesion and cell migration. Consequently, curcumin treatment significantly inhibited basal and activation-induced migration of BV-2 microglia. Curcumin also potently blocked gene expression related to pro-inflammatory activation of resting cells including Toll-like receptor 2 and Prostaglandin-endoperoxide synthase 2. Moreover, transcription of NO synthase 2 and Signal transducer and activator

  17. Agonists for G-protein-coupled receptor 84 (GPR84) alter cellular morphology and motility but do not induce pro-inflammatory responses in microglia.

    Science.gov (United States)

    Wei, Li; Tokizane, Kyohei; Konishi, Hiroyuki; Yu, Hua-Rong; Kiyama, Hiroshi

    2017-10-03

    Several G-protein-coupled receptors (GPCRs) have been shown to be important signaling mediators between neurons and glia. In our previous screening for identification of nerve injury-associated GPCRs, G-protein-coupled receptor 84 (GPR84) mRNA showed the highest up-regulation by microglia after nerve injury. GPR84 is a pro-inflammatory receptor of macrophages in a neuropathic pain mouse model, yet its function in resident microglia in the central nervous system is poorly understood. We used endogenous, natural, and surrogate agonists for GPR84 (capric acid, embelin, and 6-OAU, respectively) and examined their effect on mouse primary cultured microglia in vitro. 6-n-Octylaminouracil (6-OAU), embelin, and capric acid rapidly induced membrane ruffling and motility in cultured microglia obtained from C57BL/6 mice, although these agonists failed to promote microglial pro-inflammatory cytokine expression. Concomitantly, 6-OAU suppressed forskolin-induced increase of cAMP in cultured microglia. Pertussis toxin, an inhibitor of Gi-coupled signaling, completely suppressed 6-OAU-induced microglial membrane ruffling and motility. In contrast, no 6-OAU-induced microglial membrane ruffling and motility was observed in microglia from DBA/2 mice, a mouse strain that does not express functional GPR84 protein due to endogenous nonsense mutation of the GPR84 gene. GPR84 mediated signaling causes microglial motility and membrane ruffling but does not promote pro-inflammatory responses. As GPR84 is a known receptor for medium-chain fatty acids, those released from damaged brain cells may be involved in the enhancement of microglial motility through GPR84 after neuronal injury.

  18. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Liu, Shuai; Lv, Jiaju; Han, Liping; Ichikawa, Tomonaga; Wang, Wenjuan; Li, Siying; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2012-01-01

    Highlights: ► Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. ► Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. ► CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-κB) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-κB activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responses in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-κB activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNFα)-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-κB transcriptional activity in RASMCs; however, did not affect the TNFα-induced NF-κB activity. Intriguingly, the TNFα-induced IκB phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of IκBα and IκBβ proteins, it did not alter the kinetics of TNFα-induced IκB protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-κB activity and TNFα-induced IκB kinase activation without affecting TNFα-induced NF-κB activity in VSMCs. In addition, knocking down of Cyld suppressed TNFα-induced activation of mitogen activated protein kinases (MAPKs) including extracellular signal-activated kinases (ERK), c-Jun N-terminal kinase (JNK), and p38 in RASMCs. TNFα-induced RASMC migration and monocyte adhesion to

  19. Effect of Amaranthus on Advanced Glycation End-Products Induced Cytotoxicity and Proinflammatory Cytokine Gene Expression in SH-SY5Y Cells

    Directory of Open Access Journals (Sweden)

    Warisa Amornrit

    2015-09-01

    Full Text Available Amaranthus plants, or spinach, are used extensively as a vegetable and are known to possess medicinal properties. Neuroinflammation and oxidative stress play a major role in the pathogenesis of many neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. Advanced glycation end-products (AGEs cause cell toxicity in the human neuronal cell line, SH-SY5Y, through an increase in oxidative stress, as shown by reducing cell viability and increasing cell toxicity in a dose-dependent manner. We found that preincubation of SH-SY5Y cells with either petroleum ether, dichloromethane or methanol extracts of A. lividus and A. tricolor dose-dependently attenuated the neuron toxicity caused by AGEs treatment. Moreover, the results showed that A. lividus and A. tricolor extracts significantly downregulated the gene expression of the pro-inflammatory cytokines, TNF-α, IL-1 and IL-6 genes in AGEs-induced cells. We concluded that A. lividus and A. tricolor extracts not only have a neuroprotective effect against AGEs toxicity, but also have anti-inflammatory activity by reducing pro-inflammatory cytokine gene expression. This suggests that Amaranthus may be useful for treating chronic inflammation associated with neurodegenerative disorders.

  20. Diabetes alters activation and repression of pro- and anti- inflammatory signalling pathways in the vasculature

    Directory of Open Access Journals (Sweden)

    Elyse eDi Marco

    2013-06-01

    Full Text Available A central mechanism driving vascular disease in diabetes is immune cell-mediated inflammation. In diabetes, enhanced oxidation and glycation of macromolecules, such as lipoproteins, insults the endothelium and activates both innate and adaptive arms of the immune system by generating new antigens for presentation to adaptive immune cells. Chronic inflammation of the endothelium in diabetes leads to continuous infiltration and accumulation of leukocytes at sites of endothelial cell injury. We will describe the central role of the macrophage as a source of signalling molecules and damaging by-products which activate infiltrating lymphocytes in the tissue and contribute to the pro-oxidant and pro-inflammatory micro-environment. An important aspect to be considered is the diabetes- associated defects in the immune system, such as fewer or dysfunctional athero-protective leukocyte subsets in the diabetic lesion compared to non-diabetic lesions. This review will discuss the key pro-inflammatory signalling pathways responsible for leukocyte recruitment and activation in the injured vessel, with particular focus on pro- and anti-inflammatory pathways aberrantly activated or repressed in diabetes. We aim to describe the interaction between advanced glycation end products (AGEs and their principle receptor RAGE, Angiotensin II (Ang II and the Ang II type 1 receptor (AT1R, in addition to reactive oxygen species (ROS production by NADPH oxidase (Nox enzymes that are relevant to vascular and immune cell function in the context of diabetic vasculopathy. Furthermore, we will touch on recent advances in epigenetic medicine that have revealed high glucose-mediated changes in the transcription of genes with known pro-inflammatory downstream targets. Finally, novel anti-atherosclerosis strategies that target the vascular immune interface will be explored; such as vaccination against modified LDL and pharmacological inhibition of ROS producing enzymes.

  1. Common variants of inflammatory cytokine genes are associated with risk of nephropathy in type 2 diabetes among Asian Indians

    DEFF Research Database (Denmark)

    Ahluwalia, Tarun Veer Singh; Khullar, Madhu; Ahuja, Monica

    2009-01-01

    Inflammatory cytokine genes have been proposed as good candidate genes for conferring susceptibility to diabetic nephropathy. In the present study, we examined the combined effect of multiple alleles of pro inflammatory cytokine genes for determining the risk of nephropathy in type 2 diabetic...

  2. Dark chocolate attenuates intracellular pro-inflammatory reactivity to acute psychosocial stress in men: A randomized controlled trial.

    Science.gov (United States)

    Kuebler, Ulrike; Arpagaus, Angela; Meister, Rebecca E; von Känel, Roland; Huber, Susanne; Ehlert, Ulrike; Wirtz, Petra H

    2016-10-01

    Flavanol-rich dark chocolate consumption relates to lower risk of cardiovascular mortality, but underlying mechanisms are elusive. We investigated the effect of acute dark chocolate consumption on inflammatory measures before and after stress. Healthy men, aged 20-50years, were randomly assigned to a single intake of either 50g of flavanol-rich dark chocolate (n=31) or 50g of optically identical flavanol-free placebo-chocolate (n=34). Two hours after chocolate intake, both groups underwent the 15-min Trier Social Stress Test. We measured DNA-binding-activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, as well as plasma and whole blood mRNA levels of the pro-inflammatory cytokines IL-1β and IL-6, and the anti-inflammatory cytokine IL-10, prior to chocolate intake as well as before and several times after stress. We also repeatedly measured the flavanol epicatechin and the stress hormones epinephrine and cortisol in plasma and saliva, respectively. Compared to the placebo-chocolate-group, the dark-chocolate-group revealed a marginal increase in IL-10 mRNA prior to stress (p=0.065), and a significantly blunted stress reactivity of NF-κB-BA, IL-1β mRNA, and IL-6 mRNA (p's⩽0.036) with higher epicatechin levels relating to lower pro-inflammatory stress reactivity (p's⩽0.033). Stress hormone changes to stress were controlled. None of the other measures showed a significant chocolate effect (p's⩾0.19). Our findings indicate that acute flavanol-rich dark chocolate exerts anti-inflammatory effects both by increasing mRNA expression of the anti-inflammatory cytokine IL-10 and by attenuating the intracellular pro-inflammatory stress response. This mechanism may add to beneficial effects of dark chocolate on cardiovascular health. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Serum Amyloid A Induces Toll-Like Receptor 2-Dependent Inflammatory Cytokine Expression and Atrophy in C2C12 Skeletal Muscle Myotubes.

    Science.gov (United States)

    Passey, Samantha L; Bozinovski, Steven; Vlahos, Ross; Anderson, Gary P; Hansen, Michelle J

    2016-01-01

    Skeletal muscle wasting is an important comorbidity of Chronic Obstructive Pulmonary Disease (COPD) and is strongly correlated with morbidity and mortality. Patients who experience frequent acute exacerbations of COPD (AECOPD) have more severe muscle wasting and reduced recovery of muscle mass and function after each exacerbation. Serum levels of the pro-inflammatory acute phase protein Serum Amyloid A (SAA) can rise more than 1000-fold in AECOPD and are predictively correlated with exacerbation severity. The direct effects of SAA on skeletal muscle are poorly understood. Here we have examined SAA effects on pro-inflammatory cachectic cytokine expression (IL-6 and TNFα) and atrophy in C2C12 myotubes. SAA increased IL-6 (31-fold) and TNFα (6.5-fold) mRNA levels compared to control untreated cells after 3h of SAA treatment, and increased secreted IL-6 protein at 24h. OxPAPC, a dual TLR2 and TLR4 inhibitor, reduced the response to SAA by approximately 84% compared to SAA alone, and the TLR2 neutralising antibody T2.5 abolished SAA-induced expression of IL-6, indicating that SAA signalling in C2C12 myotubes is primarily via TLR2. SAA also reduced myotube width by 10-13% and induced a 2.5-fold increase in the expression of the muscle atrophy gene Atrogin-1, suggesting direct effects of SAA on muscle wasting. Blocking of TLR2 inhibited the SAA-induced decrease in myotube width and Atrogin-1 gene expression, indicating that SAA induces atrophy through TLR2. These data demonstrate that SAA stimulates a robust pro-inflammatory response in skeletal muscle myotubes via the TLR2-dependent release of IL-6 and TNFα. Furthermore, the observed atrophy effects indicate that SAA could also be directly contributing to the wasting and poor recovery of muscle mass. Therapeutic strategies targeting this SAA-TLR2 axis may therefore ameliorate muscle wasting in AECOPD and a range of other inflammatory conditions associated with loss of muscle mass.

  4. HMGB1/RAGE Signaling and Pro-Inflammatory Cytokine Responses in Non-HIV Adults with Active Pulmonary Tuberculosis.

    Directory of Open Access Journals (Sweden)

    Grace Lui

    Full Text Available We aimed to study the pathogenic roles of High-Mobility Group Box 1 (HMGB1 / Receptor-for-Advanced-Glycation-End-products (RAGE signaling and pro-inflammatory cytokines in patients with active pulmonary tuberculosis (PTB.A prospective study was conducted among non-HIV adults newly-diagnosed with active PTB at two acute-care hospitals (n = 80; age-and-sex matched asymptomatic individuals (tested for latent TB were used for comparison (n = 45. Plasma concentrations of 8 cytokines/chemokines, HMGB1, soluble-RAGE, and transmembrane-RAGE expressed on monocytes/dendritic cells, were measured. Gene expression (mRNA of HMGB1, RAGE, and inflammasome-NALP3 was quantified. Patients' PBMCs were stimulated with recombinant-HMGB1 and MTB-antigen (lipoarabinomannan for cytokine induction ex vivo.In active PTB, plasma IL-8/CXCL8 [median(IQR, 6.0(3.6-15.1 vs 3.6(3.6-3.6 pg/ml, P<0.001] and IL-6 were elevated, which significantly correlated with mycobacterial load, extent of lung consolidation (rs +0.509, P<0.001, severity-score (rs +0.317, P = 0.004, and fever and hospitalization durations (rs +0.407, P<0.001. IL-18 and sTNFR1 also increased. Plasma IL-8/CXCL8 (adjusted OR 1.12, 95%CI 1.02-1.23 per unit increase, P = 0.021 and HMGB1 (adjusted OR 1.42 per unit increase, 95%CI 1.08-1.87, P = 0.012 concentrations were independent predictors for respiratory failure, as well as for ICU admission/death. Gene expression of HMGB1, RAGE, and inflammasome-NALP3 were upregulated (1.2-2.8 fold. Transmembrane-RAGE was increased, whereas the decoy soluble-RAGE was significantly depleted. RAGE and HMGB1 gene expressions positively correlated with cytokine levels (IL-8/CXCL8, IL-6, sTNFR1 and clinico-/radiographical severity (e.g. extent of consolidation rs +0.240, P = 0.034. Ex vivo, recombinant-HMGB1 potentiated cytokine release (e.g. TNF-α when combined with lipoarabinomannan.In patients with active PTB, HMGB1/RAGE signaling and pro-inflammatory cytokines may play important

  5. Iodinated contrast media alter immune responses in pro-inflammatory states.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2010-07-01

    Hypertonic saline causes a transient elevation of blood osmolality and has been shown to alter cellular inflammatory responses in pro-inflammatory states. Intravascular administration of iodine contrast media also causes a transient elevation of blood osmolarity.

  6. Combined anti-tumor necrosis factor-α therapy and DMARD therapy in rheumatoid arthritis patients reduces inflammatory gene expression in whole blood compared to DMARD therapy alone

    Directory of Open Access Journals (Sweden)

    Carl K Edwards

    2012-12-01

    Full Text Available Periodic assessment of gene expression for diagnosis and monitoring in rheumatoid arthritis (RA may provide a readily available and useful method to detect subclinical disease progression and follow responses to therapy with disease modifying anti-rheumatic agents (DMARDs or anti-TNF-α therapy. We used quantitative real-time PCR to compare peripheral blood gene expression profiles in active ("unstable" RA patients on DMARDs, stable RA patients on DMARDs, and stable RA patients treated with a combination of a DMARD and an anti-TNF-α agent (infliximab or etanercept to healthy human controls. The expression of 48 inflammatory genes were compared between healthy controls (N=122, unstable DMARD patients (N=18, stable DMARD patients (N=26, and stable patients on combination therapy (N=20. Expression of 13 genes was very low or undetectable in all study groups. Compared to healthy controls, patients with unstable RA on DMARDs exhibited increased expression of 25 genes, stable DMARD patients exhibited increased expression of 14 genes and decreased expression of five genes, and combined therapy patients exhibited increased expression of six genes and decreased expression of 10 genes. These findings demonstrate that active RA is associated with increased expression of circulating inflammatory markers whereas increases in inflammatory gene expression are diminished in patients with stable disease on either DMARD or anti-TNF-α therapy. Furthermore, combination DMARD and anti-TNF-α therapy is associated with greater reductions in circulating inflammatory gene expression compared to DMARD therapy alone. These results suggest that assessment of peripheral blood gene expression may prove useful to monitor disease progression and response to therapy.

  7. Variable transcription of pro- and anti-inflammatory cytokines in phocine lymphocytes following canine distemper virus infection.

    Science.gov (United States)

    Seibel, H; Siebert, U; Rosenberger, T; Baumgärtner, W

    2014-10-15

    Canine distemper virus (CDV) is a highly contagious viral pathogen. Domesticated dogs are the main reservoir of CDV. Although phocine distemper virus was responsible for the recent epidemics in seals in the North and Baltic Seas, most devastating epidemics in seals were also caused by CDV. To further study the pathogenesis of CDV infection in seals, it was the aim of the present study to investigate the mechanisms of CDV induced immunosuppression in seals by analyzing the gene transcription of different pro- and anti-inflammatory cytokines in Concanavalin A (Con A) stimulated and non-stimulated phocine lymphocytes in vitro following infection with the CDV Onderstepoort (CDV-OND) strain. Phocine lymphocytes were isolated via density gradient centrifugation. The addition of 1 μg/ml Con A and virus was either performed simultaneously or lymphocytes were stimulated for 48 h with Con A prior to virus infection. Gene transcription of interleukin (IL)-6, IL-12 and tumor necrosis factor alpha (TNFα) as pro-inflammatory cytokines and IL-4, IL-10 and transforming growth factor beta (TGFβ) as anti-inflammatory cytokines were determined by using RT-qPCR. CDV-OND infection caused an initial increase of pro-inflammatory phocine cytokines mRNA 24h after infection, followed by a decrease in gene transcription after 48 h. A strong increase in the transcription of IL-4 and TGFβ was detected after 48 h when virus and mitogen were added simultaneously. An increased IL-10 production occurred only when stimulation and infection were performed simultaneously. Furthermore, an inhibition of IL-12 on IL-4 was noticed in phocine lymphocytes which were stimulated for 48 h prior to infection. In summary, the duration of the stimulation or the lymphocytes seem to have an important influence on the cytokine transcription and indicates that the outcome of CDV infection is dependent on various factors that might sensitize lymphocytes or make them more susceptible or reactive to CDV infection

  8. The expression of inflammatory cytokines, TAM tyrosine kinase receptors and their ligands is upregulated in venous leg ulcer patients: a novel insight into chronic wound immunity.

    Science.gov (United States)

    Filkor, Kata; Németh, Tibor; Nagy, István; Kondorosi, Éva; Urbán, Edit; Kemény, Lajos; Szolnoky, Győző

    2016-08-01

    The systemic host defence mechanisms, especially innate immunity, in venous leg ulcer patients are poorly investigated. The aim of the current study was to measure Candida albicans killing activity and gene expressions of pro- and anti-inflammatory cytokines and innate immune response regulators, TAM receptors and ligands of peripheral blood mononuclear cells separated from 69 venous leg ulcer patients and 42 control probands. Leg ulcer patients were stratified into responder and non-responder groups on the basis of wound healing properties. No statistical differences were found in Candida killing among controls, responders and non-responders. Circulating blood mononuclear cells of patients overexpress pro-inflammatory (IL-1α, TNFα, CXCL-8) and anti-inflammatory (IL-10) cytokines as well as TAM receptors (Tyro, Axl, MerTK) and their ligands Gas6 and Protein S compared with those of control individuals. IL-1α is notably overexpressed in venous leg ulcer treatment non-responders; in contrast, Axl gene expression is robustly stronger among responders. These markers may be considered as candidates for the prediction of treatment response among venous leg ulcer patients. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  9. MiR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response.

    Directory of Open Access Journals (Sweden)

    Thomas J Cremer

    2009-12-01

    Full Text Available The intracellular gram-negative bacterium Francisella tularensis causes the disease tularemia and is known for its ability to subvert host immune responses. Previous work from our laboratory identified the PI3K/Akt pathway and SHIP as critical modulators of host resistance to Francisella. Here, we show that SHIP expression is strongly down-regulated in monocytes and macrophages following infection with F. tularensis novicida (F.n.. To account for this negative regulation we explored the possibility that microRNAs (miRs that target SHIP may be induced during infection. There is one miR that is predicted to target SHIP, miR-155. We tested for induction and found that F.n. induced miR-155 both in primary monocytes/macrophages and in vivo. Using luciferase reporter assays we confirmed that miR-155 led to down-regulation of SHIP, showing that it specifically targets the SHIP 3'UTR. Further experiments showed that miR-155 and BIC, the gene that encodes miR-155, were induced as early as four hours post-infection in primary human monocytes. This expression was dependent on TLR2/MyD88 and did not require inflammasome activation. Importantly, miR-155 positively regulated pro-inflammatory cytokine release in human monocytes infected with Francisella. In sharp contrast, we found that the highly virulent type A SCHU S4 strain of Francisella tularensis (F.t. led to a significantly lower miR-155 response than the less virulent F.n. Hence, F.n. induces miR-155 expression and leads to down-regulation of SHIP, resulting in enhanced pro-inflammatory responses. However, impaired miR-155 induction by SCHU S4 may help explain the lack of both SHIP down-regulation and pro-inflammatory response and may account for the virulence of Type A Francisella.

  10. The bronchiolar epithelium as a prominent source of pro-inflammatory cytokines after lung irradiation

    International Nuclear Information System (INIS)

    Ruebe, Claudia E.; Uthe, Daniela; Wilfert, Falk; Ludwig, Daniela; Yang Kunyu; Koenig, Jochem; Palm, Jan; Schuck, Andreas; Willich, Normann; Remberger, Klaus; Ruebe, Christian

    2005-01-01

    Purpose: To study in detail the temporal and spatial release of the pro-inflammatory cytokines tumor necrosis factor α, interleukin (IL)-1α, and IL-6 in the lung tissue of C57BL/6 mice after thoracic irradiation with 12 Gy. Methods and Materials: C57BL/6J mice were exposed to either sham irradiation or a single fraction of 12 Gy delivered to the thorax. Treated and sham-irradiated control mice were killed at 0.5 h, 1 h, 3 h, 6 h, 12 h, 24 h, 48 h, 72 h, 1 week, 2 weeks, 4 weeks, 8 weeks, 16 weeks, and 24 weeks post-irradiation (p.i.). Real-time multiplex reverse transcriptase polymerase chain reaction was established to evaluate the relative messenger RNA (mRNA) expression of TNF-α, IL-1α, and IL-6 in the lung tissue of the mice (compared with nonirradiated lung tissue). Immunohistochemical detection methods (alkaline phosphatase anti-alkaline phosphatase, avidin-biotin-complex [ABC]) and automated image analysis were used to quantify the protein expression of TNF-α, IL-1α, and IL-6 in the lung tissue (percentage of the positively stained area). Results: Radiation-induced release of the pro-inflammatory cytokines TNF-α, IL-1α, and IL-6 in the lung tissue was detectable within the first hours after thoracic irradiation. We observed statistically significant up-regulations for TNF-α at 1 h p.i. on mRNA (4.99 ± 1.60) and at 6 h p.i. on protein level (7.23% ± 1.67%), for IL-1α at 6 h p.i. on mRNA (11.03 ± 0.77) and at 12 h p.i. on protein level (27.58% ± 11.06%), for IL-6 at 6 h p.i. on mRNA (6.0 ± 3.76) and at 12 h p.i. on protein level (7.12% ± 1.93%). With immunohistochemistry, we could clearly demonstrate that the bronchiolar epithelium is the most prominent source of these inflammatory cytokines in the first hours after lung irradiation. During the stage of acute pneumonitis, the bronchiolar epithelium, as well as inflammatory cells in the lung interstitium, produced high amounts of TNF-α (with the maximal value at 4 weeks p.i.: 9.47% ± 1

  11. IL-1β and TNFα inhibit GPR120 (FFAR4) and stimulate GPR84 (EX33) and GPR41 (FFAR3) fatty acid receptor expression in human adipocytes: implications for the anti-inflammatory action of n-3 fatty acids.

    Science.gov (United States)

    Muredda, Laura; Kępczyńska, Małgorzata A; Zaibi, Mohamed S; Alomar, Suliman Y; Trayhurn, Paul

    2018-05-01

    Regulation of the expression of GPCR fatty acid receptor genes has been examined in human adipocytes differentiated in culture. TNFα and IL-1β induced a marked reduction in GPR120 expression, mRNA level falling 17-fold at 24 h in adipocytes incubated with TNFα. In contrast, GPR84 mRNA was dramatically increased by these cytokines (>500-fold for IL-1β at 4 h); GPR41 expression was also stimulated. Rosiglitazone did not affect GPR84 expression, but GPR120 and GPR41 expression increased. Dexamethasone, insulin, linoleic and docosahexaenoic acids (DHA), and TUG891 (GPR120 agonist) had little effect on GPR120 and GPR84 expression. TUG891 did not attenuate the pro-inflammatory actions of TNFα and IL-1β. DHA slightly countered the actions of IL-1β on CCL2, IL6 and ADIPOQ expression, though not on secretion of these adipokines. GPR120 and GP84 gene expression in human adipocytes is highly sensitive to pro-inflammatory mediators; the inflammation-induced inhibition of GPR120 expression may compromise the anti-inflammatory action of GPR120 agonists.

  12. Human SR-BII mediates SAA uptake and contributes to SAA pro-inflammatory signaling in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Irina N Baranova

    Full Text Available Serum amyloid A (SAA is an acute phase protein with cytokine-like and chemotactic properties, that is markedly up-regulated during various inflammatory conditions. Several receptors, including FPRL-1, TLR2, TLR4, RAGE, class B scavenger receptors, SR-BI and CD36, have been identified as SAA receptors. This study provides new evidence that SR-BII, splice variant of SR-BI, could function as an SAA receptor mediating its uptake and pro-inflammatory signaling. The uptake of Alexa Fluor488 SAA was markedly (~3 fold increased in hSR-BII-expressing HeLa cells when compared with mock-transfected cells. The levels of SAA-induced interleukin-8 secretion by hSR-BII-expressing HEK293 cells were also significantly (~3-3.5 fold higher than those detected in control cells. Moderately enhanced levels of phosphorylation of all three mitogen-activated protein kinases, ERK1/2, and p38 and JNK, were observed in hSR-BII-expressing cells following SAA stimulation when compared with control wild type cells. Transgenic mice with pLiv-11-directed liver/kidney overexpression of hSR-BI or hSR-BII were used to assess the in vivo role of each receptor in SAA-induced pro-inflammatory response in these organs. Six hours after intraperitoneal SAA injection both groups of transgenic mice demonstrated markedly higher (~2-5-fold expression levels of inflammatory mediators in the liver and kidney compared to wild type mice. Histological examinations of hepatic and renal tissue from SAA-treated mice revealed moderate level of damage in the liver of both transgenic but not in the wild type mice. Activities of plasma transaminases, biomarkers of liver injury, were also moderately higher in hSR-B transgenic mice when compared to wild type mice. Our findings identify hSR-BII as a functional SAA receptor that mediates SAA uptake and contributes to its pro-inflammatory signaling via the MAPKs-mediated signaling pathways.

  13. Expression of REG family genes in human inflammatory bowel diseases and its regulation

    Directory of Open Access Journals (Sweden)

    Chikatsugu Tsuchida

    2017-12-01

    Full Text Available The pathophysiology of inflammatory bowel disease (IBD reflects a balance between mucosal injury and reparative mechanisms. Some regenerating gene (Reg family members have been reported to be expressed in Crohn's disease (CD and ulcerative colitis (UC and to be involved as proliferative mucosal factors in IBD. However, expression of all REG family genes in IBD is still unclear. Here, we analyzed expression of all REG family genes (REG Iα, REG Iβ, REG III, HIP/PAP, and REG IV in biopsy specimens of UC and CD by real-time RT-PCR. REG Iα, REG Iβ, and REG IV genes were overexpressed in CD samples. REG IV gene was also overexpressed in UC samples. We further analyzed the expression mechanisms of REG Iα, REG Iβ, and REG IV genes in human colon cells. The expression of REG Iα was significantly induced by IL-6 or IL-22, and REG Iβ was induced by IL-22. Deletion analyses revealed that three regions (− 220 to − 211, − 179 to − 156, and − 146 to − 130 in REG Iα and the region (− 274 to− 260 in REG Iβ promoter were responsible for the activation by IL-22/IL-6. The promoters contain consensus transcription factor binding sequences for MZF1, RTEF1/TEAD4, and STAT3 in REG Iα, and HLTF/FOXN2F in REG Iβ, respectively. The introduction of siRNAs for MZF1, RTEF1/TEAD4, STAT3, and HLTF/FOXN2F abolished the transcription of REG Iα and REG Iβ. The gene activation mechanisms of REG Iα/REG Iβ may play a role in colon mucosal regeneration in IBD.

  14. Effects of dietary resveratrol supplementation on hepatic and serum pro-/anti-inflammatory activity in juvenile GIFT tilapia, Oreochromis niloticus.

    Science.gov (United States)

    Zheng, Yao; Zhao, Zhixiang; Wu, Wei; Song, Chao; Meng, Shunlong; Fan, Limin; Bing, Xuwen; Chen, Jiazhang

    2017-08-01

    Dietary resveratrol (RES) supplementation may have some pharmacological effects including anti-inflammation. Previous studies have shown that Kupffer cell activation and apoptosis induction increases the transcription of pro- and anti-inflammatory cytokines. The main purpose of this study was to investigate the pro- and anti-inflammatory activities of 0.1 or 0.3 g/kg RES as a dietary supplement in juvenile freshwater tilapia (Oreochromis niloticus). The results showed that hepatic and serum immunoglobulin M (IgM) significantly decreased and increased while anti- and pro-inflammatory cytokines significantly increased and decreased, respectively, in the RES-treated groups. The expression of serum and hepatic IgM and anti-inflammatory cytokines [interleukin (IL)-10] and its inverse inhibitor interferon (IFN)-γ significantly increased while pro-inflammatory cytokine transcription significantly decreased. Hematoxylin-eosin staining and scanning electron microscopy revealed intestinal deformation, irregular goblet cells, and apoptotic cells in the 0.3 g/kg RES groups. RES (0.3 g/kg) also induced necrosis, apoptosis, reduction in Kupffer cell number, compressed sinusoids, and deformation of epidermal cells in the liver of the treated groups. In conclusion, the results of the present study show that high doses of RES were absorbed in the gut and then damaged the liver and intestinal tissue. Copyright © 2017. Published by Elsevier Ltd.

  15. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuai [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Lv, Jiaju [Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan 250021 (China); Han, Liping; Ichikawa, Tomonaga; Wang, Wenjuan; Li, Siying [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Wang, Xing Li [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Tang, Dongqi, E-mail: tangdq@pathology.ufl.edu [Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610-0275 (United States); Cui, Taixing, E-mail: taixing.cui@uscmed.sc.edu [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. Black-Right-Pointing-Pointer Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. Black-Right-Pointing-Pointer CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-{kappa}B) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-{kappa}B activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responses in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-{kappa}B activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNF{alpha})-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-{kappa}B transcriptional activity in RASMCs; however, did not affect the TNF{alpha}-induced NF-{kappa}B activity. Intriguingly, the TNF{alpha}-induced I{kappa}B phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of I{kappa}B{alpha} and I{kappa}B{beta} proteins, it did not alter the kinetics of TNF{alpha}-induced I{kappa}B protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-{kappa}B activity and TNF{alpha}-induced I{kappa}B kinase activation without affecting TNF{alpha}-induced NF-{kappa}B activity in VSMCs. In addition, knocking down of Cyld suppressed TNF{alpha}-induced activation of mitogen activated protein

  16. Corticosteroid-Induced MKP-1 Represses Pro-Inflammatory Cytokine Secretion by Enhancing Activity of Tristetraprolin (TTP) in ASM Cells.

    Science.gov (United States)

    Prabhala, Pavan; Bunge, Kristin; Ge, Qi; Ammit, Alaina J

    2016-10-01

    Exaggerated cytokine secretion drives pathogenesis of a number of chronic inflammatory diseases, including asthma. Anti-inflammatory pharmacotherapies, including corticosteroids, are front-line therapies and although they have proven clinical utility, the molecular mechanisms responsible for their actions are not fully understood. The corticosteroid-inducible gene, mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1, DUSP1) has emerged as a key molecule responsible for the repressive effects of steroids. MKP-1 is known to deactivate p38 MAPK phosphorylation and can control the expression and activity of the mRNA destabilizing protein-tristetraprolin (TTP). But whether corticosteroid-induced MKP-1 acts via p38 MAPK-mediated modulation of TTP function in a pivotal airway cell type, airway smooth muscle (ASM), was unknown. While pretreatment of ASM cells with the corticosteroid dexamethasone (preventative protocol) is known to reduce ASM synthetic function in vitro, the impact of adding dexamethasone after stimulation (therapeutic protocol) had not been explored. Whether dexamethasone modulates TTP in a p38 MAPK-dependent manner in this cell type was also unknown. We address this herein and utilize an in vitro model of asthmatic inflammation where ASM cells were stimulated with the pro-asthmatic cytokine tumor necrosis factor (TNF) and the impact of adding dexamethasone 1 h after stimulation assessed. IL-6 mRNA expression and protein secretion was significantly repressed by dexamethasone acting in a temporally distinct manner to increase MKP-1, deactivate p38 MAPK, and modulate TTP phosphorylation status. In this way, dexamethasone-induced MKP-1 acts via p38 MAPK to switch on the mRNA destabilizing function of TTP to repress pro-inflammatory cytokine secretion from ASM cells. J. Cell. Physiol. 231: 2153-2158, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. The order of expression is a key factor in the production of active transglutaminase in Escherichia coli by co-expression with its pro-peptide

    Directory of Open Access Journals (Sweden)

    Liu Song

    2011-12-01

    Full Text Available Abstract Background Streptomyces transglutaminase (TGase is naturally synthesized as zymogen (pro-TGase, which is then processed to produce active enzyme by the removal of its N-terminal pro-peptide. This pro-peptide is found to be essential for overexpression of soluble TGase in E. coli. However, expression of pro-TGase by E. coli requires protease-mediated activation in vitro. In this study, we developed a novel co- expression method for the direct production of active TGase in E. coli. Results A TGase from S. hygroscopicus was expressed in E. coli only after fusing with the pelB signal peptide, but fusion with the signal peptide induced insoluble enzyme. Therefore, alternative protocol was designed by co-expressing the TGase and its pro-peptide as independent polypeptides under a single T7 promoter using vector pET-22b(+. Although the pro-peptide was co-expressed, the TGase fused without the signal peptide was undetectable in both soluble and insoluble fractions of the recombinant cells. Similarly, when both genes were expressed in the order of the TGase and the pro-peptide, the solubility of TGase fused with the signal peptide was not improved by the co-expression with its pro-peptide. Interestingly, active TGase was only produced by the cells in which the pro-peptide and the TGase were fused with the signal peptide and sequentially expressed. The purified recombinant and native TGase shared the similar catalytic properties. Conclusions Our results indicated that the pro-peptide can assist correct folding of the TGase inter-molecularly in E. coli, and expression of pro-peptide prior to that of TGase was essential for the production of active TGase. The co-expression strategy based on optimizing the order of gene expression could be useful for the expression of other functional proteins that are synthesized as a precursor.

  18. Irradiation of existing atherosclerotic lesions increased inflammation by favoring pro-inflammatory macrophages

    International Nuclear Information System (INIS)

    Gabriels, Karen; Hoving, Saske; Gijbels, Marion J.; Pol, Jeffrey F.; Poele, Johannes A. te; Biessen, Erik A.; Daemen, Mat J.; Stewart, Fiona A.; Heeneman, Sylvia

    2014-01-01

    Background and purpose: Recent studies have shown an increased incidence of localized atherosclerosis and subsequent cardiovascular events in cancer patients treated with thoracic radiotherapy. We previously demonstrated that irradiation accelerated the development of atherosclerosis and predisposed to an inflammatory plaque phenotype in young hypercholesterolemic ApoE −/− mice. However, as older cancer patients already have early or advanced stages of atherosclerosis at the time of radiotherapy, we investigated the effects of irradiation on the progression of existing atherosclerotic lesions in vivo. Material and methods: ApoE −/− mice (28 weeks old) received local irradiation with 14 or 0 Gy (sham-treated) at the aortic arch and were examined after 4 and 12 weeks for atherosclerotic lesions, plaque size and phenotype. Moreover, we investigated the impact of irradiation on macrophage phenotype (pro- or anti-inflammatory) and function (efferocytotic capacity, i.e. clearance of apoptotic cells) in vitro. Results: Irradiation of existing lesions in the aortic arch resulted in smaller, macrophage-rich plaques with intraplaque hemorrhage and increased apoptosis. In keeping with the latter, in vitro studies revealed augmented polarization toward pro-inflammatory macrophages after irradiation and reduced efferocytosis by anti-inflammatory macrophages. In addition, considerably more lesions in irradiated mice were enriched in pro-inflammatory macrophages. Conclusions: Irradiation of existing atherosclerotic lesions led to smaller but more inflamed plaques, with increased numbers of apoptotic cells, most likely due to a shift toward pro-inflammatory macrophages in the plaque

  19. Gene expression profiling of liver from dairy cows treated intra-mammary with lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Vels Lotte

    2008-09-01

    Full Text Available Abstract Background Liver plays a profound role in the acute phase response (APR observed in the early phase of acute bovine mastitis caused by Escherichia coli (E. coli. To gain an insight into the genes and pathways involved in hepatic APR of dairy cows we performed a global gene expression analysis of liver tissue sampled at different time points before and after intra-mammary (IM exposure to E. coli lipopolysaccharide (LPS treatment. Results Approximately 20% target transcripts were differentially expressed and eight co-expression clusters were identified. Each cluster had a unique time-dependent expression profile and consisted of genes involved in different biological processes. Our findings suggest that APR in the liver is triggered by the activation of signaling pathways that are involved with common and hepatic-specific transcription factors and pro-inflammatory cytokines. These mediators in turn stimulated or repressed the expression of genes encoding acute phase proteins (APP, collectins, complement components, chemokines, cell adhesion molecules and key metabolic enzymes during the APR. Hormones, anti-inflammatory and other hypothalamus-pituitary-adrenal axis (HPAA linked mediators also seemed to participate in APR. Conclusion Performing global gene expression analysis on liver tissue from IM LPS treated cows verified that the liver plays a major role in the APR of E. coli mastitis, and that the bovine hepatic APR follows the same pattern as other mammals when they are challenged with LPS. Our work presents the first insight into the dynamic changes in gene expression in the liver that influences the induction, kinetics and clinical outcome of the APR in dairy cows.

  20. Anti-inflammatory effects of octadecylamine-functionalized nanodiamond on primary human macrophages.

    Science.gov (United States)

    Pentecost, A E; Witherel, C E; Gogotsi, Y; Spiller, K L

    2017-09-26

    Chronic inflammatory disorders such as rheumatoid arthritis are characterized by excessive pro-inflammatory or "M1" activation of macrophages, the primary cells of the innate immune system. Current treatments include delivery of glucocorticoids (e.g. dexamethasone - Dex), which reduce pro-inflammatory M1 behaviour in macrophages. However, these treatments have many off-target effects on cells other than macrophages, resulting in broad immunosuppression. To limit such side effects, drug-incorporated nano- and microparticles may be used to selectively target macrophages via phagocytosis, because of their roles as highly effective phagocytes in the body. In this study, surface-modified nanodiamond (ND) was explored as a platform for the delivery of dexamethasone to macrophages because of ND's rich surface chemistry, which contributes to ND's high potential as a versatile drug delivery platform. After finding that octadecylamine-functionalized nanodiamond (ND-ODA) enhanced adsorption of Dex compared to carboxylated ND, the effects of Dex, ND-ODA, and Dex-adsorbed ND-ODA on primary human macrophage gene expression were characterized. Surprisingly, even in the absence of Dex, ND-ODA had strong anti-inflammatory effects, as determined by multiplex gene expression via NanoString and by protein secretion analysis via ELISA. ND-ODA also inhibited expression of M2a markers yet increased the expression of M2c markers and phagocytic receptors. Interestingly, the adsorption of Dex to ND-ODA further increased some anti-inflammatory effects, but abrogated the effect on phagocytic receptors, compared to its individual components. Overall, the ability of ND-ODA to promote anti-inflammatory and pro-phagocytic behaviour in macrophages, even in the absence of loaded drugs, suggests its potential for use as an anti-inflammatory therapeutic to directly target macrophages through phagocytosis.

  1. Pro-inflammatory Cytokines Are Involved in Fluoride-Induced Cytotoxic Potential in HeLa Cells.

    Science.gov (United States)

    Wang, Hong-Wei; Zhou, Bian-Hua; Cao, Jian-Wen; Zhao, Jing; Zhao, Wen-Peng; Tan, Pan-Pan

    2017-01-01

    This study was designed to investigate the pro-inflammatory cytokines and their involvement in the cytotoxic potential of fluoride (F) in HeLa cells. HeLa cells were cultured with varying F concentrations (1-50 mg/L) for 48 h, and treatment effects were analyzed. The viability of HeLa cells was determined with a colorimetric method. The concentrations of IL-1β, IL-2, IL-6, and TNF-a in culture supernatant were measured through enzyme linked immunosorbent assay (ELISA). The mRNA expression levels of IL-1β, IL-2, IL-6 and TNF-a were subjected to transcript analysis and quantified through reverse transcription real-time PCR. Results showed that 10, 20 and 50 mg/L F significantly decreased the viability of HeLa cells incubated for 24 and 48 h. With their cytotoxic effect, the concentrations of IL-1β, IL-2, IL-6, and TNF-a decreased significantly in response to F, especially at 20 and 50 mg/L for 48 h. The mRNA expression levels of IL-1β, IL-2, IL-6, and TNF-a were downregulated at 50 mg/L F for 48 h. Therefore, F inhibited HeLa cell growth; as such, F could be used to alleviate the inhibition of pro-inflammatory cytokine expression.

  2. Dynamics of hepatic gene expression and serum cytokine profiles in single and double-hit burn and sepsis animal models

    Directory of Open Access Journals (Sweden)

    Rohit Rao

    2015-06-01

    Full Text Available We simulate the pathophysiology of severe burn trauma and burn-induced sepsis, using rat models of experimental burn injury and cecal ligation and puncture (CLP either individually (singe-hit model or in combination (double-hit model. The experimental burn injury simulates a systemic but sterile pro-inflammatory response, while the CLP simulates the effect of polymicrobial sepsis. Given the liver׳s central role in mediating the host immune response and onset of hypermetabolism after burn injury, elucidating the alterations in hepatic gene expression in response to injury can lead to a better understanding of the regulation of the inflammatory response, whereas circulating cytokine protein expression, reflects key systemic inflammatory mediators. In this article, we present both the hepatic gene expression and circulating cytokine/chemokine protein expression data for the above-mentioned experimental model to gain insights into the temporal dynamics of the inflammatory and hypermetabolic response following burn and septic injury. This data article supports results discussed in research articles (Yang et al., 2012 [1,4]; Mattick et al. 2012, 2013 [2,3]; Nguyen et al., 2014 [5]; Orman et al., 2011, 2012 [6–8].

  3. Effects of alpha-mangostin on the expression of anti-inflammatory genes in U937 cells

    Directory of Open Access Journals (Sweden)

    Liu Szu-Hsiu

    2012-08-01

    Full Text Available Abstract Background α-Mangostin (α-MG is a main constituent of the fruit hull of the mangosteen. Previous studies have shown that α-MG has pharmacological activities such as antioxidant, antitumor, anti-inflammatory, antiallergic, antibacterial, antifungal and antiviral effects. This study aims to investigate the anti-inflammatory molecular action of α-MG on gene expression profiles. Methods U937 and EL4 cells were treated with different concentrations of α-MG in the presence of 0.1 ng/mL lipopolysaccharide (LPS for 4 h. The anti-inflammatory effects of α-MG were measured by the levels of tumor necrosis factor (TNF-α and interleukin (IL-4 in cell culture media, which were determined with enzyme-linked immunosorbent assay kits. The gene expression profiles of all samples were analyzed with a whole human genome microarray, Illumina BeadChip WG-6 version 3, containing 48804 probes. The protein levels were determined by Western blotting analyses. Results α-MG decreased the LPS induction of the inflammatory cytokines TNF-α (P = 0.038 and IL-4 (P = 0.04. α-MG decreased the gene expressions in oncostatin M signaling via mitogen-activated protein kinase (MAPK pathways, including extracellular signal-regulated kinases (P = 0.016, c-Jun N-terminal kinase (P = 0.01 , and p38 (P = 0.008. α-MG treatment of U937 cells reduced the phosphorylation of MAPK kinase 3 / MAPK kinase 6 (P = 0.0441, MAPK-activated protein kinase-2 (P = 0.0453, signal transducers and activators of transcription-1 (STAT1 (P = 0.0012, c-Fos (P = 0.04, c-Jun (P = 0.019 and Ets-like molecule 1 (Elk-1 (P = 0.038. Conclusion This study demonstrates that α-MG attenuates LPS-mediated activation of MAPK, STAT1, c-Fos, c-Jun and EIK-1, inhibiting TNF-α and IL-4 production in U937 cells.

  4. MSCs ameliorates DPN induced cellular pathology via [Ca2+ ]i homeostasis and scavenging the pro-inflammatory cytokines.

    Science.gov (United States)

    Chandramoorthy, Harish C; Bin-Jaliah, Ismaeel; Karari, Hussian; Rajagopalan, Prasanna; Ahmed Shariff, Mohammed Eajaz; Al-Hakami, Ahmed; Al-Humayad, Suliman M; Baptain, Fawzi A; Ahmed, Humeda Suekit; Yassin, Hanaa Z; Haidara, Mohamed A

    2018-02-01

    The MSCs of various origins are known to ameliorate or modulate cell survival strategies. We investigated, whether UCB MSCs could improve the survival of the human neuronal cells and/or fibroblast assaulted with DPN sera. The results showed, the co-culture of UCB MSCs with human neuronal cells and/or fibroblasts could effectively scavenge the pro-inflammatory cytokines TNF-α, IL-1β, IFN-ɤ and IL - 12 and control the pro-apoptotic expression of p53/Bax. Further co-culture of UCB MSCs have shown to induce anti-inflammatory cytokines like IL-4, IL-10 and TGF-β and anti-apoptotic Bclxl/Bcl2 expression in the DPN sera stressed cells. Amelioration of elevated [Ca 2+ ] i and cROS, the portent behind the NFκB/Caspase-3 mediated inflammation in DPN rescued the cells from apoptosis. The results of systemic administration of BM MSCs improved DPN pathology in rat as extrapolated from human cell model. The BM MSCs ameliorated prolonged distal motor latency (control: 0.70 ± 0.06, DPN: 1.29 ± 0.13 m/s DPN + BM MSCs: 0.89 ± 0.02 m/s, p glucose levels. Together, all these results showed that administration of BM or UCB MSCs improved the DPN via ameliorating pro-inflammatory cytokine signaling and [Ca 2+ ] i homeostasis. © 2017 Wiley Periodicals, Inc.

  5. Carbon black nanoparticles induce biphasic gene expression changes associated with inflammatory responses in the lungs of C57BL/6 mice following a single intratracheal instillation

    International Nuclear Information System (INIS)

    Husain, Mainul; Kyjovska, Zdenka O.; Bourdon-Lacombe, Julie; Saber, Anne T.; Jensen, Keld A.; Jacobsen, Nicklas R.; Williams, Andrew; Wallin, Håkan; Halappanavar, Sabina; Vogel, Ulla; Yauk, Carole L.

    2015-01-01

    Inhalation of carbon black nanoparticles (CBNPs) causes pulmonary inflammation; however, time course data to evaluate the detailed evolution of lung inflammatory responses are lacking. Here we establish a time-series of lung inflammatory response to CBNPs. Female C57BL/6 mice were intratracheally instilled with 162 μg CBNPs alongside vehicle controls. Lung tissues were examined 3 h, and 1, 2, 3, 4, 5, 14, and 42 days (d) post-exposure. Global gene expression and pulmonary inflammation were assessed. DNA damage was evaluated in bronchoalveolar lavage (BAL) cells and lung tissue using the comet assay. Increased neutrophil influx was observed at all time-points. DNA strand breaks were increased in BAL cells 3 h post-exposure, and in lung tissues 2–5 d post-exposure. Approximately 2600 genes were differentially expressed (± 1.5 fold; p ≤ 0.05) across all time-points in the lungs of exposed mice. Altered transcript levels were associated with immune-inflammatory response and acute phase response pathways, consistent with the BAL profiles and expression changes found in common respiratory infectious diseases. Genes involved in DNA repair, apoptosis, cell cycle regulation, and muscle contraction were also differentially expressed. Gene expression changes associated with inflammatory response followed a biphasic pattern, with initial changes at 3 h post-exposure declining to base-levels by 3 d, increasing again at 14 d, and then persisting to 42 d post-exposure. Thus, this single CBNP exposure that was equivalent to nine 8-h working days at the current Danish occupational exposure limit induced biphasic inflammatory response in gene expression that lasted until 42 d post-exposure, raising concern over the chronic effects of CBNP exposure. - Highlights: • A single exposure to CBNPs induced expression changes in over 2600 genes in mouse lungs. • Altered genes were associated with immune-inflammatory and acute phase responses. • Several genes were involved in DNA

  6. Carbon black nanoparticles induce biphasic gene expression changes associated with inflammatory responses in the lungs of C57BL/6 mice following a single intratracheal instillation

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Mainul, E-mail: mainul.husain@hc-sc.gc.ca [Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON (Canada); Kyjovska, Zdenka O., E-mail: zky@nrcwe.dk [National Research Centre for the Working Environment, Copenhagen (Denmark); Bourdon-Lacombe, Julie, E-mail: julie.bourdon-lacombe@hc-sc.gc.ca [Water and Air Quality Bureau, Safe Environments Directorate, HECSB, Health Canada, Ottawa, ON (Canada); Saber, Anne T., E-mail: ats@nrcwe.dk [National Research Centre for the Working Environment, Copenhagen (Denmark); Jensen, Keld A., E-mail: kaj@arbejdsmiljoforskning.dk [National Research Centre for the Working Environment, Copenhagen (Denmark); Jacobsen, Nicklas R., E-mail: nrj@nrcwe.dk [National Research Centre for the Working Environment, Copenhagen (Denmark); Williams, Andrew, E-mail: andrew.williams@hc-sc.gc.ca [Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON (Canada); Wallin, Håkan, E-mail: hwa@nrcwe.dk [National Research Centre for the Working Environment, Copenhagen (Denmark); Institute of Public Health, University of Copenhagen (Denmark); Halappanavar, Sabina, E-mail: sabina.halappanavar@hc-sc.gc.ca [Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON (Canada); Vogel, Ulla, E-mail: ubv@nrcwe.dk [National Research Centre for the Working Environment, Copenhagen (Denmark); Institute of Micro- and Nanotechnology, Technical University of Denmark, Lyngby (Denmark); Yauk, Carole L., E-mail: carole.yauk@hc-sc.gc.ca [Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON (Canada)

    2015-12-15

    Inhalation of carbon black nanoparticles (CBNPs) causes pulmonary inflammation; however, time course data to evaluate the detailed evolution of lung inflammatory responses are lacking. Here we establish a time-series of lung inflammatory response to CBNPs. Female C57BL/6 mice were intratracheally instilled with 162 μg CBNPs alongside vehicle controls. Lung tissues were examined 3 h, and 1, 2, 3, 4, 5, 14, and 42 days (d) post-exposure. Global gene expression and pulmonary inflammation were assessed. DNA damage was evaluated in bronchoalveolar lavage (BAL) cells and lung tissue using the comet assay. Increased neutrophil influx was observed at all time-points. DNA strand breaks were increased in BAL cells 3 h post-exposure, and in lung tissues 2–5 d post-exposure. Approximately 2600 genes were differentially expressed (± 1.5 fold; p ≤ 0.05) across all time-points in the lungs of exposed mice. Altered transcript levels were associated with immune-inflammatory response and acute phase response pathways, consistent with the BAL profiles and expression changes found in common respiratory infectious diseases. Genes involved in DNA repair, apoptosis, cell cycle regulation, and muscle contraction were also differentially expressed. Gene expression changes associated with inflammatory response followed a biphasic pattern, with initial changes at 3 h post-exposure declining to base-levels by 3 d, increasing again at 14 d, and then persisting to 42 d post-exposure. Thus, this single CBNP exposure that was equivalent to nine 8-h working days at the current Danish occupational exposure limit induced biphasic inflammatory response in gene expression that lasted until 42 d post-exposure, raising concern over the chronic effects of CBNP exposure. - Highlights: • A single exposure to CBNPs induced expression changes in over 2600 genes in mouse lungs. • Altered genes were associated with immune-inflammatory and acute phase responses. • Several genes were involved in DNA

  7. Truncated thioredoxin (Trx-80) promotes pro-inflammatory macrophages of the M1 phenotype and enhances atherosclerosis.

    Science.gov (United States)

    Mahmood, Dler Faieeq Darweesh; Abderrazak, Amna; Couchie, Dominique; Lunov, Oleg; Diderot, Vimala; Syrovets, Tatiana; Slimane, Mohamed-Naceur; Gosselet, Fabien; Simmet, Thomas; Rouis, Mustapha; El Hadri, Khadija

    2013-07-01

    Vascular cells are particularly susceptible to oxidative stress that is believed to play a key role in the pathogenesis of cardiovascular disorders. Thioredoxin-1 (Trx-1) is an oxidative stress-limiting protein with anti-inflammatory and anti-apoptotic properties. In contrast, its truncated form (Trx-80) exerts pro-inflammatory effects. Here we analyzed whether Trx-80 might exert atherogenic effects by promoting macrophage differentiation into the M1 pro-inflammatory phenotype. Trx-80 at 1 µg/ml significantly attenuated the polarization of anti-inflammatory M2 macrophages induced by exposure to either IL-4 at 15 ng/ml or IL-4/IL-13 (10 ng/ml each) in vitro, as evidenced by the expression of the characteristic markers, CD206 and IL-10. By contrast, in LPS-challenged macrophages, Trx-80 significantly potentiated the differentiation into inflammatory M1 macrophages as indicated by the expression of the M1 cytokines, TNF-α and MCP-1. When Trx-80 was administered to hyperlipoproteinemic ApoE2.Ki mice at 30 µg/g body weight (b.w.) challenged either with LPS at 30 µg/30 g (b.w.) or IL-4 at 500 ng/30 g (b.w.), it significantly induced the M1 phenotype but inhibited differentiation of M2 macrophages in thymus and liver. When ApoE2.Ki mice were challenged once weekly with LPS for 5 weeks, they showed severe atherosclerotic lesions enriched with macrophages expressing predominantly M1 over M2 markers. Such effect was potentiated when mice received daily, in addition to LPS, the Trx-80. Moreover, the Trx-80 treatment led to a significantly increased aortic lesion area. The ability of Trx-80 to promote differentiation of macrophages into the classical proinflammatory phenotype may explain its atherogenic effects in cardiovascular diseases. Copyright © 2013 Wiley Periodicals, Inc.

  8. Pro- and Anti-Inflammatory Cytokines Release in Mice Injected with Crotalus durissus terrificus Venom

    Directory of Open Access Journals (Sweden)

    A. Hernández Cruz

    2008-01-01

    Full Text Available The effects of Crotalus durissus terrificus venom (Cdt were analyzed with respect to the susceptibility and the inflammatory mediators in an experimental model of severe envenomation. BALB/c female mice injected intraperitoneally presented sensibility to Cdt, with changes in specific signs, blood biochemical and inflammatory mediators. The venom induced reduction of glucose and urea levels and an increment of creatinine levels in serum from mice. Significant differences were observed in the time-course of mediator levels in sera from mice injected with Cdt. The maximum levels of IL-6, NO, IL-5, TNF, IL-4 and IL-10 were observed 15 min, 30 min, 1, 2 and 4 hours post-injection, respectively. No difference was observed for levels of IFN-γ. Taken together, these data indicate that the envenomation by Cdt is regulated both pro- and anti-inflammatory cytokine responses at time-dependent manner. In serum from mice injected with Cdt at the two first hours revealed of pro-inflammatory dominance. However, with an increment of time an increase of anti-inflammatory cytokines was observed and the balance toward to anti-inflammatory dominance. In conclusion, the observation that Cdt affects the production of pro- and anti-inflammatory cytokines provides further evidence for the role played by Cdt in modulating pro/anti-inflammatory cytokine balance.

  9. Expression and Sequence Variants of Inflammatory Genes; Effects on Plasma Inflammation Biomarkers Following a 6-Week Supplementation with Fish Oil.

    Science.gov (United States)

    Cormier, Hubert; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2016-03-15

    (1) BACKGROUND: A growing body of literature suggest that polymorphisms (SNPs) from inflammation-related genes could possibly play a role in cytokine production and then interact with dietary n-3 fatty acids (FAs) to modulate inflammation. The aim of the present study was to test whether gene expression of selected inflammatory genes was altered following an n-3 PUFA supplementation and to test for gene-diet interactions modulating plasma inflammatory biomarker levels. (2) METHODS: 191 subjects completed a 6-week n-3 FA supplementation with 5 g/day of fish oil. Gene expression of TNF-α and IL6 was assessed in peripheral blood mononuclear cells (PBMCs) using the TaqMan technology. Genotyping of 20 SNPs from the TNF-LTA gene cluster, IL1β, IL6 and CRP genes was performed. (3) RESULTS: There was no significant reduction of plasma IL-6, TNF-α and C-reactive protein (CRP) levels after the 6-week fish oil supplementation. TNF-α and IL6 were slightly overexpressed in PBMCs after the supplementation (fold changes of 1.05 ± 0.38 and 1.18 ± 0.49, respectively (n = 191)), but relative quantification (RQ) within the -0.5 to 2.0 fold are considered as nonbiologically significant. In a MIXED model for repeated measures adjusted for the effects of age, sex and BMI, gene by supplementation interaction effects were observed for rs1143627, rs16944, rs1800797, and rs2069840 on IL6 levels, for rs2229094 on TNF-α levels and for rs1800629 on CRP levels (p < 0.05 for all). (4) CONCLUSIONS: This study shows that a 6-week n-3 FA supplementation with 5 g/day of fish oil did not alter gene expression levels of TNF-α and IL6 in PBMCs and did not have an impact on inflammatory biomarker levels. However, gene-diet interactions were observed between SNPs within inflammation-related genes modulating plasma inflammatory biomarker levels.

  10. IL-33 stimulates expression of the GPR84 (EX33) fatty acid receptor gene and of cytokine and chemokine genes in human adipocytes.

    Science.gov (United States)

    Zaibi, Mohamed S; Kępczyńska, Małgorzata A; Harikumar, Parvathy; Alomar, Suliman Y; Trayhurn, Paul

    2018-05-15

    Expression of GPCR fatty acid sensor/receptor genes in adipocytes is modulated by inflammatory mediators, particularly IL-1β. In this study we examined whether the IL-1 gene superfamily member, IL-33, also regulates expression of the fatty acid receptor genes in adipocytes. Human fat cells, differentiated from preadipocytes, were incubated with IL-33 at three different dose levels for 3 or 24 h and mRNA measured by qPCR. Treatment with IL-33 induced a dose-dependent increase in GPR84 mRNA at 3 h, the level with the highest dose being 13.7-fold greater than in controls. Stimulation of GPR84 expression was transitory; the mRNA level was not elevated at 24 h. In contrast to GPR84, IL-33 had no effect on GPR120 expression. IL-33 markedly stimulated expression of the IL1B, CCL2, IL6, CXCL2 and CSF3 genes, but there was no effect on ADIPOQ expression. The largest effect was on CSF3, the mRNA level of which increased 183-fold over controls at 3 h with the highest dose of IL-33; there was a parallel increase in the secretion of G-CSF protein into the medium. It is concluded that in human adipocytes IL-33, which is synthesised in adipose tissue, has a strong stimulatory effect on the expression of cytokine and chemokine genes, particularly CSF3, and on the expression of GPR84, a pro-inflammatory fatty acid receptor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Epigenetic regulation of pro-inflammatory cytokine secretion by sphingosine 1-phosphate (S1P) in acute lung injury: Role of S1P lyase.

    Science.gov (United States)

    Ebenezer, David L; Fu, Panfeng; Suryadevara, Vidyani; Zhao, Yutong; Natarajan, Viswanathan

    2017-01-01

    Cellular level of sphingosine-1-phosphate (S1P), the simplest bioactive sphingolipid, is tightly regulated by its synthesis catalyzed by sphingosine kinases (SphKs) 1 & 2 and degradation mediated by S1P phosphatases, lipid phosphate phosphatases, and S1P lyase. The pleotropic actions of S1P are attributed to its unique inside-out (extracellular) signaling via G-protein-coupled S1P1-5 receptors, and intracellular receptor independent signaling. Additionally, S1P generated in the nucleus by nuclear SphK2 modulates HDAC1/2 activity, regulates histone acetylation, and transcription of pro-inflammatory genes. Here, we present data on the role of S1P lyase mediated S1P signaling in regulating LPS-induced inflammation in lung endothelium. Blocking S1P lyase expression or activity attenuated LPS-induced histone acetylation and secretion of pro-inflammatory cytokines. Degradation of S1P by S1P lyase generates Δ2-hexadecenal and ethanolamine phosphate and the long-chain fatty aldehyde produced in the cytoplasmic compartment of the endothelial cell seems to modulate histone acetylation pattern, which is different from the nuclear SphK2/S1P signaling and inhibition of HDAC1/2. These in vitro studies suggest that S1P derived long-chain fatty aldehyde may be an epigenetic regulator of pro-inflammatory genes in sepsis-induced lung inflammation. Trapping fatty aldehydes and other short chain aldehydes such as 4-hydroxynonenal derived from S1P degradation and lipid peroxidation, respectively by cell permeable agents such as phloretin or other aldehyde trapping agents may be useful in treating sepsis-induced lung inflammation via modulation of histone acetylation. . Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. PhosphoLipid transfer protein (PLTP) exerts a direct pro-inflammatory effect on rheumatoid arthritis (RA) fibroblasts-like-synoviocytes (FLS) independently of its lipid transfer activity

    Science.gov (United States)

    Deckert, Valérie; Daien, Claire I.; Che, Hélène; Elhmioui, Jamila; Lemaire, Stéphanie; Pais de Barros, Jean-Paul; Desrumaux, Catherine; Combe, Bernard; Hahne, Michael; Lagrost, Laurent; Morel, Jacques

    2018-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory rheumatic disease with modification of lipids profile and an increased risk of cardiovascular events related to inflammation. Plasma phospholipid transfer protein (PLTP) exerts a lipid transfer activity through its active form. PLTP can also bind to receptors such as ATP-binding cassette transporter A1 (ABCA1). In addition to its role in lipoprotein metabolism and atherosclerosis, the latest advances came in support of a complex role of PLTP in the regulation of the inflammatory response, both with pro-inflammatory or anti-inflammatory properties. The aim of the present study was to decipher the role of PLTP in joint inflammation and to assess its relevance in the context of RA. PLTP expression was examined by western-blot and by immunochemistry. ABCA1 expression was analyzed by flow cytometry. Lipid transfer activity of PLTP and pro-inflammatory cytokines were measured in sera and synovial fluid (SF) from RA patients and controls (healthy subjects or osteoarthritis patients [OA]). FLS were treated with both lipid-transfer active form and inactive form of recombinant human PLTP. IL-8, IL-6, VEGF and MMP3 produced by FLS were assessed by ELISA, and proliferation by measuring 3H-Thymidine incorporation. RA synovial tissues showed higher PLTP staining than OA and PLTP protein levels were also significantly higher in RA-FLS. In addition, RA, unlike OA patients, displayed elevated levels of PLTP activity in SF, which correlated with pro-inflammatory cytokines. Both lipid-transfer active and inactive forms of PLTP significantly increased the production of cytokines and proliferation of FLS. ABCA1 was expressed on RAFLS and PLTP activated STAT3 pathway. To conclude, PLTP is highly expressed in the joints of RA patients and may directly trigger inflammation and FLS proliferation, independently of its lipid transfer activity. These results suggest a pro-inflammatory role for PLTP in RA. PMID:29565987

  13. Regulation of inflammatory gene expression in PBMCs by immunostimulatory botanicals.

    Directory of Open Access Journals (Sweden)

    Karen L Denzler

    Full Text Available Many hundreds of botanicals are used in complementary and alternative medicine for therapeutic use as antimicrobials and immune stimulators. While there exists many centuries of anecdotal evidence and few clinical studies on the activity and efficacy of these botanicals, limited scientific evidence exists on the ability of these botanicals to modulate the immune and inflammatory responses. Using botanogenomics (or herbogenomics, this study provides novel insight into inflammatory genes which are induced in peripheral blood mononuclear cells following treatment with immunomodulatory botanical extracts. These results may suggest putative genes involved in the physiological responses thought to occur following administration of these botanical extracts. Using extracts from immunostimulatory herbs (Astragalus membranaceus, Sambucus cerulea, Andrographis paniculata and an immunosuppressive herb (Urtica dioica, the data presented supports previous cytokine studies on these herbs as well as identifying additional genes which may be involved in immune cell activation and migration and various inflammatory responses, including wound healing, angiogenesis, and blood pressure modulation. Additionally, we report the presence of lipopolysaccharide in medicinally prepared extracts of these herbs which is theorized to be a natural and active component of the immunostimulatory herbal extracts. The data presented provides a more extensive picture on how these herbs may be mediating their biological effects on the immune and inflammatory responses.

  14. Tie2 signaling cooperates with TNF to promote the pro-inflammatory activation of human macrophages independently of macrophage functional phenotype.

    Science.gov (United States)

    García, Samuel; Krausz, Sarah; Ambarus, Carmen A; Fernández, Beatriz Malvar; Hartkamp, Linda M; van Es, Inge E; Hamann, Jörg; Baeten, Dominique L; Tak, Paul P; Reedquist, Kris A

    2014-01-01

    Angiopoietin (Ang) -1 and -2 and their receptor Tie2 play critical roles in regulating angiogenic processes during development, homeostasis, tumorigenesis, inflammation and tissue repair. Tie2 signaling is best characterized in endothelial cells, but a subset of human and murine circulating monocytes/macrophages essential to solid tumor formation express Tie2 and display immunosuppressive properties consistent with M2 macrophage polarization. However, we have recently shown that Tie2 is strongly activated in pro-inflammatory macrophages present in rheumatoid arthritis patient synovial tissue. Here we examined the relationship between Tie2 expression and function during human macrophage polarization. Tie2 expression was observed under all polarization conditions, but was highest in IFN-γ and IL-10 -differentiated macrophages. While TNF enhanced expression of a common restricted set of genes involved in angiogenesis and inflammation in GM-CSF, IFN-γ and IL-10 -differentiated macrophages, expression of multiple chemokines and cytokines, including CXCL3, CXCL5, CXCL8, IL6, and IL12B was further augmented in the presence of Ang-1 and Ang-2, via Tie2 activation of JAK/STAT signaling. Conditioned medium from macrophages stimulated with Ang-1 or Ang-2 in combination with TNF, sustained monocyte recruitment. Our findings suggest a general role for Tie2 in cooperatively promoting the inflammatory activation of macrophages, independently of polarization conditions.

  15. Oxidized LDL Promotes Apoptosis and Expression of Pro ...

    African Journals Online (AJOL)

    Accumulation of lipid within non-adipose tissues can induce inflammation by promoting macrophage infiltration and activation. Oxidized lipoproteins (oxLDL) have been known to induce cellular dysfunction in resident macrophages through pro-inflammatory and pro-apoptotic properties. However research into the ...

  16. Anti-inflammatory effects of conjugated linoleic acid isomers and essential fatty acids in bovine mammary epithelial cells.

    Science.gov (United States)

    Dipasquale, D; Basiricò, L; Morera, P; Primi, R; Tröscher, A; Bernabucci, U

    2018-01-09

    Fatty acids are important modulators of inflammatory responses, in particular, n-3 and n-6 essential fatty acids and CLA have received particular attention for their ability to modulate inflammation. The objectives of this study were to compare the effects of CLA and essential fatty acids on the expression of pro and anti- inflammatory cytokines and their protective efficacy against inflammatory status in mammary gland by an in vitro model based on bovine mammary epithelial cells (BME-UV1). Bovine mammary epithelial cells were treated with complete medium containing either 50 µM of cis-9, trans-11 CLA (c9,t11 CLA) or trans-10, cis-12 CLA (t10,c12 CLA) or (α)-linolenic acid (aLnA) or (γ)-linolenic acid (gLnA) or linoleic acid (LA). After 48 h by fatty acids administration the cells were treated for 3 h with 20 µM of lipopolysaccharide (LPS) to induce inflammatory stimulus. Reactive oxygen species (ROS) production after treatments was assessed to verify and to compare the potential protection of different fatty acids against LPS-induced oxidative stress. The messenger RNA abundance of bovine pro and anti-inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interleukine-10 (IL-10)) and peroxisome proliferator receptor-α/γ (PPARγ/α) were determined in BME-UV1 by real-time PCR. The results showed that cells treated with fatty acids and LPS increased ROS production compared with control cells. Among treatments, cells treated with c9,t11 CLA and t10,c12 CLA isomers revealed significant lower levels of ROS production compared with other fatty acids. All fatty acids reduced the gene expression of pro- and anti-inflammatory cytokines. Among fatty acids, t10,c12 CLA, LA and gLnA showed an homogeneous reduction of the three pro-inflammatory cytokines and this may correspond to more balanced and efficient physiological activity and may trigger a better protective effect. The PPARγ gene expression was

  17. Intra-city Differences in Cardiac Expression of Inflammatory Genes and Inflammasomes in Young Urbanites: A Pilot Study.

    Science.gov (United States)

    Villarreal-Calderon, Rodolfo; Dale, Gary; Delgado-Chávez, Ricardo; Torres-Jardón, Ricardo; Zhu, Hongtu; Herritt, Lou; Gónzalez-Maciel, Angelica; Reynoso-Robles, Rafael; Yuan, Ying; Wang, Jiaping; Solorio-López, Edelmira; Medina-Cortina, Humberto; Calderón-Garcidueñas, Lilian

    2012-06-01

    Southwest Mexico City (SWMC) air pollution is characterized by high concentrations of ozone and particulate matter < 10 μm (PM(10)) containing lipopolysaccharides while in the North PM(2.5) is high. These intra-city differences are likely accounting for higher CD14 and IL-1β in SWMC v NMC mice myocardial expression. This pilot study was designed to investigate whether similar intra-city differences exist in the levels of myocardial inflammatory genes in young people. Inflammatory mediator genes and inflammasome arrays were measured in right and left autopsy ventricles of 6 southwest/15 north (18.5 ± 2.6 years) MC residents after fatal sudden accidental deaths. There was a significant S v N right ventricle up-regulation of IL-1β (p=0.008), TNF-α (p=0.001), IL-10 (p=0.001), and CD14 (p=0.002), and a left ventricle difference in TNF-α (p=0.007), and IL-10 (p=0.02). SW right ventricles had significant up-regulation of NLRC1, NLRP3 and of 29/84 inflammasome genes, including NOD factors and caspases. There was significant degranulation of mast cells both in myocardium and epicardial nerve fibers. Differential expression of key inflammatory myocardial genes and inflammasomes are influenced by the location of residence. Myocardial inflammation and inflammasome activation in young hearts is a plausible pathway of heart injury in urbanites and adverse effects on the cardiovascular system are expected.

  18. Gene expression profile of the fibrotic response in the peritoneal cavity.

    Science.gov (United States)

    Le, S J; Gongora, M; Zhang, B; Grimmond, S; Campbell, G R; Campbell, J H; Rolfe, B E

    2010-01-01

    The cellular response to materials implanted in the peritoneal cavity has been utilised to produce tissue for grafting to hollow smooth muscle organs (blood vessels, bladder, uterus and vas deferens). To gain insight into the regulatory mechanisms involved in encapsulation of a foreign object, and subsequent differentiation of encapsulating cells, the present study used microarray technology and real-time RT-PCR to identify the temporal changes in gene expression associated with tissue development. Immunohistochemical analysis showed that 3-7 days post-implantation of foreign objects (cubes of boiled egg white) into rats, they were encapsulated by tissue comprised primarily of haemopoietic (CD45(+)) cells, mainly macrophages (CD68(+), CCR1(+)). By day 14, tissue capsule cells no longer expressed CD68, but were positive for myofibroblast markers alpha-smooth muscle (SM) actin and SM22. In accordance with these results, gene expression data showed that early capsule (days 3-7) development was dominated by the expression of monocyte/macrophage-specific genes (CD14, CSF-1, CSF-1R, MCP-1) and pro-inflammatory mediators such as transforming growth factor (TGF-beta). As tissue capsule development progressed (days 14-21), myofibroblast-associated and pro-fibrotic genes (associated with TGF-beta and Wnt/beta-catenin signalling pathways, including Wnt 4, TGFbetaRII, connective tissue growth factor (CTGF), SMADs-1, -2, -4 and collagen-1 subunits) were significantly up-regulated. The up-regulation of genes associated with Cardiovascular and Skeletal and Muscular System Development at later time-points suggests the capacity of cells within the tissue capsule for further differentiation to smooth muscle, and possibly other cell types. The identification of key regulatory pathways and molecules associated with the fibrotic response to implanted materials has important applications not only for optimising tissue engineering strategies, but also to control deleterious fibrotic

  19. Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice

    Directory of Open Access Journals (Sweden)

    Postina Rolf

    2009-02-01

    Full Text Available Abstract Background In a transgenic mouse model of Alzheimer disease (AD, cleavage of the amyloid precursor protein (APP by the α-secretase ADAM10 prevented amyloid plaque formation, and alleviated cognitive deficits. Furthermore, ADAM10 overexpression increased the cortical synaptogenesis. These results suggest that upregulation of ADAM10 in the brain has beneficial effects on AD pathology. Results To assess the influence of ADAM10 on the gene expression profile in the brain, we performed a microarray analysis using RNA isolated from brains of five months old mice overexpressing either the α-secretase ADAM10, or a dominant-negative mutant (dn of this enzyme. As compared to non-transgenic wild-type mice, in ADAM10 transgenic mice 355 genes, and in dnADAM10 mice 143 genes were found to be differentially expressed. A higher number of genes was differentially regulated in double-transgenic mouse strains additionally expressing the human APP[V717I] mutant. Overexpression of proteolytically active ADAM10 affected several physiological pathways, such as cell communication, nervous system development, neuron projection as well as synaptic transmission. Although ADAM10 has been implicated in Notch and β-catenin signaling, no significant changes in the respective target genes were observed in adult ADAM10 transgenic mice. Real-time RT-PCR confirmed a downregulation of genes coding for the inflammation-associated proteins S100a8 and S100a9 induced by moderate ADAM10 overexpression. Overexpression of the dominant-negative form dnADAM10 led to a significant increase in the expression of the fatty acid-binding protein Fabp7, which also has been found in higher amounts in brains of Down syndrome patients. Conclusion In general, there was only a moderate alteration of gene expression in ADAM10 overexpressing mice. Genes coding for pro-inflammatory or pro-apoptotic proteins were not over-represented among differentially regulated genes. Even a decrease of

  20. Targeted adenovirus mediated inhibition of NF-κB-dependent inflammatory gene expression in endothelial cells in vitro and in vivo.

    Science.gov (United States)

    Kułdo, J M; Ásgeirsdóttir, S A; Zwiers, P J; Bellu, A R; Rots, M G; Schalk, J A C; Ogawara, K I; Trautwein, C; Banas, B; Haisma, H J; Molema, G; Kamps, J A A M

    2013-02-28

    In chronic inflammatory diseases the endothelium expresses mediators responsible for harmful leukocyte infiltration. We investigated whether targeted delivery of a therapeutic transgene that inhibits nuclear factor κB signal transduction could silence the proinflammatory activation status of endothelial cells. For this, an adenovirus encoding dominant-negative IκB (dnIκB) as a therapeutic transgene was employed. Selectivity for the endothelial cells was achieved by introduction of antibodies specific for inflammatory endothelial adhesion molecules E-selectin or VCAM-1 chemically linked to the virus via polyethylene glycol. In vitro, the retargeted adenoviruses selectively infected cytokine-activated endothelial cells to express functional transgene. The comparison of transductional capacity of both retargeted viruses revealed that E-selectin based transgene delivery exerted superior pharmacological effects. Targeted delivery mediated dnIκB transgene expression in endothelial cells inhibited the induced expression of several inflammatory genes, including adhesion molecules, cytokines, and chemokines. In vivo, in mice suffering from glomerulonephritis, E-selectin-retargeted adenovirus selectively homed in the kidney to microvascular glomerular endothelium. Subsequent downregulation of endothelial adhesion molecule expression 2 days after induction of inflammation demonstrated the pharmacological potential of this gene therapy approach. The data justify further studies towards therapeutic virus design and optimization of treatment schedules to investigate their capacity to interfere with inflammatory disease progression. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Carnosol Inhibits Pro-Inflammatory and Catabolic Mediators of Cartilage Breakdown in Human Osteoarthritic Chondrocytes and Mediates Cross-Talk between Subchondral Bone Osteoblasts and Chondrocytes.

    Directory of Open Access Journals (Sweden)

    Christelle Sanchez

    Full Text Available The aim of this work was to evaluate the effects of carnosol, a rosemary polyphenol, on pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes and via bone-cartilage crosstalk.Osteoarthritic (OA human chondrocytes were cultured in alginate beads for 4 days in presence or absence of carnosol (6 nM to 9 μM. The production of aggrecan, matrix metalloproteinase (MMP-3, tissue inhibitor of metalloproteinase (TIMP-1, interleukin (IL-6 and nitric oxide (NO and the expression of type II collagen and ADAMTS-4 and -5 were analyzed. Human osteoblasts from sclerotic (SC or non-sclerotic (NSC subchondral bone were cultured for 3 days in presence or absence of carnosol before co-culture with chondrocytes. Chondrocyte gene expression was analyzed after 4 days of co-culture.In chondrocytes, type II collagen expression was significantly enhanced in the presence of 3 μM carnosol (p = 0.008. MMP-3, IL-6, NO production and ADAMTS-4 expression were down-regulated in a concentration-dependent manner by carnosol (p<0.01. TIMP-1 production was slightly increased at 3 μM (p = 0.02 and ADAMTS-5 expression was decreased from 0.2 to 9 μM carnosol (p<0.05. IL-6 and PGE2 production was reduced in the presence of carnosol in both SC and NSC osteoblasts while alkaline phosphatase activity was not changed. In co-culture experiments preincubation of NSC and SC osteoblasts wih carnosol resulted in similar effects to incubation with anti-IL-6 antibody, namely a significant increase in aggrecan and decrease in MMP-3, ADAMTS-4 and -5 gene expression by chondrocytes.Carnosol showed potent inhibition of pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes. Inhibition of matrix degradation and enhancement of formation was observed in chondrocytes cocultured with subchondral osteoblasts preincubated with carnosol indicating a cross-talk between these two cellular compartments, potentially mediated via inhibition of IL-6 in

  2. Expression and Sequence Variants of Inflammatory Genes; Effects on Plasma Inflammation Biomarkers Following a 6-Week Supplementation with Fish Oil

    Science.gov (United States)

    Cormier, Hubert; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2016-01-01

    (1) Background: A growing body of literature suggest that polymorphisms (SNPs) from inflammation-related genes could possibly play a role in cytokine production and then interact with dietary n-3 fatty acids (FAs) to modulate inflammation. The aim of the present study was to test whether gene expression of selected inflammatory genes was altered following an n-3 PUFA supplementation and to test for gene–diet interactions modulating plasma inflammatory biomarker levels. (2) Methods: 191 subjects completed a 6-week n-3 FA supplementation with 5 g/day of fish oil. Gene expression of TNF-α and IL6 was assessed in peripheral blood mononuclear cells (PBMCs) using the TaqMan technology. Genotyping of 20 SNPs from the TNF-LTA gene cluster, IL1β, IL6 and CRP genes was performed. (3) Results: There was no significant reduction of plasma IL-6, TNF-α and C-reactive protein (CRP) levels after the 6-week fish oil supplementation. TNF-α and IL6 were slightly overexpressed in PBMCs after the supplementation (fold changes of 1.05 ± 0.38 and 1.18 ± 0.49, respectively (n = 191)), but relative quantification (RQ) within the −0.5 to 2.0 fold are considered as nonbiologically significant. In a MIXED model for repeated measures adjusted for the effects of age, sex and BMI, gene by supplementation interaction effects were observed for rs1143627, rs16944, rs1800797, and rs2069840 on IL6 levels, for rs2229094 on TNF-α levels and for rs1800629 on CRP levels (p < 0.05 for all). (4) Conclusions: This study shows that a 6-week n-3 FA supplementation with 5 g/day of fish oil did not alter gene expression levels of TNF-α and IL6 in PBMCs and did not have an impact on inflammatory biomarker levels. However, gene–diet interactions were observed between SNPs within inflammation-related genes modulating plasma inflammatory biomarker levels. PMID:26999109

  3. Expression and Sequence Variants of Inflammatory Genes; Effects on Plasma Inflammation Biomarkers Following a 6-Week Supplementation with Fish Oil

    Directory of Open Access Journals (Sweden)

    Hubert Cormier

    2016-03-01

    Full Text Available (1 Background: A growing body of literature suggest that polymorphisms (SNPs from inflammation-related genes could possibly play a role in cytokine production and then interact with dietary n-3 fatty acids (FAs to modulate inflammation. The aim of the present study was to test whether gene expression of selected inflammatory genes was altered following an n-3 PUFA supplementation and to test for gene–diet interactions modulating plasma inflammatory biomarker levels. (2 Methods: 191 subjects completed a 6-week n-3 FA supplementation with 5 g/day of fish oil. Gene expression of TNF-α and IL6 was assessed in peripheral blood mononuclear cells (PBMCs using the TaqMan technology. Genotyping of 20 SNPs from the TNF-LTA gene cluster, IL1β, IL6 and CRP genes was performed. (3 Results: There was no significant reduction of plasma IL-6, TNF-α and C-reactive protein (CRP levels after the 6-week fish oil supplementation. TNF-α and IL6 were slightly overexpressed in PBMCs after the supplementation (fold changes of 1.05 ± 0.38 and 1.18 ± 0.49, respectively (n = 191, but relative quantification (RQ within the −0.5 to 2.0 fold are considered as nonbiologically significant. In a MIXED model for repeated measures adjusted for the effects of age, sex and BMI, gene by supplementation interaction effects were observed for rs1143627, rs16944, rs1800797, and rs2069840 on IL6 levels, for rs2229094 on TNF-α levels and for rs1800629 on CRP levels (p < 0.05 for all. (4 Conclusions: This study shows that a 6-week n-3 FA supplementation with 5 g/day of fish oil did not alter gene expression levels of TNF-α and IL6 in PBMCs and did not have an impact on inflammatory biomarker levels. However, gene–diet interactions were observed between SNPs within inflammation-related genes modulating plasma inflammatory biomarker levels.

  4. The inflammatory microenvironment in colorectal neoplasia.

    Science.gov (United States)

    McLean, Mairi H; Murray, Graeme I; Stewart, Keith N; Norrie, Gillian; Mayer, Claus; Hold, Georgina L; Thomson, John; Fyfe, Nicky; Hope, Mairi; Mowat, N Ashley G; Drew, Janice E; El-Omar, Emad M

    2011-01-07

    Colorectal cancer (CRC) is a major cause of mortality and morbidity worldwide. Inflammatory activity within the stroma of invasive colorectal tumours is known to be a key predictor of disease activity with type, density and location of immune cells impacting on patient prognosis. To date, there has been no report of inflammatory phenotype within pre-malignant human colonic adenomas. Assessing the stromal microenvironment and particularly, inflammatory activity within colorectal neoplastic lesions is central to understanding early colorectal carcinogenesis. Inflammatory cell infiltrate was assessed by immunohistochemistry in paired colonic adenoma and adjacent normal colonic mucosa samples, and adenomas exhibiting increasing degrees of epithelial cell dysplasia. Macrophage phenotype was assessed using double stain immunohistochemistry incorporating expression of an intracellular enzyme of function. A targeted array of inflammatory cytokine and receptor genes, validated by RT-PCR, was used to assess inflammatory gene expression. Inflammatory cell infiltrates are a key feature of sporadic adenomatous colonic polyps with increased macrophage, neutrophil and T cell (specifically helper and activated subsets) infiltration in adenomatous colonic polyps, that increases in association with characteristics of high malignant potential, namely, increasing degree of cell dysplasia and adenoma size. Macrophages within adenomas express iNOS, suggestive of a pro-inflammatory phenotype. Several inflammatory cytokine genes (CXCL1, CXCL2, CXCL3, CCL20, IL8, CCL23, CCL19, CCL21, CCL5) are dysregulated in adenomas. This study has provided evidence of increased inflammation within pre-malignant colonic adenomas. This may allow potential mechanistic pathways in the initiation and promotion of early colorectal carcinogenesis to be identified.

  5. The Inflammatory Microenvironment in Colorectal Neoplasia

    Science.gov (United States)

    McLean, Mairi H.; Murray, Graeme I.; Stewart, Keith N.; Norrie, Gillian; Mayer, Claus; Hold, Georgina L.; Thomson, John; Fyfe, Nicky; Hope, Mairi; Mowat, N. Ashley G.; Drew, Janice E.; El-Omar, Emad M.

    2011-01-01

    Colorectal cancer (CRC) is a major cause of mortality and morbidity worldwide. Inflammatory activity within the stroma of invasive colorectal tumours is known to be a key predictor of disease activity with type, density and location of immune cells impacting on patient prognosis. To date, there has been no report of inflammatory phenotype within pre-malignant human colonic adenomas. Assessing the stromal microenvironment and particularly, inflammatory activity within colorectal neoplastic lesions is central to understanding early colorectal carcinogenesis. Inflammatory cell infiltrate was assessed by immunohistochemistry in paired colonic adenoma and adjacent normal colonic mucosa samples, and adenomas exhibiting increasing degrees of epithelial cell dysplasia. Macrophage phenotype was assessed using double stain immunohistochemistry incorporating expression of an intracellular enzyme of function. A targeted array of inflammatory cytokine and receptor genes, validated by RT-PCR, was used to assess inflammatory gene expression. Inflammatory cell infiltrates are a key feature of sporadic adenomatous colonic polyps with increased macrophage, neutrophil and T cell (specifically helper and activated subsets) infiltration in adenomatous colonic polyps, that increases in association with characteristics of high malignant potential, namely, increasing degree of cell dysplasia and adenoma size. Macrophages within adenomas express iNOS, suggestive of a pro-inflammatory phenotype. Several inflammatory cytokine genes (CXCL1, CXCL2, CXCL3, CCL20, IL8, CCL23, CCL19, CCL21, CCL5) are dysregulated in adenomas. This study has provided evidence of increased inflammation within pre-malignant colonic adenomas. This may allow potential mechanistic pathways in the initiation and promotion of early colorectal carcinogenesis to be identified. PMID:21249124

  6. The inflammatory microenvironment in colorectal neoplasia.

    Directory of Open Access Journals (Sweden)

    Mairi H McLean

    Full Text Available Colorectal cancer (CRC is a major cause of mortality and morbidity worldwide. Inflammatory activity within the stroma of invasive colorectal tumours is known to be a key predictor of disease activity with type, density and location of immune cells impacting on patient prognosis. To date, there has been no report of inflammatory phenotype within pre-malignant human colonic adenomas. Assessing the stromal microenvironment and particularly, inflammatory activity within colorectal neoplastic lesions is central to understanding early colorectal carcinogenesis. Inflammatory cell infiltrate was assessed by immunohistochemistry in paired colonic adenoma and adjacent normal colonic mucosa samples, and adenomas exhibiting increasing degrees of epithelial cell dysplasia. Macrophage phenotype was assessed using double stain immunohistochemistry incorporating expression of an intracellular enzyme of function. A targeted array of inflammatory cytokine and receptor genes, validated by RT-PCR, was used to assess inflammatory gene expression. Inflammatory cell infiltrates are a key feature of sporadic adenomatous colonic polyps with increased macrophage, neutrophil and T cell (specifically helper and activated subsets infiltration in adenomatous colonic polyps, that increases in association with characteristics of high malignant potential, namely, increasing degree of cell dysplasia and adenoma size. Macrophages within adenomas express iNOS, suggestive of a pro-inflammatory phenotype. Several inflammatory cytokine genes (CXCL1, CXCL2, CXCL3, CCL20, IL8, CCL23, CCL19, CCL21, CCL5 are dysregulated in adenomas. This study has provided evidence of increased inflammation within pre-malignant colonic adenomas. This may allow potential mechanistic pathways in the initiation and promotion of early colorectal carcinogenesis to be identified.

  7. Different activities of Schinus areira L.: anti-inflammatory or pro-inflammatory effect.

    Science.gov (United States)

    Davicino, R; Mattar, A; Casali, Y; Anesini, C; Micalizzi, B

    2010-12-01

    The anti-inflammatory drugs possess many serious side effects at doses commonly prescribed. It is really important to discover novel regulators of inflammation from natural sources with minimal adverse effects. Schinus areira L. is a plant native from South America and is used in folk medicine as an anti-inflammatory herb. For this study, the activity of aqueous extracts on inflammation and the effect on superoxide anion production in mice macrophages were assayed. Aqueous extracts were prepared by soaking herbs in cold water (cold extract), boiling water (infusion), and simmering water (decoction). Cold extract possess an anti-inflammatory activity. Decoction and infusion showed pro-inflammatory activity. Cold extract increased the production of superoxide anion. It has been proposed to use diverse methods to obtain extracts of S. areira L. with different effects. Cold extract, decoction, and infusion could be utilized as extracts or as pharmacological preparations for topical application.

  8. Carbon black nanoparticles induce biphasic gene expression changes associated with inflammatory responses in the lungs of C57BL/6 mice following a single intratracheal instillation

    DEFF Research Database (Denmark)

    Husain, Mainul; Kyjovska, Zdenka O.; Bourdon-Lacombe, Julie

    2015-01-01

    Inhalation of carbon black nanoparticles (CBNPs) causes pulmonary inflammation; however, time course data to evaluate the detailed evolution of lung inflammatory responses are lacking. Here we establish a time-series of lung inflammatory response to CBNPs. Female C57BL/6 mice were intratracheally...... to nine 8-h working days at the current Danish occupational exposure limit induced biphasic inflammatory response in gene expression that lasted until 42d post-exposure, raising concern over the chronic effects of CBNP exposure....... transcript levels were associated with immune-inflammatory response and acute phase response pathways, consistent with the BAL profiles and expression changes found in common respiratory infectious diseases. Genes involved in DNA repair, apoptosis, cell cycle regulation, and muscle contraction were also...... differentially expressed. Gene expression changes associated with inflammatory response followed a biphasic pattern, with initial changes at 3h post-exposure declining to base-levels by 3d, increasing again at 14d, and then persisting to 42d post-exposure. Thus, this single CBNP exposure that was equivalent...

  9. Increased asthma and adipose tissue inflammatory gene expression with obesity and Inuit migration to a western country.

    Science.gov (United States)

    Backer, Vibeke; Baines, Katherine J; Powell, Heather; Porsbjerg, Celeste; Gibson, Peter G

    2016-02-01

    An overlap between obesity and asthma exists, and inflammatory cells in adipose tissue could drive the development of asthma. Comparison of adipose tissue gene expression among Inuit living in Greenland to those in Denmark provides an opportunity to assess how changes in adipose tissue inflammation can be modified by migration and diet. To examine mast cell and inflammatory markers in adipose tissue and the association with asthma. Two Inuit populations were recruited, one living in Greenland and another in Denmark. All underwent adipose subcutaneous biopsy, followed by clinical assessment of asthma, and measurement of AHR. Adipose tissue biopsies were homogenised, RNA extracted, and PCR was performed to determine the relative gene expression of mast cell (tryptase, chymase, CPA3) and inflammatory markers (IL-6, IL-1β, and CD163). Of the 1059 Greenlandic Inuit participants, 556 were living in Greenland and 6.4% had asthma. Asthma was increased in Denmark (9%) compared to Greenland (3.6%, p Inuit (p Inuit, adipose tissue inflammation is also increased in those who migrate to Denmark, possibly as a result of dietary changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effects of Curcuma comosa on the expression of atherosclerosis-related cytokine genes in rabbits fed a high-cholesterol diet.

    Science.gov (United States)

    Charoenwanthanang, Puttavee; Lawanprasert, Somsong; Phivthong-Ngam, Laddawal; Piyachaturawat, Pawinee; Sanvarinda, Yupin; Porntadavity, Sureerut

    2011-04-12

    Curcuma comosa has been known to have potential use in cardiovascular diseases, but its immunoregulatory role in atherosclerosis development and liver toxicity has not been well studied. We therefore investigated the effects of Curcuma comosa on the expression of atherosclerosis-related cytokine genes in rabbits fed a high-cholesterol diet. Twelve male New Zealand White rabbits were treated with 1.0% cholesterol for one month and were subsequently treated with 0.5% cholesterol either alone, or in combination with 5mg/kg/day of simvastatin or with 400mg/kg/day of Curcuma comosa powder for three months. The expression of IL-1, MCP-1, TNF-α, IL-10, and TGF-β in the isolated abdominal aorta and liver were determined by real-time RT-PCR. Liver toxicity was determined by hepatic enzyme activity. Curcuma comosa significantly decreased the expression of pro-inflammatory cytokines, leading to a stronger reduction in IL-1, MCP-1, and TNF-α expression compared to that was suppressed by simvastatin treatment. However, neither Curcuma comosa nor simvastatin affected the expression of anti-inflammation cytokines. In the liver, Curcuma comosa insignificantly decreased the expression of pro-inflammatory cytokines and significantly increased the expression of the anti-inflammatory cytokine IL-10 without altering the activity of hepatic enzymes. In contrast, simvastatin significantly increased the MCP-1 and TNF-α expressions and serum ALT level, without affecting the expression of anti-inflammatory cytokines. In this study, we demonstrated that Curcuma comosa exerts anti-inflammatory activity in the aorta and liver without causing liver toxicity, indicating that Curcuma comosa is a potential candidate as an alternative agent in cardiovascular disease therapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Activation of α-7 nicotinic acetylcholine receptor reduces ischemic stroke injury through reduction of pro-inflammatory macrophages and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Zhenying Han

    Full Text Available Activation of α-7 nicotinic acetylcholine receptor (α-7 nAchR has a neuro-protective effect on ischemic and hemorrhagic stroke. However, the underlying mechanism is not completely understood. We hypothesized that α-7 nAchR agonist protects brain injury after ischemic stroke through reduction of pro-inflammatory macrophages (M1 and oxidative stress. C57BL/6 mice were treated with PHA568487 (PHA, α-7 nAchR agonist, methyllycaconitine (MLA, nAchR antagonist, or saline immediately and 24 hours after permanent occlusion of the distal middle cerebral artery (pMCAO. Behavior test, lesion volume, CD68(+, M1 (CD11b(+/Iba1(+ and M2 (CD206/Iba1+ microglia/macrophages, and phosphorylated p65 component of NF-kB in microglia/macrophages were quantified using histological stained sections. The expression of M1 and M2 marker genes, anti-oxidant genes and nicotinamide adenine dinucleotide phosphate (NADPH oxidase were quantified using real-time RT-PCR. Compared to the saline-treated mice, PHA mice had fewer behavior deficits 3 and 7 days after pMCAO, and smaller lesion volume, fewer CD68(+ and M1 macrophages, and more M2 macrophages 3 and 14 days after pMCAO, whereas MLA's effects were mostly the opposite in several analyses. PHA increased anti-oxidant genes and NADPH oxidase expression associated with decreased phosphorylation of NF-kB p65 in microglia/macrophages. Thus, reduction of inflammatory response and oxidative stress play roles in α-7 nAchR neuro-protective effect.

  12. Increased expression of (pro)renin receptor does not cause hypertension or cardiac and renal fibrosis in mice

    NARCIS (Netherlands)

    Rosendahl, Alva; Niemann, Gianina; Lange, Sascha; Ahadzadeh, Erfan; Krebs, Christian; Contrepas, Aurelie; van Goor, Harry; Wiech, Thorsten; Bader, Michael; Schwake, Michael; Peters, Judith; Stahl, Rolf; Nguyen, Genevieve; Wenzel, Ulrich

    Binding of renin and prorenin to the (pro)renin receptor (PRR) increases their enzymatic activity and upregulates the expression of pro-fibrotic genes in vitro. Expression of PRR is increased in the heart and kidney of hypertensive and diabetic animals, but its causative role in organ damage is

  13. The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response

    International Nuclear Information System (INIS)

    Xian, Wenjing; Wu, Yan; Xiong, Wei; Li, Longyan; Li, Tong; Pan, Shangwen; Song, Limin; Hu, Lisha; Pei, Lei; Yao, Shanglong

    2016-01-01

    Inflammation plays a crucial role in acute ischemic stroke pathogenesis. Macrophage-derived Maresin 1 (MaR1) is a newly uncovered mediator with potent anti-inflammatory abilities. Here, we investigated the effect of MaR1 on acute inflammation and neuroprotection in a mouse brain ischemia reperfusion (I/R) model. Male C57 mice were subjected to 1-h middle cerebral artery occlusion (MCAO) and reperfusion. By the methods of 2,3,5-triphenyltetrazolium chloride, haematoxylin and eosin or Fluoro-Jade B staining, neurological deficits scoring, ELISA detection, immunofluorescence assay and western blot analysis, we found that intracerebroventricular injection of MaR1 significantly reduced the infarct volume and neurological defects, essentially protected the brain tissue and neurons from injury, alleviated pro-inflammatory reactions and NF-κB p65 activation and nuclear translocation. Taken together, our results suggest that MaR1 significantly protects against I/R injury probably by inhibiting pro-inflammatory reactions. - Highlights: • MaR1 significantly protects against ischemia reperfusion injury. • MaR1 inhibits pro-inflammatory cytokines and chemokines and reducing glial activation and neutrophil infiltration. • These effects at least partially occurred via suppression of the NF-κB p65 signalling pathway.

  14. The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Wenjing [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wu, Yan [Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Xiong, Wei [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Li, Longyan [Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Li, Tong [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Pan, Shangwen [Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Song, Limin [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Hu, Lisha [Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Pei, Lei [Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Yao, Shanglong, E-mail: ysltian@163.com [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); and others

    2016-03-25

    Inflammation plays a crucial role in acute ischemic stroke pathogenesis. Macrophage-derived Maresin 1 (MaR1) is a newly uncovered mediator with potent anti-inflammatory abilities. Here, we investigated the effect of MaR1 on acute inflammation and neuroprotection in a mouse brain ischemia reperfusion (I/R) model. Male C57 mice were subjected to 1-h middle cerebral artery occlusion (MCAO) and reperfusion. By the methods of 2,3,5-triphenyltetrazolium chloride, haematoxylin and eosin or Fluoro-Jade B staining, neurological deficits scoring, ELISA detection, immunofluorescence assay and western blot analysis, we found that intracerebroventricular injection of MaR1 significantly reduced the infarct volume and neurological defects, essentially protected the brain tissue and neurons from injury, alleviated pro-inflammatory reactions and NF-κB p65 activation and nuclear translocation. Taken together, our results suggest that MaR1 significantly protects against I/R injury probably by inhibiting pro-inflammatory reactions. - Highlights: • MaR1 significantly protects against ischemia reperfusion injury. • MaR1 inhibits pro-inflammatory cytokines and chemokines and reducing glial activation and neutrophil infiltration. • These effects at least partially occurred via suppression of the NF-κB p65 signalling pathway.

  15. A Study of the Differential Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Gene Expression Profiles of Stimulated Thp-1 Macrophages.

    Science.gov (United States)

    Allam-Ndoul, Bénédicte; Guénard, Frédéric; Barbier, Olivier; Vohl, Marie-Claude

    2017-04-25

    Background: An appropriate intake of omega-3 ( n -3) fatty acids (FAs) such as eicosapentaenoic and docosahexaenoic acid (EPA/DHA) from marine sources is known to have anti-inflammatory effects. However, molecular mechanisms underlying their beneficial effects on health are not fully understood. The aim of the present study was to characterize gene expression profiles of THP-1 macrophages, incubated in either EPA or DHA and stimulated with lipopolysaccharide (LPS), a pro-inflammatory agent. Methods: THP-1 macrophages were incubated into 10, 50 and 75 µM of EPA or DHA for 24 h, and 100 nM of LPS was added to the culture media for 18 h. Total mRNA was extracted and gene expression examined by microarray analysis using Illumina Human HT-12 expression beadchips (Illumina). Results: Pathway analysis revealed that EPA and DHA regulate genes involved in cell cycle regulation, apoptosis, immune response and inflammation, oxidative stress and cancer pathways in a differential and dose-dependent manner. Conclusions: EPA and DHA appear to exert differential effects on gene expression in THP-1 macrophages. Specific effects of n -3 FAs on gene expression levels are also dose-dependent.

  16. Cross-regulation of cytokine signalling: pro-inflammatory cytokines restrict IL-6 signalling through receptor internalisation and degradation.

    Science.gov (United States)

    Radtke, Simone; Wüller, Stefan; Yang, Xiang-ping; Lippok, Barbara E; Mütze, Barbara; Mais, Christine; de Leur, Hildegard Schmitz-Van; Bode, Johannes G; Gaestel, Matthias; Heinrich, Peter C; Behrmann, Iris; Schaper, Fred; Hermanns, Heike M

    2010-03-15

    The inflammatory response involves a complex interplay of different cytokines which act in an auto- or paracrine manner to induce the so-called acute phase response. Cytokines are known to crosstalk on multiple levels, for instance by regulating the mRNA stability of targeted cytokines through activation of the p38-MAPK pathway. In our study we discovered a new mechanism that answers the long-standing question how pro-inflammatory cytokines and environmental stress restrict immediate signalling of interleukin (IL)-6-type cytokines. We show that p38, activated by IL-1beta, TNFalpha or environmental stress, impairs IL-6-induced JAK/STAT signalling through phosphorylation of the common cytokine receptor subunit gp130 and its subsequent internalisation and degradation. We identify MK2 as the kinase that phosphorylates serine 782 in the cytoplasmic part of gp130. Consequently, inhibition of p38 or MK2, deletion of MK2 or mutation of crucial amino acids within the MK2 target site or the di-leucine internalisation motif blocks receptor depletion and restores IL-6-dependent STAT activation as well as gene induction. Hence, a novel negative crosstalk mechanism for cytokine signalling is described, where cytokine receptor turnover is regulated in trans by pro-inflammatory cytokines and stress stimuli to coordinate the inflammatory response.

  17. Apoptosis induction and attenuation of inflammatory gene expression in murine macrophages via multitherapeutic nanomembranes

    International Nuclear Information System (INIS)

    Pierstorff, Erik; Krucoff, Max; Ho, Dean

    2008-01-01

    The realization of optimized therapeutic delivery is impaired by the challenge of localized drug activity and by the dangers of systemic cytotoxicity which often contribute to patient treatment complications. Here we demonstrate the block copolymer-mediated deposition and release of multiple therapeutics which include an LXRα/β agonist 3-((4-methoxyphenyl)amino)-4-phenyl-1-(phenylmethyl)-1H-pyrrole-2,5-dione (LXRa) and doxorubicin hydrochloride (Dox) at the air-water interface via Langmuir-Blodgett deposition, as well as copolymer-mediated potent drug elution toward the Raw 264.7 murine macrophage cell line. The resultant copolymer-therapeutic hybrid serves as a localized platform that can be functionalized with virtually any drug due to the integrated hydrophilic and hydrophobic components of the polymer structure. In addition, the sequestering function of the copolymer to anchor the drugs to implant surfaces can enhance delivery specificity when compared to systemic drug administration. Confirmation of drug functionality was confirmed via suppression of the interleukin 6 (Il-6) and tumor necrosis factor alpha (TNFα) inflammatory cytokines (LXRa), as well as DNA fragmentation analysis (Dox). Furthermore, the fragmentation assays and gene expression analysis demonstrated the innate biocompatibility of the copolymeric material at the gene expression level via the confirmed absence of material-induced apoptosis and a lack of inflammatory gene expression. This modality enables layer-by-layer control of agonist and chemotherapeutic functionalization at the nanoscale for the localization of drug dosage, while simultaneously utilizing the copolymer platform as an anchoring mechanism for drug sequestering, all with an innate material thickness of 4 nm per layer, which is orders of magnitude thinner than existing commercial technologies. Furthermore, these studies comprehensively confirmed the potential translational applicability of copolymeric nanomaterials as

  18. Angiotensin II modulates interleukin-1β-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-κB crosstalk

    International Nuclear Information System (INIS)

    Xu, Shanqin; Zhi, Hui; Hou, Xiuyun; Jiang, Bingbing

    2011-01-01

    Highlights: → We examine how angiotensin II modulates ERK-NF-κB crosstalk and gene expression. → Angiotensin II suppresses IL-1β-induced prolonged ERK and NF-κB activation. → ERK-RSK1 signaling is required for IL-1β-induced prolonged NF-κB activation. → Angiotensin II modulates NF-κB responsive genes via regulating ERK-NF-κB crosstalk. → ERK-NF-κB crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. In cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1β-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-κB, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1β-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1β, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE -/- ) mice. VCAM-1 and iNOS expression were higher in ApoE -/- than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE -/- mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin II can differentially modulate inflammatory gene expression in aortic smooth muscle cells

  19. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy.

    Directory of Open Access Journals (Sweden)

    Harshini Chakravarthy

    Full Text Available Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs. We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy.

  20. Nuclear factor-κB is a common upstream signal for growth differentiation factor-5 expression in brown adipocytes exposed to pro-inflammatory cytokines and palmitate

    Energy Technology Data Exchange (ETDEWEB)

    Hinoi, Eiichi; Iezaki, Takashi; Ozaki, Kakeru; Yoneda, Yukio, E-mail: yyoneda@p.kanazawa-u.ac.jp

    2014-10-03

    Highlights: • GDF5 expression is up-regulated by IL-1β, TNF-α and palmitate in brown pre-adipocytes. • NF-κB stimulates promoter activity and expression of GDF5 in brown pre-adipocytes. • Recruitment of NF-κB to the GDF5 promoter is facilitated in BAT from ob/ob mice. • An NF-κB inhibitor prevents upregulation of GDF5 expression in brown pre-adipocytes. - Abstract: We have previously demonstrated that genetic and acquired obesity similarly led to drastic upregulation in brown adipose tissue (BAT), rather than white adipose tissue, of expression of both mRNA and corresponding protein for the bone morphogenic protein/growth differentiation factor (GDF) member GDF5 capable of promoting brown adipogenesis. In this study, we evaluated expression profiles of GDF5 in cultured murine brown pre-adipocytes exposed to pro-inflammatory cytokines and free fatty acids (FFAs), which are all shown to play a role in the pathogenesis of obesity. Both interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were effective in up-regulating GDF5 expression in a concentration-dependent manner, while similar upregulation was seen in cells exposed to the saturated FFA palmitate, but not to the unsaturated FFA oleate. In silico analysis revealed existence of the putative nuclear factor-κB (NF-κB) binding site in the 5′-flanking region of mouse GDF5, whereas introduction of NF-κB subunits drastically facilitated both promoter activity and expression of GDF5 in brown pre-adipocytes. Chromatin immunoprecipitation analysis confirmed significant facilitation of the recruitment of NF-κB to the GDF5 promoter in lysed extracts of BAT from leptin-deficient ob/ob obese mice. Upregulation o GDF5 expression was invariably inhibited by an NF-κB inhibitor in cultured brown pre-adipocytes exposed to IL-1β, TNF-α and palmitate. These results suggest that obesity leads to upregulation of GDF5 expression responsible for the promotion of brown adipogenesis through a mechanism

  1. The effects of quercetin on microRNA and inflammatory gene expression in lipopolysaccharide-stimulated bovine neutrophils

    Directory of Open Access Journals (Sweden)

    Phongsakorn Chuammitri

    2017-04-01

    Full Text Available Aim: To investigate gene expression of microRNA (miRNA milieus (MIRLET7E, MIR17, MIR24-2, MIR146A, and MIR181C, inflammatory cytokine genes (interleukin 1β [IL1B], IL6, CXCL8, and tumor necrosis factor [TNF], and the pathogen receptor toll-like receptor (TLR4 in bovine neutrophils under quercetin supplementation. Materials and Methods: Isolated bovine neutrophils were incubated with bacterial lipopolysaccharide under quercetin treatment or left untreated. Real-time polymerase chain reaction was performed to determine the expression of the miRNAs and messenger RNA (mRNA transcripts in neutrophils. Results: Quercetin-treated neutrophils exhibited a remarkable suppression in MIR24-2, MIR146A, and MIR181C expression. Similarly, mRNA expression of IL1B, IL6, CXCL8, TLR4, and TNF genes noticeably declined in the quercetin group. Many proinflammatory genes (IL1B, IL6, and CXCL8 and the pathogen receptor TLR4 had a negative correlation with MIR146A and MIR181C as revealed by Pearson correlation. Conclusion: Interaction between cognate mRNAs and miRNAs under quercetin supplementation can be summarized as a positive or negative correlation. This finding may help understand the effects of quercetin either on miRNA or gene expression during inflammation, especially as a potentially applicable indicator in bovine mastitis.

  2. Differential expression of Toll-like receptor pathway genes in chicken embryo fibroblasts from chickens resistant and susceptible to Marek's disease.

    Science.gov (United States)

    Haunshi, Santosh; Cheng, Hans H

    2014-03-01

    The Toll-like receptor (TLR) signaling pathway is one of the innate immune defense mechanisms against pathogens in vertebrates and invertebrates. However, the role of TLR in non-MHC genetic resistance or susceptibility to Marek's disease (MD) in the chicken is yet to be elucidated. Chicken embryo fibroblast (CEF) cells from MD susceptible and resistant lines were infected either with Marek's disease virus (MDV) or treated with polyionosinic-polycytidylic acid, a synthetic analog of dsRNA, and the expression of TLR and pro-inflammatory cytokines was studied at 8 and 36 h posttreatment by quantitative reverse transcriptase PCR. Findings of the present study reveal that MDV infection and polyionosinic-polycytidylic acid treatment significantly elevated the mRNA expression of TLR3, IL6, and IL8 in both susceptible and resistant lines. Furthermore, basal expression levels in uninfected CEF for TLR3, TLR7, and IL8 genes were significantly higher in resistant chickens compared with those of susceptible chickens. Our results suggest that TLR3 together with pro-inflammatory cytokines may play a significant role in genetic resistance to MD.

  3. Upregulated LINE-1 Activity in the Fanconi Anemia Cancer Susceptibility Syndrome Leads to Spontaneous Pro-inflammatory Cytokine Production.

    Science.gov (United States)

    Brégnard, Christelle; Guerra, Jessica; Déjardin, Stéphanie; Passalacqua, Frank; Benkirane, Monsef; Laguette, Nadine

    2016-06-01

    Fanconi Anemia (FA) is a genetic disorder characterized by elevated cancer susceptibility and pro-inflammatory cytokine production. Using SLX4(FANCP) deficiency as a working model, we questioned the trigger for chronic inflammation in FA. We found that absence of SLX4 caused cytoplasmic DNA accumulation, including sequences deriving from active Long INterspersed Element-1 (LINE-1), triggering the cGAS-STING pathway to elicit interferon (IFN) expression. In agreement, absence of SLX4 leads to upregulated LINE-1 retrotransposition. Importantly, similar results were obtained with the FANCD2 upstream activator of SLX4. Furthermore, treatment of FA cells with the Tenofovir reverse transcriptase inhibitor (RTi), that prevents endogenous retrotransposition, decreased both accumulation of cytoplasmic DNA and pro-inflammatory signaling. Collectively, our data suggest a contribution of endogenous RT activities to the generation of immunogenic cytoplasmic nucleic acids responsible for inflammation in FA. The additional observation that RTi decreased pro-inflammatory cytokine production induced by DNA replication stress-inducing drugs further demonstrates the contribution of endogenous RTs to sustaining chronic inflammation. Altogether, our data open perspectives in the prevention of adverse effects of chronic inflammation in tumorigenesis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Protein kinase CK2 modulates IL-6 expression in inflammatory breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Drygin, Denis, E-mail: ddrygin@cylenepharma.com; Ho, Caroline B.; Omori, Mayuko; Bliesath, Joshua; Proffitt, Chris; Rice, Rachel; Siddiqui-Jain, Adam; O' Brien, Sean; Padgett, Claire; Lim, John K.C.; Anderes, Kenna; Rice, William G.; Ryckman, David

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer We examine the potential cross-talk between CK2 and IL-6. Black-Right-Pointing-Pointer Inhibition of CK2 by siRNA or CX-4945 inhibits expression of IL-6 in models of IBC. Black-Right-Pointing-Pointer Treatment of IBC patient in the clinic with CX-4945 reduces her IL-6 plasma levels. Black-Right-Pointing-Pointer We demonstrate that CK2 is a potential therapeutic target for IL-6 driven diseases. -- Abstract: Inflammatory breast cancer is driven by pro-angiogenic and pro-inflammatory cytokines. One of them Interleukin-6 (IL-6) is implicated in cancer cell proliferation and survival, and promotes angiogenesis, inflammation and metastasis. While IL-6 has been shown to be upregulated by several oncogenes, the mechanism behind this phenomenon is not well characterized. Here we demonstrate that the pleotropic Serine/Threonine kinase CK2 is implicated in the regulation of IL-6 expression in a model of inflammatory breast cancer. We used siRNAs targeted toward CK2 and a selective small molecule inhibitor of CK2, CX-4945, to inhibit the expression and thus suppress the secretion of IL-6 in in vitro as well as in vivo models. Moreover, we report that in a clinical trial, CX-4945 was able to dramatically reduce IL-6 levels in plasma of an inflammatory breast cancer patient. Our data shed a new light on the regulation of IL-6 expression and position CX-4945 and potentially other inhibitors of CK2, for the treatment of IL-6-driven cancers and possibly other diseases where IL-6 is instrumental, including rheumatoid arthritis.

  5. Pigment Epithelium-Derived Factor Reduces Apoptosis and Pro-Inflammatory Cytokine Gene Expression in a Murine Model of Focal Retinal Degeneration

    Directory of Open Access Journals (Sweden)

    Yujuan Wang

    2013-10-01

    Full Text Available AMD (age-related macular degeneration is a neurodegenerative disease causing irreversible central blindness in the elderly. Apoptosis and inflammation play important roles in AMD pathogenesis. PEDF (pigment epithelium-derived factor is a potent neurotrophic and anti-inflammatory glycoprotein that protects the retinal neurons and photoreceptors against cell death caused by pathological insults. We studied the effects of PEDF on focal retinal lesions in DKO rd8 (Ccl2 −/− /Cx3cr1 −/− on C57BL/6N [Crb1rd8 ] mice, a model for progressive, focal rd (retinal degeneration. First, we found a significant decrease in PEDF transcript expression in DKO rd8 mouse retina and RPE (retinal pigment epithelium than WT (wild-type, C57BL/6N. Next, cultured DKO rd8 RPE cells secreted lower levels of PEDF protein in the media than WT. Then the right eyes of DKO rd8 mice were injected intravitreously with recombinant human PEDF protein (1 μg, followed by a subconjunctival injection of PEDF (3 μg 4 weeks later. The untreated left eyes served as controls. The effect of PEDF was assessed by fundoscopy, ocular histopathology and A2E {[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl-1E,3E,5E,7E-octatetra-enyl]-1-(2-hydroxyethyl-4-[4-methyl-6(2,6,6-trimethyl-1-cyclohexen-1-yl 1E,3E,5E,7E-hexatrienyl]-pyridinium} levels, as well as apoptotic and inflammatory molecules. The PEDF-treated eyes showed slower progression or attenuation of the focal retinal lesions, fewer and/or smaller photoreceptor and RPE degeneration, and significantly lower A2E, relative to the untreated eyes. In addition, lower expression of apoptotic and inflammatory molecules were detected in the PEDF-treated than untreated eyes. Our results establish that PEDF potently stabilizes photoreceptor degeneration via suppression of both apoptotic and inflammatory pathways. The multiple beneficial effects of PEDF represent a novel approach for potential AMD treatment.

  6. Pigment epithelium-derived factor reduces apoptosis and pro-inflammatory cytokine gene expression in a murine model of focal retinal degeneration.

    Science.gov (United States)

    Wang, Yujuan; Subramanian, Preeti; Shen, Defen; Tuo, Jingsheng; Becerra, S Patricia; Chan, Chi-Chao

    2013-11-26

    AMD (age-related macular degeneration) is a neurodegenerative disease causing irreversible central blindness in the elderly. Apoptosis and inflammation play important roles in AMD pathogenesis. PEDF (pigment epithelium-derived factor) is a potent neurotrophic and anti-inflammatory glycoprotein that protects the retinal neurons and photoreceptors against cell death caused by pathological insults. We studied the effects of PEDF on focal retinal lesions in DKO rd8 (Ccl2(-/-)/Cx3cr1(-/-) on C57BL/6N [Crb1(rd8)]) mice, a model for progressive, focal rd (retinal degeneration). First, we found a significant decrease in PEDF transcript expression in DKO rd8 mouse retina and RPE (retinal pigment epithelium) than WT (wild-type, C57BL/6N). Next, cultured DKO rd8 RPE cells secreted lower levels of PEDF protein in the media than WT. Then the right eyes of DKO rd8 mice were injected intravitreously with recombinant human PEDF protein (1 μg), followed by a subconjunctival injection of PEDF (3 μg) 4 weeks later. The untreated left eyes served as controls. The effect of PEDF was assessed by fundoscopy, ocular histopathology and A2E {[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E,7E-octatetra-enyl]-1-(2-hydroxyethyl)-4-[4-methyl-6(2,6,6-trimethyl-1-cyclohexen-1-yl) 1E,3E,5E,7E-hexatrienyl]-pyridinium} levels, as well as apoptotic and inflammatory molecules. The PEDF-treated eyes showed slower progression or attenuation of the focal retinal lesions, fewer and/or smaller photoreceptor and RPE degeneration, and significantly lower A2E, relative to the untreated eyes. In addition, lower expression of apoptotic and inflammatory molecules were detected in the PEDF-treated than untreated eyes. Our results establish that PEDF potently stabilizes photoreceptor degeneration via suppression of both apoptotic and inflammatory pathways. The multiple beneficial effects of PEDF represent a novel approach for potential AMD treatment.

  7. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    International Nuclear Information System (INIS)

    Malpass, Gloria E.; Arimilli, Subhashini; Prasad, G.L.; Howlett, Allyn C.

    2014-01-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes

  8. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Malpass, Gloria E., E-mail: gloria.malpass@gmail.com [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Arimilli, Subhashini, E-mail: sarimill@wakehealth.edu [Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Prasad, G.L., E-mail: prasadg@rjrt.com [R and D Department, R.J. Reynolds Tobacco Company, Winston-Salem, NC 27102 (United States); Howlett, Allyn C., E-mail: ahowlett@wakehealth.edu [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States)

    2014-09-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes.

  9. Macrophage pro-inflammatory response to Francisella novicida infection is regulated by SHIP.

    Directory of Open Access Journals (Sweden)

    Kishore V L Parsa

    2006-07-01

    Full Text Available Francisella tularensis, a Gram-negative facultative intracellular pathogen infecting principally macrophages and monocytes, is the etiological agent of tularemia. Macrophage responses to F. tularensis infection include the production of pro-inflammatory cytokines such as interleukin (IL-12, which is critical for immunity against infection. Molecular mechanisms regulating production of these inflammatory mediators are poorly understood. Herein we report that the SH2 domain-containing inositol phosphatase (SHIP is phosphorylated upon infection of primary murine macrophages with the genetically related F. novicida, and negatively regulates F. novicida-induced cytokine production. Analyses of the molecular details revealed that in addition to activating the MAP kinases, F. novicida infection also activated the phosphatidylinositol 3-kinase (PI3K/Akt pathway in these cells. Interestingly, SHIP-deficient macrophages displayed enhanced Akt activation upon F. novicida infection, suggesting elevated PI3K-dependent activation pathways in absence of SHIP. Inhibition of PI3K/Akt resulted in suppression of F. novicida-induced cytokine production through the inhibition of NFkappaB. Consistently, macrophages lacking SHIP displayed enhanced NFkappaB-driven gene transcription, whereas overexpression of SHIP led to decreased NFkappaB activation. Thus, we propose that SHIP negatively regulates F. novicida-induced inflammatory cytokine response by antagonizing the PI3K/Akt pathway and suppressing NFkappaB-mediated gene transcription. A detailed analysis of phosphoinositide signaling may provide valuable clues for better understanding the pathogenesis of tularemia.

  10. Can short-term administration of dexamethasone abrogate radiation-induced acute cytokine gene response in lung and modify subsequent molecular responses?

    International Nuclear Information System (INIS)

    Hong, J.-H.; Chiang, C.-S.; Tsao, C.-Y.; Lin, P.-Y.; Wu, C.-J.; McBride, William H.

    2001-01-01

    Purpose: To investigate the effects of short-term administration of dexamethasone (DEX) on radiation-induced responses in the mouse lung, focusing on expression of pro-inflammatory cytokine and related genes. Methods and Materials: At indicated times after thoracic irradiation and/or drug treatment, mRNA expression levels of cytokines (mTNF-α, mIL-1α, mIL-1β, mIL-2, mIL-3, mIL-4, mIL-5, mIL-6, mIFN-γ) and related genes in the lungs of C3H/HeN mice were measured by RNase protection assay. Results: Radiation-induced pro-inflammatory cytokine mRNA expression levels in lung peak at 6 h after thoracic irradiation. DEX (5 mg/kg) suppresses both basal cytokine mRNA levels and this early response when given immediately after irradiation. However, by 24 h, in mice treated with DEX alone or DEX plus radiation, there was a strong rebound effect that lasted up to 3 days. Modification of the early radiation-induced response by DEX did not change the second wave of cytokine gene expression in the lung that occurs at 1 to 2 weeks, suggesting that early cytokine gene induction might not determine subsequent molecular events. A single dose of DEX attenuated, but did not completely suppress, increases in cytokine mRNA levels induced by lipopolysaccharide (2.5 mg/kg) treatment, but, unlike with radiation, no significant rebound effect was seen. Five days of dexamethasone treatment in the pneumonitic phase also inhibited pro-inflammatory cytokine gene expression and, again, there was a rebound effect after withdrawal of the drug. Conclusions: Our findings suggest that short-term use of dexamethasone can temporarily suppress radiation-induced pro-inflammatory cytokine gene expression, but there may be a rebound after drug withdrawal and the drug does little to change the essence and course of the pneumonitic process

  11. Monocyte Chemoattractant Protein-1 in the choroid plexus: a potential link between vascular pro-inflammatory mediators and the CNS during peripheral tissue inflammation

    Science.gov (United States)

    Mitchell, K.; Yang, H.-Y. T.; Berk, J. D.; Tran, J. H.; Iadarola, M. J.

    2009-01-01

    During peripheral tissue inflammation, inflammatory processes in the CNS can be initiated by blood-borne pro-inflammatory mediators. The choroid plexus, the site of CSF production, is a highly specialized interface between the vascular system and CNS, and thus, this structure may be an important element in communication between the vascular compartment and the CNS during peripheral tissue inflammation. We investigated the potential participation of the choroid plexus in this process during peripheral tissue inflammation by examining expression of the SCYA2 gene which codes for monocyte chemoattractant protein-1 (MCP-1). MCP-1 protein was previously reported to be induced in a variety of cells during peripheral tissue inflammation. In the basal state, SCYA2 is highly expressed in the choroid plexus as compared to other CNS tissues. During hind paw inflammation, SCYA2 expression was significantly elevated in choroid plexus, whereas it remained unchanged in a variety of brain regions. The SCYA2-expressing cells were strongly associated with the choroid plexus as vascular depletion of blood cells by whole-body saline flush did not significantly alter SCYA2 expression in the choroid plexus. In situ hybridization suggested that the SCYA2-expressing cells were localized to the choroid plexus stroma. To elucidate potential molecular mechanisms of SCYA2 increase, we examined genes in the NF-κβ signaling cascade including TNF-α, IL-1β and IκBα in choroid tissue. Given that we also detected increased levels of MCP-1 protein by ELISA, we sought to identify potential downstream targets of MCP-1 and observed altered expression levels of mRNAs encoding tight junction proteins TJP2 and claudin 5. Finally, we detected a substantial up-regulation of the transcript encoding E-selectin, a molecule which could participate in leukocyte recruitment to the choroid plexus along with MCP-1. Together, these results suggest that profound changes occur in the choroid plexus during

  12. Thy-1 attenuates TNF-alpha-activated gene expression in mouse embryonic fibroblasts via Src family kinase.

    Directory of Open Access Journals (Sweden)

    Bin Shan

    Full Text Available Heterogeneous surface expression of Thy-1 in fibroblasts modulates inflammation and may thereby modulate injury and repair. As a paradigm, patients with idiopathic pulmonary fibrosis, a disease with pathologic features of chronic inflammation, demonstrate an absence of Thy-1 immunoreactivity within areas of fibrotic activity (fibroblast foci in contrast to the predominant Thy-1 expressing fibroblasts in the normal lung. Likewise, Thy-1 deficient mice display more severe lung fibrosis in response to an inflammatory injury than wildtype littermates. We investigated the role of Thy-1 in the response of fibroblasts to the pro-inflammatory cytokine TNF-alpha. Our study demonstrates distinct profiles of TNF-alpha-activated gene expression in Thy-1 positive (Thy-1+ and negative (Thy-1- subsets of mouse embryonic fibroblasts (MEF. TNF-alpha induced a robust activation of MMP-9, ICAM-1, and the IL-8 promoter driven reporter in Thy-1- MEFs, in contrast to only a modest increase in Thy-1+ counterparts. Consistently, ectopic expression of Thy-1 in Thy-1- MEFs significantly attenuated TNF-alpha-activated gene expression. Mechanistically, TNF-alpha activated Src family kinase (SFK only in Thy-1- MEFs. Blockade of SFK activation abrogated TNF-alpha-activated gene expression in Thy-1- MEFs, whereas restoration of SFK activation rescued the TNF-alpha response in Thy-1+ MEFs. Our findings suggest that Thy-1 down-regulates TNF-alpha-activated gene expression via interfering with SFK- and NF-kappaB-mediated transactivation. The current study provides a novel mechanistic insight to the distinct roles of fibroblast Thy-1 subsets in inflammation.

  13. Protective effects of methanolic extract of Adhatoda vasica Nees leaf in collagen-induced arthritis by modulation of synovial toll-like receptor-2 expression and release of pro-inflammatory mediators

    Directory of Open Access Journals (Sweden)

    Rana Adhikary

    2016-03-01

    Full Text Available RA associated with oxidative stress and chronic inflammation has been a major health problem among the population worldwide. In this study protective effect of methanolic extract of Adhatoda vasica leaf (AVE was evaluated on Collagen-induced arthritis in male Swiss albino mice. Post oral administration of AVE at 50, 100 and 200 mg/kg body weight doses decreased the arthritic index and footpad swelling. AVE administration diminished pro-inflammatory cytokines in serum and synovial tissues. Reduced chemokines and neutrophil infiltration in synovial tissues after AVE administration dictated its protective effect against RA. Decreased LPO content and SOD activity along with concomitant rise in GSH and CAT activities from liver, spleen and synovial tissues indicated regulation of oxidative stress by AVE. In addition decreased CRP in serum along with suppressed TLR-2 expression in CIA mice after AVE treatment was also observed. Protective effect of AVE in RA is further supported from histopathological studies which showed improvement during bone damage. In conclusion this study demonstrated A. vasica is capable of regulating oxidative stress during CIA and therefore down regulated local and systemic release of pro-inflammatory mediators, which might be linked to mechanism of decreasing synovial TLR-2 expression via downregulating release of its regular endogenous ligands like CRP.

  14. Stunned Silence: Gene Expression Programs in Human Cells Infected with Monkeypox or Vaccinia Virus

    Science.gov (United States)

    Rubins, Kathleen H.; Hensley, Lisa E.; Relman, David A.; Brown, Patrick O.

    2011-01-01

    Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV), an emerging human pathogen, and Vaccinia virus (VAC), a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated) MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA), or poly (I-C) was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C) induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection. PMID:21267444

  15. Mast cells exert pro-inflammatory effects of relevance to the pathophyisology of tendinopathy.

    Science.gov (United States)

    Behzad, Hayedeh; Sharma, Aishwariya; Mousavizadeh, Rouhollah; Lu, Alex; Scott, Alex

    2013-01-01

    We have previously found an increased mast cell density in tendon biopsies from patients with patellar tendinopathy compared to controls. This study examined the influence of mast cells on basic tenocyte functions, including production of the inflammatory mediator prostaglandin E2 (PGE2), extracellular matrix remodeling and matrix metalloproteinase (MMP) gene transcription, and collagen synthesis. Primary human tenocytes were stimulated with an established human mast cell line (HMC-1). Extracellular matrix remodeling was studied by culturing tenocytes in a three-dimensional collagen lattice. Survival/proliferation was assessed with the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt (MTS) assay. Levels of mRNA for COX-2, COL1A1, MMP1, and MMP7 were determined by quantitative real-time polymerase chain reaction (qPCR). Cox-2 protein level was assessed by Western blot analysis and type I procollagen was detected by immunofluorescent staining. PGE2 levels were determined using an enzyme-linked immunosorbent assay (ELISA). Mast cells stimulated tenocytes to produce increased levels of COX-2 and the pro-inflammatory mediator PGE2, which in turn decreased COL1A1 mRNA expression. Additionally, mast cells reduced the type I procollagen protein levels produced by tenocytes. Transforming growth factor beta 1 (TGF-β1) was responsible for the induction of Cox-2 and PGE2 by tenocytes. Mast cells increased MMP1 and MMP7 transcription and increased the contraction of a three-dimensional collagen lattice by tenocytes, a phenomenon which was blocked by a pan-MMP inhibitor (Batimastat). Our data demonstrate that mast cell-derived PGE2 reduces collagen synthesis and enhances expression and activities of MMPs in human tenocytes.

  16. Expression and regulation of HIF-1 alpha in macrophages under inflammatory conditions; significant reduction of VEGF by CaMKII inhibitor

    NARCIS (Netherlands)

    Westra, Johanna; Brouwer, Elisabeth; van Roosmalen, Ingrid A. M.; Doornbos-van der Meer, Berber; van Leeuwen, Miek A.; Posthumus, Marcel D.; Kallenberg, Cees G. M.

    2010-01-01

    Background: Macrophages expressing the pro-angiogenic transcription factor hypoxia-inducible factor (HIF)-1alpha have been demonstrated in rheumatoid arthritis (RA) in the synovial tissue. Aim of the present study was to investigate intracellular signal transduction regulation of pro-inflammatory

  17. Bone marrow-derived and peritoneal macrophages have different inflammatory response to oxLDL and M1/M2 marker expression

    DEFF Research Database (Denmark)

    Bisgaard, Line S; Mogensen, Christina K; Rosendahl, Alexander

    2016-01-01

    Macrophages are heterogeneous and can polarize into specific subsets, e.g. pro-inflammatory M1-like and re-modelling M2-like macrophages. To determine if peritoneal macrophages (PEMs) or bone marrow derived macrophages (BMDMs) resembled aortic macrophages from ApoE-/- mice, their M1/M2 phenotype,......, ACSL1, SRB1, DGAT1, and cpt1a) was decreased in advanced versus early lesions. In conclusion, PEMs and BMDMs are phenotypically distinct and differ from macrophages in lesions with respect to expression of M1/M2 markers and lipid metabolism genes....

  18. [Expression of proBNP and NT-proBNP in Sudden Death of Coronary Heart Disease].

    Science.gov (United States)

    Zeng, Q; Sun, R F; Li, Z; Zhai, L Q; Liu, M Z; Guo, X J; Gao, C R

    2017-10-01

    To study the expression change of pro-brain natriuretic peptide (proBNP) and N-terminal pro-brain natriuretic peptide (NT-proBNP) in sudden death of coronary atherosclerotic heart disease, and to explore its application in forensic diagnosis. Myocardial and blood samples were collected from normal control group, sudden death of coronary atherosclerotic heart disease group and single coronary stenosis group (20 cases in each group). The expression of proBNP in myocardial samples were detected by immunohistochemical staining and Western blotting, and that of BNP mRNA were detected by reverse transcription PCR (RT-PCR). The content of NT-proBNP in plasma were detected by ELISA. Immunohistochemical staining showed positive expression of proBNP in both sudden death of coronary atherosclerotic heart disease group and single coronary stenosis group. There was no positive expression in normal control group. For sudden death of coronary atherosclerotic heart disease group and single coronary stenosis group, the relative expression of proBNP protein and BNP mRNA in myocardial tissue and the NT-proBNP content in plasma were higher than that of normal control group ( P heart disease group was higher than that of single coronary stenosis group ( P heart disease and determine whether the sudden death due to coronary atherosclerotic heart disease. Copyright© by the Editorial Department of Journal of Forensic Medicine

  19. Transforming growth factor β (CiTGF-β) gene expression is induced in the inflammatory reaction of Ciona intestinalis.

    Science.gov (United States)

    Vizzini, Aiti; Di Falco, Felicia; Parrinello, Daniela; Sanfratello, Maria Antonietta; Cammarata, Matteo

    2016-02-01

    Transforming growth factor (TGF-β) is a well-known component of a regulatory cytokines superfamily that has pleiotropic functions in a broad range of cell types and is involved, in vertebrates, in numerous physiological and pathological processes. In the current study, we report on Ciona intestinalis molecular characterisation and expression of a transforming growth factor β homologue (CiTGF-β). The gene organisation, phylogenetic tree and modelling supported the close relationship with the mammalian TGF suggesting that the C. intestinalis TGF-β gene shares a common ancestor in the chordate lineages. Functionally, real-time PCR analysis showed that CiTGF-β was transcriptionally upregulated in the inflammatory process induced by LPS inoculation, suggesting that is involved in the first phase and significant in the secondary phase of the inflammatory response in which cell differentiation occurs. In situ hybridisation assays revealed that the genes transcription was upregulated in the pharynx, the main organ of the ascidian immune system, and expressed by cluster of hemocytes inside the pharynx vessels. These data supported the view that CiTGF-β is a potential molecule in immune defence systems against bacterial infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture

    Science.gov (United States)

    Abbah, Sunny A.; Thomas, Dilip; Browne, Shane; O'Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-02-01

    Extracellular matrix synthesis and remodelling are driven by increased activity of transforming growth factor beta 1 (TGF-β1). In tendon tissue repair, increased activity of TGF-β1 leads to progressive fibrosis. Decorin (DCN) and interleukin 10 (IL-10) antagonise pathological collagen synthesis by exerting a neutralising effect via downregulation of TGF-β1. Herein, we report that the delivery of DCN and IL-10 transgenes from a collagen hydrogel system supresses the constitutive expression of TGF-β1 and a range of pro-fibrotic extracellular matrix genes.

  1. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    Science.gov (United States)

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Allium sativum L. regulates in vitro IL-17 gene expression in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Moutia, Mouna; Seghrouchni, Fouad; Abouelazz, Omar; Elouaddari, Anass; Al Jahid, Abdellah; Elhou, Abdelhalim; Nadifi, Sellama; Jamal Eddine, Jamal; Habti, Norddine; Badou, Abdallah

    2016-09-29

    Allium sativum L. (A.S.) "garlic", one of the most interesting medicinal plants, has been suggested to contain compounds that could be beneficial in numerous pathological situations including cancer. In this work, we aimed to assess the immunomodulatory effect of A.S. preparation on human peripheral blood mononuclear cells from healthy individuals. Nontoxic doses of A.S. were identified using MTT assay. Effects on CD4+ or CD8+ T lymphocyte proliferation were studied using flow cytometry. The effect of A.S. on cytokine gene expression was studied using qRT-PCR. Finally, qualitative analysis of A.S. was performed by HPLC approach. Data were analyzed statistically by one-way ANOVA test. The nontoxic doses of A.S. preparation did not affect neither spontaneous nor TCR-mediated CD4+ or CD8+ T lymphocyte proliferation. Interestingly, A.S. exhibited a statistically significant regulation of IL-17 gene expression, a cytokine involved in several inflammatory and autoimmune diseases. In contrast, the expression of IL-4, an anti-inflammatory cytokine, was unaffected. Qualitative analysis of A.S. ethanol preparation indicated the presence of three polyphenol bioactive compounds, which are catechin, vanillic acid and ferulic acid. The specific inhibition of the pro-inflammatory cytokine, IL-17 without affecting cell proliferation in human PBMCs by the Allium sativum L. preparation suggests a potential valuable effect of the compounds present in this plant for the treatment of inflammatory diseases and cancer, where IL-17 is highly expressed. The individual contribution of these three compounds to this global effect will be assessed.

  3. A Prospective Open-label Pilot Study of Fluvastatin on Pro-inflammatory and Pro-thrombotic Biomarkers in Antiphospholipid Antibody Positive Patients

    Science.gov (United States)

    Erkan, Doruk; Willis, Rohan; Murthy, Vijaya L.; Basra, Gurjot; Vega, JoAnn; Ruiz Limón, Patricia; Carrera, Ana Laura; Papalardo, Elizabeth; Martínez-Martínez, Laura Aline; González, Emilio B.; Pierangeli, Silvia S.

    2014-01-01

    Objective: To determine if pro-inflammatory and pro-thrombotic biomarkers are differentially upregulated in persistently antiphospholipid antibody (aPL)-positive patients, and to examine the effects of fluvastatin on these biomarkers. Methods: Four groups of patients (age 18-65) were recruited: a) Primary Antiphospholipid Syndrome (PAPS); b) Systemic Lupus Erythematosus (SLE) with APS (SLE/APS); c) Persistent aPL positivity without SLE or APS (Primary aPL); and d) Persistent aPL positivity with SLE but no APS (SLE/aPL). The frequency-matched control group, used for baseline data comparison, was identified from a databank of healthy persons. Patients received fluvastatin 40 mg daily for three months. At three months, patients stopped the study medication and they were followed for another three months. Blood samples for 12 pro-inflammatory and pro-thrombotic biomarkers were collected monthly for six months. Results: Based on the comparison of the baseline samples of 41 aPL-positive patients with 30 healthy controls, 9/12 (75%) biomarkers (interleukin [IL]-6, IL1β, vascular endothelial growth factor [VEGF], tumor necrosis factor [TNF]-□α, interferon [IFN]-α, inducible protein-10 [IP10], soluble CD40 ligand [sCD40L], soluble tissue factor [sTF], and intracellular cellular adhesion molecule [ICAM]-1) were significantly elevated. Twenty-four patients completed the study; fluvastatin significantly and reversibly reduced the levels of 6/12 (50%) biomarkers (IL1β, VEGF, TNFα, IP10, sCD40L, and sTF). Conclusion: Our prospective mechanistic study demonstrates that pro-inflammatory and pro-thrombotic biomarkers, which are differentially upregulated in persistently aPL-positive patients, can be reversibly reduced by fluvastatin. Thus, statin-induced modulation of the aPL effects on target cells can be a valuable future approach in the management of aPL-positive patients. PMID:23933625

  4. Polymorphisms in the selenoprotein S gene: lack of association with autoimmune inflammatory diseases

    Directory of Open Access Journals (Sweden)

    Díaz-Rubio Manuel

    2008-07-01

    Full Text Available Abstract Background Selenoprotein S (SelS protects the functional integrity of the endoplasmic reticulum against the deleterious effects of metabolic stress. SEPS1/SelS polymorphisms have been involved in the increased release of pro-inflammatory cytokines interleukin (IL-1β, tumor necrosis factor (TNF-α and IL-6 in macrophages. We aimed at investigating the role of the SEPS1 variants previously associated with higher plasma levels of these cytokines and of the SEPS1 haplotypes in the susceptibility to develop immune-mediated diseases characterized by an inflammatory component. Results Six polymorphisms distributed through the SEPS1 gene (rs11327127, rs28665122, rs4965814, rs12917258, rs4965373 and rs2101171 were genotyped in more than two thousand patients suffering from type 1 diabetes, rheumatoid arthritis or inflammatory bowel diseases and 550 healthy controls included in the case-control study. Conclusion Lack of association of SEPS1 polymorphisms or haplotypes precludes a major role of this gene increasing predisposition to these inflammatory diseases.

  5. Bee Venom Inhibits Porphyromonas gingivalis Lipopolysaccharides-Induced Pro-Inflammatory Cytokines through Suppression of NF-κB and AP-1 Signaling Pathways.

    Science.gov (United States)

    Kim, Woon-Hae; An, Hyun-Jin; Kim, Jung-Yeon; Gwon, Mi-Gyeong; Gu, Hyemin; Park, Jae-Bok; Sung, Woo Jung; Kwon, Yong-Chul; Park, Kyung-Duck; Han, Sang Mi; Park, Kwan-Kyu

    2016-11-10

    Periodontitis is a chronic inflammatory disease that leads to destruction of tooth supporting tissues. Porphyromonas gingivalis ( P. gingivalis ), especially its lipopolysaccharides (LPS), is one of major pathogens that cause periodontitis. Bee venom (BV) has been widely used as a traditional medicine for various diseases. Previous studies have demonstrated the anti-inflammatory, anti-bacterial effects of BV. However, a direct role and cellular mechanism of BV on periodontitis-like human keratinocytes have not been explored. Therefore, we investigated the anti-inflammatory mechanism of BV against P. gingivalis LPS (PgLPS)-induced HaCaT human keratinocyte cell line. The anti-inflammatory effect of BV was demonstrated by various molecular biological methods. The results showed that PgLPS increased the expression of Toll-like receptor (TLR)-4 and pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, and interferon (IFN)-γ. In addition, PgLPS induced activation of the signaling pathways of inflammatory cytokines-related transcription factors, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 (AP-1). BV effectively inhibited those pro-inflammatory cytokines through suppression of NF-κB and AP-1 signaling pathways. These results suggest that administration of BV attenuates PgLPS-induced inflammatory responses. Furthermore, BV may be a useful treatment to anti-inflammatory therapy for periodontitis.

  6. Ebola virion attachment and entry into human macrophages profoundly effects early cellular gene expression.

    Directory of Open Access Journals (Sweden)

    Victoria Wahl-Jensen

    2011-10-01

    Full Text Available Zaire ebolavirus (ZEBOV infections are associated with high lethality in primates. ZEBOV primarily targets mononuclear phagocytes, which are activated upon infection and secrete mediators believed to trigger initial stages of pathogenesis. The characterization of the responses of target cells to ZEBOV infection may therefore not only further understanding of pathogenesis but also suggest possible points of therapeutic intervention. Gene expression profiles of primary human macrophages exposed to ZEBOV were determined using DNA microarrays and quantitative PCR to gain insight into the cellular response immediately after cell entry. Significant changes in mRNA concentrations encoding for 88 cellular proteins were observed. Most of these proteins have not yet been implicated in ZEBOV infection. Some, however, are inflammatory mediators known to be elevated during the acute phase of disease in the blood of ZEBOV-infected humans. Interestingly, the cellular response occurred within the first hour of Ebola virion exposure, i.e. prior to virus gene expression. This observation supports the hypothesis that virion binding or entry mediated by the spike glycoprotein (GP(1,2 is the primary stimulus for an initial response. Indeed, ZEBOV virions, LPS, and virus-like particles consisting of only the ZEBOV matrix protein VP40 and GP(1,2 (VLP(VP40-GP triggered comparable responses in macrophages, including pro-inflammatory and pro-apoptotic signals. In contrast, VLP(VP40 (particles lacking GP(1,2 caused an aberrant response. This suggests that GP(1,2 binding to macrophages plays an important role in the immediate cellular response.

  7. Anti-inflammatory effects of ursodeoxycholic acid by lipopolysaccharide-stimulated inflammatory responses in RAW 264.7 macrophages.

    Directory of Open Access Journals (Sweden)

    Wan-Kyu Ko

    Full Text Available The aim of this study was to investigate the anti-inflammatory effects of Ursodeoxycholic acid (UDCA in lipopolysaccharide (LPS-stimulated RAW 264.7 macrophages.We induced an inflammatory process in RAW 264.7 macrophages using LPS. The anti-inflammatory effects of UDCA on LPS-stimulated RAW 264.7 macrophages were analyzed using nitric oxide (NO. Pro-inflammatory and anti-inflammatory cytokines were analyzed by quantitative real time polymerase chain reaction (qRT-PCR and enzyme-linked immunosorbent assay (ELISA. The phosphorylations of extracellular signal-regulated kinase (ERK, c-Jun N-terminal kinase (JNK, and p38 in mitogen-activated protein kinase (MAPK signaling pathways and nuclear factor kappa-light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα signaling pathways were evaluated by western blot assays.UDCA decreased the LPS-stimulated release of the inflammatory mediator NO. UDCA also decreased the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α, interleukin 1-α (IL-1α, interleukin 1-β (IL-1β, and interleukin 6 (IL-6 in mRNA and protein levels. In addition, UDCA increased an anti-inflammatory cytokine interleukin 10 (IL-10 in the LPS-stimulated RAW 264.7 macrophages. UDCA inhibited the expression of inflammatory transcription factor nuclear factor kappa B (NF-κB in LPS-stimulated RAW 264.7 macrophages. Furthermore, UDCA suppressed the phosphorylation of ERK, JNK, and p38 signals related to inflammatory pathways. In addition, the phosphorylation of IκBα, the inhibitor of NF-κB, also inhibited by UDCA.UDCA inhibits the pro-inflammatory responses by LPS in RAW 264.7 macrophages. UDCA also suppresses the phosphorylation by LPS on ERK, JNK, and p38 in MAPKs and NF-κB pathway. These results suggest that UDCA can serve as a useful anti-inflammatory drug.

  8. The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

    Directory of Open Access Journals (Sweden)

    Markus Heine

    2014-09-01

    Full Text Available Semiconductor quantum dots (QD and superparamagnetic iron oxide nanocrystals (SPIO have exceptional physical properties that are well suited for biomedical applications in vitro and in vivo. For future applications, the direct injection of nanocrystals for imaging and therapy represents an important entry route into the human body. Therefore, it is crucial to investigate biological responses of the body to nanocrystals to avoid harmful side effects. In recent years, we established a system to embed nanocrystals with a hydrophobic oleic acid shell either by lipid micelles or by the amphiphilic polymer poly(maleic anhydride-alt-1-octadecene (PMAOD. The goal of the current study is to investigate the uptake processes as well as pro-inflammatory responses in the liver after the injection of these encapsulated nanocrystals. By immunofluorescence and electron microscopy studies using wild type mice, we show that 30 min after injection polymer-coated nanocrystals are primarily taken up by liver sinusoidal endothelial cells. In contrast, by using wild type, Ldlr-/- as well as Apoe-/- mice we show that nanocrystals embedded within lipid micelles are internalized by Kupffer cells and, in a process that is dependent on the LDL receptor and apolipoprotein E, by hepatocytes. Gene expression analysis of pro-inflammatory markers such as tumor necrosis factor alpha (TNFα or chemokine (C-X-C motif ligand 10 (Cxcl10 indicated that 48 h after injection internalized nanocrystals did not provoke pro-inflammatory pathways. In conclusion, internalized nanocrystals at least in mouse liver cells, namely endothelial cells, Kupffer cells and hepatocytes are at least not acutely associated with potential adverse side effects, underlining their potential for biomedical applications.

  9. Influence of correlation between HLA-G polymorphism and Interleukin-6 (IL6) gene expression on the risk of schizophrenia.

    Science.gov (United States)

    Shivakumar, Venkataram; Debnath, Monojit; Venugopal, Deepthi; Rajasekaran, Ashwini; Kalmady, Sunil V; Subbanna, Manjula; Narayanaswamy, Janardhanan C; Amaresha, Anekal C; Venkatasubramanian, Ganesan

    2018-07-01

    Converging evidence suggests important implications of immuno-inflammatory pathway in the risk and progression of schizophrenia. Prenatal infection resulting in maternal immune activation and developmental neuroinflammation reportedly increases the risk of schizophrenia in the offspring by generating pro-inflammatory cytokines including IL-6. However, it is not known how prenatal infection can induce immuno-inflammatory responses despite the presence of immuno-inhibitory Human Leukocyte Antigen-G (HLA-G) molecules. To address this, the present study was aimed at examining the correlation between 14 bp Insertion/Deletion (INDEL) polymorphism of HLA-G and IL-6 gene expression in schizophrenia patients. The 14 bp INDEL polymorphism was studied by PCR amplification/direct sequencing and IL-6 gene expression was quantified by using real-time RT-PCR in 56 schizophrenia patients and 99 healthy controls. We observed significantly low IL6 gene expression in the peripheral mononuclear cells (PBMCs) of schizophrenia patients (t = 3.8, p = .004) compared to the controls. In addition, schizophrenia patients carrying Del/Del genotype of HLA-G 14 bp INDEL exhibited significantly lower IL6 gene expression (t = 3.1; p = .004) than the Del/Ins as well as Ins/Ins carriers. Our findings suggest that presence of "high-expressor" HLA-G 14 bp Del/Del genotype in schizophrenia patients could attenuate IL-6 mediated inflammation in schizophrenia. Based on these findings it can be assumed that HLA-G and cytokine interactions might play an important role in the immunological underpinnings of schizophrenia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Bursal transcriptome profiling of different inbred chicken lines reveals key differentially expressed genes at 3 days post-infection with very virulent infectious bursal disease virus.

    Science.gov (United States)

    Farhanah, Mohd Isa; Yasmin, Abd Rahaman; Mat Isa, Nurulfiza; Hair-Bejo, Mohd; Ideris, Aini; Powers, Claire; Oladapo, Omobolanle; Nair, Venugopal; Khoo, Jia-Shiun; Ghazali, Ahmad-Kamal; Yee, Wai-Yan; Omar, Abdul Rahman

    2018-01-01

    Infectious bursal disease is a highly contagious disease in the poultry industry and causes immunosuppression in chickens. Genome-wide regulations of immune response genes of inbred chickens with different genetic backgrounds, following very virulent infectious bursal disease virus (vvIBDV) infection are poorly characterized. Therefore, this study aims to analyse the bursal tissue transcriptome of six inbred chicken lines 6, 7, 15, N, O and P following infection with vvIBDV strain UK661 using strand-specific next-generation sequencing, by highlighting important genes and pathways involved in the infected chicken during peak infection at 3 days post-infection. All infected chickens succumbed to the infection without major variations among the different lines. However, based on the viral loads and bursal lesion scoring, lines P and 6 can be considered as the most susceptible lines, while lines 15 and N were regarded as the least affected lines. Transcriptome profiling of the bursa identified 4588 genes to be differentially expressed, with 2985 upregulated and 1642 downregulated genes, in which these genes were commonly or uniquely detected in all or several infected lines. Genes that were upregulated are primarily pro-inflammatory cytokines, chemokines and IFN-related. Various genes that are associated with B-cell functions and genes related to apoptosis were downregulated, together with the genes involved in p53 signalling. In conclusion, bursal transcriptome profiles of different inbred lines showed differential expressions of pro-inflammatory cytokines and chemokines, Th1 cytokines, JAK-STAT signalling genes, MAPK signalling genes, and their related pathways following vvIBDV infection.

  11. Probiotic lactobacillus and estrogen effects on vaginal epithelial gene expression responses to Candida albicans.

    Science.gov (United States)

    Wagner, R Doug; Johnson, Shemedia J

    2012-06-20

    Vaginal epithelial cells have receptors, signal transduction mechanisms, and cytokine secretion capabilities to recruit host defenses against Candida albicans infections. This research evaluates how probiotic lactobacilli affect the defensive epithelial response. This study used quantitative reverse transcription-polymerase chain reaction assay (qRT-PCR), flow cytometry, and a multiplex immunoassay to observe changes in the regulation of gene expression related to cytokine responses in the VK2 (E6/E7) vaginal epithelial cell line treated with 17β-estradiol, exposed to probiotic Lactobacillus rhamnosus GR-1® and Lactobacillus reuteri RC-14® and challenged with C. albicans. Data were statistically evaluated by repeated measures analysis of variance and paired t-tests where appropriate. C. albicans induced mRNA expression of genes related to inflammatory cytokine responses associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signal transduction pathways. 17β-estradiol suppressed expression of interleukin-1α (IL-1α), IL-6, IL-8, and tumor necrosis factor alpha (TNFα) mRNA. Probiotic lactobacilli suppressed C. albicans-induced nuclear factor-kappa B inhibitor kinase kinase alpha (Iκκα), Toll-like receptor-2 (TLR2), TLR6, IL-8, and TNFα, also suggesting inhibition of NF-κB signaling. The lactobacilli induced expression of IL-1α, and IL-1β mRNA, which was not inhibited by curcumin, suggesting that they induce an alternate inflammatory signal transduction pathway to NF-κB, such as the mitogen activated protein kinase and activator protein-1 (MAPK/AP-1) signal transduction pathway. Curcumin inhibited IL-13 secretion, suggesting that expression of this cytokine is mainly regulated by NF-κB signaling in VK2 cells. The results suggest that C. albicans infection induces pro-inflammatory responses in vaginal epithelial cells, and estrogen and lactobacilli suppress expression of NF-κB-related inflammatory genes. Probiotic

  12. CEACAM6 gene variants in inflammatory bowel disease.

    Science.gov (United States)

    Glas, Jürgen; Seiderer, Julia; Fries, Christoph; Tillack, Cornelia; Pfennig, Simone; Weidinger, Maria; Beigel, Florian; Olszak, Torsten; Lass, Ulrich; Göke, Burkhard; Ochsenkühn, Thomas; Wolf, Christiane; Lohse, Peter; Müller-Myhsok, Bertram; Diegelmann, Julia; Czamara, Darina; Brand, Stephan

    2011-04-29

    The carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) acts as a receptor for adherent-invasive E. coli (AIEC) and its ileal expression is increased in patients with Crohn's disease (CD). Given its contribution to the pathogenesis of CD, we aimed to investigate the role of genetic variants in the CEACAM6 region in patients with inflammatory bowel diseases (IBD). In this study, a total of 2,683 genomic DNA samples (including DNA from 858 CD patients, 475 patients with ulcerative colitis (UC), and 1,350 healthy, unrelated controls) was analyzed for eight CEACAM6 SNPs (rs10415946, rs1805223 = p.Pro42Pro, rs4803507, rs4803508, rs11548735 = p.Gly239Val, rs7246116 = pHis260His, rs2701, rs10416839). In addition, a detailed haplotype analysis and genotype-phenotype analysis were performed. Overall, our genotype analysis did not reveal any significant association of the investigated CEACAM6 SNPs and haplotypes with CD or UC susceptibility, although certain CEACAM6 SNPs modulated CEACAM6 expression in intestinal epithelial cell lines. Despite its function as receptor of AIEC in ileal CD, we found no association of the CEACAM6 SNPs with ileal or ileocolonic CD. Moreover, there was no evidence of epistasis between the analyzed CEACAM6 variants and the main CD-associated NOD2, IL23R and ATG16L1 variants. This study represents the first detailed analysis of CEACAM6 variants in IBD patients. Despite its important role in bacterial attachment in ileal CD, we could not demonstrate a role for CEACAM6 variants in IBD susceptibility or regarding an ileal CD phenotype. Further functional studies are required to analyze if these gene variants modulate ileal bacterial attachment.

  13. CEACAM6 gene variants in inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Jürgen Glas

    Full Text Available BACKGROUND: The carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6 acts as a receptor for adherent-invasive E. coli (AIEC and its ileal expression is increased in patients with Crohn's disease (CD. Given its contribution to the pathogenesis of CD, we aimed to investigate the role of genetic variants in the CEACAM6 region in patients with inflammatory bowel diseases (IBD. METHODOLOGY: In this study, a total of 2,683 genomic DNA samples (including DNA from 858 CD patients, 475 patients with ulcerative colitis (UC, and 1,350 healthy, unrelated controls was analyzed for eight CEACAM6 SNPs (rs10415946, rs1805223 = p.Pro42Pro, rs4803507, rs4803508, rs11548735 = p.Gly239Val, rs7246116 = pHis260His, rs2701, rs10416839. In addition, a detailed haplotype analysis and genotype-phenotype analysis were performed. Overall, our genotype analysis did not reveal any significant association of the investigated CEACAM6 SNPs and haplotypes with CD or UC susceptibility, although certain CEACAM6 SNPs modulated CEACAM6 expression in intestinal epithelial cell lines. Despite its function as receptor of AIEC in ileal CD, we found no association of the CEACAM6 SNPs with ileal or ileocolonic CD. Moreover, there was no evidence of epistasis between the analyzed CEACAM6 variants and the main CD-associated NOD2, IL23R and ATG16L1 variants. CONCLUSIONS: This study represents the first detailed analysis of CEACAM6 variants in IBD patients. Despite its important role in bacterial attachment in ileal CD, we could not demonstrate a role for CEACAM6 variants in IBD susceptibility or regarding an ileal CD phenotype. Further functional studies are required to analyze if these gene variants modulate ileal bacterial attachment.

  14. Inorganic arsenic represses interleukin-17A expression in human activated Th17 lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Morzadec, Claudie; Macoch, Mélinda; Robineau, Marc; Sparfel, Lydie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes (France); Vernhet, Laurent, E-mail: laurent.vernhet@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France)

    2012-08-01

    Trivalent inorganic arsenic [As(III)] is an efficient anticancer agent used to treat patients suffering from acute promyelocytic leukemia. Recently, experimental studies have clearly demonstrated that this metalloid can also cure lymphoproliferative and/or pro-inflammatory syndromes in different murine models of chronic immune-mediated diseases. T helper (Th) 1 and Th17 lymphocytes play a central role in development of these diseases, in mice and humans, especially by secreting the potent pro-inflammatory cytokine interferon-γ and IL-17A, respectively. As(III) impairs basic functions of human T cells but its ability to modulate secretion of pro-inflammatory cytokines by differentiated Th lymphocytes is unknown. In the present study, we demonstrate that As(III), used at concentrations clinically achievable in plasma of patients, has no effect on the secretion of interferon-γ from Th1 cells but almost totally blocks the expression and the release of IL-17A from human Th17 lymphocytes co-stimulated for five days with anti-CD3 and anti-CD28 antibodies, in the presence of differentiating cytokines. In addition, As(III) specifically reduces mRNA levels of the retinoic-related orphan receptor (ROR)C gene which encodes RORγt, a key transcription factor controlling optimal IL-17 expression in fully differentiated Th17 cells. The metalloid also blocks initial expression of IL-17 gene induced by the co-stimulation, probably in part by impairing activation of the JNK/c-Jun pathway. In conclusion, our results demonstrate that As(III) represses expression of the major pro-inflammatory cytokine IL-17A produced by human Th17 lymphocytes, thus strengthening the idea that As(III) may be useful to treat inflammatory immune-mediated diseases in humans. -- Highlights: ► Arsenic inhibits secretion of IL-17A from human naïve and memory Th17 lymphocytes. ► Arsenic represses early expression of IL-17A gene in human activated T lymphocytes. ► Arsenic interferes with activation of

  15. Overexpression of GRß in colonic mucosal cell line partly reflects altered gene expression in colonic mucosa of patients with inflammatory bowel disease.

    Science.gov (United States)

    Nagy, Zsolt; Acs, Bence; Butz, Henriett; Feldman, Karolina; Marta, Alexa; Szabo, Peter M; Baghy, Kornelia; Pazmany, Tamas; Racz, Karoly; Liko, Istvan; Patocs, Attila

    2016-01-01

    The glucocorticoid receptor (GR) plays a crucial role in inflammatory responses. GR has several isoforms, of which the most deeply studied are the GRα and GRß. Recently it has been suggested that in addition to its negative dominant effect on GRα, the GRß may have a GRα-independent transcriptional activity. The GRß isoform was found to be frequently overexpressed in various autoimmune diseases, including inflammatory bowel disease (IBD). In this study, we wished to test whether the gene expression profile found in a GRß overexpressing intestinal cell line (Caco-2GRß) might mimic the gene expression alterations found in patients with IBD. Whole genome microarray analysis was performed in both normal and GRß overexpressing Caco-2 cell lines with and without dexamethasone treatment. IBD-related genes were identified from a meta-analysis of 245 microarrays available in online microarray deposits performed on intestinal mucosa samples from patients with IBD and healthy individuals. The differentially expressed genes were further studied using in silico pathway analysis. Overexpression of GRß altered a large proportion of genes that were not regulated by dexamethasone suggesting that GRß may have a GRα-independent role in the regulation of gene expression. About 10% of genes differentially expressed in colonic mucosa samples from IBD patients compared to normal subjects were also detected in Caco-2 GRß intestinal cell line. Common genes are involved in cell adhesion and cell proliferation. Overexpression of GRß in intestinal cells may affect appropriate mucosal repair and intact barrier function. The proposed novel role of GRß in intestinal epithelium warrants further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Stunned silence: gene expression programs in human cells infected with monkeypox or vaccinia virus.

    Directory of Open Access Journals (Sweden)

    Kathleen H Rubins

    2011-01-01

    Full Text Available Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV, an emerging human pathogen, and Vaccinia virus (VAC, a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA, or poly (I-C was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection.

  17. Bifidobacterium bifidum Actively Changes the Gene Expression Profile Induced by Lactobacillus acidophilus in Murine Dendritic Cells

    DEFF Research Database (Denmark)

    Weiss, Gudrun Margarethe; Rasmussen, Simon; Fink, Lisbeth Nielsen

    2010-01-01

    Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing...... cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium...

  18. Toll-Like Receptor 2 mediates in vivo pro- and anti-inflammatory effects of Mycobacterium tuberculosis and modulates autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Alessia ePiermattei

    2016-05-01

    Full Text Available Mycobacteria display pro- and anti-inflammatory effects in human and experimental pathology. We show here that both effects are mediated by Toll like receptor 2 (Tlr2, by exploiting a previously characterized Tlr2 variant (Met82Ile. Tlr2 82ile promoted self-specific pro-inflammatory polarization as well as expansion of ag-specific FoxP3+ Tregs, while Tlr2 82met impairs the expansion of Tregs and reduces the production of IFN-γ and IL-17 pro-inflammatory cytokines. Preferential dimerization with Tlr1 or Tlr6 could not explain these differences. In silico, we showed that Tlr2 variant Met82Ile modified the binding pocket for peptidoglycans and participate directly to a putative binding pocket for sugars and Cadherins. The distinct pro- and anti-inflammatory actions impacted on severity, extent of remission and distribution of the lesions within the Central Nervous System of Experimental Autoimmune Encephalomyelitis. Thus, Tlr2 has a janus function in vivo as mediator of the role of bacterial products in balancing pro- and anti-inflammatory immune responses.

  19. Association of mRNA expression of TP53 and the TP53 codon 72 Arg/Pro gene polymorphism with colorectal cancer risk in Asian population: a bioinformatics analysis and meta-analysis.

    Science.gov (United States)

    Dong, Zhiyong; Zheng, Longzhi; Liu, Weimin; Wang, Cunchuan

    2018-01-01

    The relationship between TP53 codon 72 Pro/Arg gene polymorphism and colorectal cancer risk in Asians is still controversial, and this bioinformatics analysis and meta-analysis was performed to assess the associations. The association studies were identified from PubMed, and eligible reports were included. RevMan 5.3.1 software, Oncolnc, cBioPortal, and Oncomine online tools were used for statistical analysis. A random/fixed effects model was used in meta-analysis. The data were reported as risk ratios or mean differences with corresponding 95% CI. We confirmed that TP53 was associated with colorectal cancer, the alteration frequency of TP53 was 53% mutation and 7% deep deletion, and TP53 mRNA expression was different in different types of colorectal cancer based on The Cancer Genome Atlas database. Then, 18 studies were included that examine the association of TP53 codon 72 gene polymorphism with colorectal cancer risk in Asians. The meta-analysis indicated that TP53 Pro allele and Pro/Pro genotype were associated with colorectal cancer risk in Asian population, but Arg/Arg genotype was not (Pro allele: odds ratios [OR]=1.20, 95% CI: 1.06 to 1.35, P =0.003; Pro/Pro genotype: OR=1.39, 95% CI: 1.15 to 1.69, P =0.0007; Arg/Arg genotype: OR=0.86, 95% CI: 0.74 to 1.00, P =0.05). Interestingly, in the meta-analysis of the controls from the population-based studies, we found that TP53 codon 72 Pro/Arg gene polymorphism was associated with colorectal cancer risk (Pro allele: OR=1.33, 95% CI: 1.15 to 1.55, P =0.0002; Pro/Pro genotype: OR=1.61, 95% CI: 1.28 to 2.02, P colorectal cancer, but the different value levels of mRNA expression were not associated with survival rate of colon and rectal cancer. TP53 Pro allele and Pro/Pro genotype were associated with colorectal cancer risk in Asians.

  20. Fish oil feeding attenuates neuroinflammatory gene expression without concomitant changes in brain eicosanoids and docosanoids in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Hopperton, Kathryn E; Trépanier, Marc-Olivier; James, Nicholas C E; Chouinard-Watkins, Raphaël; Bazinet, Richard P

    2018-03-01

    Neuroinflammation is a recognized hallmark of Alzheimer's disease, along with accumulation of amyloid-β plaques, neurofibrillary tangles and synaptic loss. n-3 polyunsaturated fatty acids (PUFA) and molecules derived from them, including eicosapentaenoic acid-derived eicosanoids and docosahexaenoic acid-derived docosanoids, are known to have both anti-inflammatory and pro-resolving properties, while human observational data links consumption of these fatty acids to a decreased risk of Alzheimer's disease. Few studies have examined the neuroinflammation-modulating effects of n-3 PUFA feeding in an Alzheimer's disease-related model, and none have investigated whether these effects are mediated by changes in brain eicosanoids and docosanoids. Here, we use both a fat-1 transgenic mouse and a fish oil feeding model to study the impact of increasing tissue n-3 PUFA on neuroinflammation and the production of pro-inflammatory and pro-resolving lipid mediators. Fat-1 mice, transgenic animals that can convert n-6 to n-3 PUFA, and their wildtype littermates were fed diets containing either fish oil (high n-3 PUFA) or safflower oil (negligible n-3 PUFA) from weaning to 12 weeks. Animals then underwent intracerebroventricular infusion of either amyloid-β 1-40 or a control peptide. Hippocampi were collected from non-surgery and surgery animals 10 days after infusion. Microarray was used to measure enrichment of inflammation-associated gene categories and expression of genes involved in the synthesis of lipid mediators. Results were validated by real-time PCR in a separate cohort of animals. Lipid mediators were measured via liquid chromatography tandem mass spectrometry. Fat-1 and wildtype mice fed fish oil had higher total hippocampal DHA than wildtype mice fed the safflower oil diet. The safflower-fed mice, but not the fat-1 or fish oil-fed mice, had significantly increased expression in gene ontology categories associated with inflammation in response to amyloid

  1. A strong anti-inflammatory signature revealed by liver transcription profiling of Tmprss6-/- mice.

    Directory of Open Access Journals (Sweden)

    Michela Riba

    Full Text Available Control of systemic iron homeostasis is interconnected with the inflammatory response through the key iron regulator, the antimicrobial peptide hepcidin. We have previously shown that mice with iron deficiency anemia (IDA-low hepcidin show a pro-inflammatory response that is blunted in iron deficient-high hepcidin Tmprss6 KO mice. The transcriptional response associated with chronic hepcidin overexpression due to genetic inactivation of Tmprss6 is unknown. By using whole genome transcription profiling of the liver and analysis of spleen immune-related genes we identified several functional pathways differentially expressed in Tmprss6 KO mice, compared to IDA animals and thus irrespective of the iron status. In the effort of defining genes potentially targets of Tmprss6 we analyzed liver gene expression changes according to the genotype and independently of treatment. Tmprss6 inactivation causes down-regulation of liver pathways connected to immune and inflammatory response as well as spleen genes related to macrophage activation and inflammatory cytokines production. The anti-inflammatory status of Tmprss6 KO animals was confirmed by the down-regulation of pathways related to immunity, stress response and intracellular signaling in both liver and spleen after LPS treatment. Opposite to Tmprss6 KO mice, Hfe(-/- mice are characterized by iron overload with inappropriately low hepcidin levels. Liver expression profiling of Hfe(-/- deficient versus iron loaded mice show the opposite expression of some of the genes modulated by the loss of Tmprss6. Altogether our results confirm the anti-inflammatory status of Tmprss6 KO mice and identify new potential target pathways/genes of Tmprss6.

  2. Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects

    Directory of Open Access Journals (Sweden)

    Soronen Jarkko

    2012-04-01

    Full Text Available Abstract Background To get insight into molecular mechanisms underlying insulin resistance, we compared acute in vivo effects of insulin on adipose tissue transcriptional profiles between obese insulin-resistant and lean insulin-sensitive women. Methods Subcutaneous adipose tissue biopsies were obtained before and after 3 and 6 hours of intravenously maintained euglycemic hyperinsulinemia from 9 insulin-resistant and 11 insulin-sensitive females. Gene expression was measured using Affymetrix HG U133 Plus 2 microarrays and qRT-PCR. Microarray data and pathway analyses were performed with Chipster v1.4.2 and by using in-house developed nonparametric pathway analysis software. Results The most prominent difference in gene expression of the insulin-resistant group during hyperinsulinemia was reduced transcription of nuclear genes involved in mitochondrial respiration (mitochondrial respiratory chain, GO:0001934. Inflammatory pathways with complement components (inflammatory response, GO:0006954 and cytokines (chemotaxis, GO:0042330 were strongly up-regulated in insulin-resistant as compared to insulin-sensitive subjects both before and during hyperinsulinemia. Furthermore, differences were observed in genes contributing to fatty acid, cholesterol and triglyceride metabolism (FATP2, ELOVL6, PNPLA3, SREBF1 and in genes involved in regulating lipolysis (ANGPTL4 between the insulin-resistant and -sensitive subjects especially during hyperinsulinemia. Conclusions The major finding of this study was lower expression of mitochondrial respiratory pathway and defective induction of lipid metabolism pathways by insulin in insulin-resistant subjects. Moreover, the study reveals several novel genes whose aberrant regulation is associated with the obese insulin-resistant phenotype.

  3. Silencing MR-1 attenuates inflammatory damage in mice heart induced by AngII

    International Nuclear Information System (INIS)

    Dai, Wenjian; Chen, Haiyang; Jiang, Jiandong; Kong, Weijia; Wang, Yiguang

    2010-01-01

    Myofibrillogenesis regulator-1(MR-1) can aggravate cardiac hypertrophy induced by angiotensin(Ang) II in mice through activation of NF-κB signaling pathway, and nuclear transcription factor (NF)-κB and activator protein-1(AP-1) regulate inflammatory and immune responses by increasing the expression of specific inflammatory genes in various tissues including heart. Whether inhibition of MR-1 expression will attenuate AngII-induced inflammatory injury in mice heart has not been explored. Herein, we monitored the activation of NF-κB and AP-1, together with expression of pro-inflammatory of interleukin(IL)-6, tumor necrosis factor(TNF)-α, vascular-cell adhesion molecule (VCAM)-1, platelet endothelial cell adhesion molecule (PECAM), and inflammatory cell infiltration in heart of mice which are induced firstly by AngII (PBS),then received MR-1-siRNA or control-siRNA injecting. We found that the activation of NF-κB and AP-1 was inhibited significantly, together with the decreased expression of IL-6, TNF-α, VCAM-1, and PECAM in AngII-induced mice myocardium in MR-1-siRNA injection groups compared with control-siRNA injecting groups. However, the expression level of MR-1 was not an apparent change in PBS-infused groups than in unoperation groups, and MR-1-siRNA do not affect the expression of MR-1 in PBS-infused mice. Our findings suggest that silencing MR-1 protected mice myocardium against inflammatory injury induced by AngII by suppression of pro-inflammatory transcription factors NF-κB and AP-1 signaling pathway.

  4. Effects of deoxynivalenol- and zearalenone-contaminated feed on the gene expression profiles in the kidneys of piglets

    Directory of Open Access Journals (Sweden)

    Kondreddy Eswar Reddy

    2018-01-01

    Full Text Available Objective Fusarium mycotoxins deoxynivalenol (DON and zearalenone (ZEN, common contaminants in the feed of farm animals, cause immune function impairment and organ inflammation. Consequently, the main objective of this study was to elucidate DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the kidneys of piglets. Methods Fifteen 6-week-old piglets were randomly assigned to three dietary treatments for 4 weeks: control diet, and diets contaminated with either 8 mg DON/kg feed or 0.8 mg ZEN/kg feed. Kidney samples were collected after treatment, and RNA-seq was used to investigate the effects on immune-related genes and gene networks. Results A total of 186 differentially expressed genes (DEGs were screened (120 upregulated and 66 downregulated. Gene ontology analysis revealed that the immune response, and cellular and metabolic processes were significantly controlled by these DEGs. The inflammatory stimulation might be an effect of the following enriched Kyoto encyclopedia of genes and genomes pathway analysis found related to immune and disease responses: cytokine-cytokine receptor interaction, chemokine signaling pathway, toll-like receptor signaling pathway, systemic lupus erythematosus (SLE, tuberculosis, Epstein-Barr virus infection, and chemical carcinogenesis. The effects of DON and ZEN on genome-wide expression were assessed, and it was found that the DEGs associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9, CXCL10, chemokine [C-C motif] ligand 4, proliferation (insulin like growth factor binding protein 4, IgG heavy chain, receptor-type tyrosine-protein phosphatase C, cytochrome P450 1A1, ATP-binding cassette sub-family 8, and other immune response networks (lysozyme, complement component 4 binding protein alpha, oligoadenylate synthetase 2, signaling lymphocytic activation molecule-9, α-aminoadipic semialdehyde dehydrogenase

  5. Global gene expression patterns in the post-pneumonectomy lung of adult mice

    Directory of Open Access Journals (Sweden)

    Ingenito Edward P

    2009-10-01

    Full Text Available Abstract Background Adult mice have a remarkable capacity to regenerate functional alveoli following either lung resection or injury that exceeds the regenerative capacity observed in larger adult mammals. The molecular basis for this unique capability in mice is largely unknown. We examined the transcriptomic responses to single lung pneumonectomy in adult mice in order to elucidate prospective molecular signaling mechanisms used in this species during lung regeneration. Methods Unilateral left pneumonectomy or sham thoracotomy was performed under general anesthesia (n = 8 mice per group for each of the four time points. Total RNA was isolated from the remaining lung tissue at four time points post-surgery (6 hours, 1 day, 3 days, 7 days and analyzed using microarray technology. Results The observed transcriptomic patterns revealed mesenchymal cell signaling, including up-regulation of genes previously associated with activated fibroblasts (Tnfrsf12a, Tnc, Eln, Col3A1, as well as modulation of Igf1-mediated signaling. The data set also revealed early down-regulation of pro-inflammatory cytokine transcripts and up-regulation of genes involved in T cell development/function, but few similarities to transcriptomic patterns observed during embryonic or post-natal lung development. Immunohistochemical analysis suggests that early fibroblast but not myofibroblast proliferation is important during lung regeneration and may explain the preponderance of mesenchymal-associated genes that are over-expressed in this model. This again appears to differ from embryonic alveologenesis. Conclusion These data suggest that modulation of mesenchymal cell transcriptome patterns and proliferation of S100A4 positive mesenchymal cells, as well as modulation of pro-inflammatory transcriptome patterns, are important during post-pneumonectomy lung regeneration in adult mice.

  6. Transcutaneous electrical nerve stimulation (TENS) accelerates cutaneous wound healing and inhibits pro-inflammatory cytokines.

    Science.gov (United States)

    Gürgen, Seren Gülşen; Sayın, Oya; Cetin, Ferihan; Tuç Yücel, Ayşe

    2014-06-01

    The purpose of this study was to evaluate transcutaneous electrical nerve stimulation (TENS) and other common treatment methods used in the process of wound healing in terms of the expression levels of pro-inflammatory cytokines. In the study, 24 female and 24 male adult Wistar-Albino rats were divided into five groups: (1) the non-wounded group having no incision wounds, (2) the control group having incision wounds, (3) the TENS (2 Hz, 15 min) group, (4) the physiological saline (PS) group and (5) the povidone iodine (PI) group. In the skin sections, interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were assessed with enzyme-linked immunosorbent assay and immunohistochemical methods. In the non-wounded group, the expression of IL-1β, IL-6, and TNF-α signaling molecules was weaker in the whole tissue; however, in the control group, significant inflammatory response occurred, and strong cytokine expression was observed in the dermis, granulation tissue, hair follicles, and sebaceous glands (P TENS group, the decrease in TNF-α, IL-1β, and IL-6 immunoreaction in the skin was significant compared to the other forms of treatment (P TENS group suggest that TENS shortened the healing process by inhibating the inflammation phase.

  7. Carrot juice ingestion attenuates high fructose-induced circulatory pro-inflammatory mediators in weanling Wistar rats.

    Science.gov (United States)

    Mahesh, Malleswarapu; Bharathi, Munugala; Raja Gopal Reddy, Mooli; Pappu, Pranati; Putcha, Uday Kumar; Vajreswari, Ayyalasomayajula; Jeyakumar, Shanmugam M

    2017-03-01

    Adipose tissue, an endocrine organ, plays a vital role not only in energy homeostasis, but also in the development and/or progression of various metabolic diseases, such as insulin resistance, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD), via several factors and mechanisms, including inflammation. This study tested, whether carrot juice administration affected the adipose tissue development and its inflammatory status in a high fructose diet-induced rat model. For this purpose, male weanling Wistar rats were divided into four groups and fed either control or high fructose diet of AIN-93G composition with or without carrot juice ingestion for an 8 week period. Administration of carrot juice did not affect the adiposity and cell size of visceral fat depot; retroperitoneal white adipose tissue (RPWAT), which was corroborated with unaltered expression of genes involved in adipogenic and lipogenic pathways. However, it significantly reduced the high fructose diet-induced elevation of plasma free fatty acid (FFA) (P ≤ 0.05), macrophage chemoattractant protein 1 (MCP1) (P ≤ 0.01) and high sensitive C-reactive protein (hsCRP) (P ≤ 0.05) levels. Carrot juice administration attenuated the high fructose diet-induced elevation of levels of circulatory FFA and pro-inflammatory mediators; MCP1 and hsCRP without affecting the adiposity and cell size of visceral fat depot; RPWAT. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Altered Cytokine Gene Expression in Peripheral Blood Monocytes across the Menstrual Cycle in Primary Dysmenorrhea: A Case-Control Study

    Science.gov (United States)

    Ma, Hongyue; Hong, Min; Duan, Jinao; Liu, Pei; Fan, Xinsheng; Shang, Erxin; Su, Shulan; Guo, Jianming; Qian, Dawei; Tang, Yuping

    2013-01-01

    Primary dysmenorrhea is one of the most common gynecological complaints in young women, but potential peripheral immunologic features underlying this condition remain undefined. In this paper, we compared 84 common cytokine gene expression profiles of peripheral blood mononuclear cells (PBMCs) from six primary dysmenorrheic young women and three unaffected controls on the seventh day before (secretory phase), and the first (menstrual phase) and the fifth (regenerative phase) days of menstruation, using a real-time PCR array assay combined with pattern recognition and gene function annotation methods. Comparisons between dysmenorrhea and normal control groups identified 11 (nine increased and two decreased), 14 (five increased and nine decreased), and 15 (seven increased and eight decreased) genes with ≥2-fold difference in expression (Pdysmenorrhea. This first study of cytokine gene expression profiles in PBMCs from young primary dysmenorrheic women demonstrates a shift in the balance between expression patterns of pro-inflammatory cytokines and TGF-β superfamily members across the whole menstrual cycle, underlying the peripheral immunologic features of primary dysmenorrhea. PMID:23390521

  9. P2Y6 receptor potentiates pro-inflammatory responses in macrophages and exhibits differential roles in atherosclerotic lesion development.

    Directory of Open Access Journals (Sweden)

    Ricardo A Garcia

    Full Text Available BACKGROUND: P2Y(6, a purinergic receptor for UDP, is enriched in atherosclerotic lesions and is implicated in pro-inflammatory responses of key vascular cell types and macrophages. Evidence for its involvement in atherogenesis, however, has been lacking. Here we use cell-based studies and three murine models of atherogenesis to evaluate the impact of P2Y(6 deficiency on atherosclerosis. METHODOLOGY/PRINCIPAL FINDINGS: Cell-based studies in 1321N1 astrocytoma cells, which lack functional P2Y(6 receptors, showed that exogenous expression of P2Y(6 induces a robust, receptor- and agonist-dependent secretion of inflammatory mediators IL-8, IL-6, MCP-1 and GRO1. P2Y(6-mediated inflammatory responses were also observed, albeit to a lesser extent, in macrophages endogenously expressing P2Y(6 and in acute peritonitis models of inflammation. To evaluate the role of P2Y(6 in atherosclerotic lesion development, we used P2Y(6-deficient mice in three mouse models of atherosclerosis. A 43% reduction in aortic arch plaque was observed in high fat-fed LDLR knockout mice lacking P2Y(6 receptors in bone marrow-derived cells. In contrast, no effect on lesion development was observed in fat-fed whole body P2Y(6xLDLR double knockout mice. Interestingly, in a model of enhanced vascular inflammation using angiotensin II, P2Y(6 deficiency enhanced formation of aneurysms and exhibited a trend towards increased atherosclerosis in the aorta of LDLR knockout mice. CONCLUSIONS: P2Y(6 receptor augments pro-inflammatory responses in macrophages and exhibits a pro-atherogenic role in hematopoietic cells. However, the overall impact of whole body P2Y(6 deficiency on atherosclerosis appears to be modest and could reflect additional roles of P2Y(6 in vascular disease pathophysiologies, such as aneurysm formation.

  10. Genetic variants alter T-bet binding and gene expression in mucosal inflammatory disease.

    Directory of Open Access Journals (Sweden)

    Katrina Soderquest

    2017-02-01

    Full Text Available The polarization of CD4+ T cells into distinct T helper cell lineages is essential for protective immunity against infection, but aberrant T cell polarization can cause autoimmunity. The transcription factor T-bet (TBX21 specifies the Th1 lineage and represses alternative T cell fates. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs that may be causative for autoimmune diseases. The majority of these polymorphisms are located within non-coding distal regulatory elements. It is considered that these genetic variants contribute to disease by altering the binding of regulatory proteins and thus gene expression, but whether these variants alter the binding of lineage-specifying transcription factors has not been determined. Here, we show that SNPs associated with the mucosal inflammatory diseases Crohn's disease, ulcerative colitis (UC and celiac disease, but not rheumatoid arthritis or psoriasis, are enriched at T-bet binding sites. Furthermore, we identify disease-associated variants that alter T-bet binding in vitro and in vivo. ChIP-seq for T-bet in individuals heterozygous for the celiac disease-associated SNPs rs1465321 and rs2058622 and the IBD-associated SNPs rs1551398 and rs1551399, reveals decreased binding to the minor disease-associated alleles. Furthermore, we show that rs1465321 is an expression quantitative trait locus (eQTL for the neighboring gene IL18RAP, with decreased T-bet binding associated with decreased expression of this gene. These results suggest that genetic polymorphisms may predispose individuals to mucosal autoimmune disease through alterations in T-bet binding. Other disease-associated variants may similarly act by modulating the binding of lineage-specifying transcription factors in a tissue-selective and disease-specific manner.

  11. Thiamine deficiency activates hypoxia inducible factor-1α to facilitate pro-apoptotic responses in mouse primary astrocytes.

    Directory of Open Access Journals (Sweden)

    Kristy Zera

    Full Text Available Thiamine is an essential enzyme cofactor required for proper metabolic function and maintenance of metabolism and energy production in the brain. In developed countries, thiamine deficiency (TD is most often manifested following chronic alcohol consumption leading to impaired mitochondrial function, oxidative stress, inflammation and excitotoxicity. These biochemical lesions result in apoptotic cell death in both neurons and astrocytes. Comparable histological injuries in patients with hypoxia/ischemia and TD have been described in the thalamus and mammillary bodies, suggesting a congruency between the cellular responses to these stresses. Consistent with hypoxia/ischemia, TD stabilizes and activates Hypoxia Inducible Factor-1α (HIF-1α under physiological oxygen levels. However, the role of TD-induced HIF-1α in neurological injury is currently unknown. Using Western blot analysis and RT-PCR, we have demonstrated that TD induces HIF-1α expression and activity in primary mouse astrocytes. We observed a time-dependent increase in mRNA and protein expression of the pro-apoptotic and pro-inflammatory HIF-1α target genes MCP1, BNIP3, Nix and Noxa during TD. We also observed apoptotic cell death in TD as demonstrated by PI/Annexin V staining, TUNEL assay, and Cell Death ELISA. Pharmacological inhibition of HIF-1α activity using YC1 and thiamine repletion both reduced expression of pro-apoptotic HIF-1α target genes and apoptotic cell death in TD. These results demonstrate that induction of HIF-1α mediated transcriptional up-regulation of pro-apoptotic/inflammatory signaling contributes to astrocyte cell death during thiamine deficiency.

  12. Controlled Inhibition of the Mesenchymal Stromal Cell Pro-inflammatory Secretome via Microparticle Engineering

    Directory of Open Access Journals (Sweden)

    Sudhir H. Ranganath

    2016-06-01

    Full Text Available Mesenchymal stromal cells (MSCs are promising therapeutic candidates given their potent immunomodulatory and anti-inflammatory secretome. However, controlling the MSC secretome post-transplantation is considered a major challenge that hinders their clinical efficacy. To address this, we used a microparticle-based engineering approach to non-genetically modulate pro-inflammatory pathways in human MSCs (hMSCs under simulated inflammatory conditions. Here we show that microparticles loaded with TPCA-1, a small-molecule NF-κB inhibitor, when delivered to hMSCs can attenuate secretion of pro-inflammatory factors for at least 6 days in vitro. Conditioned medium (CM derived from TPCA-1-loaded hMSCs also showed reduced ability to attract human monocytes and prevented differentiation of human cardiac fibroblasts to myofibroblasts, compared with CM from untreated or TPCA-1-preconditioned hMSCs. Thus, we provide a broadly applicable bioengineering solution to facilitate intracellular sustained release of agents that modulate signaling. We propose that this approach could be harnessed to improve control over MSC secretome post-transplantation, especially to prevent adverse remodeling post-myocardial infarction.

  13. A pro-inflammatory role for Th22 cells in Helicobacter pylori-associated gastritis.

    Science.gov (United States)

    Zhuang, Yuan; Cheng, Ping; Liu, Xiao-fei; Peng, Liu-sheng; Li, Bo-sheng; Wang, Ting-ting; Chen, Na; Li, Wen-hua; Shi, Yun; Chen, Weisan; Pang, Ken C; Zeng, Ming; Mao, Xu-hu; Yang, Shi-ming; Guo, Hong; Guo, Gang; Liu, Tao; Zuo, Qian-fei; Yang, Hui-jie; Yang, Liu-yang; Mao, Fang-yuan; Lv, Yi-pin; Zou, Quan-ming

    2015-09-01

    Helper T (Th) cell responses are critical for the pathogenesis of Helicobacter pylori-induced gastritis. Th22 cells represent a newly discovered Th cell subset, but their relevance to H. pylori-induced gastritis is unknown. Flow cytometry, real-time PCR and ELISA analyses were performed to examine cell, protein and transcript levels in gastric samples from patients and mice infected with H. pylori. Gastric tissues from interleukin (IL)-22-deficient and wild-type (control) mice were also examined. Tissue inflammation was determined for pro-inflammatory cell infiltration and pro-inflammatory protein production. Gastric epithelial cells and myeloid-derived suppressor cells (MDSC) were isolated, stimulated and/or cultured for Th22 cell function assays. Th22 cells accumulated in gastric mucosa of both patients and mice infected with H. pylori. Th22 cell polarisation was promoted via the production of IL-23 by dendritic cells (DC) during H. pylori infection, and resulted in increased inflammation within the gastric mucosa. This inflammation was characterised by the CXCR2-dependent influx of MDSCs, whose migration was induced via the IL-22-dependent production of CXCL2 by gastric epithelial cells. Under the influence of IL-22, MDSCs, in turn, produced pro-inflammatory proteins, such as S100A8 and S100A9, and suppressed Th1 cell responses, thereby contributing to the development of H. pylori-associated gastritis. This study, therefore, identifies a novel regulatory network involving H. pylori, DCs, Th22 cells, gastric epithelial cells and MDSCs, which collectively exert a pro-inflammatory effect within the gastric microenvironment. Efforts to inhibit this Th22-dependent pathway may therefore prove a valuable strategy in the therapy of H. pylori-associated gastritis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Intake of Red Wine in Different Meals Modulates Oxidized LDL Level, Oxidative and Inflammatory Gene Expression in Healthy People: A Randomized Crossover Trial

    Science.gov (United States)

    Di Renzo, Laura; Valente, Roberto; Colica, Carmen

    2014-01-01

    Several studies have found that adherence to the Mediterranean Diet, including consumption of red wine, is associated with beneficial effects on oxidative and inflammatory conditions. We evaluate the outcome of consumption of a McDonald's Meal (McD) and a Mediterranean Meal (MM), with and without the additive effect of red wine, in order to ascertain whether the addition of the latter has a positive impact on oxidized (ox-) LDL and on expression of oxidative and inflammatory genes. A total of 24 subjects were analyzed for ox-LDL, CAT, GPX1, SOD2, SIRT2, and CCL5 gene expression levels, before and after consumption of the 4 different meal combinations with washout intervals between each meal. When red wine is associated with McD or MM, values of ox-LDL are lowered (P < 0.05) and expression of antioxidant genes is increased, while CCL5 expression is decreased (P < 0.05). SIRT2 expression after MM and fasting with red wine is significantly correlated with downregulation of CCL5 and upregulation of CAT (P < 0.001). GPX1 increased significantly in the comparison between baseline and all conditions with red wine. We highlighted for the first time the positive effect of red wine intake combined with different but widely consumed meal types on ox-LDL and gene expression. Trial Registration. This trial is registered with ClinicalTrials.gov NCT01890070. PMID:24876915

  15. Intake of Red Wine in Different Meals Modulates Oxidized LDL Level, Oxidative and Inflammatory Gene Expression in Healthy People: A Randomized Crossover Trial

    Directory of Open Access Journals (Sweden)

    Laura Di Renzo

    2014-01-01

    Full Text Available Several studies have found that adherence to the Mediterranean Diet, including consumption of red wine, is associated with beneficial effects on oxidative and inflammatory conditions. We evaluate the outcome of consumption of a McDonald’s Meal (McD and a Mediterranean Meal (MM, with and without the additive effect of red wine, in order to ascertain whether the addition of the latter has a positive impact on oxidized (ox- LDL and on expression of oxidative and inflammatory genes. A total of 24 subjects were analyzed for ox-LDL, CAT, GPX1, SOD2, SIRT2, and CCL5 gene expression levels, before and after consumption of the 4 different meal combinations with washout intervals between each meal. When red wine is associated with McD or MM, values of ox-LDL are lowered (P<0.05 and expression of antioxidant genes is increased, while CCL5 expression is decreased (P<0.05. SIRT2 expression after MM and fasting with red wine is significantly correlated with downregulation of CCL5 and upregulation of CAT (P<0.001. GPX1 increased significantly in the comparison between baseline and all conditions with red wine. We highlighted for the first time the positive effect of red wine intake combined with different but widely consumed meal types on ox-LDL and gene expression. Trial Registration. This trial is registered with ClinicalTrials.gov NCT01890070.

  16. The gene expression profile of CD11c+ CD8α- dendritic cells in the pre-diabetic pancreas of the NOD mouse.

    Directory of Open Access Journals (Sweden)

    Wouter Beumer

    Full Text Available Two major dendritic cell (DC subsets have been described in the pancreas of mice: The CD11c+ CD8α- DCs (strong CD4+ T cell proliferation inducers and the CD8α+ CD103+ DCs (T cell apoptosis inducers. Here we analyzed the larger subset of CD11c+ CD8α- DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR to elucidate abnormalities in underlying gene expression networks. CD11c+ CD8α- DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+ CD8α- DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24 was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+ CD8α- DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+ CD8α- DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS.

  17. Gene expression profiling in brain of mice exposed to the marine neurotoxin ciguatoxin reveals an acute anti-inflammatory, neuroprotective response.

    Science.gov (United States)

    Ryan, James C; Morey, Jeanine S; Bottein, Marie-Yasmine Dechraoui; Ramsdell, John S; Van Dolah, Frances M

    2010-08-26

    Ciguatoxins (CTXs) are polyether marine neurotoxins and potent activators of voltage-gated sodium channels. This toxin is carried by multiple reef-fish species and human consumption of ciguatoxins can result in an explosive gastrointestinal/neurologic illness. This study characterizes the global transcriptional response in mouse brain to a symptomatic dose of the highly toxic Pacific ciguatoxin P-CTX-1 and additionally compares this data to transcriptional profiles from liver and whole blood examined previously. Adult male C57/BL6 mice were injected with 0.26 ng/g P-CTX-1 while controls received only vehicle. Animals were sacrificed at 1, 4 and 24 hrs and transcriptional profiling was performed on brain RNA with Agilent whole genome microarrays. RT-PCR was used to independently validate gene expression and the web tool DAVID was used to analyze gene ontology (GO) and molecular pathway enrichment of the gene expression data. A pronounced 4°C hypothermic response was recorded in these mice, reaching a minimum at 1 hr and lasting for 8 hrs post toxin exposure. Ratio expression data were filtered by intensity, fold change and p-value, with the resulting data used for time course analysis, K-means clustering, ontology classification and KEGG pathway enrichment. Top GO hits for this gene set included acute phase response and mono-oxygenase activity. Molecular pathway analysis showed enrichment for complement/coagulation cascades and metabolism of xenobiotics. Many immediate early genes such as Fos, Jun and Early Growth Response isoforms were down-regulated although others associated with stress such as glucocorticoid responsive genes were up-regulated. Real time PCR confirmation was performed on 22 differentially expressed genes with a correlation of 0.9 (Spearman's Rho, p < 0.0001) with microarray results. Many of the genes differentially expressed in this study, in parallel with the hypothermia, figure prominently in protection against neuroinflammation. Pathologic

  18. Multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts: differential role of hydroxycinnamic acids, flavonols and stilbenes on endothelial inflammatory gene expression.

    Science.gov (United States)

    Calabriso, Nadia; Scoditti, Egeria; Massaro, Marika; Pellegrino, Mariangela; Storelli, Carlo; Ingrosso, Ilaria; Giovinazzo, Giovanna; Carluccio, Maria Annunziata

    2016-03-01

    The aim of the study was to evaluate the vascular anti-inflammatory effects of polyphenolic extracts from two typical South Italy red wines, the specific contribution of individual polyphenols and the underlying mechanisms of action. Human endothelial cells were incubated with increasing concentrations (1-50 μg/mL) of Primitivo and Negroamaro polyphenolic extracts (PWPE and NWPE, respectively) or pure polyphenols (1-25 μmol/L), including hydroxycinnamic acids (p-coumaric, caffeic and caftaric acids), flavonols (kaempferol, quercetin, myricetin) or stilbenes (trans-resveratrol, trans-piceid) before stimulation with lipopolysaccharide. Through multiple assays, we analyzed the endothelial-monocyte adhesion, the endothelial expression of adhesion molecules (ICAM-1, VCAM-1 and E-Selectin), monocyte chemoattractant protein-1 (MCP-1) and macrophage colony-stimulating factor (M-CSF), as well as ROS intracellular levels and the activation of NF-κB and AP-1. Both PWPE and NWPE, already at 1 μg/mL, inhibited monocyte adhesion to stimulated endothelial cells, a key event in triggering vascular inflammation. They down-regulated the expression of adhesion molecules, ICAM-1, VCAM-1, E-Selectin, as well as MCP-1 and M-CSF, at mRNA and protein levels. All polyphenols reduced intracellular ROS, and everything, except caftaric acid, inhibited the endothelial expression of adhesion molecules and MCP-1, although with different potency. Flavonols and resveratrol significantly reduced also the endothelial expression and release of M-CSF. The decrease in endothelial inflammatory gene expression was related to the inhibition of NF-κB and AP-1 activation but not to intracellular oxidative stress. This study showed multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts and indentified specific bioactive polyphenols which could counteract inflammatory diseases including atherosclerosis.

  19. The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells.

    Science.gov (United States)

    Pourgholaminejad, Arash; Aghdami, Nasser; Baharvand, Hossein; Moazzeni, Seyed Mohammad

    2016-09-01

    Mesenchymal stem cells (MSCs), as cells with potential clinical utilities, have demonstrated preferential incorporation into inflammation sites. Immunophenotype and immunomodulatory functions of MSCs could alter by inflamed-microenvironments due to the local pro-inflammatory cytokine milieu. A major cellular mediator with specific function in promoting inflammation and pathogenicity of autoimmunity are IL-17-producing T helper 17 (Th17) cells that polarize in inflamed sites in the presence of pro-inflammatory cytokines such as Interleukin-1β (IL-1β), IL-6 and IL-23. Since MSCs are promising candidate for cell-based therapeutic strategies in inflammatory and autoimmune diseases, Th17 cell polarizing factors may alter MSCs phenotype and function. In this study, human bone-marrow-derived MSCs (BM-MSC) and adipose tissue-derived MSCs (AD-MSC) were cultured with or without IL-1β, IL-6 and IL-23 as pro-inflammatory cytokines. The surface markers and their differentiation capacity were measured in cytokine-untreated and cytokine-treated MSCs. MSCs-mediated immunomodulation was analyzed by their regulatory effects on mixed lymphocyte reaction (MLR) and the level of IL-10, TGF-β, IL-4, IFN-γ and TNF-α production as immunomodulatory cytokines. Pro-inflammatory cytokines showed no effect on MSCs morphology, immunophenotype and co-stimulatory molecules except up-regulation of CD45. Adipogenic and osteogenic differentiation capacity increased in CD45+ MSCs. Moreover, cytokine-treated MSCs preserved the suppressive ability of allogeneic T cell proliferation and produced higher level of TGF-β and lower level of IL-4. We concluded pro-inflammatory cytokines up-regulate the efficacy of MSCs in cell-based therapy of degenerative, inflammatory and autoimmune disorders. Copyright © 2016. Published by Elsevier Ltd.

  20. Terbinafine stimulates the pro-inflammatory responses in human monocytic THP-1 cells through an ERK signaling pathway.

    Science.gov (United States)

    Mizuno, Katsuhiko; Fukami, Tatsuki; Toyoda, Yasuyuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2010-10-23

    Oral antifungal terbinafine has been reported to cause liver injury with inflammatory responses in a small percentage of patients. However the underlying mechanism remains unknown. To examine the inflammatory reactions, we investigated whether terbinafine and other antifungal drugs increase the release of pro-inflammatory cytokines using human monocytic cells. Dose- and time-dependent changes in the mRNA expression levels and the release of interleukin (IL)-8 and tumor necrosis factor (TNF)α from human monocytic THP-1 and HL-60 cells with antifungal drugs were measured. Effects of terbinafine on the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK)1/2 were investigated. The release of IL-8 and TNFα from THP-1 and HL-60 cells was significantly increased by treatment with terbinafine but not by fluconazole, suggesting that terbinafine can stimulate monocytes and increase the pro-inflammatory cytokine release. Terbinafine also significantly increased the phosphorylation of ERK1/2 and p38 MAP kinase in THP-1 cells. Pretreatment with a MAP kinase/ERK kinase (MEK)1/2 inhibitor U0126 significantly suppressed the increase of IL-8 and TNFα levels by terbinafine treatment in THP-1 cells, but p38 MAPK inhibitor SB203580 did not. These results suggested that an ERK1/2 pathway plays an important role in the release of IL-8 and TNFα in THP-1 cells treated with terbinafine. The release of inflammatory mediators by terbinafine might be one of the mechanisms underlying immune-mediated liver injury. This in vitro method may be useful to predict adverse inflammatory reactions that lead to drug-induced liver injury. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures

    International Nuclear Information System (INIS)

    Kocbach, Anette; Herseth, Jan Inge; Lag, Marit; Refsnes, Magne; Schwarze, Per E.

    2008-01-01

    The inflammatory potential of particles from wood smoke and traffic has not been well elucidated. In this study, a contact co-culture of monocytes and pneumocytes was exposed to 10-40 μg/cm 2 of particles from wood smoke and traffic for 12, 40 and 64 h to determine their influence on pro-inflammatory cytokine release (TNF-α, IL-1, IL-6, IL-8) and viability. To investigate the role of organic constituents in cytokine release the response to particles, their organic extracts and the washed particles were compared. Antagonists were used to investigate source-dependent differences in intercellular signalling (TNF-α, IL-1). The cytotoxicity was low after exposure to particles from both sources. However, wood smoke, and to a lesser degree traffic-derived particles, induced a reduction in cell number, which was associated with the organic fraction. The release of pro-inflammatory cytokines was similar for both sources after 12 h, but traffic induced a greater release than wood smoke particles with increasing exposure time. The organic fraction accounted for the majority of the cytokine release induced by wood smoke, whereas the washed traffic particles induced a stronger response than the corresponding organic extract. TNF-α and IL-1 antagonists reduced the release of IL-8 induced by particles from both sources. In contrast, the IL-6 release was only reduced by the IL-1 antagonist during exposure to traffic-derived particles. In summary, particles from wood smoke and traffic induced differential pro-inflammatory response patterns with respect to cytokine release and cell number. Moreover, the influence of the organic particle fraction and intercellular signalling on the pro-inflammatory response seemed to be source-dependent

  2. Anti-Inflammatory Effects of Spirulina platensis Extract via the Modulation of Histone Deacetylases

    Directory of Open Access Journals (Sweden)

    Tho X. Pham

    2016-06-01

    Full Text Available We previously demonstrated that the organic extract of Spirulina platensis (SPE, an edible blue-green alga, possesses potent anti-inflammatory effects. In this study, we investigated if the regulation of histone deacetylases (HDACs play a role in the anti-inflammatory effect of SPE in macrophages. Treatment of macrophages with SPE rapidly and dose-dependently reduced HDAC2, 3, and 4 proteins which preceded decreases in their mRNA levels. Degradation of HDAC4 protein was attenuated in the presence of inhibitors of calpain proteases, lysosomal acidification, and Ca2+/calmodulin-dependent protein kinase II, respectively, but not a proteasome inhibitor. Acetylated histone H3 was increased in SPE-treated macrophages to a similar level as macrophages treated with a pan-HDAC inhibitor, with concomitant inhibition of inflammatory gene expression upon LPS stimulation. Knockdown of HDAC3 increased basal and LPS-induced pro-inflammatory gene expression, while HDAC4 knockdown increased basal expression of interleukin-1β (IL-1β, but attenuated LPS-induced inflammatory gene expression. Chromatin immunoprecipitation showed that SPE decreased p65 binding and H3K9/K14 acetylation at the Il-1β and tumor necrosis factor α (Tnfα promoters. Our results suggest that SPE increased global histone H3 acetylation by facilitating HDAC protein degradation, but decreases histone H3K9/K14 acetylation and p65 binding at the promoters of Il-1β and Tnfα to exert its anti-inflammatory effect.

  3. Gene expression in periodontal tissues following treatment

    Directory of Open Access Journals (Sweden)

    Eisenacher Martin

    2008-07-01

    Full Text Available Abstract Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A, Versican (CSPG-2, Matrixmetalloproteinase-1 (MMP-1, Down syndrome critical region protein-1 (DSCR-1, Macrophage inflammatory protein-2β (Cxcl-3, Inhibitor of apoptosis protein-1 (BIRC-1, Cluster of differentiation antigen 38 (CD38, Regulator of G-protein signalling-1 (RGS-1, and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS; the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2, Complement component 3 (C3, Prostaglandin-endoperoxide synthase-2 (COX-2, Interleukin-8 (IL-8, Endothelin-1 (EDN-1, Plasminogen activator inhibitor type-2 (PAI-2, Matrix-metalloproteinase-14 (MMP-14, and Interferon regulating factor-7 (IRF-7. Conclusion Gene expression profiles found in periodontal tissues following

  4. Pro-inflammatory capacity of classically activated monocytes relates positively to muscle mass and strength.

    Science.gov (United States)

    Beenakker, Karel G M; Westendorp, Rudi G J; de Craen, Anton J M; Slagboom, Pieternella E; van Heemst, Diana; Maier, Andrea B

    2013-08-01

    In mice, monocytes that exhibit a pro-inflammatory profile enter muscle tissue after muscle injury and are crucial for clearance of necrotic tissue and stimulation of muscle progenitor cell proliferation and differentiation. The aim of this study was to test if pro-inflammatory capacity of classically activated (M1) monocytes relates to muscle mass and strength in humans. This study included 191 male and 195 female subjects (mean age 64.2 years (SD 6.4) and 61.9 ± 6.4, respectively) of the Leiden Longevity Study. Pro-inflammatory capacity of M1 monocytes was assessed by ex vivo stimulation of whole blood with Toll-like receptor (TLR) 4 agonist lipopolysaccharide (LPS) and TLR-2/1 agonist tripalmitoyl-S-glycerylcysteine (Pam₃Cys-SK₄), both M1 phenotype activators. Cytokines that stimulate M1 monocyte response (IFN-γ and GM-CSF) as well as cytokines that are secreted by M1 monocytes (IL-6, TNF-α, IL-12, and IL-1β) were measured. Analyses were adjusted for age, height, and body fat mass. Upon stimulation with LPS, the cytokine production capacity of INF-γ, GM-CSF, and TNF-α was significantly positively associated with lean body mass, appendicular lean mass and handgrip strength in men, but not in women. Upon stimulation with Pam₃Cys-SK₄, IL-6; TNF-α; and Il-1β were significantly positively associated with lean body mass and appendicular lean in women, but not in men. Taken together, this study shows that higher pro-inflammatory capacity of M1 monocytes upon stimulation is associated with muscle characteristics and sex dependent. © 2013 John Wiley & Sons Ltd and the Anatomical Society.

  5. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue; Wang, Xiaoxuan [Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Zheng, Ming, E-mail: zhengm@bjmu.edu.cn [Department of Physiology and Pathophysiology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191 (China); Luan, Qing Xian, E-mail: kqluanqx@126.com [Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2016-09-10

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. - Highlights: • Inflammation is thought to promote pathogenic changes in periodontitis. • We investigated mtROS as a regulator of inflammation in gingival fibroblasts. • Targeted antioxidants were used to inhibit mtROS production after LPS challenge. • Inhibiting mtROS generation suppressed the secretion of pro-inflammatory cytokines. • JNK, p38, IKK, and NF-κB were shown to act as transducers of mtROS signaling.

  6. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts

    International Nuclear Information System (INIS)

    Li, Xue; Wang, Xiaoxuan; Zheng, Ming; Luan, Qing Xian

    2016-01-01

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. - Highlights: • Inflammation is thought to promote pathogenic changes in periodontitis. • We investigated mtROS as a regulator of inflammation in gingival fibroblasts. • Targeted antioxidants were used to inhibit mtROS production after LPS challenge. • Inhibiting mtROS generation suppressed the secretion of pro-inflammatory cytokines. • JNK, p38, IKK, and NF-κB were shown to act as transducers of mtROS signaling.

  7. Development of pro-inflammatory phenotype in monocytes after engulfing Hb-activated platelets in hemolytic disorders.

    Science.gov (United States)

    Singhal, Rashi; Chawla, Sheetal; Rathore, Deepak K; Bhasym, Angika; Annarapu, Gowtham K; Sharma, Vandana; Seth, Tulika; Guchhait, Prasenjit

    2017-02-01

    Monocytes and macrophage combat infections and maintain homeostatic balance by engulfing microbes and apoptotic cells, and releasing inflammatory cytokines. Studies have described that these cells develop anti-inflammatory properties upon recycling the free-hemoglobin (Hb) in hemolytic conditions. While investigating the phenotype of monocytes in two hemolytic disorders-paroxysmal nocturnal hemoglobinuria (PNH) and sickle cell disease (SCD), we observed a high number of pro-inflammatory (CD14 + CD16 hi ) monocytes in these patients. We further investigated in vitro the phenotype of these monocytes and found an estimated 55% of CD14 + cells were transformed into the CD14 + CD16 hi subset after engulfing Hb-activated platelets. The CD14 + CD16 hi monocytes, which were positive for both intracellular Hb and CD42b (platelet marker), secreted significant amounts of TNF-α and IL-1β, unlike monocytes treated with only free Hb, which secreted more IL-10. We have shown recently the presence of a high number of Hb-bound hyperactive platelets in patients with both diseases, and further investigated if the monocytes engulfed these activated platelets in vivo. As expected, we found 95% of CD14 + CD16 hi monocytes with both intracellular Hb and CD42b in both diseases, and they expressed high TNF-α. Furthermore our data showed that these monocytes whether from patients or developed in vitro after treatment with Hb-activated platelets, secreted significant amounts of tissue factor. Besides, these CD14 + CD16 hi monocytes displayed significantly decreased phagocytosis of E. coli. Our study therefore suggests that this alteration of monocyte phenotype may play a role in the increased propensity to pro-inflammatory/coagulant complications observed in these hemolytic disorders-PNH and SCD. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Ebi/AP-1 suppresses pro-apoptotic genes expression and permits long-term survival of Drosophila sensory neurons.

    Directory of Open Access Journals (Sweden)

    Young-Mi Lim

    Full Text Available Sensory organs are constantly exposed to physical and chemical stresses that collectively threaten the survival of sensory neurons. Failure to protect stressed neurons leads to age-related loss of neurons and sensory dysfunction in organs in which the supply of new sensory neurons is limited, such as the human auditory system. Transducin β-like protein 1 (TBL1 is a candidate gene for ocular albinism with late-onset sensorineural deafness, a form of X-linked age-related hearing loss. TBL1 encodes an evolutionarily conserved F-box-like and WD40 repeats-containing subunit of the nuclear receptor co-repressor/silencing mediator for retinoid and thyroid hormone receptor and other transcriptional co-repressor complexes. Here we report that a Drosophila homologue of TBL1, Ebi, is required for maintenance of photoreceptor neurons. Loss of ebi function caused late-onset neuronal apoptosis in the retina and increased sensitivity to oxidative stress. Ebi formed a complex with activator protein 1 (AP-1 and was required for repression of Drosophila pro-apoptotic and anti-apoptotic genes expression. These results suggest that Ebi/AP-1 suppresses basal transcription levels of apoptotic genes and thereby protects sensory neurons from degeneration.

  9. Increased asthma and adipose tissue inflammatory gene expression with obesity and Inuit migration to a western country

    DEFF Research Database (Denmark)

    Backer, Vibeke; Baines, Katherine J; Powell, Heather

    2016-01-01

    inflammation can be modified by migration and diet. OBJECTIVE: To examine mast cell and inflammatory markers in adipose tissue and the association with asthma. METHODS: Two Inuit populations were recruited, one living in Greenland and another in Denmark. All underwent adipose subcutaneous biopsy, followed...... of mast cell markers in adipose tissue and asthma. Among Greenlandic Inuit, adipose tissue inflammation is also increased in those who migrate to Denmark, possibly as a result of dietary changes....... by clinical assessment of asthma, and measurement of AHR. Adipose tissue biopsies were homogenised, RNA extracted, and PCR was performed to determine the relative gene expression of mast cell (tryptase, chymase, CPA3) and inflammatory markers (IL-6, IL-1β, and CD163). RESULTS: Of the 1059 Greenlandic Inuit...

  10. Transcriptomic landscape of lncRNAs in inflammatory bowel disease

    DEFF Research Database (Denmark)

    Mirza, Aashiq Hussain; Bang-Berthelsen, Claus Heiner; Seemann, Ernst Stefan

    2015-01-01

    -coding genes and microRNAs in modulating the immune responses in IBD. METHODS: In the present study, we performed a genome-wide transcriptome profiling of lncRNAs and protein-coding genes in 96 colon pinch biopsies (inflamed and non-inflamed) extracted from multiple colonic locations from 45 patients (CD = 13...... differentially expressed lncRNAs, respectively, while in cases of the non-inflamed CD and UC, we identified 12 and 19 differentially expressed lncRNAs, respectively. We also observed significant enrichment (P-value ... their involvement in the immune response, pro-inflammatory cytokine activity and MHC protein complex. CONCLUSIONS: The lncRNA expression profiling in both inflamed and non-inflamed CD and UC successfully stratified IBD patients from the healthy controls. Taken together, the identified lncRNA transcriptional...

  11. The dipeptide Pro-Asp promotes IGF-1 secretion and expression in hepatocytes by enhancing JAK2/STAT5 signaling pathway.

    Science.gov (United States)

    Wang, Songbo; Wang, Guoqing; Zhang, Mengyuan; Zhuang, Lu; Wan, Xiaojuan; Xu, Jingren; Wang, Lina; Zhu, Xiaotong; Gao, Ping; Xi, Qianyun; Zhang, Yongliang; Shu, Gang; Jiang, Qingyan

    2016-11-15

    It has been implicated that IGF-1 secretion can be regulated by dietary protein. However, whether the dipeptides, one of digested products of dietary protein, have influence on IGF-1 secretion remain largely unknown. Our study aimed to investigate the effects of the dipeptide Pro-Asp on IGF-1 secretion and expression in hepatocytes and to explore the possible underlying mechanisms. Our findings demonstrated that Pro-Asp promoted the secretion and gene expression of IGF-1 in HepG2 cells and primary porcine hepatocytes. Meanwhile, Pro-Asp activated the ERK and Akt signaling pathways, downstream of IGF-1. In addition, Pro-Asp enhanced GH-mediated JAK2/STAT5 signaling pathway, while inhibition of JAK2/STAT5 blocked the promotive effect of Pro-Asp on IGF-1 secretion and expression. Moreover, acute injection of Pro-Asp stimulated IGF-1 expression and activated JAK2/STAT5 signaling pathway in mice liver. Together, these results suggested that the dipeptide Pro-Asp promoted IGF-1 secretion and expression in hepatocytes by enhancing GH-mediated JAK2/STAT5 signaling pathway. Copyright © 2016. Published by Elsevier Ireland Ltd.

  12. The Expression of Inflammatory Mediators in Bladder Pain Syndrome.

    Science.gov (United States)

    Offiah, Ifeoma; Didangelos, Athanasios; Dawes, John; Cartwright, Rufus; Khullar, Vik; Bradbury, Elizabeth J; O'Sullivan, Suzanne; Williams, Dic; Chessell, Iain P; Pallas, Kenny; Graham, Gerry; O'Reilly, Barry A; McMahon, Stephen B

    2016-08-01

    Bladder pain syndrome (BPS) pathology is poorly understood. Treatment strategies are empirical, with limited efficacy, and affected patients have diminished quality of life. We examined the hypothesis that inflammatory mediators within the bladder contribute to BPS pathology. Fifteen women with BPS and 15 women with stress urinary incontinence without bladder pain were recruited from Cork University Maternity Hospital from October 2011 to October 2012. During cystoscopy, 5-mm bladder biopsies were taken and processed for gene expression analysis. The effect of the identified genes was tested in laboratory animals. We studied the expression of 96 inflammation-related genes in diseased and healthy bladders. We measured the correlation between genes and patient clinical profiles using the Pearson correlation coefficient. Analysis revealed 15 differentially expressed genes, confirmed in a replication study. FGF7 and CCL21 correlated significantly with clinical outcomes. Intravesical CCL21 instillation in rats caused increased bladder excitability and increased c-fos activity in spinal cord neurons. CCL21 atypical receptor knockout mice showed significantly more c-fos upon bladder stimulation with CCL21 than wild-type littermates. There was no change in FGF7-treated animals. The variability in patient samples presented as the main limitation. We used principal component analysis to identify similarities within the patient group. Our study identified two biologically relevant inflammatory mediators in BPS and demonstrated an increase in nociceptive signalling with CCL21. Manipulation of this ligand is a potential new therapeutic strategy for BPS. We compared gene expression in bladder biopsies of patients with bladder pain syndrome (BPS) and controls without pain and identified two genes that were increased in BPS patients and correlated with clinical profiles. We tested the effect of these genes in laboratory animals, confirming their role in bladder pain. Manipulating

  13. Macrophage elastase (MMP-12: a pro-inflammatory mediator?

    Directory of Open Access Journals (Sweden)

    Soazig Nénan

    2005-03-01

    Full Text Available As many metalloproteinases (MMPs, macrophage elastase (MMP-12 is able to degrade extracellular matrix components such as elastin and is involved in tissue remodeling processes. Studies using animal models of acute and chronic pulmonary inflammatory diseases, such as pulmonary fibrosis and chronic obstrutive pulmonary disease (COPD, have given evidences that MMP-12 is an important mediator of the pathogenesis of these diseases. However, as very few data regarding the direct involvement of MMP-12 in inflammatory process in the airways were available, we have instilled a recombinant form of human MMP-12 (rhMMP-12 in mouse airways. Hence, we have demonstrated that this instillation induced a severe inflammatory cell recruitment characterized by an early accumulation of neutrophils correlated with an increase in proinflammatory cytokines and in gelatinases and then by a relatively stable recruitment of macrophages in the lungs over a period of ten days. Another recent study suggests that resident alveolar macrophages and recruited neutrophils are not involved in the delayed macrophage recruitment. However, epithelial cells could be one of the main targets of rhMMP-12 in our model. We have also reported that a corticoid, dexamethasone, phosphodiesterase 4 inhibitor, rolipram and a non-selective MMP inhibitor, marimastat could reverse some of these inflammatory events. These data indicate that our rhMMP-12 model could mimic some of the inflammatory features observed in COPD patients and could be used for the pharmacological evaluation of new anti-inflammatory treatment. In this review, data demonstrating the involvement of MMP-12 in the pathogenesis of pulmonary fibrosis and COPD as well as our data showing a pro-inflammatory role for MMP-12 in mouse airways will be summarized.

  14. Tumor-adjacent tissue co-expression profile analysis reveals pro-oncogenic ribosomal gene signature for prognosis of resectable hepatocellular carcinoma.

    Science.gov (United States)

    Grinchuk, Oleg V; Yenamandra, Surya P; Iyer, Ramakrishnan; Singh, Malay; Lee, Hwee Kuan; Lim, Kiat Hon; Chow, Pierce Kah-Hoe; Kuznetsov, Vladamir A

    2018-01-01

    Currently, molecular markers are not used when determining the prognosis and treatment strategy for patients with hepatocellular carcinoma (HCC). In the present study, we proposed that the identification of common pro-oncogenic pathways in primary tumors (PT) and adjacent non-malignant tissues (AT) typically used to predict HCC patient risks may result in HCC biomarker discovery. We examined the genome-wide mRNA expression profiles of paired PT and AT samples from 321 HCC patients. The workflow integrated differentially expressed gene selection, gene ontology enrichment, computational classification, survival predictions, image analysis and experimental validation methods. We developed a 24-ribosomal gene-based HCC classifier (RGC), which is prognostically significant in both PT and AT. The RGC gene overexpression in PT was associated with a poor prognosis in the training (hazard ratio = 8.2, P = 9.4 × 10 -6 ) and cross-cohort validation (hazard ratio = 2.63, P = 0.004) datasets. The multivariate survival analysis demonstrated the significant and independent prognostic value of the RGC. The RGC displayed a significant prognostic value in AT of the training (hazard ratio = 5.0, P = 0.03) and cross-validation (hazard ratio = 1.9, P = 0.03) HCC groups, confirming the accuracy and robustness of the RGC. Our experimental and bioinformatics analyses suggested a key role for c-MYC in the pro-oncogenic pattern of ribosomal biogenesis co-regulation in PT and AT. Microarray, quantitative RT-PCR and quantitative immunohistochemical studies of the PT showed that DKK1 in PT is the perspective biomarker for poor HCC outcomes. The common co-transcriptional pattern of ribosome biogenesis genes in PT and AT from HCC patients suggests a new scalable prognostic system, as supported by the model of tumor-like metabolic redirection/assimilation in non-malignant AT. The RGC, comprising 24 ribosomal genes, is introduced as a robust and reproducible prognostic model for

  15. Inhibition of HIF-1α decreases expression of pro-inflammatory IL-6 and TNF-α in diabetic retinopathy.

    Science.gov (United States)

    Gao, Xiuhua; Li, Yonghua; Wang, Hongxia; Li, Chuanbao; Ding, Jianguang

    2017-12-01

    Recent studies demonstrate that pro-inflammatory cytokines (PICs, i.e. IL-1β, IL-6 and TNF-α) in retinal tissues are likely involved in the development of diabetic retinopathy (DR). In this report, we particularly examined contributions of hypoxia inducible factor subtype 1α (HIF-1α) to the expression of PICs and their receptors in diabetic retina. Streptozotocin (STZ) was systemically injected to induce hyperglycaemia in rats. ELISA and Western blot analysis were employed to determine the levels of HIF-1α and PICs as well as PIC receptors in retinal tissues of control rats and STZ rats. The levels of retinal HIF-1α were significantly increased in STZ rats 4-10 weeks after induction of hyperglycaemia as compared with control animals. With increasing HIF-1α retinal PICs including IL-1β, IL-6 and TNF-α, their respective receptors, namely IL-1R, IL-6R and TNFR1, were also elevated in STZ rats. Moreover, inhibition of HIF-1α by injection of 2-methoxyestradiol (2-MET) significantly decreased the amplified expression IL-6, TNF-α, IL-6R and TNFR1 in diabetic retina, but did not modify IL-1β pathway. In addition, we examined protein expression of Caspase-3 indicating cell apoptosis in the retina of STZ rats after infusing 2-MET, demonstrating that 2-MET attenuated an increase in Caspase-3 evoked by STZ. Hypoxia inducible factor subtype 1α (HIF-1α) activated in diabetic retina is likely to play a role in regulating pathophysiological process via IL-6 and TNF-α mechanism. This has pharmacological implications to target specific HIF-1α, IL-6 and TNF-α signalling pathway for dysfunction and vulnerability related to DR. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  16. Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    P.C. Calder

    1998-04-01

    Full Text Available 1. Fish oils are rich in the long-chain n-3 polyunsaturated fatty acids (PUFAs, eicosapentaenoic (20:5n-3 and docosahexaenoic (22:6n-3 acids. Linseed oil and green plant tissues are rich in the precursor fatty acid, a-linolenic acid (18:3n-3. Most vegetable oils are rich in the n-6 PUFA linoleic acid (18:2n-6, the precursor of arachidonic acid (20:4n-6. 2. Arachidonic acid-derived eicosanoids such as prostaglandin E2 are pro-inflammatory and regulate the functions of cells of the immune system. Consumption of fish oils leads to replacement of arachidonic acid in cell membranes by eicosapentaenoic acid. This changes the amount and alters the balance of eicosanoids produced. 3. Consumption of fish oils diminishes lymphocyte proliferation, T-cell-mediated cytotoxicity, natural killer cell activity, macrophage-mediated cytotoxicity, monocyte and neutrophil chemotaxis, major histocompatibility class II expression and antigen presentation, production of pro-inflammatory cytokines (interleukins 1 and 6, tumour necrosis factor and adhesion molecule expression. 4. Feeding laboratory animals fish oil reduces acute and chronic inflammatory responses, improves survival to endotoxin and in models of autoimmunity and prolongs the survival of grafted organs. 5. Feeding fish oil reduces cell-mediated immune responses. 6. Fish oil supplementation may be clinically useful in acute and chronic inflammatory conditions and following transplantation. 7. n-3 PUFAs may exert their effects by modulating signal transduction and/or gene expression within inflammatory and immune cells.

  17. WNT signaling controls expression of pro-apoptotic BOK and BAX in intestinal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zeilstra, Jurrit; Joosten, Sander P.J. [Department of Pathology, Academic Medical Center, University of Amsterdam (Netherlands); Wensveen, Felix M. [Department of Experimental Immunology, Academic Medical Center, Amsterdam (Netherlands); Dessing, Mark C.; Schuetze, Denise M. [Department of Pathology, Academic Medical Center, University of Amsterdam (Netherlands); Eldering, Eric [Department of Experimental Immunology, Academic Medical Center, Amsterdam (Netherlands); Spaargaren, Marcel [Department of Pathology, Academic Medical Center, University of Amsterdam (Netherlands); Pals, Steven T., E-mail: s.t.pals@amc.uva.nl [Department of Pathology, Academic Medical Center, University of Amsterdam (Netherlands)

    2011-03-04

    Research highlights: {yields} Intestinal adenomas initiated by aberrant activation of the WNT pathway displayed an increased sensitivity to apoptosis. {yields} Expression profiling of apoptosis-related genes in Apc{sup Min/+} mice revealed the differential expression of pro-apoptotic Bok and Bax. {yields} APC-mutant adenomatous crypts in FAP patients showed strongly increased BAX immunoreactivity. {yields} Blocking of {beta}-catenin/TCF-4-mediated signaling in colon cancer cells reduced the expression of BOK and BAX. -- Abstract: In a majority of cases, colorectal cancer is initiated by aberrant activation of the WNT signaling pathway. Mutation of the genes encoding the WNT signaling components adenomatous polyposis coli or {beta}-catenin causes constitutively active {beta}-catenin/TCF-mediated transcription, driving the transformation of intestinal crypts to cancer precursor lesions, called dysplastic aberrant crypt foci. Deregulated apoptosis is a hallmark of adenomatous colon tissue. However, the contribution of WNT signaling to this process is not fully understood. We addressed this role by analyzing the rate of epithelial apoptosis in aberrant crypts and adenomas of the Apc{sup Min/+} mouse model. In comparison with normal crypts and adenomas, aberrant crypts displayed a dramatically increased rate of apoptotic cell death. Expression profiling of apoptosis-related genes along the crypt-villus axis and in Apc mutant adenomas revealed increased expression of two pro-apoptotic Bcl-2 family members in intestinal adenomas, Bok and Bax. Analysis of the colon of familial adenomatous polyposis (FAP) patients along the crypt-to-surface axis, and of dysplastic crypts, corroborated this expression pattern. Disruption of {beta}-catenin/TCF-4-mediated signaling in the colorectal cancer cell line Ls174T significantly decreased BOK and BAX expression, confirming WNT-dependent regulation in intestinal epithelial cells. Our results suggest a feedback mechanism by which

  18. WNT signaling controls expression of pro-apoptotic BOK and BAX in intestinal cancer

    International Nuclear Information System (INIS)

    Zeilstra, Jurrit; Joosten, Sander P.J.; Wensveen, Felix M.; Dessing, Mark C.; Schuetze, Denise M.; Eldering, Eric; Spaargaren, Marcel; Pals, Steven T.

    2011-01-01

    Research highlights: → Intestinal adenomas initiated by aberrant activation of the WNT pathway displayed an increased sensitivity to apoptosis. → Expression profiling of apoptosis-related genes in Apc Min/+ mice revealed the differential expression of pro-apoptotic Bok and Bax. → APC-mutant adenomatous crypts in FAP patients showed strongly increased BAX immunoreactivity. → Blocking of β-catenin/TCF-4-mediated signaling in colon cancer cells reduced the expression of BOK and BAX. -- Abstract: In a majority of cases, colorectal cancer is initiated by aberrant activation of the WNT signaling pathway. Mutation of the genes encoding the WNT signaling components adenomatous polyposis coli or β-catenin causes constitutively active β-catenin/TCF-mediated transcription, driving the transformation of intestinal crypts to cancer precursor lesions, called dysplastic aberrant crypt foci. Deregulated apoptosis is a hallmark of adenomatous colon tissue. However, the contribution of WNT signaling to this process is not fully understood. We addressed this role by analyzing the rate of epithelial apoptosis in aberrant crypts and adenomas of the Apc Min/+ mouse model. In comparison with normal crypts and adenomas, aberrant crypts displayed a dramatically increased rate of apoptotic cell death. Expression profiling of apoptosis-related genes along the crypt-villus axis and in Apc mutant adenomas revealed increased expression of two pro-apoptotic Bcl-2 family members in intestinal adenomas, Bok and Bax. Analysis of the colon of familial adenomatous polyposis (FAP) patients along the crypt-to-surface axis, and of dysplastic crypts, corroborated this expression pattern. Disruption of β-catenin/TCF-4-mediated signaling in the colorectal cancer cell line Ls174T significantly decreased BOK and BAX expression, confirming WNT-dependent regulation in intestinal epithelial cells. Our results suggest a feedback mechanism by which uncontrolled epithelial cell proliferation in the

  19. HMGB in mollusk Crassostrea ariakensis Gould: structure, pro-inflammatory cytokine function characterization and anti-infection role of its antibody.

    Directory of Open Access Journals (Sweden)

    Ting Xu

    Full Text Available BACKGROUND: Crassostrea ariakensis Gould is a representative bivalve species and an economically important oyster in China, but suffers severe mortalities in recent years that are caused by rickettsia-like organism (RLO. Prevention and control of this disease is a priority for the development of oyster aquaculture. It has been proven that mammalian HMGB (high mobility group box can be released extracellularly and acts as an important pro-inflammatory cytokine and late mediator of inflammatory reactions. In vertebrates, HMGB's antibody (anti-HMGB has been shown to confer significant protection against certain local and systemic inflammatory diseases. Therefore, we investigated the functions of Ca-HMGB (oyster HMGB and anti-CaHMGB (Ca-HMGB's antibody in oyster RLO/LPS (RLO or LPS-induced disease or inflammation. METHODOLOGY/PRINCIPAL FINDINGS: Sequencing analysis revealed Ca-HMGB shares conserved structures with mammalians. Tissue-specific expression indicates that Ca-HMGB has higher relative expression in hemocytes. Significant continuous up-regulation of Ca-HMGB was detected when the hemocytes were stimulated with RLO/LPS. Recombinant Ca-HMGB protein significantly up-regulated the expression levels of some cytokines. Indirect immunofluorescence study revealed that Ca-HMGB localized both in the hemocyte nucleus and cytoplasm before RLO challenge, but mainly in the cytoplasm 12 h after challenge. Western blot analysis demonstrated Ca-HMGB was released extracellularly 4-12 h after RLO challenge. Anti-CaHMGB was added to the RLO/LPS-challenged hemocyte monolayer and real-time RT-PCR showed that administration of anti-CaHMGB dramatically reduced the rate of RLO/LPS-induced up-regulation of LITAF at 4-12 h after treatment. Flow cytometry analysis indicated that administration of anti-CaHMGB reduced RLO/LPS-induced hemocyte apoptosis and necrosis rates. CONCLUSIONS/SIGNIFICANCE: Ca-HMGB can be released extracellularly and its subcellular localization

  20. Pro-inflammatory wnt5a and anti-inflammatory sFRP5 are differentially regulated by nutritional factors in obese human subjects.

    Directory of Open Access Journals (Sweden)

    Dominik M Schulte

    Full Text Available Obesity is associated with macrophage infiltration of adipose tissue. These inflammatory cells affect adipocytes not only by classical cytokines but also by the secreted glycopeptide wnt5a. Healthy adipocytes are able to release the wnt5a inhibitor sFRP5. This protective effect, however, was found to be diminished in obesity. The aim of the present study was to examine (1 whether obese human subjects exhibit increased serum concentrations of wnt5a and (2 whether wnt5a and/or sFRP5 serum concentrations in obese subjects can be influenced by caloric restriction.23 obese human subjects (BMI 44.1 ± 1.1 kg/m(2 and 12 age- and sex-matched lean controls (BMI 22.3 ± 0.4 kg/m(2 were included in the study. Obese subjects were treated with a very low-calorie diet (approximately 800 kcal/d for 12 weeks. Body composition was assessed by impedance analysis, insulin sensitivity was estimated by HOMA-IR and the leptin-to-adiponectin ratio and wnt5a and sFRP5 serum concentrations were measured by ELISA. sFRP5 expression in human adipose tissue biopsies was further determined on protein level by immunohistology.Pro-inflammatory wnt5a was not measurable in any serum sample of lean control subjects. In patients with obesity, however, wnt5a became significantly detectable consistent with low grade inflammation in such subjects. Caloric restriction resulted in a weight loss from 131.9 ± 4.0 to 112.3 ± 3.2 kg in the obese patients group. This was accompanied by a significant decrease of HOMA-IR and leptin-to-adiponectin ratio, indicating improved insulin sensitivity. Interestingly, these metabolic improvements were associated with a significant increase in serum concentrations of the anti-inflammatory factor and wnt5a-inhibitor sFRP5.Obesity is associated with elevated serum levels of pro-inflammatory wnt5a in humans. Furthermore, caloric restriction beneficially affects serum concentrations of anti-inflammatory sFRP5 in such subjects. These findings suggest a

  1. Kefir reduces insulin resistance and inflammatory cytokine expression in an animal model of metabolic syndrome.

    Science.gov (United States)

    Rosa, Damiana D; Grześkowiak, Łukasz M; Ferreira, Célia L L F; Fonseca, Ana Carolina M; Reis, Sandra A; Dias, Mariana M; Siqueira, Nathane P; Silva, Leticia L; Neves, Clóvis A; Oliveira, Leandro L; Machado, Alessandra B F; Peluzio, Maria do Carmo G

    2016-08-10

    There is growing evidence that kefir can be a promising tool in decreasing the risk of many diseases, including metabolic syndrome (MetS). The aim of the present study was to evaluate the effect of kefir supplementation in the diet of Spontaneously Hypertensive Rats (SHR) in which MetS was induced with monosodium glutamate (MSG), and to determine its effect on metabolic parameters, inflammatory and oxidation marker expression and glycemic index control. Thirty animals were used in this experiment. For the induction of MetS, twenty two-day-old male SHR received five consecutive intradermal injections of MSG. For the Negative Control, ten newborn male SHR received intradermal injections of saline solution (0.9% saline solution). After weaning, animals received standard diet and water ad libitum until reaching 3 months old, for the development of MetS. They were then divided into three groups (n = 10): negative control (NC, 1 mL saline solution per day), positive control (PC, 1 mL saline solution per day) and the Kefir group (1 mL kefir per day). Feeding was carried out by gavage for 10 weeks and the animals received standard food and water ad libitum. Obesity, insulin resistance, pro- and anti-inflammatory markers, and the histology of pancreatic and adipose tissues were among the main variables evaluated. Compared to the PC group, kefir supplementation reduced plasma triglycerides, liver lipids, liver triglycerides, insulin resistance, fasting glucose, fasting insulin, thoracic circumference, abdominal circumference, products of lipid oxidation, pro-inflammatory cytokine expression (IL-1β) and increased anti-inflammatory cytokine expression (IL-10). The present findings indicate that kefir has the potential to benefit the management of MetS.

  2. Gene expression profiling in brain of mice exposed to the marine neurotoxin ciguatoxin reveals an acute anti-inflammatory, neuroprotective response

    Directory of Open Access Journals (Sweden)

    Ryan James C

    2010-08-01

    Full Text Available Abstract Background Ciguatoxins (CTXs are polyether marine neurotoxins and potent activators of voltage-gated sodium channels. This toxin is carried by multiple reef-fish species and human consumption of ciguatoxins can result in an explosive gastrointestinal/neurologic illness. This study characterizes the global transcriptional response in mouse brain to a symptomatic dose of the highly toxic Pacific ciguatoxin P-CTX-1 and additionally compares this data to transcriptional profiles from liver and whole blood examined previously. Adult male C57/BL6 mice were injected with 0.26 ng/g P-CTX-1 while controls received only vehicle. Animals were sacrificed at 1, 4 and 24 hrs and transcriptional profiling was performed on brain RNA with Agilent whole genome microarrays. RT-PCR was used to independently validate gene expression and the web tool DAVID was used to analyze gene ontology (GO and molecular pathway enrichment of the gene expression data. Results A pronounced 4°C hypothermic response was recorded in these mice, reaching a minimum at 1 hr and lasting for 8 hrs post toxin exposure. Ratio expression data were filtered by intensity, fold change and p-value, with the resulting data used for time course analysis, K-means clustering, ontology classification and KEGG pathway enrichment. Top GO hits for this gene set included acute phase response and mono-oxygenase activity. Molecular pathway analysis showed enrichment for complement/coagulation cascades and metabolism of xenobiotics. Many immediate early genes such as Fos, Jun and Early Growth Response isoforms were down-regulated although others associated with stress such as glucocorticoid responsive genes were up-regulated. Real time PCR confirmation was performed on 22 differentially expressed genes with a correlation of 0.9 (Spearman's Rho, p Conclusions Many of the genes differentially expressed in this study, in parallel with the hypothermia, figure prominently in protection against

  3. Leukocyte Inclusion within a Platelet Rich Plasma-Derived Fibrin Scaffold Stimulates a More Pro-Inflammatory Environment and Alters Fibrin Properties

    Science.gov (United States)

    Anitua, Eduardo; Zalduendo, Mar; Troya, María; Padilla, Sabino; Orive, Gorka

    2015-01-01

    One of the main differences among platelet-rich plasma (PRP) products is the inclusion of leukocytes that may affect the biological efficacy of these autologous preparations. The purpose of this study was to evaluate whether the addition of leukocytes modified the morphological, biomechanical and biological properties of PRP under normal and inflammatory conditions. The release of pro-inflammatory cytokines from plasma rich in growth factors (PRGF) and leukocyte-platelet rich plasma (L-PRP) scaffolds was determined by enzyme-linked immunosorbent assay (ELISA) and was significantly increased under an inflammatory condition when leukocytes were included in the PRP. Fibroblasts and osteoblasts treated with L-PRP, under an inflammatory situation, underwent a greater activation of NFĸB pathway, proliferated significantly less and secreted a higher concentration of pro-inflammatory cytokines. These cellular events were assessed through Western blot and fluorimetric and ELISA methods, respectively. Therefore, the inclusion of leukocytes induced significantly higher pro-inflammatory conditions. PMID:25823008

  4. Leukocyte inclusion within a platelet rich plasma-derived fibrin scaffold stimulates a more pro-inflammatory environment and alters fibrin properties.

    Directory of Open Access Journals (Sweden)

    Eduardo Anitua

    Full Text Available One of the main differences among platelet-rich plasma (PRP products is the inclusion of leukocytes that may affect the biological efficacy of these autologous preparations. The purpose of this study was to evaluate whether the addition of leukocytes modified the morphological, biomechanical and biological properties of PRP under normal and inflammatory conditions. The release of pro-inflammatory cytokines from plasma rich in growth factors (PRGF and leukocyte-platelet rich plasma (L-PRP scaffolds was determined by enzyme-linked immunosorbent assay (ELISA and was significantly increased under an inflammatory condition when leukocytes were included in the PRP. Fibroblasts and osteoblasts treated with L-PRP, under an inflammatory situation, underwent a greater activation of NFĸB pathway, proliferated significantly less and secreted a higher concentration of pro-inflammatory cytokines. These cellular events were assessed through Western blot and fluorimetric and ELISA methods, respectively. Therefore, the inclusion of leukocytes induced significantly higher pro-inflammatory conditions.

  5. Inherited Inflammatory Response Genes Are Associated with B-Cell Non-Hodgkin's Lymphoma Risk and Survival.

    Directory of Open Access Journals (Sweden)

    Kaspar René Nielsen

    Full Text Available Malignant B-cell clones are affected by both acquired genetic alterations and by inherited genetic variations changing the inflammatory tumour microenvironment.We investigated 50 inflammatory response gene polymorphisms in 355 B-cell non-Hodgkin's lymphoma (B-NHL samples encompassing 216 diffuse large B cell lymphoma (DLBCL and 139 follicular lymphoma (FL and 307 controls. The effect of single genes and haplotypes were investigated and gene-expression analysis was applied for selected genes. Since interaction between risk genes can have a large impact on phenotype, two-way gene-gene interaction analysis was included.We found inherited SNPs in genes critical for inflammatory pathways; TLR9, IL4, TAP2, IL2RA, FCGR2A, TNFA, IL10RB, GALNT12, IL12A and IL1B were significantly associated with disease risk and SELE, IL1RN, TNFA, TAP2, MBL2, IL5, CX3CR1, CHI3L1 and IL12A were, associated with overall survival (OS in specific diagnostic entities of B-NHL. We discovered noteworthy interactions between DLBCL risk alleles on IL10 and IL4RA and FL risk alleles on IL4RA and IL4. In relation to OS, a highly significant interaction was observed in DLBCL for IL4RA (rs1805010 * IL10 (rs1800890 (HR = 0.11 (0.02-0.50. Finally, we explored the expression of risk genes from the gene-gene interaction analysis in normal B-cell subtypes showing a different expression of IL4RA, IL10, IL10RB genes supporting a pathogenetic effect of these interactions in the germinal center.The present findings support the importance of inflammatory genes in B-cell lymphomas. We found association between polymorphic sites in inflammatory response genes and risk as well as outcome in B-NHL and suggest an effect of gene-gene interactions during the stepwise oncogenesis.

  6. Effect on Pro-inflammatory and Antioxidant Genes and Bioavailable Distribution of Whole Turmeric vs Curcumin: Similar Root but Different Effects

    Science.gov (United States)

    Martin, Robert CG; Aiyer, Harini S; Malik, Daniel; Li, Yan

    2011-01-01

    Curcuma longa is a perennial member of the Zingiberaceae family, and cultivated mainly in India, and Southeast Asia. The hypothesis for this study is that turmeric will have distinctive effects from curcumin due to the presence of other bioactive compounds. Thirty Eight-week old Sprague-Dawley rats were separated into 3 oral feeding groups. Group 1, standard rat chow, Control diet - AIN 93M, group 2 Curcumin- 700 ppm or 0.7 g/kg diet, and group 3 - Turmeric -14,000 ppm or 14 g/kg diet for a total of 3 weeks. One group of rats were feed all three diets only and another group underwent esophagoduodenal anastomosis to evaluate the effects of bioavailability. Curcumin diet did not increase the transcription of mRNA of TNF-alpha, IL-6, iNOS and COX-2. The average fold change in the mRNAs level was not significant. Whereas turmeric diet increases the levels of IL-6 (1.9 fold, p=0.05) iNOS (4.39 fold, p=0.02), IL-8 (3.11 fold, p=0.04) and COX-2 (2.02 fold, p=0.05), suggesting that turmeric either was more bioavailabile or had more affect on pro-inflammatory genes compare to curcumin diet. We have demonstrated the molecular effects of curcumin and turmeric in the role as an anti-inflammatory therapy. However, significant bioavailable differences do occur and must be considered in further chemopreventative investigative trials the setting of reflux esophagitis, Barrett’s esophagus, and other upper gastrointestinal cancers. PMID:22079310

  7. Identifying key genes in rheumatoid arthritis by weighted gene co-expression network analysis.

    Science.gov (United States)

    Ma, Chunhui; Lv, Qi; Teng, Songsong; Yu, Yinxian; Niu, Kerun; Yi, Chengqin

    2017-08-01

    This study aimed to identify rheumatoid arthritis (RA) related genes based on microarray data using the WGCNA (weighted gene co-expression network analysis) method. Two gene expression profile datasets GSE55235 (10 RA samples and 10 healthy controls) and GSE77298 (16 RA samples and seven healthy controls) were downloaded from Gene Expression Omnibus database. Characteristic genes were identified using metaDE package. WGCNA was used to find disease-related networks based on gene expression correlation coefficients, and module significance was defined as the average gene significance of all genes used to assess the correlation between the module and RA status. Genes in the disease-related gene co-expression network were subject to functional annotation and pathway enrichment analysis using Database for Annotation Visualization and Integrated Discovery. Characteristic genes were also mapped to the Connectivity Map to screen small molecules. A total of 599 characteristic genes were identified. For each dataset, characteristic genes in the green, red and turquoise modules were most closely associated with RA, with gene numbers of 54, 43 and 79, respectively. These genes were enriched in totally enriched in 17 Gene Ontology terms, mainly related to immune response (CD97, FYB, CXCL1, IKBKE, CCR1, etc.), inflammatory response (CD97, CXCL1, C3AR1, CCR1, LYZ, etc.) and homeostasis (C3AR1, CCR1, PLN, CCL19, PPT1, etc.). Two small-molecule drugs sanguinarine and papaverine were predicted to have a therapeutic effect against RA. Genes related to immune response, inflammatory response and homeostasis presumably have critical roles in RA pathogenesis. Sanguinarine and papaverine have a potential therapeutic effect against RA. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  8. Crosstalk between HDAC6 and Nox2-based NADPH oxidase mediates HIV-1 Tat-induced pro-inflammatory responses in astrocytes

    Directory of Open Access Journals (Sweden)

    Gi Soo Youn

    2017-08-01

    Full Text Available Histone deacetylase 6 (HDAC6 likely is important in inflammatory diseases. However, how HDAC6 exerts its effect on inflammatory processes remains unclear. HIV-1 transactivator of transcription (Tat activates NADPH oxidase resulting in generation of reactive oxygen species (ROS, leading to extensive neuro-inflammation in the central nervous system. We investigated the correlation of HDAC6 and NADPH oxidase in HIV-1 Tat-stimulated astrocytes. HDAC6 knockdown attenuated HIV-1 Tat-induced ROS generation and NADPH oxidase activation. HDAC6 knockdown suppressed HIV-1 Tat-induced expression of NADPH oxidase subunits, such as Nox2, p47phox, and p22phox. Specific inhibition of HDAC6 using tubastatin A suppressed HIV-1 Tat-induced ROS generation and activation of NADPH oxidase. N-acetyl cysteine, diphenyl iodonium, and apocynin suppressed HIV-1 Tat-induced expression of HDAC6 and the pro-inflammatory chemokines CCL2, CXCL8, and CXCL10. Nox2 knockdown attenuated HIV-1 Tat-induced HDAC6 expression and subsequent expression of chemokines. The collective results point to the potential crosstalk between HDAC6 and NADPH oxidase, which could be a combined therapeutic target for relief of HIV-1 Tat-mediated neuro-inflammation. Keywords: HIV-1 Tat, HDAC6, NADPH oxidase, ROS, Inflammation, Astrocytes

  9. Novel redox nanomedicine improves gene expression of polyion complex vector

    Directory of Open Access Journals (Sweden)

    Kazuko Toh, Toru Yoshitomi, Yutaka Ikeda and Yukio Nagasaki

    2011-01-01

    Full Text Available Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP as an ROS scavenger. When polyethyleneimine (PEI/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  10. Differential Roles of Hydrogen Peroxide in Adaptive and Inflammatory Gene Expression Induced by Exposure of Human Airway Epithelial Cells to Zn2+

    Science.gov (United States)

    Oxidant stress is believed to play an important role in particulate matter (PM)–mediated toxicity in the respiratory tract. Zinc (Zn2+) is a ubiquitous component of PM that has been shown to induce adverse responses such as inflammatory and adaptive gene expression in airway epit...

  11. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits type I-IV allergic inflammation and pro-inflammatory enzymes.

    Science.gov (United States)

    Lee, Ji Yun; Kim, Chang Jong

    2010-06-01

    We previously reported that arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan isolated from Forsythia koreana, exhibits anti-inflammatory, antioxidant, and analgesic effects in animal models. In addition, arctigenin inhibited eosinophil peroxidase and activated myeloperoxidase in inflamed tissues. In this study, we tested the effects of arctigenin on type I-IV allergic inflammation and pro-inflammatory enzymes in vitro and in vivo. Arctigenin significantly inhibited the heterologous passive cutaneous anaphylaxis induced by ovalbumin in mice at 15 mg/kg, p.o., and compound 48/80-induced histamine release from rat peritoneal mast cells at 10 microM. Arctigenin (15 mg/kg, p.o.) significantly inhibited reversed cutaneous anaphylaxis. Further, arctigenin (15 mg/kg, p.o.) significantly inhibited the Arthus reaction to sheep's red blood cells, decreasing the hemolysis titer, the hemagglutination titer, and the plaque-forming cell number for SRBCs. In addition, arctigenin significantly inhibited delayed type hypersensitivity at 15 mg/kg, p.o. and the formation of rosette-forming cells at 45 mg/kg, p.o. Contact dermatitis induced by picrylchloride and dinitrofluorobenzene was significantly (p arctigenin (0.3 mg/ear). Furthermore, arctigenin dose-dependently inhibited pro-inflammatory enzymes, such as cyclooxygenase-1 and 2, 5-lipoxygenase, phospholipase A2, and phosphodiesterase. Our results show that arctigenin significantly inhibited B- and T-cell mediated allergic inflammation as well as pro-inflammatory enzymes.

  12. Effects of non-pharmacological interventions on inflammatory biomarker expression in patients with fibromyalgia: a systematic review.

    Science.gov (United States)

    Sanada, Kenji; Díez, Marta Alda; Valero, Montserrat Salas; Pérez-Yus, María Cruz; Demarzo, Marcelo M P; García-Toro, Mauro; García-Campayo, Javier

    2015-09-26

    Fibromyalgia (FM) is a prevalent disorder. However, few studies have evaluated the effect of treatment interventions on biomarker expression. The aim of this review was to explore the efficacy of non-pharmacological interventions on inflammatory biomarker expression, specifically cytokines, neuropeptides and C-reactive protein (CRP), in FM patients. A literature search using PubMed, EMBASE, PsycINFO and the Cochrane library was performed from January 1990 to March 2015. Randomized controlled trials (RCTs) and non-RCTs published in English, French or Spanish were eligible. Twelve articles with a total of 536 participants were included. After exercise, multidisciplinary, or dietary interventions in FM patients, interleukin (IL) expression appeared reduced, specifically serum IL-8 and IL-6 (spontaneous, lipopolysaccharide (LPS)-induced, or serum). Furthermore, the changes to insulin-like growth factor 1 (IGF-1) levels might indicate a beneficial role for fatigue in obese FM patients. In contrast, evidence of changes in neuropeptide and CRP levels seemed inconsistent. Despite minimal evidence, our findings indicate that exercise interventions might act as an anti-inflammatory treatment in FM patients and ameliorate inflammatory status, especially for pro-inflammatory cytokines. Additional RCTs focused on the changes to inflammatory biomarker expression after non-pharmacological interventions in FM patients are needed.

  13. The role of pro-inflammatory and anti-inflammatory adipokines on exercise-induced bronchospasm in obese adolescents undergoing treatment.

    Science.gov (United States)

    da Silva, Patrícia Leão; de Mello, Marco Túlio; Cheik, Nadia Carla; Sanches, Priscila Lima; Piano, Aline; Corgosinho, Flávia Campos; Campos, Raquel Munhoz da Silveira; Carnier, June; Inoue, Daniela; do Nascimento, Claudia Mo; Oyama, Lila M; Tock, Lian; Tufik, Sérgio; Dâmaso, Ana R

    2012-04-01

    Recent studies have demonstrated a greater prevalence in exercise-induced bronchospasm (EIB) in obese adolescents. However, the role of pro-/anti-inflammatory adipokines and the repercussions of obesity treatment on EIB need to be explored further. Therefore, the objective of this study was to evaluate the role of pro-/anti-inflammatory adipokines on EIB in obese adolescents evaluated after long-term interdisciplinary therapy. Thirty-five post-pubertal obese adolescents, including 20 non-EIB (body mass index [BMI] 36 ± 5 kg/m(2)) and 15 EIB (BMI 36 ± 5 kg/m(2)), were enrolled in this study. Body composition was measured by plethysmography, using the BOD POD body composition system, and visceral fat was analyzed by ultrasound. Serum levels of adiponectin and leptin were analyzed. EIB and lung function were evaluated according to the American Thoracic Society criteria. Patients were recruited to a 1-year interdisciplinary intervention of weight loss, consisting of medical, nutritional, exercise, and psychological components. Anthropometrics and lung function variables improved significantly after the therapy in both groups. Furthermore we observed a reduction in EIB occurrence in obese adolescents after treatment. There was an increase in adiponectin levels and a reduction in leptin levels after the therapy. In addition, a low FEV(1) value was a risk factor associated with EIB occurrence at baseline, and was correlated after treatment with changes in anthropometric and maximal O(2) consumption values as well as the adipokines profile. In the present study it was demonstrated that 1 year of interdisciplinary therapy decreased EIB frequency in obese adolescents, paralleled by an increase in lung function and improvement in pro-/anti-inflammatory adipokines.

  14. A pro-inflammatory diet is associated with increased risk of developing hypertension among middle-aged women

    NARCIS (Netherlands)

    Vissers, L E T; Waller, M; van der Schouw, Y T; Hébert, J R; Shivappa, N; Schoenaker, D A J M; Mishra, G D

    BACKGROUND AND AIMS: A pro-inflammatory diet is thought to lead to hypertension through oxidative stress and vessel wall inflammation. We therefore investigated the association between the dietary inflammatory index (DII) and developing hypertension in a population-based cohort of middle-aged women.

  15. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders

    International Nuclear Information System (INIS)

    Kim, Jiyoung; Cha, Young-Nam; Surh, Young-Joon

    2010-01-01

    Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor that plays a central role in cellular defense against oxidative and electrophilic insults by timely induction of antioxidative and phase-2 detoxifying enzymes and related stress-response proteins. The 5'-flanking regions of genes encoding these cytoprotective proteins contain a specific consensus sequence termed antioxidant response element (ARE) to which Nrf2 binds. Recent studies have demonstrated that Nrf2-ARE signaling is also involved in attenuating inflammation-associated pathogenesis, such as autoimmune diseases, rheumatoid arthritis, asthma, emphysema, gastritis, colitis and atherosclerosis. Thus, disruption or loss of Nrf2 signaling causes enhanced susceptibility not only to oxidative and electrophilic stresses but also to inflammatory tissue injuries. During the early-phase of inflammation-mediated tissue damage, activation of Nrf2-ARE might inhibit the production or expression of pro-inflammatory mediators including cytokines, chemokines, cell adhesion molecules, matrix metalloproteinases, cyclooxygenase-2 and inducible nitric oxide synthase. It is likely that the cytoprotective function of genes targeted by Nrf2 may cooperatively regulate the innate immune response and also repress the induction of pro-inflammatory genes. This review highlights the protective role of Nrf2 in inflammation-mediated disorders with special focus on the inflammatory signaling modulated by this redox-regulated transcription factor.

  16. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    Science.gov (United States)

    Pomari, Elena; Stefanon, Bruno; Colitti, Monica

    2014-01-01

    Background Arctium lappa (AL), Camellia sinensis (CS), Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG), and Vaccinium myrtillus (VM) are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (m)RNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results A noncytotoxic dose (200 μM) of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001) regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in vitro and in vivo investigation into molecular mechanisms modulated by herbal extracts should be undertaken to shed light on the development of novel

  17. A realistic in vitro exposure revealed seasonal differences in (pro-)inflammatory effects from ambient air in Fribourg, Switzerland.

    Science.gov (United States)

    Bisig, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2018-01-01

    Ambient air pollutant levels vary widely in space and time, therefore thorough local evaluation of possible effects is needed. In vitro approaches using lung cell cultures grown at the air-liquid interface and directly exposed to ambient air can offer a reliable addition to animal experimentations and epidemiological studies. To evaluate the adverse effects of ambient air in summer and winter a multi-cellular lung model (16HBE14o-, macrophages, and dendritic cells) was exposed in a mobile cell exposure system. Cells were exposed on up to three consecutive days each 12 h to ambient air from Fribourg, Switzerland, during summer and winter seasons. Higher particle number, particulate matter mass, and nitrogen oxide levels were observed in winter ambient air compared to summer. Good cell viability was seen in cells exposed to summer air and short-term winter air, but cells exposed three days to winter air were compromised. Exposure of summer ambient air revealed no significant upregulation of oxidative stress or pro-inflammatory genes. On the opposite, the winter ambient air exposure led to an increased oxidative stress after two exposure days, and an increase in three assessed pro-inflammatory genes already after 12 h of exposure. We found that even with a short exposure time of 12 h adverse effects in vitro were observed only during exposure to winter but not summer ambient air. With this work we have demonstrated that our simple, fast, and cost-effective approach can be used to assess (adverse) effects of ambient air.

  18. Apoptotic effects of antilymphocyte globulins on human pro-inflammatory CD4+CD28- T-cells.

    Directory of Open Access Journals (Sweden)

    Christina Duftner

    Full Text Available BACKGROUND: Pro-inflammatory, cytotoxic CD4(+CD28(- T-cells with known defects in apoptosis have been investigated as markers of premature immuno-senescence in various immune-mediated diseases. In this study we evaluated the influence of polyclonal antilymphocyte globulins (ATG-Fresenius, ATG-F on CD4(+CD28(- T-cells in vivo and in vitro. PRINCIPAL FINDINGS: Surface and intracellular three colour fluorescence activated cell sorting analyses of peripheral blood mononuclear cells from 16 consecutive transplant recipients and short-term cell lines were performed. In vivo, peripheral levels of CD3(+CD4(+CD28(- T-cells decreased from 3.7 ± 7.1% before to 0 ± 0% six hours after ATG-F application (P = 0.043 in 5 ATG-F treated but not in 11 control patients (2.9 ± 2.9% vs. 3.9 ± 3.0%. In vitro, ATG-F induced apoptosis even in CD4(+CD28(- T-cells, which was 4.3-times higher than in CD4(+CD28(+ T-cells. ATG-F evoked apoptosis was partially reversed by the broad-spectrum caspase inhibitor benzyloxycarbonyl (Cbz-Val-Ala-Asp(OMe-fluoromethylketone (zVAD-fmk and prednisolon-21-hydrogensuccinate. ATG-F triggered CD25 expression and production of pro-inflammatory cytokines, and induced down-regulation of the type 1 chemokine receptors CXCR-3, CCR-5, CX3CR-1 and the central memory adhesion molecule CD62L predominately in CD4(+CD28(- T-cells. CONCLUSION: In summary, in vivo depletion of peripheral CD3(+CD4(+CD28(- T-cells by ATG-F in transplant recipients was paralleled in vitro by ATG-F induced apoptosis. CD25 expression and chemokine receptor down-regulation in CD4(+CD28(- T-cells only partly explain the underlying mechanism.

  19. Disruption of erythrocyte antioxidant defense system, hematological parameters, induction of pro-inflammatory cytokines and DNA damage in liver of co-exposed rats to aluminium and acrylamide.

    Science.gov (United States)

    Ghorbel, Imen; Maktouf, Sameh; Kallel, Choumous; Ellouze Chaabouni, Semia; Boudawara, Tahia; Zeghal, Najiba

    2015-07-05

    The individual toxic effects of aluminium and acrylamide are well known but there are no data on their combined effects. The present study was undertaken to determine (i) hematological parameters during individual and combined chronic exposure to aluminium and acrylamide (ii) correlation of oxidative stress in erythrocytes with pro-inflammatory cytokines expression, DNA damage and histopathological changes in the liver. Rats were exposed to aluminium (50 mg/kg body weight) in drinking water and acrylamide (20 mg/kg body weight) by gavage, either individually or in combination for 3 weeks. Exposure rats to AlCl3 or/and ACR provoked an increase in MDA, AOPP, H2O2 and a decrease in GSH and NPSH levels in erythrocytes. Activities of catalase, glutathione peroxidase and superoxide dismutase were decreased in all treated rats. Our results showed that all treatments induced an increase in WBC, erythrocyte osmotic fragility and a decrease in RBC, Hb and Ht. While MCV, MCH, MCHC remained unchanged. Hepatic pro-inflammatory cytokines expression including tumor necrosis factor-α, interleukin-6, interleukin-1β was increased suggesting leucocytes infiltration in the liver. A random DNA degradation was observed on agarose gel only in the liver of co-exposed rats to AlCl3 and ACR treatment. Interestingly, co-exposure to these toxicants exhibited synergism based on physical and biochemical variables in erythrocytes, pro-inflammatory cytokines and DNA damage in liver. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. A Highly Efficient Human Pluripotent Stem Cell Microglia Model Displays a Neuronal-Co-culture-Specific Expression Profile and Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Walther Haenseler

    2017-06-01

    Full Text Available Microglia are increasingly implicated in brain pathology, particularly neurodegenerative disease, with many genes implicated in Alzheimer's, Parkinson's, and motor neuron disease expressed in microglia. There is, therefore, a need for authentic, efficient in vitro models to study human microglial pathological mechanisms. Microglia originate from the yolk sac as MYB-independent macrophages, migrating into the developing brain to complete differentiation. Here, we recapitulate microglial ontogeny by highly efficient differentiation of embryonic MYB-independent iPSC-derived macrophages then co-culture them with iPSC-derived cortical neurons. Co-cultures retain neuronal maturity and functionality for many weeks. Co-culture microglia express key microglia-specific markers and neurodegenerative disease-relevant genes, develop highly dynamic ramifications, and are phagocytic. Upon activation they become more ameboid, releasing multiple microglia-relevant cytokines. Importantly, co-culture microglia downregulate pathogen-response pathways, upregulate homeostatic function pathways, and promote a more anti-inflammatory and pro-remodeling cytokine response than corresponding monocultures, demonstrating that co-cultures are preferable for modeling authentic microglial physiology.

  1. Osteoarthritis and rheumatoid arthritis pannus have similar qualitative metabolic characteristics and pro-inflammatory cytokine response.

    Science.gov (United States)

    Furuzawa-Carballeda, J; Macip-Rodríguez, P M; Cabral, A R

    2008-01-01

    Pannus in osteoarthritis (OA) has only recently been characterized. Little is known, however, regarding the behavior of OA pannus in vitro compared to rheumatoid arthritis (RA) pannus. The purpose of our study was to compare OA with RA pannus. Pannus and synovial tissue co-cultures from 5 patients with OA and 5 patients with RA obtained during arthroplasty were studied. Pannus was defined as the microscopic invasive granulation tissue covering the articular surface. Tissues were cultured for 7 days and stained with Alcian Blue technique. Interleukin-1beta (IL-1beta), IL-8, IL-10, IL-12, tumor necrosis factor-alpha (TNF-alpha), and interferon gamma (IFN-gamma) were also determined in supernatants by ELISA. Cartilage oligomeric matrix protein (COMP), type II collagen, TNF-alpha, IL-10 and Ki-67 expression were also detected by immunohistochemistry. All patients had vascular or fibrous pannus. Synovial proliferation, inflammatory infiltrates and a decrease of extracellular matrix proteins were observed in all tissue samples. Chondrocyte proliferation was lower in OA than RA cartilage. OA synovial tissue expressed lower levels of proteoglycans than RA synoyium. Type II collagen levels were lower in OA than in RA cartilage. Significantly higher levels of IL-1beta were found in the supernatants of RA pannus compared to OA pannus (ppannus supernatants. IL-10, IL-12 and IFN-gamma were undetectable. RA and OA pannus had similar pro-inflammatory and anti-inflammatory cytokine profile expression. OA cartilage, synovial tissue and pannus had lower production of proteoglycans, type II collagen and IL-1beta. It remains to be elucidated why OA pannus invades the cartilage surface but does not cause the marginal erosions typically seen in RA.

  2. Peripheral blood mononuclear cell gene expression profile in obese boys who followed a moderate energy-restricted diet: differences between high and low responders at baseline and after the intervention.

    Science.gov (United States)

    Rendo-Urteaga, Tara; García-Calzón, Sonia; González-Muniesa, Pedro; Milagro, Fermín I; Chueca, María; Oyarzabal, Mirentxu; Azcona-Sanjulián, M Cristina; Martínez, J Alfredo; Marti, Amelia

    2015-01-28

    The present study analyses the gene expression profile of peripheral blood mononuclear cells (PBMC) from obese boys. The aims of the present study were to identify baseline differences between low responders (LR) and high responders (HR) after 10 weeks of a moderate energy-restricted dietary intervention, and to compare the gene expression profile between the baseline and the endpoint of the nutritional intervention. Spanish obese boys (age 10-14 years) were advised to follow a 10-week moderate energy-restricted diet. Participants were classified into two groups based on the association between the response to the nutritional intervention and the changes in BMI standard deviation score (BMI-SDS): HR group (n 6), who had a more decreased BMI-SDS; LR group (n 6), who either maintained or had an even increased BMI-SDS. The expression of 28,869 genes was analysed in PBMC from both groups at baseline and after the nutritional intervention, using the Affymetrix Human Gene 1.1 ST 24-Array plate microarray. At baseline, the HR group showed a lower expression of inflammation and immune response-related pathways, which suggests that the LR group could have a more developed pro-inflammatory phenotype. Concomitantly, LEPR and SIRPB1 genes were highly expressed in the LR group, indicating a tendency towards an impaired immune response and leptin resistance. Moreover, the moderate energy-restricted diet was able to down-regulate the inflammatory 'mitogen-activated protein kinase signalling pathway' in the HR group, as well as some inflammatory genes (AREG and TNFAIP3). The present study confirms that changes in the gene expression profile of PBMC in obese boys may help to understand the weight-loss response. However, further research is required to confirm these findings.

  3. Etiogenic factors present in the cerebrospinal fluid from amyotrophic lateral sclerosis patients induce predominantly pro-inflammatory responses in microglia.

    Science.gov (United States)

    Mishra, Pooja-Shree; Vijayalakshmi, K; Nalini, A; Sathyaprabha, T N; Kramer, B W; Alladi, Phalguni Anand; Raju, T R

    2017-12-16

    Microglial cell-associated neuroinflammation is considered as a potential contributor to the pathophysiology of sporadic amyotrophic lateral sclerosis. However, the specific role of microglia in the disease pathogenesis remains to be elucidated. We studied the activation profiles of the microglial cultures exposed to the cerebrospinal fluid from these patients which recapitulates the neurodegeneration seen in sporadic amyotrophic lateral sclerosis. This was done by investigating the morphological and functional changes including the expression levels of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), TNF-α, IL-6, IFN-γ, IL-10, inducible nitric oxide synthase (iNOS), arginase, and trophic factors. We also studied the effect of chitotriosidase, the inflammatory protein found upregulated in the cerebrospinal fluid from amyotrophic lateral sclerosis patients, on these cultures. We report that the cerebrospinal fluid from amyotrophic lateral sclerosis patients could induce an early and potent response in the form of microglial activation, skewed primarily towards a pro-inflammatory profile. It was seen in the form of upregulation of the pro-inflammatory cytokines and factors including IL-6, TNF-α, iNOS, COX-2, and PGE2. Concomitantly, a downregulation of beneficial trophic factors and anti-inflammatory markers including VEGF, glial cell line-derived neurotrophic factor, and IFN-γ was seen. In addition, chitotriosidase-1 appeared to act specifically via the microglial cells. Our findings demonstrate that the cerebrospinal fluid from amyotrophic lateral sclerosis patients holds enough cues to induce microglial inflammatory processes as an early event, which may contribute to the neurodegeneration seen in the sporadic amyotrophic lateral sclerosis. These findings highlight the dynamic role of microglial cells in the pathogenesis of the disease, thus suggesting the need for a multidimensional and temporally guarded therapeutic approach targeting the inflammatory

  4. Decreased Regulatory T Cells in Vulnerable Atherosclerotic Lesions: Imbalance between Pro- and Anti-Inflammatory Cells in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Ilonka Rohm

    2015-01-01

    Full Text Available Atherosclerosis is a chronic inflammatory disease of the arterial wall in which presentation of autoantigens by dendritic cells (DCs leads to the activation of T cells. Anti-inflammatory cells like Tregs counterbalance inflammation in atherogenesis. In our study, human carotid plaque specimens were classified as stable (14 and unstable (15 according to established morphological criteria. Vessel specimens (n=12 without any signs of atherosclerosis were used as controls. Immunohistochemical staining was performed to detect different types of DCs (S100, fascin, CD83, CD209, CD304, and CD123, proinflammatory T cells (CD3, CD4, CD8, and CD161, and anti-inflammatory Tregs (FoxP3. The following results were observed: in unstable lesions, significantly higher numbers of proinflammatory cells like DCs, T helper cells, cytotoxic T cells, and natural killer cells were detected compared to stable plaques. Additionally, there was a significantly higher expression of HLA-DR and more T cell activation (CD25, CD69 in unstable lesions. On the contrary, unstable lesions contained significantly lower numbers of Tregs. Furthermore, a significant inverse correlation between myeloid DCs and Tregs was shown. These data suggest an increased inflammatory state in vulnerable plaques resulting from an imbalance of the frequency of local pro- and anti-inflammatory immune cells.

  5. The NOD-like receptor signalling pathway in Helicobacter pylori infection and related gastric cancer: a case-control study and gene expression analyses.

    Directory of Open Access Journals (Sweden)

    Natalia Castaño-Rodríguez

    Full Text Available BACKGROUND: Currently, it is well established that cancer arises in chronically inflamed tissue. A number of NOD-like receptors (NLRs form inflammasomes, intracellular multiprotein complexes critical for generating mature pro-inflammatory cytokines (IL-1β and IL-18. As chronic inflammation of the gastric mucosa is a consequence of Helicobacter pylori infection, we investigated the role of genetic polymorphisms and expression of genes involved in the NLR signalling pathway in H. pylori infection and related gastric cancer (GC. MATERIALS AND METHODS: Fifty-one genetic polymorphisms were genotyped in 310 ethnic Chinese (87 non-cardia GC cases and 223 controls with functional dyspepsia. In addition, gene expression of 84 molecules involved in the NLR signalling pathway was assessed in THP-1 cells challenged with two H. pylori strains, GC026 (GC and 26695 (gastritis. RESULTS: CARD8-rs11672725, NLRP3-rs10754558, NLRP3-rs4612666, NLRP12-rs199475867 and NLRX1-rs10790286 showed significant associations with GC. On multivariate analysis, CARD8-rs11672725 remained a risk factor (OR: 4.80, 95% CI: 1.39-16.58. Further, NLRP12-rs2866112 increased the risk of H. pylori infection (OR: 2.13, 95% CI: 1.22-3.71. Statistical analyses assessing the joint effect of H. pylori infection and the selected polymorphisms revealed strong associations with GC (CARD8, NLRP3, CASP1 and NLRP12 polymorphisms. In gene expression analyses, five genes encoding NLRs were significantly regulated in H. pylori-challenged cells (NLRC4, NLRC5, NLRP9, NLRP12 and NLRX1. Interestingly, persistent up-regulation of NFKB1 with simultaneous down-regulation of NLRP12 and NLRX1 was observed in H. pylori GC026-challenged cells. Further, NF-κB target genes encoding pro-inflammatory cytokines, chemokines and molecules involved in carcinogenesis were markedly up-regulated in H. pylori GC026-challenged cells. CONCLUSIONS: Novel associations between polymorphisms in the NLR signalling pathway (CARD8

  6. Association of Pro-apoptotic Bad Gene Expression Changes with Benign Thyroid Nodules.

    Science.gov (United States)

    Gül, Nurdan; Temel, Berna; Ustek, Duran; Sirma-Ekmekçi, Sema; Kapran, Yersu; Tunca, Fatih; Giles-Şenyürek, Yasemin; Özbek, Uğur; Alagöl, Faruk

    2018-01-01

    This study aimed to investigate the role of the mitochondrial apoptotic pathway in benign thyroid nodules. Paired samples of nodular and normal tissues were collected from 26 patients with nodular goiters undergoing thyroidectomy. Variable expression of Bcl-2, Bax and Bad genes were evaluated by quantitative PCR. Expression level of Bad gene in nodules was found to be significantly decreased compared to normal tissues (p=0.049). A positive correlation was observed between nodule size and Bad expression levels (correlation coefficient=0.563, p=0.004); and this correlation was stronger in hot nodules (n=18, correlation coefficient=0.689, p=0.003). No significant difference was observed between nodular and normal tissue expressions of Bax and Bcl-2. These results suggest that Bad expression correlates with the size of benign thyroid nodules and also its relatively lower expression in nodules, warrant further investigation. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Sulindac, a nonsteroidal anti-inflammatory drug, selectively inhibits interferon-γ-induced expression of the chemokine CXCL9 gene in mouse macrophages

    International Nuclear Information System (INIS)

    Sakaeda, Yoshiichi; Hiroi, Miki; Shimojima, Takahiro; Iguchi, Mayumi; Kanegae, Haruhide; Ohmori, Yoshihiro

    2006-01-01

    Sulindac, a non-steroidal anti-inflammatory drug, has been shown to exert an anti-tumor effect on several types of cancer. To determine the effect of sulindac on intracellular signaling pathways in host immune cells such as macrophages, we investigated the effect of the drug on interferon gamma (IFNγ)-induced expression of signal transducer and activator of transcription 1 (STAT1) and other genes in mouse macrophage-like cell line RAW264.7 cells. Sulindac, but not aspirin or sodium salicylate, inhibited IFNγ-induced expression of the CXC ligand 9 (CXCL9) mRNA, a chemokine for activated T cells, whereas the interferon-induced expression of CXCL10 or IFN regulatory factor-1 was not affected by sulindac. Luciferase reporter assay demonstrated that sulindac inhibited IFNγ-induced promoter activity of the CXCL9 gene. Surprisingly, sulindac had no inhibitory effect on IFNγ-induced STAT1 activation; however, constitutive nuclear factor κB activity was suppressed by the drug. These results indicate that sulindac selectively inhibited IFNγ-inducible gene expression without inhibiting STAT1 activation

  8. In vitro adhesion and anti-inflammatory properties of native Lactobacillus fermentum and Lactobacillus delbrueckii spp.

    Science.gov (United States)

    Archer, A C; Kurrey, N K; Halami, P M

    2018-03-14

    This study aimed at characterizing the adhesion and immune-stimulatory properties of native probiotic Lactobacillus fermentum (MCC 2759 and MCC 2760) and Lactobacillus delbrueckii MCC 2775. Adhesion of the strains was assessed in Caco-2 and HT-29 cell lines. Expression of adhesion and immune markers were evaluated in Caco-2 cells by real-time qPCR. The cultures displayed >80% of adhesion to both cell lines and also induced the expression of mucin-binding protein (mub) gene in the presence of mucin, bile and pancreatin. Adhesion was mediated by carbohydrate and proteinaceous factors. The cultures stimulated the expression of inflammatory cytokines in Caco-2 cells. However, pro-inflammatory genes were down-regulated upon challenge with lipopolysaccharide and IL-10 was up-regulated by the cultures. Cell wall extract of L. fermentum MCC 2760 induced the expression of IL-6 by 5·47-fold, whereas crude culture filtrate enhanced the expression of IL-10 by 14·87-fold compared to LPS control. The bacterial cultures exhibited strong adhesion and anti-inflammatory properties. This is the first report to reveal the role of adhesion markers of L. fermentum and L. delbrueckii by qPCR. The strain-specific anti-inflammatory property of native cultures may be useful to alleviate inflammatory conditions and develop a target-based probiotic. © 2018 The Society for Applied Microbiology.

  9. Sonicated Protein Fractions of Mycoplasma hyopneumoniae Induce Inflammatory Responses and Differential Gene Expression in a Murine Alveolar Macrophage Cell Line.

    Science.gov (United States)

    Damte, Dereje; Lee, Seung-Jin; Birhanu, Biruk Tesfaye; Suh, Joo-Won; Park, Seung-Chun

    2015-12-28

    Mycoplasma hyopneumoniae is known to cause porcine enzootic pneumonia (EP), an important disease in swine production. The objective of this study was to examine the effects of sonicated protein fractions of M. hyopneumoniae on inflammatory response and gene expression in the murine alveolar macrophage MH-S cell line. The effects of sonicated protein fractions and intact M. hyopneumoniae on the gene expression of cytokines and iNOS were assessed using RT-PCR. The Annealing Control Primer (ACP)-based PCR method was used to screen differentially expressed genes. Increased transcription of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, COX-2, and iNOS mRNA was observed after exposure to the supernatant (SPT), precipitant (PPT), and intact M. hyopneumoniae protein. A time-dependent analysis of the mRNA expression revealed an upregulation after 4 h for IL-6 and iNOS and after 12 h for IL-1β and TNF-α, for both SPT and PPT; the fold change in COX-2 expression was less. A dose- and time-dependent correlation was observed in nitrite (NO) production for both protein fractions; however, there was no significant difference between the effects of the two protein fractions. In a differential gene analysis, PCR revealed differential expression for nine gene bands after 3 h of stimulation - only one gene was downregulated, while the remaining eight were upregulated. The results of this study provide insights that help improve our understanding of the mechanisms underlying the pathogenesis of and macrophage defenses against M. hyopneumoniae assault, and suggest targets for future studies on therapeutic interventions for M. hyopneumoniae infections.

  10. Fatigue in Patients with Multiple Sclerosis: Is It Related to Pro- and Anti-Inflammatory Cytokines?

    Directory of Open Access Journals (Sweden)

    Arjan Malekzadeh

    2015-01-01

    Full Text Available Objective. To investigate the pathophysiological role of pro- and anti-inflammatory cytokines in primary multiple sclerosis-related fatigue. Methods. Fatigued and non-fatigued patients with multiple sclerosis (MS were recruited and their cytokine profiles compared. Patients with secondary fatigue were excluded. Fatigue was assessed with the self-reported Checklist Individual Strength (CIS20r, subscale fatigue. A CIS20r fatigue cut-off score of 35 was applied to differentiate between non-fatigued (CIS20r fatigue ≤34 and fatigued (CIS20r fatigue ≥35 patients with MS. Blood was collected to determine the serum concentrations of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, IL-12p70, IL-17, TNFα, and IFN-γ and anti-inflammatory cytokines (IL-4, IL-5, IL-10, and IL-13. We controlled for the confounding effect of age, gender, duration of MS, disease severity, type of MS, and use of immunomodulatory drugs. Results. Similar cytokine levels were observed between MS patients with (n=21 and without fatigue (n=14. Adjusted multiple regression analyses showed a single significant positive relationship, that of IL-6 with CIS20r fatigue score. The explained variance of the IL-6 model was 21.1%, once adjusted for the confounding effect of age. Conclusion. The pro-inflammatory cytokine interleukin-6 (IL-6 may play a role in the pathophysiology of primary fatigue in patients with MS. Trial Registrations. ISRCTN69520623, ISRCTN58583714, and ISRCTN82353628.

  11. Resistance exercise attenuates skeletal muscle oxidative stress, systemic pro-inflammatory state, and cachexia in Walker-256 tumor-bearing rats.

    Science.gov (United States)

    Padilha, Camila Souza; Borges, Fernando Henrique; Costa Mendes da Silva, Lilian Eslaine; Frajacomo, Fernando Tadeu Trevisan; Jordao, Alceu Afonso; Duarte, José Alberto; Cecchini, Rubens; Guarnier, Flávia Alessandra; Deminice, Rafael

    2017-09-01

    The aim of this study was to investigate the effects of resistance exercise training (RET) on oxidative stress, systemic inflammatory markers, and muscle wasting in Walker-256 tumor-bearing rats. Male (Wistar) rats were divided into 4 groups: sedentary controls (n = 9), tumor-bearing (n = 9), exercised (n = 9), and tumor-bearing exercised (n = 10). Exercised and tumor-bearing exercised rats were exposed to resistance exercise of climbing a ladder apparatus with weights tied to their tails for 6 weeks. The physical activity of control and tumor-bearing rats was confined to the space of the cage. After this period, tumor-bearing and tumor-bearing exercised animals were inoculated subcutaneously with Walker-256 tumor cells (11.0 × 10 7 cells in 0.5 mL of phosphate-buffered saline) while control and exercised rats were injected with vehicle. Following inoculation, rats maintained resistance exercise training (exercised and tumor-bearing exercised) or sedentary behavior (control and tumor-bearing) for 12 more days, after which they were euthanized. Results showed muscle wasting in the tumor-bearing group, with body weight loss, increased systemic leukocytes, and inflammatory interleukins as well as muscular oxidative stress and reduced mTOR signaling. In contrast, RET in the tumor-bearing exercised group was able to mitigate the reduced body weight and muscle wasting with the attenuation of muscle oxidative stress and systemic inflammatory markers. RET also prevented loss of muscle strength associated with tumor development. RET, however, did not prevent the muscle proteolysis signaling via FBXO32 gene messenger RNA expression in the tumor-bearing group. In conclusion, RET performed prior tumor implantation prevents cachexia development by attenuating tumor-induced systemic pro-inflammatory condition with muscle oxidative stress and muscle damage.

  12. Anti-inflammatory Effects of Fungal Metabolites in Mouse Intestine as Revealed by In vitro Models

    Directory of Open Access Journals (Sweden)

    Dominik Schreiber

    2017-08-01

    Full Text Available Inflammatory bowel diseases (IBD, which include Crohn's disease and ulcerative colitis, are chronic inflammatory disorders that can affect the whole gastrointestinal tract or the colonic mucosal layer. Current therapies aiming to suppress the exaggerated immune response in IBD largely rely on compounds with non-satisfying effects or side-effects. Therefore, new therapeutical options are needed. In the present study, we investigated the anti-inflammatory effects of the fungal metabolites, galiellalactone, and dehydrocurvularin in both an in vitro intestinal inflammation model, as well as in isolated myenteric plexus and enterocyte cells. Administration of a pro-inflammatory cytokine mix through the mesenteric artery of intestinal segments caused an up-regulation of inflammatory marker genes. Treatment of the murine intestinal segments with galiellalactone or dehydrocurvularin by application through the mesenteric artery significantly prevented the expression of pro-inflammatory marker genes on the mRNA and the protein level. Comparable to the results in the perfused intestine model, treatment of primary enteric nervous system (ENS cells from the murine intestine with the fungal compounds reduced expression of cytokines such as IL-6, TNF-α, IL-1β, and inflammatory enzymes such as COX-2 and iNOS on mRNA and protein levels. Similar anti-inflammatory effects of the fungal metabolites were observed in the human colorectal adenocarcinoma cell line DLD-1 after stimulation with IFN-γ (10 ng/ml, TNF-α (10 ng/ml, and IL-1β (5 ng/ml. Our results show that the mesenterially perfused intestine model provides a reliable tool for the screening of new therapeutics with limited amounts of test compounds. Furthermore, we could characterize the anti-inflammatory effects of two novel active compounds, galiellalactone, and dehydrocurvularin which are interesting candidates for studies with chronic animal models of IBD.

  13. Antimicrobial aspects of inflammatory resolution in the mucosa: A role for pro-resolving mediators1

    Science.gov (United States)

    Campbell, Eric L.; Serhan, Charles N.; Colgan, Sean P.

    2011-01-01

    Mucosal surfaces function as selectively permeable barriers between the host and the outside world. Given their close proximity to microbial antigens, mucosal surfaces have evolved sophisticated mechanisms for maintaining homeostasis and preventing excessive acute inflammatory reactions. The role attributed to epithelial cells was historically limited to serving as a selective barrier, in recent years numerous findings implicate an active role of the epithelium with pro-resolving mediators in the maintenance of immunological equilibrium. In this brief review, we highlight new evidence that the epithelium actively contributes to coordination and resolution of inflammation, principally through the generation of anti-inflammatory and pro-resolution lipid mediators. These autacoids, derived from ω-6 and ω-3 polyunsaturated fatty acids, are implicated in the initiation, progression and resolution of acute inflammation and display specific, epithelial-directed actions focused on mucosalhomeostasis. We also summarize present knowledge of mechanisms for resolution via regulation of epithelial-derived antimicrobial peptides in response to pro-resolving lipid mediators. PMID:21934099

  14. Do mechanical strain and TNF-α interact to amplify pro-inflammatory cytokine production in human annulus fibrosus cells?

    Science.gov (United States)

    Likhitpanichkul, Morakot; Torre, Olivia M; Gruen, Jadry; Walter, Benjamin A; Hecht, Andrew C; Iatridis, James C

    2016-05-03

    During intervertebral disc (IVD) injury and degeneration, annulus fibrosus (AF) cells experience large mechanical strains in a pro-inflammatory milieu. We hypothesized that TNF-α, an initiator of IVD inflammation, modifies AF cell mechanobiology via cytoskeletal changes, and interacts with mechanical strain to enhance pro-inflammatory cytokine production. Human AF cells (N=5, Thompson grades 2-4) were stretched uniaxially on collagen-I coated chambers to 0%, 5% (physiological) or 15% (pathologic) strains at 0.5Hz for 24h under hypoxic conditions with or without TNF-α (10ng/mL). AF cells were treated with anti-TNF-α and anti-IL-6. ELISA assessed IL-1β, IL-6, and IL-8 production and immunocytochemistry measured F-actin, vinculin and α-tubulin in AF cells. TNF-α significantly increased AF cell pro-inflammatory cytokine production compared to basal conditions (IL-1β:2.0±1.4-84.0±77.3, IL-6:10.6±9.9-280.9±214.1, IL-8:23.9±26.0-5125.1±4170.8pg/ml for basal and TNF-α treatment, respectively) as expected, but mechanical strain did not. Pathologic strain in combination with TNF-α increased IL-1β, and IL-8 but not IL-6 production of AF cells. TNF-α treatment altered F-actin and α-tubulin in AF cells, suggestive of altered cytoskeletal stiffness. Anti-TNF-α (infliximab) significantly inhibited pro-inflammatory cytokine production while anti-IL-6 (atlizumab) did not. In conclusion, TNF-α altered AF cell mechanobiology with cytoskeletal remodeling that potentially sensitized AF cells to mechanical strain and increased TNF-α-induced pro-inflammatory cytokine production. Results suggest an interaction between TNF-α and mechanical strain and future mechanistic studies are required to validate these observations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Host transcription factors in the immediate pro-inflammatory response to the parasitic mite Psoroptes ovis.

    Directory of Open Access Journals (Sweden)

    Stewart T G Burgess

    Full Text Available BACKGROUND: Sheep scab, caused by infestation with the ectoparasitic mite Psoroptes ovis, results in the rapid development of cutaneous inflammation and leads to the crusted skin lesions characteristic of the disease. We described previously the global host transcriptional response to infestation with P. ovis, elucidating elements of the inflammatory processes which lead to the development of a rapid and profound immune response. However, the mechanisms by which this response is instigated remain unclear. To identify novel methods of intervention a better understanding of the early events involved in triggering the immune response is essential. The objective of this study was to gain a clearer understanding of the mechanisms and signaling pathways involved in the instigation of the immediate pro-inflammatory response. RESULTS: Through a combination of transcription factor binding site enrichment and pathway analysis we identified key roles for a number of transcription factors in the instigation of cutaneous inflammation. In particular, defined roles were elucidated for the transcription factors NF-kB and AP-1 in the orchestration of the early pro-inflammatory response, with these factors being implicated in the activation of a suite of inflammatory mediators. CONCLUSIONS: Interrogation of the host temporal response to P. ovis infestation has enabled the further identification of the mechanisms underlying the development of the immediate host pro-inflammatory response. This response involves key regulatory roles for the transcription factors NF-kB and AP-1. Pathway analysis demonstrated that the activation of these transcription factors may be triggered following a host LPS-type response, potentially involving TLR4-signalling and also lead to the intriguing possibility that this could be triggered by a P. ovis allergen.

  16. Inflammatory Cytokines Induce Podoplanin Expression at the Tumor Invasive Front.

    Science.gov (United States)

    Kunita, Akiko; Baeriswyl, Vanessa; Meda, Claudia; Cabuy, Erik; Takeshita, Kimiko; Giraudo, Enrico; Wicki, Andreas; Fukayama, Masashi; Christofori, Gerhard

    2018-05-01

    Tumor invasion is a critical first step in the organismic dissemination of cancer cells and the formation of metastasis in distant organs, the most important prognostic factor and the actual cause of death in most of the cancer patients. We report herein that the cell surface protein podoplanin (PDPN), a potent inducer of cancer cell invasion, is conspicuously expressed by the invasive front of squamous cell carcinomas (SCCs) of the cervix in patients and in the transgenic human papillomavirus/estrogen mouse model of cervical cancer. Laser capture microscopy combined with gene expression profiling reveals that the expression of interferon-responsive genes is up-regulated in PDPN-expressing cells at the tumor invasive front, which are exposed to CD45-positive inflammatory cells. Indeed, PDPN expression can be induced in cultured SCC cell lines by single or combined treatments with interferon-γ, transforming growth factor-β, and/or tumor necrosis factor-α. Notably, shRNA-mediated ablation of either PDPN or STAT1 in A431 SCC cells repressed cancer cell invasion on s.c. transplantation into immunodeficient mice. The results highlight the induction of tumor cell invasion by the inflammatory cytokine-stimulated expression of PDPN in the outermost cell layers of cervical SCC. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Endogenous acute phase serum amyloid A lacks pro-inflammatory activity, contrasting the two recombinant variants that activate human neutrophils through different receptors

    Directory of Open Access Journals (Sweden)

    Karin eChristenson

    2013-04-01

    Full Text Available Most notable among the acute phase proteins is serum amyloid A (SAA, levels of which can increase 1000-fold during infections, aseptic inflammation, and/or trauma. Chronically elevated SAA levels are associated with a wide variety of pathological conditions, including obesity and rheumatic diseases. Using a recombinant hybrid of the two human SAA isoforms (SAA1 and 2 that does not exist in vivo, numerous in vitro studies have given rise to the notion that acute phase SAA is a pro-inflammatory molecule with cytokine-like properties. It is however unclear whether endogenous acute phase SAA per se mediates pro-inflammatory effects. We tested this in samples from patients with inflammatory arthritis and in a transgenic mouse model that expresses human SAA1. Endogenous human SAA did not drive production of pro-inflammatory IL-8/KC in either of these settings. Human neutrophils derived from arthritis patients displayed no signs of activation, despite being exposed to severely elevated SAA levels in circulation, and SAA-rich sera also failed to activate cells in vitro. In contrast, two recombinant SAA variants (the hybrid SAA and SAA1 both activated human neutrophils, inducing L-selectin shedding, production of reactive oxygen species, and production of IL-8. The hybrid SAA was approximately 100-fold more potent than recombinant SAA1. Recombinant hybrid SAA and SAA1 activated neutrophils through different receptors, with recombinant SAA1 being a ligand for formyl peptide receptor 2 (FPR2. We conclude that even though recombinant SAAs can be valuable tools for studying neutrophil activation, they do not reflect the nature of the endogenous protein.

  18. Antioxidants inhibit SAA formation and pro-inflammatory cytokine release in a human cell model of alkaptonuria.

    Science.gov (United States)

    Spreafico, Adriano; Millucci, Lia; Ghezzi, Lorenzo; Geminiani, Michela; Braconi, Daniela; Amato, Loredana; Chellini, Federico; Frediani, Bruno; Moretti, Elena; Collodel, Giulia; Bernardini, Giulia; Santucci, Annalisa

    2013-09-01

    Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease that currently lacks an appropriate therapy. Recently we provided experimental evidence that AKU is a secondary serum amyloid A (SAA)-based amyloidosis. The aim of the present work was to evaluate the use of antioxidants to inhibit SAA amyloid and pro-inflammatory cytokine release in AKU. We adopted a human chondrocytic cell AKU model to evaluate the anti-amyloid capacity of a set of antioxidants that had previously been shown to counteract ochronosis in a serum AKU model. Amyloid presence was evaluated by Congo red staining. Homogentisic acid-induced SAA production and pro-inflammatory cytokine release (overexpressed in AKU patients) were evaluated by ELISA and multiplex systems, respectively. Lipid peroxidation was evaluated by means of a fluorescence-based assay. Our AKU model allowed us to prove the efficacy of ascorbic acid combined with N-acetylcysteine, taurine, phytic acid and lipoic acid in significantly inhibiting SAA production, pro-inflammatory cytokine release and membrane lipid peroxidation. All the tested antioxidant compounds were able to reduce the production of amyloid and may be the basis for establishing new therapies for AKU amyloidosis.

  19. St. John's wort attenuates irinotecan-induced diarrhea via down-regulation of intestinal pro-inflammatory cytokines and inhibition of intestinal epithelial apoptosis

    International Nuclear Information System (INIS)

    Hu Zeping; Yang Xiaoxia; Chan Suiyung; Xu Anlong; Duan Wei; Zhu Yizhun; Sheu, F.-S.; Boelsterli, Urs Alex; Chan, Eli; Zhang Qiang; Wang, J.-C.; Ee, Pui Lai Rachel; Koh, H.L.; Huang Min; Zhou Shufeng

    2006-01-01

    Diarrhea is a common dose-limiting toxicity associated with cancer chemotherapy, in particular for drugs such as irinotecan (CPT-11), 5-fluouracil, oxaliplatin, capecitabine and raltitrexed. St. John's wort (Hypericum perforatum, SJW) has anti-inflammatory activity, and our preliminary study in the rat and a pilot study in cancer patients found that treatment of SJW alleviated irinotecan-induced diarrhea. In the present study, we investigated whether SJW modulated various pro-inflammatory cytokines including interleukins (IL-1β, IL-2, IL-6), interferon (IFN-γ) and tumor necrosis factor-α (TNF-α) and intestinal epithelium apoptosis in rats. The rats were treated with irinotecan at 60 mg/kg for 4 days in combination with oral SJW or SJW-free control vehicle at 400 mg/kg for 8 days. Diarrhea, tissue damage, body weight loss, various cytokines including IL-1β, IL-2, IL-6, IFN-γ and TNF-α and intestinal epithelial apoptosis were monitored over 11 days. Our studies demonstrated that combined SJW markedly reduced CPT-11-induced diarrhea and intestinal lesions. The production of pro-inflammatory cytokines such as IL-1β, IFN-γ and TNF-α was significantly up-regulated in intestine. In the mean time, combined SJW significantly suppressed the intestinal epithelial apoptosis induced by CPT-11 over days 5-11. In particular, combination of SJW significantly inhibited the expression of TNF-α mRNA in the intestine over days 5-11. In conclusion, inhibition of pro-inflammatory cytokines and intestinal epithelium apoptosis partly explained the protective effect of SJW against the intestinal toxicities induced by irinotecan. Further studies are warranted to explore the potential for STW as an agent in combination with chemotherapeutic drugs to lower their dose-limiting toxicities

  20. Phenolic excipients of insulin formulations induce cell death, pro-inflammatory signaling and MCP-1 release

    Directory of Open Access Journals (Sweden)

    Claudia Weber

    2015-01-01

    Insulin solutions displayed cytotoxic and pro-inflammatory potential caused by phenol or m-cresol. We speculate that during insulin pump therapy phenol and m-cresol might induce cell death and inflammatory reactions at the infusion site in vivo. Inflammation is perpetuated by release of MCP-1 by activated monocytic cells leading to enhanced recruitment of inflammatory cells. To minimize acute skin complications caused by phenol/m-cresol accumulation, a frequent change of infusion sets and rotation of the infusion site is recommended.

  1. Genome-wide Gene Expression Profiling of SCID Mice with T-cell-mediated Colitis

    DEFF Research Database (Denmark)

    Brudzewsky, D.; Pedersen, A. E.; Claesson, M. H.

    2009-01-01

    Inflammatory bowel disease (IBD) is a multifactorial disorder with an unknown aetiology. The aim of this study is to employ a murine model of IBD to identify pathways and genes, which may play a key role in the pathogenesis of IBD and could be important for discovery of new disease markers in human...... and colitis mice, and among these genes there is an overrepresentation of genes involved in inflammatory processes. Some of the most significant genes showing higher expression encode S100A proteins and chemokines involved in trafficking of leucocytes in inflammatory areas. Classification by gene clustering...... based on the genes with the significantly altered gene expression corresponds to two different levels of inflammation as established by the histological scoring of the inflamed rectum. These data demonstrate that this SCID T-cell transfer model is a useful animal model for human IBD and can be used...

  2. GSK3β is increased in adipose tissue and skeletal muscle from women with gestational diabetes where it regulates the inflammatory response.

    Directory of Open Access Journals (Sweden)

    Martha Lappas

    Full Text Available Infection and inflammation, through their ability to increase pro-inflammatory cytokines and chemokines and adhesion molecules, are thought to play a central role in the pathophysiology of insulin resistance and type 2 diabetes. Recent studies have shown that glycogen synthase kinase 3 (GSK3 plays a central role in regulating this inflammation. There are, however, no studies on the role of GSK3 in pregnancies complicated by gestational diabetes mellitus (GDM. Thus, the aims of this study were (i to determine whether GSK3 is increased in adipose tissue and skeletal muscle from women with GDM; and (ii to investigate the effect of GSK3 inhibition on inflammation in the presence of inflammation induced by bacterial endotoxin lipopolysaccharide (LPS or the pro-inflammatory cytokine IL-1β. Human omental adipose tissue and skeletal muscle were obtained from normal glucose tolerant (NGT women and BMI-matched women with diet-control GDM at the time of Caesarean section. Western blotting was performed to determine GSK3 protein expression. Tissue explants were performed to determine the effect of the GSK3 inhibitor CHIR99021 on markers of inflammation. When compared to women with NGT, omental adipose tissue and skeletal muscle obtained from women with diet-controlled GDM had significantly higher GSK3β activity as evidenced by a decrease in the expression of GSK3β phosphorylated at serine 9. The GSK3 inhibitor CHIR99021 significantly reduced the gene expression and secretion of the pro-inflammatory cytokines TNF-α, IL-1β and IL-6; the pro-inflammatory chemokines IL-8 and MCP-1; and the adhesion molecules ICAM-1 and VCAM-1 in tissues stimulated with LPS or IL-1β. In conclusion, GSK3 activity is increased in GDM adipose tissue and skeletal muscle and regulates infection- and inflammation-induced pro-inflammatory mediators.

  3. Duloxetine prevents the effects of prenatal stress on depressive-like and anxiety-like behavior and hippocampal expression of pro-inflammatory cytokines in adult male offspring rats.

    Science.gov (United States)

    Zhang, Xiaosong; Wang, Qi; Wang, Yan; Hu, Jingmin; Jiang, Han; Cheng, Wenwen; Ma, Yuchao; Liu, Mengxi; Sun, Anji; Zhang, Xinxin; Li, Xiaobai

    2016-12-01

    Stress during pregnancy may cause neurodevelopmental and psychiatric disorders. However, the mechanisms are largely unknown. Currently, pro-inflammatory cytokines have been identified as a risk factor for depression and anxiety disorder. Unfortunately, there is very little research on the long-term effects of prenatal stress on the neuroinflammatory system of offspring. Moreover, the relationship between antidepressant treatment and cytokines in the central nervous system, especially in the hippocampus, an important emotion modulation center, is unclear. Therefore, the aim of this study was to determine the effects of prenatal chronic mild stress during development on affective-like behaviors and hippocampal cytokines in adult offspring, and to verify whether antidepressant (duloxetine) administration from early adulthood could prevent the harmful consequences. To do so, prenatally stressed and non-stressed Sprague-Dawley rats were treated with either duloxetine (10mg/kg/day) or vehicle from postnatal day 60 for 21days. Adult offspring were divided into four groups: 1) prenatal stress+duloxetine treatment, 2) prenatal stress+vehicle, 3) duloxetine treatment alone, and 4) vehicle alone. Adult offspring were assessed for anxiety-like behavior using the open field test and depression-like behavior using the forced swim test. Brains were analyzed for pro-inflammatory cytokine markers in the hippocampus via real-time PCR. Results demonstrate that prenatal stress-induced anxiety- and depression-like behaviors are associated with an increase in hippocampal inflammatory mediators, and duloxetine administration prevents the increased hippocampal pro-inflammatory cytokine interleukin-6 and anxiety- and depression-like behavior in prenatally stressed adult offspring. This research provides important evidence on the long-term effect of PNS exposure during development in a model of maternal adversity to study the pathogenesis of depression and its therapeutic interventions

  4. Pro- and anti-inflammatory cytokines in healthy volunteers fed various doses of fish oil for 1 year.

    NARCIS (Netherlands)

    Blok, W.K.L.; Deslypere, J.P.; Demacker, P.N.M.; Ven-Jongekrijg, van der J.; Hectors, M.P.C.; Meer, van der J.W.M.; Katan, M.B.

    1997-01-01

    Dietary supplementation with n-3 fatty acids from fish oil alleviates inflammation in various chronic inflammatory disease states. Reductions in the production of pro-inflammatory cytokines interleukin 1 (IL-1), tumour necrosis factor alpha (TNF-), and interleukin 6 (IL-6) have been seen in humans

  5. A longitudinal study of gene expression in healthy individuals

    Directory of Open Access Journals (Sweden)

    Tessier Michel

    2009-06-01

    Full Text Available Abstract Background The use of gene expression in venous blood either as a pharmacodynamic marker in clinical trials of drugs or as a diagnostic test requires knowledge of the variability in expression over time in healthy volunteers. Here we defined a normal range of gene expression over 6 months in the blood of four cohorts of healthy men and women who were stratified by age (22–55 years and > 55 years and gender. Methods Eleven immunomodulatory genes likely to play important roles in inflammatory conditions such as rheumatoid arthritis and infection in addition to four genes typically used as reference genes were examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR, as well as the full genome as represented by Affymetrix HG U133 Plus 2.0 microarrays. Results Gene expression levels as assessed by qRT-PCR and microarray were relatively stable over time with ~2% of genes as measured by microarray showing intra-subject differences over time periods longer than one month. Fifteen genes varied by gender. The eleven genes examined by qRT-PCR remained within a limited dynamic range for all individuals. Specifically, for the seven most stably expressed genes (CXCL1, HMOX1, IL1RN, IL1B, IL6R, PTGS2, and TNF, 95% of all samples profiled fell within 1.5–2.5 Ct, the equivalent of a 4- to 6-fold dynamic range. Two subjects who experienced severe adverse events of cancer and anemia, had microarray gene expression profiles that were distinct from normal while subjects who experienced an infection had only slightly elevated levels of inflammatory markers. Conclusion This study defines the range and variability of gene expression in healthy men and women over a six-month period. These parameters can be used to estimate the number of subjects needed to observe significant differences from normal gene expression in clinical studies. A set of genes that varied by gender was also identified as were a set of genes with elevated

  6. Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses.

    Directory of Open Access Journals (Sweden)

    Kathie-Anne Walters

    Full Text Available Pulmonary exposure to Francisella tularensis is associated with severe lung pathology and a high mortality rate. The lack of induction of classical inflammatory mediators, including IL1-β and TNF-α, during early infection has led to the suggestion that F. tularensis evades detection by host innate immune surveillance and/or actively suppresses inflammation. To gain more insight into the host response to Francisella infection during the acute stage, transcriptomic analysis was performed on lung tissue from mice exposed to virulent (Francisella tularensis ssp tularensis SchuS4. Despite an extensive transcriptional response in the lungs of animals as early as 4 hrs post-exposure, Francisella tularensis was associated with an almost complete lack of induction of immune-related genes during the initial 24 hrs post-exposure. This broad subversion of innate immune responses was particularly evident when compared to the pulmonary inflammatory response induced by other lethal (Yersinia pestis and non-lethal (Legionella pneumophila, Pseudomonas aeruginosa pulmonary infections. However, the unique induction of a subset of inflammation-related genes suggests a role for dysregulation of lymphocyte function and anti-inflammatory pathways in the extreme virulence of Francisella. Subsequent activation of a classical inflammatory response 48 hrs post-exposure was associated with altered abundance of Francisella-specific transcripts, including those associated with bacterial surface components. In summary, virulent Francisella induces a unique pulmonary inflammatory response characterized by temporal regulation of innate immune pathways correlating with altered bacterial gene expression patterns. This study represents the first simultaneous measurement of both host and Francisella transcriptome changes that occur during in vivo infection and identifies potential bacterial virulence factors responsible for regulation of host inflammatory pathways.

  7. Fowlpoxvirus recombinants coding for the CIITA gene increase the expression of endogenous MHC-II and Fowlpox Gag/Pro and Env SIV transgenes.

    Science.gov (United States)

    Bissa, Massimiliano; Forlani, Greta; Zanotto, Carlo; Tosi, Giovanna; De Giuli Morghen, Carlo; Accolla, Roberto S; Radaelli, Antonia

    2018-01-01

    A complete eradication of an HIV infection has never been achieved by vaccination and the search for new immunogens that can induce long-lasting protective responses is ongoing. Avipoxvirus recombinants are host-restricted for replication to avian species and they do not have the undesired side effects induced by vaccinia recombinants. In particular, Fowlpox (FP) recombinants can express transgenes over long periods and can induce protective immunity in mammals, mainly due to CD4-dependent CD8+ T cells. In this context, the class II transactivator (CIITA) has a pivotal role in triggering the adaptive immune response through induction of the expression of class-II major histocompatibility complex molecule (MHC-II), that can present antigens to CD4+ T helper cells. Here, we report on construction of novel FPgp and FPenv recombinants that express the highly immunogenic SIV Gag-pro and Env structural antigens. Several FP-based recombinants, with single or dual genes, were also developed that express CIITA, driven from H6 or SP promoters. These recombinants were used to infect CEF and Vero cells in vitro and determine transgene expression, which was evaluated by real-time PCR and Western blotting. Subcellular localisation of the different proteins was evaluated by confocal microscopy, whereas HLA-DR or MHC-II expression was measured by flow cytometry. Fowlpox recombinants were also used to infect syngeneic T/SA tumour cells, then injected into Balb/c mice to elicit MHC-II immune response and define the presentation of the SIV transgene products in the presence or absence of FPCIITA. Antibodies to Env were measured by ELISA. Our data show that the H6 promoter was more efficient than SP to drive CIITA expression and that CIITA can enhance the levels of the gag/pro and env gene products only when infection is performed by FP single recombinants. Also, CIITA expression is higher when carried by FP single recombinants than when combined with FPgp or FPenv constructs and can

  8. Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages.

    Science.gov (United States)

    Rangel-Salazar, Rubén; Wickström-Lindholm, Marie; Aguilar-Salinas, Carlos A; Alvarado-Caudillo, Yolanda; Døssing, Kristina B V; Esteller, Manel; Labourier, Emmanuel; Lund, Gertrud; Nielsen, Finn C; Rodríguez-Ríos, Dalia; Solís-Martínez, Martha O; Wrobel, Katarzyna; Wrobel, Kazimierz; Zaina, Silvio

    2011-11-25

    We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, i.e. de novo DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20) hypermethylation in THP-1 macrophages. Here, we: 1) ask what gene expression changes accompany these epigenetic responses; 2) test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages. Native lipoprotein-induced de novo DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as de novo DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1) surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2) independent of the Dicer/micro-RNA pathway. Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a de novo DNA methyltransferase independently of canonical de novo enzymes, and show proof of principle that de novo DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.

  9. Hydrostatic pressure and muscarinic receptors are involved in the release of inflammatory cytokines in human bladder smooth muscle cells.

    Science.gov (United States)

    Liang, Zhou; Xin, Wei; Qiang, Liu; Xiang, Cai; Bang-Hua, Liao; Jin, Yang; De-Yi, Luo; Hong, Li; Kun-Jie, Wang

    2017-06-01

    Abnormal intravesical pressure results in a series of pathological changes. We investigated the effects of hydrostatic pressure and muscarinic receptors on the release of inflammatory cytokines in rat and human bladder smooth muscle cells (HBSMCs). Animal model of bladder outlet obstruction was induced by urethra ligation. HBSMCs were subjected to elevated hydrostatic pressure and/or acetylcholine (Ach). Macrophage infiltration in the bladder wall was determined by immunohistochemical staining. The expression of inflammatory genes was measured by RT-PCR, ELISA and immunofluorescence. In obstructed bladder, inflammatory genes and macrophage infiltration were remarkably induced. When HBSMCs were subjected to 200-300 cm H 2 O pressure for 2-24 h in vitro, the expressions of IL-6 and RANTES were significantly increased. Hydrostatic pressure promoted the protein levels of phospho-NFκB p65 and phospho-ERK1/2 as well as muscarinic receptors. Moreover, NFκB or ERK1/2 inhibitors suppressed pressure-induced inflammatory genes mRNA. When cells were treated with 1 μM acetylcholine for 6 h, a significant increase in IL-6 mRNA expression was detected. Acetylcholine also enhanced pressure-induced phospho-NFκB p65 and IL-6 protein expression. Additionally, pressure-induced IL-6 was partially suppressed by muscarinic receptors antagonists. Hydrostatic pressure and muscarinic receptors were involved in the secretion of inflammatory cytokines in HBSMCs, indicating a pro-inflammatory effect of the two factors in the pathological process of BOO. © 2016 Wiley Periodicals, Inc.

  10. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    Directory of Open Access Journals (Sweden)

    Pomari E

    2014-06-01

    Full Text Available Elena Pomari, Bruno Stefanon, Monica Colitti Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy Background: Arctium lappa (AL, Camellia sinensis (CS, Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG, and Vaccinium myrtillus (VM are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods: Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (mRNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results: A noncytotoxic dose (200 µM of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001 regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion: The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in

  11. Fasciola hepatica infection reduces Mycobacterium bovis burden and mycobacterial uptake and suppresses the pro-inflammatory response.

    Science.gov (United States)

    Garza-Cuartero, L; O'Sullivan, J; Blanco, A; McNair, J; Welsh, M; Flynn, R J; Williams, D; Diggle, P; Cassidy, J; Mulcahy, G

    2016-07-01

    Bovine tuberculosis (BTB), caused by Mycobacterium bovis, has an annual incidence in cattle of 0.5% in the Republic of Ireland and 4.7% in the UK, despite long-standing eradication programmes being in place. Failure to achieve complete eradication is multifactorial, but the limitations of diagnostic tests are significant complicating factors. Previously, we have demonstrated that Fasciola hepatica infection, highly prevalent in these areas, induced reduced sensitivity of the standard diagnostic tests for BTB in animals co-infected with F. hepatica and M. bovis. This was accompanied by a reduced M. bovis-specific Th1 immune response. We hypothesized that these changes in co-infected animals would be accompanied by enhanced growth of M. bovis. However, we show here that mycobacterial burden in cattle is reduced in animals co-infected with F. hepatica. Furthermore, we demonstrate a lower mycobacterial recovery and uptake in blood monocyte-derived macrophages (MDM) from F. hepatica-infected cattle which is associated with suppression of pro-inflammatory cytokines and a switch to alternative activation of macrophages. However, the cell surface expression of TLR2 and CD14 in MDM from F. hepatica-infected cattle is increased. These findings reflecting the bystander effect of helminth-induced downregulation of pro-inflammatory responses provide insights to understand host-pathogen interactions in co-infection. © 2016 The Authors. Parasite Immunology Published by John Wiley & Sons Ltd.

  12. Genetic and Imaging Approaches Reveal Pro-Inflammatory and Immunoregulatory Roles of Mast Cells in Contact Hypersensitivity

    Directory of Open Access Journals (Sweden)

    Nicolas Gaudenzio

    2018-06-01

    Full Text Available Contact hypersensitivity (CHS is a common T cell-mediated skin disease induced by epicutaneous sensitization to haptens. Mast cells (MCs are widely deployed in the skin and can be activated during CHS responses to secrete diverse products, including some with pro-inflammatory and anti-inflammatory functions. Conflicting results have been obtained regarding pathogenic versus protective roles of MCs in CHS, and this has been attributed in part to the limitations of certain models for studying MC functions in vivo. This review discusses recent advances in the development and analysis of mouse models to investigate the roles of MCs and MC-associated products in vivo. Notably, fluorescent avidin-based two-photon imaging approaches enable in vivo selective labeling and simultaneous tracking of MC secretory granules (e.g., during MC degranulation and MC gene activation by real-time longitudinal intravital microscopy in living mice. The combination of such genetic and imaging tools has shed new light on the controversial role played by MCs in mouse models of CHS. On the one hand, they can amplify CHS responses of mild severity while, on the other hand, can limit the inflammation and tissue injury associated with more severe or chronic models, in part by representing an initial source of the anti-inflammatory cytokine IL-10.

  13. Pro-inflammatory delipidizing cytokines reduce adiponectin secretion from human adipocytes without affecting adiponectin oligomerization

    NARCIS (Netherlands)

    Simons, Peter J.; van den Pangaart, Petra S.; Aerts, Johannes M. F. G.; Boon, Louis

    2007-01-01

    Adiponectin and, especially, its oligomeric complex composition have been suggested to be critical in determining insulin sensitivity. Pro-inflammatory cytokines play an important role in the development of insulin resistance in obesity and associated diseases. Therefore, we investigated the effect

  14. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jiyoung [National Research Laboratory, College of Pharmacy, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Cha, Young-Nam [Inha University College of Medicine, Incheon 382-751 (Korea, Republic of); Surh, Young-Joon, E-mail: surh@plaza.snu.ac.kr [National Research Laboratory, College of Pharmacy, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Cancer Research Institute, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2010-08-07

    Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor that plays a central role in cellular defense against oxidative and electrophilic insults by timely induction of antioxidative and phase-2 detoxifying enzymes and related stress-response proteins. The 5'-flanking regions of genes encoding these cytoprotective proteins contain a specific consensus sequence termed antioxidant response element (ARE) to which Nrf2 binds. Recent studies have demonstrated that Nrf2-ARE signaling is also involved in attenuating inflammation-associated pathogenesis, such as autoimmune diseases, rheumatoid arthritis, asthma, emphysema, gastritis, colitis and atherosclerosis. Thus, disruption or loss of Nrf2 signaling causes enhanced susceptibility not only to oxidative and electrophilic stresses but also to inflammatory tissue injuries. During the early-phase of inflammation-mediated tissue damage, activation of Nrf2-ARE might inhibit the production or expression of pro-inflammatory mediators including cytokines, chemokines, cell adhesion molecules, matrix metalloproteinases, cyclooxygenase-2 and inducible nitric oxide synthase. It is likely that the cytoprotective function of genes targeted by Nrf2 may cooperatively regulate the innate immune response and also repress the induction of pro-inflammatory genes. This review highlights the protective role of Nrf2 in inflammation-mediated disorders with special focus on the inflammatory signaling modulated by this redox-regulated transcription factor.

  15. In vivo immune signatures of healthy human pregnancy: Inherently inflammatory or anti-inflammatory?

    Directory of Open Access Journals (Sweden)

    Caroline Graham

    Full Text Available Changes in maternal innate immunity during healthy human pregnancy are not well understood. Whether basal immune status in vivo is largely unaffected by pregnancy, is constitutively biased towards an inflammatory phenotype (transiently enhancing host defense or exhibits anti-inflammatory bias (reducing potential responsiveness to the fetus is unclear. Here, in a longitudinal study of healthy women who gave birth to healthy infants following uncomplicated pregnancies within the Canadian Healthy Infant Longitudinal Development (CHILD cohort, we test the hypothesis that a progressively altered bias in resting innate immune status develops. Women were examined during pregnancy and again, one and/or three years postpartum. Most pro-inflammatory cytokine expression, including CCL2, CXCL10, IL-18 and TNFα, was reduced in vivo during pregnancy (20-57%, p<0.0001. Anti-inflammatory biomarkers (sTNF-RI, sTNF-RII, and IL-1Ra were elevated by ~50-100% (p<0.0001. Systemic IL-10 levels were unaltered during vs. post-pregnancy. Kinetic studies demonstrate that while decreased pro-inflammatory biomarker expression (CCL2, CXCL10, IL-18, and TNFα was constant, anti-inflammatory expression increased progressively with increasing gestational age (p<0.0001. We conclude that healthy resting maternal immune status is characterized by an increasingly pronounced bias towards a systemic anti-inflammatory innate phenotype during the last two trimesters of pregnancy. This is resolved by one year postpartum in the absence of repeat pregnancy. The findings provide enhanced understanding of immunological changes that occur in vivo during healthy human pregnancy.

  16. 11-Hydroxy-β-steroid dehydrogenase gene expression in canine adipose tissue and adipocytes: stimulation by lipopolysaccharide and tumor necrosis factor α.

    Science.gov (United States)

    Ryan, V H; Trayhurn, P; Hunter, L; Morris, P J; German, A J

    2011-10-01

    The enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD-1) is expressed in a number of tissues in rodents and humans and is responsible for the reactivation of inert cortisone into cortisol. Its gene expression and activity are increased in white adipose tissue (WAT) from obese humans and may contribute to the adverse metabolic consequences of obesity and the metabolic syndrome. The extent to which 11β-HSD-1 contributes to adipose tissue function in dogs is unknown; the aim of the present study was to examine 11β-HSD-1 gene expression and its regulation by proinflammatory and anti-inflammatory agents in canine adipocytes. Real-time PCR was used to examine the expression of 11β-HSD-1 in canine adipose tissue and canine adipocytes differentiated in culture. The mRNA encoding 11β-HSD-1 was identified in all the major WAT depots in dogs and also in liver, kidney, and spleen. Quantification by real-time PCR showed that 11β-HSD-1 mRNA was least in perirenal and falciform depots and greatest in subcutaneous, omental, and gonadal depots. Greater expression was seen in the omental depot in female than in male dogs (P=0.05). Gene expression for 11β-HSD-1 was also seen in adipocytes, from both subcutaneous and visceral depots, differentiated in culture; expression was evident throughout differentiation but was generally greatest in preadipocytes and during early differentiation, declining as cells progressed to maturity. The inflammatory mediators lipopolysaccharide and tumor necrosis factor α had a main stimulatory effect on 11β-HSD-1 gene expression in canine subcutaneous adipocytes, but IL-6 had no significant effect. Treatment with dexamethasone resulted in a significant time- and dose-dependent increase in 11β-HSD-1 gene expression, with greatest effects seen at 24 h (2 nM: approximately 4-fold; 20 nM: approximately 14-fold; P=0.010 for both). When subcutaneous adipocytes were treated with the peroxisome proliferator activated receptor γ agonist rosiglitazone

  17. IL-1β-specific recruitment of GCN5 histone acetyltransferase induces the release of PAF1 from chromatin for the de-repression of inflammatory response genes.

    Science.gov (United States)

    Kim, Nari; Sun, Hwa-Young; Youn, Min-Young; Yoo, Joo-Yeon

    2013-04-01

    To determine the functional specificity of inflammation, it is critical to orchestrate the timely activation and repression of inflammatory responses. Here, we explored the PAF1 (RNA polymerase II associated factor)-mediated signal- and locus-specific repression of genes induced through the pro-inflammatory cytokine interleukin (IL)-1β. Using microarray analysis, we identified the PAF1 target genes whose expression was further enhanced by PAF1 knockdown in IL-1β-stimulated HepG2 hepatocarcinomas. PAF1 bound near the transcription start sites of target genes and dissociated on stimulation. In PAF1-deficient cells, more elongating RNA polymerase II and acetylated histones were observed, although IL-1β-mediated activation and recruitment of nuclear factor κB (NF-κB) were not altered. Under basal conditions, PAF1 blocked histone acetyltransferase general control non-depressible 5 (GCN5)-mediated acetylation on H3K9 and H4K5 residues. On IL-1β stimulation, activated GCN5 discharged PAF1 from chromatin, allowing productive transcription to occur. PAF1 bound to histones but not to acetylated histones, and the chromatin-binding domain of PAF1 was essential for target gene repression. Moreover, IL-1β-induced cell migration was similarly controlled through counteraction between PAF1 and GCN5. These results suggest that the IL-1β signal-specific exchange of PAF1 and GCN5 on the target locus limits inappropriate gene induction and facilitates the timely activation of inflammatory responses.

  18. Excessive Pro-Inflammatory Serum Cytokine Concentrations in Virulent Canine Babesiosis

    DEFF Research Database (Denmark)

    Goddard, Amelia; Leisewitz, Andrew L; Kjelgaard-Hansen, Mads

    2016-01-01

    compared between the different groups using the Mann-Whitney U test. IL-10 and MCP-1 concentrations were significantly elevated for the Babesia-infected dogs compared to the healthy controls. In contrast, the IL-8 concentration was significantly decreased in the Babesia-infected dogs compared......Babesia rossi infection causes a severe inflammatory response in the dog, which is the result of the balance between pro- and anti-inflammatory cytokine secretion. The aim of this study was to determine whether changes in cytokine concentrations were present in dogs with babesiosis and whether...... it was associated with disease outcome. Ninety-seven dogs naturally infected with B. rossi were studied and fifteen healthy dogs were included as controls. Diagnosis of babesiosis was confirmed by polymerase chain reaction and reverse line blot. Blood samples were collected from the jugular vein at admission, prior...

  19. Amomum tsao-ko suppresses lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages via Nrf2-dependent heme oxygenase-1 expression.

    Science.gov (United States)

    Li, Bin; Choi, Hee-Jin; Lee, Dong-Sung; Oh, Hyuncheol; Kim, Youn-Chul; Moon, Jin-Young; Park, Won-Hwan; Park, Sun-Dong; Kim, Jai-Eun

    2014-01-01

    Amomum tsao-ko Crevost et Lemaire, used as a spice in Asia, is an important source of Chinese cuisine and traditional Chinese medicines. A. tsao-ko is reported to exert a variety of biological and pharmacological activities, including anti-proliferative, anti-oxidative and neuroprotective effects. In this study, NNMBS227, consisting of the ethanol extract of A. tsao-ko, exhibited potent anti-inflammatory activities in RAW264.7 macrophages. We investigated the effect of NNMBS227 in the suppression of pro-inflammatory mediators, including pro-inflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2) and cytokines (tumor necrosis factor-α and interleukin-1β) in LPS stimulated macrophages. NNMBS227 also inhibited the phosphorylation and degradation of IκB-α, as well as the nuclear translocation of nuclear factor kappa B (NF-κB) p65 caused by stimulation with LPS. In addition, NNMBS227 induced heme oxygenase (HO)-1 expression through the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in macrophages. Using tin protoporphyrin (SnPP), an HO activity inhibitor, we confirmed an association between the anti-inflammatory effects of NNMBS227 and the up-regulation of HO-1. These findings suggest that Nrf2-dependent increases in the expression of HO-1 induced by NNMBS227 conferred anti-inflammatory activities in LPS stimulated RAW264.7 macrophages.

  20. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    International Nuclear Information System (INIS)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi; Rhim, Hyangshuk; Bae, Yong Soo; Choi, Soo Young; Park, Jinseu

    2014-01-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction

  1. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Rhim, Hyangshuk [Department of Biomedical Sciences, Department of Medical Life Sciences, College of Medicine, the Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Bae, Yong Soo [Department of Biological Science, College of Natural Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Soo Young [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Park, Jinseu, E-mail: jinpark@hallym.ac.kr [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2014-10-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.

  2. [The degree of chronic renal failure is associated with the rate of pro-inflammatory cytokines, hyperhomocysteinemia and with oxidative stress].

    Science.gov (United States)

    Tbahriti, H F; Messaoudi, A; Kaddous, A; Bouchenak, M; Mekki, K

    2014-06-01

    To evaluate pro-inflammatory cytokines, homocysteinemia and markers of oxidative status in the course of chronic renal failure. One hundred and two patients (male/female: 38/64; age: 45±07 years) with chronic renal failure were divided into 4 groups according to the National Kidney Foundation classification. They included 28 primary stage renal failure patients, 28 moderate stage renal failure, 28 severe stage renal failure and 18 end stage renal failure. The inflammatory status was evaluated by the determination of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-6) and total homocysteine. Pro-oxidant status was assessed by assaying thiobarbituric acid reactive substances, hydroperoxides, and protein carbonyls. Antioxidant defence was performed by analysis of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase. Inflammatory markers were elevated in the end stage renal failure group compared to the other groups (Prenal failure group in comparison with the other groups (Prenal function is closely associated with the elevation of inflammatory markers leading to both increased markers of oxidative stress and decreased antioxidant defense. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Dexmedetomidine attenuates pancreatic injury and inflammatory response in mice with pancreatitis by possible reduction of NLRP3 activation and up-regulation of NET expression.

    Science.gov (United States)

    Li, Yong; Pan, Yiyuan; Gao, Lin; Lu, Guotao; Zhang, Jingzhu; Xie, Xiaochun; Tong, Zhihui; Li, Baiqiang; Li, Gang; Li, Weiqin

    2018-01-22

    Previous studies have shown that acute inflammation is associated with increased sympathetic activity, which in turn increases the inflammatory response and leads to organ damage. The present study aimed to investigate whether dexmedetomidine administration during acute pancreatitis (AP) lessens pancreatic pathological and functional injury and the inflammatory response, and to explore the underlying mechanisms. Mild pancreatitis was induced in mice with caerulein, and severe pancreatitis was induced with caerulein plus lipopolysaccharide (LPS). After pancreatitis induction, dexmedetomidine at 10 or 20 μg/kg was injected via the tail vein. Pancreatic pathological and functional injury was assessed by histology and serum levels of amylase and lipase, respectively. The inflammatory response was evaluated by determining serum levels of inflammatory factors. The expression of myeloperoxidase (MPO) was examined by immunohistochemistry. The expression of norepinephrine transporter (NET), NLRP3, pro-IL-1β, and interleukin (IL)-1β in pancreatic tissue was detected by Western blot and real-time PCR. Dexmedetomidine at 20 μg/kg significantly attenuated pancreatic pathological injury, reduced serum levels of amylase, lipase, IL-1β, IL-6, and tumor necrosis factor (TNF)-α, and decreased the expression of MPO in pancreatic tissue in both mouse models of pancreatitis. In addition, dexmedetomidine at 20 μg/kg significantly down-regulated the expression of NLRP3, pro-IL-1β, and IL-1β in pancreatic tissue, but up-regulated the expression of NET in both mouse models. Dexmedetomidine attenuates pancreatic injury and inflammatory response in mice with pancreatitis possibly by reducing NLRP3 activation and up-regulating NET expression. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Epigenetic control of the basal-like gene expression profile via Interleukin-6 in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Mitrugno Valentina

    2010-11-01

    Full Text Available Abstract Background Basal-like carcinoma are aggressive breast cancers that frequently carry p53 inactivating mutations, lack estrogen receptor-α (ERα and express the cancer stem cell markers CD133 and CD44. These tumors also over-express Interleukin 6 (IL-6, a pro-inflammatory cytokine that stimulates the growth of breast cancer stem/progenitor cells. Results Here we show that p53 deficiency in breast cancer cells induces a loss of methylation at IL-6 proximal promoter region, which is maintained by an IL-6 autocrine loop. IL-6 also elicits the loss of methylation at the CD133 promoter region 1 and of CD44 proximal promoter, enhancing CD133 and CD44 gene transcription. In parallel, IL-6 induces the methylation of estrogen receptor (ERα promoter and the loss of ERα mRNA expression. Finally, IL-6 induces the methylation of IL-6 distal promoter and of CD133 promoter region 2, which harbour putative repressor regions. Conclusion We conclude that IL-6, whose methylation-dependent autocrine loop is triggered by the inactivation of p53, induces an epigenetic reprogramming that drives breast carcinoma cells towards a basal-like/stem cell-like gene expression profile.

  5. Omega-3 fatty acids and inflammatory processes: from molecules to man.

    Science.gov (United States)

    Calder, Philip C

    2017-10-15

    Inappropriate, excessive or uncontrolled inflammation contributes to a range of human diseases. Inflammation involves a multitude of cell types, chemical mediators and interactions. The present article will describe nutritional and metabolic aspects of omega-6 (n-6) and omega-3 (n-3) fatty acids and explain the roles of bioactive members of those fatty acid families in inflammatory processes. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are n-3 fatty acids found in oily fish and fish oil supplements. These fatty acids are capable of partly inhibiting many aspects of inflammation including leucocyte chemotaxis, adhesion molecule expression and leucocyte-endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid and production of pro-inflammatory cytokines. In addition, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonic acid, and EPA and DHA give rise to anti-inflammatory and inflammation resolving mediators called resolvins, protectins and maresins. Mechanisms underlying the anti-inflammatory actions of EPA and DHA include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor κB so reducing expression of inflammatory genes and activation of the anti-inflammatory transcription factor peroxisome proliferator-activated receptor γ. Animal experiments demonstrate benefit from EPA and DHA in a range of models of inflammatory conditions. Human trials demonstrate benefit of oral n-3 fatty acids in rheumatoid arthritis and in stabilizing advanced atherosclerotic plaques. Intravenous n-3 fatty acids may have benefits in critically ill patients through reduced inflammation. The anti-inflammatory and inflammation resolving actions of EPA, DHA and their derivatives are of clinical relevance. © 2017 The Author

  6. Dissecting inflammatory complications in critically injured patients by within-patient gene expression changes: a longitudinal clinical genomics study.

    Directory of Open Access Journals (Sweden)

    Keyur H Desai

    2011-09-01

    Full Text Available Trauma is the number one killer of individuals 1-44 y of age in the United States. The prognosis and treatment of inflammatory complications in critically injured patients continue to be challenging, with a history of failed clinical trials and poorly understood biology. New approaches are therefore needed to improve our ability to diagnose and treat this clinical condition.We conducted a large-scale study on 168 blunt-force trauma patients over 28 d, measuring ∼400 clinical variables and longitudinally profiling leukocyte gene expression with ∼800 microarrays. Marshall MOF (multiple organ failure clinical score trajectories were first utilized to organize the patients into five categories of increasingly poor outcomes. We then developed an analysis framework modeling early within-patient expression changes to produce a robust characterization of the genomic response to trauma. A quarter of the genome shows early expression changes associated with longer-term post-injury complications, captured by at least five dynamic co-expression modules of functionally related genes. In particular, early down-regulation of MHC-class II genes and up-regulation of p38 MAPK signaling pathway were found to strongly associate with longer-term post-injury complications, providing discrimination among patient outcomes from expression changes during the 40-80 h window post-injury.The genomic characterization provided here substantially expands the scope by which the molecular response to trauma may be characterized and understood. These results may be instrumental in furthering our understanding of the disease process and identifying potential targets for therapeutic intervention. Additionally, the quantitative approach we have introduced is potentially applicable to future genomics studies of rapidly progressing clinical conditions.ClinicalTrials.gov NCT00257231

  7. Human resistin stimulates the pro-inflammatory cytokines TNF-α and IL-12 in macrophages by NF-κB-dependent pathway

    International Nuclear Information System (INIS)

    Silswal, Nirupama; Singh, Anil K.; Aruna, Battu; Mukhopadhyay, Sangita; Ghosh, Sudip; Ehtesham, Nasreen Z.

    2005-01-01

    Resistin, a recently discovered 92 amino acid protein involved in the development of insulin resistance, has been associated with obesity and type 2 diabetes. The elevated serum resistin in human diabetes is often associated with a pro-inflammatory milieu. However, the role of resistin in the development of inflammation is not well understood. Addition of recombinant human resistin protein (hResistin) to macrophages (both murine and human) resulted in enhanced secretion of pro-inflammatory cytokines, TNF-α and IL-12, similar to that obtained using 5 μg/ml lipopolysaccharide. Both oligomeric and dimeric forms of hResistin were able to activate these cytokines suggesting that the inflammatory action of resistin is independent of its conformation. Heat denatured hResistin abrogated cytokine induction while treatment of recombinant resistin with polymyxin B agarose beads had no effect thereby ruling out the role of endotoxin in the recombinant hResistin mediated cytokine induction. The pro-inflammatory nature of hResistin was further evident from the ability of this protein to induce the nuclear translocation of NF-κB transcription factor as seen from electrophoretic mobility shift assays. Induction of TNF-α in U937 cells by hResistin was markedly reduced in the presence of either dominant negative IκBα plasmid or PDTC, a pharmacological inhibitor of NF-κB. A protein involved in conferring insulin resistance is also a pro-inflammatory molecule that has important implications

  8. Suppression of pro-inflammatory T-cell responses by human mesothelial cells.

    Science.gov (United States)

    Lin, Chan-Yu; Kift-Morgan, Ann; Moser, Bernhard; Topley, Nicholas; Eberl, Matthias

    2013-07-01

    Human γδ T cells reactive to the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) contribute to acute inflammatory responses. We have previously shown that peritoneal dialysis (PD)-associated infections with HMB-PP producing bacteria are characterized by locally elevated γδ T-cell frequencies and poorer clinical outcome compared with HMB-PP negative infections, implying that γδ T cells may be of diagnostic, prognostic and therapeutic value in acute disease. The regulation by local tissue cells of these potentially detrimental γδ T-cell responses remains to be investigated. Freshly isolated γδ or αβ T cells were cultured with primary mesothelial cells derived from omental tissue, or with mesothelial cell-conditioned medium. Stimulation of cytokine production and proliferation by peripheral T cells in response to HMB-PP or CD3/CD28 beads was assessed by flow cytometry. Resting mesothelial cells were potent suppressors of pro-inflammatory γδ T cells as well as CD4+ and CD8+ αβ T cells. The suppression of γδ T-cell responses was mediated through soluble factors released by primary mesothelial cells and could be counteracted by SB-431542, a selective inhibitor of TGF-β and activin signalling. Recombinant TGF-β1 but not activin-A mimicked the mesothelial cell-mediated suppression of γδ T-cell responses to HMB-PP. The present findings indicate an important regulatory function of mesothelial cells in the peritoneal cavity by dampening pro-inflammatory T-cell responses, which may help preserve the tissue integrity of the peritoneal membrane in the steady state and possibly during the resolution of acute inflammation.

  9. CD200R1 supports HSV-1 viral replication and licenses pro-inflammatory signaling functions of TLR2.

    Directory of Open Access Journals (Sweden)

    Roy J Soberman

    Full Text Available The CD200R1:CD200 axis is traditionally considered to limit tissue inflammation by down-regulating pro-inflammatory signaling in myeloid cells bearing the receptor. We generated CD200R1(-/- mice and employed them to explore both the role of CD200R1 in regulating macrophage signaling via TLR2 as well as the host response to an in vivo, TLR2-dependent model, herpes simplex virus 1 (HSV-1 infection. CD200R1(-/- peritoneal macrophages demonstrated a 70-75% decrease in the generation of IL-6 and CCL5 (Rantes in response to the TLR2 agonist Pam(2CSK(4 and to HSV-1. CD200R1(-/- macrophages could neither up-regulate the expression of TLR2, nor assemble a functional inflammasome in response to HSV-1. CD200R1(-/- mice were protected from HSV-1 infection and exhibited dysfunctional TLR2 signaling. Finally, both CD200R1(-/- mice and CD200R1(-/- fibroblasts and macrophages showed a markedly reduced ability to support HSV-1 replication. In summary, our data demonstrate an unanticipated and novel requirement for CD200R1 in "licensing" pro-inflammatory functions of TLR2 and in limiting viral replication that are supported by ex vivo and in vivo evidence.

  10. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages

    Directory of Open Access Journals (Sweden)

    Tapas K. Nayak

    2017-01-01

    Full Text Available Chikungunya virus (CHIKV infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6 MHC-I/II and B7.2 (CD86 were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.

  11. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages.

    Science.gov (United States)

    Nayak, Tapas K; Mamidi, Prabhudutta; Kumar, Abhishek; Singh, Laishram Pradeep K; Sahoo, Subhransu S; Chattopadhyay, Soma; Chattopadhyay, Subhasis

    2017-01-06

    Chikungunya virus (CHIKV) infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6) MHC-I/II and B7.2 (CD86) were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.

  12. Synovial DKK1 expression is regulated by local glucocorticoid metabolism in inflammatory arthritis.

    Science.gov (United States)

    Hardy, Rowan; Juarez, Maria; Naylor, Amy; Tu, Jinwen; Rabbitt, Elizabeth H; Filer, Andrew; Stewart, Paul M; Buckley, Christopher D; Raza, Karim; Cooper, Mark S

    2012-10-18

    Inflammatory arthritis is associated with increased bone resorption and suppressed bone formation. The Wnt antagonist dickkopf-1 (DKK1) is secreted by synovial fibroblasts in response to inflammation and this protein has been proposed to be a master regulator of bone remodelling in inflammatory arthritis. Local glucocorticoid production is also significantly increased during joint inflammation. Therefore, we investigated how locally derived glucocorticoids and inflammatory cytokines regulate DKK1 synthesis in synovial fibroblasts during inflammatory arthritis. We examined expression and regulation of DKK1 in primary cultures of human synovial fibroblasts isolated from patients with inflammatory arthritis. The effect of TNFα, IL-1β and glucocorticoids on DKK1 mRNA and protein expression was examined by real-time PCR and ELISA. The ability of inflammatory cytokine-induced expression of the glucocorticoid-activating enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to sensitise fibroblasts to endogenous glucocorticoids was explored. Global expression of Wnt signalling and target genes in response to TNFα and glucocorticoids was assessed using a custom array. DKK1 expression in human synovial fibroblasts was directly regulated by glucocorticoids but not proinflammatory cytokines. Glucocorticoids, but not TNFα, regulated expression of multiple Wnt agonists and antagonists in favour of inhibition of Wnt signalling. However, TNFα and IL-1β indirectly stimulated DKK1 production through increased expression of 11β-HSD1. These results demonstrate that in rheumatoid arthritis synovial fibroblasts, DKK1 expression is directly regulated by glucocorticoids rather than TNFα. Consequently, the links between synovial inflammation, altered Wnt signalling and bone remodelling are not direct but are dependent on local activation of endogenous glucocorticoids.

  13. Anti-inflammatory effects of enzyme-treated asparagus extract and its constituents in hepatocytes

    Directory of Open Access Journals (Sweden)

    Mikio Nishizawa

    2016-02-01

    RNA and Hsp70 mRNA. ETAS also suppressed the production of pro-inflammatory cytokines and chemokines in hepatocytes. When (S-asfural and HMF were added to the medium, they suppressed NO production and iNOS gene expression. The IC50 value of(S-asfural was approximately 3-fold lower than that of HMF. In contrast, (S-asfural increased the levels of Hsf1 mRNA. Interestingly, the KRIBB11, an inhibitor of HSF1, reduced the expression of the iNOS gene. When both (S-asfural and KRIBB11 were added, the level of iNOS mRNA was lower than when (S-asfural alone was added.Conclusion:ETAS and its constituents (S-asfural and HMF suppressed NO production and the expression of pro-inflammatory cytokines and chemokines, thus showing anti-inflammatory effects. Our data suggest the possibility that the increased HSF1 level is involved in suppression of NO by ETAS and its constituents, although HSF1 is essential for the expression of the iNOSgene.

  14. Effect of a Herbal-Leucine mix on the IL-1β-induced cartilage degradation and inflammatory gene expression in human chondrocytes

    Directory of Open Access Journals (Sweden)

    Haqqi Tariq M

    2011-08-01

    Full Text Available Abstract Background Conventional treatments for the articular diseases are often effective for symptom relief, but can also cause significant side effects and do not slow the progression of the disease. Several natural substances have been shown to be effective at relieving the symptoms of osteoarthritis (OA, and preliminary evidence suggests that some of these compounds may exert a favorable influence on the course of the disease. The objective of this study was to investigate the anti-inflammatory/chondroprotective potential of a Herbal and amino acid mixture containing extract of the Uncaria tomentosa, Boswellia spp., Lepidium meyenii and L-Leucine on the IL-1β-induced production of nitric oxide (NO, glycosaminoglycan (GAG, matrix metalloproteinases (MMPs, aggrecan (ACAN and type II collagen (COL2A1 in human OA chondrocytes and OA cartilage explants. Methods Primary OA chondrocytes or OA cartilage explants were pretreated with Herbal-Leucine mixture (HLM, 1-10 μg/ml and then stimulated with IL-1β (5 ng/ml. Effect of HLM on IL-1β-induced gene expression of iNOS, MMP-9, MMP-13, ACAN and COL2A1 was verified by real time-PCR. Estimation of NO and GAG release in culture supernatant was done using commercially available kits. Results HLM tested in these in vitro studies was found to be an effective anti-inflammatory agent, as evidenced by strong inhibition of iNOS, MMP-9 and MMP-13 expression and NO production in IL-1β-stimulated OA chondrocytes (p Leucine mixture (HLM up-regulation of ACAN and COL2A1 expression in IL-1β-stimulated OA chondrocytes was also noted (p Conclusion Our data suggests that HLM could be chondroprotective and anti-inflammatory agent in arthritis, switching chondrocyte gene expression from catabolic direction towards anabolic and regenerative, and consequently this approach may be potentially useful as a new adjunct therapeutic/preventive agent for OA or injury recovery.

  15. SLPI and inflammatory lung disease in females.

    LENUS (Irish Health Repository)

    McKiernan, Paul J

    2012-02-01

    During the course of certain inflammatory lung diseases, SLPI (secretory leucoprotease inhibitor) plays a number of important roles. As a serine antiprotease it functions to protect the airways from proteolytic damage due to neutrophil and other immune cell-derived serine proteases. With respect to infection it has known antimicrobial and anti-viral properties that are likely to contribute to host defence. Another of its properties is the ability to control inflammation within the lung where it can interfere with the transcriptional induction of pro-inflammatory gene expression induced by NF-kappaB (nuclear factor kappaB). Thus, factors that regulate the expression of SLPI in the airways can impact on disease severity and outcome. Gender represents once such idiosyncratic factor. In females with CF (cystic fibrosis), it is now thought that circulating oestrogen contributes, in part, to the observed gender gap whereby females have worse disease and poorer prognosis than males. Conversely, in asthma, sufferers who are females have more frequent exacerbations at times of low-circulating oestrogen. In the present paper, we discuss how SLPI participates in these events and speculate on whether regulatory mechanisms such as post-transcriptional modulation by miRNAs (microRNAs) are important in the control of SLPI expression in inflammatory lung disease.

  16. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota.

    Science.gov (United States)

    Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie; Søndergaard, Jonas Nørskov; Musavian, Hanieh Sadat; Butt, Tariq Mahmood; Brix, Susanne

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3-5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota.

  17. Inflammatory cytokine expression following the use of bipolar electrocoagulation, ultracision harmonic scalpel and cold knife biopsy.

    Science.gov (United States)

    Litta, Pietro; Saccardi, Carlo; Gizzo, Salvatore; Conte, Lorena; Ambrosi, Giulia; Sissi, Claudia; Palumbo, Manlio

    2015-08-01

    Electrical surgical devices may determine tissue damage through lateral thermal spread and activation of inflammatory processes. Several tissue effects are associated with the use of different surgical instruments. The aim of the present study was to compare tissue damage following the application of cold knife biopsy, bipolar electrocoagulation and the ultracision harmonic scalpel, through the analysis of inflammatory gene mediator expression. Three fragments of the round ligament (length 0.5 cm) were obtained from 22 females who had undergone total or subtotal laparoscopic hysterectomy using three different modes of resection: Cold knife biopsy, bipolar electrocoagulation and ultracision harmonic scalpel. The tissue fragments were examined by quantitative polymerase chain reaction (qPCR) analysis of selected cytokines. Gene expression analysis demonstrated large standard deviations due to individual variability among patients and indicated variability in the concentrations of cytokines in the three different samples. The quantity of cytokine mRNA in the cold knife biopsy samples was generally greater than those obtained by other techniques. Tumor necrosis factor-α expression was significantly higher in the sample obtained with the ultracision harmonic scalpel and bipolar electrocoagulation (P=0.033) when compared with cold knife biopsy. The inflammatory response was analyzed by the quantification of gene expression through the use of qPCR. The ultracision harmonic scalpel and bipolar electrocoagulation triggered the inflammatory cascade and resulted in an increased production of cytokines compared with cold knife biopsy.

  18. Human Langerhans Cells with Pro-inflammatory Features Relocate within Psoriasis Lesions

    Science.gov (United States)

    Eidsmo, Liv; Martini, Elisa

    2018-01-01

    Psoriasis is a common skin disease that presents with well-demarcated patches of inflammation. Recurrent disease in fixed areas of the skin indicates a localized disease memory that is preserved in resolved lesions. In line with such concept, the involvement of tissue-resident immune cells in psoriasis pathology is increasingly appreciated. Langerhans cells (LCs) are perfectly placed to steer resident T cells and local tissue responses in psoriasis. Here, we present an overview of the current knowledge of LCs in human psoriasis, including findings that highlight pro-inflammatory features of LCs in psoriasis lesions. We also review the literature on conflicting data regarding LC localization and functionality in psoriasis. Our review highlights that further studies are needed to elucidate the molecular mechanisms that drive LCs functionality in inflammatory diseases. PMID:29520279

  19. Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages

    Directory of Open Access Journals (Sweden)

    Rangel-Salazar Rubén

    2011-11-01

    Full Text Available Abstract Background We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, i.e. de novo DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20 hypermethylation in THP-1 macrophages. Here, we: 1 ask what gene expression changes accompany these epigenetic responses; 2 test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages. Results Native lipoprotein-induced de novo DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as de novo DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1 surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2 independent of the Dicer/micro-RNA pathway. Conclusions Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a de novo DNA methyltransferase independently of canonical de novo enzymes, and show proof of principle that de novo DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.

  20. T cell activation inhibitors reduce CD8+ T cell and pro-inflammatory macrophage accumulation in adipose tissue of obese mice.

    Directory of Open Access Journals (Sweden)

    Vince N Montes

    Full Text Available Adipose tissue inflammation and specifically, pro-inflammatory macrophages are believed to contribute to insulin resistance (IR in obesity in humans and animal models. Recent studies have invoked T cells in the recruitment of pro-inflammatory macrophages and the development of IR. To test the role of the T cell response in adipose tissue of mice fed an obesogenic diet, we used two agents (CTLA-4 Ig and anti-CD40L antibody that block co-stimulation, which is essential for full T cell activation. C57BL/6 mice were fed an obesogenic diet for 16 weeks, and concomitantly either treated with CTLA-4 Ig, anti-CD40L antibody or an IgG control (300 µg/week. The treatments altered the immune cell composition of adipose tissue in obese mice. Treated mice demonstrated a marked reduction in pro-inflammatory adipose tissue macrophages and activated CD8+ T cells. Mice treated with anti-CD40L exhibited reduced weight gain, which was accompanied by a trend toward improved IR. CTLA-4 Ig treatment, however, was not associated with improved IR. These data suggest that the presence of pro-inflammatory T cells and macrophages can be altered with co-stimulatory inhibitors, but may not be a significant contributor to the whole body IR phenotype.

  1. Coordinated and interactive expression of genes of lipid metabolism and inflammation in adipose tissue and liver during metabolic overload.

    Directory of Open Access Journals (Sweden)

    Wen Liang

    Full Text Available BACKGROUND: Chronic metabolic overload results in lipid accumulation and subsequent inflammation in white adipose tissue (WAT, often accompanied by non-alcoholic fatty liver disease (NAFLD. In response to metabolic overload, the expression of genes involved in lipid metabolism and inflammatory processes is adapted. However, it still remains unknown how these adaptations in gene expression in expanding WAT and liver are orchestrated and whether they are interrelated. METHODOLOGY/PRINCIPAL FINDINGS: ApoE*3Leiden mice were fed HFD or chow for different periods up to 12 weeks. Gene expression in WAT and liver over time was evaluated by micro-array analysis. WAT hypertrophy and inflammation were analyzed histologically. Bayesian hierarchical cluster analysis of dynamic WAT gene expression identified groups of genes ('clusters' with comparable expression patterns over time. HFD evoked an immediate response of five clusters of 'lipid metabolism' genes in WAT, which did not further change thereafter. At a later time point (>6 weeks, inflammatory clusters were induced. Promoter analysis of clustered genes resulted in specific key regulators which may orchestrate the metabolic and inflammatory responses in WAT. Some master regulators played a dual role in control of metabolism and inflammation. When WAT inflammation developed (>6 weeks, genes of lipid metabolism and inflammation were also affected in corresponding livers. These hepatic gene expression changes and the underlying transcriptional responses in particular, were remarkably similar to those detected in WAT. CONCLUSION: In WAT, metabolic overload induced an immediate, stable response on clusters of lipid metabolism genes and induced inflammatory genes later in time. Both processes may be controlled and interlinked by specific transcriptional regulators. When WAT inflammation began, the hepatic response to HFD resembled that in WAT. In all, WAT and liver respond to metabolic overload by

  2. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease

    International Nuclear Information System (INIS)

    Alvarez, Enrique; Castello, Alfredo; Carrasco, Luis; Izquierdo, Jose M.

    2011-01-01

    Highlights: → Novel role for poliovirus 2A protease as splicing modulator. → Poliovirus 2A protease inhibits the alternative splicing of pre-mRNAs. → Poliovirus 2A protease blocks the second catalytic step of splicing. -- Abstract: Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A pro modulating the alternative splicing of pre-mRNAs. Expression of 2A pro potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A pro abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A pro , leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A pro on splicing is to selectively block the second catalytic step.

  3. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Enrique, E-mail: ealvarez@cbm.uam.es [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Nicolas Cabrera, 1 Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Castello, Alfredo; Carrasco, Luis; Izquierdo, Jose M. [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Nicolas Cabrera, 1 Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2011-10-14

    Highlights: {yields} Novel role for poliovirus 2A protease as splicing modulator. {yields} Poliovirus 2A protease inhibits the alternative splicing of pre-mRNAs. {yields} Poliovirus 2A protease blocks the second catalytic step of splicing. -- Abstract: Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A{sup pro} modulating the alternative splicing of pre-mRNAs. Expression of 2A{sup pro} potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A{sup pro} abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A{sup pro}, leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A{sup pro} on splicing is to selectively block the second catalytic step.

  4. Expression profiling of insulin action in human myotubes

    DEFF Research Database (Denmark)

    Hansen, L.; Gaster, Michael; Oakeley, E.J.

    2004-01-01

    Myotube cultures from patients with type 2 diabetes mellitus (T2DM) represent an experimental in vitro model of T2DM that offers a possibility to perform gene expression studies under standardized conditions. During a time-course of insulin stimulation (1 microM) at 5.5 mM glucose for 0 (no insulin......, metabolic enzymes, and finally cell cycle regulating genes. One-hundred-forty-four genes were differentially expressed in myotubes from donors with type 2 diabetes compared with control subjects, including HSP70, apolipoprotein D/E, tropomyosin, myosin, and actin previously reported from in vivo studies...... of diabetic skeletal muscle. We conclude, (i) that insulin induces a time-dependent inflammatory and pro-angiogenic transcriptional response in cultured human myotubes, (ii) that myotubes in vitro retain a gene expression pattern specific for type 2 diabetes and sharing five genes with that of type 2 diabetic...

  5. Functional analysis of Pro-inflammatory properties within the cerebrospinal fluid after subarachnoid hemorrhage in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Schneider Ulf C

    2012-02-01

    Full Text Available Abstract Background To functionally characterize pro-inflammatory and vasoconstrictive properties of cerebrospinal fluid after aneurysmal subarachnoid hemorrhage (SAH in vivo and in vitro. Methods The cerebrospinal fluid (CSF of 10 patients suffering from SAH was applied to the transparent skinfold chamber model in male NMRI mice which allows for in vivo analysis of the microcirculatory response to a superfusat. Microvascular diameter changes were quantified and the numbers of rolling and sticking leukocytes were documented using intravital multifluorescence imaging techniques. Furthermore, the pro-inflammatory properties of CSF were assessed in vitro using a monocyte transendothelial migration assay. Results CSF superfusion started to induce significant vasoconstriction on days 4 and 6 after SAH. In parallel, CSF superfusion induced a microvascular leukocyte recruitment, with a significant number of leukocytes rolling (day 6 and sticking (days 2-4 to the endothelium. CSF of patients presenting with cerebral edema induced breakdown of blood vessel integrity in our assay as evidenced by fluorescent marker extravasation. In accordance with leukocyte activation in vivo, significantly higher in vitro monocyte migration rates were found after SAH. Conclusion We functionally characterized inflammatory and vasoactive properties of patients' CSF after SAH in vivo and in vitro. This pro-inflammatory milieu in the subarachnoid space might play a pivotal role in the pathophysiology of early and delayed brain injury as well as vasospasm development following SAH.

  6. Monoethylhexyl Phthalate Elicits an Inflammatory Response in Adipocytes Characterized by Alterations in Lipid and Cytokine Pathways.

    Science.gov (United States)

    Manteiga, Sara; Lee, Kyongbum

    2017-04-01

    A growing body of evidence links endocrine-disrupting chemicals (EDCs) with obesity-related metabolic diseases. While it has been shown that EDCs can predispose individuals toward adiposity by affecting developmental processes, little is known about the chemicals' effects on adult adipose tissue. Our aim was to study the effects of low, physiologically relevant doses of EDCs on differentiated murine adipocytes. We combined metabolomics, proteomics, and gene expression analysis to characterize the effects of mono-ethylhexyl phthalate (MEHP) in differentiated adipocytes. Repeated exposure to MEHP over several days led to changes in metabolite and enzyme levels indicating elevated lipogenesis and lipid oxidation. The chemical exposure also increased expression of major inflammatory cytokines, including chemotactic factors. Proteomic and gene expression analysis revealed significant alterations in pathways regulated by peroxisome proliferator activated receptor-γ (PPARγ). Inhibiting the nuclear receptor's activity using a chemical antagonist abrogated not only the alterations in PPARγ-regulated metabolic pathways, but also the increases in cytokine expression. Our results show that MEHP can induce a pro-inflammatory state in differentiated adipocytes. This effect is at least partially mediated PPARγ.

  7. Introduction of the human proα1(I) collagen gene into proα1(I)-deficient Mov-13 mouse cells leads to formation of functional mouse-human hybrid type I collagen

    International Nuclear Information System (INIS)

    Schnieke, A.; Dziadek, M.; Bateman, J.; Mascara, T.; Harbers, K.; Gelinas, R.; Jaenisch, R.

    1987-01-01

    The Mov-13 mouse strain carries a retroviral insertion in the proα1(I) collagen gene that prevents transcription of the gene. Cell lines derived from homozygous embryos do not express type I collagen although normal amounts of proα2 mRNA are synthesized. The authors have introduced genomic clones of either the human or mouse proα1(I) collagen gene into homozygous cell lines to assess whether the human or mouse proα1(I) chains can associate with the endogenous mouse proα2(I) chain to form stable type I collagen. The human gene under control of the simian virus 40 promoter was efficiently transcribed in the transfected cells. Protein analyses revealed that stable heterotrimers consisting of two human α1 chains and one mouse α2 chain were formed and that type I collagen was secreted by the transfected cells at normal rates. However, the electrophoretic migration of both α1(I) and α2(I) chains in the human-mouse hybrid molecules were retarded, compared to the α(I) chains in control mouse cells. Inhibition of the posttranslational hydroxylation of lysine and proline resulted in comigration of human and mouse α1 and α2 chains, suggesting that increased posttranslational modification caused the altered electrophoretic migration in the human-mouse hybrid molecules. Amino acid sequence differences between the mouse and human α chains may interfere with the normal rate of helix formation and increase the degree of posttranslational modifications similar to those observed in patients with lethal perinatal osteogenesis imperfecta. The Mov-13 mouse system should allow the authors to study the effect specific mutations introduced in transfected proα1(I) genes have on the synthesis, assembly, and function of collagen I

  8. New Insights into the Pro-Inflammatory Activities of Ang1 on Neutrophils: Induction of MIP-1β Synthesis and Release.

    Directory of Open Access Journals (Sweden)

    Elizabeth Dumas

    Full Text Available We reported the expression of angiopoietin Tie2 receptor on human neutrophils and the capacity of angiopoietins (Ang1 and Ang2 to induce pro-inflammatory activities, such as platelet-activating factor synthesis, β2-integrin activation and neutrophil migration. Recently, we observed differential effects between both angiopoietins, namely, the capacity of Ang1, but not Ang2, to promote rapid interleukin-8 synthesis and release, as well as neutrophil viability. Herein, we addressed whether Ang1 and/or Ang2 could modulate the synthesis and release of macrophage inflammatory protein-1β (MIP-1β by neutrophils. Neutrophils were isolated from blood of healthy volunteers; intracellular and extracellular MIP-1β protein concentrations were assessed by ELISA. After 24 hours, the basal intracellular and extracellular MIP-1β protein concentrations were ≈500 and 100 pg/106 neutrophils, respectively. Treatment with Ang1 (10 nM increased neutrophil intracellular and extracellular MIP-1β concentrations by 310 and 388% respectively. Pretreatment with PI3K (LY294002, p38 MAPK (SB203580 and MEK (U0126 inhibitors completely inhibited Ang1-mediated increase of MIP-1β intracellular and extracellular protein levels. Pretreatment with NF-κB complex inhibitors, namely Bay11-7085 and IKK inhibitor VII or with a transcription inhibitor (actinomycin D and protein synthesis inhibitor (cycloheximide, did also abrogate Ang1-mediated increase of MIP-1β intracellular and extracellular protein levels. We validated by RT-qPCR analyses the effect of Ang1 on the induction of MIP-1β mRNA levels. Our study is the first one to report Ang1 capacity to induce MIP-1β gene expression, protein synthesis and release from neutrophils, and that these effects are mediated by PI3K, p38 MAPK and MEK activation and downstream NF-κB activation.

  9. Clinical characteristics of inflammation-associated depression: Monocyte gene expression is age-related in major depressive disorder.

    Science.gov (United States)

    Grosse, Laura; Carvalho, Livia A; Wijkhuijs, Annemarie J M; Bellingrath, Silja; Ruland, Tillmann; Ambrée, Oliver; Alferink, Judith; Ehring, Thomas; Drexhage, Hemmo A; Arolt, Volker

    2015-02-01

    Increased inflammatory activation might only be present in a subgroup of depressed individuals in which immune processes are especially relevant to disease development. We aimed to analyze demographic, depression, and trauma characteristics of major depressive disorder (MDD) patients with regard to inflammatory monocyte gene expression. Fifty-six naturalistically treated MDD patients (32 ± 12 years) and 57 healthy controls (HC; 31 ± 11 years) were analyzed by the Inventory of Depressive Symptomatology (IDS) and by the Childhood Trauma Questionnaire (CTQ). We determined the expression of 38 inflammatory and immune activation genes including the glucocorticoid receptor (GR)α and GRβ genes in purified CD14(+) monocytes using quantitative-polymerase chain reaction (RT-qPCR). Monocyte gene expression was age-dependent, particularly in MDD patients. Increased monocyte gene expression and decreased GRα/β ratio were only present in MDD patients aged ⩾ 28 years. Post hoc analyses of monocyte immune activation in patients depression (recurrent type, onset depression, onset ⩾15 years) - additionally characterized by the absence of panic symptoms - that exhibited a strongly reduced inflammatory monocyte activation compared to HC. In conclusion, monocyte immune activation was not uniformly raised in MDD patients but was increased only in patients of 28 years and older. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages.

    Science.gov (United States)

    Shin, Jung-Hye; Ryu, Ji Hyeon; Kang, Min Jung; Hwang, Cho Rong; Han, Jaehee; Kang, Dawon

    2013-08-01

    Garlic has a variety of biologic activities, including anti-inflammatory properties. Although garlic has several biologic activities, some people dislike eating fresh raw garlic because of its strong taste and smell. Therefore, garlic formulations involving heating procedures have been developed. In this study, we investigated whether short-term heating affects the anti-inflammatory properties of garlic. Fresh and heated raw garlic extracts (FRGE and HRGE) were prepared with incubation at 25 °C and 95 °C, respectively, for 2 h. Treatment with FRGE and HRGE significantly reduced the LPS-induced increase in the pro-inflammatory cytokine concentration (TNF-α, IL-1β, and IL-6) and NO through HO-1 upregulation in RAW 264.7 macrophages. The anti-inflammatory effect was greater in FRGE than in HRGE. The allicin concentration was higher in FRGE than in HRGE. Allicin treatment showed reduced production of pro-inflammatory cytokines and NO and increased HO-1 activity. The results show that the decrease in LPS-induced NO and pro-inflammatory cytokines in RAW 264.7 macrophages through HO-1 induction was greater for FRGE compared with HRGE. Additionally, the results indicate that allicin is responsible for the anti-inflammatory effect of FRGE. Our results suggest a potential therapeutic use of allicin in the treatment of chronic inflammatory disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response

    Science.gov (United States)

    Sorescu, George P.; Sykes, Michelle; Weiss, Daiana; Platt, Manu O.; Saha, Aniket; Hwang, Jinah; Boyd, Nolan; Boo, Yong C.; Vega, J. David; Taylor, W. Robert; hide

    2003-01-01

    Atherosclerosis is now viewed as an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions, including oscillatory shear stress (OS), in branched arteries. In contrast, the arterial regions exposed to laminar shear (LS) are relatively lesion-free. The mechanisms underlying the opposite effects of OS and LS on the inflammatory and atherogenic processes are not clearly understood. Here, through DNA microarrays, protein expression, and functional studies, we identify bone morphogenic protein 4 (BMP4) as a mechanosensitive and pro-inflammatory gene product. Exposing endothelial cells to OS increased BMP4 protein expression, whereas LS decreased it. In addition, we found BMP4 expression only in the selective patches of endothelial cells overlying foam cell lesions in human coronary arteries. The same endothelial patches also expressed higher levels of intercellular cell adhesion molecule-1 (ICAM-1) protein compared with those of non-diseased areas. Functionally, we show that OS and BMP4 induced ICAM-1 expression and monocyte adhesion by a NFkappaB-dependent mechanism. We suggest that BMP4 is a mechanosensitive, inflammatory factor playing a critical role in early steps of atherogenesis in the lesion-prone areas.

  12. Enriched environment decreases microglia and brain macrophages inflammatory phenotypes through adiponectin-dependent mechanisms: Relevance to depressive-like behavior.

    Science.gov (United States)

    Chabry, Joëlle; Nicolas, Sarah; Cazareth, Julie; Murris, Emilie; Guyon, Alice; Glaichenhaus, Nicolas; Heurteaux, Catherine; Petit-Paitel, Agnès

    2015-11-01

    Regulation of neuroinflammation by glial cells plays a major role in the pathophysiology of major depression. While astrocyte involvement has been well described, the role of microglia is still elusive. Recently, we have shown that Adiponectin (ApN) plays a crucial role in the anxiolytic/antidepressant neurogenesis-independent effects of enriched environment (EE) in mice; however its mechanisms of action within the brain remain unknown. Here, we show that in a murine model of depression induced by chronic corticosterone administration, the hippocampus and the hypothalamus display increased levels of inflammatory cytokines mRNA, which is reversed by EE housing. By combining flow cytometry, cell sorting and q-PCR, we show that microglia from depressive-like mice adopt a pro-inflammatory phenotype characterized by higher expression levels of IL-1β, IL-6, TNF-α and IκB-α mRNAs. EE housing blocks pro-inflammatory cytokine gene induction and promotes arginase 1 mRNA expression in brain-sorted microglia, indicating that EE favors an anti-inflammatory activation state. We show that microglia and brain-macrophages from corticosterone-treated mice adopt differential expression profiles for CCR2, MHC class II and IL-4recα surface markers depending on whether the mice are kept in standard environment or EE. Interestingly, the effects of EE were abolished when cells are isolated from ApN knock-out mouse brains. When injected intra-cerebroventricularly, ApN, whose level is specifically increased in cerebrospinal fluid of depressive mice raised in EE, rescues microglia phenotype, reduces pro-inflammatory cytokine production by microglia and blocks depressive-like behavior in corticosterone-treated mice. Our data suggest that EE-induced ApN increase within the brain regulates microglia and brain macrophages phenotype and activation state, thus reducing neuroinflammation and depressive-like behaviors in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Effect of bone marrow-derived CD11b(+)F4/80 (+) immature dendritic cells on the balance between pro-inflammatory and anti-inflammatory cytokines in DBA/1 mice with collagen-induced arthritis.

    Science.gov (United States)

    Fu, Jingjing; Zhang, Lingling; Song, Shanshan; Sheng, Kangliang; Li, Ying; Li, Peipei; Song, Shasha; Wang, Qingtong; Chu, Jianhong; Wei, Wei

    2014-05-01

    To explore the effect of bone marrow-derived CD11b(+)F4/80(+) immature dendritic cells (BM CD11b(+)F4/80(+)iDC) on the balance between pro-inflammatory and anti-inflammatory cytokines in DBA/1 mice with collagen-induced arthritis (CIA). BM CD11b(+)F4/80(+)iDC were induced with rmGM-CSF and rmIL-4, and were identified by the expressions of toll-like receptor 2 (TLR-2), indoleamine 2,3-deoxygenase (IDO), interleukin (IL)-10, transforming growth factor (TGF)-β1 and mixed leukocyte reaction (MLR). CIA was established in DBA/1 mice by immunization with type II collagen. CIA mice were injected intravenously with BM CD11b(+)F4/80(+)iDC three times after immunization. The effect of BM CD11b(+)F4/80(+)iDC on CIA was evaluated by the arthritis index, joint histopathology, body weight, thymus index, thymocytes proliferation, IL-1β, tumor necrosis factor (TNF)-α, IL-17, IL-10 and TGF-β1 levels. BM CD11b(+)F4/80(+)iDC induced with rmGM-CSF and rmIL-4 expressed high levels of TLR-2, IDO, IL-10 and TGF-β1. Infusion of BM CD11b(+)F4/80(+)iDC in CIA mice significantly reduced the arthritis index and pathological scores of joints, recovered the weight, decreased the thymus index and inhibited thymocyte proliferation. Levels of IL-1β, TNF-α and IL-17 were decreased in BM CD11b(+)F4/80(+)iDC-treated mice. BM CD11b(+)F4/80(+)iDC can be induced successfully with rmGM-CSF and rmIL-4. BM CD11b(+)F4/80(+)iDC treatment can ameliorate the development and severity of CIA by regulating the balance between pro-inflammatory cytokines and anti-inflammatory cytokines.

  14. DNA microarray global gene expression analysis of influenza virus-infected chicken and duck cells

    Directory of Open Access Journals (Sweden)

    Suresh V. Kuchipudi

    2015-06-01

    Full Text Available The data described in this article pertain to the article by Kuchipudi et al. (2014 titled “Highly Pathogenic Avian Influenza Virus Infection in Chickens But Not Ducks Is Associated with Elevated Host Immune and Pro-inflammatory Responses” [1]. While infection of chickens with highly pathogenic avian influenza (HPAI H5N1 virus subtypes often leads to 100% mortality within 1 to 2 days, infection of ducks in contrast causes mild or no clinical signs. The rapid onset of fatal disease in chickens, but with no evidence of severe clinical symptoms in ducks, suggests underlying differences in their innate immune mechanisms. We used Chicken Genechip microarrays (Affymetrix to analyse the gene expression profiles of primary chicken and duck lung cells infected with a low pathogenic avian influenza (LPAI H2N3 virus and two HPAI H5N1 virus subtypes to understand the molecular basis of host susceptibility and resistance in chickens and ducks. Here, we described the experimental design, quality control and analysis that were performed on the data set. The data are publicly available through the Gene Expression Omnibus (GEOdatabase with accession number GSE33389, and the analysis and interpretation of these data are included in Kuchipudi et al. (2014 [1].

  15. Correlative mRNA and protein expression of middle and inner ear inflammatory cytokines during mouse acute otitis media.

    Science.gov (United States)

    Trune, Dennis R; Kempton, Beth; Hausman, Frances A; Larrain, Barbara E; MacArthur, Carol J

    2015-08-01

    Although the inner ear has long been reported to be susceptible to middle ear disease, little is known of the inflammatory mechanisms that might cause permanent sensorineural hearing loss. Recent studies have shown inner ear tissues are capable of expressing inflammatory cytokines during otitis media. However, little quantitative information is available concerning cytokine gene expression in the inner ear and the protein products that result. Therefore, this study was conducted of mouse middle and inner ear during acute otitis media to measure the relationship between inflammatory cytokine genes and their protein products with quantitative RT-PCR and ELISA, respectively. Balb/c mice were inoculated transtympanically with heat-killed Haemophilus influenzae and middle and inner ear tissues collected for either quantitative RT-PCR microarrays or ELISA multiplex arrays. mRNA for several cytokine genes was significantly increased in both the middle and inner ear at 6 h. In the inner ear, these included MIP-2 (448 fold), IL-6 (126 fold), IL-1β (7.8 fold), IL-10 (10.7 fold), TNFα (1.8 fold), and IL-1α (1.5 fold). The 24 h samples showed a similar pattern of gene expression, although generally at lower levels. In parallel, the ELISA showed the related cytokines were present in the inner ear at concentrations higher by 2-122 fold higher at 18 h, declining slightly from there at 24 h. Immunohistochemistry with antibodies to a number of these cytokines demonstrated they occurred in greater amounts in the inner ear tissues. These findings demonstrate considerable inflammatory gene expression and gene products in the inner ear following acute otitis media. These higher cytokine levels suggest one potential mechanism for the permanent hearing loss seen in some cases of acute and chronic otitis media. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Holi colours contain PM10 and can induce pro-inflammatory responses.

    Science.gov (United States)

    Bossmann, Katrin; Bach, Sabine; Höflich, Conny; Valtanen, Kerttu; Heinze, Rita; Neumann, Anett; Straff, Wolfgang; Süring, Katrin

    2016-01-01

    At Holi festivals, originally celebrated in India but more recently all over the world, people throw coloured powder (Holi powder, Holi colour, Gulal powder) at each other. Adverse health effects, i.e. skin and ocular irritations as well as respiratory problems may be the consequences. The aim of this study was to uncover some of the underlying mechanisms. We analysed four different Holi colours regarding particle size using an Electric field cell counting system. In addition, we incubated native human cells with different Holi colours and determined their potential to induce a pro-inflammatory response by quantifying the resulting cytokine production by means of ELISA (Enzyme Linked Immunosorbent Assay) and the resulting leukocyte oxidative burst by flow cytometric analysis. Moreover, we performed the XTT (2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) and Propidium iodide cytotoxicity tests and we measured the endotoxin content of the Holi colour samples by means of the Limulus Amebocyte Lysate test (LAL test). We show here that all tested Holi colours consist to more than 40 % of particles with an aerodynamic diameter smaller than 10 μm, so called PM10 particles (PM, particulate matter). Two of the analysed Holi powders contained even more than 75 % of PM10 particles. Furthermore we demonstrate in cell culture experiments that Holi colours can induce the production of the pro-inflammatory cytokines TNF-α (Tumor necrosis factor-α), IL-6 (Interleukine-6) and IL-1β (Interleukine-1β). Three out of the four analysed colours induced a significantly higher cytokine response in human PBMCs (Peripheral Blood Mononuclear Cells) and whole blood than corn starch, which is often used as carrier substance for Holi colours. Moreover we show that corn starch and two Holi colours contain endotoxin and that certain Holi colours display concentration dependent cytotoxic effects in higher concentration. Furthermore we reveal that in principle Holi

  17. Vaccine-induced modulation of gene expression in turbot peritoneal cells. A microarray approach.

    Science.gov (United States)

    Fontenla, Francisco; Blanco-Abad, Verónica; Pardo, Belén G; Folgueira, Iria; Noia, Manuel; Gómez-Tato, Antonio; Martínez, Paulino; Leiro, José M; Lamas, Jesús

    2016-07-01

    We used a microarray approach to examine changes in gene expression in turbot peritoneal cells after injection of the fish with vaccines containing the ciliate parasite Philasterides dicentrarchi as antigen and one of the following adjuvants: chitosan-PVMMA microspheres, Freund́s complete adjuvant, aluminium hydroxide gel or Matrix-Q (Isconova, Sweden). We identified 374 genes that were differentially expressed in all groups of fish. Forty-two genes related to tight junctions and focal adhesions and/or actin cytoskeleton were differentially expressed in free peritoneal cells. The profound changes in gene expression related to cell adherence and cytoskeleton may be associated with cell migration and also with the formation of cell-vaccine masses and their attachment to the peritoneal wall. Thirty-five genes related to apoptosis were differentially expressed. Although most of the proteins coded by these genes have a proapoptotic effect, others are antiapoptotic, indicating that both types of signals occur in peritoneal leukocytes of vaccinated fish. Interestingly, many of the genes related to lymphocytes and lymphocyte activity were downregulated in the groups injected with vaccine. We also observed decreased expression of genes related to antigen presentation, suggesting that macrophages (which were abundant in the peritoneal cavity after vaccination) did not express these during the early inflammatory response in the peritoneal cavity. Finally, several genes that participate in the inflammatory response were differentially expressed, and most participated in resolution of inflammation, indicating that an M2 macrophage response is generated in the peritoneal cavity of fish one day post vaccination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Involvement of pro-inflammatory cytokines and growth factors in the pathogenesis of Dupuytren's contracture: a novel target for a possible future therapeutic strategy?

    Science.gov (United States)

    Bianchi, Enrica; Taurone, Samanta; Bardella, Lia; Signore, Alberto; Pompili, Elena; Sessa, Vincenzo; Chiappetta, Caterina; Fumagalli, Lorenzo; Di Gioia, Cira; Pastore, Francesco S; Scarpa, Susanna; Artico, Marco

    2015-10-01

    Dupuytren's contracture (DC) is a benign fibro-proliferative disease of the hand causing fibrotic nodules and fascial cords which determine debilitating contracture and deformities of fingers and hands. The present study was designed to characterize pro-inflammatory cytokines and growth factors involved in the pathogenesis, progression and recurrence of this disease, in order to find novel targets for alternative therapies and strategies in controlling DC. The expression of pro-inflammatory cytokines and of growth factors was detected by immunohistochemistry in fibrotic nodules and normal palmar fascia resected respectively from patients affected by DC and carpal tunnel syndrome (CTS; as negative controls). Reverse transcription (RT)-PCR analysis and immunofluorescence were performed to quantify the expression of transforming growth factor (TGF)-β1, interleukin (IL)-1β and vascular endothelial growth factor (VEGF) by primary cultures of myofibroblasts and fibroblasts isolated from Dupuytren's nodules. Histological analysis showed high cellularity and high proliferation rate in Dupuytren's tissue, together with the presence of myofibroblastic isotypes; immunohistochemical staining for macrophages was completely negative. In addition, a strong expression of TGF-β1, IL-1β and VEGF was evident in the extracellular matrix and in the cytoplasm of fibroblasts and myofibroblasts in Dupuytren's nodular tissues, as compared with control tissues. These results were confirmed by RT-PCR and by immunofluorescence in pathological and normal primary cell cultures. These preliminary observations suggest that TGF-β1, IL-1β and VEGF may be considered potential therapeutic targets in the treatment of Dupuytren's disease (DD). © 2015 Authors; published by Portland Press Limited.

  19. Thrombospondin-1 plays a profibrotic and pro-inflammatory role during ureteric obstruction.

    Science.gov (United States)

    Bige, Naïke; Shweke, Nasim; Benhassine, Safa; Jouanneau, Chantal; Vandermeersch, Sophie; Dussaule, Jean-Claude; Chatziantoniou, Christos; Ronco, Pierre; Boffa, Jean-Jacques

    2012-06-01

    Thrombospondin-1 (TSP-1) is an endogenous activator of transforming growth factor-β (TGF-β), and an anti-angiogenic factor, which may prevent kidney repair. Here we investigated whether TSP-1 is involved in the development of chronic kidney disease using rats with unilateral ureteral obstruction, a well-known model to study renal fibrosis. Obstruction of 10 days duration induced inflammation, tubular cell atrophy, dilation, apoptosis, and proliferation, leading to interstitial fibrosis. TSP-1 expression was increased in parallel to that of collagen III and TGF-β. Relief of the obstruction at day 10 produced a gradual improvement in renal structure and function, the reappearance of peritubular capillaries, and restoration of renal VEGF content over a 7- to 15-day post-relief period. TSP-1 expression decreased in parallel with that of TGF-β1 and collagen III. Mice in which the TSP-1 gene was knocked out displayed less inflammation and had better preservation of renal tissue and the peritubular capillary network compared to wild-type mice. Additional studies showed that the inflammatory effect of TSP-1 was mediated, at least in part, by monocyte chemoattractant protein-1 and activation of the Th17 pathway. Thus, TSP-1 is an important profibrotic and inflammatory mediator of renal disease. Blockade of its action may be a treatment against the development of chronic kidney disease.

  20. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota

    NARCIS (Netherlands)

    Larsen, J.M.; Steen-Jensen, D.B.; Laursen, J.M.; Sondergaard, J.N.; Musavian, H.S.; Butt, T.M.; Brix, S.

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties

  1. Retracted: Effects of pro-inflammatory cytokines on mineralization potential of rat dental pulp stem cells

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Bian, Z.; Jansen, J.A.; Fan, M.

    2011-01-01

    The following article from the Journal of Tissue Engineering and Regenerative Medicine, 'Effects of Pro-inflammatory Cytokines on Mineralization Potential of Rat Dental Pulp Stem Cells' by Yang X, Walboomers XF, Bian Z, Jansen JA, Fan M, published online on 11 July 2011 in Wiley Online Library

  2. Early adaptive response of the retina to a pro-diabetogenic diet: Impairment of cone response and gene expression changes in high-fructose fed rats.

    Science.gov (United States)

    Thierry, Magalie; Pasquis, Bruno; Buteau, Bénédicte; Fourgeux, Cynthia; Dembele, Doulaye; Leclere, Laurent; Gambert-Nicot, Ségolène; Acar, Niyazi; Bron, Alain M; Creuzot-Garcher, Catherine P; Bretillon, Lionel

    2015-06-01

    towards an increased expression of αA- and αB-crystallin proteins was observed at day 8. Our results are consistent with early alterations of the functioning and gene expression in the retina in a pro diabetogenic environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets

    KAUST Repository

    Najera, Julia A.

    2016-04-23

    Background Methamphetamine (Meth) abuse is a major health problem linked to the aggravation of HIV- associated complications, especially within the Central Nervous System (CNS). Within the CNS, Meth has the ability to modify the activity/function of innate immune cells and increase brain viral loads. Here, we examined changes in the gene expression profile of neuron-free microglial cell preparations isolated from the brain of macaques infected with the Simian Immunodeficiency Virus (SIV), a model of neuroAIDS, and exposed to Meth. We aimed to identify molecular patterns triggered by Meth that could explain the detection of higher brain viral loads and the development of a pro-inflammatory CNS environment in the brain of infected drug abusers. Results We found that Meth alone has a strong effect on the transcription of genes associated with immune pathways, particularly inflammation and chemotaxis. Systems analysis led to a strong correlation between Meth exposure and enhancement of molecules associated with chemokines and chemokine receptors, especially CXCR4 and CCR5, which function as co-receptors for viral entry. The increase in CCR5 expression was confirmed in the brain in correlation with increased brain viral load. Conclusions Meth enhances the availability of CCR5-expressing cells for SIV in the brain, in correlation with increased viral load. This suggests that Meth is an important factor in the susceptibility to the infection and to the aggravated CNS inflammatory pathology associated with SIV in macaques and HIV in humans.

  4. Histamine mediates the pro-inflammatory effect of latex of Calotropis procera in rats

    Directory of Open Access Journals (Sweden)

    Yatin M. Shivkar

    2003-01-01

    Full Text Available Introduction: Calotropis procera is known to produce contact dermatitis and the latex of this plant produces intense inflammation when injected locally. However, the precise mode of its pro-inflammatory effect is not known. In present study we have pharmacologically characterized the inflammation induced by latex of C. procera in a rat paw edema model and determined the role of histamine in latex-induced inflammation.

  5. Patients experiencing statin-induced myalgia exhibit a unique program of skeletal muscle gene expression following statin re-challenge.

    Directory of Open Access Journals (Sweden)

    Marshall B Elam

    Full Text Available Statins, the 3-hydroxy-3-methyl-glutaryl (HMG-CoA reductase inhibitors, are widely prescribed for treatment of hypercholesterolemia. Although statins are generally well tolerated, up to ten percent of statin-treated patients experience myalgia symptoms, defined as muscle pain without elevated creatinine phosphokinase (CPK levels. Myalgia is the most frequent reason for discontinuation of statin therapy. The mechanisms underlying statin myalgia are not clearly understood. To elucidate changes in gene expression associated with statin myalgia, we compared profiles of gene expression in skeletal muscle biopsies from patients with statin myalgia who were undergoing statin re-challenge (cases versus those of statin-tolerant controls. A robust separation of case and control cohorts was revealed by Principal Component Analysis of differentially expressed genes (DEGs. To identify putative gene expression and metabolic pathways that may be perturbed in skeletal muscles of patients with statin myalgia, we subjected DEGs to Ingenuity Pathways (IPA and DAVID (Database for Annotation, Visualization and Integrated Discovery analyses. The most prominent pathways altered by statins included cellular stress, apoptosis, cell senescence and DNA repair (TP53, BARD1, Mre11 and RAD51; activation of pro-inflammatory immune response (CXCL12, CST5, POU2F1; protein catabolism, cholesterol biosynthesis, protein prenylation and RAS-GTPase activation (FDFT1, LSS, TP53, UBD, ATF2, H-ras. Based on these data we tentatively conclude that persistent myalgia in response to statins may emanate from cellular stress underpinned by mechanisms of post-inflammatory repair and regeneration. We also posit that this subset of individuals is genetically predisposed to eliciting altered statin metabolism and/or increased end-organ susceptibility that lead to a range of statin-induced myopathies. This mechanistic scenario is further bolstered by the discovery that a number of single

  6. Patients experiencing statin-induced myalgia exhibit a unique program of skeletal muscle gene expression following statin re-challenge.

    Science.gov (United States)

    Elam, Marshall B; Majumdar, Gipsy; Mozhui, Khyobeni; Gerling, Ivan C; Vera, Santiago R; Fish-Trotter, Hannah; Williams, Robert W; Childress, Richard D; Raghow, Rajendra

    2017-01-01

    Statins, the 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase inhibitors, are widely prescribed for treatment of hypercholesterolemia. Although statins are generally well tolerated, up to ten percent of statin-treated patients experience myalgia symptoms, defined as muscle pain without elevated creatinine phosphokinase (CPK) levels. Myalgia is the most frequent reason for discontinuation of statin therapy. The mechanisms underlying statin myalgia are not clearly understood. To elucidate changes in gene expression associated with statin myalgia, we compared profiles of gene expression in skeletal muscle biopsies from patients with statin myalgia who were undergoing statin re-challenge (cases) versus those of statin-tolerant controls. A robust separation of case and control cohorts was revealed by Principal Component Analysis of differentially expressed genes (DEGs). To identify putative gene expression and metabolic pathways that may be perturbed in skeletal muscles of patients with statin myalgia, we subjected DEGs to Ingenuity Pathways (IPA) and DAVID (Database for Annotation, Visualization and Integrated Discovery) analyses. The most prominent pathways altered by statins included cellular stress, apoptosis, cell senescence and DNA repair (TP53, BARD1, Mre11 and RAD51); activation of pro-inflammatory immune response (CXCL12, CST5, POU2F1); protein catabolism, cholesterol biosynthesis, protein prenylation and RAS-GTPase activation (FDFT1, LSS, TP53, UBD, ATF2, H-ras). Based on these data we tentatively conclude that persistent myalgia in response to statins may emanate from cellular stress underpinned by mechanisms of post-inflammatory repair and regeneration. We also posit that this subset of individuals is genetically predisposed to eliciting altered statin metabolism and/or increased end-organ susceptibility that lead to a range of statin-induced myopathies. This mechanistic scenario is further bolstered by the discovery that a number of single nucleotide

  7. Patients experiencing statin-induced myalgia exhibit a unique program of skeletal muscle gene expression following statin re-challenge

    Science.gov (United States)

    Majumdar, Gipsy; Mozhui, Khyobeni; Gerling, Ivan C.; Vera, Santiago R.; Fish-Trotter, Hannah; Williams, Robert W.; Childress, Richard D.

    2017-01-01

    Statins, the 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase inhibitors, are widely prescribed for treatment of hypercholesterolemia. Although statins are generally well tolerated, up to ten percent of statin-treated patients experience myalgia symptoms, defined as muscle pain without elevated creatinine phosphokinase (CPK) levels. Myalgia is the most frequent reason for discontinuation of statin therapy. The mechanisms underlying statin myalgia are not clearly understood. To elucidate changes in gene expression associated with statin myalgia, we compared profiles of gene expression in skeletal muscle biopsies from patients with statin myalgia who were undergoing statin re-challenge (cases) versus those of statin-tolerant controls. A robust separation of case and control cohorts was revealed by Principal Component Analysis of differentially expressed genes (DEGs). To identify putative gene expression and metabolic pathways that may be perturbed in skeletal muscles of patients with statin myalgia, we subjected DEGs to Ingenuity Pathways (IPA) and DAVID (Database for Annotation, Visualization and Integrated Discovery) analyses. The most prominent pathways altered by statins included cellular stress, apoptosis, cell senescence and DNA repair (TP53, BARD1, Mre11 and RAD51); activation of pro-inflammatory immune response (CXCL12, CST5, POU2F1); protein catabolism, cholesterol biosynthesis, protein prenylation and RAS-GTPase activation (FDFT1, LSS, TP53, UBD, ATF2, H-ras). Based on these data we tentatively conclude that persistent myalgia in response to statins may emanate from cellular stress underpinned by mechanisms of post-inflammatory repair and regeneration. We also posit that this subset of individuals is genetically predisposed to eliciting altered statin metabolism and/or increased end-organ susceptibility that lead to a range of statin-induced myopathies. This mechanistic scenario is further bolstered by the discovery that a number of single nucleotide

  8. Lactobacillus rhamnosus GG and its SpaC pilus adhesin modulate inflammatory responsiveness and TLR-related gene expression in the fetal human gut

    Science.gov (United States)

    Ganguli, Kriston; Collado, Maria Carmen; Rautava, Jaana; Lu, Lei; Satokari, Reetta; von Ossowski, Ingemar; Reunanen, Justus; de Vos, Willem M.; Palva, Airi; Isolauri, Erika; Salminen, Seppo; Walker, W. Allan; Rautava, Samuli

    2015-01-01

    Background Bacterial contact in utero modulates fetal and neonatal immune responses. Maternal probiotic supplementation reduces the risk of immune-mediated disease in the infant. We investigated the immunomodulatory properties of live Lactobacillus rhamnosus GG and its SpaC pilus adhesin in human fetal intestinal models. Methods TNF-α mRNA expression was measured by qPCR in a human fetal intestinal organ culture model exposed to live L. rhamnosus GG and proinflammatory stimuli. Binding of recombinant SpaC pilus protein to intestinal epithelial cells was assessed in human fetal intestinal organ culture and the human fetal intestinal epithelial cell line H4 by immunohistochemistry and immunofluorescence, respectively. TLR-related gene expression in fetal ileal organ culture after exposure to recombinant SpaC was assessed by qPCR. Results Live L. rhamnosus GG significantly attenuates pathogen-induced TNF-α mRNA expression in the human fetal gut. Recombinant SpaC protein was found to adhere to the fetal gut and to modulate varying levels of TLR-related gene expression. Conclusion The human fetal gut is responsive to luminal microbes. L. rhamnosus GG significantly attenuates fetal intestinal inflammatory responses to pathogenic bacteria. The L. rhamnosus GG pilus adhesin SpaC binds to immature human intestinal epithelial cells and directly modulates intestinal epithelial cell innate immune gene expression. PMID:25580735

  9. Altered gene expression in blood and sputum in COPD frequent exacerbators in the ECLIPSE cohort.

    Directory of Open Access Journals (Sweden)

    Dave Singh

    Full Text Available Patients with chronic obstructive pulmonary disease (COPD who are defined as frequent exacerbators suffer with 2 or more exacerbations every year. The molecular mechanisms responsible for this phenotype are poorly understood. We investigated gene expression profile patterns associated with frequent exacerbations in sputum and blood cells in a well-characterised cohort. Samples from subjects from the ECLIPSE COPD cohort were used; sputum and blood samples from 138 subjects were used for microarray gene expression analysis, while blood samples from 438 subjects were used for polymerase chain reaction (PCR testing. Using microarray, 150 genes were differentially expressed in blood (>±1.5 fold change, p≤0.01 between frequent compared to non-exacerbators. In sputum cells, only 6 genes were differentially expressed. The differentially regulated genes in blood included downregulation of those involved in lymphocyte signalling and upregulation of pro-apoptotic signalling genes. Multivariate analysis of the microarray data followed by confirmatory PCR analysis identified 3 genes that predicted frequent exacerbations; B3GNT, LAF4 and ARHGEF10. The sensitivity and specificity of these 3 genes to predict the frequent exacerbator phenotype was 88% and 33% respectively. There are alterations in systemic immune function associated with frequent exacerbations; down-regulation of lymphocyte function and a shift towards pro-apoptosis mechanisms are apparent in patients with frequent exacerbations.

  10. Regional differences in the expression of brain-derived neurotrophic factor (BDNF) pro-peptide, proBDNF and preproBDNF in the brain confer stress resilience.

    Science.gov (United States)

    Yang, Bangkun; Yang, Chun; Ren, Qian; Zhang, Ji-Chun; Chen, Qian-Xue; Shirayama, Yukihiko; Hashimoto, Kenji

    2016-12-01

    Using learned helplessness (LH) model of depression, we measured protein expression of brain-derived neurotrophic factor (BDNF) pro-peptide, BDNF precursors (proBDNF and preproBDNF) in the brain regions of LH (susceptible) and non-LH rats (resilience). Expression of preproBDNF, proBDNF and BDNF pro-peptide in the medial prefrontal cortex of LH rats, but not non-LH rats, was significantly higher than control rats, although expression of these proteins in the nucleus accumbens of LH rats was significantly lower than control rats. This study suggests that regional differences in conversion of BDNF precursors into BDNF and BDNF pro-peptide by proteolytic cleavage may contribute to stress resilience.

  11. Total body fat, pro-inflammatory cytokines and insulin resistance in Indian subjects

    Energy Technology Data Exchange (ETDEWEB)

    Yajnik, C S [Diabetes Unit, KEM Hospital Research Centre, Pune (India); Yudkin, J S [Whittington Hospital, University College of London, London (United Kingdom); Shetty, P S [London School of Hygiene and Tropical Medicine, London (United Kingdom); Kurpad, A [St. John' s Medical College, Bangalore (India)

    1999-07-01

    There is a growing epidemic of insulin resistance syndrome (IRS) in Indians. We postulate that increased susceptibility of the urban Indians to insulin resistance is a result of a tendency to increased fat deposition from the time of intrauterine life (thrifty phenotype), exaggerated in the urban environment by a positive energy balance. The pro-inflammatory cytokines secreted by the inflammatory cells as well by the adipose tissue could aggravate insulin resistance and endothelial damage and therefore, increase the susceptibility to type 2 diabetes and coronary heart disease (CHD) independent of the previously proposed glucose fatty acid cycle mechanism. In a preliminary study, we propose to make detailed measurements of the proposed mechanisms in a selected population from 3 geographical locations in and near the city of Pune, India and also validate simple 'epidemiologic' measurements of body composition with 'reference' measurements. One hundred men (30 to 50y) each from the three geographical locations (rural, urban slum-dwellers and urban middle class in Pune) will be studied for: (i) Body composition: Anthropometric and bioimpedance measurement of total body fat (to be calibrated against deuterated water in 30 subjects from each location), and muscle mass by anthropometry and urinary creatinine excretion; (ii) Body fat distribution by subscapular- triceps ratio, waist-hip ratio; (iii) Metabolic: Glucose tolerance and insulin resistance variables (insulin, lipids, NEFA) and leptin; (iv) Endothelial markers: e-Selectin and von Willebrand Factor (vWF); (v) Inflammatory markers and pro-inflammatory cytokines: C-reactive protein (CRP), Interleukin-6 (IL-6) and tumour necrosis factor (TNF- {alpha}); (vi) Energy Balance: Assessment of nutritional intake (calories, carbohydrates, proteins and fats, n3 and n6 fatty acids) and physical activity by a questionnaire. Insulin resistance variables, endothelial markers, cytokines and obesity parameters will be compared in

  12. Total body fat, pro-inflammatory cytokines and insulin resistance in Indian subjects

    International Nuclear Information System (INIS)

    Yajnik, C.S.; Yudkin, J.S.; Shetty, P.S.; Kurpad, A.

    1999-01-01

    There is a growing epidemic of insulin resistance syndrome (IRS) in Indians. We postulate that increased susceptibility of the urban Indians to insulin resistance is a result of a tendency to increased fat deposition from the time of intrauterine life (thrifty phenotype), exaggerated in the urban environment by a positive energy balance. The pro-inflammatory cytokines secreted by the inflammatory cells as well by the adipose tissue could aggravate insulin resistance and endothelial damage and therefore, increase the susceptibility to type 2 diabetes and coronary heart disease (CHD) independent of the previously proposed glucose fatty acid cycle mechanism. In a preliminary study, we propose to make detailed measurements of the proposed mechanisms in a selected population from 3 geographical locations in and near the city of Pune, India and also validate simple 'epidemiologic' measurements of body composition with 'reference' measurements. One hundred men (30 to 50y) each from the three geographical locations (rural, urban slum-dwellers and urban middle class in Pune) will be studied for: (i) Body composition: Anthropometric and bioimpedance measurement of total body fat (to be calibrated against deuterated water in 30 subjects from each location), and muscle mass by anthropometry and urinary creatinine excretion; (ii) Body fat distribution by subscapular- triceps ratio, waist-hip ratio; (iii) Metabolic: Glucose tolerance and insulin resistance variables (insulin, lipids, NEFA) and leptin; (iv) Endothelial markers: e-Selectin and von Willebrand Factor (vWF); (v) Inflammatory markers and pro-inflammatory cytokines: C-reactive protein (CRP), Interleukin-6 (IL-6) and tumour necrosis factor (TNF- α); (vi) Energy Balance: Assessment of nutritional intake (calories, carbohydrates, proteins and fats, n3 and n6 fatty acids) and physical activity by a questionnaire. Insulin resistance variables, endothelial markers, cytokines and obesity parameters will be compared in the 3

  13. Expression of a partially deleted gene of human type II procollagen (COL2A1) in transgenic mice produces a chondrodysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Vandenberg, P.; Khillan, J.S.; Prockop, D.J.; Helminen, H.; Kontusaari, S.; Ala-Kokko, L. (Thomas Jefferson Univ., Philadelphia, PA (United States))

    1991-09-01

    A minigene version of the human gene for type II procollagen (COL2AI) was prepared that lacked a large central region containing 12 of the 52 exons and therefore 291 of the 1523 codons of the gene. The construct was modeled after sporadic in-frame deletions of collagen genes that cause synthesis of shortened pro{alpha} chains that associate with normal pro{alpha} chains and thereby cause degradation of the shortened and normal pro{alpha} chains through a process called procollagen suicide. The gene construct was used to prepare five lines of transgenic mice expressing the minigene. A large proportion of the mice expressing the minigene developed a phenotype of a chondrodysplasia with dwarfism, short and thick limbs, a short snout, a cranial bulge, a cleft palate, and delayed mineralization of bone. A number of mice died shortly after birth. Microscopic examination of cartilage revealed decreased density and organization of collagen fibrils. In cultured chondrocytes from the transgenic mice, the minigene was expressed as shortened pro{alpha}1(II) chains that were disulfide-linked to normal mouse pro{alpha}1(II) chains. Therefore, the phenotype is probably explained by depletion of the endogenous mouse type II procollagen through the phenomenon of procollagen suicide.

  14. Arabidopsis thaliana MLO genes are expressed in discrete domains during reproductive development.

    Science.gov (United States)

    Davis, Thomas C; Jones, Daniel S; Dino, Arianna J; Cejda, Nicholas I; Yuan, Jing; Willoughby, Andrew C; Kessler, Sharon A

    2017-12-01

    MLOs in Plant Reproduction. The MILDEW RESISTANCE LOCUS-O (MLO) protein family, comprised of 15 members, plays roles in diverse cell-cell communication processes such as powdery mildew susceptibility, root thigmomorphogenesis, and pollen tube reception. The NORTIA (NTA, AtMLO7) gene is expressed in the synergid cells of the female gametophyte where it functions in intercellular communication with the pollen tube. Discrepancies between previously published promoter::GUS and promoter::gene-GUS constructs expression patterns led us to explore the regulation of NTA expression. Here we found via NTA pro ::gNTA-GUS truncations that sequences within the NTA gene negatively regulate its expression in the stomata and carpel walls. This led to the hypothesis that other MLO family members may also have additional regulatory sequences within the gene. MLO pro ::gMLO-GUS constructs were examined for each family member focusing specifically on flowers in order to determine whether other MLOs could play a role in reproductive cell-cell communication. Notably, several MLOs were expressed in the pollen, in the stigma, in the pollinated style, and in the synergids and central cell. These findings indicate that other MLOs in addition to NTA could play a role in reproduction. Previous studies on the MLO family showed that phylogenetically related MLOs had redundant functions in powdery mildew infection and root thigmomorphogenesis; however, MLO expression in reproductive tissues did not strictly follow phylogenetic relationships, indicating that MLOs from different evolutionary origins may have been recruited for function in sexual reproduction.

  15. The spleen as an extramedullary source of inflammatory cells responding to acetaminophen-induced liver injury

    International Nuclear Information System (INIS)

    Mandal, Mili; Gardner, Carol R.; Sun, Richard; Choi, Hyejeong; Lad, Sonali; Mishin, Vladimir; Laskin, Jeffrey D.; Laskin, Debra L.

    2016-01-01

    Macrophages have been shown to play a role in acetaminophen (APAP)-induced hepatotoxicity, contributing to both pro- and anti-inflammatory processes. In these studies, we analyzed the role of the spleen as an extramedullary source of hepatic macrophages. APAP administration (300 mg/kg, i.p.) to control mice resulted in an increase in CD11b + infiltrating Ly6G + granulocytic and Ly6G − monocytic cells in the spleen and the liver. The majority of the Ly6G + cells were also positive for the monocyte/macrophage activation marker, Ly6C, suggesting a myeloid derived suppressor cell (MDSC) phenotype. By comparison, Ly6G − cells consisted of 3 subpopulations expressing high, intermediate, and low levels of Ly6C. Splenectomy was associated with increases in mature (F4/80 + ) and immature (F4/80 − ) pro-inflammatory Ly6C hi macrophages and mature anti-inflammatory (Ly6C lo ) macrophages in the liver after APAP; increases in MDSCs were also noted in the livers of splenectomized (SPX) mice after APAP. This was associated with increases in APAP-induced expression of chemokine receptors regulating pro-inflammatory (CCR2) and anti-inflammatory (CX3CR1) macrophage trafficking. In contrast, APAP-induced increases in pro-inflammatory galectin-3 + macrophages were blunted in livers of SPX mice relative to control mice, along with hepatic expression of TNF-α, as well as the anti-inflammatory macrophage markers, FIZZ-1 and YM-1. These data demonstrate that multiple subpopulations of pro- and anti-inflammatory cells respond to APAP-induced injury, and that these cells originate from distinct hematopoietic reservoirs. - Highlights: • Multiple inflammatory cell subpopulations accumulate in the spleen and liver following acetaminophen (APAP) intoxication. • Splenectomy alters liver inflammatory cell populations responding to APAP. • Inflammatory cells accumulating in the liver in response to APAP originate from the spleen and the bone marrow. • Hepatotoxicity is reduced in

  16. The spleen as an extramedullary source of inflammatory cells responding to acetaminophen-induced liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Mili, E-mail: milimandal@gmail.com [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sun, Richard, E-mail: fishpower52@gmail.com [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Choi, Hyejeong, E-mail: choi@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Lad, Sonali, E-mail: sonurose92@gmail.com [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Mishin, Vladimir, E-mail: mishinv@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2016-08-01

    Macrophages have been shown to play a role in acetaminophen (APAP)-induced hepatotoxicity, contributing to both pro- and anti-inflammatory processes. In these studies, we analyzed the role of the spleen as an extramedullary source of hepatic macrophages. APAP administration (300 mg/kg, i.p.) to control mice resulted in an increase in CD11b{sup +} infiltrating Ly6G{sup +} granulocytic and Ly6G{sup −} monocytic cells in the spleen and the liver. The majority of the Ly6G{sup +} cells were also positive for the monocyte/macrophage activation marker, Ly6C, suggesting a myeloid derived suppressor cell (MDSC) phenotype. By comparison, Ly6G{sup −} cells consisted of 3 subpopulations expressing high, intermediate, and low levels of Ly6C. Splenectomy was associated with increases in mature (F4/80{sup +}) and immature (F4/80{sup −}) pro-inflammatory Ly6C{sup hi} macrophages and mature anti-inflammatory (Ly6C{sup lo}) macrophages in the liver after APAP; increases in MDSCs were also noted in the livers of splenectomized (SPX) mice after APAP. This was associated with increases in APAP-induced expression of chemokine receptors regulating pro-inflammatory (CCR2) and anti-inflammatory (CX3CR1) macrophage trafficking. In contrast, APAP-induced increases in pro-inflammatory galectin-3{sup +} macrophages were blunted in livers of SPX mice relative to control mice, along with hepatic expression of TNF-α, as well as the anti-inflammatory macrophage markers, FIZZ-1 and YM-1. These data demonstrate that multiple subpopulations of pro- and anti-inflammatory cells respond to APAP-induced injury, and that these cells originate from distinct hematopoietic reservoirs. - Highlights: • Multiple inflammatory cell subpopulations accumulate in the spleen and liver following acetaminophen (APAP) intoxication. • Splenectomy alters liver inflammatory cell populations responding to APAP. • Inflammatory cells accumulating in the liver in response to APAP originate from the spleen and the

  17. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter.

    Science.gov (United States)

    Michael, S; Montag, M; Dott, W

    2013-12-01

    The objective of this study was to compare the toxicological effects of different source-related ambient PM10 samples in regard to their chemical composition. In this context we investigated airborne PM from different sites in Aachen, Germany. For the toxicological investigation human alveolar epithelial cells (A549) and murine macrophages (RAW264.7) were exposed from 0 to 96 h to increasing PM concentrations (0-100 μg/ml) followed by analyses of cell viability, pro-inflammatory and oxidative stress responses. The chemical analysis of these particles indicated the presence of 21 elements, water-soluble ions and PAHs. The toxicological investigations of the PM10 samples demonstrated a concentration- and time-dependent decrease in cell viability and an increase in pro-inflammatory and oxidative stress markers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats.

    Directory of Open Access Journals (Sweden)

    Osiris Marroquin Belaunzaran

    Full Text Available HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA. HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272 and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS patients and HLA-B27 transgenic rats. We characterized a novel B272-specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders.The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry.HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM. HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules.HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders.

  19. HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats

    Science.gov (United States)

    Marroquin Belaunzaran, Osiris; Kleber, Sascha; Schauer, Stefan; Hausmann, Martin; Nicholls, Flora; Van den Broek, Maries; Payeli, Sravan; Ciurea, Adrian; Milling, Simon; Stenner, Frank; Shaw, Jackie; Kollnberger, Simon; Bowness, Paul; Petrausch, Ulf; Renner, Christoph

    2015-01-01

    Objectives HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272–specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders. Methods The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry. Results HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules. Conclusion HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders. PMID:26125554

  20. Harsh parent-child conflict is associated with decreased anti-inflammatory gene expression and increased symptom severity in children with asthma.

    Science.gov (United States)

    Ehrlich, Katherine B; Miller, Gregory E; Chen, Edith

    2015-11-01

    Asthma is a chronic respiratory disorder that affects over 7 million children in the United States. Evidence indicates that family stressors are associated with worsening of asthma symptoms, and some research suggests that these stressful experiences engender changes in children's immune systems in ways that exacerbate airway inflammation and contribute to both acute and chronic asthma symptoms. We examined the association between observed experiences of parent-child conflict and the expression of signaling molecules involved in the transduction of anti-inflammatory signals that regulate airway inflammation and obstruction. Fifty-seven children and their parents participated in a conflict task, and coders rated interactions for evidence of harsh and supportive behaviors. Children reported on their perceptions of parental support and reported on their daily asthma symptoms for 2 weeks. We collected peripheral blood in children to measure leukocyte expression of messenger RNA for the glucocorticoid receptor and the β2-adrenergic receptor. Analyses revealed that harsh conflict behaviors were associated with decreased expression of both messenger RNAs and more severe asthma symptoms. Neither supportive behaviors nor perceived parental support was associated with gene expression or asthma symptoms. These findings suggest that harsh interactions with parents are associated with downregulation of key anti-inflammatory signaling molecules and difficulties breathing in children with asthma. Children with asthma who are also victims of maltreatment may be particularly susceptible to transcriptional changes in immune cells that could worsen asthma over time.

  1. Selenium is critical for cancer-signaling gene expression but not cell proliferation in human colon Caco-2 cells.

    Science.gov (United States)

    Zeng, Huawei; Botnen, James H

    2007-01-01

    Selenium (Se) is a potential anticarcinogenic nutrient, and the essential role of Se in cell growth is well recognized but certain cancer cells appear to have acquired a survival advantage under conditions of Se-deficiency. To understand the molecular basis of Se-anticancer effects at nutritional doses (nmol/L) for cultured cells, we generated Se-deficient colon Caco-2 cells by gradually reducing serum in media because serum contains a trace amount of Se. The glutathione peroxidase (GPx) activity of Se-deficient Caco-2 cells was 10.8 mU/mg protein compared to 133.6 approximately 146.3 mU/mg protein in Caco-2 cells supplemented with 500 nmol/L selenite, SeMSC or SeMet (three tested Se-chemical forms) after 7-d culture in serum free media. Interestingly, there were no detectable differences in cell growth, cell cycle progression between Se-deficient cells and cells supplemented with 500 nmol/L Se. To examine differential cancer signaling-gene expression between Se-deficient and Se-supplemented cells, we employed a cancer signal pathway-specific array assay coupled with the real time PCR analysis. Our data demonstrate that although Caco-2 cells are resistant to Se deprivation, Se may exert its anticancer property through increasing the expression of humoral defense gene (A2M) and tumor suppressor-related genes (IGFBP3, HHIP) while decreasing pro-inflammatory gene (CXC L9, HSPB2) expression.

  2. Contributions of early adversity to pro-inflammatory phenotype in infancy: the buffer provided by attachment security.

    Science.gov (United States)

    Measelle, Jeffrey R; Ablow, Jennifer C

    2018-02-01

    Adversity early in life is associated with systemic inflammation by adolescence and beyond. At present, few studies have investigated the associations between different forms of adversity and inflammation during infancy, making it difficult to specify the origins of disease vulnerability. This study examined the association between multiple forms of early adversity - socioeconomic status disadvantage, familial stress, maternal depression, and security of attachment - and individual differences in a composite measure of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and tumor necrosis factor-alpha) and the inflammatory protein C-reactive protein that were collected via saliva when (n = 49) children were 17 months old. In addition to gauging the direct effects of adversity, we also tested the hypothesis that infants' attachment relationship with their mother might buffer infants against the immunologic effects of early adversity. Results show that familial stress, maternal depression, and security of attachment were directly associated with infant salivary inflammation and that attachment status moderated the effect of maternal depression. The findings suggest that exposure to certain forms of adversity very early in life may engender a pro-inflammatory phenotype with possible life-long implications for health.

  3. Better cognitive control of emotional information is associated with reduced pro-inflammatory cytokine reactivity to emotional stress.

    Science.gov (United States)

    Shields, Grant S; Kuchenbecker, Shari Young; Pressman, Sarah D; Sumida, Ken D; Slavich, George M

    2016-01-01

    Stress is strongly associated with several mental and physical health problems that involve inflammation, including asthma, cardiovascular disease, certain types of cancer, and depression. It has been hypothesized that better cognitive control of emotional information may lead to reduced inflammatory reactivity to stress and thus better health, but to date no studies have examined whether differences in cognitive control predict pro-inflammatory cytokine responses to stress. To address this issue, we conducted a laboratory-based experimental study in which we randomly assigned healthy young-adult females to either an acute emotional stress (emotionally evocative video) or no-stress (control video) condition. Salivary levels of the key pro-inflammatory cytokines IL-1β, IL-6, and IL-8 were measured before and after the experimental manipulation, and following the last cytokine sample, we assessed participants' cognitive control of emotional information using an emotional Stroop task. We also assessed participants' cortisol levels before and after the manipulation to verify that documented effects were specific to cytokines and not simply due to increased nonwater salivary output. As hypothesized, the emotional stressor triggered significant increases in IL-1β, IL-6, and IL-8. Moreover, even in fully adjusted models, better cognitive control following the emotional (but not control) video predicted less pronounced cytokine responses to that stressor. In contrast, no effects were observed for cortisol. These data thus indicate that better cognitive control specifically following an emotional stressor is uniquely associated with less pronounced pro-inflammatory cytokine reactivity to such stress. These findings may therefore help explain why superior cognitive control portends better health over the lifespan.

  4. Enhancement of inflammatory protein expression and nuclear factor Κb (NF-Κb) activity by trichostatin A (TSA) in OP9 preadipocytes.

    Science.gov (United States)

    Sato, Taiki; Kotake, Daisuke; Hiratsuka, Masahiro; Hirasawa, Noriyasu

    2013-01-01

    The production of inflammatory proteins such as interleukin-6 (IL-6) by preadipocytes and mature adipocytes is closely associated with the impairment of systemic glucose homeostasis. However, precisely how the production is regulated and the roles of histone deacetylases (HDACs) remain largely unknown. The aim of this study was to establish whether HDAC inhibitors affect the expression of inflammatory proteins in pre/mature adipocytes, and, if so, to determine the mechanism involved. Trichostatin A (TSA), an HDAC inhibitor, enhanced lipopolysaccharide (LPS)-induced production of IL-6 in OP9 preadipocytes but not the mature adipocytes. Moreover, TSA also enhanced palmitic acid-induced IL-6 production and the expression of inflammatory genes induced by LPS in preadipocytes. Although TSA did not affect TLR4 mRNA expression or the activation of MAPKs, a reporter gene assay revealed that the LPS-induced increase in nuclear factor κB (NF-κB) activity was enhanced by TSA. Moreover, TSA increased the level of NF-κB p65 acetylation at lysine 310 and duration of its translocation into the nucleus, which leads to enhancement of NF-κB activity and subsequently expression of inflammatory genes. These findings shed new light on the regulatory roles of HDACs in preadipocytes in the production of inflammatory proteins.

  5. Anti-Inflammatory Benefits of Antibiotics: Tylvalosin Induces Apoptosis of Porcine Neutrophils and Macrophages, Promotes Efferocytosis, and Inhibits Pro-Inflammatory CXCL-8, IL1α, and LTB4 Production, While Inducing the Release of Pro-Resolving Lipoxin A4 and Resolvin D1.

    Science.gov (United States)

    Moges, Ruth; De Lamache, Dimitri Desmonts; Sajedy, Saman; Renaux, Bernard S; Hollenberg, Morley D; Muench, Gregory; Abbott, Elizabeth M; Buret, Andre G

    2018-01-01

    Excessive accumulation of neutrophils and their uncontrolled death by necrosis at the site of inflammation exacerbates inflammatory responses and leads to self-amplifying tissue injury and loss of organ function, as exemplified in a variety of respiratory diseases. In homeostasis, neutrophils are inactivated by apoptosis, and non phlogistically removed by neighboring macrophages in a process known as efferocytosis, which promotes the resolution of inflammation. The present study assessed the potential anti-inflammatory and pro-resolution benefits of tylvalosin, a recently developed broad-spectrum veterinary macrolide derived from tylosin. Recent findings indicate that tylvalosin may modulate inflammation by suppressing NF-κB activation. Neutrophils and monocyte-derived macrophages were isolated from fresh blood samples obtained from 12- to 22-week-old pigs. Leukocytes exposed to vehicle or to tylvalosin (0.1, 1.0, or 10 µg/mL; 0.096-9.6 µM) were assessed at various time points for apoptosis, necrosis, efferocytosis, and changes in the production of cytokines and lipid mediators. The findings indicate that tylvalosin increases porcine neutrophil and macrophage apoptosis in a concentration- and time-dependent manner, without altering levels of necrosis or reactive oxygen species production. Importantly, tylvalosin increased the release of pro-resolving Lipoxin A 4 (LXA 4 ) and Resolvin D1 (RvD 1 ) while inhibiting the production of pro-inflammatory Leukotriene B4 (LTB 4 ) in Ca 2+ ionophore-stimulated porcine neutrophils. Tylvalosin increased neutrophil phospholipase C activity, an enzyme involved in releasing arachidonic acid from membrane stores. Tylvalosin also inhibited pro-inflammatory chemokine (C-X-C motif) ligand 8 (CXCL-8, also known as Interleukin-8) and interleukin-1 alpha (IL-1α) protein secretion in bacterial lipopolysaccharide-stimulated macrophages. Together, these data illustrate that tylvalosin has potent immunomodulatory effects in porcine

  6. Anti-Inflammatory Benefits of Antibiotics: Tylvalosin Induces Apoptosis of Porcine Neutrophils and Macrophages, Promotes Efferocytosis, and Inhibits Pro-Inflammatory CXCL-8, IL1α, and LTB4 Production, While Inducing the Release of Pro-Resolving Lipoxin A4 and Resolvin D1

    Directory of Open Access Journals (Sweden)

    Ruth Moges

    2018-04-01

    Full Text Available Excessive accumulation of neutrophils and their uncontrolled death by necrosis at the site of inflammation exacerbates inflammatory responses and leads to self-amplifying tissue injury and loss of organ function, as exemplified in a variety of respiratory diseases. In homeostasis, neutrophils are inactivated by apoptosis, and non phlogistically removed by neighboring macrophages in a process known as efferocytosis, which promotes the resolution of inflammation. The present study assessed the potential anti-inflammatory and pro-resolution benefits of tylvalosin, a recently developed broad-spectrum veterinary macrolide derived from tylosin. Recent findings indicate that tylvalosin may modulate inflammation by suppressing NF-κB activation. Neutrophils and monocyte-derived macrophages were isolated from fresh blood samples obtained from 12- to 22-week-old pigs. Leukocytes exposed to vehicle or to tylvalosin (0.1, 1.0, or 10 µg/mL; 0.096–9.6 µM were assessed at various time points for apoptosis, necrosis, efferocytosis, and changes in the production of cytokines and lipid mediators. The findings indicate that tylvalosin increases porcine neutrophil and macrophage apoptosis in a concentration- and time-dependent manner, without altering levels of necrosis or reactive oxygen species production. Importantly, tylvalosin increased the release of pro-resolving Lipoxin A4 (LXA4 and Resolvin D1 (RvD1 while inhibiting the production of pro-inflammatory Leukotriene B4 (LTB4 in Ca2+ ionophore-stimulated porcine neutrophils. Tylvalosin increased neutrophil phospholipase C activity, an enzyme involved in releasing arachidonic acid from membrane stores. Tylvalosin also inhibited pro-inflammatory chemokine (C–X–C motif ligand 8 (CXCL-8, also known as Interleukin-8 and interleukin-1 alpha (IL-1α protein secretion in bacterial lipopolysaccharide-stimulated macrophages. Together, these data illustrate that tylvalosin has potent immunomodulatory effects

  7. Sequential alterations in catabolic and anabolic gene expression parallel pathological changes during progression of monoiodoacetate-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Jin Nam

    Full Text Available Chronic inflammation is one of the major causes of cartilage destruction in osteoarthritis. Here, we systematically analyzed the changes in gene expression associated with the progression of cartilage destruction in monoiodoacetate-induced arthritis (MIA of the rat knee. Sprague Dawley female rats were given intra-articular injection of monoiodoacetate in the knee. The progression of MIA was monitored macroscopically, microscopically and by micro-computed tomography. Grade 1 damage was observed by day 5 post-monoiodoacetate injection, progressively increasing to Grade 2 by day 9, and to Grade 3-3.5 by day 21. Affymetrix GeneChip was utilized to analyze the transcriptome-wide changes in gene expression, and the expression of salient genes was confirmed by real-time-PCR. Functional networks generated by Ingenuity Pathways Analysis (IPA from the microarray data correlated the macroscopic/histologic findings with molecular interactions of genes/gene products. Temporal changes in gene expression during the progression of MIA were categorized into five major gene clusters. IPA revealed that Grade 1 damage was associated with upregulation of acute/innate inflammatory responsive genes (Cluster I and suppression of genes associated with musculoskeletal development and function (Cluster IV. Grade 2 damage was associated with upregulation of chronic inflammatory and immune trafficking genes (Cluster II and downregulation of genes associated with musculoskeletal disorders (Cluster IV. The Grade 3 to 3.5 cartilage damage was associated with chronic inflammatory and immune adaptation genes (Cluster III. These findings suggest that temporal regulation of discrete gene clusters involving inflammatory mediators, receptors, and proteases may control the progression of cartilage destruction. In this process, IL-1β, TNF-α, IL-15, IL-12, chemokines, and NF-κB act as central nodes of the inflammatory networks, regulating catabolic processes. Simultaneously

  8. Erdosteine protects HEI-OC1 auditory cells from cisplatin toxicity through suppression of inflammatory cytokines and induction of Nrf2 target proteins

    International Nuclear Information System (INIS)

    Kim, Se-Jin; Park, Channy; Lee, Joon No; Lim, Hyewon; Hong, Gi-yeon; Moon, Sung K.; Lim, David J.; Choe, Seong-Kyu; Park, Raekil

    2015-01-01

    Cisplatin has many adverse effects, which are a major limitation to its use, including ototoxicity, neurotoxicity, and nephrotoxicity. This study aims to elucidate the protective mechanisms of erdosteine against cisplatin in HEI-OC1 cells. Pretreatment with erdosteine protects HEI-OC1 cells from cisplatin-medicated apoptosis, which is characterized by increase in nuclear fragmentation, DNA laddering, sub-G 0 /G 1 phase, H2AX phosphorylation, PARP cleavage, and caspase-3 activity. Erdosteine significantly suppressed the production of reactive nitrogen/oxygen species and pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 in cisplatin-treated cells. Studies using pharmacologic inhibitors demonstrated that phosphatidylinositol-3-kinases (PI3K) and protein kinase B (Akt) have protective roles in the action of erdosteine against cisplatin in HEI-OC1 cells. In addition, pretreatment with erdosteine clearly suppressed the phosphorylation of p53 (Ser15) and expression of p53-upregulated modulator of apoptosis. Erdosteine markedly induces expression of NF-E2-related factor 2 (Nrf2), which may contribute to the increase in expression of glutathione redox genes γ-L-glutamate-L-cysteine-ligase catalytic and γ-L-glutamate-L-cysteine-ligase modifier subunits, as well as in the antioxidant genes HO-1 and SOD2 in cisplatin-treated HEI-OC1 cells. Furthermore, the increase in expression of phosphorylated p53 induced by cisplatin is markedly attenuated by pretreatment with erdosteine in the mitochondrial fraction. This increased expression may inhibit the cytosolic expression of the apoptosis-inducing factor, cytochrome c, and Bax/Bcl-xL ratio. Thus, our results suggest that treatment with erdosteine is significantly attenuated cisplatin-induced damage through the activation of Nrf2-dependent antioxidant genes, inhibition of pro-inflammatory cytokines, activation of the PI3K/Akt signaling, and mitochondrial-related inhibition of pro

  9. Development of post-pericardiotomy syndrome is preceded by an increase in pro-inflammatory and a decrease in anti-inflammatory serological markers

    Directory of Open Access Journals (Sweden)

    Snefjellå Nora

    2012-07-01

    Full Text Available Abstract The post-pericardiotomy syndrome (PPS is a common complication after cardiac surgery, occuring in 10-40% of patients. PPS may prolong hospitalization, and even serious complications like tamponade and constrictive pericarditis may occur. Early diagnosis and treatment may reduce morbidity. In 50 patients transferred to our hospital after cardiac surgery we found an increase in pro-inflammatory and a decrease in anti-inflammatory cytokines at admission in the patients later developing PPS compared to the patients who did not develop PPS. If confirmed in larger studies, these findings may prove useful in early identification of and targeted treatment in patients developing PPS.

  10. Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense.

    Science.gov (United States)

    McMillan, Mary; Pereg, Lily

    2014-01-01

    Azospirillum brasilense is a nitrogen fixing bacterium that has been shown to have various beneficial effects on plant growth and yield. Under normal conditions A. brasilense exists in a motile flagellated form, which, under starvation or stress conditions, can undergo differentiation into an encapsulated, cyst-like form. Quantitative RT-PCR can be used to analyse changes in gene expression during this differentiation process. The accuracy of quantification of mRNA levels by qRT-PCR relies on the normalisation of data against stably expressed reference genes. No suitable set of reference genes has yet been described for A. brasilense. Here we evaluated the expression of ten candidate reference genes (16S rRNA, gapB, glyA, gyrA, proC, pykA, recA, recF, rpoD, and tpiA) in wild-type and mutant A. brasilense strains under different culture conditions, including conditions that induce differentiation. Analysis with the software programs BestKeeper, NormFinder and GeNorm indicated that gyrA, glyA and recA are the most stably expressed reference genes in A. brasilense. The results also suggested that the use of two reference genes (gyrA and glyA) is sufficient for effective normalisation of qRT-PCR data.

  11. Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense.

    Directory of Open Access Journals (Sweden)

    Mary McMillan

    Full Text Available Azospirillum brasilense is a nitrogen fixing bacterium that has been shown to have various beneficial effects on plant growth and yield. Under normal conditions A. brasilense exists in a motile flagellated form, which, under starvation or stress conditions, can undergo differentiation into an encapsulated, cyst-like form. Quantitative RT-PCR can be used to analyse changes in gene expression during this differentiation process. The accuracy of quantification of mRNA levels by qRT-PCR relies on the normalisation of data against stably expressed reference genes. No suitable set of reference genes has yet been described for A. brasilense. Here we evaluated the expression of ten candidate reference genes (16S rRNA, gapB, glyA, gyrA, proC, pykA, recA, recF, rpoD, and tpiA in wild-type and mutant A. brasilense strains under different culture conditions, including conditions that induce differentiation. Analysis with the software programs BestKeeper, NormFinder and GeNorm indicated that gyrA, glyA and recA are the most stably expressed reference genes in A. brasilense. The results also suggested that the use of two reference genes (gyrA and glyA is sufficient for effective normalisation of qRT-PCR data.

  12. Effect of PCI on inflammatory factors, cTnI, MMP-9 and NT-pro BNP in patients with unstable angina pectoris

    Directory of Open Access Journals (Sweden)

    Ke-Tong Liu

    2016-05-01

    Full Text Available Objective: To investigate the effect of PCI on inflammatory factors, cTnI, MMP-9and NTpro BNP in patients with unstable angina pectoris. Methods: A total of 80 unstable angina pectoris patients were divided into observation group (40 cases and control group (40 cases. The observation group was given the therapy of PCI, and the control group was given coronary angiography. To observe the of inflammatory factors, cTnI, MMP-9 and NT-pro BNP were tested and compared before and after operation. Results: At 24 h after operation, CRP and IL-18 levels were increased significantly after treatment inoperation groups, there was no difference on inflammatory factors in control group, and had significant difference on inflammatory factors in two groups; At 24 h after operation, cTnI, MMP-9 and NT-pro BNP levels were increased significantly after treatment inoperation groups, there was no difference on inflammatory factors in control group, and had significant difference on inflammatory factors in two groups. Conclusion: PCI therapy can induce inflammation and myocardial injury in patients with unstable angina pectoris.

  13. EGR-1 and DUSP-1 are important negative regulators of pro-allergic responses in airway epithelium

    NARCIS (Netherlands)

    Golebski, Korneliusz; van Egmond, Danielle; de Groot, Esther J.; Roschmann, Kristina I. L.; Fokkens, Wytske J.; van Drunen, Cornelis M.

    2015-01-01

    Background: Primary nasal epithelium of house dust mite allergic individuals is in a permanently activated inflammatory transcriptional state. Objective: To investigate whether a deregulated expression of EGR-1 and/or DUSP-1, two potential negative regulators of pro-inflammatory responses, could

  14. In vitro non-viral murine pro-neurotrophin 3 gene transfer into rat bone marrow stromal cells.

    Science.gov (United States)

    Darabi, Shahram; Tiraihi, Taki; Delshad, AliReza; Sadeghizadeh, Majid; Khalil, Wisam; Taheri, Taher

    2017-04-15

    Neurotrophin 3 (NT-3) is an important factor for promoting prenatal neural development, as well as regeneration, axogenesis and plasticity in postnatal life. Therapy with NT-3 was reported to improve the condition of patients suffering from degenerative diseases and traumatic injuries, however, the disadvantage of NT-3 protein delivery is its short half-life, thus our alternative approach is the use of NT-3 gene therapy. In this study, the bone marrow stromal cells (BMSCs) were isolated from adult rats, cultured for 4 passages and transfected with either pEGFP-N1 or a constructed vector containing murine proNT-3 (pSecTag2/HygroB-murine proNT-3) using Lipofectamine 2000 followed by Hygromycin B (200mg/kg). The transfection efficiency of the transiently transfected BMSCs was evaluated using the green fluorescence protein containing vector (pEGFP-N1). A quantitative evaluation of the NT-3 expression of mRNA using real time qRT-PCR shows that there was double fold increase in NT-3 gene expression compared with non-transfected BMSCs, also, the culture supernatant yielded double fold increase in NT-3 using ELISA technique, the data were supported by immunoblotting technique. This suggests that the use of this transfection technique can be useful for gene therapy in different neurological disorders with neurodegenerative or traumatic origins. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Peritumoral adipose tissue as a source of inflammatory and angiogenic factors in colorectal cancer.

    Science.gov (United States)

    Amor, S; Iglesias-de la Cruz, M C; Ferrero, E; García-Villar, O; Barrios, V; Fernandez, N; Monge, L; García-Villalón, A L; Granado, M

    2016-02-01

    Obesity is a risk factor for the development of human colorectal cancer (CC). The aim of this work is to report the inflammatory and angiogenic scenario in lean (BMI  30 kg/m2) patients with and without CC and to assess the role of peritumoral adipose tissue in CC-induced inflammation. Patients were divided in four experimental groups: obese patients with CC (OB-CC), lean patients with CC (LEAN-CC), obese patients without CC (OB), and lean patients without CC (LEAN). Plasma levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-4, IL-8) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased in OB-CC patients. Peritumoral adipose tissue (TF) explants and cultured mature adipocytes secreted higher amounts of nitrites and nitrates than did control and non-tumoral (NTF) adipose tissue both alone and in response to lipopolysaccharide (LPS). Nitrite and nitrate secretion was also increased in TF explants from OB-CC patients compared with that from LEAN-CC patients. Gene expression of adiponectin, tumor necrosis factor alpha (TNF-α), insulin-like growth factor type I (IGF-I), cyclooxygenase-2 (COX-2), and peroxisome proliferator-activated receptor γ (PPAR-γ) was increased in TF explants from CC patients. LPS increased the gene expression of IL-6, IL-10, TNF-α, vascular endothelial growth factor (VEGF), and COX-2 in OB and in TF explants from OB-CC patients. COX-2 and PPAR-γ inhibition further increased LPS-induced release of nitrites and nitrates in TF explants and adipocytes from OB-CC patients. In conclusion, OB-CC patients have increased plasma levels of pro-inflammatory and angiogenic factors. TF from OB-CC patients shows an increased secretion of inflammatory markers compared with both TF from LEAN-CC and non-tumoral adipose tissue (AT) through a COX-2- and PPAR-γ-independent mechanism.

  16. Gene expression in cerebral ischemia: a new approach for neuroprotection.

    Science.gov (United States)

    Millán, Mónica; Arenillas, Juan

    2006-01-01

    Cerebral ischemia is one of the strongest stimuli for gene induction in the brain. Hundreds of genes have been found to be induced by brain ischemia. Many genes are involved in neurodestructive functions such as excitotoxicity, inflammatory response and neuronal apoptosis. However, cerebral ischemia is also a powerful reformatting and reprogramming stimulus for the brain through neuroprotective gene expression. Several genes may participate in both cellular responses. Thus, isolation of candidate genes for neuroprotection strategies and interpretation of expression changes have been proven difficult. Nevertheless, many studies are being carried out to improve the knowledge of the gene activation and protein expression following ischemic stroke, as well as in the development of new therapies that modify biochemical, molecular and genetic changes underlying cerebral ischemia. Owing to the complexity of the process involving numerous critical genes expressed differentially in time, space and concentration, ongoing therapeutic efforts should be based on multiple interventions at different levels. By modification of the acute gene expression induced by ischemia or the apoptotic gene program, gene therapy is a promising treatment but is still in a very experimental phase. Some hurdles will have to be overcome before these therapies can be introduced into human clinical stroke trials. Copyright 2006 S. Karger AG, Basel.

  17. Effect of Pancreatic Hormones on pro-Atrial Natriuretic Peptide in Humans

    DEFF Research Database (Denmark)

    Zois, Nora E.; Terzic, Dijana; Faerch, Kristine

    2017-01-01

    Plasma concentrations of pro-Atrial natriuretic peptide, proANP, are decreased in obesity and diabetes. Decreased proANP concentrations have also been noted after meal intake, and recently, a glucose-mediated regulation of ANP gene expression was reported. Hence, we evaluated the effects of insul...

  18. Predicting response to primary chemotherapy: gene expression profiling of paraffin-embedded core biopsy tissue.

    Science.gov (United States)

    Mina, Lida; Soule, Sharon E; Badve, Sunil; Baehner, Fredrick L; Baker, Joffre; Cronin, Maureen; Watson, Drew; Liu, Mei-Lan; Sledge, George W; Shak, Steve; Miller, Kathy D

    2007-06-01

    Primary chemotherapy provides an ideal opportunity to correlate gene expression with response to treatment. We used paraffin-embedded core biopsies from a completed phase II trial to identify genes that correlate with response to primary chemotherapy. Patients with newly diagnosed stage II or III breast cancer were treated with sequential doxorubicin 75 mg/M2 q2 wks x 3 and docetaxel 40 mg/M2 weekly x 6; treatment order was randomly assigned. Pretreatment core biopsy samples were interrogated for genes that might correlate with pathologic complete response (pCR). In addition to the individual genes, the correlation of the Oncotype DX Recurrence Score with pCR was examined. Of 70 patients enrolled in the parent trial, core biopsies samples with sufficient RNA for gene analyses were available from 45 patients; 9 (20%) had inflammatory breast cancer (IBC). Six (14%) patients achieved a pCR. Twenty-two of the 274 candidate genes assessed correlated with pCR (p < 0.05). Genes correlating with pCR could be grouped into three large clusters: angiogenesis-related genes, proliferation related genes, and invasion-related genes. Expression of estrogen receptor (ER)-related genes and Recurrence Score did not correlate with pCR. In an exploratory analysis we compared gene expression in IBC to non-inflammatory breast cancer; twenty-four (9%) of the genes were differentially expressed (p < 0.05), 5 were upregulated and 19 were downregulated in IBC. Gene expression analysis on core biopsy samples is feasible and identifies candidate genes that correlate with pCR to primary chemotherapy. Gene expression in IBC differs significantly from noninflammatory breast cancer.

  19. Identification of Genes Differentially Expressed During Heat Shock Treatment in Aedes aegypti

    Science.gov (United States)

    2009-01-01

    Chan, C. W. Cheng, and R. S. Wu. 2003. Cloning of theHSP70 gene in barnacle larvae and its expression under hypoxic conditions. Mar. Pollut. Bull. 46...665Ð671. Chuang, K. H., S. H. Ho, and Y. L. Song. 2007. Cloning and expression analysis of heat shock cognate 70 gene pro- moter in tiger shrimp ...in larvae , but not adults, of a polar insect. Proc. Natl. Acad. Sci. U.S.A. 103: 14223Ð14227. Robich, R. M., J. P. Rinehart, L. J. Kitchen, and D. L

  20. Anti-inflammatory activity of traditional Chinese medicinal herbs

    Directory of Open Access Journals (Sweden)

    Min-Hsiung Pan

    2011-10-01

    Full Text Available Accumulating epidemiological and clinical evidence shows that inflammation is an important risk factor for various human diseases. Thus, suppressing chronic inflammation has the potential to delay, prevent, and control various chronic diseases, including cerebrovascular, cardiovascular, joint, skin, pulmonary, blood, lymph, liver, pancreatic, and intestinal diseases. Various natural products from traditional Chinese medicine (TCM have been shown to safely suppress proinflammatory pathways and control inflammation-associated disease. In vivo and/or in vitro studies have demonstrated that anti-inflammatory effects of TCM occur by inhibition of the expression of master transcription factors (for example, nuclear factor-κB (NF-κB, pro-inflammatory cytokines (for example, tumor necrosis factor-α (TNF-α, chemokines (for example, chemokine (C-C motif ligand (CCL-24, intercellular adhesion molecule expression and pro-inflammatory mediators (for example, inducible nitric oxide synthase (iNOS and cyclooxygenase 2 (COX2. However, a handful of review articles have focused on the anti-inflammatory activities of TCM and explore their possible mechanisms of action. In this review, we summarize recent research attempting to identify the anti-inflammatory constituents of TCM and their molecular targets that may create new opportunities for innovation in modern pharmacology.

  1. Gene expression profiling in mouse lung following polymeric hexamethylene diisocyanate exposure

    International Nuclear Information System (INIS)

    Lee, C.-T.; Ylostalo, Joni; Friedman, Mitchell; Hoyle, Gary W.

    2005-01-01

    Isocyanates are a common cause of occupational lung disease. Hexamethylene diisocyanate (HDI), a component of polyurethane spray paints, can induce respiratory symptoms, inflammation, lung function impairment, and isocyanate asthma. The predominant form of HDI in polyurethane paints is a nonvolatile polyisocyanate known as HDI biuret trimer (HDI-BT). Exposure of mice to aerosolized HDI-BT results in pathological effects, including pulmonary edema, lung inflammation, cellular proliferation, and fibrotic lesions, which occur with distinct time courses following exposure. To identify genes that mediate lung pathology in the distinct temporal phases after exposure, gene expression profiles in HDI-BT-exposed C57BL/6J mouse lungs were analyzed. RNase protection assay (RPA) of genes involved in apoptosis, cell survival, and inflammation revealed increased expression of IκBα, Fas, Bcl-X L , TNFα, KC, MIP-2, IL-6, and GM-CSF following HDI-BT exposure. Microarray analysis of approximately 10 000 genes was performed on lung RNA collected from mice 6, 18, and 90 h after HDI-BT exposure and from unexposed mice. Classes of genes whose expression was increased 6 h after exposure included those involved in stress responses (particularly oxidative stress and thiol redox balance), growth arrest, apoptosis, signal transduction, and inflammation. Types of genes whose expression was increased at 18 h included proteinases, anti-proteinases, cytoskeletal molecules, and inflammatory mediators. Transcripts increased at 90 h included extracellular matrix components, transcription factors, inflammatory mediators, and cell cycle regulators. This characterization of the gene expression profile in lungs exposed to HDI-BT will provide a basis for investigating injury and repair pathways that are operative during isocyanate-induced lung disease

  2. Gene expression profiling in gastric mucosa from Helicobacter pylori-infected and uninfected patients undergoing chronic superficial gastritis.

    Directory of Open Access Journals (Sweden)

    Ze-Min Yang

    Full Text Available Helicobacter pylori infection reprograms host gene expression and influences various cellular processes, which have been investigated by cDNA microarray using in vitro culture cells and in vivo gastric biopsies from patients of the Chronic Abdominal Complaint. To further explore the effects of H. pylori infection on host gene expression, we have collected the gastric antral mucosa samples from 6 untreated patients with gastroscopic and pathologic confirmation of chronic superficial gastritis. Among them three patients were infected by H. pylori and the other three patients were not. These samples were analyzed by a microarray chip which contains 14,112 cloned cDNAs, and microarray data were analyzed via BRB ArrayTools software and Ingenuity Pathways Analysis (IPA website. The results showed 34 genes of 38 differentially expressed genes regulated by H. pylori infection had been annotated. The annotated genes were involved in protein metabolism, inflammatory and immunological reaction, signal transduction, gene transcription, trace element metabolism, and so on. The 82% of these genes (28/34 were categorized in three molecular interaction networks involved in gene expression, cancer progress, antigen presentation and inflammatory response. The expression data of the array hybridization was confirmed by quantitative real-time PCR assays. Taken together, these data indicated that H. pylori infection could alter cellular gene expression processes, escape host defense mechanism, increase inflammatory and immune responses, activate NF-κB and Wnt/β-catenin signaling pathway, disturb metal ion homeostasis, and induce carcinogenesis. All of these might help to explain H. pylori pathogenic mechanism and the gastroduodenal pathogenesis induced by H. pylori infection.

  3. Opposing Effects of Zac1 and Curcumin on AP-1-Regulated Expressions of S100A7.

    Directory of Open Access Journals (Sweden)

    Yu-Wen Chu

    Full Text Available ZAC, an encoding gene mapped at chromosome 6q24-q25 within PSORS1, was previously found over-expressed in the lower compartment of the hyperplastic epidermis in psoriatic lesions. Cytokines produced in the inflammatory dermatoses may drive AP-1 transcription factor to induce responsive gene expressions. We demonstrated that mZac1 can enhance AP-1-responsive S100A7 expression of which the encoding gene was located in PSORS4 with HaCaT keratinocytes. However, the mZac1-enhanced AP-1 transcriptional activity was suppressed by curcumin, indicating the anti-inflammatory property of this botanical agent and is exhibited by blocking the AP-1-mediated cross-talk between PSORS1 and PSORS4. Two putative AP-1-binding sites were found and demonstrated to be functionally important in the regulation of S100A7 promoter activity. Moreover, we found curcumin reduced the DNA-binding activity of AP-1 to the recognition element located in the S100A7 promoter. The S100A7 expression was found to be upregulated in the lesioned epidermis of atopic dermatitis and psoriasis, which is where this keratinocyte-derived chemoattractant engaged in the pro-inflammatory feedback loop. Understanding the regulatory mechanism of S100A7 expression will be helpful to develop therapeutic strategies for chronic inflammatory dermatoses via blocking the reciprocal stimuli between the inflammatory cells and keratinocytes.

  4. Chronic Inhibition of PDE5 Limits Pro-Inflammatory Monocyte-Macrophage Polarization in Streptozotocin-Induced Diabetic Mice.

    Science.gov (United States)

    Venneri, Mary Anna; Giannetta, Elisa; Panio, Giuseppe; De Gaetano, Rita; Gianfrilli, Daniele; Pofi, Riccardo; Masciarelli, Silvia; Fazi, Francesco; Pellegrini, Manuela; Lenzi, Andrea; Naro, Fabio; Isidori, Andrea M

    2015-01-01

    Diabetes mellitus is characterized by changes in endothelial cells that alter monocyte recruitment, increase classic (M1-type) tissue macrophage infiltration and lead to self-sustained inflammation. Our and other groups recently showed that chronic inhibition of phosphodiesterase-5 (PDE5i) affects circulating cytokine levels in patients with diabetes; whether PDE5i also affects circulating monocytes and tissue inflammatory cell infiltration remains to be established. Using murine streptozotocin (STZ)-induced diabetes and in human vitro cell-cell adhesion models we show that chronic hyperglycemia induces changes in myeloid and endothelial cells that alter monocyte recruitment and lead to self-sustained inflammation. Continuous PDE5i with sildenafil (SILD) expanded tissue anti-inflammatory TIE2-expressing monocytes (TEMs), which are known to limit inflammation and promote tissue repair. Specifically, SILD: 1) normalizes the frequency of circulating pro-inflammatory monocytes triggered by hyperglycemia (53.7 ± 7.9% of CD11b+Gr-1+ cells in STZ vs. 30.4 ± 8.3% in STZ+SILD and 27.1 ± 1.6% in CTRL, PTEMs (30.9 ± 3.6% in STZ+SILD vs. 6.9 ± 2.7% in STZ, P TEMs are defective in chronic hyperglycemia and that SILD normalizes their levels by facilitating the shift from classic (M1-like) to alternative (M2-like)/TEM macrophage polarization. Restoration of tissue TEMs with PDE5i could represent an additional pharmacological tool to prevent end-organ diabetic complications.

  5. Anti-inflammatory and apoptotic effects of the polyphenol curcumin on human fibroblast-like synoviocytes.

    Science.gov (United States)

    Kloesch, Burkhard; Becker, Tatjana; Dietersdorfer, Elisabeth; Kiener, Hans; Steiner, Guenter

    2013-02-01

    It has recently been reported that the polyphenol curcumin has pronounced anti-carcinogenic, anti-inflammatory and pro-apoptotic properties. This study investigated possible anti-inflammatory and apoptotic effects of curcumin on the human synovial fibroblast cell line MH7A, and on fibroblast-like synoviocytes (FLS) derived from patients with rheumatoid arthritis (RA). MH7A cells and RA-FLS were stimulated either with interleukin (IL)-1β or phorbol 12-myristate 13 acetate (PMA), and treated simultaneously or sequentially with increasing concentrations of curcumin. Release of interleukin (IL)-6 and vascular endothelial growth factor (VEGF)-A was quantified by enzyme-linked immunosorbent assays (ELISAs). In MH7A cells, modulation of the transcription factor nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinases (MAPKs) such as p38 and extracellular-signal regulated kinase (ERK1/2) were analysed by a reporter gene assay and Western blot, respectively. Pro-apoptotic events were monitored by Annexin-V/7-AAD based assay. Cleavage of pro-caspase-3 and -7 was checked with specific antibodies. Curcumin effectively blocked IL-1β and PMA-induced IL-6 expression both in MH7A cells and RA-FLS. VEGF-A expression could only be detected in RA-FLS and was induced by PMA, but not by IL-1β. Furthermore, curcumin inhibited activation of NF-κB and induced dephosphorylation of ERK1/2. Treatment of FLS with high concentrations of curcumin was associated with a decrease in cell viability and induction of apoptosis. The natural compound curcumin represents strong anti-inflammatory properties and induces apoptosis in FLS. This study provides an insight into possible molecular mechanisms of this substance and suggests it as a natural remedy for the treatment of chronic inflammatory diseases like RA. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Nuclear translocation of Nrf2 and expression of antioxidant defence genes in THP-1 cells exposed to carbon nanotubes.

    Science.gov (United States)

    Brown, David M; Donaldson, Kenneth; Stone, Vicki

    2010-06-01

    Carbon nanotubes have a wide range of applications in various industries and their use is likely to rise in the future. Currently, a major concern is that with the increasing use and production of these materials, there may be increased health risks to exposed workers. Long (> 15 microm) straight nanotubes may undergo frustrated phagocytosis which is likely to result in reduced clearance. We examine here the effects of multiwalled carbon nanotubes of different sizes on monocytic THP-1 cells, with regard to their ability to stimulate increased expression of the HO-1 and GST genes and their ability to produce nuclear translocation of the transcription factor, Nrf2, as well as the release of several pro-inflammatory cytokines and mediators of inflammation. Our results suggest that long (50 microm) carbon nanotubes (62.5 microg/ml for 4 hours) produce increased nuclear translocation of Nrf2 and increased HO-1 gene expression compared with shorter entangled nanotubes. There was no increased gene expression for GST. The long nanotubes (NT1) caused increased release of the proinflammatory cytokine IL-1beta, an effect which was diminished by the antioxidant trolox, suggesting a role of oxidative stress in the upregulation of this cytokine. Tentatively, our study suggests that long carbon nanotubes may exert their effect in THP-1 cells in part via an oxidative stress mechanism.

  7. Modulation of Cartilage Degradation Biomarkers Reflect the Activation and Inhibition of Pro-Inflammatory Cytokine Signaling in an Ex Vivo Model of Bovine Cartilage

    DEFF Research Database (Denmark)

    Kjelgaard-Petersen, Cecilie Freja; Sharma, Neha; Kayed, Ashref

    2017-01-01

    -inflammatory treatments for inflammatory arthritis. The aim of this study was to investigate the effect of small molecule inhibitors targeting 4 main pro-inflammatory signaling pathways (p38, Syk, IκBα, and STAT) on Oncostatin M (OSM) and Tumor Necrosis Factor α (TNFα) stimulated cartilage....

  8. A Rabbit Model for Testing Helper-Dependent Adenovirus-Mediated Gene Therapy for Vein Graft Atherosclerosis.

    Science.gov (United States)

    Bi, Lianxiang; Wacker, Bradley K; Bueren, Emma; Ham, Ervin; Dronadula, Nagadhara; Dichek, David A

    2017-12-15

    Coronary artery bypass vein grafts are a mainstay of therapy for human atherosclerosis. Unfortunately, the long-term patency of vein grafts is limited by accelerated atherosclerosis. Gene therapy, directed at the vein graft wall, is a promising approach for preventing vein graft atherosclerosis. Because helper-dependent adenovirus (HDAd) efficiently transduces grafted veins and confers long-term transgene expression, HDAd is an excellent candidate for delivery of vein graft-targeted gene therapy. We developed a model of vein graft atherosclerosis in fat-fed rabbits and demonstrated long-term (≥20 weeks) persistence of HDAd genomes after graft transduction. This model enables quantitation of vein graft hemodynamics, wall structure, lipid accumulation, cellularity, vector persistence, and inflammatory markers on a single graft. Time-course experiments identified 12 weeks after transduction as an optimal time to measure efficacy of gene therapy on the critical variables of lipid and macrophage accumulation. We also used chow-fed rabbits to test whether HDAd infusion in vein grafts promotes intimal growth and inflammation. HDAd did not increase intimal growth, but had moderate-yet significant-pro-inflammatory effects. The vein graft atherosclerosis model will be useful for testing HDAd-mediated gene therapy; however, pro-inflammatory effects of HdAd remain a concern in developing HDAd as a therapy for vein graft disease.

  9. Thioredoxin ameliorates cutaneous inflammation by regulating the epithelial production and release of pro-Inflammatory cytokines

    Directory of Open Access Journals (Sweden)

    Hai eTian

    2013-09-01

    Full Text Available Human thioredoxin-1 (TRX is a 12-kDa protein with redox-active dithiol in the active site -Cys-Gly-Pro-Cys-. It has been demonstrated that systemic administration and transgenic overexpression of TRX ameliorate inflammation in various animal models, but its anti-inflammatory mechanism is not well characterized. We investigated the anti-inflammatory effects of topically applied recombinant human TRX (rhTRX in a murine irritant contact dermatitis (ICD induced by croton oil. Topically applied rhTRX was distributed only in the skin tissues under both non-inflammatory and inflammatory conditions, and significantly suppressed the inflammatory response by inhibiting the production of cytokines and chemokines, such as TNF-α, Il-1β, IL-6, CXCL-1, and MCP-1. In an in vitro study, rhTRX also significantly inhibited the formation of cytokines and chemokines produced by keratinocytes after exposure to croton oil and phorbol 12-myristate 13-acetate. These results indicate that TRX prevents skin inflammation via the inhibition of local formation of inflammatory cytokines and chemokines. As a promising new approach, local application of TRX may be useful for the treatment of various skin and mucosal inflammatory disorders.

  10. The Medicago truncatula gene expression atlas web server

    Directory of Open Access Journals (Sweden)

    Tang Yuhong

    2009-12-01

    Full Text Available Abstract Background Legumes (Leguminosae or Fabaceae play a major role in agriculture. Transcriptomics studies in the model legume species, Medicago truncatula, are instrumental in helping to formulate hypotheses about the role of legume genes. With the rapid growth of publically available Affymetrix GeneChip Medicago Genome Array GeneChip data from a great range of tissues, cell types, growth conditions, and stress treatments, the legume research community desires an effective bioinformatics system to aid efforts to interpret the Medicago genome through functional genomics. We developed the Medicago truncatula Gene Expression Atlas (MtGEA web server for this purpose. Description The Medicago truncatula Gene Expression Atlas (MtGEA web server is a centralized platform for analyzing the Medicago transcriptome. Currently, the web server hosts gene expression data from 156 Affymetrix GeneChip® Medicago genome arrays in 64 different experiments, covering a broad range of developmental and environmental conditions. The server enables flexible, multifaceted analyses of transcript data and provides a range of additional information about genes, including different types of annotation and links to the genome sequence, which help users formulate hypotheses about gene function. Transcript data can be accessed using Affymetrix probe identification number, DNA sequence, gene name, functional description in natural language, GO and KEGG annotation terms, and InterPro domain number. Transcripts can also be discovered through co-expression or differential expression analysis. Flexible tools to select a subset of experiments and to visualize and compare expression profiles of multiple genes have been implemented. Data can be downloaded, in part or full, in a tabular form compatible with common analytical and visualization software. The web server will be updated on a regular basis to incorporate new gene expression data and genome annotation, and is accessible

  11. Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct affymetrix gene expression datasets.

    Science.gov (United States)

    Van Laere, Steven J; Ueno, Naoto T; Finetti, Pascal; Vermeulen, Peter; Lucci, Anthony; Robertson, Fredika M; Marsan, Melike; Iwamoto, Takayuki; Krishnamurthy, Savitri; Masuda, Hiroko; van Dam, Peter; Woodward, Wendy A; Viens, Patrice; Cristofanilli, Massimo; Birnbaum, Daniel; Dirix, Luc; Reuben, James M; Bertucci, François

    2013-09-01

    Inflammatory breast cancer (IBC) is a poorly characterized form of breast cancer. So far, the results of expression profiling in IBC are inconclusive due to various reasons including limited sample size. Here, we present the integration of three Affymetrix expression datasets collected through the World IBC Consortium allowing us to interrogate the molecular profile of IBC using the largest series of IBC samples ever reported. Affymetrix profiles (HGU133-series) from 137 patients with IBC and 252 patients with non-IBC (nIBC) were analyzed using unsupervised and supervised techniques. Samples were classified according to the molecular subtypes using the PAM50-algorithm. Regression models were used to delineate IBC-specific and molecular subtype-independent changes in gene expression, pathway, and transcription factor activation. Four robust IBC-sample clusters were identified, associated with the different molecular subtypes (Pmolecular subtype-independent 79-gene signature, which held independent prognostic value in a series of 871 nIBCs. Functional analysis revealed attenuated TGF-β signaling in IBC. We show that IBC is transcriptionally heterogeneous and that all molecular subtypes described in nIBC are detectable in IBC, albeit with a different frequency. The molecular profile of IBC, bearing molecular traits of aggressive breast tumor biology, shows attenuation of TGF-β signaling, potentially explaining the metastatic potential of IBC tumor cells in an unexpected manner. ©2013 AACR.

  12. Riboflavin Reduces Pro-Inflammatory Activation of Adipocyte-Macrophage Co-culture. Potential Application of Vitamin B2 Enrichment for Attenuation of Insulin Resistance and Metabolic Syndrome Development.

    Science.gov (United States)

    Mazur-Bialy, Agnieszka Irena; Pocheć, Ewa

    2016-12-15

    Due to the progressive increase in the incidence of obese and overweight individuals, cardiometabolic syndrome has become a worldwide pandemic in recent years. Given the immunomodulatory properties of riboflavin, the current study was performed to investigate the potency of riboflavin in reducing obesity-related inflammation, which is the main cause of insulin resistance, diabetes mellitus 2 or arteriosclerosis. We determined whether pretreatment with a low dose of riboflavin (10.4-1000 nM) affected the pro-inflammatory activity of adipocyte-macrophage co-culture (3T3 L1-RAW 264.7) following lipopolysaccharide stimulation (LPS; 100 ng/mL) which mimics obesity-related inflammation. The apoptosis of adipocytes and macrophages as well as tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), interleukin 1beta (IL-1β), monocyte chemotactic protein 1 (MCP-1), high-mobility group box 1 (HMGB1), transforming growth factor-beta 1 (TGFβ), interleukin 10 (IL-10), inducible nitric oxide synthase (iNOS), nitric oxide (NO), matrix metalloproteinase 9 (MMP-9), tissue inhibitor of metalloproteinases-1 (TIMP-1) expression and release, macrophage migration and adipokines (adiponectin and leptin) were determined. Our results indicated an efficient reduction in pro-inflammatory factors (TNFα, IL-6, MCP-1, HMGB1) upon culture with riboflavin supplementation (500-1000 nM), accompanied by elevation in anti-inflammatory adiponectin and IL-10. Moreover, macrophage migration was reduced by the attenuation of chemotactic MCP-1 release and degradation of the extracellular matrix by MMP-9. In conclusion, riboflavin effectively inhibits the pro-inflammatory activity of adipocyte and macrophage co-cultures, and therefore we can assume that its supplementation may reduce the likelihood of conditions associated with the mild inflammation linked to obesity.

  13. Riboflavin Reduces Pro-Inflammatory Activation of Adipocyte-Macrophage Co-culture. Potential Application of Vitamin B2 Enrichment for Attenuation of Insulin Resistance and Metabolic Syndrome Development

    Directory of Open Access Journals (Sweden)

    Agnieszka Irena Mazur-Bialy

    2016-12-01

    Full Text Available Due to the progressive increase in the incidence of obese and overweight individuals, cardiometabolic syndrome has become a worldwide pandemic in recent years. Given the immunomodulatory properties of riboflavin, the current study was performed to investigate the potency of riboflavin in reducing obesity-related inflammation, which is the main cause of insulin resistance, diabetes mellitus 2 or arteriosclerosis. We determined whether pretreatment with a low dose of riboflavin (10.4–1000 nM affected the pro-inflammatory activity of adipocyte-macrophage co-culture (3T3 L1-RAW 264.7 following lipopolysaccharide stimulation (LPS; 100 ng/mL which mimics obesity-related inflammation. The apoptosis of adipocytes and macrophages as well as tumor necrosis factor-alpha (TNF-α, interleukin 6 (IL-6, interleukin 1beta (IL-1β, monocyte chemotactic protein 1 (MCP-1, high-mobility group box 1 (HMGB1, transforming growth factor–beta 1 (TGFβ, interleukin 10 (IL-10, inducible nitric oxide synthase (iNOS, nitric oxide (NO, matrix metalloproteinase 9 (MMP-9, tissue inhibitor of metalloproteinases-1 (TIMP-1 expression and release, macrophage migration and adipokines (adiponectin and leptin were determined. Our results indicated an efficient reduction in pro-inflammatory factors (TNFα, IL-6, MCP-1, HMGB1 upon culture with riboflavin supplementation (500–1000 nM, accompanied by elevation in anti-inflammatory adiponectin and IL-10. Moreover, macrophage migration was reduced by the attenuation of chemotactic MCP-1 release and degradation of the extracellular matrix by MMP-9. In conclusion, riboflavin effectively inhibits the pro-inflammatory activity of adipocyte and macrophage co-cultures, and therefore we can assume that its supplementation may reduce the likelihood of conditions associated with the mild inflammation linked to obesity.

  14. Pro-Inflammatory Cytokine TNF-α Attenuates BMP9-Induced Osteo/ Odontoblastic Differentiation of the Stem Cells of Dental Apical Papilla (SCAPs

    Directory of Open Access Journals (Sweden)

    Feilong Wang

    2017-03-01

    Full Text Available Background/Aims: Periapical periodontitis is a common oral disease caused by bacterial invasion of the tooth pulp, which usually leads to local release of pro-inflammatory cytokines and osteolytic lesion. This study is intended to examine the effect of TNF-α on BMP9-induced osteogenic differentiation of the stem cells of dental apical papilla (SCAPs. Methods: Rat model of periapical periodontitis was established. TNF-α expression was assessed. Osteogenic markers and ectopic bone formation in iSCAPs were analyzed upon BMP9 and TNF-α treatment. Results: Periapical periodontitis was successfully established in rat immature permanent teeth with periapical lesions, in which TNF-α was shown to release during the inflammatory phase. BMP9-induced alkaline phosphatase activity, the expression of osteocalcin and osteopontin, and matrix mineralization in iSCAPs were inhibited by TNF-α in a dose-dependent fashion, although increased AdBMP9 partially overcame TNF-α inhibition. Furthermore, high concentration of TNF-α effectively inhibited BMP9-induced ectopic bone formation in vivo. Conclusion: TNF-α plays an important role in periapical bone defect during the inflammatory phase and inhibits BMP9-induced osteoblastic differentiation of iSCAPs, which can be partially reversed by high levels of BMP9. Therefore, BMP9 may be further explored as a potent osteogenic factor to improve osteo/odontogenic differentiation in tooth regeneration in chronic inflammation conditions.

  15. Vitamin D mitigates age-related cognitive decline through the modulation of pro-inflammatory state and decrease in amyloid burden

    Directory of Open Access Journals (Sweden)

    Briones Teresita L

    2012-10-01

    Full Text Available Abstract Background Increasing evidence shows an association between the use of vitamin D and improvement in age-related cognitive decline. In this study, we investigated the possible mechanisms involved in the neuroprotective effects of vitamin D on age-related brain changes and cognitive function. Methods Male F344 rats aged 20 months (old and 6 months (young were used and randomly assigned to either vitamin D supplementation or no supplementation (control. A total of n = 39 rats were used in the study. Rats were individually housed and the supplementation group received a subcutaneous injection of vitamin D (1, α25-dihydroxyvitamin D3 42 I.U./Kg for 21 days. Control animals received equal volume of normal saline. Behavioral testing in water maze and spontaneous object recognition tasks started on day 14. Levels of interleukin (IL-1β and IL-10 were quantified to assess inflammatory state. Also, beta amyloid (Aβ clearance and Aβ load were measured. Results Our results show that: (1 aged rats demonstrated significant learning and memory impairment overall compared to younger animals. However, the age-related decline in learning and memory was ameliorated by the supplementation of vitamin D. No vitamin D effect on learning and memory was seen in the young animals; 2 the pro-inflammatory cytokine IL-1β is significantly increased while the anti-inflammatory cytokine IL-10 is significantly decreased in the aged rats compared to the young animals; but this age-related change in inflammatory state was mitigated by vitamin D supplementation. No effects of vitamin D were seen on the IL-1β and IL-10 expression in the young rats; (3 vitamin D increased Aβ clearance and decreased amyloid burden in the aged rats while no significant difference was seen between the young animal groups. Conclusions Our data suggest that vitamin D supplementation modulated age-related increase in pro-inflammatory state and amyloid burden. It is possible that these

  16. Inhibition of Pro-inflammatory and Anti-apoptotic Biomarkers during Experimental Oral Cancer Chemoprevention by Dietary Black Raspberries

    Directory of Open Access Journals (Sweden)

    Steve Oghumu

    2017-10-01

    Full Text Available Oral cancer continues to be a significant public health problem worldwide. Recently conducted clinical trials demonstrate the ability of black raspberries (BRBs to modulate biomarkers of molecular efficacy that supports a chemopreventive strategy against oral cancer. However, it is essential that a preclinical animal model of black raspberry (BRB chemoprevention which recapitulates human oral carcinogenesis be developed, so that we can validate biomarkers and evaluate potential mechanisms of action. We therefore established the ability of BRBs to inhibit oral lesion formation in a carcinogen-induced rat oral cancer model and examined potential mechanisms. F344 rats were administered 4-nitroquinoline 1-oxide (4NQO (20 µg/ml in drinking water for 14 weeks followed by regular drinking water for 6 weeks. At week 14, rats were fed a diet containing either 5 or 10% BRB, or 0.4% ellagic acid (EA, a BRB phytochemical. Dietary administration of 5 and 10% BRB reduced oral lesion incidence and multiplicity by 39.3 and 28.6%, respectively. Histopathological analyses demonstrate the ability of BRBs and, to a lesser extent EA, to inhibit the progression of oral cancer. Oral lesion inhibition by BRBs was associated with a reduction in the mRNA expression of pro-inflammatory biomarkers Cxcl1, Mif, and Nfe2l2 as well as the anti-apoptotic and cell cycle associated markers Birc5, Aurka, Ccna1, and Ccna2. Cellular proliferation (Ki-67 staining in tongue lesions was inhibited by BRBs and EA. Our study demonstrates that, in the rat 4NQO oral cancer model, dietary administration of BRBs inhibits oral carcinogenesis via inhibition of pro-inflammatory and anti-apoptotic pathways.

  17. Pro-inflammatory effects of interleukin-17A on vascular smooth muscle cells involve NAD(P)H- oxidase derived reactive oxygen species.

    Science.gov (United States)

    Pietrowski, Eweline; Bender, Bianca; Huppert, Jula; White, Robin; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2011-01-01

    T cells are known for their contribution to the inflammatory element of atherosclerosis. Recently, it has been demonstrated that the Th17 derived cytokine IL-17 is involved in the pro-inflammatory response of vascular smooth muscle cells (VSMC). The aim of the present study was to examine whether reactive oxygen species (ROS) might be involved in this context. The effect of IL-17A on ROS generation was examined using the fluorescent dye 2'7'-dichlorodihydrofluorescein (H(2)DCF) in primary murine VSMC. IL-17A induced an increase in H(2)DCF fluorescence in VSMC, and this effect was blocked by the NAD(P)H-oxidase inhibitor apocynin and siRNA targeting Nox2. The p38-MAPK inhibitors SB203580 and SB202190 dose-dependently reduced the IL-17A induced ROS production. The IL-17A induced release of the pro-inflammatory cytokines IL-6, G-CSF, GM-CSF and MCP-1 from VSMC, as detected by the Luminex technology, was completely abolished by NAD(P)H-oxidase inhibition. Taken together, our data indicate that IL-17A causes the NAD(P)H-oxidase dependent generation of ROS leading to a pro-inflammatory activation of VSMC. Copyright © 2010 S. Karger AG, Basel.

  18. GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells.

    Directory of Open Access Journals (Sweden)

    Guiyu Lou

    Full Text Available GPBAR1/TGR5 is a novel plasma membrane-bound G protein-coupled bile acid (BA receptor. BAs are known to induce the expression of inflammatory cytokines in the liver with unknown mechanism. Here we show that without other external stimuli, TGR5 activation alone induced the expression of interleukin 1β (IL-1β and tumor necrosis factor-α (TNF-α in murine macrophage cell line RAW264.7 or murine Kupffer cells. The TGR5-mediated increase of pro-inflammatory cytokine expression was suppressed by JNK inhibition. Moreover, the induced pro-inflammatory cytokine expression in mouse liver by 1% cholic acid (CA diet was blunted in JNK-/- mice. TGR5 activation by its ligands enhanced the phosphorylation levels, DNA-binding and trans-activities of c-Jun and ATF2 transcription factors. Finally, the induced pro-inflammatory cytokine expression in Kupffer cells by TGR5 activation correlated with the suppression of Cholesterol 7α-hydroxylase (Cyp7a1 expression in murine hepatocytes. These results suggest that TGR5 mediates the BA-induced pro-inflammatory cytokine production in murine Kupffer cells through JNK-dependent pathway. This novel role of TGR5 may correlate to the suppression of Cyp7a1 expression in hepatocytes and contribute to the delicate BA feedback regulation.

  19. Cardiac natriuretic peptide gene expression and plasma concentrations during the first 72 hours of life in piglets

    DEFF Research Database (Denmark)

    Smith, Julie; Christoffersen, Christina; Nørgaard, Linn Maiken

    2013-01-01

    .73). Plasma pro-ANP levels were highest on the day of delivery (5580 pmol/L [4320-6786] decreasing to 2484 pmol/L [1602-2898] after 72 hours, P tissue were immature, ie, unprocessed pro...... the transition from fetal to neonate circulation. However, the cardiac gene expression does not explain plasma concentrations....

  20. Changes in Pre- and Post-Exercise Gene Expression among Patients with Chronic Kidney Disease and Kidney Transplant Recipients.

    Directory of Open Access Journals (Sweden)

    Dawn K Coletta

    Full Text Available Decreased insulin sensitivity blunts the normal increase in gene expression from skeletal muscle after exercise. In addition, chronic inflammation decreases insulin sensitivity. Chronic kidney disease (CKD is an inflammatory state. How CKD and, subsequently, kidney transplantation affects skeletal muscle gene expression after exercise are unknown.Study cohort: non-diabetic male/female 4/1, age 52±2 years, with end-stage CKD who underwent successful kidney transplantation. The following were measured both pre-transplant and post-transplant and compared to normals: Inflammatory markers, euglycemic insulin clamp studies determine insulin sensitivity, and skeletal muscle biopsies performed before and within 30 minutes after an acute exercise protocol. Microarray analyses were performed on the skeletal muscle using the 4x44K Whole Human Genome Microarrays. Since nuclear factor of activated T cells (NFAT plays an important role in T cell activation and calcineurin inhibitors are mainstay immunosuppression, calcineurin/NFAT pathway gene expression was compared at rest and after exercise. Log transformation was performed to prevent skewing of data and regression analyses comparing measures pre- and post-transplant performed.Markers of inflammation significantly improved post-transplantation. Insulin infusion raised glucose disposal slightly lower post-transplant compared to pre-transplant, but not significantly, thus concluding differences in insulin sensitivity were similar. The overall pattern of gene expression in response to exercise was reduced both pre-and post-transplant compared to healthy volunteers. Although significant changes were observed among NFAT/Calcineurin gene at rest and after exercise in normal cohort, there were no significant differences comparing NFAT/calcineurin pathway gene expression pre- and post-transplant.Despite an improvement in serum inflammatory markers, no significant differences in glucose disposal were observed post

  1. High gene expression of inflammatory markers and IL-17A correlates with severity of injection site reactions of Atlantic salmon vaccinated with oil-adjuvanted vaccines

    Directory of Open Access Journals (Sweden)

    Koop Ben F

    2010-05-01

    Full Text Available Abstract Background Two decades after the introduction of oil-based vaccines in the control of bacterial and viral diseases in farmed salmonids, the mechanisms of induced side effects manifested as intra-abdominal granulomas remain unresolved. Side effects have been associated with generation of auto-antibodies and autoimmunity but the underlying profile of inflammatory and immune response has not been characterized. This study was undertaken with the aim to elucidate the inflammatory and immune mechanisms of granuloma formation at gene expression level associated with high and low side effect (granuloma indices. Groups of Atlantic salmon parr were injected intraperitoneally with oil-adjuvanted vaccines containing either high or low concentrations of Aeromonas salmonicida or Moritella viscosa antigens in order to induce polarized (severe and mild granulomatous reactions. The established granulomatous reactions were confirmed by gross and histological methods at 3 months post vaccination when responses were known to have matured. The corresponding gene expression patterns in the head kidneys were profiled using salmonid cDNA microarrays followed by validation by real-time quantitative PCR (qPCR. qPCR was also used to examine the expression of additional genes known to be important in the adaptive immune response. Results Granulomatous lesions were observed in all vaccinated fish. The presence of severe granulomas was associated with a profile of up-regulation of innate immunity-related genes such as complement factors C1q and C6, mannose binding protein, lysozyme C, C-type lectin receptor, CD209, Cathepsin D, CD63, LECT-2, CC chemokine and metallothionein. In addition, TGF-β (p = 0.001, IL-17A (p = 0.007 and its receptor (IL-17AR (p = 0.009 representing TH17 were significantly up-regulated in the group with severe granulomas as were arginase and IgM. None of the genes directly reflective of TH1 T cell lineage (IFN-γ, CD4 or TH2 (GATA-3

  2. Immunomodulator expression in trophoblasts from the feline immunodeficiency virus (FIV-infected cat

    Directory of Open Access Journals (Sweden)

    Donaldson Janet R

    2011-07-01

    Full Text Available Abstract Background FIV infection frequently compromises pregnancy under experimental conditions and is accompanied by aberrant expression of some placental cytokines. Trophoblasts produce numerous immunomodulators that play a role in placental development and pregnancy maintenance. We hypothesized that FIV infection may cause dysregulation of trophoblast immunomodulator expression, and aberrant expression of these molecules may potentiate inflammation and compromise pregnancy. The purpose of this project was to evaluate the expression of representative pro-(TNF-α, IFN-γ, IL-1β, IL-2, IL-6, IL-12p35, IL-12p40, IL-18, and GM-CSF and anti-inflammatory cytokines (IL-4, IL-5, and IL-10; CD134, a secondary co-stimulatory molecule expressed on activated T cells (FIV primary receptor; the chemokine receptor CXCR4 (FIV co-receptor; SDF-1α, the chemokine ligand to CXCR4; and FIV gag in trophoblasts from early-and late-term pregnancy. Methods We used an anti-cytokeratin antibody in immunohistochemistry to identify trophoblasts selectively, collected these cells using laser capture microdissection, and extracted total RNA from the captured cell populations. Real time, reverse transcription-PCR was used to quantify gene expression. Results We detected IL-4, IL-5, IL-6, IL-1β, IL-12p35, IL-12p40, and CXCR4 in trophoblasts from early-and late-term pregnancy. Expression of cytokines increased from early to late pregnancy in normal tissues. A clear, pro-inflammatory microenvironment was not evident in trophoblasts from FIV-infected queens at either stage of pregnancy. Reproductive failure was accompanied by down-regulation of both pro-and anti-inflammatory cytokines. CD134 was not detected in trophoblasts, and FIV gag was detected in only one of ten trophoblast specimens collected from FIV-infected queens. Conclusion Feline trophoblasts express an array of pro-and anti-inflammatory immunomodulators whose expression increases from early to late pregnancy in

  3. Chronic Inhibition of PDE5 Limits Pro-Inflammatory Monocyte-Macrophage Polarization in Streptozotocin-Induced Diabetic Mice.

    Directory of Open Access Journals (Sweden)

    Mary Anna Venneri

    Full Text Available Diabetes mellitus is characterized by changes in endothelial cells that alter monocyte recruitment, increase classic (M1-type tissue macrophage infiltration and lead to self-sustained inflammation. Our and other groups recently showed that chronic inhibition of phosphodiesterase-5 (PDE5i affects circulating cytokine levels in patients with diabetes; whether PDE5i also affects circulating monocytes and tissue inflammatory cell infiltration remains to be established. Using murine streptozotocin (STZ-induced diabetes and in human vitro cell-cell adhesion models we show that chronic hyperglycemia induces changes in myeloid and endothelial cells that alter monocyte recruitment and lead to self-sustained inflammation. Continuous PDE5i with sildenafil (SILD expanded tissue anti-inflammatory TIE2-expressing monocytes (TEMs, which are known to limit inflammation and promote tissue repair. Specifically, SILD: 1 normalizes the frequency of circulating pro-inflammatory monocytes triggered by hyperglycemia (53.7 ± 7.9% of CD11b+Gr-1+ cells in STZ vs. 30.4 ± 8.3% in STZ+SILD and 27.1 ± 1.6% in CTRL, P<0.01; 2 prevents STZ-induced tissue inflammatory infiltration (4-fold increase in F4/80+ macrophages in diabetic vs. control mice by increasing renal and heart anti-inflammatory TEMs (30.9 ± 3.6% in STZ+SILD vs. 6.9 ± 2.7% in STZ, P <0.01, and 11.6 ± 2.9% in CTRL mice; 3 reduces vascular inflammatory proteins (iNOS, COX2, VCAM-1 promoting tissue protection; 4 lowers monocyte adhesion to human endothelial cells in vitro through the TIE2 receptor. All these changes occurred independently from changes of glycemic status. In summary, we demonstrate that circulating renal and cardiac TEMs are defective in chronic hyperglycemia and that SILD normalizes their levels by facilitating the shift from classic (M1-like to alternative (M2-like/TEM macrophage polarization. Restoration of tissue TEMs with PDE5i could represent an additional pharmacological tool to prevent

  4. The anti-inflammatory effect of Sonchus oleraceus aqueous extract on lipopolysaccharide stimulated RAW 264.7 cells and mice.

    Science.gov (United States)

    Li, Qi; Dong, Dan-Dan; Huang, Qiu-Ping; Li, Jing; Du, Yong-Yong; Li, Bin; Li, Huan-Qing; Huyan, Ting

    2017-12-01

    Sonchus oleraceus L. (Asteraceae) (SO) is a dietary and traditional medicinal plant in China. However, its underlying mechanism of action as an anti-inflammatory agent is not known. This study evaluates the anti-inflammatory activity of aqueous extract of SO. The extract of SO was used to treat RAW 264.7 cells (in the working concentrations of 500, 250, 125, 62.5, 31.3 and 15.6 μg/mL) for 24 h. Pro-inflammatory cytokines and mediators produced in LPS-stimulated RAW 264.7 cells were assessed. Meanwhile, the expression level of TLR-4, COX-2, pSTATs and NF-κB was tested. Moreover, the anti-inflammatory activity of the extract in vivo was assessed using xylene-induced mouse ear oedema model and the anti-inflammatory compounds in the extracts were analyzed by HPLC-MS. SO extract significantly inhibited the production of pro-inflammatory cytokines and mediators at gene and protein levels with the concentration of 31.3 μg/mL, and suppressed the expression of TLR-4, COX-2, NF-κB and pSTAT in RAW 264.7 cells. The anti-inflammatory activity of SO in vivo has significant anti-inflammatory effects with the concentration of 250 and 125 mg/kg, and less side effect on the weights of the mice at the concentration of 250 mg/kg. Moreover, HPLC-MS analysis revealed that the anti-inflammatory compounds in the extract were identified as villosol, ferulaic acid, β-sitosterol, ursolic acid and rutin. This study indicated that SO extract has anti-inflammatory effects in vitro and in vivo, which will be further developed as novel pharmacological strategies in order to defeat inflammatory diseases.

  5. A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype.

    Science.gov (United States)

    Rohnalter, Verena; Roth, Katrin; Finkernagel, Florian; Adhikary, Till; Obert, Julia; Dorzweiler, Kristina; Bensberg, Maike; Müller-Brüsselbach, Sabine; Müller, Rolf

    2015-11-24

    DNA-damaging drugs induce a plethora of molecular and cellular alterations in tumor cells, but their interrelationship is largely obscure. Here, we show that carboplatin treatment of human ovarian carcinoma SKOV3 cells triggers an ordered sequence of events, which precedes the emergence of mitotic chemoresistant cells. The initial phase of cell death after initiation of carboplatin treatment is followed around day 14 by the emergence of a mixed cell population consisting of cycling, cell cycle-arrested and senescent cells. At this stage, giant cells make up >80% of the cell population, p21 (CDKN1A) in strongly induced, and cell numbers remain nearly static. Subsequently, cell death decreases, p21 expression drops to a low level and cell divisions increase, including regular mitoses of giant cells and depolyploidization by multi-daughter divisions. These events are accompanied by the upregulation of stemness markers and a pro-inflammatory secretory phenotype, peaking after approximately 14 days of treatment. At the same time the cells initiate epithelial to mesenchymal transition, which over the subsequent weeks continuously increases, concomitantly with the emergence of highly proliferative, migratory, dedifferentiated, pro-inflammatory and chemoresistant cells (SKOV3-R). These cells are anchorage-independent and grow in a 3D collagen matrix, while cells on day 14 do not survive under these conditions, indicating that SKOV3-R cells were generated thereafter by the multi-stage process described above. This process was essentially recapitulated with the ovarian carcinoma cell line IGROV-1. Our observations suggest that transitory cells characterized by polyploidy, features of stemness and a pro-inflammatory secretory phenotype contribute to the acquisition of chemoresistance.

  6. Protein expression profiling of inflammatory mediators in human temporal lobe epilepsy reveals co-activation of multiple chemokines and cytokines

    Directory of Open Access Journals (Sweden)

    Kan Anne A

    2012-08-01

    Full Text Available Abstract Mesial temporal lobe epilepsy (mTLE is a chronic and often treatment-refractory brain disorder characterized by recurrent seizures originating from the hippocampus. The pathogenic mechanisms underlying mTLE remain largely unknown. Recent clinical and experimental evidence supports a role of various inflammatory mediators in mTLE. Here, we performed protein expression profiling of 40 inflammatory mediators in surgical resection material from mTLE patients with and without hippocampal sclerosis, and autopsy controls using a multiplex bead-based immunoassay. In mTLE patients we identified 21 upregulated inflammatory mediators, including 10 cytokines and 7 chemokines. Many of these upregulated mediators have not previously been implicated in mTLE (for example, CCL22, IL-7 and IL-25. Comparing the three patient groups, two main hippocampal expression patterns could be distinguished, pattern I (for example, IL-10 and IL-25 showing increased expression in mTLE + HS patients compared to mTLE-HS and controls, and pattern II (for example, CCL4 and IL-7 showing increased expression in both mTLE groups compared to controls. Upregulation of a subset of inflammatory mediators (for example, IL-25 and IL-7 could not only be detected in the hippocampus of mTLE patients, but also in the neocortex. Principle component analysis was used to cluster the inflammatory mediators into several components. Follow-up analyses of the identified components revealed that the three patient groups could be discriminated based on their unique expression profiles. Immunocytochemistry showed that IL-25 IR (pattern I and CCL4 IR (pattern II were localized in astrocytes and microglia, whereas IL-25 IR was also detected in neurons. Our data shows co-activation of multiple inflammatory mediators in hippocampus and neocortex of mTLE patients, indicating activation of multiple pro- and anti-epileptogenic immune pathways in this disease.

  7. Identification of a novel pro-inflammatory human skin-homing Vγ9Vδ2 T cell subset with a potential role in psoriasis

    Science.gov (United States)

    LAGGNER, Ute; DI MEGLIO, Paola; PERERA, Gayathri K.; HUNDHAUSEN, Christian; LACY, Katie E.; ALI, Niwa; SMITH, Catherine H.; HAYDAY, Adrian C.; NICKOLOFF, Brian J.; NESTLE, Frank O.

    2011-01-01

    γδ T cells mediate rapid tissue responses in murine skin and participate in cutaneous immune regulation including protection against cancer. The role of human γδ cells in cutaneous homeostasis and pathology is poorly characterized. In this study we show in vivo evidence that human blood contains a distinct subset of pro-inflammatory cutaneous lymphocyte antigen (CLA) and C-C chemokine receptor (CCR) 6 positive Vγ9Vδ2 T cells, which is rapidly recruited into perturbed human skin. Vγ9Vδ2 T cells produced an array of pro-inflammatory mediators including IL-17A and activated keratinocytes in a TNF-α and IFN-γ dependent manner. Examination of the common inflammatory skin disease psoriasis revealed a striking reduction of circulating Vγ9Vδ2 T cells in psoriasis patients compared to healthy controls and atopic dermatitis patients. Decreased numbers of circulating Vγ9Vδ2 T cells normalized after successful treatment with psoriasis-targeted therapy. Together with the increased presence of Vγ9Vδ2 T cells in psoriatic skin, this data indicates redistribution of Vγ9Vδ2 T cells from the blood to the skin compartment in psoriasis. In summary, we report a novel human pro-inflammatory γδ T cell involved in skin immune surveillance with immediate response characteristics and with potential clinical relevance in inflammatory skin disease. PMID:21813772

  8. Effect of beta2-adrenoceptor agonists and other cAMP-elevating agents on inflammatory gene expression in human ASM cells: a role for protein kinase A.

    Science.gov (United States)

    Kaur, Manminder; Holden, Neil S; Wilson, Sylvia M; Sukkar, Maria B; Chung, Kian Fan; Barnes, Peter J; Newton, Robert; Giembycz, Mark A

    2008-09-01

    In diseases such as asthma, airway smooth muscle (ASM) cells play a synthetic role by secreting inflammatory mediators such as granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, or IL-8 and by expressing surface adhesion molecules, including ICAM-1. In the present study, PGE(2), forskolin, and short-acting (salbutamol) and long-acting (salmeterol and formoterol) beta(2)-adrenoceptor agonists reduced the expression of ICAM-1 and the release of GM-CSF evoked by IL-1beta in ASM cells. IL-1beta-induced IL-8 release was also repressed by PGE(2) and forskolin, whereas the beta(2)-adrenoceptor agonists were ineffective. In each case, repression of these inflammatory indexes was prevented by adenoviral overexpression of PKIalpha, a highly selective PKA inhibitor. These data indicate a PKA-dependent mechanism of repression and suggest that agents that elevate intracellular cAMP, and thereby activate PKA, may have a widespread anti-inflammatory effect in ASM cells. Since ICAM-1 and GM-CSF are highly NF-kappaB-dependent genes, we used an adenoviral-delivered NF-kappaB-dependent luciferase reporter to examine the effects of forskolin and the beta(2)-adrenoceptor agonists on NF-kappaB activation. There was no effect on luciferase activity measured in the presence of forskolin or beta(2)-adrenoceptor agonists. This finding is consistent with the observation that IL-1beta-induced expression of IL-6, a known NF-kappaB-dependent gene in ASM, was also unaffected by beta(2)-adrenoceptor agonists, forskolin, PGE(2), 8-bromo-cAMP, or rolipram. Collectively, these results indicate that repression of IL-1beta-induced ICAM-1 expression and GM-CSF release by cAMP-elevating agents, including beta(2)-adrenoceptor agonists, may not occur through a generic effect on NF-kappaB.

  9. Human Properdin Opsonizes Nanoparticles and Triggers a Potent Pro-inflammatory Response by Macrophages without Involving Complement Activation

    Science.gov (United States)

    Kouser, Lubna; Paudyal, Basudev; Kaur, Anuvinder; Stenbeck, Gudrun; Jones, Lucy A.; Abozaid, Suhair M.; Stover, Cordula M.; Flahaut, Emmanuel; Sim, Robert B.; Kishore, Uday

    2018-01-01

    Development of nanoparticles as tissue-specific drug delivery platforms can be considerably influenced by the complement system because of their inherent pro-inflammatory and tumorigenic consequences. The complement activation pathways, and its recognition subcomponents, can modulate clearance of the nanoparticles and subsequent inflammatory response and thus alter the intended translational applications. Here, we report, for the first time, that human properdin, an upregulator of the complement alternative pathway, can opsonize functionalized carbon nanotubes (CNTs) via its thrombospondin type I repeat (TSR) 4 and 5. Binding of properdin and TSR4+5 is likely to involve charge pattern/polarity recognition of the CNT surface since both carboxymethyl cellulose-coated carbon nanotubes (CMC-CNT) and oxidized (Ox-CNT) bound these proteins well. Properdin enhanced the uptake of CMC-CNTs by a macrophage cell line, THP-1, mounting a robust pro-inflammatory immune response, as revealed by qRT-PCR, multiplex cytokine array, and NF-κB nuclear translocation analyses. Properdin can be locally synthesized by immune cells in an inflammatory microenvironment, and thus, its interaction with nanoparticles is of considerable importance. In addition, recombinant TSR4+5 coated on the CMC-CNTs inhibited complement consumption by CMC-CNTs, suggesting that nanoparticle decoration with TSR4+5, can be potentially used as a complement inhibitor in a number of pathological contexts arising due to exaggerated complement activation. PMID:29483907

  10. Possible Contribution of Zerumbone-Induced Proteo-Stress to Its Anti-Inflammatory Functions via the Activation of Heat Shock Factor 1.

    Directory of Open Access Journals (Sweden)

    Yoko Igarashi

    Full Text Available Zerumbone is a sesquiterpene present in Zinger zerumbet. Many studies have demonstrated its marked anti-inflammatory and anti-carcinogenesis activities. Recently, we showed that zerumbone binds to numerous proteins with scant selectivity and induces the expression of heat shock proteins (HSPs in hepatocytes. To dampen proteo-toxic stress, organisms have a stress-responsive molecular machinery, known as heat shock response. Heat shock factor 1 (HSF1 plays a key role in this protein quality control system by promoting activation of HSPs. In this study, we investigated whether zerumbone-induced HSF1 activation contributes to its anti-inflammatory functions in stimulated macrophages. Our findings showed that zerumbone increased cellular protein aggregates and promoted nuclear translocation of HSF1 for HSP expression. Interestingly, HSF1 down-regulation attenuated the suppressive effects of zerumbone on mRNA and protein expressions of pro-inflammatory genes, including inducible nitric oxide synthase and interlukin-1β. These results suggest that proteo-stress induced by zerumbone activates HSF1 for exhibiting its anti-inflammatory functions.

  11. Altered expression of BDNF, BDNF pro-peptide and their precursor proBDNF in brain and liver tissues from psychiatric disorders: rethinking the brain?liver axis

    OpenAIRE

    Yang, B; Ren, Q; Zhang, J-c; Chen, Q-X; Hashimoto, K

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) has a role in the pathophysiology of psychiatric disorders. The precursor proBDNF is converted to mature BDNF and BDNF pro-peptide, the N-terminal fragment of proBDNF; however, the precise function of these proteins in psychiatric disorders is unknown. We sought to determine whether expression of these proteins is altered in the brain and peripheral tissues from patients with psychiatric disorders. We measured protein expression of proBDNF, mature BDNF...

  12. Prebiotic and Synbiotic Modifications of Beta Oxidation and Lipogenic Gene Expression after Experimental Hypercholesterolemia in Rat Liver

    Directory of Open Access Journals (Sweden)

    Claudia C. Alves

    2017-10-01

    Full Text Available Background and aims: Non-alcoholic fatty liver disease (NAFLD is characterized by the presence of fat in hepatocytes because of decreased β-oxidation and increased lipogenesis. Prebiotics, probiotics, and synbiotic have modulatory effects on intestinal microbiota and may influence the gut-liver axis. Our aim was to evaluate the effects of prebiotic, probiotics, and synbiotic on liver histopathology and gene expression related to β-oxidation and lipogenesis after hypercholesterolemia.Methods: Wistar male adult rats (n = 40 were submitted to hypercholesterolemic conditions (HPC (60 days. On Day 30 of HPC, rats were subdivided in 5 groups: negative control (NC: without HPC + Gv (distilled water; positive control (PC: with HPC + Gv (distilled water; prebiotic (PRE: HPC + Gv with prebiotic (Fiber FOS®; probiotic (PRO: HPC + Gv with probiotic strains Gv (Probiatop®; and synbiotic (SYN: HPC + Gv with synbiotic (Simbioflora®. All rats were sacrificed on Day 30 post-treatment. Blood was collected to verify total serum cholesterol, and liver tissue was sampled to verify histopathological changes and gene expression. Gene expression related to ß-oxidation (PPAR-α and CPT-1 and lipogenesis (SREBP-1c, FAS and ME was evaluated in liver tissue using RT-qPCR.Results: PC had higher cholesterol levels when compared to NC. PRE and SYN rats had lower cholesterol levels than PC. PC rats showed more histopathological changes than NC rats; PRE and SYN rats showed fewer alterations than PC rats. PPAR-α was expressed at higher levels in SYN and PC rats compared with PRE and PRO rats. CPT-1 expression was similar in all groups. SREBP-1c was expressed at higher levels in PC rats compared with NC rats; levels were lower in SYN rats compared with PRO rats; levels were lower in PRE rats compared with PC and PRO rats. FAS was expressed at lower levels in PRE rats compared with SYN rats. ME expression was lower in PC rats compared with NC rats.Conclusion: Prebiotic and

  13. Supplementary Material for: Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets

    KAUST Repository

    Najera, Julia

    2016-01-01

    Abstract Background Methamphetamine (Meth) abuse is a major health problem linked to the aggravation of HIV- associated complications, especially within the Central Nervous System (CNS). Within the CNS, Meth has the ability to modify the activity/function of innate immune cells and increase brain viral loads. Here, we examined changes in the gene expression profile of neuron-free microglial cell preparations isolated from the brain of macaques infected with the Simian Immunodeficiency Virus (SIV), a model of neuroAIDS, and exposed to Meth. We aimed to identify molecular patterns triggered by Meth that could explain the detection of higher brain viral loads and the development of a pro-inflammatory CNS environment in the brain of infected drug abusers. Results We found that Meth alone has a strong effect on the transcription of genes associated with immune pathways, particularly inflammation and chemotaxis. Systems analysis led to a strong correlation between Meth exposure and enhancement of molecules associated with chemokines and chemokine receptors, especially CXCR4 and CCR5, which function as co-receptors for viral entry. The increase in CCR5 expression was confirmed in the brain in correlation with increased brain viral load. Conclusions Meth enhances the availability of CCR5-expressing cells for SIV in the brain, in correlation with increased viral load. This suggests that Meth is an important factor in the susceptibility to the infection and to the aggravated CNS inflammatory pathology associated with SIV in macaques and HIV in humans.

  14. Dietary gamma oryzanol plays a significant role in the anti-inflammatory activity of rice bran oil by decreasing pro-inflammatory mediators secreted by peritoneal macrophages of rats.

    Science.gov (United States)

    Rao, Y Poorna Chandra; Sugasini, D; Lokesh, B R

    2016-10-28

    Ricebran oil (RBO) is promoted as heart friendly oil because of its ability to maintain serum lipids at desirable levels. Inflammation also plays an important role on cardiovascular health. The role of minor constituents present in unsaponifiable fraction (UF) of RBO on inflammatory markers is not well understood. To evaluate this, we have taken RBO with UF (RBO-N), RBO stripped of UF (RBO-MCR) and RBO-MCR supplemented with UF from RBO (UFRBO) or Gamma-Oryzanol (γ-ORY) were added in AIN-93 diets which was then fed to Wistar rats for a period of 60 days. Groundnut oil with UF (GNO-N), UF removed GNO (GNO-MCR) and GNO-MCR supplemented with UF from RBO or γ-ORY was also used for comparison. The peritoneal macrophages from the rats were activated and pro-inflammatory mediators such as Reactive Oxygen Species (ROS), eicosanoids, cytokines, hydrolytic enzymes of lysosomal origin were monitored. The results indicated that UF of RBO and γ-ORY supplemented in the dietary oils play a significant role in reducing the secretion of pro-inflammatory mediators by macrophages. Hence γ-ORY in RBO significantly contributed to the anti-inflammatory properties of RBO. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Hypothalamic expression of inflammatory mediators in an animal model of binge eating.

    Science.gov (United States)

    Alboni, Silvia; Micioni Di Bonaventura, Maria Vittoria; Benatti, Cristina; Giusepponi, Maria Elena; Brunello, Nicoletta; Cifani, Carlo

    2017-03-01

    Binge eating episodes are characterized by uncontrollable, distressing eating of a large amount of highly palatable food and represent a central feature of bingeing related eating disorders. Research suggests that inflammation plays a role in the onset and maintenance of eating-related maladaptive behavior. Markers of inflammation can be selectively altered in discrete brain regions where they can directly or indirectly regulate food intake. In the present study, we measured expression levels of different components of cytokine systems (IL-1, IL-6, IL-18, TNF-α and IFN-ɣ) and related molecules (iNOS and COX2) in the preoptic and anterior-tuberal parts of the hypothalamus of a validated animal model of binge eating. In this animal model, based on the exposure to both food restriction and frustration stress, binge-like eating behavior for highly palatable food is not shown when animals are exposed to the frustration stress during the estrus phase. We found a characteristic down-regulation of the IL-18/IL-18 receptor system (with increased expression of the inhibitor of the pro-inflammatory cytokine IL-18, IL-18BP, together with a decreased expression of the binding chain of the IL-18 receptor) and a three-fold increase in the expression of iNOS specifically in the anterior-tuberal region of the hypothalamus of animals that develop a binge-like eating behavior. Differently, when food restricted animals were stressed during the estrus phase, IL-18 expression increased, while iNOS expression was not significantly affected. Considering the role of this region of the hypothalamus in controlling feeding related behavior, this can be relevant in eating disorders and obesity. Our data suggest that by targeting centrally selected inflammatory markers, we may prevent that disordered eating turns into a full blown eating disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Application of biclustering of gene expression data and gene set enrichment analysis methods to identify potentially disease causing nanomaterials

    Directory of Open Access Journals (Sweden)

    Andrew Williams

    2015-12-01

    Full Text Available Background: The presence of diverse types of nanomaterials (NMs in commerce is growing at an exponential pace. As a result, human exposure to these materials in the environment is inevitable, necessitating the need for rapid and reliable toxicity testing methods to accurately assess the potential hazards associated with NMs. In this study, we applied biclustering and gene set enrichment analysis methods to derive essential features of altered lung transcriptome following exposure to NMs that are associated with lung-specific diseases. Several datasets from public microarray repositories describing pulmonary diseases in mouse models following exposure to a variety of substances were examined and functionally related biclusters of genes showing similar expression profiles were identified. The identified biclusters were then used to conduct a gene set enrichment analysis on pulmonary gene expression profiles derived from mice exposed to nano-titanium dioxide (nano-TiO2, carbon black (CB or carbon nanotubes (CNTs to determine the disease significance of these data-driven gene sets.Results: Biclusters representing inflammation (chemokine activity, DNA binding, cell cycle, apoptosis, reactive oxygen species (ROS and fibrosis processes were identified. All of the NM studies were significant with respect to the bicluster related to chemokine activity (DAVID; FDR p-value = 0.032. The bicluster related to pulmonary fibrosis was enriched in studies where toxicity induced by CNT and CB studies was investigated, suggesting the potential for these materials to induce lung fibrosis. The pro-fibrogenic potential of CNTs is well established. Although CB has not been shown to induce fibrosis, it induces stronger inflammatory, oxidative stress and DNA damage responses than nano-TiO2 particles.Conclusion: The results of the analysis correctly identified all NMs to be inflammogenic and only CB and CNTs as potentially fibrogenic. In addition to identifying several

  17. Silencing the expression of connexin 43 decreases inflammation and joint destruction in experimental arthritis.

    Science.gov (United States)

    Tsuchida, Shinji; Arai, Yuji; Kishida, Tsunao; Takahashi, Kenji A; Honjo, Kuniaki; Terauchi, Ryu; Inoue, Hiroaki; Oda, Ryo; Mazda, Osam; Kubo, Toshikazu

    2013-04-01

    The objective of the present study was to determine whether the expression of connexin 43 (Cx43) effected on inflammatory conditions in rat fibroblast-like synoviocytes (FLS) and on rat model of rheumatoid arthritis (RA). The expression of Cx43 in rat FLS stimulated with lipopolysaccharide (LPS) was confirmed by real-time reverse transcriptase polymerase chain reaction (RT-PCR). The effects of small-interfering RNA targeting Cx43 (siCx43) on pro-inflammatory cytokines and chemokine were assessed by real-time RT-PCR and enzyme-linked immunosorbent assay (ELISA). The therapeutic and side effects of siCx43 in a rat model of collagen-induced arthritis (CIA) were examined by in vivo electroporation method. LPS markedly enhanced Cx43 gene expression in rat FLS, with transfection of siCx43 suppressing the over-expression of pro-inflammatory cytokines and the chemokine. Treatment of CIA rats with siCx43 significantly ameliorated paw swelling, and significantly reduced histological arthritis scores and radiographic scores. In histological appearance of rat ankle joints, siCx43 treatment significantly decreased the number of tartrate-resistant acid phosphatase (TRAP)-positive (osteoclast-like) cells. These findings indicated that siCx43 had anti-inflammatory effects in rat FLS and efficiently inhibited the development of CIA. Cx43 may play an important role in the pathophysiology of RA, and may be a potential target molecule for novel RA therapies. Copyright © 2012 Orthopaedic Research Society.

  18. Association of pro-ghrelin and GHS-R1A gene polymorphisms and haplotypes with heavy alcohol use and body mass.

    Science.gov (United States)

    Landgren, Sara; Jerlhag, Elisabet; Zetterberg, Henrik; Gonzalez-Quintela, Arturo; Campos, Joaquin; Olofsson, Ulrica; Nilsson, Staffan; Blennow, Kaj; Engel, Jörgen A

    2008-12-01

    Ghrelin, an orexigenic peptide, acts on growth hormone secretagogue receptors (GHS-R1A), expressed in the hypothalamus as well as in important reward nodes such as the ventral tegmental area. Interestingly, ghrelin has been found to activate an important part of the reward systems, i.e., the cholinergic-dopaminergic reward link. Additionally, the rewarding and neurochemical properties of alcohol are, at least in part, mediated via this reward link. There is comorbidity between alcohol dependence and eating disorders. Thus, plasma levels of ghrelin are altered in patients with addictive behaviors such as alcohol and nicotine dependence and in binge eating disorder. This overlap prompted as to investigate the pro-ghrelin and GHS-R1A genes in a haplotype analysis of heavy alcohol-using individuals. A total of 417 Spanish individuals (abstainers, moderate, and heavy alcohol drinkers) were investigated in a haplotype analysis of the pro-ghrelin and GHS-R1A genes. Tag SNPs were chosen using HapMap data and the Tagger and Haploview softwares. These SNPs were then genotyped using TaqMan Allelic Discrimination. SNP rs2232165 of the GHS-R1A gene was associated with heavy alcohol consumption and SNP rs2948694 of the same gene as well as haplotypes of both the pro-ghrelin and the GHS-R1A genes were associated with body mass in heavy alcohol consuming individuals. The present findings are the first to disclose an association between the pro-ghrelin and GHS-R1A genes and heavy alcohol use, further strengthening the role of the ghrelin system in addictive behaviors and brain reward.

  19. Coordinated Gene Expression of Neuroinflammatory and Cell Signaling Markers in Dorsolateral Prefrontal Cortex during Human Brain Development and Aging

    OpenAIRE

    Primiani, Christopher T.; Ryan, Veronica H.; Rao, Jagadeesh S.; Cam, Margaret C.; Ahn, Kwangmi; Modi, Hiren R.; Rapoport, Stanley I.

    2014-01-01

    Background Age changes in expression of inflammatory, synaptic, and neurotrophic genes are not well characterized during human brain development and senescence. Knowing these changes may elucidate structural, metabolic, and functional brain processes over the lifespan, as well vulnerability to neurodevelopmental or neurodegenerative diseases. Hypothesis Expression levels of inflammatory, synaptic, and neurotrophic genes in the human brain are coordinated over the lifespan and underlie changes...

  20. Differential Gene Expression in Colon Tissue Associated With Diet, Lifestyle, and Related Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Martha L Slattery

    Full Text Available Several diet and lifestyle factors may impact health by influencing oxidative stress levels. We hypothesize that level of cigarette smoking, alcohol, anti-inflammatory drugs, and diet alter gene expression. We analyzed RNA-seq data from 144 colon cancer patients who had information on recent cigarette smoking, recent alcohol consumption, diet, and recent aspirin/non-steroidal anti-inflammatory use. Using a false discovery rate of 0.1, we evaluated gene differential expression between high and low levels of exposure using DESeq2. Ingenuity Pathway Analysis (IPA was used to determine networks associated with de-regulated genes in our data. We identified 46 deregulated genes associated with recent cigarette use; these genes enriched causal networks regulated by TEK and MAP2K3. Different differentially expressed genes were associated with type of alcohol intake; five genes were associated with total alcohol, six were associated with beer intake, six were associated with wine intake, and four were associated with liquor consumption. Recent use of aspirin and/or ibuprofen was associated with differential expression of TMC06, ST8SIA4, and STEAP3 while a summary oxidative balance score (OBS was associated with SYCP3, HDX, and NRG4 (all up-regulated with greater oxidative balance. Of the dietary antioxidants and carotenoids evaluated only intake of beta carotene (1 gene, Lutein/Zeaxanthine (5 genes, and Vitamin E (4 genes were associated with differential gene expression. There were similarities in biological function of de-regulated genes associated with various dietary and lifestyle factors. Our data support the hypothesis that diet and lifestyle factors associated with oxidative stress can alter gene expression. However genes altered were unique to type of alcohol and type of antioxidant. Because of potential differences in associations observed between platforms these findings need replication in other populations.

  1. Genetic variations in key inflammatory cytokines exacerbates the risk of diabetic nephropathy by influencing the gene expression.

    Science.gov (United States)

    Hameed, Iqra; Masoodi, Shariq R; Malik, Perveez A; Mir, Shahnaz A; Ghazanfar, Khalid; Ganai, Bashir A

    2018-06-30

    Diabetic nephropathy is the single strongest predictor of mortality in patients with diabetes. The development of overt nephropathy involves important inter-individual variations, even after adjusting for potential confounding influences of modifiable and non-modifiable risk factors. Genome-wide transcriptome studies have reported the activation of inflammatory signaling pathways and there is mounting indication of the role of genetic factors. We screened nine genetic variations in three cytokine genes (TNF-α, IL-6 and IL-β) in 1326 unrelated subjects comprising of healthy controls (n = 464), type 2 diabetics with nephropathy (DN, n = 448) and type 2 diabetes without nephropathy (T2D, n = 414) by sequence-specific amplification. Functional implication of SNPs was elucidated by correlation studies and relative gene expression using Realtime-Quantitative PCR (RT-qPCR). Individual SNP analysis showed highest association of IL-1β rs16944-TT genotype (OR = 3.51, 95%CI = 2.36-5.21, P = 0.001) and TNF-α rs1800629-AA genotype (OR = 2.75, 95% CI = 1.64-4.59, P = 0.001) with T2D and DN respectively. The haplotype frequency showed significant risk of seven combinations among T2D and four combinations among DN subjects. The highest risk of T2D and DN was associated with GGTGAGTTT (OR = 4.25, 95%CI = 3.3-14.20, P = 0.0016) and GACGACCTT (OR = 21.3, 95%CI = 15.1-28.33, P = 0.026) haplotypes respectively. Relative expression by RT-qPCR showed increased cytokine expression in cases as compared to controls. TNF-α expression was increased by more than four-folds (n-fold = 4.43 ± 1.11) in DN. TNF-α, IL-6 and IL-1β transcript levels were significantly modulated by promoter region SNPs. The present study implicates a strong association between cytokine TNF-α, IL-6 and IL-1β gene promoter polymorphisms and modulation of transcript levels with susceptibility to nephropathy in diabetes subjects. Copyright

  2. A Missense LRRK2 Variant Is a Risk Factor for Excessive Inflammatory Responses in Leprosy.

    Directory of Open Access Journals (Sweden)

    Vinicius M Fava

    2016-02-01

    Full Text Available Depending on the epidemiological setting, a variable proportion of leprosy patients will suffer from excessive pro-inflammatory responses, termed type-1 reactions (T1R. The LRRK2 gene encodes a multi-functional protein that has been shown to modulate pro-inflammatory responses. Variants near the LRRK2 gene have been associated with leprosy in some but not in other studies. We hypothesized that LRRK2 was a T1R susceptibility gene and that inconsistent association results might reflect different proportions of patients with T1R in the different sample settings. Hence, we evaluated the association of LRRK2 variants with T1R susceptibility.An association scan of the LRRK2 locus was performed using 156 single-nucleotide polymorphisms (SNPs. Evidence of association was evaluated in two family-based samples: A set of T1R-affected and a second set of T1R-free families. Only SNPs significant for T1R-affected families with significant evidence of heterogeneity relative to T1R-free families were considered T1R-specific. An expression quantitative trait locus (eQTL analysis was applied to evaluate the impact of T1R-specific SNPs on LRRK2 gene transcriptional levels.A total of 18 T1R-specific variants organized in four bins were detected. The core SNP capturing the T1R association was the LRRK2 missense variant M2397T (rs3761863 that affects LRRK2 protein turnover. Additionally, a bin of nine SNPs associated with T1R were eQTLs for LRRK2 in unstimulated whole blood cells but not after exposure to Mycobacterium leprae antigen.The results support a preferential association of LRRK2 variants with T1R. LRRK2 involvement in T1R is likely due to a pathological pro-inflammatory loop modulated by LRRK2 availability. Interestingly, the M2397T variant was reported in association with Crohn's disease with the same risk allele as in T1R suggesting common inflammatory mechanism in these two distinct diseases.

  3. Inhibition of PIM1 kinase attenuates inflammation-induced pro-labour mediators in human foetal membranes in vitro.

    Science.gov (United States)

    Lim, Ratana; Barker, Gillian; Lappas, Martha

    2017-06-01

    Does proviral integration site for Moloney murine leukaemic virus (PIM)1 kinase play a role in regulating the inflammatory processes of human labour and delivery? PIM1 kinase plays a critical role in foetal membranes in regulating pro-inflammatory and pro-labour mediators. Infection and inflammation have strong causal links to preterm delivery by stimulating pro-inflammatory cytokines and collagen degrading enzymes, which can lead to rupture of membranes. PIM1 has been shown to have a role in immune regulation and inflammation in non-gestational tissues; however, its role has not been explored in the field of human labour. PIM1 expression was analysed in myometrium and/or foetal membranes obtained at term and preterm (n = 8-9 patients per group). Foetal membranes, freshly isolated amnion cells and primary myometrial cells were used to investigate the effect of PIM1 inhibition on pro-labour mediators (n = 5 patients per treatment group). Foetal membranes, from term and preterm, were obtained from non-labouring and labouring women, and from preterm pre-labour rupture of membranes (PPROM) (n = 9 per group). Amnion was collected from women with and without preterm chorioamnionitis (n = 8 per group). Expression of PIM1 kinase was determined by qRT-PCR and western blotting. To determine the effect of PIM1 kinase inhibition on the expression of pro-inflammatory and pro-labour mediators induced by bacterial products lipopolysaccharide (LPS) (10 μg/ml) and flagellin (1 μg/ml) and pro-inflammatory cytokine tumour necrosis factor (TNF) (10 ng/ml), chemical inhibitors SMI-4a (20 μM) and AZD1208 (50 μM) were used in foetal membrane explants and siRNA against PIM1 was used in primary amnion cells. Statistical significance was set at P membranes after spontaneous term labour compared to no labour at term and in amnion with preterm chorioamnionitis compared to preterm with no chorioamnionitis. There was no change in PIM1 expression with preterm labour or PPROM

  4. Coregulated expression of loline alkaloid-biosynthesis genes in Neotyphodium uncinatum cultures.

    Science.gov (United States)

    Zhang, Dong-Xiu; Stromberg, Arnold J; Spiering, Martin J; Schardl, Christopher L

    2009-08-01

    Epichloë endophytes (holomorphic Epichloë spp. and anamorphic Neotyphodium spp.) are systemic, often heritable symbionts of cool-season grasses (subfamily Pooideae). Many epichloae provide protection to their hosts by producing anti-insect compounds. Among these are the loline alkaloids (LA), which are toxic and deterrent to a broad range of herbivorous insects but not to mammalian herbivores. LOL, a gene cluster containing nine genes, is associated with LA biosynthesis. We investigated coordinate regulation between LOL-gene expression and LA production in minimal medium (MM) cultures of Neotyphodium uncinatum. Expression of all LOL genes significantly fit temporal quadratic patterns during LA production. LOL-gene expression started before LA were detectable, and increased while LA accumulated. The highest gene expression level was reached at close to the time of most rapid LA accumulation, and gene expression declined to a very low level as amounts of LA plateaued. Temporal expression profiles of the nine LOL genes were tightly correlated with each other, but not as tightly correlated with proC and metE (genes for biosynthesis of precursor amino acids). Furthermore, the start days and peak days of expression significantly correlated with the order of the LOL-cluster genes in the genome. Hierarchical cluster analysis indicated three pairs of genes-lolA and lolC, lolO and lolD, and lolT and lolE-expression of which was especially tightly correlated. Of these, lolA and lolC tended to be expressed early, and lolT and lolE tended to be expressed late, in keeping with the putative roles of the respective gene products in the LA-biosynthesis pathway. Several common transcriptional binding sites were discovered in the LOL upstream regions. However, low expression of P(lolC2)uidA and P(lolA2)uidA in N. uncinatum transformants suggested induced expression of LOL genes might be subject to position effect at the LOL locus.

  5. Adipose Tissue as an Endocrine Organ: An Update on Pro-inflammatory and Anti-inflammatory Microenvironment

    Directory of Open Access Journals (Sweden)

    Kvido Smitka

    2015-01-01

    Full Text Available Adipose tissue is recognized as an active endocrine organ that produces a number of endocrine substances referred to as “adipokines” including leptin, adiponectin, adipolin, visfatin, omentin, tumour necrosis factor-alpha (TNF-α, interleukin-6 (IL-6, resistin, pigment epithelium-derived factor (PEDF, and progranulin (PGRN which play an important role in the food intake regulation and significantly influence insulin sensitivity and in some cases directly affect insulin resistance in skeletal muscle, liver, and adipose tissue. The review summarizes current knowledge about adipose tissue-derived hormones and their influence on energy homeostasis regulation. The possible therapeutic potential of these adipokines in the treatment of insulin resistance, endothelial dysfunction, a pro-inflammatory response, obesity, eating disorders, progression of atherosclerosis, type 1 diabetes, and type 2 diabetes is discussed.

  6. The pro-inflammatory effects of platelet contamination in plasma and mitigation strategies for avoidance

    Science.gov (United States)

    Bercovitz, R. S.; Kelher, M. R.; Khan, S. Y.; Land, K. J.; Berry, T. H.; Silliman, C. C.

    2013-01-01

    Background and Objectives Plasma and platelet concentrates are disproportionately implicated in transfusion-related acute lung injury (TRALI). Platelet-derived pro-inflammatory mediators, including soluble CD40 ligand (sCD40L), accumulate during storage. We hypothesized that platelet contamination induces sCD40L generation that causes neutrophil [polymorphonuclear leucocyte (PMN)] priming and PMN-mediated cytotoxicity. Materials and Methods Plasma was untreated, centrifuged (12 500 g) or separated from leucoreduced whole blood (WBLR) prior to freezing. Platelet counts and sCD40L concentrations were measured 1–5 days post-thaw. The plasma was assayed for PMN priming activity and was used in a two-event in vitro model of PMN-mediated human pulmonary microvascular endothelial cell (HMVEC) cytotoxicity. Results Untreated plasma contained 42 ± 4.2 × 103/μl platelets, which generated sCD40L accumulation (1.6-eight-fold vs. controls). Priming activity and HMVEC cytotoxicity were directly proportional to sCD40L concentration. WBLR and centrifugation reduced platelet and sCD40L contamination, abrogating the pro-inflammatory potential. Conclusion Platelet contamination causes sCD40L accumulation in stored plasma that may contribute to TRALI. Platelet reduction is potentially the first TRALI mitigation effort in plasma manufacturing. PMID:22092073

  7. Gene expression profiling reveals distinct molecular signatures associated with the rupture of intracranial aneurysm.

    Science.gov (United States)

    Nakaoka, Hirofumi; Tajima, Atsushi; Yoneyama, Taku; Hosomichi, Kazuyoshi; Kasuya, Hidetoshi; Mizutani, Tohru; Inoue, Ituro

    2014-08-01

    The rupture of intracranial aneurysm (IA) causes subarachnoid hemorrhage associated with high morbidity and mortality. We compared gene expression profiles in aneurysmal domes between unruptured IAs and ruptured IAs (RIAs) to elucidate biological mechanisms predisposing to the rupture of IA. We determined gene expression levels of 8 RIAs, 5 unruptured IAs, and 10 superficial temporal arteries with the Agilent microarrays. To explore biological heterogeneity of IAs, we classified the samples into subgroups showing similar gene expression patterns, using clustering methods. The clustering analysis identified 4 groups: superficial temporal arteries and unruptured IAs were aggregated into their own clusters, whereas RIAs segregated into 2 distinct subgroups (early and late RIAs). Comparing gene expression levels between early RIAs and unruptured IAs, we identified 430 upregulated and 617 downregulated genes in early RIAs. The upregulated genes were associated with inflammatory and immune responses and phagocytosis including S100/calgranulin genes (S100A8, S100A9, and S100A12). The downregulated genes suggest mechanical weakness of aneurysm walls. The expressions of Krüppel-like family of transcription factors (KLF2, KLF12, and KLF15), which were anti-inflammatory regulators, and CDKN2A, which was located on chromosome 9p21 that was the most consistently replicated locus in genome-wide association studies of IA, were also downregulated. We demonstrate that gene expression patterns of RIAs were different according to the age of patients. The results suggest that macrophage-mediated inflammation is a key biological pathway for IA rupture. The identified genes can be good candidates for molecular markers of rupture-prone IAs and therapeutic targets. © 2014 American Heart Association, Inc.

  8. Expression of inflammation-related genes is altered in gastric tissue of patients with advanced stages of NAFLD.

    Science.gov (United States)

    Mehta, Rohini; Birerdinc, Aybike; Neupane, Arpan; Shamsaddini, Amirhossein; Afendy, Arian; Elariny, Hazem; Chandhoke, Vikas; Baranova, Ancha; Younossi, Zobair M

    2013-01-01

    Obesity is associated with chronic low-grade inflammation perpetuated by visceral adipose. Other organs, particularly stomach and intestine, may also overproduce proinflammatory molecules. We examined the gene expression patterns in gastric tissue of morbidly obese patients with nonalcoholic fatty liver disease (NAFLD) and compared the changes in gene expression in different histological forms of NAFLD. Stomach tissue samples from 20 morbidly obese NAFLD patients who were undergoing sleeve gastrectomy were profiled using qPCR for 84 genes encoding inflammatory cytokines, chemokines, their receptors, and other components of inflammatory cascades. Interleukin 8 receptor-beta (IL8RB) gene overexpression in gastric tissue was correlated with the presence of hepatic steatosis, hepatic fibrosis, and histologic diagnosis of nonalcoholic steatohepatitis (NASH). Expression levels of soluble interleukin 1 receptor antagonist (IL1RN) were correlated with the presence of NASH and hepatic fibrosis. mRNA levels of interleukin 8 (IL8), chemokine (C-C motif) ligand 4 (CCL4), and its receptor chemokine (C-C motif) receptor type 5 (CCR5) showed a significant increase in patients with advanced hepatic inflammation and were correlated with the severity of the hepatic inflammation. The results of our study suggest that changes in expression patterns for inflammatory molecule encoding genes within gastric tissue may contribute to the pathogenesis of obesity-related NAFLD.

  9. Effects of Cinnamon extract on biochemical enzymes, TNF-α and NF-κB gene expression levels in liver of broiler chickens inoculated with Escherichia coli

    Directory of Open Access Journals (Sweden)

    Seyed Mahmoud Tabatabaei

    2015-09-01

    Full Text Available Abstract: Infection with Escherichia coli (E. coli is a common disease in poultry industry. The use of antibiotics to treat diseases is facing serious criticism and concerns. The medicinal plants may be effective alternatives because of their multiplex activities. The aim of this study was to investigate the effects of cinnamon extract on the levels of liver enzymes, tumor necrosis factor-alpha (TNF-α and nuclear factor-kappa B (NF-κB gene expressions in liver of broiler chickens infected with E. coli. Ninety Ross-308 broilers were divided into healthy or E. coli-infected groups, receiving normal or cinnamon extract (in concentrations of 100 or 200mg/kg of food supplemented diets. E. coli suspension (108cfu was injected subcutaneously after 12 days cinnamon administration. Seventy-two hours after E. coli injection, the blood samples were taken for biochemical analysis of liver enzymes in serum (spectrophotometrically, and liver tissue samples were obtained for detection of gene expression of inflammatory markers TNF-α and NF-κB, using real-time PCR. Infection with E. coli significantly increased the levels of TNF-α and NF-κB gene expressions as well as some liver enzymes including creatine-kinase (CK, lactate-dehydrogenase (LDH, alanine-transferase (ALT and aspartate-transferase (AST as compared with control group (P<0.05. Pre-administration of cinnamon extract in broilers diet (in both concentrations significantly reduced the tissue levels of TNF-α and NF-κB gene expressions and enzymes CK and ALT in serum of broiler chickens inoculated with E. coli in comparison with E. coli group (P<0.05 and P<0.01. The levels of LDH and AST were significantly decreased only by 200mg/kg cinnamon extract in infected broilers. The level of alkaline-phosphatase (ALP was not affected in any groups. Pre-administration of cinnamon extract in diets of broiler chickens inoculated with E. coli could significantly reduce the gene expression levels of pro-inflammatory

  10. Identification of NR4A2 as a transcriptional activator of IL-8 expression in human inflammatory arthritis.

    LENUS (Irish Health Repository)

    Aherne, Carol M

    2009-10-01

    Expression of the orphan nuclear receptor NR4A2 is controlled by pro-inflammatory mediators, suggesting that NR4A2 may contribute to pathological processes in the inflammatory lesion. This study identifies the chemoattractant protein, interleukin 8 (IL-8\\/CXCL8), as a molecular target of NR4A2 in human inflammatory arthritis and examines the mechanism through which NR4A2 modulates IL-8 expression. In TNF-alpha-activated human synoviocyte cells, enhanced expression of IL-8 mRNA and protein correspond to temporal changes in NR4A2 transcription and nuclear distribution. Ectopic expression of NR4A2 leads to robust changes in endogenous IL-8 mRNA levels and co-treatment with TNF-alpha results in significant (p<0.001) secretion of IL-8 protein. Transcriptional effects of NR4A2 on the human IL-8 promoter are enhanced in the presence of TNF-alpha, suggesting molecular crosstalk between TNF-alpha signalling and NR4A2. A dominant negative IkappaB kinase antagonizes the combined effects of NR4A2 and TNF-alpha on IL-8 promoter activity. Co-expression of NR4A2 and the p65 subunit of NF-kappaB enhances IL-8 transcription and functional studies indicate that transactivation occurs independently of NR4A2 binding to DNA or heterodimerization with additional nuclear receptors. The IL-8 minimal promoter region is sufficient to support NR4A2 and NF-kappaB\\/p65 co-operative activity and NR4A2 can interact with NF-kappaB\\/p65 on a 39bp sequence within this region. In patients treated with methotrexate for active inflammatory arthritis, a reduction in NR4A2 synovial tissue levels correlate significantly (n=10, r=0.73, p=0.002) with changes in IL-8 expression. Collectively, these data delineate an important role for NR4A2 in modulating IL-8 expression and reveal novel transcriptional responses to TNF-alpha in human inflammatory joint disease.

  11. Cocoa Enriched Diets Enhance Expression of Phosphatases and Decrease Expression of Inflammatory Molecules in Trigeminal Ganglion Neurons

    Science.gov (United States)

    Cady, Ryan J.; Durham, Paul L.

    2010-01-01

    Activation of trigeminal nerves and release of neuropeptides that promote inflammation are implicated in the underlying pathology of migraine and temporomandibular joint (TMJ) disorders. The overall response of trigeminal nerves to peripheral inflammatory stimuli involves a balance between enzymes that promote inflammation, kinases, and those that restore homeostasis, phosphatases. The goal of this study was to determine the effects of a cocoa-enriched diet on the expression of key inflammatory proteins in trigeminal ganglion neurons under basal and inflammatory conditions. Rats were fed a control diet or an isocaloric diet enriched in cocoa for 14 days prior to an injection of noxious stimuli to cause acute or chronic excitation of trigeminal neurons. In animals fed a cocoa-enriched diet, basal levels of the mitogen-activated kinase (MAP) phosphatases MKP-1 and MKP-3 were elevated in neurons. Importantly, the stimulatory effects of acute or chronic peripheral inflammation on neuronal expression of the MAPK p38 and extracellular signal-regulated kinases (ERK) were significantly repressed in response to cocoa. Similarly, dietary cocoa significantly suppressed basal neuronal expression of calcitonin gene-related peptide (CGRP) as well as stimulated levels of the inducible form of nitric oxide synthase (iNOS), proteins implicated in the underlying pathology of migraine and TMJ disorders. To our knowledge, this is first evidence that a dietary supplement can cause upregulation of MKP, and that cocoa can prevent inflammatory responses in trigeminal ganglion neurons. Furthermore, our data provide evidence that cocoa contains biologically active compounds that would be beneficial in the treatment of migraine and TMJ disorders. PMID:20138852

  12. Pseudane-VII Isolated from Pseudoalteromonas sp. M2 Ameliorates LPS-Induced Inflammatory Response In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Mi Eun Kim

    2017-11-01

    Full Text Available The ocean is a rich resource of flora, fauna, food, and biological products. We found a wild-type bacterial strain, Pseudoalteromonas sp. M2, from marine water and isolated various secondary metabolites. Pseudane-VII is a compound isolated from the Pseudoalteromonas sp. M2 metabolite that possesses anti-melanogenic activity. Inflammation is a response of the innate immune system to microbial infections. Macrophages have a critical role in fighting microbial infections and inflammation. Recent studies reported that various compounds derived from natural products can regulate immune responses including inflammation. However, the anti-inflammatory effects and mechanism of pseudane-VII in macrophages are still unknown. In this study, we investigated the anti-inflammatory effects of pseudane-VII. In present study, lipopolysaccharide (LPS-induced nitric oxide (NO production was significantly decreased by pseudane-VII treatment at 6 μM. Moreover, pseudane-VII treatment dose-dependently reduced mRNA levels of pro-inflammatory cytokines including inos, cox-2, il-1β, tnf-α, and il-6 in LPS-stimulated macrophages. Pseudane-VII also diminished iNOS protein levels and IL-1β secretion. In addition, Pseudane-VII elicited anti-inflammatory effects by inhibiting ERK, JNK, p38, and nuclear factor (NF-κB-p65 phosphorylation. Consistently, pseudane-VII was also shown to inhibit the LPS-stimulated release of IL-1β and expression of iNOS in mice. These results suggest that pseudane-VII exerted anti-inflammatory effects on LPS-stimulated macrophage activation via inhibition of ERK, JNK, p38 MAPK phosphorylation, and pro-inflammatory gene expression. These findings may provide new approaches in the effort to develop anti-inflammatory therapeutics.

  13. Pseudane-VII Isolated from Pseudoalteromonas sp. M2 Ameliorates LPS-Induced Inflammatory Response In Vitro and In Vivo.

    Science.gov (United States)

    Kim, Mi Eun; Jung, Inae; Lee, Jong Suk; Na, Ju Yong; Kim, Woo Jung; Kim, Young-Ok; Park, Yong-Duk; Lee, Jun Sik

    2017-11-01

    The ocean is a rich resource of flora, fauna, food, and biological products. We found a wild-type bacterial strain, Pseudoalteromonas sp. M2, from marine water and isolated various secondary metabolites. Pseudane-VII is a compound isolated from the Pseudoalteromonas sp. M2 metabolite that possesses anti-melanogenic activity. Inflammation is a response of the innate immune system to microbial infections. Macrophages have a critical role in fighting microbial infections and inflammation. Recent studies reported that various compounds derived from natural products can regulate immune responses including inflammation. However, the anti-inflammatory effects and mechanism of pseudane-VII in macrophages are still unknown. In this study, we investigated the anti-inflammatory effects of pseudane-VII. In present study, lipopolysaccharide (LPS)-induced nitric oxide (NO) production was significantly decreased by pseudane-VII treatment at 6 μM. Moreover, pseudane-VII treatment dose-dependently reduced mRNA levels of pro-inflammatory cytokines including inos , cox-2 , il-1β , tnf-α , and il-6 in LPS-stimulated macrophages. Pseudane-VII also diminished iNOS protein levels and IL-1β secretion. In addition, Pseudane-VII elicited anti-inflammatory effects by inhibiting ERK, JNK, p38, and nuclear factor (NF)-κB-p65 phosphorylation. Consistently, pseudane-VII was also shown to inhibit the LPS-stimulated release of IL-1β and expression of iNOS in mice. These results suggest that pseudane-VII exerted anti-inflammatory effects on LPS-stimulated macrophage activation via inhibition of ERK, JNK, p38 MAPK phosphorylation, and pro-inflammatory gene expression. These findings may provide new approaches in the effort to develop anti-inflammatory therapeutics.

  14. Human Thyroid Cancer-1 (TC-1 is a vertebrate specific oncogenic protein that protects against copper and pro-apoptotic genes in yeast

    Directory of Open Access Journals (Sweden)

    Natalie K. Jones

    2015-07-01

    Full Text Available The human Thyroid Cancer-1 (hTC-1 protein, also known as C8orf4 was initially identified as a gene that was up-regulated in human thyroid cancer. Here we show that hTC-1 is a peptide that prevents the effects of over-expressing Bax in yeast. Analysis of the 106 residues of hTC-1 in available protein databases revealed direct orthologues in jawed-vertebrates, including mammals, frogs, fish and sharks. No TC-1 orthologue was detected in lower organisms, including yeast. Here we show that TC-1 is a general pro-survival peptide since it prevents the growth- and cell death-inducing effects of copper in yeast. Human TC-1 also prevented the deleterious effects that occur due to the over-expression of a number of key pro-apoptotic peptides, including YCA1, YBH3, NUC1, and AIF1. Even though the protective effects were more pronounced with the over-expression of YBH3 and YCA1, hTC-1 could still protect yeast mutants lacking YBH3 and YCA1 from the effects of copper sulfate. This suggests that the protective effects of TC-1 are not limited to specific pathways or processes. Taken together, our results indicate that hTC-1 is a pro-survival protein that retains its function when heterologously expressed in yeast. Thus yeast is a useful model to characterize the potential roles in cell death and survival of cancer related genes.

  15. Discordant expression of pro-B-type and pro-C-type natriuretic peptide in newborn infants of mothers with type 1 diabetes

    DEFF Research Database (Denmark)

    Nybo, Mads; Nielsen, Lars Bo; Nielsen, Søren Junge

    2007-01-01

    CNP-derived peptides in newborn infants. METHODS: Plasma concentrations of proCNP-derived peptides were measured in umbilical cord plasma and human placental tissue extracts using sequence-specific radioimmunoassays raised against N-terminal and C-terminal proCNP regions, respectively. RESULTS: The median pro...... in umbilical cord plasma compared to adult plasma (4.6 vs. 1.1), which parallels our earlier findings for proBNP and BNP peptides. CONCLUSIONS: There is a discordant expression of CNP and BNP peptides in newborn infants of mothers with diabetes. Moreover, fetal metabolism of proCNP and CNP appears to differ...

  16. Inhibition of Pro-inflammatory Mediators and Cytokines by Chlorella Vulgaris Extracts.

    Science.gov (United States)

    Sibi, G; Rabina, Santa

    2016-01-01

    The aim of this study was to determine the in vitro anti-inflammatory activities of solvent fractions from Chlorella vulgaris by inhibiting the production of pro-inflammatory mediators and cytokines. Methanolic extracts (80%) of C. vulgaris were prepared and partitioned with solvents of increasing polarity viz., n-hexane, chloroform, ethanol, and water. Various concentrations of the fractions were tested for cytotoxicity in RAW 264.7 cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and the concentrations inducing cell growth inhibition by about 50% (IC50) were chosen for further studies. Lipopolysaccharide (LPS) stimulated RAW 264.7 cells were treated with varying concentrations of C. vulgaris fractions and examined for its effects on nitric oxide (NO) production by Griess assay. The release of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) were quantified using enzyme-linked immunosorbent assay using Celecoxib and polymyxin B as positive controls. MTT assay revealed all the solvent fractions that inhibited cell growth in a dose-dependent manner. Of all the extracts, 80% methanolic extract exhibited the strongest anti-inflammatory activity by inhibiting NO production (P < 0.01), PGE2 (P < 0.05), TNF-α, and IL-6 (P < 0.001) release in LPS induced RAW 264.7 cells. Both hexane and chloroform fractions recorded a significant (P < 0.05) and dose-dependent inhibition of LPS induced inflammatory mediators and cytokines in vitro. The anti-inflammatory effect of ethanol and aqueous extracts was not significant in the study. The significant inhibition of inflammatory mediators and cytokines by fractions from C. vulgaris suggests that this microalga would be a potential source of developing anti-inflammatory agents and a good alternate for conventional steroidal and nonsteroidal anti-inflammatory drugs. C. vulgaris extracts have potential anti-inflammatory activitySolvent extraction using methanol

  17. PF4-HIT antibody (KKO) complexes activate broad innate immune and inflammatory responses.

    Science.gov (United States)

    Haile, Lydia A; Rao, Roshni; Polumuri, Swamy K; Arepally, Gowthami M; Keire, David A; Verthelyi, Daniela; Sommers, Cynthia D

    2017-11-01

    Heparin-induced thrombocytopenia (HIT) is an immune-mediated complication of heparin anticoagulation therapy resulting in thrombocytopenia frequently accompanied by thrombosis. Current evidence suggests that HIT is associated with antibodies developed in response to multi-molecular complexes formed by platelet factor 4 (PF4) bound to heparin or cell surface glycosaminoglycans. These antibody complexes activate platelets and monocytes typically through FcγRIIA receptors increasing the production of PF4, inflammatory mediators, tissue factor and thrombin. The influence of underlying events in HIT including complex-induced pro-inflammatory cell activation and structural determinants leading to local inflammatory responses are not fully understood. The stoichiometry and complex component requirements were determined by incubating fresh peripheral blood mononuclear cells (PBMC) with different concentrations of unfractionated heparin (H), low molecular weight heparin (LMWH), PF4- and anti-PF4-H complex antibodies (KKO). Cytokine mRNA or protein were measured by qRT-PCR or Meso Scale Discovery technology, respectively. Gene expression profile analysis for 594 genes was performed using Nanostring technology and analyzed using Ingenuity Pathway Analysis software. The data show that antibodies magnify immune responses induced in PBMCs by PF4 alone or in complex with heparin or LMWH. We propose that following induction of HIT antibodies by heparin-PF4 complexes, binding of the antibodies to PF4 is sufficient to induce a local pro-inflammatory response which may play a role in the progression of HIT. In vitro assays using PBMCs may be useful in characterizing local inflammatory and innate immune responses induced by HIT antibodies in the presence of PF4 and different sources of heparins. The findings and conclusions in this article are solely the responsibility of the authors and are not being formally disseminated by the Food and Drug Administration. Thus, they should not be

  18. Muscle gene expression patterns in human rotator cuff pathology.

    Science.gov (United States)

    Choo, Alexander; McCarthy, Meagan; Pichika, Rajeswari; Sato, Eugene J; Lieber, Richard L; Schenk, Simon; Lane, John G; Ward, Samuel R

    2014-09-17

    Rotator cuff pathology is a common source of shoulder pain with variable etiology and pathoanatomical characteristics. Pathological processes of fatty infiltration, muscle atrophy, and fibrosis have all been invoked as causes for poor outcomes after rotator cuff tear repair. The aims of this study were to measure the expression of key genes associated with adipogenesis, myogenesis, and fibrosis in human rotator cuff muscle after injury and to compare the expression among groups of patients with varied severities of rotator cuff pathology. Biopsies of the supraspinatus muscle were obtained arthroscopically from twenty-seven patients in the following operative groups: bursitis (n = 10), tendinopathy (n = 7), full-thickness rotator cuff tear (n = 8), and massive rotator cuff tear (n = 2). Quantitative polymerase chain reaction (qPCR) was performed to characterize gene expression pathways involved in myogenesis, adipogenesis, and fibrosis. Patients with a massive tear demonstrated downregulation of the fibrogenic, adipogenic, and myogenic genes, indicating that the muscle was not in a state of active change and may have difficulty responding to stimuli. Patients with a full-thickness tear showed upregulation of fibrotic and adipogenic genes; at the tissue level, these correspond to the pathologies most detrimental to outcomes of surgical repair. Patients with bursitis or tendinopathy still expressed myogenic genes, indicating that the muscle may be attempting to accommodate the mechanical deficiencies induced by the tendon tear. Gene expression in human rotator cuff muscles varied according to tendon injury severity. Patients with bursitis and tendinopathy appeared to be expressing pro-myogenic genes, whereas patients with a full-thickness tear were expressing genes associated with fatty atrophy and fibrosis. In contrast, patients with a massive tear appeared to have downregulation of all gene programs except inhibition of myogenesis. These data highlight the

  19. Stimulation of toll-like receptor 2 with bleomycin results in cellular activation and secretion of pro-inflammatory cytokines and chemokines

    International Nuclear Information System (INIS)

    Razonable, Raymund R.; Henault, Martin; Paya, Carlos V.

    2006-01-01

    The clinical use of bleomycin results in systemic and pulmonary inflammatory syndromes that are mediated by the production of cytokines and chemokines. In this study, we demonstrate that cell activation is initiated upon the recognition of bleomycin as a pathogen-associated molecular pattern by toll-like receptor (TLR) 2. The THP1 human monocytic cell line, which constitutively expresses high levels of TLR2, secretes interleukin (IL)-1β, IL-8, and tumor necrosis factor (TNF)-α during bleomycin exposure. The TLR2-dependent nature of cell activation and cytokine secretion is supported by (1) the inability of TLR2-deficient human embryonic kidney (HEK) 293 cells to exhibit nuclear factor-kappa B (NF-κB) activation and secrete IL-8 in response to bleomycin; (2) the acquired ability of HEK293 to exhibit NF-κB activation and secrete IL-8 upon experimental expression of TLR2; and (3) the inhibition of cell activation in TLR2-expressing HEK293 and THP1 by anti-TLR2 monoclonal antibody. Collectively, these observations identify TLR2 activation as a critical event that triggers NF-κB activation and secretion of cytokines and chemokines during bleomycin exposure. Our in vitro findings could serve as a molecular mechanism underlying the pro-inflammatory toxicity associated with bleomycin. Whether bleomycin engages with other cellular receptors that results in activation of alternate signaling pathways and whether the TLR2-agonist activity of bleomycin contribute to its anti-neoplastic property deserve further study

  20. Morita-Baylis-Hillman Adducts Display Anti-Inflammatory Effects by Modulating Inflammatory Mediator Expression in RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    Glaucia V. Faheina-Martins

    2017-01-01

    Full Text Available Inflammatory response plays an important role not only in the normal physiology but also in pathologies such as cancers. The Morita-Baylis-Hillman adducts (MBHA are a novel group of synthetic molecules that have demonstrated many biological activities against some parasitic cells such as Plasmodium falciparum, Leishmania amazonensis, and Leishmania chagasi, and antimitotic activity against sea urchin embryonic cells was also related. However, little is known about the mechanisms induced by MBHA in inflammatory process and its relation with anticancer activity. The present work investigated the cytotoxicity of three MBHA derivatives (A2CN, A3CN, and A4CN, on human colorectal adenocarcinoma, HT-29 cells, and their anti-inflammatory activities were examined in lipopolysaccharide- (LPS- stimulated RAW264.7 macrophage cells, being these derivatives potentially cytotoxic to HT-29 cells. Coincubation with A2CN, A3CN, or A4CN and LPS in RAW264.7 cells inhibited NO production, as well as the production of reactive oxygen species (ROS was also repressed. The mRNA expressions of IL-1β and IL-6 were significantly downregulated by such MBHA compounds in RAW264.7 cells, but only A2CN was able to inhibit the COX-2 gene expression. We also showed that MBHA compounds decreased almost to zero the production of IL-1β and IL-6. These findings display that such MBHA compounds exhibit anticancer and anti-inflammatory activities.