A three-dimensional spectral element model for the solution of the hydrostatic primitive equations
Iskandarani, M; Levin, J C
2003-01-01
We present a spectral element model to solve the hydrostatic primitive equations governing large-scale geophysical flows. The highlights of this new model include unstructured grids, dual h-p paths to convergence, and good scalability characteristics on present day parallel computers including Beowulf-class systems. The behavior of the model is assessed on three process-oriented test problems involving wave propagation, gravitational adjustment, and nonlinear flow rectification, respectively. The first of these test problems is a study of the convergence properties of the model when simulating the linear propagation of baroclinic Kelvin waves. The second is an intercomparison of spectral element and finite-difference model solutions to the adjustment of a density front in a straight channel. Finally, the third problem considers the comparison of model results to measurements obtained from a laboratory simulation of flow around a submarine canyon. The aforementioned tests demonstrate the good performance of th...
1982-12-01
1Muter.Te Motions Based on Ana lyzed Winds and wind-driven December 1982 Currents from. a Primitive Squat ion General a.OW -love"*..* Oean Circulation...mew se"$ (comeS.... do oISN..u am ae~ 00do OWaor NUN Fourier and Rotary Spc , Analysis Modeled Inertial and Subinrtial Motion 4 Primitive Equation
Barth, A.; Alvera-Azcarate, A.; Rixen, M.; Beckers, J.-M.; Testut, C.-E.; Brankart, J.-M.; Brasseur, P.
2003-04-01
The GHER 3D primitive equation model is implemented with three different resolutions: a low resolution model (1/4^o) covering the whole Mediterranean Sea, an intermediate resolution model (1/20^o) of the Liguro-Provençal basin and a high resolution model (1/60^o) simulating the fine mesoscale structures in the Ligurian Sea. Boundary conditions and the averaged fields (feedback) are exchanged between two successive nesting levels. The model of the Ligurian Sea is also coupled with the assimilation package SESAM. It allows to assimilate satellite data and in situ observations using the local adaptative SEEK (Singular Evolutive Extended Kalman) filter. Instead of evolving the error space by the numerically expensive Lyapunov equation, a simplified algebraic equation depending on the misfit between observation and model forecast is used. Starting from the 1st January 1998 the low and intermediate resolution models are spun up for 18 months. The initial conditions for the Ligurian Sea are interpolated from the intermediate resolution model. The three models are then integrated until August 1999. During this period AVHRR Sea Surface Temperature of the Ligurian Sea is assimilated. The results are validated by using CTD and XBT profiles of the SIRENA cruise from the SACLANT Center. The overall objective of this study is pre-operational. It should help to identify limitations and weaknesses of forecasting methods and to suggest improvements of existing operational models.
Stochastic Ocean Predictions with Dynamically-Orthogonal Primitive Equations
Subramani, D. N.; Haley, P., Jr.; Lermusiaux, P. F. J.
2017-12-01
The coastal ocean is a prime example of multiscale nonlinear fluid dynamics. Ocean fields in such regions are complex and intermittent with unstationary heterogeneous statistics. Due to the limited measurements, there are multiple sources of uncertainties, including the initial conditions, boundary conditions, forcing, parameters, and even the model parameterizations and equations themselves. For efficient and rigorous quantification and prediction of these uncertainities, the stochastic Dynamically Orthogonal (DO) PDEs for a primitive equation ocean modeling system with a nonlinear free-surface are derived and numerical schemes for their space-time integration are obtained. Detailed numerical studies with idealized-to-realistic regional ocean dynamics are completed. These include consistency checks for the numerical schemes and comparisons with ensemble realizations. As an illustrative example, we simulate the 4-d multiscale uncertainty in the Middle Atlantic/New York Bight region during the months of Jan to Mar 2017. To provide intitial conditions for the uncertainty subspace, uncertainties in the region were objectively analyzed using historical data. The DO primitive equations were subsequently integrated in space and time. The probability distribution function (pdf) of the ocean fields is compared to in-situ, remote sensing, and opportunity data collected during the coincident POSYDON experiment. Results show that our probabilistic predictions had skill and are 3- to 4- orders of magnitude faster than classic ensemble schemes.
From Realistic to Primitive Models: A Primitive Model of Methanol
Czech Academy of Sciences Publication Activity Database
Vlček, Lukáš; Nezbeda, Ivo
2003-01-01
Roč. 101, č. 19 (2003), s. 2987-2996 ISSN 0026-8976 R&D Projects: GA AV ČR IAA4072303; GA AV ČR IAA4072309 Grant - others:NATO(XX) PST.CLG 978178/6343 Institutional research plan: CEZ:AV0Z4072921 Keywords : primitive model * methanol Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.591, year: 2003
Chao, W. C.
1982-01-01
With appropriate modifications, a recently proposed explicit-multiple-time-step scheme (EMTSS) is incorporated into the UCLA model. In this scheme, the linearized terms in the governing equations that generate the gravity waves are split into different vertical modes. Each mode is integrated with an optimal time step, and at periodic intervals these modes are recombined. The other terms are integrated with a time step dictated by the CFL condition for low-frequency waves. This large time step requires a special modification of the advective terms in the polar region to maintain stability. Test runs for 72 h show that EMTSS is a stable, efficient and accurate scheme.
Generalized large-scale semigeostrophic approximations for the f-plane primitive equations
Oliver, Marcel; Vasylkevych, Sergiy
2016-05-01
We derive a family of balance models for rotating stratified flow in the primitive equation (PE) setting. By construction, the models possess conservation laws for energy and potential vorticity and are formally of the same order of accuracy as Hoskins’ semigeostrophic equations. Our construction is based on choosing a new coordinate frame for the PE variational principle in such a way that the consistently truncated Lagrangian degenerates. We show that the balance relations so obtained are elliptic when the fluid is stably stratified and certain smallness assumptions are satisfied. Moreover, the potential temperature can be recovered from the potential vorticity via inversion of a non-standard Monge-Ampère problem which is subject to the same ellipticity condition. While the present work is entirely formal, we conjecture, based on a careful rewriting of the equations of motion and a straightforward derivative count, that the Cauchy problem for the balance models is well posed subject to conditions on the initial data. Our family of models includes, in particular, the stratified analog of the L 1 balance model of Salmon.
Generalized large-scale semigeostrophic approximations for the f-plane primitive equations
International Nuclear Information System (INIS)
Oliver, Marcel; Vasylkevych, Sergiy
2016-01-01
We derive a family of balance models for rotating stratified flow in the primitive equation (PE) setting. By construction, the models possess conservation laws for energy and potential vorticity and are formally of the same order of accuracy as Hoskins’ semigeostrophic equations. Our construction is based on choosing a new coordinate frame for the PE variational principle in such a way that the consistently truncated Lagrangian degenerates. We show that the balance relations so obtained are elliptic when the fluid is stably stratified and certain smallness assumptions are satisfied. Moreover, the potential temperature can be recovered from the potential vorticity via inversion of a non-standard Monge–Ampère problem which is subject to the same ellipticity condition. While the present work is entirely formal, we conjecture, based on a careful rewriting of the equations of motion and a straightforward derivative count, that the Cauchy problem for the balance models is well posed subject to conditions on the initial data. Our family of models includes, in particular, the stratified analog of the L 1 balance model of Salmon. (paper)
You, Bo; Li, Fang
2016-01-01
This paper is concerned with the long-time behavior of solutions for the three dimensional viscous primitive equations of large-scale moist atmosphere. We prove the existence of a global attractor for the three dimensional viscous primitive equations of large-scale moist atmosphere by asymptotic a priori estimate and construct an exponential attractor by using the smoothing property of the semigroup generated by the three dimensional viscous primitive equations of large-scale moist atmosphere...
Lyons, Walter A.; Schuh, Jerome A.; Moon, Dennis; Pielke, Roger A.; Cotton, William; Arritt, Raymond
1987-01-01
The operational efficiency of using guidance from a mesoscale numerical model to improve sea breeze thunderstorm forecasts at and around the Shuttle landing strip was assessed. The Prognostic Three-Dimensional Mesoscale (P3DM) model, developed as a sea breeze model, reveals a strong correlation between regions of mesoscale convergence and the triggering of sea breeze convection thunderstorms. The P3DM was modified to generate stability parameters familiar to the operational forecaster. In addition to the mesoscale fields of wind, vertical motion, moisture, temperature, a stability indicator, a combination of model-predicted K and Lifted Indices and the maximum grid cell vertical motion, were proposed and tested. Results of blind tests indicate that a forecaster, provided with guidance derived from model output, could improve local thunderstorm forecasts.
On the small time asymptotics of 3D stochastic primitive equations
Dong, Zhao; Zhang, Rangrang
2017-01-01
In this paper, we establish a small time large deviation principle for the strong solution of 3D stochastic primitive equations driven by multiplicative noise. Both the small noise and the small, but highly nonlinear, unbounded nonlinear terms should be taken into consideration.
Aguayo-Ortiz, A; Mendoza, S; Olvera, D
2018-01-01
In this article we develop a Primitive Variable Recovery Scheme (PVRS) to solve any system of coupled differential conservative equations. This method obtains directly the primitive variables applying the chain rule to the time term of the conservative equations. With this, a traditional finite volume method for the flux is applied in order avoid violation of both, the entropy and "Rankine-Hugoniot" jump conditions. The time evolution is then computed using a forward finite difference scheme. This numerical technique evades the recovery of the primitive vector by solving an algebraic system of equations as it is often used and so, it generalises standard techniques to solve these kind of coupled systems. The article is presented bearing in mind special relativistic hydrodynamic numerical schemes with an added pedagogical view in the appendix section in order to easily comprehend the PVRS. We present the convergence of the method for standard shock-tube problems of special relativistic hydrodynamics and a graphical visualisation of the errors using the fluctuations of the numerical values with respect to exact analytic solutions. The PVRS circumvents the sometimes arduous computation that arises from standard numerical methods techniques, which obtain the desired primitive vector solution through an algebraic polynomial of the charges.
Modeling Architectural Patterns Using Architectural Primitives
Zdun, Uwe; Avgeriou, Paris
2005-01-01
Architectural patterns are a key point in architectural documentation. Regrettably, there is poor support for modeling architectural patterns, because the pattern elements are not directly matched by elements in modeling languages, and, at the same time, patterns support an inherent variability that
Modeling Architectural Patterns’ Behavior Using Architectural Primitives
Waqas Kamal, Ahmad; Avgeriou, Paris
2008-01-01
Architectural patterns have an impact on both the structure and the behavior of a system at the architecture design level. However, it is challenging to model patterns’ behavior in a systematic way because modeling languages do not provide the appropriate abstractions and because each pattern
CAD-based Monte Carlo automatic modeling method based on primitive solid
International Nuclear Information System (INIS)
Wang, Dong; Song, Jing; Yu, Shengpeng; Long, Pengcheng; Wang, Yongliang
2016-01-01
Highlights: • We develop a method which bi-convert between CAD model and primitive solid. • This method was improved from convert method between CAD model and half space. • This method was test by ITER model and validated the correctness and efficiency. • This method was integrated in SuperMC which could model for SuperMC and Geant4. - Abstract: Monte Carlo method has been widely used in nuclear design and analysis, where geometries are described with primitive solids. However, it is time consuming and error prone to describe a primitive solid geometry, especially for a complicated model. To reuse the abundant existed CAD models and conveniently model with CAD modeling tools, an automatic modeling method for accurate prompt modeling between CAD model and primitive solid is needed. An automatic modeling method for Monte Carlo geometry described by primitive solid was developed which could bi-convert between CAD model and Monte Carlo geometry represented by primitive solids. While converting from CAD model to primitive solid model, the CAD model was decomposed into several convex solid sets, and then corresponding primitive solids were generated and exported. While converting from primitive solid model to the CAD model, the basic primitive solids were created and related operation was done. This method was integrated in the SuperMC and was benchmarked with ITER benchmark model. The correctness and efficiency of this method were demonstrated.
Debussche, A.; Glatt-Holtz, N.; Temam, R.; Ziane, M.
2012-07-01
The primitive equations (PEs) are a basic model in the study of large scale oceanic and atmospheric dynamics. These systems form the analytical core of the most advanced general circulation models. For this reason and due to their challenging nonlinear and anisotropic structure, the PEs have recently received considerable attention from the mathematical community. On the other hand, in view of the complex multi-scale nature of the earth's climate system, many uncertainties appear that should be accounted for in the basic dynamical models of atmospheric and oceanic processes. In the climate community stochastic methods have come into extensive use in this connection. For this reason there has appeared a need to further develop the foundations of nonlinear stochastic partial differential equations in connection with the PEs and more generally. In this work we study a stochastic version of the PEs. We establish the global existence and uniqueness of strong, pathwise solutions for these equations in dimension 3 for the case of a nonlinear multiplicative noise. The proof makes use of anisotropic estimates, L^{p}_{t}L^{q}_{x} estimates on the pressure and stopping time arguments.
International Nuclear Information System (INIS)
Debussche, A; Glatt-Holtz, N; Temam, R; Ziane, M
2012-01-01
The primitive equations (PEs) are a basic model in the study of large scale oceanic and atmospheric dynamics. These systems form the analytical core of the most advanced general circulation models. For this reason and due to their challenging nonlinear and anisotropic structure, the PEs have recently received considerable attention from the mathematical community. On the other hand, in view of the complex multi-scale nature of the earth's climate system, many uncertainties appear that should be accounted for in the basic dynamical models of atmospheric and oceanic processes. In the climate community stochastic methods have come into extensive use in this connection. For this reason there has appeared a need to further develop the foundations of nonlinear stochastic partial differential equations in connection with the PEs and more generally. In this work we study a stochastic version of the PEs. We establish the global existence and uniqueness of strong, pathwise solutions for these equations in dimension 3 for the case of a nonlinear multiplicative noise. The proof makes use of anisotropic estimates, L p t L q x estimates on the pressure and stopping time arguments
On Synchronization Primitive Systems.
The report studies the question: what synchronization primitive should be used to handle inter-process communication. A formal model is presented...between these synchronization primitives. Although only four synchronization primitives are compared, the general methods can be used to compare other... synchronization primitives. Moreover, in the definitions of these synchronization primitives, conditional branches are explicitly allowed. In addition
Modeling discrete and rhythmic movements through motor primitives: a review.
Degallier, Sarah; Ijspeert, Auke
2010-10-01
Rhythmic and discrete movements are frequently considered separately in motor control, probably because different techniques are commonly used to study and model them. Yet the increasing interest in finding a comprehensive model for movement generation requires bridging the different perspectives arising from the study of those two types of movements. In this article, we consider discrete and rhythmic movements within the framework of motor primitives, i.e., of modular generation of movements. In this way we hope to gain an insight into the functional relationships between discrete and rhythmic movements and thus into a suitable representation for both of them. Within this framework we can define four possible categories of modeling for discrete and rhythmic movements depending on the required command signals and on the spinal processes involved in the generation of the movements. These categories are first discussed in terms of biological concepts such as force fields and central pattern generators and then illustrated by several mathematical models based on dynamical system theory. A discussion on the plausibility of theses models concludes the work.
Rapid world modeling: Fitting range data to geometric primitives
International Nuclear Information System (INIS)
Feddema, J.; Little, C.
1996-01-01
For the past seven years, Sandia National Laboratories has been active in the development of robotic systems to help remediate DOE's waste sites and decommissioned facilities. Some of these facilities have high levels of radioactivity which prevent manual clean-up. Tele-operated and autonomous robotic systems have been envisioned as the only suitable means of removing the radioactive elements. World modeling is defined as the process of creating a numerical geometric model of a real world environment or workspace. This model is often used in robotics to plan robot motions which perform a task while avoiding obstacles. In many applications where the world model does not exist ahead of time, structured lighting, laser range finders, and even acoustical sensors have been used to create three dimensional maps of the environment. These maps consist of thousands of range points which are difficult to handle and interpret. This paper presents a least squares technique for fitting range data to planar and quadric surfaces, including cylinders and ellipsoids. Once fit to these primitive surfaces, the amount of data associated with a surface is greatly reduced up to three orders of magnitude, thus allowing for more rapid handling and analysis of world data
International Nuclear Information System (INIS)
Sanchez-Diaz, L. E.; Juarez-Maldonado, R.; Vizcarra-Rendon, A.
2009-01-01
Based on the recently proposed self-consistent generalized Langevin equation theory of dynamic arrest, in this letter we show that the ergodic-nonergodic phase diagram of a classical mixture of charged hard spheres (the so-called 'primitive model' of ionic solutions and molten salts) includes arrested phases corresponding to nonconducting ionic glasses, partially arrested states that represent solid electrolytes (or 'superionic' conductors), low-density colloidal Wigner glasses, and low-density electrostatic gels associated with arrested spinodal decomposition.
International Nuclear Information System (INIS)
Tachim Medjo, T.
2011-01-01
We investigate in this article the Pontryagin's maximum principle for control problem associated with the primitive equations (PEs) of the ocean with periodic inputs. We also derive a second-order sufficient condition for optimality. This work is closely related to Wang (SIAM J. Control Optim. 41(2):583-606, 2002) and He (Acta Math. Sci. Ser. B Engl. Ed. 26(4):729-734, 2006), in which the authors proved similar results for the three-dimensional Navier-Stokes (NS) systems.
African Journals Online (AJOL)
The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...
International Nuclear Information System (INIS)
Kunz, W.; Turq, P.
1990-01-01
The study of electrolyte solutions by small angle neutron scattering (static) of quasi-elastic neutron scattering (dynamics) gives new perspectives to the primitive model of electrolytes, for both static and dynamic properties of those systems. Whereas all properties can be interpreted by brownian dynamics, integral equations cannot be used at the present time to get transport coefficients in all cases. As regards the choice of the potentials at the McMillan Mayer level, specific Gurney terms for solvation are not needed for tetraalkylammonium salts. (orig.)
Structural Equation Model Trees
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman
2013-01-01
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…
Existence and non-uniqueness of global weak solutions to inviscid primitive and Boussinesq equations
Czech Academy of Sciences Publication Activity Database
Chiodaroli, E.; Michálek, Martin
2017-01-01
Roč. 353, č. 3 (2017), s. 1201-1216 ISSN 0010-3616 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Boussinesq equations * global weak solutions Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 2.500, year: 2016 https://link.springer.com/article/10.1007%2Fs00220-017-2846-5
Cohesion between two clay lamellae: From Primitive Model to Full Molecular Simulation
International Nuclear Information System (INIS)
Carrier, Benoit; Vandamme, Matthieu; Pellenq, Roland; Van Damme, Henri
2012-01-01
Document available in extended abstract form only. The objective of this work is to investigate the range of validity of various models to describe accurately the cohesion between two charged clay lamellae. These models, in order of increasing complexity, are the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the primitive model, the explicit solvent primitive model and the full molecular model. We aim at providing a clear picture of which physical mechanisms play a significant role for various interlayer spacings, surface charges and cationic charges. The up-scaling of the mechanical properties starting from the lamellar microstructure of a smectite is usually performed within the framework of the DLVO theory. In this case, the interaction between two charged lamellae with cations between them is the sum of the repulsive double layer electrostatic interaction and of the attractive Van der Waals interaction. However, the Primitive Model shows that concentration fluctuations of counter-ions can generate a strongly attractive ionic correlation force. The Primitive Model is a Monte-Carlo simulation of hydrated counter-ions between two infinite charges surfaces and the water is implicitly modeled by scaling all electrostatic interactions by the dielectric permittivity of bulk water. Nevertheless, for very small inter-layer spacings (1 nm), molecular simulations and experiments show that water is organized in a layered structure and does not behave like bulk water. Therefore, we investigate the role of the solvent in the cohesion of clay lamellae. For this purpose, we use a modified version of the original Primitive Model in which the solvent is modeled by point-dipoles: This model is called the Explicit Solvent Primitive Model. We consider four different systems: A Na + -montmorillonite, a Ca 2+ -montmorillonite, a Na + -vermiculite, a Ca 2+ -vermiculite. The vermiculite layers are twice as charged as the montmorillonite layers. We use a full molecular model as a
The application of Fast Fourier transforms to the primitive equations of Boussinesq convection
International Nuclear Information System (INIS)
Parrott, A.K.
1976-01-01
We have described a numerical scheme which is second-order in both space and time. The use of Fast Fourier Transform techniques for the solution of pressure equation guarantees accurate incompressibility at all time and enabled us to consider using iteration for part of this scheme. The iterations converge satisfactorily for values of the timestep of the order of one-half to one-quarter of the space step. Numerical calculations are being undertaken to clarify the range of Reynolds numbers and timestep over which the iteration converges. (orig.) [de
Modelling 3D spatial objects in a geo-DBMS using a 3D primitive
Arens, Călin; Stoter, Jantien; van Oosterom, Peter
2005-03-01
There is a growing interest in modelling the world in three dimensions, both in applications and in science. At the same time, geographical information systems are changing into integrated architecture in which administrative and spatial data are maintained in one environment. It is for this reason that mainstream Data Base Management Systems (DBMSs) have implemented spatial data types according to the 'Simple Feature Specifications for SQL', described by the OpenGeospatial Consortium. However, these specifications are 2D, as indeed are the implementations in DBMSs. At the Section GIS Technology of TU Delft, research has been carried out in which a 3D primitive was implemented in a DBMS (Oracle Spatial). To explore the possibilities and complications, a fairly simple 3D primitive was chosen to start with: a polyhedron. In the future the study will be extended with more complex primitives, the ultimate aim being to build 3D models with features closer to the real world. Besides the data structure, a validation function was developed to check the geometric accuracy of the data. Rules for validation were established and translated into prototype implementations with the aid of literature. In order to manipulate the data, a list of useful 3D functions was specified. Most of these were translated into algorithms, which were implemented in the DBMS. The algorithms for these functions were obtained from the relevant literature. The research also comprised a comparative performance test on spatial indexing in 2D and 3D, using an R-tree. Finally, existing software was used to visualize 3D objects structured with the implemented 3D primitive. This research is a first attempt to implement a true 3D primitive in a DBMS. Future research will focus on extending and improving the implementations and on optimizing maintenance and query of 3D objects in DBMSs.
Study of primitive universe in the Bianchi IX model
International Nuclear Information System (INIS)
Matsas, G.E.A.
1988-03-01
The theory of general relativity is used to study the homogeneous cosmological model Bianch IX with isometry group SO(3) near the cosmological singularity. The Bogoyavlenskii-Novikov formalism to explain the anusual behaviour of the Liapunov exponent associated with this chaotic system, is introduced. (author) [pt
Extending Primitive Spatial Data Models to Include Semantics
Reitsma, F.; Batcheller, J.
2009-04-01
Our traditional geospatial data model involves associating some measurable quality, such as temperature, or observable feature, such as a tree, with a point or region in space and time. When capturing data we implicitly subscribe to some kind of conceptualisation. If we can make this explicit in an ontology and associate it with the captured data, we can leverage formal semantics to reason with the concepts represented in our spatial data sets. To do so, we extend our fundamental representation of geospatial data in a data model by including a URI in our basic data model that links it to our ontology defining our conceptualisation, We thus extend Goodchild et al's geo-atom [1] with the addition of a URI: (x, Z, z(x), URI) . This provides us with pixel or feature level knowledge and the ability to create layers of data from a set of pixels or features that might be drawn from a database based on their semantics. Using open source tools, we present a prototype that involves simple reasoning as a proof of concept. References [1] M.F. Goodchild, M. Yuan, and T.J. Cova. Towards a general theory of geographic representation in gis. International Journal of Geographical Information Science, 21(3):239-260, 2007.
Lower Virial Coefficients of Primitive Models of Polar and Associating Fluids.
Czech Academy of Sciences Publication Activity Database
Rouha, M.; Nezbeda, Ivo
2007-01-01
Roč. 134, 1-3 (2007) , s. 107-110 Sp. Iss. SI ISSN 0167-7322 R&D Projects: GA AV ČR(CZ) IAA4072303; GA AV ČR(CZ) 1ET400720409 Institutional research plan: CEZ:AV0Z40720504 Keywords : primitive models * virial coefficients * metropolis like monte-carlo integration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.982, year: 2007
The logical primitives of thought: Empirical foundations for compositional cognitive models.
Piantadosi, Steven T; Tenenbaum, Joshua B; Goodman, Noah D
2016-07-01
The notion of a compositional language of thought (LOT) has been central in computational accounts of cognition from earliest attempts (Boole, 1854; Fodor, 1975) to the present day (Feldman, 2000; Penn, Holyoak, & Povinelli, 2008; Fodor, 2008; Kemp, 2012; Goodman, Tenenbaum, & Gerstenberg, 2015). Recent modeling work shows how statistical inferences over compositionally structured hypothesis spaces might explain learning and development across a variety of domains. However, the primitive components of such representations are typically assumed a priori by modelers and theoreticians rather than determined empirically. We show how different sets of LOT primitives, embedded in a psychologically realistic approximate Bayesian inference framework, systematically predict distinct learning curves in rule-based concept learning experiments. We use this feature of LOT models to design a set of large-scale concept learning experiments that can determine the most likely primitives for psychological concepts involving Boolean connectives and quantification. Subjects' inferences are most consistent with a rich (nonminimal) set of Boolean operations, including first-order, but not second-order, quantification. Our results more generally show how specific LOT theories can be distinguished empirically. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
CERN. Geneva
2012-01-01
We present our effort for the creation of a new software library of geometrical primitives, which are used for solid modelling in Monte Carlo detector simulations. We plan to replace and unify current geometrical primitive classes in the CERN software projects Geant4 and ROOT with this library. Each solid is represented by a C++ class with methods suited for measuring distances of particles from the surface of a solid and for determination as to whether the particles are located inside, outside or on the surface of the solid. We use numerical tolerance for determining whether the particles are located on the surface. The class methods also contain basic support for visualization. We use dedicated test suites for validation of the shape codes. These include also special performance and numerical value comparison tests for help with analysis of possible candidates of class methods as well as to verify that our new implementation proposals were designed and implemented properly. Currently, bridge classes are u...
Czech Academy of Sciences Publication Activity Database
Vlček, Lukáš; Nezbeda, Ivo
2004-01-01
Roč. 102, č. 5 (2004), s. 485-497 ISSN 0026-8976 R&D Projects: GA ČR GA203/02/0764; GA AV ČR IAA4072303; GA AV ČR IAA4072309 Institutional research plan: CEZ:AV0Z4072921 Keywords : primitive model * association fluids * ethanol Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.406, year: 2004
Sartori, Massimo; Gizzi, Leonardo; Lloyd, David G; Farina, Dario
2013-01-01
Human locomotion has been described as being generated by an impulsive (burst-like) excitation of groups of musculotendon units, with timing dependent on the biomechanical goal of the task. Despite this view being supported by many experimental observations on specific locomotion tasks, it is still unknown if the same impulsive controller (i.e., a low-dimensional set of time-delayed excitastion primitives) can be used as input drive for large musculoskeletal models across different human locomotion tasks. For this purpose, we extracted, with non-negative matrix factorization, five non-negative factors from a large sample of muscle electromyograms in two healthy subjects during four motor tasks. These included walking, running, sidestepping, and crossover cutting maneuvers. The extracted non-negative factors were then averaged and parameterized to obtain task-generic Gaussian-shaped impulsive excitation curves or primitives. These were used to drive a subject-specific musculoskeletal model of the human lower extremity. Results showed that the same set of five impulsive excitation primitives could be used to predict the dynamics of 34 musculotendon units and the resulting hip, knee and ankle joint moments (i.e., NRMSE = 0.18 ± 0.08, and R (2) = 0.73 ± 0.22 across all tasks and subjects) without substantial loss of accuracy with respect to using experimental electromyograms (i.e., NRMSE = 0.16 ± 0.07, and R (2) = 0.78 ± 0.18 across all tasks and subjects). Results support the hypothesis that biomechanically different motor tasks might share similar neuromuscular control strategies. This might have implications in neurorehabilitation technologies such as human-machine interfaces for the torque-driven, proportional control of powered prostheses and orthoses. In this, device control commands (i.e., predicted joint torque) could be derived without direct experimental data but relying on simple parameterized Gaussian-shaped curves, thus decreasing the input drive
Phase diagram of the restricted primitive model: charge-ordering instability
Directory of Open Access Journals (Sweden)
O.V.Patsahan
2004-01-01
Full Text Available We study the phase behaviour of the restricted primitive model (RPM using a microscopic approach based on the method of collective variables with a reference system. Starting from the Hamiltonian of the RPM we derive the functional of the grand partition function given in terms of the two collective variables: the collective variables ρk and ck describing fluctuations of the total number density and charge density, respectively. Within the framework of the Gaussian approximation we found the boundary of stability with respect to fluctuations of the charge density. It is shown that due to the approximated character of the theory the boundary of stability is very sensitive to the particular choice of the long-range part of potential inside the hard core. This point is discussed in more detail.
Computer simulations of the restricted primitive model at very low temperature and density
International Nuclear Information System (INIS)
Valeriani, Chantal; Camp, Philip J; Zwanikken, Jos W; Van Roij, Rene; Dijkstra, Marjolein
2010-01-01
The problem of successfully simulating ionic fluids at low temperature and low density states is well known in the simulation literature: using conventional methods, the system is not able to equilibrate rapidly due to the presence of strongly associated cation-anion pairs. In this paper we present a numerical method for speeding up computer simulations of the restricted primitive model (RPM) at low temperatures (around the critical temperature) and at very low densities (down to 10 -10 σ -3 , where σ is the ion diameter). Experimentally, this regime corresponds to typical concentrations of electrolytes in nonaqueous solvents. As far as we are aware, this is the first time that the RPM has been equilibrated at such extremely low concentrations. More generally, this method could be used to equilibrate other systems that form aggregates at low concentrations.
Equation of state for neutron matter in the Quark Compound Bag model
Krivoruchenko, M. I.
2017-11-01
The equation of state for neutron matter is derived in the framework of the Quark Compound Bag model, in which the nucleon-nucleon interaction is generated by the s-channel exchange of six-quark Jaffe-Low primitives.
Olsson, Peter Q.; Cotton, William R.
1997-02-01
banded vorticity structure at midtropospheric levels. These bands were found to be due to the apparent vertical transport of zonal momentum by the descending rear-to-front circulation, or rear-inflow jet. An equivalent alternative viewpoint of this process, deformation of horizontal vorticity filaments by the convective updrafts and rear-inflow jet, is discussed.Part II of this work presents a complementary approach to the analysis presented here, demonstrating that the circulations seen in this MCC simulation are, to a large degree, contained within the nonlinear balance approximation, the related balanced omega equation, and the PV as analyzed from the PE model results.
Handbook of structural equation modeling
Hoyle, Rick H
2012-01-01
The first comprehensive structural equation modeling (SEM) handbook, this accessible volume presents both the mechanics of SEM and specific SEM strategies and applications. The editor, contributors, and editorial advisory board are leading methodologists who have organized the book to move from simpler material to more statistically complex modeling approaches. Sections cover the foundations of SEM; statistical underpinnings, from assumptions to model modifications; steps in implementation, from data preparation through writing the SEM report; and basic and advanced applications, inclu
Slave equations for spin models
International Nuclear Information System (INIS)
Catterall, S.M.; Drummond, I.T.; Horgan, R.R.
1992-01-01
We apply an accelerated Langevin algorithm to the simulation of continuous spin models on the lattice. In conjunction with the evolution equation for the spins we use slave equations to compute estimators for the connected correlation functions of the model. In situations for which the symmetry of the model is sufficiently strongly broken by an external field these estimators work well and yield a signal-to-noise ratio for the Green function at large time separations more favourable than that resulting from the standard method. With the restoration of symmetry, however, the slave equation estimators exhibit an intrinsic instability associated with the growth of a power law tail in the probability distributions for the measured quantities. Once this tail has grown sufficiently strong it results in a divergence of the variance of the estimator which then ceases to be useful for measurement purposes. The instability of the slave equation method in circumstances of weak symmetry breaking precludes its use in determining the mass gap in non-linear sigma models. (orig.)
International Nuclear Information System (INIS)
Eisenberg, Bob; Hyon, YunKyong; Liu, Chun
2010-01-01
. If a new component is added to the energy or dissipation, the Euler–Lagrange equations change form and interaction terms appear without additional adjustable parameters. EnVarA has previously been used to compute properties of liquid crystals, polymer fluids, and electrorheological fluids containing solid balls and charged oil droplets that fission and fuse. Here we apply EnVarA to the primitive model of electrolytes in which ions are spheres in a frictional dielectric. The resulting Euler–Lagrange equations include electrostatics and diffusion and friction. They are a time dependent generalization of the Poisson–Nernst–Planck equations of semiconductors, electrochemistry, and molecular biophysics. They include the finite diameter of ions. The EnVarA treatment is applied to ions next to a charged wall, where layering is observed. Applied to an ion channel, EnVarA calculates a quick transient pile-up of electric charge, transient and steady flow through the channel, stationary “binding” in the channel, and the eventual accumulation of salts in “unstirred layers” near channels. EnVarA treats electrolytes in a unified way as complex rather than simple fluids. Ad hoc descriptions of interactions and flow have been used in many areas of science to deal with the nonideal properties of electrolytes. It seems likely that the variational treatment can simplify, unify, and perhaps derive and improve those descriptions.
Eisenberg, Bob; Hyon, Yunkyong; Liu, Chun
2010-09-14
component is added to the energy or dissipation, the Euler-Lagrange equations change form and interaction terms appear without additional adjustable parameters. EnVarA has previously been used to compute properties of liquid crystals, polymer fluids, and electrorheological fluids containing solid balls and charged oil droplets that fission and fuse. Here we apply EnVarA to the primitive model of electrolytes in which ions are spheres in a frictional dielectric. The resulting Euler-Lagrange equations include electrostatics and diffusion and friction. They are a time dependent generalization of the Poisson-Nernst-Planck equations of semiconductors, electrochemistry, and molecular biophysics. They include the finite diameter of ions. The EnVarA treatment is applied to ions next to a charged wall, where layering is observed. Applied to an ion channel, EnVarA calculates a quick transient pile-up of electric charge, transient and steady flow through the channel, stationary "binding" in the channel, and the eventual accumulation of salts in "unstirred layers" near channels. EnVarA treats electrolytes in a unified way as complex rather than simple fluids. Ad hoc descriptions of interactions and flow have been used in many areas of science to deal with the nonideal properties of electrolytes. It seems likely that the variational treatment can simplify, unify, and perhaps derive and improve those descriptions.
Eisenberg, Bob; Hyon, YunKyong; Liu, Chun
2010-09-01
component is added to the energy or dissipation, the Euler-Lagrange equations change form and interaction terms appear without additional adjustable parameters. EnVarA has previously been used to compute properties of liquid crystals, polymer fluids, and electrorheological fluids containing solid balls and charged oil droplets that fission and fuse. Here we apply EnVarA to the primitive model of electrolytes in which ions are spheres in a frictional dielectric. The resulting Euler-Lagrange equations include electrostatics and diffusion and friction. They are a time dependent generalization of the Poisson-Nernst-Planck equations of semiconductors, electrochemistry, and molecular biophysics. They include the finite diameter of ions. The EnVarA treatment is applied to ions next to a charged wall, where layering is observed. Applied to an ion channel, EnVarA calculates a quick transient pile-up of electric charge, transient and steady flow through the channel, stationary "binding" in the channel, and the eventual accumulation of salts in "unstirred layers" near channels. EnVarA treats electrolytes in a unified way as complex rather than simple fluids. Ad hoc descriptions of interactions and flow have been used in many areas of science to deal with the nonideal properties of electrolytes. It seems likely that the variational treatment can simplify, unify, and perhaps derive and improve those descriptions.
Janecek, Jirí; Netz, Roland R
2009-02-21
Monte Carlo simulations for the restricted primitive model of an electrolyte solution above the critical temperature are performed at a wide range of concentrations and temperatures. Thermodynamic properties such as internal energy, osmotic coefficient, activity coefficient, as well as spatial correlation functions are determined. These observables are used to investigate whether quasiuniversality in terms of an effective screening length exists, similar to the role played by the effective electron mass in solid-state physics. To that end, an effective screening length is extracted from the asymptotic behavior of the Fourier-transformed charge-correlation function and plugged into the Debye-Huckel limiting expressions for various thermodynamic properties. Comparison with numerical results is favorable, suggesting that correlation and other effects not captured on the Debye-Huckel limiting level can be successfully incorporated by a single effective parameter while keeping the functional form of Debye-Huckel expressions. We also compare different methods to determine mean ionic activity coefficient in molecular simulations and check the internal consistency of the numerical data.
Generalized Ordinary Differential Equation Models.
Miao, Hongyu; Wu, Hulin; Xue, Hongqi
2014-10-01
Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method.
A classical density functional theory for the asymmetric restricted primitive model of ionic liquids
Lu, Hongduo; Nordholm, Sture; Woodward, Clifford E.; Forsman, Jan
2018-05-01
A new three-parameter (valency, ion size, and charge asymmetry) model, the asymmetric restricted primitive model (ARPM) of ionic liquids, has recently been proposed. Given that ionic liquids generally are composed of monovalent species, the ARPM effectively reduces to a two-parameter model. Monte Carlo (MC) simulations have demonstrated that the ARPM is able to reproduce key properties of room temperature ionic liquids (RTILs) in bulk and at charged surfaces. The relatively modest complexity of the model raises the possibility, which is explored here, that a classical density functional theory (DFT) could resolve its properties. This is relevant because it might generate great improvements in terms of both numerical efficiency and understanding in the continued research of RTILs and their applications. In this report, a DFT for rod-like molecules is proposed as an approximate theoretical tool for an ARPM fluid. Borrowing data on the ion pair fraction from a single bulk simulation, the ARPM is modelled as a mixture of dissociated ions and connected ion pairs. We have specifically studied an ARPM where the hard-sphere diameter is 5 Å, with the charge located 1 Å from the hard-sphere centre. We focus on fluid structure and electrochemical behaviour of this ARPM fluid, into which a model electrode is immersed. The latter is modelled as a perfect conductor, and surface polarization is handled by the method of image charges. Approximate methods, which were developed in an earlier study, to take image interactions into account, are also incorporated in the DFT. We make direct numerical comparisons between DFT predictions and corresponding simulation data. The DFT theory is implemented both in the normal mean field form with respect to the electrostatic interactions and in a correlated form based on hole formation by both steric repulsions and ion-ion Coulomb interactions. The results clearly show that ion-ion correlations play a very important role in the screening of
Ising models and soliton equations
International Nuclear Information System (INIS)
Perk, J.H.H.; Au-Yang, H.
1985-01-01
Several new results for the critical point of correlation functions of the Hirota equation are derived within the two-dimensional Ising model. The recent success of the conformal-invariance approach in the determination of a critical two-spin correration function is analyzed. The two-spin correlation function is predicted to be rotationally invariant and to decay with a power law in this approach. In the approach suggested here systematic corrections due to the underlying lattice breaking the rotational invariance are obtained
Thermoviscous Model Equations in Nonlinear Acoustics
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne
Four nonlinear acoustical wave equations that apply to both perfect gasses and arbitrary fluids with a quadratic equation of state are studied. Shock and rarefaction wave solutions to the equations are studied. In order to assess the accuracy of the wave equations, their solutions are compared...... to solutions of the basic equations from which the wave equations are derived. A straightforward weakly nonlinear equation is the most accurate for shock modeling. A higher order wave equation is the most accurate for modeling of smooth disturbances. Investigations of the linear stability properties...... of solutions to the wave equations, reveal that the solutions may become unstable. Such instabilities are not found in the basic equations. Interacting shocks and standing shocks are investigated....
Interactive differential equations modeling program
International Nuclear Information System (INIS)
Rust, B.W.; Mankin, J.B.
1976-01-01
Due to the recent emphasis on mathematical modeling, many ecologists are using mathematics and computers more than ever, and engineers, mathematicians and physical scientists are now included in ecological projects. However, the individual ecologist, with intuitive knowledge of the system, still requires the means to critically examine and adjust system models. An interactive program was developed with the primary goal of allowing an ecologist with minimal experience in either mathematics or computers to develop a system model. It has also been used successfully by systems ecologists, engineers, and mathematicians. This program was written in FORTRAN for the DEC PDP-10, a remote terminal system at Oak Ridge National Laboratory. However, with relatively minor modifications, it can be implemented on any remote terminal system with a FORTRAN IV compiler, or equivalent. This program may be used to simulate any phenomenon which can be described as a system of ordinary differential equations. The program allows the user to interactively change system parameters and/or initial conditions, to interactively select a set of variables to be plotted, and to model discontinuities in the state variables and/or their derivatives. One of the most useful features to the non-computer specialist is the ability to interactively address the system parameters by name and to interactively adjust their values between simulations. These and other features are described in greater detail
Domaratzki, Michael; Rampersad, Narad
2011-01-01
We investigate Abelian primitive words, which are words that are not Abelian powers. We show that unlike classical primitive words, the set of Abelian primitive words is not context-free. We can determine whether a word is Abelian primitive in linear time. Also different from classical primitive words, we find that a word may have more than one Abelian root. We also consider enumeration problems and the relation to the theory of codes. Peer reviewed
International Nuclear Information System (INIS)
Orkoulas, G.; Panagiotopoulos, A.Z.
1994-01-01
In this work, we investigate the liquid--vapor phase transition of the restricted primitive model of ionic fluids. We show that at the low temperatures where the phase transition occurs, the system cannot be studied by conventional molecular simulation methods because convergence to equilibrium is slow. To accelerate convergence, we propose cluster Monte Carlo moves capable of moving more than one particle at a time. We then address the issue of charged particle transfers in grand canonical and Gibbs ensemble Monte Carlo simulations, for which we propose a biased particle insertion/destruction scheme capable of sampling short interparticle distances. We compute the chemical potential for the restricted primitive model as a function of temperature and density from grand canonical Monte Carlo simulations and the phase envelope from Gibbs Monte Carlo simulations. Our calculated phase coexistence curve is in agreement with recent results of Caillol obtained on the four-dimensional hypersphere and our own earlier Gibbs ensemble simulations with single-ion transfers, with the exception of the critical temperature, which is lower in the current calculations. Our best estimates for the critical parameters are T * c =0.053, ρ * c =0.025. We conclude with possible future applications of the biased techniques developed here for phase equilibrium calculations for ionic fluids
Motion Primitives for Action Recognition
DEFF Research Database (Denmark)
Fihl, Preben; Holte, Michael Boelstoft; Moeslund, Thomas B.
2007-01-01
the actions as a sequence of temporal isolated instances, denoted primitives. These primitives are each defined by four features extracted from motion images. The primitives are recognized in each frame based on a trained classifier resulting in a sequence of primitives. From this sequence we recognize......The number of potential applications has made automatic recognition of human actions a very active research area. Different approaches have been followed based on trajectories through some state space. In this paper we also model an action as a trajectory through a state space, but we represent...... different temporal actions using a probabilistic Edit Distance method. The method is tested on different actions with and without noise and the results show recognition rates of 88.7% and 85.5%, respectively....
Action Recognition using Motion Primitives
DEFF Research Database (Denmark)
Moeslund, Thomas B.; Fihl, Preben; Holte, Michael Boelstoft
the actions as a sequence of temporal isolated instances, denoted primitives. These primitives are each defined by four features extracted from motion images. The primitives are recognized in each frame based on a trained classifier resulting in a sequence of primitives. From this sequence we recognize......The number of potential applications has made automatic recognition of human actions a very active research area. Different approaches have been followed based on trajectories through some state space. In this paper we also model an action as a trajectory through a state space, but we represent...... different temporal actions using a probabilistic Edit Distance method. The method is tested on different actions with and without noise and the results show recognizing rates of 88.7% and 85.5%, respectively....
Modelling conjugation with stochastic differential equations
DEFF Research Database (Denmark)
Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Hasman, Henrik
2010-01-01
Enterococcus faecium strains in a rich exhaustible media. The model contains a new expression for a substrate dependent conjugation rate. A maximum likelihood based method is used to estimate the model parameters. Different models including different noise structure for the system and observations are compared......Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two...... using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared...
Valiskó, Mónika; Kristóf, Tamás; Gillespie, Dirk; Boda, Dezső
2018-02-01
The purpose of this study is to provide data for the primitive model of the planar electrical double layer, where ions are modeled as charged hard spheres, the solvent as an implicit dielectric background (with dielectric constant ɛ = 78.5), and the electrode as a smooth, uniformly charged, hard wall. We use canonical and grand canonical Monte Carlo simulations to compute the concentration profiles, from which the electric field and electrostatic potential profiles are obtained by solving Poisson's equation. We report data for an extended range of parameters including 1:1, 2:1, and 3:1 electrolytes at concentrations c = 0.0001 - 1 M near electrodes carrying surface charges up to σ = ±0.5 Cm-2. The anions are monovalent with a fixed diameter d- = 3 Å, while the charge and diameter of cations are varied in the range z+ = 1, 2, 3 and d+ = 1.5, 3, 6, and 9 Å (the temperature is 298.15 K). We provide all the raw data in the supplementary material (ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-084802">supplementary material).
Directory of Open Access Journals (Sweden)
Mónika Valiskó
2018-02-01
Full Text Available The purpose of this study is to provide data for the primitive model of the planar electrical double layer, where ions are modeled as charged hard spheres, the solvent as an implicit dielectric background (with dielectric constant ϵ = 78.5, and the electrode as a smooth, uniformly charged, hard wall. We use canonical and grand canonical Monte Carlo simulations to compute the concentration profiles, from which the electric field and electrostatic potential profiles are obtained by solving Poisson’s equation. We report data for an extended range of parameters including 1:1, 2:1, and 3:1 electrolytes at concentrations c = 0.0001 − 1 M near electrodes carrying surface charges up to σ = ±0.5 Cm−2. The anions are monovalent with a fixed diameter d− = 3 Å, while the charge and diameter of cations are varied in the range z+ = 1, 2, 3 and d+ = 1.5, 3, 6, and 9 Å (the temperature is 298.15 K. We provide all the raw data in the supplementary material.
Differential Equations Models to Study Quorum Sensing.
Pérez-Velázquez, Judith; Hense, Burkhard A
2018-01-01
Mathematical models to study quorum sensing (QS) have become an important tool to explore all aspects of this type of bacterial communication. A wide spectrum of mathematical tools and methods such as dynamical systems, stochastics, and spatial models can be employed. In this chapter, we focus on giving an overview of models consisting of differential equations (DE), which can be used to describe changing quantities, for example, the dynamics of one or more signaling molecule in time and space, often in conjunction with bacterial growth dynamics. The chapter is divided into two sections: ordinary differential equations (ODE) and partial differential equations (PDE) models of QS. Rates of change are represented mathematically by derivatives, i.e., in terms of DE. ODE models allow describing changes in one independent variable, for example, time. PDE models can be used to follow changes in more than one independent variable, for example, time and space. Both types of models often consist of systems (i.e., more than one equation) of equations, such as equations for bacterial growth and autoinducer concentration dynamics. Almost from the onset, mathematical modeling of QS using differential equations has been an interdisciplinary endeavor and many of the works we revised here will be placed into their biological context.
Modeling animal movements using stochastic differential equations
Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie
2004-01-01
We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...
Structural Equation Modeling of Multivariate Time Series
du Toit, Stephen H. C.; Browne, Michael W.
2007-01-01
The covariance structure of a vector autoregressive process with moving average residuals (VARMA) is derived. It differs from other available expressions for the covariance function of a stationary VARMA process and is compatible with current structural equation methodology. Structural equation modeling programs, such as LISREL, may therefore be…
Stochastic differential equation model to Prendiville processes
Energy Technology Data Exchange (ETDEWEB)
Granita, E-mail: granitafc@gmail.com [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); Bahar, Arifah [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); UTM Center for Industrial & Applied Mathematics (UTM-CIAM) (Malaysia)
2015-10-22
The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.
Stochastic differential equation model to Prendiville processes
International Nuclear Information System (INIS)
Granita; Bahar, Arifah
2015-01-01
The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution
A first course in structural equation modeling
Raykov, Tenko
2012-01-01
In this book, authors Tenko Raykov and George A. Marcoulides introduce students to the basics of structural equation modeling (SEM) through a conceptual, nonmathematical approach. For ease of understanding, the few mathematical formulas presented are used in a conceptual or illustrative nature, rather than a computational one.Featuring examples from EQS, LISREL, and Mplus, A First Course in Structural Equation Modeling is an excellent beginner's guide to learning how to set up input files to fit the most commonly used types of structural equation models with these programs. The basic ideas and methods for conducting SEM are independent of any particular software.Highlights of the Second Edition include: Review of latent change (growth) analysis models at an introductory level Coverage of the popular Mplus program Updated examples of LISREL and EQS A CD that contains all of the text's LISREL, EQS, and Mplus examples.A First Course in Structural Equation Modeling is intended as an introductory book for students...
Directory of Open Access Journals (Sweden)
L.B. Bhuiyan
2017-12-01
Full Text Available The modified Poisson-Boltzmann theory of the restricted primitive model double layer is revisited and recast in a fresh, slightly broader perspective. Derivation of relevant equations follow the techniques utilized in the earlier MPB4 and MPB5 formulations and clarifies the relationship between these. The MPB4, MPB5, and a new formulation of the theory are employed in an analysis of the structure and charge reversal phenomenon in asymmetric 2:1/1:2 valence electrolytes. Furthermore, polarization induced surface charge amplification is studied in 3:1/1:3 systems. The results are compared to the corresponding Monte Carlo simulations. The theories are seen to predict the "exact" simulation data to varying degrees of accuracy ranging from qualitative to almost quantitative. The results from a new version of the theory are found to be of comparable accuracy as the MPB5 results in many situations. However, in some cases involving low electrolyte concentrations, theoretical artifacts in the form of un-physical "shoulders" in the singlet ionic distribution functions are observed.
Partial Differential Equations Modeling and Numerical Simulation
Glowinski, Roland
2008-01-01
This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...
Structural equation modeling methods and applications
Wang, Jichuan
2012-01-01
A reference guide for applications of SEM using Mplus Structural Equation Modeling: Applications Using Mplus is intended as both a teaching resource and a reference guide. Written in non-mathematical terms, this book focuses on the conceptual and practical aspects of Structural Equation Modeling (SEM). Basic concepts and examples of various SEM models are demonstrated along with recently developed advanced methods, such as mixture modeling and model-based power analysis and sample size estimate for SEM. The statistical modeling program, Mplus, is also featured and provides researchers with a
Stochastic differential equations used to model conjugation
DEFF Research Database (Denmark)
Philipsen, Kirsten Riber; Christiansen, Lasse Engbo
Stochastic differential equations (SDEs) are used to model horizontal transfer of antibiotic resis- tance by conjugation. The model describes the concentration of donor, recipient, transconjugants and substrate. The strength of the SDE model over the traditional ODE models is that the noise can...
Generalized latent variable modeling multilevel, longitudinal, and structural equation models
Skrondal, Anders; Rabe-Hesketh, Sophia
2004-01-01
This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models.
Primitive Based Action Representation and Recognition
DEFF Research Database (Denmark)
Baby, Sanmohan; Krüger, Volker
2009-01-01
a sequential and statistical learning algorithm for automatic detection of the action primitives and the action grammar based on these primitives. We model a set of actions using a single HMM whose structure is learned incrementally as we observe new types. Actions are modeled with sufficient...
Linear causal modeling with structural equations
Mulaik, Stanley A
2009-01-01
Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal
Modeling and Prediction Using Stochastic Differential Equations
DEFF Research Database (Denmark)
Juhl, Rune; Møller, Jan Kloppenborg; Jørgensen, John Bagterp
2016-01-01
Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single subject is most often performed using nonlinear models based on deterministic ordinary differential equations (ODEs), and the variation between subjects in a population of subjects is described using a population (mixed effects) setup...... deterministic and can predict the future perfectly. A more realistic approach would be to allow for randomness in the model due to e.g., the model be too simple or errors in input. We describe a modeling and prediction setup which better reflects reality and suggests stochastic differential equations (SDEs...
International Nuclear Information System (INIS)
Ballone, P.; Pastore, G.; Tosi, M.P.
1986-02-01
Interfacial properties of an ionic fluid next to a uniformly charged planar wall are studied in the restricted primitive model by both theoretical and Monte Carlo methods. The system is a 1:1 fluid of equisized charged hard spheres in a state appropriate to 1M aqueous electrolyte solutions. The interfacial density profiles of counterions and coions are evaluated by extending the hypernetted chain approximation (HNC) to include the leading bridge diagrams for the wall-ion correlations. The theoretical results compare well with those of grand canonical Monte Carlo computations of Torrie and Valleau over the whole range of surface charge density considered by these authors, thus resolving the earlier disagreement between statistical mechanical theories and simulation data at large charge densities. In view of the importance of the model as a testing ground for theories of the diffuse layer, the Monte Carlo calculations are tested by considering alternative choices for the basic simulation cell and are extended so as to allow an evaluation of the differential capacitance of the model interface by two independent methods. These involve numerical differentiation of the mean potential drop as a function of the surface charge density or alternatively an appropriate use of a fluctuation theory formula for the capacitance. The results of these two Monte Carlo approaches consistently indicate an initially smooth increase of the diffuse layer capacitance followed by structure at large charge densities, this behaviour being connected with layering of counterions as already revealed in the density profiles reported by Torrie and Valleau. (author)
Multiplicity Control in Structural Equation Modeling
Cribbie, Robert A.
2007-01-01
Researchers conducting structural equation modeling analyses rarely, if ever, control for the inflated probability of Type I errors when evaluating the statistical significance of multiple parameters in a model. In this study, the Type I error control, power and true model rates of famsilywise and false discovery rate controlling procedures were…
A model unified field equation
International Nuclear Information System (INIS)
Perring, J.K.; Skyrme, T.H.R.
1994-01-01
The classical solutions of a unified field theory in a two-dimensional space-time are considered. This system, a model of a interacting mesons and baryons, illustrates how the particle can be built from a wave-packet of mesons and how reciprocally the meson appears as a tightly bound combination of particle and antiparticle. (author). 6 refs
Differential equation models for sharp threshold dynamics.
Schramm, Harrison C; Dimitrov, Nedialko B
2014-01-01
We develop an extension to differential equation models of dynamical systems to allow us to analyze probabilistic threshold dynamics that fundamentally and globally change system behavior. We apply our novel modeling approach to two cases of interest: a model of infectious disease modified for malware where a detection event drastically changes dynamics by introducing a new class in competition with the original infection; and the Lanchester model of armed conflict, where the loss of a key capability drastically changes the effectiveness of one of the sides. We derive and demonstrate a step-by-step, repeatable method for applying our novel modeling approach to an arbitrary system, and we compare the resulting differential equations to simulations of the system's random progression. Our work leads to a simple and easily implemented method for analyzing probabilistic threshold dynamics using differential equations. Published by Elsevier Inc.
International Nuclear Information System (INIS)
Steenbakkers, Rudi J A; Schieber, Jay D; Tzoumanekas, Christos; Li, Ying; Liu, Wing Kam; Kröger, Martin
2014-01-01
We present a method to map the full equilibrium distribution of the primitive-path (PP) length, obtained from multi-chain simulations of polymer melts, onto a single-chain mean-field ‘target’ model. Most previous works used the Doi–Edwards tube model as a target. However, the average number of monomers per PP segment, obtained from multi-chain PP networks, has consistently shown a discrepancy of a factor of two with respect to tube-model estimates. Part of the problem is that the tube model neglects fluctuations in the lengths of PP segments, the number of entanglements per chain and the distribution of monomers among PP segments, while all these fluctuations are observed in multi-chain simulations. Here we use a recently proposed slip-link model, which includes fluctuations in all these variables as well as in the spatial positions of the entanglements. This turns out to be essential to obtain qualitative and quantitative agreement with the equilibrium PP-length distribution obtained from multi-chain simulations. By fitting this distribution, we are able to determine two of the three parameters of the model, which govern its equilibrium properties. This mapping is executed for four different linear polymers and for different molecular weights. The two parameters are found to depend on chemistry, but not on molecular weight. The model predicts a constant plateau modulus minus a correction inversely proportional to molecular weight. The value for well-entangled chains, with the parameters determined ab initio, lies in the range of experimental data for the materials investigated. (paper)
Chemistry of primitive solar material
International Nuclear Information System (INIS)
Barshay, S.S.; Lewis, J.S.
1976-01-01
The chemical processes that occurred in the cooler, outer regions of the primitive solar nebula at the time of intimate chemical contact between preplanetary condensate and nebular gas constitute the subject matter of this review. Condensation models are described and tested against the observed properties of the planets, their satellites, and the asteroids. 6 figs., 2 tables, 48 refs
The evolution of the protein synthesis system. I - A model of a primitive protein synthesis system
Mizutani, H.; Ponnamperuma, C.
1977-01-01
A model is developed to describe the evolution of the protein synthesis system. The model is comprised of two independent autocatalytic systems, one including one gene (A-gene) and two activated amino acid polymerases (O and A-polymerases), and the other including the addition of another gene (N-gene) and a nucleotide polymerase. Simulation results have suggested that even a small enzymic activity and polymerase specificity could lead the system to the most accurate protein synthesis, as far as permitted by transitions to systems with higher accuracy.
Tick as a model for the study of a primitive complement system.
Kopacek, Petr; Hajdusek, Ondrej; Buresova, Veronika
2012-01-01
Ticks are blood feeding parasites transmitting a wide variety of pathogens to their vertebrate hosts. The transmitted pathogens apparently evolved efficient mechanisms enabling them to evade or withstand the cellular or humoral immune responses within the tick vector. Despite its importance, our knowledge of tick innate immunity still lags far beyond other well established invertebrate models, such as drosophila, horseshoe crab or mosquitoes. However, the recent release of the American deer tick, Ixodes scapularis, genome and feasibility of functional analysis based on RNA interference (RNAi) facilitate the development of this organism as a full-value model for deeper studies of vector-pathogen interactions.
Real-time modeling of primitive environments through wavelet sensors and Hebbian learning
Vaccaro, James M.; Yaworsky, Paul S.
1999-06-01
Modeling the world through sensory input necessarily provides a unique perspective for the observer. Given a limited perspective, objects and events cannot always be encoded precisely but must involve crude, quick approximations to deal with sensory information in a real- time manner. As an example, when avoiding an oncoming car, a pedestrian needs to identify the fact that a car is approaching before ascertaining the model or color of the vehicle. In our methodology, we use wavelet-based sensors with self-organized learning to encode basic sensory information in real-time. The wavelet-based sensors provide necessary transformations while a rank-based Hebbian learning scheme encodes a self-organized environment through translation, scale and orientation invariant sensors. Such a self-organized environment is made possible by combining wavelet sets which are orthonormal, log-scale with linear orientation and have automatically generated membership functions. In earlier work we used Gabor wavelet filters, rank-based Hebbian learning and an exponential modulation function to encode textural information from images. Many different types of modulation are possible, but based on biological findings the exponential modulation function provided a good approximation of first spike coding of `integrate and fire' neurons. These types of Hebbian encoding schemes (e.g., exponential modulation, etc.) are useful for quick response and learning, provide several advantages over contemporary neural network learning approaches, and have been found to quantize data nonlinearly. By combining wavelets with Hebbian learning we can provide a real-time front-end for modeling an intelligent process, such as the autonomous control of agents in a simulated environment.
Advanced structural equation modeling issues and techniques
Marcoulides, George A
2013-01-01
By focusing primarily on the application of structural equation modeling (SEM) techniques in example cases and situations, this book provides an understanding and working knowledge of advanced SEM techniques with a minimum of mathematical derivations. The book was written for a broad audience crossing many disciplines, assumes an understanding of graduate level multivariate statistics, including an introduction to SEM.
Directory of Open Access Journals (Sweden)
O. Pizio
2014-06-01
Full Text Available We investigate the electric double layer formed between charged walls of a slit-like pore and a solvent primitive model (SPM for electrolyte solution. The recently developed version of the weighted density functional approach for electrostatic interparticle interaction is applied to the study of the density profiles, adsorption and selectivity of adsorption of ions and solvent species. Our principal focus, however, is in the dependence of differential capacitance on the applied voltage, on the electrode and on the pore width. We discuss the properties of the model with respect to the behavior of a primitive model, i.e., in the absence of a hard-sphere solvent. We observed that the differential capacitance of the SPM on the applied electrostatic potential has the camel-like shape unless the ion fraction is high. Moreover, it is documented that the dependence of differential capacitance of the SPM on the pore width is oscillatory, which is in close similarity to the primitive model.
Vos, De Dirk
2003-01-01
Intensely realistic, piercingly beautiful, the art of the Flemish Primitives inspires powerful emotional responses. Painted during the fifteenth century in the southern Netherlands, these influential and enduring works helped establish the foundations of modern European painting.Sumptuously
Nonlinear integral equations for the sausage model
Ahn, Changrim; Balog, Janos; Ravanini, Francesco
2017-08-01
The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.
Ordinary Differential Equation Models for Adoptive Immunotherapy.
Talkington, Anne; Dantoin, Claudia; Durrett, Rick
2018-05-01
Modified T cells that have been engineered to recognize the CD19 surface marker have recently been shown to be very successful at treating acute lymphocytic leukemias. Here, we explore four previous approaches that have used ordinary differential equations to model this type of therapy, compare their properties, and modify the models to address their deficiencies. Although the four models treat the workings of the immune system in slightly different ways, they all predict that adoptive immunotherapy can be successful to move a patient from the large tumor fixed point to an equilibrium with little or no tumor.
Structural Equation Modeling with the Smartpls
Directory of Open Access Journals (Sweden)
Christian M. Ringle
2014-05-01
Full Text Available The objective of this article is to present a didactic example of Structural Equation Modeling using the software SmartPLS 2.0 M3. The program mentioned uses the method of Partial Least Squares and seeks to address the following situations frequently observed in marketing research: Absence of symmetric distributions of variables measured by a theory still in its beginning phase or with little “consolidation”, formative models, and/or a limited amount of data. The growing use of SmartPLS has demonstrated its robustness and the applicability of the model in the areas that are being studied.
Directory of Open Access Journals (Sweden)
O.Pizio
2004-01-01
Full Text Available We develop a density functional approach for the phase behavior of the restricted primitive model for electrolyte solutions confined to slit-like pores. The theory permits to evaluate the effects of confinement on the ionic vapor - ionic liquid coexistence envelope. We have shown that due to confinement in pores with uncharged walls the critical temperature of the model decreases compared to the bulk. Also the coexistence envelope of the transition is narrower in comparison to the bulk model. The transition between dense and dilute phase represents capillary evaporation. We have analyzed changes of the density profiles of ions during transition. Possible extensions of this study are discussed.
Directory of Open Access Journals (Sweden)
Zengtai Gong
2014-01-01
Full Text Available This paper deals with the Choquet integral of fuzzy-number-valued functions based on the nonnegative real line. We firstly give the definitions and the characterizations of the Choquet integrals of interval-valued functions and fuzzy-number-valued functions based on the nonadditive measure. Furthermore, the operational schemes of above several classes of integrals on a discrete set are investigated which enable us to calculate Choquet integrals in some applications. Secondly, we give a representation of the Choquet integral of a nonnegative, continuous, and increasing fuzzy-number-valued function with respect to a fuzzy measure. In addition, in order to solve Choquet integral equations of fuzzy-number-valued functions, a concept of the Laplace transformation for the fuzzy-number-valued functions in the sense of Choquet integral is introduced. For distorted Lebesgue measures, it is shown that Choquet integral equations of fuzzy-number-valued functions can be solved by the Laplace transformation. Finally, an example is given to illustrate the main results at the end of the paper.
Principles and practice of structural equation modeling
Kline, Rex B
2015-01-01
Emphasizing concepts and rationale over mathematical minutiae, this is the most widely used, complete, and accessible structural equation modeling (SEM) text. Continuing the tradition of using real data examples from a variety of disciplines, the significantly revised fourth edition incorporates recent developments such as Pearl's graphing theory and the structural causal model (SCM), measurement invariance, and more. Readers gain a comprehensive understanding of all phases of SEM, from data collection and screening to the interpretation and reporting of the results. Learning is enhanced by ex
Factors influencing creep model equation selection
International Nuclear Information System (INIS)
Holdsworth, S.R.; Askins, M.; Baker, A.; Gariboldi, E.; Holmstroem, S.; Klenk, A.; Ringel, M.; Merckling, G.; Sandstrom, R.; Schwienheer, M.; Spigarelli, S.
2008-01-01
During the course of the EU-funded Advanced-Creep Thematic Network, ECCC-WG1 reviewed the applicability and effectiveness of a range of model equations to represent the accumulation of creep strain in various engineering alloys. In addition to considering the experience of network members, the ability of several models to describe the deformation characteristics of large single and multi-cast collations of ε(t,T,σ) creep curves have been evaluated in an intensive assessment inter-comparison activity involving three steels, 21/4 CrMo (P22), 9CrMoVNb (Steel-91) and 18Cr13NiMo (Type-316). The choice of the most appropriate creep model equation for a given application depends not only on the high-temperature deformation characteristics of the material under consideration, but also on the characteristics of the dataset, the number of casts for which creep curves are available and on the strain regime for which an analytical representation is required. The paper focuses on the factors which can influence creep model selection and model-fitting approach for multi-source, multi-cast datasets
Modelling Evolutionary Algorithms with Stochastic Differential Equations.
Heredia, Jorge Pérez
2017-11-20
There has been renewed interest in modelling the behaviour of evolutionary algorithms (EAs) by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogues of the additive and multiplicative drift theorems from runtime analysis. In addition, we derive a new more general multiplicative drift theorem that also covers non-elitist EAs. This theorem simultaneously allows for positive and negative results, providing information on the algorithm's progress even when the problem cannot be optimised efficiently. Finally, we provide results for some well-known heuristics namely Random Walk (RW), Random Local Search (RLS), the (1+1) EA, the Metropolis Algorithm (MA), and the Strong Selection Weak Mutation (SSWM) algorithm.
Exploratory structural equation modeling of personality data.
Booth, Tom; Hughes, David J
2014-06-01
The current article compares the use of exploratory structural equation modeling (ESEM) as an alternative to confirmatory factor analytic (CFA) models in personality research. We compare model fit, factor distinctiveness, and criterion associations of factors derived from ESEM and CFA models. In Sample 1 (n = 336) participants completed the NEO-FFI, the Trait Emotional Intelligence Questionnaire-Short Form, and the Creative Domains Questionnaire. In Sample 2 (n = 425) participants completed the Big Five Inventory and the depression and anxiety scales of the General Health Questionnaire. ESEM models provided better fit than CFA models, but ESEM solutions did not uniformly meet cutoff criteria for model fit. Factor scores derived from ESEM and CFA models correlated highly (.91 to .99), suggesting the additional factor loadings within the ESEM model add little in defining latent factor content. Lastly, criterion associations of each personality factor in CFA and ESEM models were near identical in both inventories. We provide an example of how ESEM and CFA might be used together in improving personality assessment. © The Author(s) 2014.
Parameter Estimation of Partial Differential Equation Models.
Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab
2013-01-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.
Partial differential equation models in macroeconomics.
Achdou, Yves; Buera, Francisco J; Lasry, Jean-Michel; Lions, Pierre-Louis; Moll, Benjamin
2014-11-13
The purpose of this article is to get mathematicians interested in studying a number of partial differential equations (PDEs) that naturally arise in macroeconomics. These PDEs come from models designed to study some of the most important questions in economics. At the same time, they are highly interesting for mathematicians because their structure is often quite difficult. We present a number of examples of such PDEs, discuss what is known about their properties, and list some open questions for future research. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Structural equation modeling and natural systems
Grace, James B.
2006-01-01
This book, first published in 2006, presents an introduction to the methodology of structural equation modeling, illustrates its use, and goes on to argue that it has revolutionary implications for the study of natural systems. A major theme of this book is that we have, up to this point, attempted to study systems primarily using methods (such as the univariate model) that were designed only for considering individual processes. Understanding systems requires the capacity to examine simultaneous influences and responses. Structural equation modeling (SEM) has such capabilities. It also possesses many other traits that add strength to its utility as a means of making scientific progress. In light of the capabilities of SEM, it can be argued that much of ecological theory is currently locked in an immature state that impairs its relevance. It is further argued that the principles of SEM are capable of leading to the development and evaluation of multivariate theories of the sort vitally needed for the conservation of natural systems.
Mathematical modeling and the two-phase constitutive equations
International Nuclear Information System (INIS)
Boure, J.A.
1975-01-01
The problems raised by the mathematical modeling of two-phase flows are summarized. The models include several kinds of equations, which cannot be discussed independently, such as the balance equations and the constitutive equations. A review of the various two-phase one-dimensional models proposed to date, and of the constitutive equations they imply, is made. These models are either mixture models or two-fluid models. Due to their potentialities, the two-fluid models are discussed in more detail. To avoid contradictions, the form of the constitutive equations involved in two-fluid models must be sufficiently general. A special form of the two-fluid models, which has particular advantages, is proposed. It involves three mixture balance equations, three balance equations for slip and thermal non-equilibriums, and the necessary constitutive equations [fr
Meta-analytic structural equation modelling
Jak, Suzanne
2015-01-01
This book explains how to employ MASEM, the combination of meta-analysis (MA) and structural equation modelling (SEM). It shows how by using MASEM, a single model can be tested to explain the relationships between a set of variables in several studies. This book gives an introduction to MASEM, with a focus on the state of the art approach: the two stage approach of Cheung and Cheung & Chan. Both, the fixed and the random approach to MASEM are illustrated with two applications to real data. All steps that have to be taken to perform the analyses are discussed extensively. All data and syntax files are available online, so that readers can imitate all analyses. By using SEM for meta-analysis, this book shows how to benefit from all available information from all available studies, even if few or none of the studies report about all relationships that feature in the full model of interest.
Radio wave propagation and parabolic equation modeling
Apaydin, Gokhan
2018-01-01
A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...
On the Use of Structural Equation Models in Marketing Modeling
Steenkamp, J.E.B.M.; Baumgartner, H.
2000-01-01
We reflect on the role of structural equation modeling (SEM) in marketing modeling and managerial decision making. We discuss some benefits provided by SEM and alert marketing modelers to several recent developments in SEM in three areas: measurement analysis, analysis of cross-sectional data, and
A discrete model of a modified Burgers' partial differential equation
Mickens, R. E.; Shoosmith, J. N.
1990-01-01
A new finite-difference scheme is constructed for a modified Burger's equation. Three special cases of the equation are considered, and the 'exact' difference schemes for the space- and time-independent forms of the equation are presented, along with the diffusion-free case of Burger's equation modeled by a difference equation. The desired difference scheme is then obtained by imposing on any difference model of the initial equation the requirement that, in the appropriate limits, its difference scheme must reduce the results of the obtained equations.
Giles, Sam; Darras, Laurent; Clément, Gaël; Blieck, Alain; Friedman, Matt
2015-01-01
Actinopterygians (ray-finned fishes) are the most diverse living osteichthyan (bony vertebrate) group, with a rich fossil record. However, details of their earliest history during the middle Palaeozoic (Devonian) ‘Age of Fishes' remains sketchy. This stems from an uneven understanding of anatomy in early actinopterygians, with a few well-known species dominating perceptions of primitive conditions. Here we present an exceptionally preserved ray-finned fish from the Late Devonian (Middle Frasnian, ca 373 Ma) of Pas-de-Calais, northern France. This new genus is represented by a single, three-dimensionally preserved skull. CT scanning reveals the presence of an almost complete braincase along with near-fully articulated mandibular, hyoid and gill arches. The neurocranium differs from the coeval Mimipiscis in displaying a short aortic canal with a distinct posterior notch, long grooves for the lateral dorsal aortae, large vestibular fontanelles and a broad postorbital process. Identification of similar but previously unrecognized features in other Devonian actinopterygians suggests that aspects of braincase anatomy in Mimipiscis are apomorphic, questioning its ubiquity as stand-in for generalized actinopterygian conditions. However, the gill skeleton of the new form broadly corresponds to that of Mimipiscis, and adds to an emerging picture of primitive branchial architecture in crown gnathostomes. The new genus is recovered in a polytomy with Mimiidae and a subset of Devonian and stratigraphically younger actinopterygians, with no support found for a monophyletic grouping of Moythomasia with Mimiidae. PMID:26423841
Takata, Kazuyuki; Kozaki, Tatsuya; Lee, Christopher Zhe Wei; Thion, Morgane Sonia; Otsuka, Masayuki; Lim, Shawn; Utami, Kagistia Hana; Fidan, Kerem; Park, Dong Shin; Malleret, Benoit; Chakarov, Svetoslav; See, Peter; Low, Donovan; Low, Gillian; Garcia-Miralles, Marta; Zeng, Ruizhu; Zhang, Jinqiu; Goh, Chi Ching; Gul, Ahmet; Hubert, Sandra; Lee, Bernett; Chen, Jinmiao; Low, Ivy; Shadan, Nurhidaya Binte; Lum, Josephine; Wei, Tay Seok; Mok, Esther; Kawanishi, Shohei; Kitamura, Yoshihisa; Larbi, Anis; Poidinger, Michael; Renia, Laurent; Ng, Lai Guan; Wolf, Yochai; Jung, Steffen; Önder, Tamer; Newell, Evan; Huber, Tara; Ashihara, Eishi; Garel, Sonia; Pouladi, Mahmoud A; Ginhoux, Florent
2017-07-18
Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Teaching Modeling with Partial Differential Equations: Several Successful Approaches
Myers, Joseph; Trubatch, David; Winkel, Brian
2008-01-01
We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…
The reservoir model: a differential equation model of psychological regulation.
Deboeck, Pascal R; Bergeman, C S
2013-06-01
Differential equation models can be used to describe the relationships between the current state of a system of constructs (e.g., stress) and how those constructs are changing (e.g., based on variable-like experiences). The following article describes a differential equation model based on the concept of a reservoir. With a physical reservoir, such as one for water, the level of the liquid in the reservoir at any time depends on the contributions to the reservoir (inputs) and the amount of liquid removed from the reservoir (outputs). This reservoir model might be useful for constructs such as stress, where events might "add up" over time (e.g., life stressors, inputs), but individuals simultaneously take action to "blow off steam" (e.g., engage coping resources, outputs). The reservoir model can provide descriptive statistics of the inputs that contribute to the "height" (level) of a construct and a parameter that describes a person's ability to dissipate the construct. After discussing the model, we describe a method of fitting the model as a structural equation model using latent differential equation modeling and latent distribution modeling. A simulation study is presented to examine recovery of the input distribution and output parameter. The model is then applied to the daily self-reports of negative affect and stress from a sample of older adults from the Notre Dame Longitudinal Study on Aging. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
Parameter Estimation of Partial Differential Equation Models
Xun, Xiaolei
2013-09-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.
Discovery of Intrinsic Primitives on Triangle Meshes
Solomon, Justin
2011-04-01
The discovery of meaningful parts of a shape is required for many geometry processing applications, such as parameterization, shape correspondence, and animation. It is natural to consider primitives such as spheres, cylinders and cones as the building blocks of shapes, and thus to discover parts by fitting such primitives to a given surface. This approach, however, will break down if primitive parts have undergone almost-isometric deformations, as is the case, for example, for articulated human models. We suggest that parts can be discovered instead by finding intrinsic primitives, which we define as parts that posses an approximate intrinsic symmetry. We employ the recently-developed method of computing discrete approximate Killing vector fields (AKVFs) to discover intrinsic primitives by investigating the relationship between the AKVFs of a composite object and the AKVFs of its parts. We show how to leverage this relationship with a standard clustering method to extract k intrinsic primitives and remaining asymmetric parts of a shape for a given k. We demonstrate the value of this approach for identifying the prominent symmetry generators of the parts of a given shape. Additionally, we show how our method can be modified slightly to segment an entire surface without marking asymmetric connecting regions and compare this approach to state-of-the-art methods using the Princeton Segmentation Benchmark. © 2011 The Author(s).
Zanotti, Olindo; Dumbser, Michael
2016-01-01
We present a new version of conservative ADER-WENO finite volume schemes, in which both the high order spatial reconstruction as well as the time evolution of the reconstruction polynomials in the local space-time predictor stage are performed in primitive variables, rather than in conserved ones. To obtain a conservative method, the underlying finite volume scheme is still written in terms of the cell averages of the conserved quantities. Therefore, our new approach performs the spatial WENO reconstruction twice: the first WENO reconstruction is carried out on the known cell averages of the conservative variables. The WENO polynomials are then used at the cell centers to compute point values of the conserved variables, which are subsequently converted into point values of the primitive variables. This is the only place where the conversion from conservative to primitive variables is needed in the new scheme. Then, a second WENO reconstruction is performed on the point values of the primitive variables to obtain piecewise high order reconstruction polynomials of the primitive variables. The reconstruction polynomials are subsequently evolved in time with a novel space-time finite element predictor that is directly applied to the governing PDE written in primitive form. The resulting space-time polynomials of the primitive variables can then be directly used as input for the numerical fluxes at the cell boundaries in the underlying conservative finite volume scheme. Hence, the number of necessary conversions from the conserved to the primitive variables is reduced to just one single conversion at each cell center. We have verified the validity of the new approach over a wide range of hyperbolic systems, including the classical Euler equations of gas dynamics, the special relativistic hydrodynamics (RHD) and ideal magnetohydrodynamics (RMHD) equations, as well as the Baer-Nunziato model for compressible two-phase flows. In all cases we have noticed that the new ADER
Primitive Based Action Representation and recognition
DEFF Research Database (Denmark)
Baby, Sanmohan
The presented work is aimed at designing a system that will model and recognize actions and its interaction with objects. Such a system is aimed at facilitating robot task learning. Activity modeling and recognition is very important for its potential applications in surveillance, human-machine i......The presented work is aimed at designing a system that will model and recognize actions and its interaction with objects. Such a system is aimed at facilitating robot task learning. Activity modeling and recognition is very important for its potential applications in surveillance, human......-machine interface, entertainment, biomechanics etc. Recent developments in neuroscience suggest that all actions are a compositions of smaller units called primitives. Current works based on primitives for action recognition uses a supervised framework for specifying the primitives. We propose a method to extract...... primitives automatically. These primitives are to be used to generate actions based on certain rules for combining. These rules are expressed as a stochastic context free grammar. A model merging approach is adopted to learn a Hidden Markov Model to t the observed data sequences. The states of the HMM...
Robust estimation for ordinary differential equation models.
Cao, J; Wang, L; Xu, J
2011-12-01
Applied scientists often like to use ordinary differential equations (ODEs) to model complex dynamic processes that arise in biology, engineering, medicine, and many other areas. It is interesting but challenging to estimate ODE parameters from noisy data, especially when the data have some outliers. We propose a robust method to address this problem. The dynamic process is represented with a nonparametric function, which is a linear combination of basis functions. The nonparametric function is estimated by a robust penalized smoothing method. The penalty term is defined with the parametric ODE model, which controls the roughness of the nonparametric function and maintains the fidelity of the nonparametric function to the ODE model. The basis coefficients and ODE parameters are estimated in two nested levels of optimization. The coefficient estimates are treated as an implicit function of ODE parameters, which enables one to derive the analytic gradients for optimization using the implicit function theorem. Simulation studies show that the robust method gives satisfactory estimates for the ODE parameters from noisy data with outliers. The robust method is demonstrated by estimating a predator-prey ODE model from real ecological data. © 2011, The International Biometric Society.
Structural equation models from paths to networks
Westland, J Christopher
2015-01-01
This compact reference surveys the full range of available structural equation modeling (SEM) methodologies. It reviews applications in a broad range of disciplines, particularly in the social sciences where many key concepts are not directly observable. This is the first book to present SEM’s development in its proper historical context–essential to understanding the application, strengths and weaknesses of each particular method. This book also surveys the emerging path and network approaches that complement and enhance SEM, and that will grow in importance in the near future. SEM’s ability to accommodate unobservable theory constructs through latent variables is of significant importance to social scientists. Latent variable theory and application are comprehensively explained, and methods are presented for extending their power, including guidelines for data preparation, sample size calculation, and the special treatment of Likert scale data. Tables of software, methodologies and fit st...
Efficient Synchronization Primitives for GPUs
Stuart, Jeff A.; Owens, John D.
2011-01-01
In this paper, we revisit the design of synchronization primitives---specifically barriers, mutexes, and semaphores---and how they apply to the GPU. Previous implementations are insufficient due to the discrepancies in hardware and programming model of the GPU and CPU. We create new implementations in CUDA and analyze the performance of spinning on the GPU, as well as a method of sleeping on the GPU, by running a set of memory-system benchmarks on two of the most common GPUs in use, the Tesla...
Climate models with delay differential equations
Keane, Andrew; Krauskopf, Bernd; Postlethwaite, Claire M.
2017-11-01
A fundamental challenge in mathematical modelling is to find a model that embodies the essential underlying physics of a system, while at the same time being simple enough to allow for mathematical analysis. Delay differential equations (DDEs) can often assist in this goal because, in some cases, only the delayed effects of complex processes need to be described and not the processes themselves. This is true for some climate systems, whose dynamics are driven in part by delayed feedback loops associated with transport times of mass or energy from one location of the globe to another. The infinite-dimensional nature of DDEs allows them to be sufficiently complex to reproduce realistic dynamics accurately with a small number of variables and parameters. In this paper, we review how DDEs have been used to model climate systems at a conceptual level. Most studies of DDE climate models have focused on gaining insights into either the global energy balance or the fundamental workings of the El Niño Southern Oscillation (ENSO) system. For example, studies of DDEs have led to proposed mechanisms for the interannual oscillations in sea-surface temperature that is characteristic of ENSO, the irregular behaviour that makes ENSO difficult to forecast and the tendency of El Niño events to occur near Christmas. We also discuss the tools used to analyse such DDE models. In particular, the recent development of continuation software for DDEs makes it possible to explore large regions of parameter space in an efficient manner in order to provide a "global picture" of the possible dynamics. We also point out some directions for future research, including the incorporation of non-constant delays, which we believe could improve the descriptive power of DDE climate models.
Climate models with delay differential equations.
Keane, Andrew; Krauskopf, Bernd; Postlethwaite, Claire M
2017-11-01
A fundamental challenge in mathematical modelling is to find a model that embodies the essential underlying physics of a system, while at the same time being simple enough to allow for mathematical analysis. Delay differential equations (DDEs) can often assist in this goal because, in some cases, only the delayed effects of complex processes need to be described and not the processes themselves. This is true for some climate systems, whose dynamics are driven in part by delayed feedback loops associated with transport times of mass or energy from one location of the globe to another. The infinite-dimensional nature of DDEs allows them to be sufficiently complex to reproduce realistic dynamics accurately with a small number of variables and parameters. In this paper, we review how DDEs have been used to model climate systems at a conceptual level. Most studies of DDE climate models have focused on gaining insights into either the global energy balance or the fundamental workings of the El Niño Southern Oscillation (ENSO) system. For example, studies of DDEs have led to proposed mechanisms for the interannual oscillations in sea-surface temperature that is characteristic of ENSO, the irregular behaviour that makes ENSO difficult to forecast and the tendency of El Niño events to occur near Christmas. We also discuss the tools used to analyse such DDE models. In particular, the recent development of continuation software for DDEs makes it possible to explore large regions of parameter space in an efficient manner in order to provide a "global picture" of the possible dynamics. We also point out some directions for future research, including the incorporation of non-constant delays, which we believe could improve the descriptive power of DDE climate models.
Srivastava, Amit Kumar; Kapoor, Kalpesh
2017-01-01
Let Q be the set of primitive words over a finite alphabet with at least two symbols. We characterize a class of primitive words, Q_I, referred to as ins-robust primitive words, which remain primitive on insertion of any letter from the alphabet and present some properties that characterizes words in the set Q_I. It is shown that the language Q_I is dense. We prove that the language of primitive words that are not ins-robust is not context-free. We also present a linear time algorithm to reco...
Directory of Open Access Journals (Sweden)
S. Woelki
2011-12-01
Full Text Available In this study the Singlet Reference Interaction Site Model (SRISM is employed to the study of the electrode charge dependence of the capacitance of a planar electric double layer using the primitive model of the double layer for a high density electrolyte that mimics an ionic liquid. The ions are represented by charged hard spheres and the electrode is a uniformly charged flat surface. The capacitance of this model fluid is calculated with the SRISM approach with closures based on the hypernetted chain (HNC and Kovalenko-Hirata (KH closures and compared with simulations. As long as the magnitude of the electrode charge is not too great, the HNC closure shows the most promise. The KH results are reasonably good for a high density electrolyte but are poor when applied at low densities.
Fitting ARMA Time Series by Structural Equation Models.
van Buuren, Stef
1997-01-01
This paper outlines how the stationary ARMA (p,q) model (G. Box and G. Jenkins, 1976) can be specified as a structural equation model. Maximum likelihood estimates for the parameters in the ARMA model can be obtained by software for fitting structural equation models. The method is applied to three problem types. (SLD)
Parameter Estimates in Differential Equation Models for Chemical Kinetics
Winkel, Brian
2011-01-01
We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…
Virtuous organization: A structural equation modeling approach
Directory of Open Access Journals (Sweden)
Majid Zamahani
2013-02-01
Full Text Available For years, the idea of virtue was unfavorable among researchers and virtues were traditionally considered as culture-specific, relativistic and they were supposed to be associated with social conservatism, religious or moral dogmatism, and scientific irrelevance. Virtue and virtuousness have been recently considered seriously among organizational researchers. The proposed study of this paper examines the relationships between leadership, organizational culture, human resource, structure and processes, care for community and virtuous organization. Structural equation modeling is employed to investigate the effects of each variable on other components. The data used in this study consists of questionnaire responses from employees in Payam e Noor University in Yazd province. A total of 250 questionnaires were sent out and a total of 211 valid responses were received. Our results have revealed that all the five variables have positive and significant impacts on virtuous organization. Among the five variables, organizational culture has the most direct impact (0.80 and human resource has the most total impact (0.844 on virtuous organization.
Control functions in nonseparable simultaneous equations models
Blundell, R.; Matzkin, R. L.
2014-01-01
The control function approach (Heckman and Robb (1985)) in a system of linear simultaneous equations provides a convenient procedure to estimate one of the functions in the system using reduced form residuals from the other functions as additional regressors. The conditions on the structural system under which this procedure can be used in nonlinear and nonparametric simultaneous equations has thus far been unknown. In this paper, we define a new property of functions called control function ...
Introduction to computation and modeling for differential equations
Edsberg, Lennart
2008-01-01
An introduction to scientific computing for differential equationsIntroduction to Computation and Modeling for Differential Equations provides a unified and integrated view of numerical analysis, mathematical modeling in applications, and programming to solve differential equations, which is essential in problem-solving across many disciplines, such as engineering, physics, and economics. This book successfully introduces readers to the subject through a unique ""Five-M"" approach: Modeling, Mathematics, Methods, MATLAB, and Multiphysics. This approach facilitates a thorough understanding of h
Revised predictive equations for salt intrusion modelling in estuaries
Gisen, J.I.A.; Savenije, H.H.G.; Nijzink, R.C.
2015-01-01
For one-dimensional salt intrusion models to be predictive, we need predictive equations to link model parameters to observable hydraulic and geometric variables. The one-dimensional model of Savenije (1993b) made use of predictive equations for the Van der Burgh coefficient $K$ and the dispersion
Exact solutions for some discrete models of the Boltzmann equation
International Nuclear Information System (INIS)
Cabannes, H.; Hong Tiem, D.
1987-01-01
For the simplest of the discrete models of the Boltzmann equation: the Broadwell model, exact solutions have been obtained by Cornille in the form of bisolitons. In the present Note, we build exact solutions for more complex models [fr
Optimal primitive reference frames
International Nuclear Information System (INIS)
Jennings, David
2011-01-01
We consider the smallest possible directional reference frames allowed and determine the best one can ever do in preserving quantum information in various scenarios. We find that for the preservation of a single spin state, two orthogonal spins are optimal primitive reference frames; and in a product state, they do approximately 22% as well as an infinite-sized classical frame. By adding a small amount of entanglement to the reference frame, this can be raised to 2(2/3) 5 =26%. Under the different criterion of entanglement preservation, a very similar optimal reference frame is found; however, this time it is for spins aligned at an optimal angle of 87 deg. In this case 24% of the negativity is preserved. The classical limit is considered numerically, and indicates under the criterion of entanglement preservation, that 90 deg. is selected out nonmonotonically, with a peak optimal angle of 96.5 deg. for L=3 spins.
Hong, Sehee; Kim, Soyoung
2018-01-01
There are basically two modeling approaches applicable to analyzing an actor-partner interdependence model: the multilevel modeling (hierarchical linear model) and the structural equation modeling. This article explains how to use these two models in analyzing an actor-partner interdependence model and how these two approaches work differently. As an empirical example, marital conflict data were used to analyze an actor-partner interdependence model. The multilevel modeling and the structural equation modeling produced virtually identical estimates for a basic model. However, the structural equation modeling approach allowed more realistic assumptions on measurement errors and factor loadings, rendering better model fit indices.
Advanced diffusion model in compacted bentonite based on modified Poisson-Boltzmann equations
International Nuclear Information System (INIS)
Yotsuji, K.; Tachi, Y.; Nishimaki, Y.
2012-01-01
dry density Kunipia-F (-0.129 C m -2 surface charge density). We used Booth equation and Malsh-Grahame equation as the dielectric permittivity dependent on electric field. In this condition field strength come to ∼ 10 9 V m -1 in the vicinity of the interface, then saturation effect by Booth equation is larger than Malsh-Grahame equation. Therefore Na + is strongly eliminated from the interface by Booth equation than Malsh-Grahame equation. While Figure 1(b) shows salinity dependence of the effective diffusivity (D e ) of Sr 2+ /Cs + /I - , calculated by the modified ISD model incorporated the dielectric saturation effects with Booth equation and original one (present ISD model). For Cs + as an example electrostatic potential term in Boltzmann factor of the modified model is larger than the original one, however hydration free energy term in Boltzmann factor cancel out this increment. Consequently D e by the modified model was not mostly changed from the original model. For other ionic species we can be considered as well. The ISD model was modified considering the excluded volume effect which is caused by quantum mechanical short range repulsive force of inter-particle. We used the restricted primitive model for the sake of simplicity. Figure 2 shows the concentration distributions of Na + as numerical solutions of the modified models incorporated the excluded volume effect and the original model, and salinity dependence of D e (b). We used here the Stokes radius (=1.84 x 10 -10 m) as ionic radius in a solution and crystal radius (= 1.16 x 10 -10 m) on the interface. It can be said that the excluded volume effect influence hardly D e as well as the dielectric saturation effects. As results of numerical analysis of the models the considered factors influence hardly D e of Sr 2+ /Cs + /I - . Therefore it was concluded that the disagreements with experimental data observed in present ISD model cannot be improved by considered factors in this study, because ionic
Hierarchical regression analysis in structural Equation Modeling
de Jong, P.F.
1999-01-01
In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main
Consistent three-equation model for thin films
Richard, Gael; Gisclon, Marguerite; Ruyer-Quil, Christian; Vila, Jean-Paul
2017-11-01
Numerical simulations of thin films of newtonian fluids down an inclined plane use reduced models for computational cost reasons. These models are usually derived by averaging over the fluid depth the physical equations of fluid mechanics with an asymptotic method in the long-wave limit. Two-equation models are based on the mass conservation equation and either on the momentum balance equation or on the work-energy theorem. We show that there is no two-equation model that is both consistent and theoretically coherent and that a third variable and a three-equation model are required to solve all theoretical contradictions. The linear and nonlinear properties of two and three-equation models are tested on various practical problems. We present a new consistent three-equation model with a simple mathematical structure which allows an easy and reliable numerical resolution. The numerical calculations agree fairly well with experimental measurements or with direct numerical resolutions for neutral stability curves, speed of kinematic waves and of solitary waves and depth profiles of wavy films. The model can also predict the flow reversal at the first capillary trough ahead of the main wave hump.
Study of a Model Equation in Detonation Theory
Faria, Luiz; Kasimov, Aslan R.; Rosales, Rodolfo R.
2014-01-01
Here we analyze properties of an equation that we previously proposed to model the dynamics of unstable detonation waves [A. R. Kasimov, L. M. Faria, and R. R. Rosales, Model for shock wave chaos, Phys. Rev. Lett., 110 (2013), 104104]. The equation
A Structural Equation Modeling Analysis of Influences on Juvenile Delinquency
Barrett, David E.; Katsiyannis, Antonis; Zhang, Dalun; Zhang, Dake
2014-01-01
This study examined influences on delinquency and recidivism using structural equation modeling. The sample comprised 199,204 individuals: 99,602 youth whose cases had been processed by the South Carolina Department of Juvenile Justice and a matched control group of 99,602 youth without juvenile records. Structural equation modeling for the…
Bogomolny equations in certain generalized baby BPS Skyrme models
Stępień, Ł. T.
2018-01-01
By using the concept of strong necessary conditions (CSNCs), we derive Bogomolny equations and Bogomol’nyi-Prasad-Sommerfield (BPS) bounds for two certain modifications of the baby BPS Skyrme model: the nonminimal coupling to the gauge field and the k-deformed ungauged model. In particular, we study how the Bogomolny equations and the equation for the potential reflect these two modifications. In both examples, the CSNC method appears to be a very useful tool. We also find certain localized solutions of these Bogomolny equations.
A practical course in differential equations and mathematical modeling
Ibragimov , Nail H
2009-01-01
A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book which aims to present new mathematical curricula based on symmetry and invariance principles is tailored to develop analytic skills and working knowledge in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundame
Modeling High Frequency Semiconductor Devices Using Maxwell's Equations
National Research Council Canada - National Science Library
El-Ghazaly, Samier
1999-01-01
.... In this research, we first replaced the conventional semiconductor device models, which are based on Poisson's Equation as a semiconductor model, with a new one that uses the full-wave electro...
Macroscopic balance equations for two-phase flow models
International Nuclear Information System (INIS)
Hughes, E.D.
1979-01-01
The macroscopic, or overall, balance equations of mass, momentum, and energy are derived for a two-fluid model of two-phase flows in complex geometries. These equations provide a base for investigating methods of incorporating improved analysis methods into computer programs, such as RETRAN, which are used for transient and steady-state thermal-hydraulic analyses of nuclear steam supply systems. The equations are derived in a very general manner so that three-dimensional, compressible flows can be analysed. The equations obtained supplement the various partial differential equation two-fluid models of two-phase flow which have recently appeared in the literature. The primary objective of the investigation is the macroscopic balance equations. (Auth.)
Homogeneous axisymmetric model with a limitting stiff equation of state
International Nuclear Information System (INIS)
Korkina, M.P.; Martynenko, V.G.
1976-01-01
A solution is obtained for Einstein's equations in which all metric coefficients are time functions for a limiting stiff equation of the substance state. Thr solution describes a homogeneous cosmological model with cylindrical symmetry. It is shown that the same metrics can be induced by a massless scalar only time-dependent field. Analysis of this solution is presented
Modelling equation of knee force during instep kicking using ...
African Journals Online (AJOL)
This paper presents the biomechanics analysis of the football players, to obtain the equation that relates with the variables and to get the force model equation when the kicking was made. The subjects delivered instep kicking by using the dominant's leg where one subjects using right and left leg. 2 Dimensional analysis ...
The dispersionless Lax equations and topological minimal models
International Nuclear Information System (INIS)
Krichever, I.
1992-01-01
It is shown that perturbed rings of the primary chiral fields of the topological minimal models coincide with some particular solutions of the dispersionless Lax equations. The exact formulae for the tree level partition functions, of A n topological minimal models are found. The Virasoro constraints for the analogue of the τ-function of the dispersionless Lax equation corresponding to these models are proved. (orig.)
Meta-analysis a structural equation modeling approach
Cheung, Mike W-L
2015-01-01
Presents a novel approach to conducting meta-analysis using structural equation modeling. Structural equation modeling (SEM) and meta-analysis are two powerful statistical methods in the educational, social, behavioral, and medical sciences. They are often treated as two unrelated topics in the literature. This book presents a unified framework on analyzing meta-analytic data within the SEM framework, and illustrates how to conduct meta-analysis using the metaSEM package in the R statistical environment. Meta-Analysis: A Structural Equation Modeling Approach begins by introducing the impo
Latent Growth and Dynamic Structural Equation Models.
Grimm, Kevin J; Ram, Nilam
2018-05-07
Latent growth models make up a class of methods to study within-person change-how it progresses, how it differs across individuals, what are its determinants, and what are its consequences. Latent growth methods have been applied in many domains to examine average and differential responses to interventions and treatments. In this review, we introduce the growth modeling approach to studying change by presenting different models of change and interpretations of their model parameters. We then apply these methods to examining sex differences in the development of binge drinking behavior through adolescence and into adulthood. Advances in growth modeling methods are then discussed and include inherently nonlinear growth models, derivative specification of growth models, and latent change score models to study stochastic change processes. We conclude with relevant design issues of longitudinal studies and considerations for the analysis of longitudinal data.
ECONOMETRIC APPROACH TO DIFFERENCE EQUATIONS MODELING OF EXCHANGE RATES CHANGES
Directory of Open Access Journals (Sweden)
Josip Arnerić
2010-12-01
Full Text Available Time series models that are commonly used in econometric modeling are autoregressive stochastic linear models (AR and models of moving averages (MA. Mentioned models by their structure are actually stochastic difference equations. Therefore, the objective of this paper is to estimate difference equations containing stochastic (random component. Estimated models of time series will be used to forecast observed data in the future. Namely, solutions of difference equations are closely related to conditions of stationary time series models. Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most successful and popular models in modeling time varying volatility are GARCH type models and their variants. However, GARCH models will not be analyzed because the purpose of this research is to predict the value of the exchange rate in the levels within conditional mean equation and to determine whether the observed variable has a stable or explosive time path. Based on the estimated difference equation it will be examined whether Croatia is implementing a stable policy of exchange rates.
Unsupervised Learning of Action Primitives
DEFF Research Database (Denmark)
Baby, Sanmohan; Krüger, Volker; Kragic, Danica
2010-01-01
and scale, the use of the object can provide a strong invariant for the detection of motion primitives. In this paper we propose an unsupervised learning approach for action primitives that makes use of the human movements as well as the object state changes. We group actions according to the changes......Action representation is a key issue in imitation learning for humanoids. With the recent finding of mirror neurons there has been a growing interest in expressing actions as a combination meaningful subparts called primitives. Primitives could be thought of as an alphabet for the human actions....... In this paper we observe that human actions and objects can be seen as being intertwined: we can interpret actions from the way the body parts are moving, but as well from how their effect on the involved object. While human movements can look vastly different even under minor changes in location, orientation...
Partial differential equation models in the socio-economic sciences
Burger, Martin; Caffarelli, Luis; Markowich, Peter A.
2014-01-01
Mathematical models based on partial differential equations (PDEs) have become an integral part of quantitative analysis in most branches of science and engineering, recently expanding also towards biomedicine and socio-economic sciences
Dynamic data analysis modeling data with differential equations
Ramsay, James
2017-01-01
This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in...
Methods of mathematical modelling continuous systems and differential equations
Witelski, Thomas
2015-01-01
This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.
Eight equation model for arbitrary shaped pipe conveying fluid
International Nuclear Information System (INIS)
Gale, J.; Tiselj, I.
2006-01-01
Linear eight-equation system for two-way coupling of single-phase fluid transient and arbitrary shaped one-dimensional pipeline movement is described and discussed. The governing phenomenon described with this system is also known as Fluid-Structure Interaction. Standard Skalak's four-equation model for axial coupling was improved with additional four Timoshenko's beam equations for description of flexural displacements and rotations. In addition to the conventional eight-equation system that enables coupling of straight sections, the applied mathematical model was improved for description of the arbitrary shaped pipeline located in two-dimensional plane. The applied model was solved with second-order accurate numerical method that is based on Godounov's characteristic upwind schemes. The model was successfully used for simulation of the rod impact induced transient and conventional instantaneous valve closure induced transient in the tank-pipe-valve system. (author)
Illness-death model: statistical perspective and differential equations.
Brinks, Ralph; Hoyer, Annika
2018-01-27
The aim of this work is to relate the theory of stochastic processes with the differential equations associated with multistate (compartment) models. We show that the Kolmogorov Forward Differential Equations can be used to derive a relation between the prevalence and the transition rates in the illness-death model. Then, we prove mathematical well-definedness and epidemiological meaningfulness of the prevalence of the disease. As an application, we derive the incidence of diabetes from a series of cross-sections.
International Nuclear Information System (INIS)
Modarres, Mohammad; Cheon, Se Woo
1999-01-01
Most of the complex systems are formed through some hierarchical evolution. Therefore, those systems can be best described through hierarchical frameworks. This paper describes some fundamental attributes of complex physical systems and several hierarchies such as functional, behavioral, goal/condition, and event hierarchies, then presents a function-centered approach to system modeling. Based on the function-centered concept, this paper describes the joint goal tree-success tree (GTST) and the master logic diagram (MLD) as a framework for developing models of complex physical systems. A function-based lexicon for classifying the most common elements of engineering systems for use in the GTST-MLD framework has been proposed. The classification is based on the physical conservation laws that govern the engineering systems. Functional descriptions based on conservation laws provide a simple and rich vocabulary for modeling complex engineering systems
Cheung, Mike W.-L.; Cheung, Shu Fai
2016-01-01
Meta-analytic structural equation modeling (MASEM) combines the techniques of meta-analysis and structural equation modeling for the purpose of synthesizing correlation or covariance matrices and fitting structural equation models on the pooled correlation or covariance matrix. Both fixed-effects and random-effects models can be defined in MASEM.…
Dahirel, Vincent; Jardat, Marie; Dufrêche, Jean-François; Turq, Pierre
2007-09-07
Monte Carlo simulations are used to calculate the exact potential of mean force between charged globular proteins in aqueous solution. The aim of the present paper is to study the influence of the ions of the added salt on the effective interaction between these nanoparticles. The charges of the model proteins, either identical or opposite, are either central or distributed on a discrete pattern. Contrarily to Poisson-Boltzmann predictions, attractive, and repulsive direct forces between proteins are not screened similarly. Moreover, it has been shown that the relative orientations of the charge patterns strongly influence salt-mediated interactions. More precisely, for short distances between the proteins, ions enhance the difference of the effective forces between (i) like-charged and oppositely charged proteins, (ii) attractive and repulsive relative orientations of the proteins, which may affect the selectivity of protein/protein recognition. Finally, such results observed with the simplest models are applied to a more elaborate one to demonstrate their generality.
Differential equations and integrable models: the SU(3) case
International Nuclear Information System (INIS)
Dorey, Patrick; Tateo, Roberto
2000-01-01
We exhibit a relationship between the massless a 2 (2) integrable quantum field theory and a certain third-order ordinary differential equation, thereby extending a recent result connecting the massless sine-Gordon model to the Schroedinger equation. This forms part of a more general correspondence involving A 2 -related Bethe ansatz systems and third-order differential equations. A non-linear integral equation for the generalised spectral problem is derived, and some numerical checks are performed. Duality properties are discussed, and a simple variant of the non-linear equation is suggested as a candidate to describe the finite volume ground state energies of minimal conformal field theories perturbed by the operators phi 12 , phi 21 and phi 15 . This is checked against previous results obtained using the thermodynamic Bethe ansatz
A Structural Equation Approach to Models with Spatial Dependence
Oud, Johan H. L.; Folmer, Henk
We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it
A structural equation approach to models with spatial dependence
Oud, J.H.L.; Folmer, H.
2008-01-01
We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it
A Structural Equation Approach to Models with Spatial Dependence
Oud, J.H.L.; Folmer, H.
2008-01-01
We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it
Parameter Estimates in Differential Equation Models for Population Growth
Winkel, Brian J.
2011-01-01
We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…
Kinetic equations for the collisional plasma model
International Nuclear Information System (INIS)
Rij, W.I. Van; Meier, H.K.; Beasley, C.O. Jr.; McCune, J.E.
1977-01-01
Using the Collisional Plasma Model (CPM) representation, expressions are derived for the Vlasov operator, both in its general form and in the drift-kinetic approximation following the recursive derivation by Hazeltine. The expressions for the operators give easily calculated couplings between neighbouring components of the CPM representation. Expressions for various macroscopic observables in the drift-kinetics approximation are also given. (author)
Yan, David
This thesis presents the one-dimensional equations, numerical method and simulations of a model to characterize the dynamical operation of an electrochemical cell. This model extends the current state-of-the art in that it accounts, in a primitive way, for the physics of the electrolyte/electrode interface and incorporates diffuse-charge dynamics, temperature coupling, surface coverage, and polarization phenomena. The one-dimensional equations account for a system with one or two mobile ions of opposite charge, and the electrode reaction we consider (when one is needed) is a one-electron electrodeposition reaction. Though the modeled system is far from representing a realistic electrochemical device, our results show a range of dynamics and behaviors which have not been observed previously, and explore the numerical challenges required when adding more complexity to a model. Furthermore, the basic transport equations (which are developed in three spatial dimensions) can in future accomodate the inclusion of additional physics, and coupling to more complex boundary conditions that incorporate two-dimensional surface phenomena and multi-rate reactions. In the model, the Poisson-Nernst-Planck equations are used to model diffusion and electromigration in an electrolyte, and the generalized Frumkin-Butler-Volmer equation is used to model reaction kinetics at electrodes. An energy balance equation is derived and coupled to the diffusion-migration equation. The model also includes dielectric polarization effects by introducing different values of the dielectric permittivity in different regions of the bulk, as well as accounting for surface coverage effects due to adsorption, and finite size "crowding", or steric effects. Advection effects are not modeled but could in future be incorporated. In order to solve the coupled PDE's, we use a variable step size second order scheme in time and finite differencing in space. Numerical tests are performed on a simplified system and
International Nuclear Information System (INIS)
Xu, Yuenong; Smooke, M.D.
1993-01-01
In this paper we present a primitive variable Newton-based solution method with a block-line linear equation solver for the calculation of reacting flows. The present approach is compared with the stream function-vorticity Newton's method and the SIMPLER algorithm on the calculation of a system of fully elliptic equations governing an axisymmetric methane-air laminar diffusion flame. The chemical reaction is modeled by the flame sheet approximation. The numerical solution agrees well with experimental data in the major chemical species. The comparison of three sets of numerical results indicates that the stream function-vorticity solution using the approximate boundary conditions reported in the previous calculations predicts a longer flame length and a broader flame shape. With a new set of modified vorticity boundary conditions, we obtain agreement between the primitive variable and stream function-vorticity solutions. The primitive variable Newton's method converges much faster than the other two methods. Because of much less computer memory required for the block-line tridiagonal solver compared to a direct solver, the present approach makes it possible to calculate multidimensional flames with detailed reaction mechanisms. The SIMPLER algorithm shows a slow convergence rate compared to the other two methods in the present calculation
On the Schroedinger equation for the minisuperspace models
International Nuclear Information System (INIS)
Tkach, V.I.; Pashnev, A.I.; Rosales, J.J.
2000-01-01
We obtain a time-dependent Schroedinger equation for the Friedmann-Robertson-Walker (FRW) model interacting with a homogeneous scalar matter field. We show that for this purpose it is necessary to include an additional action invariant under the reparametrization of time. The last one does not change the equations of motion of the system, but changes only the constraint which at the quantum level becomes time-dependent Schroedinger equation. The same procedure is applied to the supersymmetric case and the supersymmetric quantum constraints are obtained, one of them is a square root of the Schroedinger operator
Generalized heat-transport equations: parabolic and hyperbolic models
Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio
2018-03-01
We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.
Pizio, Orest; Sokołowski, Stefan
2013-05-28
We apply a density functional theory to describe properties of a restricted primitive model of an ionic fluid in slit-like pores. The pore walls are modified by grafted chains. The chains are built of uncharged or charged segments. We study the influence of modification of the pore walls on the structure, adsorption, ion selectivity, and the electric double layer capacitance of ionic fluid under confinement. The brush built of uncharged segments acts as a collection of obstacles in the walls vicinity. Consequently, separation of charges requires higher voltages, in comparison to the models without brushes. At high grafting densities the formation of crowding-type structure is inhibited. The double layer structure becomes more complex in various aspects, if the brushes are built of charged segments. In particular, the evolution of the brush height with the bulk fluid density and with the charge on the walls depends on the length of the blocks of charged spheres as well as on the distribution of charged species along chains. We also investigated how the dependence of the double layer capacitance on the electrostatic potential (or on the charge on the walls) changes with grafting density, the chain length, distribution of charges along the chain, the bulk fluid density, and, finally, with the pore width. The shape of the electric double layer capacitance vs. voltage changes from a camel-like to bell-like shape, if the bulk fluid density changes from low to moderate and high. If the bulk density is appropriately chosen, it is possible to alter the shape of this curve from the double hump to single hump by changing the grafting density. Moreover, in narrow pores one can observe the capacitance curve with even three humps for a certain set of parameters describing brush. This behavior illustrates how strong the influence of brushes on the electric double layer properties can be, particularly for ionic fluids in narrow pores.
Dynamic modeling of interfacial structures via interfacial area transport equation
International Nuclear Information System (INIS)
Seungjin, Kim; Mamoru, Ishii
2005-01-01
The interfacial area transport equation dynamically models the two-phase flow regime transitions and predicts continuous change of the interfacial area concentration along the flow field. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, the two-group interfacial area transport equations have been developed. The group 1 equation describes the transport of small-dispersed bubbles that are either distorted or spherical in shapes, and the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. The source and sink terms in the right-hand-side of the transport equations have been established by mechanistically modeling the creation and destruction of bubbles due to major bubble interaction mechanisms. In the present paper, the interfacial area transport equations currently available are reviewed to address the feasibility and reliability of the model along with extensive experimental results. These include the data from adiabatic upward air-water two-phase flow in round tubes of various sizes, from a rectangular duct, and from adiabatic co-current downward air-water two-phase flow in round pipes of two sizes. (authors)
Mathematical analysis of partial differential equations modeling electrostatic MEMS
Esposito, Pierpaolo; Guo, Yujin
2010-01-01
Micro- and nanoelectromechanical systems (MEMS and NEMS), which combine electronics with miniature-size mechanical devices, are essential components of modern technology. It is the mathematical model describing "electrostatically actuated" MEMS that is addressed in this monograph. Even the simplified models that the authors deal with still lead to very interesting second- and fourth-order nonlinear elliptic equations (in the stationary case) and to nonlinear parabolic equations (in the dynamic case). While nonlinear eigenvalue problems-where the stationary MEMS models fit-are a well-developed
Climate Modeling in the Calculus and Differential Equations Classroom
Kose, Emek; Kunze, Jennifer
2013-01-01
Students in college-level mathematics classes can build the differential equations of an energy balance model of the Earth's climate themselves, from a basic understanding of the background science. Here we use variable albedo and qualitative analysis to find stable and unstable equilibria of such a model, providing a problem or perhaps a…
A Structural Equation Model of Expertise in College Physics
Taasoobshirazi, Gita; Carr, Martha
2009-01-01
A model of expertise in physics was tested on a sample of 374 college students in 2 different level physics courses. Structural equation modeling was used to test hypothesized relationships among variables linked to expert performance in physics including strategy use, pictorial representation, categorization skills, and motivation, and these…
A Structural Equation Model of Conceptual Change in Physics
Taasoobshirazi, Gita; Sinatra, Gale M.
2011-01-01
A model of conceptual change in physics was tested on introductory-level, college physics students. Structural equation modeling was used to test hypothesized relationships among variables linked to conceptual change in physics including an approach goal orientation, need for cognition, motivation, and course grade. Conceptual change in physics…
Computer models for kinetic equations of magnetically confined plasmas
International Nuclear Information System (INIS)
Killeen, J.; Kerbel, G.D.; McCoy, M.G.; Mirin, A.A.; Horowitz, E.J.; Shumaker, D.E.
1987-01-01
This paper presents four working computer models developed by the computational physics group of the National Magnetic Fusion Energy Computer Center. All of the models employ a kinetic description of plasma species. Three of the models are collisional, i.e., they include the solution of the Fokker-Planck equation in velocity space. The fourth model is collisionless and treats the plasma ions by a fully three-dimensional particle-in-cell method
Continuous Time Structural Equation Modeling with R Package ctsem
Directory of Open Access Journals (Sweden)
Charles C. Driver
2017-04-01
Full Text Available We introduce ctsem, an R package for continuous time structural equation modeling of panel (N > 1 and time series (N = 1 data, using full information maximum likelihood. Most dynamic models (e.g., cross-lagged panel models in the social and behavioural sciences are discrete time models. An assumption of discrete time models is that time intervals between measurements are equal, and that all subjects were assessed at the same intervals. Violations of this assumption are often ignored due to the difficulty of accounting for varying time intervals, therefore parameter estimates can be biased and the time course of effects becomes ambiguous. By using stochastic differential equations to estimate an underlying continuous process, continuous time models allow for any pattern of measurement occasions. By interfacing to OpenMx, ctsem combines the flexible specification of structural equation models with the enhanced data gathering opportunities and improved estimation of continuous time models. ctsem can estimate relationships over time for multiple latent processes, measured by multiple noisy indicators with varying time intervals between observations. Within and between effects are estimated simultaneously by modeling both observed covariates and unobserved heterogeneity. Exogenous shocks with different shapes, group differences, higher order diffusion effects and oscillating processes can all be simply modeled. We first introduce and define continuous time models, then show how to specify and estimate a range of continuous time models using ctsem.
AGUA TIBIA PRIMITIVE AREA, CALIFORNIA.
Irwin, William P.; Thurber, Horace K.
1984-01-01
The Agua Tibia Primitive Area in southwestern California is underlain by igneous and metamorphic rocks that are siilar to those widely exposed throughout much of the Peninsular Ranges. To detect the presence of any concealed mineral deposits, samples of stream sediments were collected along the various creeks that head in the mountain. As an additional aid in evaluating the mineral potential, an aeromagnetic survey was made and interpreted. A search for records of past or existing mining claims within the primitive area was made but none was found. Evidence of deposits of metallic or nonmetallic minerals was not seen during the study.
Survival of the primitive mantle reservoir?
Huang, S.; Jacobsen, S. B.; Mukhopadhyay, S.
2010-12-01
The high-3He lavas are thought to originate from a deep primitive mantle source that has not been much modified since the formation of Earth’s core. Comparison of 4He/3He in MORBs and plume lavas indicate that the plume sources must be a lower mantle feature, in agreement with most geophysical inferences. However, the lithophile element isotope systems of plume lavas are not primitive. The idea that the high-3He source is significantly less processed and more primitive than MORB source is clearly supported by mixing trends in plots of 4He/3He versus Sr, Nd and Pb isotope ratios, which have been extrapolated to an inferred 4He/3He of ~17,000 (~43x the atmospheric ratio), a mantle reservoir named PHEM (Primitive HElium Mantle). Slightly lower 4He/3He, ~15,000, were reported for Baffin Island picrites. Recently, Jackson et al. (2010) claimed that some Baffin Island and Greenland picrites with single-stage Pb model ages of ~4.5 Ga have low 4He/3He, and argued that “their source is the most ancient accessible reservoir in the Earth’s mantle, and it may be parental to all mantle reservoirs”. However, the available data are insufficient to make such a claim, and we suggest an alternative interpretation. Specially: 1. Four out of ten Baffin Island and Greenland picrites used by Jackson et al. (2010) have 4He/3He higher than average MORB value and all are far removed from the lowest measured value of 15,000. 2. Five Greenland picrites which cluster around the 4.50 Gyr geochron (Jackson et al., 2010) form a curved 207Pb*/206Pb*-4He/3He trend. This trend is best explained as a mixing line, implying that the single-stage Pb ages of these lavas are meaningless. 3. In a 207Pb*/206Pb*-4He/3He plot, Koolau lavas from Hawaii overlap with Baffin Island and Greenland picrites. If Baffin Island and Greenland picrites represent melts from the primitive mantle based on their Pb and He isotopes (Jackson et al., 2010), a similar argument can be applied to Koolau lavas. However, it
Dynamic modeling of interfacial structures via interfacial area transport equation
International Nuclear Information System (INIS)
Seungjin, Kim; Mamoru, Ishii
2004-01-01
Full text of publication follows:In the current thermal-hydraulic system analysis codes using the two-fluid model, the empirical correlations that are based on the two-phase flow regimes and regime transition criteria are being employed as closure relations for the interfacial transfer terms. Due to its inherent shortcomings, however, such static correlations are inaccurate and present serious problems in the numerical analysis. In view of this, a new dynamic approach employing the interfacial area transport equation has been studied. The interfacial area transport equation dynamically models the two-phase flow regime transitions and predicts continuous change of the interfacial area concentration along the flow field. Hence, when employed in the thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Therefore, the interfacial area transport equation can make a leapfrog improvement in the current capability of the two-fluid model from both scientific and practical point of view. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, the two-group interfacial area transport equations have been developed. The group 1 equation describes the transport of small-dispersed bubbles that are either distorted or spherical in shapes, and the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. The source and sink terms in the right hand-side of the transport equations have been established by mechanistically modeling the creation and destruction of bubbles due to major bubble interaction mechanisms. The coalescence mechanisms include the random collision driven by turbulence, and the entrainment of trailing bubbles in the wake region of the preceding bubble. The disintegration mechanisms include the break-up by turbulence impact, shearing-off at the rim of large cap bubbles and the break-up of large cap
Using Difference Equation to Model Discrete-time Behavior in System Dynamics Modeling
Hesan, R.; Ghorbani, A.; Dignum, M.V.
2014-01-01
In system dynamics modeling, differential equations have been used as the basic mathematical operator. Using difference equation to build system dynamics models instead of differential equation, can be insightful for studying small organizations or systems with micro behavior. In this paper we
Energy Technology Data Exchange (ETDEWEB)
Smith, H.L. (Arizona State Univ., Tempe (United States))
1993-01-01
It is shown by way of a simple example that certain structured population models lead naturally to differential delay equations of the threshold type and that these equations can be transformed in a natural way to functional differential equations. The model examined can be viewed as a model of competition between adults and juveniles of a single population. The results indicate the possibility that this competition leads to instability. 28 refs., 2 figs.
String beta function equations from c=1 matrix model
Dhar, A; Wadia, S R; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R
1995-01-01
We derive the \\sigma-model tachyon \\beta-function equation of 2-dimensional string theory, in the background of flat space and linear dilaton, working entirely within the c=1 matrix model. The tachyon \\beta-function equation is satisfied by a \\underbar{nonlocal} and \\underbar{nonlinear} combination of the (massless) scalar field of the matrix model. We discuss the possibility of describing the `discrete states' as well as other possible gravitational and higher tensor backgrounds of 2-dimensional string theory within the c=1 matrix model. We also comment on the realization of the W-infinity symmetry of the matrix model in the string theory. The present work reinforces the viewpoint that a nonlocal (and nonlinear) transform is required to extract the space-time physics of 2-dimensional string theory from the c=1 matrix model.
Ngai, K L; Habasaki, J; Prevosto, D; Capaccioli, S; Paluch, Marian
2012-07-21
By now it is well established that the structural α-relaxation time, τ(α), of non-associated small molecular and polymeric glass-formers obey thermodynamic scaling. In other words, τ(α) is a function Φ of the product variable, ρ(γ)/T, where ρ is the density and T the temperature. The constant γ as well as the function, τ(α) = Φ(ρ(γ)/T), is material dependent. Actually this dependence of τ(α) on ρ(γ)/T originates from the dependence on the same product variable of the Johari-Goldstein β-relaxation time, τ(β), or the primitive relaxation time, τ(0), of the coupling model. To support this assertion, we give evidences from various sources itemized as follows. (1) The invariance of the relation between τ(α) and τ(β) or τ(0) to widely different combinations of pressure and temperature. (2) Experimental dielectric and viscosity data of glass-forming van der Waals liquids and polymer. (3) Molecular dynamics simulations of binary Lennard-Jones (LJ) models, the Lewis-Wahnström model of ortho-terphenyl, 1,4 polybutadiene, a room temperature ionic liquid, 1-ethyl-3-methylimidazolium nitrate, and a molten salt 2Ca(NO(3))(2)·3KNO(3) (CKN). (4) Both diffusivity and structural relaxation time, as well as the breakdown of Stokes-Einstein relation in CKN obey thermodynamic scaling by ρ(γ)/T with the same γ. (5) In polymers, the chain normal mode relaxation time, τ(N), is another function of ρ(γ)/T with the same γ as segmental relaxation time τ(α). (6) While the data of τ(α) from simulations for the full LJ binary mixture obey very well the thermodynamic scaling, it is strongly violated when the LJ interaction potential is truncated beyond typical inter-particle distance, although in both cases the repulsive pair potentials coincide for some distances.
Nurfaizal, Yusmedi
2015-01-01
Penelitian ini berjudul “MODEL SERVQUAL DENGAN PENDEKATAN STRUCTURAL EQUATION MODELING (Studi Pada Mahasiswa Sistem Informasi)”. Tujuan penelitian ini adalah untuk mengetahui model Servqual dengan pendekatan Structural Equation Modeling pada mahasiswa sistem informasi. Peneliti memutuskan untuk mengambil sampel sebanyak 100 responden. Untuk menguji model digunakan analisis SEM. Hasil penelitian menunjukkan bahwa tangibility, reliability responsiveness, assurance dan emphaty mempunyai pengaruh...
A lattice Boltzmann model for the Burgers-Fisher equation.
Zhang, Jianying; Yan, Guangwu
2010-06-01
A lattice Boltzmann model is developed for the one- and two-dimensional Burgers-Fisher equation based on the method of the higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. In order to obtain the two-dimensional Burgers-Fisher equation, vector sigma(j) has been used. And in order to overcome the drawbacks of "error rebound," a new assumption of additional distribution is presented, where two additional terms, in first order and second order separately, are used. Comparisons with the results obtained by other methods reveal that the numerical solutions obtained by the proposed method converge to exact solutions. The model under new assumption gives better results than that with second order assumption. (c) 2010 American Institute of Physics.
Modelling biochemical reaction systems by stochastic differential equations with reflection.
Niu, Yuanling; Burrage, Kevin; Chen, Luonan
2016-05-07
In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. Copyright © 2016 Elsevier Ltd. All rights reserved.
Motion Primitives and Probabilistic Edit Distance for Action Recognition
DEFF Research Database (Denmark)
Fihl, Preben; Holte, Michael Boelstoft; Moeslund, Thomas B.
2009-01-01
the actions as a sequence of temporal isolated instances, denoted primitives. These primitives are each defined by four features extracted from motion images. The primitives are recognized in each frame based on a trained classifier resulting in a sequence of primitives. From this sequence we recognize......The number of potential applications has made automatic recognition of human actions a very active research area. Different approaches have been followed based on trajectories through some state space. In this paper we also model an action as a trajectory through a state space, but we represent...... different temporal actions using a probabilistic Edit Distance method. The method is tested on different actions with and without noise and the results show recognition rates of 88.7% and 85.5%, respectively....
Cryptographic Primitives with Quasigroup Transformations
Mileva, Aleksandra
2010-01-01
Cryptology is the science of secret communication, which consists of two complementary disciplines: cryptography and cryptanalysis. Cryptography is dealing with design and development of new primitives, algorithms and schemas for data enciphering and deciphering. For many centuries cryptographic technics have been applied in protection of secrecy and authentication in diplomatic, political and military correspondences and communications. Cryptanalysis is dealing with different attacks on c...
Alternans promotion in cardiac electrophysiology models by delay differential equations.
Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M
2017-09-01
Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.
Alternans promotion in cardiac electrophysiology models by delay differential equations
Gomes, Johnny M.; dos Santos, Rodrigo Weber; Cherry, Elizabeth M.
2017-09-01
Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.
Differential Equations as Actions
DEFF Research Database (Denmark)
Ronkko, Mauno; Ravn, Anders P.
1997-01-01
We extend a conventional action system with a primitive action consisting of a differential equation and an evolution invariant. The semantics is given by a predicate transformer. The weakest liberal precondition is chosen, because it is not always desirable that steps corresponding to differential...... actions shall terminate. It is shown that the proposed differential action has a semantics which corresponds to a discrete approximation when the discrete step size goes to zero. The extension gives action systems the power to model real-time clocks and continuous evolutions within hybrid systems....
Asymptotics for Estimating Equations in Hidden Markov Models
DEFF Research Database (Denmark)
Hansen, Jørgen Vinsløv; Jensen, Jens Ledet
Results on asymptotic normality for the maximum likelihood estimate in hidden Markov models are extended in two directions. The stationarity assumption is relaxed, which allows for a covariate process influencing the hidden Markov process. Furthermore a class of estimating equations is considered...
Sensitivity Analysis in Structural Equation Models: Cases and Their Influence
Pek, Jolynn; MacCallum, Robert C.
2011-01-01
The detection of outliers and influential observations is routine practice in linear regression. Despite ongoing extensions and development of case diagnostics in structural equation models (SEM), their application has received limited attention and understanding in practice. The use of case diagnostics informs analysts of the uncertainty of model…
On the specification of structural equation models for ecological systems
Grace, James B.; Anderson, T. Michael; Olff, Han; Scheiner, Samuel M.
The use of structural equation modeling (SEM) is often motivated by its utility for investigating complex networks of relationships, but also because of its promise as a means of representing theoretical Concepts using latent variables. In this paper, we discuss characteristics of ecological theory
Building Context with Tumor Growth Modeling Projects in Differential Equations
Beier, Julie C.; Gevertz, Jana L.; Howard, Keith E.
2015-01-01
The use of modeling projects serves to integrate, reinforce, and extend student knowledge. Here we present two projects related to tumor growth appropriate for a first course in differential equations. They illustrate the use of problem-based learning to reinforce and extend course content via a writing or research experience. Here we discuss…
A model for the stochastic origins of Schrodinger's equation
Davidson, Mark P.
2001-01-01
A model for the motion of a charged particle in the vacuum is presented which, although purely classical in concept, yields Schrodinger's equation as a solution. It suggests that the origins of the peculiar and nonclassical features of quantum mechanics are actually inherent in a statistical description of the radiative reactive force.
Application of flexible model in neutron dynamics equations
International Nuclear Information System (INIS)
Liu Cheng; Zhao Fuyu; Fu Xiangang
2009-01-01
Big errors will occur in the modeling by multimode methodology when the available core physical parameter sets are insufficient. In this paper, the fuzzy logic membership function is introduced to figure out the values of these parameters on any point of lifetime through limited several sets of values, and thus to obtain the neutron dynamics equations on any point of lifetime. In order to overcome the effect of subjectivity in the membership function selection on the parameter calculation, quadratic optimization is carried out to the membership function by genetic algorithm, to result in a more accurate neutron kinetics equation on any point of lifetime. (authors)
Structural Equation Modeling with Mplus Basic Concepts, Applications, and Programming
Byrne, Barbara M
2011-01-01
Modeled after Barbara Byrne's other best-selling structural equation modeling (SEM) books, this practical guide reviews the basic concepts and applications of SEM using Mplus Versions 5 & 6. The author reviews SEM applications based on actual data taken from her own research. Using non-mathematical language, it is written for the novice SEM user. With each application chapter, the author "walks" the reader through all steps involved in testing the SEM model including: an explanation of the issues addressed illustrated and annotated testing of the hypothesized and post hoc models expl
Stochastic fractional differential equations: Modeling, method and analysis
International Nuclear Information System (INIS)
Pedjeu, Jean-C.; Ladde, Gangaram S.
2012-01-01
By introducing a concept of dynamic process operating under multi-time scales in sciences and engineering, a mathematical model described by a system of multi-time scale stochastic differential equations is formulated. The classical Picard–Lindelöf successive approximations scheme is applied to the model validation problem, namely, existence and uniqueness of solution process. Naturally, this leads to the problem of finding closed form solutions of both linear and nonlinear multi-time scale stochastic differential equations of Itô–Doob type. Finally, to illustrate the scope of ideas and presented results, multi-time scale stochastic models for ecological and epidemiological processes in population dynamic are outlined.
Equations of motion for a (non-linear) scalar field model as derived from the field equations
International Nuclear Information System (INIS)
Kaniel, S.; Itin, Y.
2006-01-01
The problem of derivation of the equations of motion from the field equations is considered. Einstein's field equations have a specific analytical form: They are linear in the second order derivatives and quadratic in the first order derivatives of the field variables. We utilize this particular form and propose a novel algorithm for the derivation of the equations of motion from the field equations. It is based on the condition of the balance between the singular terms of the field equation. We apply the algorithm to a non-linear Lorentz invariant scalar field model. We show that it results in the Newton law of attraction between the singularities of the field moved on approximately geodesic curves. The algorithm is applicable to the N-body problem of the Lorentz invariant field equations. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Hidden physics models: Machine learning of nonlinear partial differential equations
Raissi, Maziar; Karniadakis, George Em
2018-03-01
While there is currently a lot of enthusiasm about "big data", useful data is usually "small" and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.
Excited TBA equations I: Massive tricritical Ising model
International Nuclear Information System (INIS)
Pearce, Paul A.; Chim, Leung; Ahn, Changrim
2001-01-01
We consider the massive tricritical Ising model M(4,5) perturbed by the thermal operator phi (cursive,open) Greek 1,3 in a cylindrical geometry and apply integrable boundary conditions, labelled by the Kac labels (r,s), that are natural off-critical perturbations of known conformal boundary conditions. We derive massive thermodynamic Bethe ansatz (TBA) equations for all excitations by solving, in the continuum scaling limit, the TBA functional equation satisfied by the double-row transfer matrices of the A 4 lattice model of Andrews, Baxter and Forrester (ABF) in Regime III. The complete classification of excitations, in terms of (m,n) systems, is precisely the same as at the conformal tricritical point. Our methods also apply on a torus but we first consider (r,s) boundaries on the cylinder because the classification of states is simply related to fermionic representations of single Virasoro characters χ r,s (q). We study the TBA equations analytically and numerically to determine the conformal UV and free particle IR spectra and the connecting massive flows. The TBA equations in Regime IV and massless RG flows are studied in Part II
A Proof-Theoretic Account of Primitive Recursion and Primitive Iteration
DEFF Research Database (Denmark)
Cherabini, Luca; Danvy, Olivier
2011-01-01
We revisit both the usual ``going-up'' induction principle and Manna and Waldinger's ``going-down'' induction principle for primitive recursion,`a la Goedel, and primitive iteration, `a la Church. We use 'Kleene's trick' to show that primitive recursion and primitive iiteration are as expressive...
SPANISH PEAKS PRIMITIVE AREA, MONTANA.
Calkins, James A.; Pattee, Eldon C.
1984-01-01
A mineral survey of the Spanish Peaks Primitive Area, Montana, disclosed a small low-grade deposit of demonstrated chromite and asbestos resources. The chances for discovery of additional chrome resources are uncertain and the area has little promise for the occurrence of other mineral or energy resources. A reevaluation, sampling at depth, and testing for possible extensions of the Table Mountain asbestos and chromium deposit should be undertaken in the light of recent interpretations regarding its geologic setting.
Non-Equilibrium Turbulence and Two-Equation Modeling
Rubinstein, Robert
2011-01-01
Two-equation turbulence models are analyzed from the perspective of spectral closure theories. Kolmogorov theory provides useful information for models, but it is limited to equilibrium conditions in which the energy spectrum has relaxed to a steady state consistent with the forcing at large scales; it does not describe transient evolution between such states. Transient evolution is necessarily through nonequilibrium states, which can only be found from a theory of turbulence evolution, such as one provided by a spectral closure. When the departure from equilibrium is small, perturbation theory can be used to approximate the evolution by a two-equation model. The perturbation theory also gives explicit conditions under which this model can be valid, and when it will fail. Implications of the non-equilibrium corrections for the classic Tennekes-Lumley balance in the dissipation rate equation are drawn: it is possible to establish both the cancellation of the leading order Re1/2 divergent contributions to vortex stretching and enstrophy destruction, and the existence of a nonzero difference which is finite in the limit of infinite Reynolds number.
Estimating varying coefficients for partial differential equation models.
Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J
2017-09-01
Partial differential equations (PDEs) are used to model complex dynamical systems in multiple dimensions, and their parameters often have important scientific interpretations. In some applications, PDE parameters are not constant but can change depending on the values of covariates, a feature that we call varying coefficients. We propose a parameter cascading method to estimate varying coefficients in PDE models from noisy data. Our estimates of the varying coefficients are shown to be consistent and asymptotically normally distributed. The performance of our method is evaluated by a simulation study and by an empirical study estimating three varying coefficients in a PDE model arising from LIDAR data. © 2017, The International Biometric Society.
Loop equations for multi-cut matrix models
International Nuclear Information System (INIS)
Akemann, G.
1995-03-01
The loop equation for the complex one-matrix model with a multi-cut structure is derived and solved in the planar limit. An iterative scheme for higher genus contributions to the free energy and the multi-loop correlators is presented for the two-cut model, where explicit results are given up to and including genus two. The double-scaling limit is analyzed and the relation to the one-cut solution of the hermitian and complex one-matrix model is discussed. (orig.)
Study of a Model Equation in Detonation Theory
Faria, Luiz
2014-04-24
Here we analyze properties of an equation that we previously proposed to model the dynamics of unstable detonation waves [A. R. Kasimov, L. M. Faria, and R. R. Rosales, Model for shock wave chaos, Phys. Rev. Lett., 110 (2013), 104104]. The equation is ut+ 1/2 (u2-uu (0-, t))x=f (x, u (0-, t)), x > 0, t < 0. It describes a detonation shock at x = 0 with the reaction zone in x > 0. We investigate the nature of the steady-state solutions of this nonlocal hyperbolic balance law, the linear stability of these solutions, and the nonlinear dynamics. We establish the existence of instability followed by a cascade of period-doubling bifurcations leading to chaos. © 2014 Society for Industrial and Applied Mathematics.
Stochastic modeling of mode interactions via linear parabolized stability equations
Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo
2017-11-01
Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.
Modeling tree crown dynamics with 3D partial differential equations.
Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry
2014-01-01
We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.
Annotated bibliography of structural equation modelling: technical work.
Austin, J T; Wolfle, L M
1991-05-01
Researchers must be familiar with a variety of source literature to facilitate the informed use of structural equation modelling. Knowledge can be acquired through the study of an expanding literature found in a diverse set of publishing forums. We propose that structural equation modelling publications can be roughly classified into two groups: (a) technical and (b) substantive applications. Technical materials focus on the procedures rather than substantive conclusions derived from applications. The focus of this article is the former category; included are foundational/major contributions, minor contributions, critical and evaluative reviews, integrations, simulations and computer applications, precursor and historical material, and pedagogical textbooks. After a brief introduction, we annotate 294 articles in the technical category dating back to Sewall Wright (1921).
Linares, Oscar A; Schiesser, William E; Fudin, Jeffrey; Pham, Thien C; Bettinger, Jeffrey J; Mathew, Roy O; Daly, Annemarie L
2015-01-01
Background There is a need to have a model to study methadone’s losses during hemodialysis to provide informed methadone dose recommendations for the practitioner. Aim To build a one-dimensional (1-D), hollow-fiber geometry, ordinary differential equation (ODE) and partial differential equation (PDE) countercurrent hemodialyzer model (ODE/PDE model). Methodology We conducted a cross-sectional study in silico that evaluated eleven hemodialysis patients. Patients received a ceiling dose of methadone hydrochloride 30 mg/day. Outcome measures included: the total amount of methadone removed during dialysis; methadone’s overall intradialytic mass transfer rate coefficient, km; and, methadone’s removal rate, jME. Each metric was measured at dialysate flow rates of 250 mL/min and 800 mL/min. Results The ODE/PDE model revealed a significant increase in the change of methadone’s mass transfer with increased dialysate flow rate, %Δkm=18.56, P=0.02, N=11. The total amount of methadone mass transferred across the dialyzer membrane with high dialysate flow rate significantly increased (0.042±0.016 versus 0.052±0.019 mg/kg, P=0.02, N=11). This was accompanied by a small significant increase in methadone’s mass transfer rate (0.113±0.002 versus 0.014±0.002 mg/kg/h, P=0.02, N=11). The ODE/PDE model accurately predicted methadone’s removal during dialysis. The absolute value of the prediction errors for methadone’s extraction and throughput were less than 2%. Conclusion ODE/PDE modeling of methadone’s hemodialysis is a new approach to study methadone’s removal, in particular, and opioid removal, in general, in patients with end-stage renal disease on hemodialysis. ODE/PDE modeling accurately quantified the fundamental phenomena of methadone’s mass transfer during hemodialysis. This methodology may lead to development of optimally designed intradialytic opioid treatment protocols, and allow dynamic monitoring of outflow plasma opioid concentrations for model
Linares, Oscar A; Schiesser, William E; Fudin, Jeffrey; Pham, Thien C; Bettinger, Jeffrey J; Mathew, Roy O; Daly, Annemarie L
2015-01-01
There is a need to have a model to study methadone's losses during hemodialysis to provide informed methadone dose recommendations for the practitioner. To build a one-dimensional (1-D), hollow-fiber geometry, ordinary differential equation (ODE) and partial differential equation (PDE) countercurrent hemodialyzer model (ODE/PDE model). We conducted a cross-sectional study in silico that evaluated eleven hemodialysis patients. Patients received a ceiling dose of methadone hydrochloride 30 mg/day. Outcome measures included: the total amount of methadone removed during dialysis; methadone's overall intradialytic mass transfer rate coefficient, km ; and, methadone's removal rate, j ME. Each metric was measured at dialysate flow rates of 250 mL/min and 800 mL/min. The ODE/PDE model revealed a significant increase in the change of methadone's mass transfer with increased dialysate flow rate, %Δkm =18.56, P=0.02, N=11. The total amount of methadone mass transferred across the dialyzer membrane with high dialysate flow rate significantly increased (0.042±0.016 versus 0.052±0.019 mg/kg, P=0.02, N=11). This was accompanied by a small significant increase in methadone's mass transfer rate (0.113±0.002 versus 0.014±0.002 mg/kg/h, P=0.02, N=11). The ODE/PDE model accurately predicted methadone's removal during dialysis. The absolute value of the prediction errors for methadone's extraction and throughput were less than 2%. ODE/PDE modeling of methadone's hemodialysis is a new approach to study methadone's removal, in particular, and opioid removal, in general, in patients with end-stage renal disease on hemodialysis. ODE/PDE modeling accurately quantified the fundamental phenomena of methadone's mass transfer during hemodialysis. This methodology may lead to development of optimally designed intradialytic opioid treatment protocols, and allow dynamic monitoring of outflow plasma opioid concentrations for model predictive control during dialysis in humans.
Correlation functions and Schwinger-Dyson equations for Penner's model
International Nuclear Information System (INIS)
Chair, N.; Panda, S.
1991-05-01
The free energy of Penner's model exhibits logarithmic singularity in the continuum limit. We show, however, that the one and two point correlators of the usual loop-operators do not exhibit logarithmic singularity. The continuum Schwinger-Dyson equations involving these correlation functions are derived and it is found that within the space of the corresponding couplings, the resulting constraints obey a Virasoro algebra. The puncture operator having the correct (logarithmic) scaling behaviour is identified. (author). 13 refs
Structural Equation Modeling with Lisrel: An Initial Vision
Directory of Open Access Journals (Sweden)
Naresh K Malhotra
2014-05-01
Full Text Available LISREL is considered one of the most robust software packages for Structural Equation Modeling with covariance matrices, while it is also considered complex and difficult to use. In this special issue of the Brazilian Journal of Marketing, we aim to present the main functions of LISREL, its features and, through a didactic example, reduce the perceived difficulty of using it. We also provide helpful guidelines to properly using this technique.
Structural Equation Modeling with Lisrel: An Initial Vision
Naresh K Malhotra; Evandro Luiz Lopes; Ricardo Teixeira Veiga
2014-01-01
LISREL is considered one of the most robust software packages for Structural Equation Modeling with covariance matrices, while it is also considered complex and difficult to use. In this special issue of the Brazilian Journal of Marketing, we aim to present the main functions of LISREL, its features and, through a didactic example, reduce the perceived difficulty of using it. We also provide helpful guidelines to properly using this technique.
Modelling opinion formation by means of kinetic equations
Boudin , Laurent; Salvarani , Francesco
2010-01-01
In this chapter, we review some mechanisms of opinion dynamics that can be modelled by kinetic equations. Beside the sociological phenomenon of compromise, naturally linked to collisional operators of Boltzmann kind, many other aspects, already mentioned in the sociophysical literature or no, can enter in this framework. While describing some contributions appeared in the literature, we enlighten some mathematical tools of kinetic theory that can be useful in the context of sociophysics.
Generalized isothermal models with strange equation of state
Indian Academy of Sciences (India)
intention to study the Einstein–Maxwell system with a linear equation of state with ... It is our intention to model the interior of a dense realistic star with a general ... The definition m(r) = 1. 2. ∫ r. 0 ω2ρ(ω)dω. (14) represents the mass contained within a radius r which is a useful physical quantity. The mass function (14) has ...
Modeling a Predictive Energy Equation Specific for Maintenance Hemodialysis.
Byham-Gray, Laura D; Parrott, J Scott; Peters, Emily N; Fogerite, Susan Gould; Hand, Rosa K; Ahrens, Sean; Marcus, Andrea Fleisch; Fiutem, Justin J
2017-03-01
Hypermetabolism is theorized in patients diagnosed with chronic kidney disease who are receiving maintenance hemodialysis (MHD). We aimed to distinguish key disease-specific determinants of resting energy expenditure to create a predictive energy equation that more precisely establishes energy needs with the intent of preventing protein-energy wasting. For this 3-year multisite cross-sectional study (N = 116), eligible participants were diagnosed with chronic kidney disease and were receiving MHD for at least 3 months. Predictors for the model included weight, sex, age, C-reactive protein (CRP), glycosylated hemoglobin, and serum creatinine. The outcome variable was measured resting energy expenditure (mREE). Regression modeling was used to generate predictive formulas and Bland-Altman analyses to evaluate accuracy. The majority were male (60.3%), black (81.0%), and non-Hispanic (76.7%), and 23% were ≥65 years old. After screening for multicollinearity, the best predictive model of mREE ( R 2 = 0.67) included weight, age, sex, and CRP. Two alternative models with acceptable predictability ( R 2 = 0.66) were derived with glycosylated hemoglobin or serum creatinine. Based on Bland-Altman analyses, the maintenance hemodialysis equation that included CRP had the best precision, with the highest proportion of participants' predicted energy expenditure classified as accurate (61.2%) and with the lowest number of individuals with underestimation or overestimation. This study confirms disease-specific factors as key determinants of mREE in patients on MHD and provides a preliminary predictive energy equation. Further prospective research is necessary to test the reliability and validity of this equation across diverse populations of patients who are receiving MHD.
Stochastic Differential Equation-Based Flexible Software Reliability Growth Model
Directory of Open Access Journals (Sweden)
P. K. Kapur
2009-01-01
Full Text Available Several software reliability growth models (SRGMs have been developed by software developers in tracking and measuring the growth of reliability. As the size of software system is large and the number of faults detected during the testing phase becomes large, so the change of the number of faults that are detected and removed through each debugging becomes sufficiently small compared with the initial fault content at the beginning of the testing phase. In such a situation, we can model the software fault detection process as a stochastic process with continuous state space. In this paper, we propose a new software reliability growth model based on Itô type of stochastic differential equation. We consider an SDE-based generalized Erlang model with logistic error detection function. The model is estimated and validated on real-life data sets cited in literature to show its flexibility. The proposed model integrated with the concept of stochastic differential equation performs comparatively better than the existing NHPP-based models.
semPLS: Structural Equation Modeling Using Partial Least Squares
Directory of Open Access Journals (Sweden)
Armin Monecke
2012-05-01
Full Text Available Structural equation models (SEM are very popular in many disciplines. The partial least squares (PLS approach to SEM offers an alternative to covariance-based SEM, which is especially suited for situations when data is not normally distributed. PLS path modelling is referred to as soft-modeling-technique with minimum demands regarding mea- surement scales, sample sizes and residual distributions. The semPLS package provides the capability to estimate PLS path models within the R programming environment. Different setups for the estimation of factor scores can be used. Furthermore it contains modular methods for computation of bootstrap confidence intervals, model parameters and several quality indices. Various plot functions help to evaluate the model. The well known mobile phone dataset from marketing research is used to demonstrate the features of the package.
Discrete ellipsoidal statistical BGK model and Burnett equations
Zhang, Yu-Dong; Xu, Ai-Guo; Zhang, Guang-Cai; Chen, Zhi-Hua; Wang, Pei
2018-06-01
A new discrete Boltzmann model, the discrete ellipsoidal statistical Bhatnagar-Gross-Krook (ESBGK) model, is proposed to simulate nonequilibrium compressible flows. Compared with the original discrete BGK model, the discrete ES-BGK has a flexible Prandtl number. For the discrete ES-BGK model in the Burnett level, two kinds of discrete velocity model are introduced and the relations between nonequilibrium quantities and the viscous stress and heat flux in the Burnett level are established. The model is verified via four benchmark tests. In addition, a new idea is introduced to recover the actual distribution function through the macroscopic quantities and their space derivatives. The recovery scheme works not only for discrete Boltzmann simulation but also for hydrodynamic ones, for example, those based on the Navier-Stokes or the Burnett equations.
Modeling Inflation Using a Non-Equilibrium Equation of Exchange
Chamberlain, Robert G.
2013-01-01
Inflation is a change in the prices of goods that takes place without changes in the actual values of those goods. The Equation of Exchange, formulated clearly in a seminal paper by Irving Fisher in 1911, establishes an equilibrium relationship between the price index P (also known as "inflation"), the economy's aggregate output Q (also known as "the real gross domestic product"), the amount of money available for spending M (also known as "the money supply"), and the rate at which money is reused V (also known as "the velocity of circulation of money"). This paper offers first a qualitative discussion of what can cause these factors to change and how those causes might be controlled, then develops a quantitative model of inflation based on a non-equilibrium version of the Equation of Exchange. Causal relationships are different from equations in that the effects of changes in the causal variables take time to play out-often significant amounts of time. In the model described here, wages track prices, but only after a distributed lag. Prices change whenever the money supply, aggregate output, or the velocity of circulation of money change, but only after a distributed lag. Similarly, the money supply depends on the supplies of domestic and foreign money, which depend on the monetary base and a variety of foreign transactions, respectively. The spreading of delays mitigates the shocks of sudden changes to important inputs, but the most important aspect of this model is that delays, which often have dramatic consequences in dynamic systems, are explicitly incorporated.macroeconomics, inflation, equation of exchange, non-equilibrium, Athena Project
Reflected stochastic differential equation models for constrained animal movement
Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.
2017-01-01
Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.
Modeling the Informal Economy in Mexico. A Structural Equation Approach
Brambila Macias, Jose
2008-01-01
This paper uses annual data for the period 1970-2006 in order to estimate and investigate the evolution of the Mexican informal economy. In order to do so, we model the informal economy as a latent variable and try to explain it through relationships between possible cause and indicator variables using structural equation modeling (SEM). Our results indicate that the Mexican informal sector at the beginning of the 1970’s initially accounted for 40 percent of GDP while slightly decreasing to s...
Application of Stochastic Partial Differential Equations to Reservoir Property Modelling
Potsepaev, R.
2010-09-06
Existing algorithms of geostatistics for stochastic modelling of reservoir parameters require a mapping (the \\'uvt-transform\\') into the parametric space and reconstruction of a stratigraphic co-ordinate system. The parametric space can be considered to represent a pre-deformed and pre-faulted depositional environment. Existing approximations of this mapping in many cases cause significant distortions to the correlation distances. In this work we propose a coordinate free approach for modelling stochastic textures through the application of stochastic partial differential equations. By avoiding the construction of a uvt-transform and stratigraphic coordinates, one can generate realizations directly in the physical space in the presence of deformations and faults. In particular the solution of the modified Helmholtz equation driven by Gaussian white noise is a zero mean Gaussian stationary random field with exponential correlation function (in 3-D). This equation can be used to generate realizations in parametric space. In order to sample in physical space we introduce a stochastic elliptic PDE with tensor coefficients, where the tensor is related to correlation anisotropy and its variation is physical space.
Calculus for cognitive scientists partial differential equation models
Peterson, James K
2016-01-01
This book shows cognitive scientists in training how mathematics, computer science and science can be usefully and seamlessly intertwined. It is a follow-up to the first two volumes on mathematics for cognitive scientists, and includes the mathematics and computational tools needed to understand how to compute the terms in the Fourier series expansions that solve the cable equation. The latter is derived from first principles by going back to cellular biology and the relevant biophysics. A detailed discussion of ion movement through cellular membranes, and an explanation of how the equations that govern such ion movement leading to the standard transient cable equation are included. There are also solutions for the cable model using separation of variables, as well an explanation of why Fourier series converge and a description of the implementation of MatLab tools to compute the solutions. Finally, the standard Hodgkin - Huxley model is developed for an excitable neuron and is solved using MatLab.
Structural equation models of VMT growth in US urbanised areas.
Ewing, Reid; Hamidi, Shima; Gallivan, Frank; Nelson, Arthur C.; Grace, James B.
2014-01-01
Vehicle miles travelled (VMT) is a primary performance indicator for land use and transportation, bringing with it both positive and negative externalities. This study updates and refines previous work on VMT in urbanised areas, using recent data, additional metrics and structural equation modelling (SEM). In a cross-sectional model for 2010, population, income and freeway capacity are positively related to VMT, while gasoline prices, development density and transit service levels are negatively related. Findings of the cross-sectional model are generally confirmed in a more tightly controlled longitudinal study of changes in VMT between 2000 and 2010, the first model of its kind. The cross-sectional and longitudinal models together, plus the transportation literature generally, give us a basis for generalising across studies to arrive at elasticity values of VMT with respect to different urban variables.
Cause and cure of sloppiness in ordinary differential equation models.
Tönsing, Christian; Timmer, Jens; Kreutz, Clemens
2014-08-01
Data-based mathematical modeling of biochemical reaction networks, e.g., by nonlinear ordinary differential equation (ODE) models, has been successfully applied. In this context, parameter estimation and uncertainty analysis is a major task in order to assess the quality of the description of the system by the model. Recently, a broadened eigenvalue spectrum of the Hessian matrix of the objective function covering orders of magnitudes was observed and has been termed as sloppiness. In this work, we investigate the origin of sloppiness from structures in the sensitivity matrix arising from the properties of the model topology and the experimental design. Furthermore, we present strategies using optimal experimental design methods in order to circumvent the sloppiness issue and present nonsloppy designs for a benchmark model.
Cause and cure of sloppiness in ordinary differential equation models
Tönsing, Christian; Timmer, Jens; Kreutz, Clemens
2014-08-01
Data-based mathematical modeling of biochemical reaction networks, e.g., by nonlinear ordinary differential equation (ODE) models, has been successfully applied. In this context, parameter estimation and uncertainty analysis is a major task in order to assess the quality of the description of the system by the model. Recently, a broadened eigenvalue spectrum of the Hessian matrix of the objective function covering orders of magnitudes was observed and has been termed as sloppiness. In this work, we investigate the origin of sloppiness from structures in the sensitivity matrix arising from the properties of the model topology and the experimental design. Furthermore, we present strategies using optimal experimental design methods in order to circumvent the sloppiness issue and present nonsloppy designs for a benchmark model.
Structural Equation Modeling: Theory and Applications in Forest Management
Directory of Open Access Journals (Sweden)
Tzeng Yih Lam
2012-01-01
Full Text Available Forest ecosystem dynamics are driven by a complex array of simultaneous cause-and-effect relationships. Understanding this complex web requires specialized analytical techniques such as Structural Equation Modeling (SEM. The SEM framework and implementation steps are outlined in this study, and we then demonstrate the technique by application to overstory-understory relationships in mature Douglas-fir forests in the northwestern USA. A SEM model was formulated with (1 a path model representing the effects of successively higher layers of vegetation on late-seral herbs through processes such as light attenuation and (2 a measurement model accounting for measurement errors. The fitted SEM model suggested a direct negative effect of light attenuation on late-seral herbs cover but a direct positive effect of northern aspect. Moreover, many processes have indirect effects mediated through midstory vegetation. SEM is recommended as a forest management tool for designing silvicultural treatments and systems for attaining complex arrays of management objectives.
A single model procedure for estimating tank calibration equations
International Nuclear Information System (INIS)
Liebetrau, A.M.
1997-10-01
A fundamental component of any accountability system for nuclear materials is a tank calibration equation that relates the height of liquid in a tank to its volume. Tank volume calibration equations are typically determined from pairs of height and volume measurements taken in a series of calibration runs. After raw calibration data are standardized to a fixed set of reference conditions, the calibration equation is typically fit by dividing the data into several segments--corresponding to regions in the tank--and independently fitting the data for each segment. The estimates obtained for individual segments must then be combined to obtain an estimate of the entire calibration function. This process is tedious and time-consuming. Moreover, uncertainty estimates may be misleading because it is difficult to properly model run-to-run variability and between-segment correlation. In this paper, the authors describe a model whose parameters can be estimated simultaneously for all segments of the calibration data, thereby eliminating the need for segment-by-segment estimation. The essence of the proposed model is to define a suitable polynomial to fit to each segment and then extend its definition to the domain of the entire calibration function, so that it (the entire calibration function) can be expressed as the sum of these extended polynomials. The model provides defensible estimates of between-run variability and yields a proper treatment of between-segment correlations. A portable software package, called TANCS, has been developed to facilitate the acquisition, standardization, and analysis of tank calibration data. The TANCS package was used for the calculations in an example presented to illustrate the unified modeling approach described in this paper. With TANCS, a trial calibration function can be estimated and evaluated in a matter of minutes
A delay differential equation model of follicle waves in women.
Panza, Nicole M; Wright, Andrew A; Selgrade, James F
2016-01-01
This article presents a mathematical model for hormonal regulation of the menstrual cycle which predicts the occurrence of follicle waves in normally cycling women. Several follicles of ovulatory size that develop sequentially during one menstrual cycle are referred to as follicle waves. The model consists of 13 nonlinear, delay differential equations with 51 parameters. Model simulations exhibit a unique stable periodic cycle and this menstrual cycle accurately approximates blood levels of ovarian and pituitary hormones found in the biological literature. Numerical experiments illustrate that the number of follicle waves corresponds to the number of rises in pituitary follicle stimulating hormone. Modifications of the model equations result in simulations which predict the possibility of two ovulations at different times during the same menstrual cycle and, hence, the occurrence of dizygotic twins via a phenomenon referred to as superfecundation. Sensitive parameters are identified and bifurcations in model behaviour with respect to parameter changes are discussed. Studying follicle waves may be helpful for improving female fertility and for understanding some aspects of female reproductive ageing.
Prior Sensitivity Analysis in Default Bayesian Structural Equation Modeling.
van Erp, Sara; Mulder, Joris; Oberski, Daniel L
2017-11-27
Bayesian structural equation modeling (BSEM) has recently gained popularity because it enables researchers to fit complex models and solve some of the issues often encountered in classical maximum likelihood estimation, such as nonconvergence and inadmissible solutions. An important component of any Bayesian analysis is the prior distribution of the unknown model parameters. Often, researchers rely on default priors, which are constructed in an automatic fashion without requiring substantive prior information. However, the prior can have a serious influence on the estimation of the model parameters, which affects the mean squared error, bias, coverage rates, and quantiles of the estimates. In this article, we investigate the performance of three different default priors: noninformative improper priors, vague proper priors, and empirical Bayes priors-with the latter being novel in the BSEM literature. Based on a simulation study, we find that these three default BSEM methods may perform very differently, especially with small samples. A careful prior sensitivity analysis is therefore needed when performing a default BSEM analysis. For this purpose, we provide a practical step-by-step guide for practitioners to conducting a prior sensitivity analysis in default BSEM. Our recommendations are illustrated using a well-known case study from the structural equation modeling literature, and all code for conducting the prior sensitivity analysis is available in the online supplemental materials. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Measurement Model Specification Error in LISREL Structural Equation Models.
Baldwin, Beatrice; Lomax, Richard
This LISREL study examines the robustness of the maximum likelihood estimates under varying degrees of measurement model misspecification. A true model containing five latent variables (two endogenous and three exogenous) and two indicator variables per latent variable was used. Measurement model misspecification considered included errors of…
Globfit: Consistently fitting primitives by discovering global relations
Li, Yangyan; Wu, Xiaokun; Chrysathou, Yiorgos; Sharf, Andrei Sharf; Cohen-Or, Daniel; Mitra, Niloy J.
2011-01-01
Given a noisy and incomplete point set, we introduce a method that simultaneously recovers a set of locally fitted primitives along with their global mutual relations. We operate under the assumption that the data corresponds to a man-made engineering object consisting of basic primitives, possibly repeated and globally aligned under common relations. We introduce an algorithm to directly couple the local and global aspects of the problem. The local fit of the model is determined by how well the inferred model agrees to the observed data, while the global relations are iteratively learned and enforced through a constrained optimization. Starting with a set of initial RANSAC based locally fitted primitives, relations across the primitives such as orientation, placement, and equality are progressively learned and conformed to. In each stage, a set of feasible relations are extracted among the candidate relations, and then aligned to, while best fitting to the input data. The global coupling corrects the primitives obtained in the local RANSAC stage, and brings them to precise global alignment. We test the robustness of our algorithm on a range of synthesized and scanned data, with varying amounts of noise, outliers, and non-uniform sampling, and validate the results against ground truth, where available. © 2011 ACM.
Globfit: Consistently fitting primitives by discovering global relations
Li, Yangyan
2011-07-01
Given a noisy and incomplete point set, we introduce a method that simultaneously recovers a set of locally fitted primitives along with their global mutual relations. We operate under the assumption that the data corresponds to a man-made engineering object consisting of basic primitives, possibly repeated and globally aligned under common relations. We introduce an algorithm to directly couple the local and global aspects of the problem. The local fit of the model is determined by how well the inferred model agrees to the observed data, while the global relations are iteratively learned and enforced through a constrained optimization. Starting with a set of initial RANSAC based locally fitted primitives, relations across the primitives such as orientation, placement, and equality are progressively learned and conformed to. In each stage, a set of feasible relations are extracted among the candidate relations, and then aligned to, while best fitting to the input data. The global coupling corrects the primitives obtained in the local RANSAC stage, and brings them to precise global alignment. We test the robustness of our algorithm on a range of synthesized and scanned data, with varying amounts of noise, outliers, and non-uniform sampling, and validate the results against ground truth, where available. © 2011 ACM.
Directory of Open Access Journals (Sweden)
Olaniyi Samuel Iyiola
2014-09-01
Full Text Available In this paper, we obtain analytical solutions of homogeneous time-fractional Gardner equation and non-homogeneous time-fractional models (including Buck-master equation using q-Homotopy Analysis Method (q-HAM. Our work displays the elegant nature of the application of q-HAM not only to solve homogeneous non-linear fractional differential equations but also to solve the non-homogeneous fractional differential equations. The presence of the auxiliary parameter h helps in an effective way to obtain better approximation comparable to exact solutions. The fraction-factor in this method gives it an edge over other existing analytical methods for non-linear differential equations. Comparisons are made upon the existence of exact solutions to these models. The analysis shows that our analytical solutions converge very rapidly to the exact solutions.
Hovering of model insects: simulation by coupling equations of motion with Navier-Stokes equations.
Wu, Jiang Hao; Zhang, Yan Lai; Sun, Mao
2009-10-01
When an insect hovers, the centre of mass of its body oscillates around a point in the air and its body angle oscillates around a mean value, because of the periodically varying aerodynamic and inertial forces of the flapping wings. In the present paper, hover flight including body oscillations is simulated by coupling the equations of motion with the Navier-Stokes equations. The equations are solved numerically; periodical solutions representing the hover flight are obtained by the shooting method. Two model insects are considered, a dronefly and a hawkmoth; the former has relatively high wingbeat frequency (n) and small wing mass to body mass ratio, whilst the latter has relatively low wingbeat frequency and large wing mass to body mass ratio. The main results are as follows. (i) The body mainly has a horizontal oscillation; oscillation in the vertical direction is about 1/6 of that in the horizontal direction and oscillation in pitch angle is relatively small. (ii) For the hawkmoth, the peak-to-peak values of the horizontal velocity, displacement and pitch angle are 0.11 U (U is the mean velocity at the radius of gyration of the wing), 0.22 c=4 mm (c is the mean chord length) and 4 deg., respectively. For the dronefly, the corresponding values are 0.02 U, 0.05 c=0.15 mm and 0.3 deg., much smaller than those of the hawkmoth. (iii) The horizontal motion of the body decreases the relative velocity of the wings by a small amount. As a result, a larger angle of attack of the wing, and hence a larger drag to lift ratio or larger aerodynamic power, is required for hovering, compared with the case of neglecting body oscillations. For the hawkmoth, the angle of attack is about 3.5 deg. larger and the specific power about 9% larger than that in the case of neglecting the body oscillations; for the dronefly, the corresponding values are 0.7 deg. and 2%. (iv) The horizontal oscillation of the body consists of two parts; one (due to wing aerodynamic force) is proportional to
Directory of Open Access Journals (Sweden)
Linares OA
2015-07-01
Full Text Available Oscar A Linares,1 William E Schiesser,2 Jeffrey Fudin,3–6 Thien C Pham,6 Jeffrey J Bettinger,6 Roy O Mathew,6 Annemarie L Daly7 1Translational Genomic Medicine Lab, Plymouth Pharmacokinetic Modeling Study Group, Plymouth, MI, 2Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, 3University of Connecticut School of Pharmacy, Storrs, CT, 4Western New England College of Pharmacy, Springfield, MA, 5Albany College of Pharmacy and Health Sciences, Albany, NY, 6Stratton VA Medical Center, Albany, NY, 7Grace Hospice of Ann Arbor, Ann Arbor, MI, USA Background: There is a need to have a model to study methadone’s losses during hemodialysis to provide informed methadone dose recommendations for the practitioner. Aim: To build a one-dimensional (1-D, hollow-fiber geometry, ordinary differential equation (ODE and partial differential equation (PDE countercurrent hemodialyzer model (ODE/PDE model. Methodology: We conducted a cross-sectional study in silico that evaluated eleven hemodialysis patients. Patients received a ceiling dose of methadone hydrochloride 30 mg/day. Outcome measures included: the total amount of methadone removed during dialysis; methadone’s overall intradialytic mass transfer rate coefficient, km; and, methadone’s removal rate, jME. Each metric was measured at dialysate flow rates of 250 mL/min and 800 mL/min. Results: The ODE/PDE model revealed a significant increase in the change of methadone’s mass transfer with increased dialysate flow rate, %Δ km=18.56, P=0.02, N=11. The total amount of methadone mass transferred across the dialyzer membrane with high dialysate flow rate significantly increased (0.042±0.016 versus 0.052±0.019 mg/kg, P=0.02, N=11. This was accompanied by a small significant increase in methadone’s mass transfer rate (0.113±0.002 versus 0.014±0.002 mg/kg/h, P=0.02, N=11. The ODE/PDE model accurately predicted methadone’s removal during dialysis. The absolute value
Quintom models with an equation of state crossing -1
International Nuclear Information System (INIS)
Zhao Wen; Zhang Yang
2006-01-01
In this paper, we investigate a kind of special quintom model, which is made of a quintessence field φ 1 and a phantom field φ 2 , and the potential function has the form of V(φ 1 2 -φ 2 2 ). This kind of quintom field can be separated into two kinds: the hessence model, which has the state of φ 1 2 >φ 2 2 , and the hantom model with the state φ 1 2 2 2 . We discuss the evolution of these models in the ω-ω ' plane (ω is the state equation of the dark energy, and ω ' is its time derivative in units of Hubble time), and find that according to ω>-1 or ' plane can be divided into four parts. The late time attractor solution, if existing, is always quintessencelike or Λ-like for hessence field, so the big rip does not exist. But for hantom field, its late time attractor solution can be phantomlike or Λ-like, and sometimes, the big rip is unavoidable. Then we consider two special cases: one is the hessence field with an exponential potential, and the other is with a power law potential. We investigate their evolution in the ω-ω ' plane. We also develop a theoretical method of constructing the hessence potential function directly from the effective equation-of-state function ω(z). We apply our method to five kinds of parametrizations of equation-of-state parameter, where ω crossing -1 can exist, and find they all can be realized. At last, we discuss the evolution of the perturbations of the quintom field, and find the perturbations of the quintom δ Q and the metric Φ are all finite even at the state of ω=-1 and ω ' ≠0
Modeling Blazar Spectra by Solving an Electron Transport Equation
Lewis, Tiffany; Finke, Justin; Becker, Peter A.
2018-01-01
Blazars are luminous active galaxies across the entire electromagnetic spectrum, but the spectral formation mechanisms, especially the particle acceleration, in these sources are not well understood. We develop a new theoretical model for simulating blazar spectra using a self-consistent electron number distribution. Specifically, we solve the particle transport equation considering shock acceleration, adiabatic expansion, stochastic acceleration due to MHD waves, Bohm diffusive particle escape, synchrotron radiation, and Compton radiation, where we implement the full Compton cross-section for seed photons from the accretion disk, the dust torus, and 26 individual broad lines. We used a modified Runge-Kutta method to solve the 2nd order equation, including development of a new mathematical method for normalizing stiff steady-state ordinary differential equations. We show that our self-consistent, transport-based blazar model can qualitatively fit the IR through Fermi g-ray data for 3C 279, with a single-zone, leptonic configuration. We use the solution for the electron distribution to calculate multi-wavelength SED spectra for 3C 279. We calculate the particle and magnetic field energy densities, which suggest that the emitting region is not always in equipartition (a common assumption), but sometimes matter dominated. The stratified broad line region (based on ratios in quasar reverberation mapping, and thus adding no free parameters) improves our estimate of the location of the emitting region, increasing it by ~5x. Our model provides a novel view into the physics at play in blazar jets, especially the relative strength of the shock and stochastic acceleration, where our model is well suited to distinguish between these processes, and we find that the latter tends to dominate.
Nucleation and condensation in the primitive solar nebula
International Nuclear Information System (INIS)
Cameron, A.G.W.; Fegley, M.B.
1982-01-01
It is pointed out that the primitive solar nebula may be modeled using the frictionally induced transport theory of Lynden-Bell and Pringle (1974) if the principal frictional mechanism within the nebula is turbulent viscosity. The present investigation is concerned with the construction of a model of a section of the primitive solar nebula as a basis for the study of nucleation and condensation processes within this section. The construction involves a relatively simple application of the Lynden-Bell and Pringle theory subject to steady mass flow conditions. The calculations which are conducted in connection with the investigation indicate that by the time the gas in the primitive solar nebula has become sufficiently supercooled to nucleate condensation centers, several different compounds, including the magnesium silicates forsterite and enstatite (MgSiO 3 ), will probably be able to condense on the growing condensation center
Equation-based model for the stock market.
Xavier, Paloma O C; Atman, A P F; de Magalhães, A R Bosco
2017-09-01
We propose a stock market model which is investigated in the forms of difference and differential equations whose variables correspond to the demand or supply of each agent and to the price. In the model, agents are driven by the behavior of their trust contact network as well by fundamental analysis. By means of the deterministic version of the model, the connection between such drive mechanisms and the price is analyzed: imitation behavior promotes market instability, finitude of resources is associated to stock index stability, and high sensitivity to the fair price provokes price oscillations. Long-range correlations in the price temporal series and heavy-tailed distribution of returns are observed for the version of the model which considers different proposals for stochasticity of microeconomic and macroeconomic origins.
Working covariance model selection for generalized estimating equations.
Carey, Vincent J; Wang, You-Gan
2011-11-20
We investigate methods for data-based selection of working covariance models in the analysis of correlated data with generalized estimating equations. We study two selection criteria: Gaussian pseudolikelihood and a geodesic distance based on discrepancy between model-sensitive and model-robust regression parameter covariance estimators. The Gaussian pseudolikelihood is found in simulation to be reasonably sensitive for several response distributions and noncanonical mean-variance relations for longitudinal data. Application is also made to a clinical dataset. Assessment of adequacy of both correlation and variance models for longitudinal data should be routine in applications, and we describe open-source software supporting this practice. Copyright © 2011 John Wiley & Sons, Ltd.
Equation-based model for the stock market
Xavier, Paloma O. C.; Atman, A. P. F.; de Magalhães, A. R. Bosco
2017-09-01
We propose a stock market model which is investigated in the forms of difference and differential equations whose variables correspond to the demand or supply of each agent and to the price. In the model, agents are driven by the behavior of their trust contact network as well by fundamental analysis. By means of the deterministic version of the model, the connection between such drive mechanisms and the price is analyzed: imitation behavior promotes market instability, finitude of resources is associated to stock index stability, and high sensitivity to the fair price provokes price oscillations. Long-range correlations in the price temporal series and heavy-tailed distribution of returns are observed for the version of the model which considers different proposals for stochasticity of microeconomic and macroeconomic origins.
Using of Structural Equation Modeling Techniques in Cognitive Levels Validation
Directory of Open Access Journals (Sweden)
Natalija Curkovic
2012-10-01
Full Text Available When constructing knowledge tests, cognitive level is usually one of the dimensions comprising the test specifications with each item assigned to measure a particular level. Recently used taxonomies of the cognitive levels most often represent some modification of the original Bloom’s taxonomy. There are many concerns in current literature about existence of predefined cognitive levels. The aim of this article is to investigate can structural equation modeling techniques confirm existence of different cognitive levels. For the purpose of the research, a Croatian final high-school Mathematics exam was used (N = 9626. Confirmatory factor analysis and structural regression modeling were used to test three different models. Structural equation modeling techniques did not support existence of different cognitive levels in this case. There is more than one possible explanation for that finding. Some other techniques that take into account nonlinear behaviour of the items as well as qualitative techniques might be more useful for the purpose of the cognitive levels validation. Furthermore, it seems that cognitive levels were not efficient descriptors of the items and so improvements are needed in describing the cognitive skills measured by items.
Equation-free model reduction for complex dynamical systems
International Nuclear Information System (INIS)
Le Maitre, O. P.; Mathelin, L.; Le Maitre, O. P.
2010-01-01
This paper presents a reduced model strategy for simulation of complex physical systems. A classical reduced basis is first constructed relying on proper orthogonal decomposition of the system. Then, unlike the alternative approaches, such as Galerkin projection schemes for instance, an equation-free reduced model is constructed. It consists in the determination of an explicit transformation, or mapping, for the evolution over a coarse time-step of the projection coefficients of the system state on the reduced basis. The mapping is expressed as an explicit polynomial transformation of the projection coefficients and is computed once and for all in a pre-processing stage using the detailed model equation of the system. The reduced system can then be advanced in time by successive applications of the mapping. The CPU cost of the method lies essentially in the mapping approximation which is performed offline, in a parallel fashion, and only once. Subsequent application of the mapping to perform a time-integration is carried out at a low cost thanks to its explicit character. Application of the method is considered for the 2-D flow around a circular cylinder. We investigate the effectiveness of the reduced model in rendering the dynamics for both asymptotic state and transient stages. It is shown that the method leads to a stable and accurate time-integration for only a fraction of the cost of a detailed simulation, provided that the mapping is properly approximated and the reduced basis remains relevant for the dynamics investigated. (authors)
Analysis of Eddy Resolving Model of the California Current System
National Research Council Canada - National Science Library
Cipriano, Nicholas
1998-01-01
A high-resolution, multi-level, primitive equation ocean model is used to investigate the combined role of seasonal wind forcing, thermohaline gradients, and coastline irregularities on the formation...
Local fit evaluation of structural equation models using graphical criteria.
Thoemmes, Felix; Rosseel, Yves; Textor, Johannes
2018-03-01
Evaluation of model fit is critically important for every structural equation model (SEM), and sophisticated methods have been developed for this task. Among them are the χ² goodness-of-fit test, decomposition of the χ², derived measures like the popular root mean square error of approximation (RMSEA) or comparative fit index (CFI), or inspection of residuals or modification indices. Many of these methods provide a global approach to model fit evaluation: A single index is computed that quantifies the fit of the entire SEM to the data. In contrast, graphical criteria like d-separation or trek-separation allow derivation of implications that can be used for local fit evaluation, an approach that is hardly ever applied. We provide an overview of local fit evaluation from the viewpoint of SEM practitioners. In the presence of model misfit, local fit evaluation can potentially help in pinpointing where the problem with the model lies. For models that do fit the data, local tests can identify the parts of the model that are corroborated by the data. Local tests can also be conducted before a model is fitted at all, and they can be used even for models that are globally underidentified. We discuss appropriate statistical local tests, and provide applied examples. We also present novel software in R that automates this type of local fit evaluation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Partial differential equation models in the socio-economic sciences.
Burger, Martin; Caffarelli, Luis; Markowich, Peter A
2014-11-13
Mathematical models based on partial differential equations (PDEs) have become an integral part of quantitative analysis in most branches of science and engineering, recently expanding also towards biomedicine and socio-economic sciences. The application of PDEs in the latter is a promising field, but widely quite open and leading to a variety of novel mathematical challenges. In this introductory article of the Theme Issue, we will provide an overview of the field and its recent boosting topics. Moreover, we will put the contributions to the Theme Issue in an appropriate perspective. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Equilibrium models of trade equations : a critical review
Portugal, Marcelo Savino
1993-01-01
Neste artigo, revisa-se a literatura teórica sobre equações de comércio exterior, inclusive o modelo de comércio baseado na teoria da produção. Discute-se vários problemas comumente encontrados em trabalhos empíricos e também a literatura existente sobre equações relativas ao comércio exterior brasileiro. In this paper we review the theoretical literature on trade equation models, including the production theory approach. We discuss several empirical problems commonly found in the applied ...
Partial differential equation models in the socio-economic sciences
Burger, Martin
2014-10-06
Mathematical models based on partial differential equations (PDEs) have become an integral part of quantitative analysis in most branches of science and engineering, recently expanding also towards biomedicine and socio-economic sciences. The application of PDEs in the latter is a promising field, but widely quite open and leading to a variety of novel mathematical challenges. In this introductory article of the Theme Issue, we will provide an overview of the field and its recent boosting topics. Moreover, we will put the contributions to the Theme Issue in an appropriate perspective.
New equation of state model for hydrodynamic applications
Energy Technology Data Exchange (ETDEWEB)
Young, D.A.; Barbee, T.W. III; Rogers, F.J.
1997-07-01
Two new theoretical methods for computing the equation of state of hot, dense matter are discussed.The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations.
New equation of state models for hydrodynamic applications
Young, David A.; Barbee, Troy W.; Rogers, Forrest J.
1998-07-01
Two new theoretical methods for computing the equation of state of hot, dense matter are discussed. The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations.
New equation of state models for hydrodynamic applications
Energy Technology Data Exchange (ETDEWEB)
Young, D.A.; Barbee, T.W. III; Rogers, F.J. [Physics Department, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)
1998-07-01
Two new theoretical methods for computing the equation of state of hot, dense matter are discussed. The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations. {copyright} {ital 1998 American Institute of Physics.}
Compositional studies of primitive asteroids
International Nuclear Information System (INIS)
Vilas, F.
1988-01-01
The composition of primitive asteroids and their relationship to satellites in the solar system will be studied by analyzing existing narrowband charge coupled device (CCD) reflectance spectra, acquiring additional spectra of asteroids and small satellites in the 0.5 to 1.0 micrometer spectral range, and exploring possibilities for obtaining compositional information in the blue-UV spectral region. Comparison with laboratory spectra of terrestrial chlorites and serpentines (phyllosilicates) and the clay minerals found in carbonaceous chondrite meteorites will continue. During 1987, narrowband CCD reflectance spectra of 17 additional asteroids were acquired. These spectra and spectra of 34 other asteroids have been used primarily for two studies: weak absorption features similar to those due to Fe2(+) and Fe2(+) - Fe3(+) transitions in iron oxides f ound in terrestrial chlorites and serpentines and carbonaceous chondrites have been identified in some primitive asteroid spectra. There is a first indication that asteroids grouped by heliocentric distance show similar weak absorption features. Nonparametric statistics are being applied to test the hypothesis of discrete remnants of a gradation in composition of outer-belt asteroids
[Cranial trepanation in primitive cultures].
González-Darder, José Manuel
A review is presented on cranial trepanations performed by primitive cultures. The scientific interest in this topic began after the discovery in 1965 by Ephraim G. Squier of a pre-Columbian trepanated skull, and studied by Paul Broca in Paris. Pseudotrepanation and other types of cranial manipulation are reviewed. The techniques, technology, and instruments for every type of trepanation are well known. There are a surprisingly high percentage of cases showing signs of post-trepanation survival. Indications for trepanation are speculative, perhaps magic. Although trepanation in primitive cultures is widespread around the world, and throughout time, the main fields of interest are the Neolithic Period in Europe, the pre-Columbian Period in Andean South America, and some contemporaneous Pacific and African tribes. This particular trepanation procedure has no relationship with modern Neurosurgery, or with trepanations with therapeutic purposes performed since the Greco-Roman period in Europe, and afterwards around the world. Copyright © 2016 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.
Breast metastases primitive extra mammary
International Nuclear Information System (INIS)
Terzieff, V.; Vázquez, A.; Alonso, I.; Sabini, G.
2004-01-01
Less than 3% of all breast cancers originate from a primitive extra mammary. In 40% of cases it is the first manifestation of the primitive properly studied but 80% are associated with widely disseminated disease. It typically presents as a nodule on external quadrant s painful in half the cases. The majority (60%) of metastases derived from breast contralateral breast tumors are believed to via the lymphatic system. of the ; extra mammary the most common tumors are melanoma; hematologic and neuroendocrine. Although some imaging characteristics can guide diagnosis is histological. Cytology has good performance in experienced hands; but up to 25% of cases there may be difficulty in establishing diagnosis. Treatment depends on the type of tumor. Mastectomy should not be practiced or axillary clearance routine as is generally the context of disease disseminated. Radiation therapy may be useful for local control. It has been proposed laser ablation but no experience with it. The overall prognosis is bad. For a man of 45 with a breast metastasis occurs only a clear cell carcinoma of the kidney
Acoustic 3D modeling by the method of integral equations
Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.
2018-02-01
This paper presents a parallel algorithm for frequency-domain acoustic modeling by the method of integral equations (IE). The algorithm is applied to seismic simulation. The IE method reduces the size of the problem but leads to a dense system matrix. A tolerable memory consumption and numerical complexity were achieved by applying an iterative solver, accompanied by an effective matrix-vector multiplication operation, based on the fast Fourier transform (FFT). We demonstrate that, the IE system matrix is better conditioned than that of the finite-difference (FD) method, and discuss its relation to a specially preconditioned FD matrix. We considered several methods of matrix-vector multiplication for the free-space and layered host models. The developed algorithm and computer code were benchmarked against the FD time-domain solution. It was demonstrated that, the method could accurately calculate the seismic field for the models with sharp material boundaries and a point source and receiver located close to the free surface. We used OpenMP to speed up the matrix-vector multiplication, while MPI was used to speed up the solution of the system equations, and also for parallelizing across multiple sources. The practical examples and efficiency tests are presented as well.
Structural Equation Models in a Redundancy Analysis Framework With Covariates.
Lovaglio, Pietro Giorgio; Vittadini, Giorgio
2014-01-01
A recent method to specify and fit structural equation modeling in the Redundancy Analysis framework based on so-called Extended Redundancy Analysis (ERA) has been proposed in the literature. In this approach, the relationships between the observed exogenous variables and the observed endogenous variables are moderated by the presence of unobservable composites, estimated as linear combinations of exogenous variables. However, in the presence of direct effects linking exogenous and endogenous variables, or concomitant indicators, the composite scores are estimated by ignoring the presence of the specified direct effects. To fit structural equation models, we propose a new specification and estimation method, called Generalized Redundancy Analysis (GRA), allowing us to specify and fit a variety of relationships among composites, endogenous variables, and external covariates. The proposed methodology extends the ERA method, using a more suitable specification and estimation algorithm, by allowing for covariates that affect endogenous indicators indirectly through the composites and/or directly. To illustrate the advantages of GRA over ERA we propose a simulation study of small samples. Moreover, we propose an application aimed at estimating the impact of formal human capital on the initial earnings of graduates of an Italian university, utilizing a structural model consistent with well-established economic theory.
Simulating sympathetic detonation using the hydrodynamic models and constitutive equations
Energy Technology Data Exchange (ETDEWEB)
Kim, Bo Hoon; Kim, Min Sung; Yoh, Jack J. [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Sun, Tae Boo [Hanwha Corporation Defense Rand D Center, Daejeon (Korea, Republic of)
2016-12-15
A Sympathetic detonation (SD) is a detonation of an explosive charge by a nearby explosion. Most of times it is unintended while the impact of blast fragments or strong shock waves from the initiating donor explosive is the cause of SD. We investigate the SD of a cylindrical explosive charge (64 % RDX, 20 % Al, 16 % HTPB) contained in a steel casing. The constitutive relations for high explosive are obtained from a thermo-chemical code that provides the size effect data without the rate stick data typically used for building the rate law and equation of state. A full size SD test of eight pallet-packaged artillery shells is performed that provides the pressure data while the hydrodynamic model with proper constitutive relations for reactive materials and the fragmentation model for steel casing is conducted to replicate the experimental findings. The work presents a novel effort to accurately model and reproduce the sympathetic detonation event with a reduced experimental effort.
Equation of state experiments and theory relevant to planetary modelling
International Nuclear Information System (INIS)
Ross, M.; Graboske, H.C. Jr.; Nellis, W.J.
1981-01-01
In recent years there have been a number of static and shockwave experiments on the properties of planetary materials. The highest pressure measurements, and the ones most relevant to planetary modelling, have been obtained by shock compression. Of particular interest to the Jovian group are results for H 2 , H 2 O, CH 4 and NH 3 . Although the properties of metallic hydrogen have not been measured, they have been the subject of extensive calculations. In addition recent shock wave experiments on iron report to have detected melting under Earth core conditions. From this data theoretical models have been developed for computing the equations of state of materials used in planetary studies. A compelling feature that has followed from the use of improved material properties is a simplification in the planetary models. (author)
Computationally efficient statistical differential equation modeling using homogenization
Hooten, Mevin B.; Garlick, Martha J.; Powell, James A.
2013-01-01
Statistical models using partial differential equations (PDEs) to describe dynamically evolving natural systems are appearing in the scientific literature with some regularity in recent years. Often such studies seek to characterize the dynamics of temporal or spatio-temporal phenomena such as invasive species, consumer-resource interactions, community evolution, and resource selection. Specifically, in the spatial setting, data are often available at varying spatial and temporal scales. Additionally, the necessary numerical integration of a PDE may be computationally infeasible over the spatial support of interest. We present an approach to impose computationally advantageous changes of support in statistical implementations of PDE models and demonstrate its utility through simulation using a form of PDE known as “ecological diffusion.” We also apply a statistical ecological diffusion model to a data set involving the spread of mountain pine beetle (Dendroctonus ponderosae) in Idaho, USA.
Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.
2009-01-01
This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…
Ramlall, Indranarain
2016-01-01
This book explains in a rigorous, concise and practical manner all the vital components embedded in structural equation modelling. Focusing on R and stata to implement and perform various structural equation models.
A stochastic differential equation model of diurnal cortisol patterns
Brown, E. N.; Meehan, P. M.; Dempster, A. P.
2001-01-01
Circadian modulation of episodic bursts is recognized as the normal physiological pattern of diurnal variation in plasma cortisol levels. The primary physiological factors underlying these diurnal patterns are the ultradian timing of secretory events, circadian modulation of the amplitude of secretory events, infusion of the hormone from the adrenal gland into the plasma, and clearance of the hormone from the plasma by the liver. Each measured plasma cortisol level has an error arising from the cortisol immunoassay. We demonstrate that all of these three physiological principles can be succinctly summarized in a single stochastic differential equation plus measurement error model and show that physiologically consistent ranges of the model parameters can be determined from published reports. We summarize the model parameters in terms of the multivariate Gaussian probability density and establish the plausibility of the model with a series of simulation studies. Our framework makes possible a sensitivity analysis in which all model parameters are allowed to vary simultaneously. The model offers an approach for simultaneously representing cortisol's ultradian, circadian, and kinetic properties. Our modeling paradigm provides a framework for simulation studies and data analysis that should be readily adaptable to the analysis of other endocrine hormone systems.
How motivation affects academic performance: a structural equation modelling analysis.
Kusurkar, R A; Ten Cate, Th J; Vos, C M P; Westers, P; Croiset, G
2013-03-01
Few studies in medical education have studied effect of quality of motivation on performance. Self-Determination Theory based on quality of motivation differentiates between Autonomous Motivation (AM) that originates within an individual and Controlled Motivation (CM) that originates from external sources. To determine whether Relative Autonomous Motivation (RAM, a measure of the balance between AM and CM) affects academic performance through good study strategy and higher study effort and compare this model between subgroups: males and females; students selected via two different systems namely qualitative and weighted lottery selection. Data on motivation, study strategy and effort was collected from 383 medical students of VU University Medical Center Amsterdam and their academic performance results were obtained from the student administration. Structural Equation Modelling analysis technique was used to test a hypothesized model in which high RAM would positively affect Good Study Strategy (GSS) and study effort, which in turn would positively affect academic performance in the form of grade point averages. This model fit well with the data, Chi square = 1.095, df = 3, p = 0.778, RMSEA model fit = 0.000. This model also fitted well for all tested subgroups of students. Differences were found in the strength of relationships between the variables for the different subgroups as expected. In conclusion, RAM positively correlated with academic performance through deep strategy towards study and higher study effort. This model seems valid in medical education in subgroups such as males, females, students selected by qualitative and weighted lottery selection.
Fermat’s ‘primitive solutions’ and some arithmetic of elliptic curves
Top, Jaap
1993-01-01
In his work on Diophantine equations of the form y2=ax4+bx3+cx2+dx+e, Fermat introduced the notion of primitive solutions. In this expository note we intend to interpret this notion more geometrically, and explain what it means in terms of the arithmetic of elliptic curves. The specific equation
Context of culture: Critique of the primitive mind
Directory of Open Access Journals (Sweden)
Božilović Nikola
2010-01-01
Full Text Available The author of this paper has the intention to reach the new meaning and sense of the primitive mentality by analyzing it in early social communities. He also wants to point out the possible reflections of the spirit and consciousness of our ancestors on us, here and now. The first part of the paper is dedicated to a critical deliberation on anthropological conflicts which have arisen concerning the reasoning power of the so-called primitives. The crucial question lies in the following: Is the difference between the “primitive” and the “civilized” mentality fundamental or is it possible only to a certain degree. The author takes the notion of primitive mentality through time and points to the medieval understandings, which are occupied by teratological themes, then to the renaissance comprehension, which relies on the first experiential observations, and, finally, to the enlightenment ideas of exotic peoples out of which the myth of “the good savage” is born. The nineteenth and twentieth centuries introduce the notions of “people’s character” and “national spirit”. The opinions are polarized, on the one hand of ethnocentrism, carried by the prejudice of people and ethnic groups and, on the other hand, of cultural relativism, based on the understanding and appreciation of cultural differences. In the end, the author also recognizes the modern primitive man, one who is not ready to deal with the challenges of his age. The modern primitive recalls the spirits of the past, the surviving and anachronic models of behavior, unaware of the fact that these are the same models that he has ascribed to “savages”. However, while such thinking and acting was justified by the cultural level at which our ancestors had lived, the mental frame of the contemporary primitives is significantly in contrast with the high level of civilization development.
On the specification of structural equation models for ecological systems
Grace, J.B.; Michael, Anderson T.; Han, O.; Scheiner, S.M.
2010-01-01
The use of structural equation modeling (SEM) is often motivated by its utility for investigating complex networks of relationships, but also because of its promise as a means of representing theoretical concepts using latent variables. In this paper, we discuss characteristics of ecological theory and some of the challenges for proper specification of theoretical ideas in structural equation models (SE models). In our presentation, we describe some of the requirements for classical latent variable models in which observed variables (indicators) are interpreted as the effects of underlying causes. We also describe alternative model specifications in which indicators are interpreted as having causal influences on the theoretical concepts. We suggest that this latter nonclassical specification (which involves another variable type-the composite) will often be appropriate for ecological studies because of the multifaceted nature of our theoretical concepts. In this paper, we employ the use of meta-models to aid the translation of theory into SE models and also to facilitate our ability to relate results back to our theories. We demonstrate our approach by showing how a synthetic theory of grassland biodiversity can be evaluated using SEM and data from a coastal grassland. In this example, the theory focuses on the responses of species richness to abiotic stress and disturbance, both directly and through intervening effects on community biomass. Models examined include both those based on classical forms (where each concept is represented using a single latent variable) and also ones in which the concepts are recognized to be multifaceted and modeled as such. To address the challenge of matching SE models with the conceptual level of our theory, two approaches are illustrated, compositing and aggregation. Both approaches are shown to have merits, with the former being preferable for cases where the multiple facets of a concept have widely differing effects in the
Reduction of static field equation of Faddeev model to first order PDE
International Nuclear Information System (INIS)
Hirayama, Minoru; Shi Changguang
2007-01-01
A method to solve the static field equation of the Faddeev model is presented. For a special combination of the concerned field, we adopt a form which is compatible with the field equation and involves two arbitrary complex functions. As a result, the static field equation is reduced to a set of first order partial differential equations
Explicit estimating equations for semiparametric generalized linear latent variable models
Ma, Yanyuan
2010-07-05
We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.
Suicidal ideation in adolescents: A structural equation modeling approach.
Choi, Jung-Hyun; Yu, Mi; Kim, Kyoung-Eun
2014-06-19
The purpose of this study is to test a model linking adolescents' experience of violence and peer support to their happiness and suicidal ideation. The participants were high school students in Seoul, and in Kyungi, and Chungnam Provinces in Korea. The Conflict Tactics Scale, School Violence Scale, Oxford Happiness Inventory, and Suicidal Ideation Questionnaire were administered to just over 1000 adolescents. The model was tested using a path analysis technique within structural equation modeling. The model fit indices suggest that the revised model is a better fit for the data than the original hypothesized model. The experience of violence had a significant negative direct effect and peer support had a significant positive direct effect on their happiness. Happiness had a significant negative effect and the experience of violence had a significant positive effect on suicidal ideation. These findings demonstrate the fundamental importance of reducing exposure of violence to adolescents, and that increasing peer support and their happiness may be the key to adolescent suicidal ideation prevention. © 2014 Wiley Publishing Asia Pty Ltd.
Structural equation modeling with EQS basic concepts, applications, and programming
Byrne, Barbara M
2013-01-01
Readers who want a less mathematical alternative to the EQS manual will find exactly what they're looking for in this practical text. Written specifically for those with little to no knowledge of structural equation modeling (SEM) or EQS, the author's goal is to provide a non-mathematical introduction to the basic concepts of SEM by applying these principles to EQS, Version 6.1. The book clearly demonstrates a wide variety of SEM/EQS applications that include confirmatory factor analytic and full latent variable models. Written in a "user-friendly" style, the author "walks" the reader through the varied steps involved in the process of testing SEM models: model specification and estimation, assessment of model fit, EQS output, and interpretation of findings. Each of the book's applications is accompanied by: a statement of the hypothesis being tested, a schematic representation of the model, explanations of the EQS input and output files, tips on how to use the pull-down menus, and the data file upon which ...
The ACTIVE conceptual framework as a structural equation model
Gross, Alden L.; Payne, Brennan R.; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M.; Farias, Sarah; Giovannetti, Tania; Ip, Edward H.; Marsiske, Michael; Rebok, George W.; Schaie, K. Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N.
2018-01-01
Background/Study Context Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. Methods The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Results Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p conceptual model. Findings suggest that the types of people who show intervention effects on cognitive performance potentially may be
The ACTIVE conceptual framework as a structural equation model.
Gross, Alden L; Payne, Brennan R; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M; Farias, Sarah; Giovannetti, Tania; Ip, Edward H; Marsiske, Michael; Rebok, George W; Schaie, K Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N
2018-01-01
Background/Study Context: Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p conceptual model. Findings suggest that the types of people who show intervention effects on cognitive performance potentially may be different from
Controlled Nonlinear Stochastic Delay Equations: Part I: Modeling and Approximations
International Nuclear Information System (INIS)
Kushner, Harold J.
2012-01-01
This two-part paper deals with “foundational” issues that have not been previously considered in the modeling and numerical optimization of nonlinear stochastic delay systems. There are new classes of models, such as those with nonlinear functions of several controls (such as products), each with is own delay, controlled random Poisson measure driving terms, admissions control with delayed retrials, and others. There are two basic and interconnected themes for these models. The first, dealt with in this part, concerns the definition of admissible control. The classical definition of an admissible control as a nonanticipative relaxed control is inadequate for these models and needs to be extended. This is needed for the convergence proofs of numerical approximations for optimal controls as well as to have a well-defined model. It is shown that the new classes of admissible controls do not enlarge the range of the value functions, is closed (together with the associated paths) under weak convergence, and is approximatable by ordinary controls. The second theme, dealt with in Part II, concerns transportation equation representations, and their role in the development of numerical algorithms with much reduced memory and computational requirements.
Predictive model for early math skills based on structural equations.
Aragón, Estíbaliz; Navarro, José I; Aguilar, Manuel; Cerda, Gamal; García-Sedeño, Manuel
2016-12-01
Early math skills are determined by higher cognitive processes that are particularly important for acquiring and developing skills during a child's early education. Such processes could be a critical target for identifying students at risk for math learning difficulties. Few studies have considered the use of a structural equation method to rationalize these relations. Participating in this study were 207 preschool students ages 59 to 72 months, 108 boys and 99 girls. Performance with respect to early math skills, early literacy, general intelligence, working memory, and short-term memory was assessed. A structural equation model explaining 64.3% of the variance in early math skills was applied. Early literacy exhibited the highest statistical significance (β = 0.443, p < 0.05), followed by intelligence (β = 0.286, p < 0.05), working memory (β = 0.220, p < 0.05), and short-term memory (β = 0.213, p < 0.05). Correlations between the independent variables were also significant (p < 0.05). According to the results, cognitive variables should be included in remedial intervention programs. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Quantifying uncertainty, variability and likelihood for ordinary differential equation models
LENUS (Irish Health Repository)
Weisse, Andrea Y
2010-10-28
Abstract Background In many applications, ordinary differential equation (ODE) models are subject to uncertainty or variability in initial conditions and parameters. Both, uncertainty and variability can be quantified in terms of a probability density function on the state and parameter space. Results The partial differential equation that describes the evolution of this probability density function has a form that is particularly amenable to application of the well-known method of characteristics. The value of the density at some point in time is directly accessible by the solution of the original ODE extended by a single extra dimension (for the value of the density). This leads to simple methods for studying uncertainty, variability and likelihood, with significant advantages over more traditional Monte Carlo and related approaches especially when studying regions with low probability. Conclusions While such approaches based on the method of characteristics are common practice in other disciplines, their advantages for the study of biological systems have so far remained unrecognized. Several examples illustrate performance and accuracy of the approach and its limitations.
Hydrodynamic Equations for Flocking Models without Velocity Alignment
Peruani, Fernando
2017-10-01
The spontaneous emergence of collective motion patterns is usually associated with the presence of a velocity alignment mechanism that mediates the interactions among the moving individuals. Despite of this widespread view, it has been shown recently that several flocking behaviors can emerge in the absence of velocity alignment and as a result of short-range, position-based, attractive forces that act inside a vision cone. Here, we derive the corresponding hydrodynamic equations of a microscopic position-based flocking model, reviewing and extending previous reported results. In particular, we show that three distinct macroscopic collective behaviors can be observed: i) the coarsening of aggregates with no orientational order, ii) the emergence of static, elongated nematic bands, and iii) the formation of moving, locally polar structures, which we call worms. The derived hydrodynamic equations indicate that active particles interacting via position-based interactions belong to a distinct class of active systems fundamentally different from other active systems, including velocity-alignment-based flocking systems.
New Exact Solutions for New Model Nonlinear Partial Differential Equation
Maher, A.; El-Hawary, H. M.; Al-Amry, M. S.
2013-01-01
In this paper we propose a new form of Padé-II equation, namely, a combined Padé-II and modified Padé-II equation. The mapping method is a promising method to solve nonlinear evaluation equations. Therefore, we apply it, to solve the combined Padé-II and modified Padé-II equation. Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions, trigonometric functions, rational functions, and elliptic functions.
Primitive chain network simulations of probe rheology.
Masubuchi, Yuichi; Amamoto, Yoshifumi; Pandey, Ankita; Liu, Cheng-Yang
2017-09-27
Probe rheology experiments, in which the dynamics of a small amount of probe chains dissolved in immobile matrix chains is discussed, have been performed for the development of molecular theories for entangled polymer dynamics. Although probe chain dynamics in probe rheology is considered hypothetically as single chain dynamics in fixed tube-shaped confinement, it has not been fully elucidated. For instance, the end-to-end relaxation of probe chains is slower than that for monodisperse melts, unlike the conventional molecular theories. In this study, the viscoelastic and dielectric relaxations of probe chains were calculated by primitive chain network simulations. The simulations semi-quantitatively reproduced the dielectric relaxation, which reflects the effect of constraint release on the end-to-end relaxation. Fair agreement was also obtained for the viscoelastic relaxation time. However, the viscoelastic relaxation intensity was underestimated, possibly due to some flaws in the model for the inter-chain cross-correlations between probe and matrix chains.
Design and Analysis of Symmetric Primitives
DEFF Research Database (Denmark)
Lauridsen, Martin Mehl
. In the second part, we delve into the matter of the various aspects of designing a symmetric cryptographic primitive. We start by considering generalizations of the widely acclaimed Advanced Encryption Standard (AES) block cipher. In particular, our focus is on a component operation in the cipher which permutes...... analyze and implement modes recommended by the National Institute of Standards and Technology (NIST), as well as authenticated encryption modes from the CAESAR competition, when instantiated with the AES. The data processed in our benchmarking has sizes representative to that of typical Internet traffic...... linear cryptanalysis. We apply this model to the standardized block cipher PRESENT. Finally, we present very generic attacks on two authenticated encryption schemes, AVALANCHE and RBS, by pointing out severe design flaws that can be leveraged to fully recover the secret key with very low complexity...
Numerical Modeling Study of the Gulf of Mexico Basin: Skill Assessment
National Research Council Canada - National Science Library
Kirwan, A
1997-01-01
This report contains the results of an assessment of a three dimensional primitive equation model simulation of the Gulf of Mexico, using surface drifter observations collected as part of the Sculp program...
Primitive recursive realizability and basic propositional logic
Plisko, Valery
2007-01-01
Two notions of primitive recursive realizability for arithmetic sentences are considered. The first one is strictly primitive recursive realizability introduced by Z. Damnjanovic in 1994. We prove that intuitionistic predicate logic is not sound with this kind of realizability. Namely there
Hydraulic jump and Bernoulli equation in nonlinear shallow water model
Sun, Wen-Yih
2018-06-01
A shallow water model was applied to study the hydraulic jump and Bernoulli equation across the jump. On a flat terrain, when a supercritical flow plunges into a subcritical flow, discontinuity develops on velocity and Bernoulli function across the jump. The shock generated by the obstacle may propagate downstream and upstream. The latter reflected from the inflow boundary, moves downstream and leaves the domain. Before the reflected wave reaching the obstacle, the short-term integration (i.e., quasi-steady) simulations agree with Houghton and Kasahara's results, which may have unphysical complex solutions. The quasi-steady flow is quickly disturbed by the reflected wave, finally, flow reaches steady and becomes critical without complex solutions. The results also indicate that Bernoulli function is discontinuous but the potential of mass flux remains constant across the jump. The latter can be used to predict velocity/height in a steady flow.
Partial differential equations in action from modelling to theory
Salsa, Sandro
2016-01-01
The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear bo...
Partial differential equations in action from modelling to theory
Salsa, Sandro
2015-01-01
The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear bo...
A performance measurement using balanced scorecard and structural equation modeling
Directory of Open Access Journals (Sweden)
Rosha Makvandi
2014-02-01
Full Text Available During the past few years, balanced scorecard (BSC has been widely used as a promising method for performance measurement. BSC studies organizations in terms of four perspectives including customer, internal processes, learning and growth and financial figures. This paper presents a hybrid of BSC and structural equation modeling (SEM to measure the performance of an Iranian university in province of Alborz, Iran. The proposed study of this paper uses this conceptual method, designs a questionnaire and distributes it among some university students and professors. Using SEM technique, the survey analyzes the data and the results indicate that the university did poorly in terms of all four perspectives. The survey extracts necessary target improvement by presenting necessary attributes for performance improvement.
Analisis Loyalitas Pelanggan Industri Jasa Pengiriman Menggunakan Structural Equation Modeling
Directory of Open Access Journals (Sweden)
Sarika Zuhri
2017-01-01
Full Text Available Customer loyalty is important for both product and service industries. A loyal customer keeps using the company’s product and services. For a shipping service company, retaining existing customers in order to remain faithful will certainly be very crucial. This study was to determine relationship between variables affecting customer loyalty at PT. Pos Indonesia-Banda Aceh, a shipping service industry. The research used Structural Equation Modeling (SEM and with samples of 153 questionnaires obtained through a non-probability sampling technique. By using AMOS software, it can be concluded that the perceived quality does affect customer satisfaction, perceived value has influence on the customer satisfaction, the customer satisfaction is influential to trust and the trust itself has positive influence on customer loyalty.
Probabilistic delay differential equation modeling of event-related potentials.
Ostwald, Dirk; Starke, Ludger
2016-08-01
"Dynamic causal models" (DCMs) are a promising approach in the analysis of functional neuroimaging data due to their biophysical interpretability and their consolidation of functional-segregative and functional-integrative propositions. In this theoretical note we are concerned with the DCM framework for electroencephalographically recorded event-related potentials (ERP-DCM). Intuitively, ERP-DCM combines deterministic dynamical neural mass models with dipole-based EEG forward models to describe the event-related scalp potential time-series over the entire electrode space. Since its inception, ERP-DCM has been successfully employed to capture the neural underpinnings of a wide range of neurocognitive phenomena. However, in spite of its empirical popularity, the technical literature on ERP-DCM remains somewhat patchy. A number of previous communications have detailed certain aspects of the approach, but no unified and coherent documentation exists. With this technical note, we aim to close this gap and to increase the technical accessibility of ERP-DCM. Specifically, this note makes the following novel contributions: firstly, we provide a unified and coherent review of the mathematical machinery of the latent and forward models constituting ERP-DCM by formulating the approach as a probabilistic latent delay differential equation model. Secondly, we emphasize the probabilistic nature of the model and its variational Bayesian inversion scheme by explicitly deriving the variational free energy function in terms of both the likelihood expectation and variance parameters. Thirdly, we detail and validate the estimation of the model with a special focus on the explicit form of the variational free energy function and introduce a conventional nonlinear optimization scheme for its maximization. Finally, we identify and discuss a number of computational issues which may be addressed in the future development of the approach. Copyright © 2016 Elsevier Inc. All rights reserved.
Fitting Data to Model: Structural Equation Modeling Diagnosis Using Two Scatter Plots
Yuan, Ke-Hai; Hayashi, Kentaro
2010-01-01
This article introduces two simple scatter plots for model diagnosis in structural equation modeling. One plot contrasts a residual-based M-distance of the structural model with the M-distance for the factor score. It contains information on outliers, good leverage observations, bad leverage observations, and normal cases. The other plot contrasts…
Half-trek criterion for generic identifiability of linear structural equation models
Foygel, R.; Draisma, J.; Drton, M.
2012-01-01
A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations
Half-trek criterion for generic identifiability of linear structural equation models
Foygel, R.; Draisma, J.; Drton, M.
2011-01-01
A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations
Using structural equation modeling for network meta-analysis.
Tu, Yu-Kang; Wu, Yun-Chun
2017-07-14
Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison
Cashman, J D; Clark-Lewis, I; Eaves, A C; Eaves, C J
1999-12-01
Nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice transplanted with human cord blood or adult marrow cells and injected 6 weeks posttransplant with 2 daily doses of transforming growth factor-beta(1) (TGF-beta(1)), monocyte chemoattractant protein-1 (MCP-1), or a nonaggregating form of macrophage inflammatory protein-1alpha (MIP-1alpha) showed unique patterns of inhibition of human progenitor proliferation 1 day later. TGF-beta(1) was active on long-term culture initiating cells (LTC-IC) and on primitive erythroid and granulopoietic colony-forming cells (HPP-CFC), but had no effect on mature CFC. MCP-1 inhibited the cycling of both types of HPP-CFC but not LTC-IC. MIP-1alpha did not inhibit either LTC-IC or granulopoietic HPP-CFC but was active on erythroid HPP-CFC and mature granulopoietic CFC. All of these responses were independent of the source of human cells transplanted. LTC-IC of either human cord blood or adult marrow origin continue to proliferate in NOD/SCID mice for many weeks, although the turnover of all types of human CFC in mice transplanted with adult human marrow (but not cord blood) is downregulated after 6 weeks. Interestingly, administration of either MIP-1beta, an antagonist of both MIP-1alpha and MCP-1 or MCP-1(9-76), an antagonist of MCP-1 (and MCP-2 and MCP-3), into mice in which human marrow-derived CFC had become quiescent, caused the rapid reactivation of these progenitors in vivo. These results provide the first definition of stage-specific inhibitors of human hematopoietic progenitor cell cycling in vivo. In addition they show that endogenous chemokines can contribute to late graft failure, which can be reversed by the administration of specific antagonists.
Using structural equation modeling to investigate relationships among ecological variables
Malaeb, Z.A.; Kevin, Summers J.; Pugesek, B.H.
2000-01-01
Structural equation modeling is an advanced multivariate statistical process with which a researcher can construct theoretical concepts, test their measurement reliability, hypothesize and test a theory about their relationships, take into account measurement errors, and consider both direct and indirect effects of variables on one another. Latent variables are theoretical concepts that unite phenomena under a single term, e.g., ecosystem health, environmental condition, and pollution (Bollen, 1989). Latent variables are not measured directly but can be expressed in terms of one or more directly measurable variables called indicators. For some researchers, defining, constructing, and examining the validity of latent variables may be the end task of itself. For others, testing hypothesized relationships of latent variables may be of interest. We analyzed the correlation matrix of eleven environmental variables from the U.S. Environmental Protection Agency's (USEPA) Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) using methods of structural equation modeling. We hypothesized and tested a conceptual model to characterize the interdependencies between four latent variables-sediment contamination, natural variability, biodiversity, and growth potential. In particular, we were interested in measuring the direct, indirect, and total effects of sediment contamination and natural variability on biodiversity and growth potential. The model fit the data well and accounted for 81% of the variability in biodiversity and 69% of the variability in growth potential. It revealed a positive total effect of natural variability on growth potential that otherwise would have been judged negative had we not considered indirect effects. That is, natural variability had a negative direct effect on growth potential of magnitude -0.3251 and a positive indirect effect mediated through biodiversity of magnitude 0.4509, yielding a net positive total effect of 0
The issue of statistical power for overall model fit in evaluating structural equation models
Directory of Open Access Journals (Sweden)
Richard HERMIDA
2015-06-01
Full Text Available Statistical power is an important concept for psychological research. However, examining the power of a structural equation model (SEM is rare in practice. This article provides an accessible review of the concept of statistical power for the Root Mean Square Error of Approximation (RMSEA index of overall model fit in structural equation modeling. By way of example, we examine the current state of power in the literature by reviewing studies in top Industrial-Organizational (I/O Psychology journals using SEMs. Results indicate that in many studies, power is very low, which implies acceptance of invalid models. Additionally, we examined methodological situations which may have an influence on statistical power of SEMs. Results showed that power varies significantly as a function of model type and whether or not the model is the main model for the study. Finally, results indicated that power is significantly related to model fit statistics used in evaluating SEMs. The results from this quantitative review imply that researchers should be more vigilant with respect to power in structural equation modeling. We therefore conclude by offering methodological best practices to increase confidence in the interpretation of structural equation modeling results with respect to statistical power issues.
Hyperbolicity of the Nonlinear Models of Maxwell's Equations
Serre, Denis
. We consider the class of nonlinear models of electromagnetism that has been described by Coleman & Dill [7]. A model is completely determined by its energy density W(B,D). Viewing the electromagnetic field (B,D) as a 3×2 matrix, we show that polyconvexity of W implies the local well-posedness of the Cauchy problem within smooth functions of class Hs with s>1+d/2. The method follows that designed by Dafermos in his book [9] in the context of nonlinear elasticity. We use the fact that B×D is a (vectorial, non-convex) entropy, and we enlarge the system from 6 to 9 equations. The resulting system admits an entropy (actually the energy) that is convex. Since the energy conservation law does not derive from the system of conservation laws itself (Faraday's and Ampère's laws), but also needs the compatibility relations divB=divD=0 (the latter may be relaxed in order to take into account electric charges), the energy density is not an entropy in the classical sense. Thus the system cannot be symmetrized, strictly speaking. However, we show that the structure is close enough to symmetrizability, so that the standard estimates still hold true.
Dynamic Primitives in the Control of Locomotion
Directory of Open Access Journals (Sweden)
Neville eHogan
2013-06-01
Full Text Available Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: As discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term rhythmic may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: Identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered.
Dynamic primitives in the control of locomotion.
Hogan, Neville; Sternad, Dagmar
2013-01-01
Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors, and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: as discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term "rhythmic" may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered.
Relations between the kinetic equation and the Langevin models in two-phase flow modelling
International Nuclear Information System (INIS)
Minier, J.P.; Pozorski, J.
1997-05-01
The purpose of this paper is to discuss PDF and stochastic models which are used in two-phase flow modelling. The aim of the present analysis is essentially to try to determine relations and consistency between different models. It is first recalled that different approaches actually correspond to PDF models written either in terms of the process trajectories or in terms of the PDF itself. The main difference lies in the choice of the independent variables which are retained. Two particular models are studied, the Kinetic Equation and the Langevin Equation model. The latter uses a Langevin equation to model the fluid velocities seen along particle trajectories. The Langevin model is more general since it contains an additional variable. It is shown that, in certain cases, this variable can be summed up exactly to retrieve the Kinetic Equation model as a marginal PDF. A joint fluid and solid particle PDF which includes the characteristics of both phases is proposed at the end of the paper. (author)
Molecular-based Equation of State for TIP4P Water
Czech Academy of Sciences Publication Activity Database
Jirsák, Jan; Nezbeda, Ivo
2007-01-01
Roč. 136, č. 3 (2007), s. 310-316 ISSN 0167-7322 R&D Projects: GA AV ČR 1ET400720409; GA AV ČR IAA4072303 Institutional research plan: CEZ:AV0Z40720504 Keywords : equation of state * perturbation theory * primitive models Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.982, year: 2007
Initial layer theory and model equations of Volterra type
International Nuclear Information System (INIS)
Bijura, Angelina M.
2003-10-01
It is demonstrated here that there exist initial layers to singularly perturbed Volterra equations whose thicknesses are not of order of magnitude of 0(ε), ε → 0. It is also shown that the initial layer theory is extremely useful because it allows one to construct the approximate solution to an equation, which is almost identical to the exact solution. (author)
DEFF Research Database (Denmark)
Salarzadeh Jenatabadi, Hashem; Babashamsi, Peyman; Khajeheian, Datis
2016-01-01
There are many factors which could inﬂuence the sustainability of airlines. The main purpose of this study is to introduce a framework for a financial sustainability index and model it based on structural equation modeling (SEM) with maximum likelihood and Bayesian predictors. The introduced...
Anisotropic charged physical models with generalized polytropic equation of state
Energy Technology Data Exchange (ETDEWEB)
Nasim, A.; Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)
2018-01-15
In this paper, we found the exact solutions of Einstein-Maxwell equations with generalized polytropic equation of state (GPEoS). For this, we consider spherically symmetric object with charged anisotropic matter distribution. We rewrite the field equations into simple form through transformation introduced by Durgapal (Phys Rev D 27:328, 1983) and solve these equations analytically. For the physically acceptability of these solutions, we plot physical quantities like energy density, anisotropy, speed of sound, tangential and radial pressure. We found that all solutions fulfill the required physical conditions. It is concluded that all our results are reduced to the case of anisotropic charged matter distribution with linear, quadratic as well as polytropic equation of state. (orig.)
Multigrid solution of incompressible turbulent flows by using two-equation turbulence models
Energy Technology Data Exchange (ETDEWEB)
Zheng, X.; Liu, C. [Front Range Scientific Computations, Inc., Denver, CO (United States); Sung, C.H. [David Taylor Model Basin, Bethesda, MD (United States)
1996-12-31
Most of practical flows are turbulent. From the interest of engineering applications, simulation of realistic flows is usually done through solution of Reynolds-averaged Navier-Stokes equations and turbulence model equations. It has been widely accepted that turbulence modeling plays a very important role in numerical simulation of practical flow problem, particularly when the accuracy is of great concern. Among the most used turbulence models today, two-equation models appear to be favored for the reason that they are more general than algebraic models and affordable with current available computer resources. However, investigators using two-equation models seem to have been more concerned with the solution of N-S equations. Less attention is paid to the solution method for the turbulence model equations. In most cases, the turbulence model equations are loosely coupled with N-S equations, multigrid acceleration is only applied to the solution of N-S equations due to perhaps the fact the turbulence model equations are source-term dominant and very stiff in sublayer region.
Integrable hydrodynamics of Calogero-Sutherland model: bidirectional Benjamin-Ono equation
International Nuclear Information System (INIS)
Abanov, Alexander G; Bettelheim, Eldad; Wiegmann, Paul
2009-01-01
We develop a hydrodynamic description of the classical Calogero-Sutherland liquid: a Calogero-Sutherland model with an infinite number of particles and a non-vanishing density of particles. The hydrodynamic equations, being written for the density and velocity fields of the liquid, are shown to be a bidirectional analog of the Benjamin-Ono equation. The latter is known to describe internal waves of deep stratified fluids. We show that the bidirectional Benjamin-Ono equation appears as a real reduction of the modified KP hierarchy. We derive the chiral nonlinear equation which appears as a chiral reduction of the bidirectional equation. The conventional Benjamin-Ono equation is a degeneration of the chiral nonlinear equation at large density. We construct multi-phase solutions of the bidirectional Benjamin-Ono equations and of the chiral nonlinear equations
Comparing Entrepreneurship Intention: A Multigroup Structural Equation Modeling Approach
Directory of Open Access Journals (Sweden)
Sabrina O. Sihombing
2012-04-01
Full Text Available Unemployment is one of the main social and economic problems that many countries face nowadays. One strategic way to overcome this problem is by fostering entrepreneurship spirit especially for unem ployment graduates. Entrepreneurship is becoming an alternative Job for students after they graduate. This is because entrepreneurship of-fers major benefits, such as setting up one’s own business and the pos-sibility of having significant financial rewards than working for others. Entrepreneurship is then offered by many universities. This research applies the theory of planned behavior (TPB by incorporating attitude toward success as an antecedent variable of the attitude to examine students’ intention to become an entrepreneur. The objective of this research is to compare entrepreneurship intention between business students and non-business students. A self-administered questionnaire was used to collect data for this study. Questionnaires were distributed to respondents by applying the drop-off/pick-up method. A number of 294 by questionnaires were used in the analysis. Data were analyzed by using structural equation modeling. Two out of four hypotheses were confirmed. These hypotheses are the relationship between the attitude toward becoming an entrepreneur and the intention to try becoming an entrepreneur, and the relationship perceived behavioral control and intention to try becoming an entrepreneur. This paper also provides a discussion and offers directions for future research.
Comparing Entrepreneurship Intention: A Multigroup Structural Equation Modeling Approach
Directory of Open Access Journals (Sweden)
Sabrina O. Sihombing
2012-04-01
Full Text Available Unemployment is one of the main social and economic problems that many countries face nowadays. One strategic way to overcome this problem is by fostering entrepreneurship spirit especially for unem-ployment graduates. Entrepreneurship is becoming an alternative Job for students after they graduate. This is because entrepreneurship of fers major benefits, such as setting up one’s own business and the pos sibility of having significant financial rewards than working for others. Entrepreneurship is then offered by many universities. This research applies the theory of planned behavior (TPB by incorporating attitude toward success as an antecedent variable of the attitude to examine students’ intention to become an entrepreneur. The objective of this research is to compare entrepreneurship intention between business students and non-business students. A self-administered questionnaire was used to collect data for this study. Questionnaires were distributed to respondents by applying the drop-off/pick-up method. A number of 294 by questionnaires were used in the analysis. Data were analyzed by using structural equation modeling. Two out of four hypotheses were confirmed. These hypotheses are the relationship between the attitude toward becoming an entrepreneur and the intention to try becoming an entrepreneur, and the relationship perceived behavioral control and intention to try becoming an entrepreneur. This paper also provides a discussion and offers directions for future research.
Parenting Stress, Mental Health, Dyadic Adjustment: A Structural Equation Model
Directory of Open Access Journals (Sweden)
Luca Rollè
2017-05-01
Full Text Available Objective: In the 1st year of the post-partum period, parenting stress, mental health, and dyadic adjustment are important for the wellbeing of both parents and the child. However, there are few studies that analyze the relationship among these three dimensions. The aim of this study is to investigate the relationships between parenting stress, mental health (depressive and anxiety symptoms, and dyadic adjustment among first-time parents.Method: We studied 268 parents (134 couples of healthy babies. At 12 months post-partum, both parents filled out, in a counterbalanced order, the Parenting Stress Index-Short Form, the Edinburgh Post-natal Depression Scale, the State-Trait Anxiety Inventory, and the Dyadic Adjustment Scale. Structural equation modeling was used to analyze the potential mediating effects of mental health on the relationship between parenting stress and dyadic adjustment.Results: Results showed the full mediation effect of mental health between parenting stress and dyadic adjustment. A multi-group analysis further found that the paths did not differ across mothers and fathers.Discussion: The results suggest that mental health is an important dimension that mediates the relationship between parenting stress and dyadic adjustment in the transition to parenthood.
Chaotic attractors in tumor growth and decay: a differential equation model.
Harney, Michael; Yim, Wen-sau
2015-01-01
Tumorigenesis can be modeled as a system of chaotic nonlinear differential equations. A simulation of the system is realized by converting the differential equations to difference equations. The results of the simulation show that an increase in glucose in the presence of low oxygen levels decreases tumor growth.
Informed Conjecturing of Solutions for Differential Equations in a Modeling Context
Winkel, Brian
2015-01-01
We examine two differential equations. (i) first-order exponential growth or decay; and (ii) second order, linear, constant coefficient differential equations, and show the advantage of learning differential equations in a modeling context for informed conjectures of their solution. We follow with a discussion of the complete analysis afforded by…
Modelling with Difference Equations Supported by GeoGebra: Exploring the Kepler Problem
Kovacs, Zoltan
2010-01-01
The use of difference and differential equations in the modelling is a topic usually studied by advanced students in mathematics. However difference and differential equations appear in the school curriculum in many direct or hidden ways. Difference equations first enter in the curriculum when studying arithmetic sequences. Moreover Newtonian…
Group-theoretical model of developed turbulence and renormalization of the Navier-Stokes equation.
Saveliev, V L; Gorokhovski, M A
2005-07-01
On the basis of the Euler equation and its symmetry properties, this paper proposes a model of stationary homogeneous developed turbulence. A regularized averaging formula for the product of two fields is obtained. An equation for the averaged turbulent velocity field is derived from the Navier-Stokes equation by renormalization-group transformation.
Notes on TQFT wire models and coherence equations for SU(3) triangular cells
Coquereaux, R.; Schieber, G.
2010-01-01
After a summary of the TQFT wire model formalism we bridge the gap from Kuperberg equations for SU(3) spiders to Ocneanu coherence equations for systems of triangular cells on fusion graphs that describe modules associated with the fusion category of SU(3) at level k. We show how to solve these equations in a number of examples.
Wang, Qi; Dong, Xufeng; Li, Luyu; Ou, Jinping
2018-06-01
As constitutive models are too complicated and existing mechanical models lack universality, these models are beyond satisfaction for magnetorheological elastomer (MRE) devices. In this article, a novel universal method is proposed to build concise mechanical models. Constitutive model and electromagnetic analysis were applied in this method to ensure universality, while a series of derivations and simplifications were carried out to obtain a concise formulation. To illustrate the proposed modeling method, a conical MRE isolator was introduced. Its basic mechanical equations were built based on equilibrium, deformation compatibility, constitutive equations and electromagnetic analysis. An iteration model and a highly efficient differential equation editor based model were then derived to solve the basic mechanical equations. The final simplified mechanical equations were obtained by re-fitting the simulations with a novel optimal algorithm. In the end, verification test of the isolator has proved the accuracy of the derived mechanical model and the modeling method.
Discovery of Intrinsic Primitives on Triangle Meshes
Solomon, Justin; Ben-Chen, Mirela; Butscher, Adrian; Guibas, Leonidas
2011-01-01
The discovery of meaningful parts of a shape is required for many geometry processing applications, such as parameterization, shape correspondence, and animation. It is natural to consider primitives such as spheres, cylinders and cones
Explicit estimating equations for semiparametric generalized linear latent variable models
Ma, Yanyuan; Genton, Marc G.
2010-01-01
which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n
Montefusco, Alberto; Consonni, Francesco; Beretta, Gian Paolo
2015-04-01
By reformulating the steepest-entropy-ascent (SEA) dynamical model for nonequilibrium thermodynamics in the mathematical language of differential geometry, we compare it with the primitive formulation of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) model and discuss the main technical differences of the two approaches. In both dynamical models the description of dissipation is of the "entropy-gradient" type. SEA focuses only on the dissipative, i.e., entropy generating, component of the time evolution, chooses a sub-Riemannian metric tensor as dissipative structure, and uses the local entropy density field as potential. GENERIC emphasizes the coupling between the dissipative and nondissipative components of the time evolution, chooses two compatible degenerate structures (Poisson and degenerate co-Riemannian), and uses the global energy and entropy functionals as potentials. As an illustration, we rewrite the known GENERIC formulation of the Boltzmann equation in terms of the square root of the distribution function adopted by the SEA formulation. We then provide a formal proof that in more general frameworks, whenever all degeneracies in the GENERIC framework are related to conservation laws, the SEA and GENERIC models of the dissipative component of the dynamics are essentially interchangeable, provided of course they assume the same kinematics. As part of the discussion, we note that equipping the dissipative structure of GENERIC with the Leibniz identity makes it automatically SEA on metric leaves.
International Nuclear Information System (INIS)
Esmail, S.F.H.
2006-01-01
the mathematical formulation of numerous physical problems results in differential equations actually non-linear differential equations . in our study we are interested in solutions of differential equations which describe the structure of neutron star in non-relativistic and relativistic cases. the aim of this work is to determine the mass and the radius of a neutron star, by solving the tolmann-oppenheimer-volkoff (TOV) differential equation using different models of the nuclear equation of state (EOS). analytically solutions are obtained for a simple form of the nuclear equation of state of Clayton model and poly trope model. for a more realistic equation of state the TOV differential equation is solved numerically using rung -Kutta method
Directory of Open Access Journals (Sweden)
Zhiqiang Zheng
Full Text Available BACKGROUND: Embryonic stem (ES cells hold considerable promise as a source of cells with therapeutic potential, including cells that can be used for drug screening and in cell replacement therapies. Differentiation of ES cells into the somatic lineages is a regulated process; before the promise of these cells can be realised robust and rational methods for directing differentiation into normal, functional and safe cells need to be developed. Previous in vivo studies have implicated fibroblast growth factor (FGF signalling in lineage specification from pluripotent cells. Although FGF signalling has been suggested as essential for specification of mesoderm and endoderm in vivo and in culture, the exact role of this pathway remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Using a culture model based on early primitive ectoderm-like (EPL cells we have investigated the role of FGF signalling in the specification of mesoderm. We were unable to demonstrate any mesoderm inductive capability associated with FGF1, 4 or 8 signalling, even when the factors were present at high concentrations, nor any enhancement in mesoderm formation induced by exogenous BMP4. Furthermore, there was no evidence of alteration of mesoderm sub-type formed with addition of FGF1, 4 or 8. Inhibition of endogenous FGF signalling, however, prevented mesoderm and favoured neural differentiation, suggesting FGF signalling was required but not sufficient for the differentiation of primitive ectoderm into primitive streak-like intermediates. The maintenance of ES cell/early epiblast pluripotent marker expression was also observed in cultures when FGF signalling was inhibited. CONCLUSIONS/SIGNIFICANCE: FGF signalling has been shown to be required for the differentiation of primitive ectoderm to neurectoderm. This, coupled with our observations, suggest FGF signalling is required for differentiation of the primitive ectoderm into the germ lineages at gastrulation.
Applications of Multilevel Structural Equation Modeling to Cross-Cultural Research
Cheung, Mike W.-L.; Au, Kevin
2005-01-01
Multilevel structural equation modeling (MSEM) has been proposed as an extension to structural equation modeling for analyzing data with nested structure. We have begun to see a few applications in cross-cultural research in which MSEM fits well as the statistical model. However, given that cross-cultural studies can only afford collecting data…
Magnin , Loïck
2011-01-01
This dissertation studies two different aspects of two-player interaction in the model of quantum communication and quantum computation.First, we study two cryptographic primitives, that are used as basic blocks to construct sophisticated cryptographic protocols between two players, e.g. identification protocols.The first primitive is ``quantum bit commitment''. This primitive cannot be done in an unconditionally secure way. However, security can be obtained by restraining the power of the tw...
Search for Primitive Matter in the Solar System
Libourel, G.; Michel, P.; Delbo, M.; Ganino, C.; Recio-Blanco, A.; de Laverny, P.; Zolensky, M. E.; Krot, A. N.
2017-01-01
Recent astronomical observations and theoretical modeling led to a consensus regarding the global scenario of the formation of young stellar objects (YSO) from a cold molecular cloud of interstellar dust (organics and minerals) and gas that, in some cases, leads to the formation of a planetary system. In the case of our Solar System, which has already evolved for approximately 4567 Ma, the quest is to access, through the investigation of planets, moons, cometary and asteroidal bodies, meteorites, micrometeorites, and interplanetary dust particles, the primitive material that contains the key information about the early Solar System processes and its evolution. However, laboratory analyses of extraterrestrial samples, astronomical observations and dynamical models of the Solar System evolution have not brought yet any conclusive evidence on the nature and location of primitive matter in the Solar System, preventing a clear understanding of its early stages.
Directory of Open Access Journals (Sweden)
L. M. Kistler
Full Text Available During the main and early recovery phase of a geomagnetic storm on February 18, 1998, the Equator-S ion composition instrument (ESIC observed spectral features which typically represent the differences in loss along the drift path in the energy range (5–15 keV/e where the drift changes from being E × B dominated to being gradient and curvature drift dominated. We compare the expected energy spectra modeled using a Volland-Stern electric field and a Weimer electric field, assuming charge exchange along the drift path, with the observed energy spectra for H^{+} and O^{+}. We find that using the Weimer electric field gives much better agreement with the spectral features, and with the observed losses. Neither model, however, accurately predicts the energies of the observed minima.
Key words. Magnetospheric physics (energetic particles trapped; plasma convection; storms and substorms
Is the Langevin phase equation an efficient model for oscillating neurons?
Ota, Keisuke; Tsunoda, Takamasa; Omori, Toshiaki; Watanabe, Shigeo; Miyakawa, Hiroyoshi; Okada, Masato; Aonishi, Toru
2009-12-01
The Langevin phase model is an important canonical model for capturing coherent oscillations of neural populations. However, little attention has been given to verifying its applicability. In this paper, we demonstrate that the Langevin phase equation is an efficient model for neural oscillators by using the machine learning method in two steps: (a) Learning of the Langevin phase model. We estimated the parameters of the Langevin phase equation, i.e., a phase response curve and the intensity of white noise from physiological data measured in the hippocampal CA1 pyramidal neurons. (b) Test of the estimated model. We verified whether a Fokker-Planck equation derived from the Langevin phase equation with the estimated parameters could capture the stochastic oscillatory behavior of the same neurons disturbed by periodic perturbations. The estimated model could predict the neural behavior, so we can say that the Langevin phase equation is an efficient model for oscillating neurons.
Is the Langevin phase equation an efficient model for oscillating neurons?
International Nuclear Information System (INIS)
Ota, Keisuke; Tsunoda, Takamasa; Aonishi, Toru; Omori, Toshiaki; Okada, Masato; Watanabe, Shigeo; Miyakawa, Hiroyoshi
2009-01-01
The Langevin phase model is an important canonical model for capturing coherent oscillations of neural populations. However, little attention has been given to verifying its applicability. In this paper, we demonstrate that the Langevin phase equation is an efficient model for neural oscillators by using the machine learning method in two steps: (a) Learning of the Langevin phase model. We estimated the parameters of the Langevin phase equation, i.e., a phase response curve and the intensity of white noise from physiological data measured in the hippocampal CA1 pyramidal neurons. (b) Test of the estimated model. We verified whether a Fokker-Planck equation derived from the Langevin phase equation with the estimated parameters could capture the stochastic oscillatory behavior of the same neurons disturbed by periodic perturbations. The estimated model could predict the neural behavior, so we can say that the Langevin phase equation is an efficient model for oscillating neurons.
Optimal harvesting for a predator-prey agent-based model using difference equations.
Oremland, Matthew; Laubenbacher, Reinhard
2015-03-01
In this paper, a method known as Pareto optimization is applied in the solution of a multi-objective optimization problem. The system in question is an agent-based model (ABM) wherein global dynamics emerge from local interactions. A system of discrete mathematical equations is formulated in order to capture the dynamics of the ABM; while the original model is built up analytically from the rules of the model, the paper shows how minor changes to the ABM rule set can have a substantial effect on model dynamics. To address this issue, we introduce parameters into the equation model that track such changes. The equation model is amenable to mathematical theory—we show how stability analysis can be performed and validated using ABM data. We then reduce the equation model to a simpler version and implement changes to allow controls from the ABM to be tested using the equations. Cohen's weighted κ is proposed as a measure of similarity between the equation model and the ABM, particularly with respect to the optimization problem. The reduced equation model is used to solve a multi-objective optimization problem via a technique known as Pareto optimization, a heuristic evolutionary algorithm. Results show that the equation model is a good fit for ABM data; Pareto optimization provides a suite of solutions to the multi-objective optimization problem that can be implemented directly in the ABM.
Primitive and definitive erythropoiesis in mammals
Directory of Open Access Journals (Sweden)
James ePalis
2014-01-01
Full Text Available Red blood cells (RBCs, which constitute the most abundant cell type in the body, come in two distinct flavors- primitive and definitive. Definitive RBCs in mammals circulate as smaller, anucleate cells during fetal and postnatal life, while primitive RBCs circulate transiently in the early embryo as large, nucleated cells before ultimately enucleating. Both cell types are formed from lineage-committed progenitors that generate a series of morphologically identifiable precursors that enucleate to form mature RBCs. While definitive erythroid precursors mature extravascularly in the fetal liver and postnatal marrow in association with macrophage cells, primitive erythroid precursors mature as a semi-synchronous cohort in the embryonic bloodstream. While the cytoskeletal network is critical for the maintenance of cell shape and the deformability of definitive RBCs, little is known about the components and function of the cytoskeleton in primitive erythroblasts. Erythropoietin (EPO is a critical regulator of late-stage definitive, but not primitive, erythroid progenitor survival. However, recent studies indicate that EPO regulates multiple aspects of terminal maturation of primitive murine and human erythroid precursors, including cell survival, proliferation, and the rate of terminal maturation. Primitive and definitive erythropoiesis share central transcriptional regulators, including Gata1 and Klf1, but are also characterized by the differential expression and function of other regulators, including myb, Sox6, and Bcl11A. Flow cytometry-based methodologies, developed to purify murine and human stage-specific erythroid precursors, have enabled comparative global gene expression studies and are providing new insights into the biology of erythroid maturation.
Traveling Wave Solutions of Reaction-Diffusion Equations Arising in Atherosclerosis Models
Directory of Open Access Journals (Sweden)
Narcisa Apreutesei
2014-05-01
Full Text Available In this short review article, two atherosclerosis models are presented, one as a scalar equation and the other one as a system of two equations. They are given in terms of reaction-diffusion equations in an infinite strip with nonlinear boundary conditions. The existence of traveling wave solutions is studied for these models. The monostable and bistable cases are introduced and analyzed.
Parabolic Equation Modeling of Propagation over Terrain Using Digital Elevation Model
Directory of Open Access Journals (Sweden)
Xiao-Wei Guan
2018-01-01
Full Text Available The parabolic equation method based on digital elevation model (DEM is applied on propagation predictions over irregular terrains. Starting from a parabolic approximation to the Helmholtz equation, a wide-angle parabolic equation is deduced under the assumption of forward propagation and the split-step Fourier transform algorithm is used to solve it. The application of DEM is extended to the Cartesian coordinate system and expected to provide a precise representation of a three-dimensional surface with high efficiency. In order to validate the accuracy, a perfectly conducting Gaussian terrain profile is simulated and the results are compared with the shift map. As a consequence, a good agreement is observed. Besides, another example is given to provide a theoretical basis and reference for DEM selection. The simulation results demonstrate that the prediction errors will be obvious only when the resolution of the DEM used is much larger than the range step in the PE method.
Validation of an employee satisfaction model: A structural equation model approach
Ophillia Ledimo; Nico Martins
2015-01-01
The purpose of this study was to validate an employee satisfaction model and to determine the relationships between the different dimensions of the concept, using the structural equation modelling approach (SEM). A cross-sectional quantitative survey design was used to collect data from a random sample of (n=759) permanent employees of a parastatal organisation. Data was collected using the Employee Satisfaction Survey (ESS) to measure employee satisfaction dimensions. Following the steps of ...
The CHY representation of tree-level primitive QCD amplitudes
International Nuclear Information System (INIS)
Cruz, Leonardo de la; Kniss, Alexander; Weinzierl, Stefan
2015-01-01
In this paper we construct a CHY representation for all tree-level primitive QCD amplitudes. The quarks may be massless or massive. We define a generalised cyclic factor Ĉ(w,z) and a generalised permutation invariant function Ê(z,p,ε). The amplitude is then given as a contour integral encircling the solutions of the scattering equations with the product ĈÊ as integrand. Equivalently, it is given as a sum over the inequivalent solutions of the scattering equations, where the summand consists of a Jacobian times the product ĈÊ. This representation separates information: The generalised cyclic factor does not depend on the helicities of the external particles, the generalised permutation invariant function does not depend on the ordering of the external particles.
Equation-free dynamic renormalization in a glassy compaction model
International Nuclear Information System (INIS)
Chen, L.; Kevrekidis, I. G.; Kevrekidis, P. G.
2006-01-01
Combining dynamic renormalization with equation-free computational tools, we study the apparently asymptotically self-similar evolution of void distribution dynamics in the diffusion-deposition problem proposed by Stinchcombe and Depken [Phys. Rev. Lett. 88, 125701 (2002)]. We illustrate fixed point and dynamic approaches, forward as well as backward in time; these can be used to accelerate simulators of glassy dynamic phenomena
Equation-free dynamic renormalization in a glassy compaction model
Chen, L.; Kevrekidis, I. G.; Kevrekidis, P. G.
2006-07-01
Combining dynamic renormalization with equation-free computational tools, we study the apparently asymptotically self-similar evolution of void distribution dynamics in the diffusion-deposition problem proposed by Stinchcombe and Depken [Phys. Rev. Lett. 88, 125701 (2002)]. We illustrate fixed point and dynamic approaches, forward as well as backward in time; these can be used to accelerate simulators of glassy dynamic phenomena.
An analytic equation of state for Ising-like models
International Nuclear Information System (INIS)
O'Connor, Denjoe; Santiago, J A; Stephens, C R
2007-01-01
Using an environmentally friendly renormalization we derive, from an underlying field theory representation, a formal expression for the equation of state, y = f(x), that exhibits all desired asymptotic and analyticity properties in the three limits x → 0, x → ∞ and x → -1. The only necessary inputs are the Wilson functions γ λ , γ ψ and γ φ 2 , associated with a renormalization of the transverse vertex functions. These Wilson functions exhibit a crossover between the Wilson-Fisher fixed point and the fixed point that controls the coexistence curve. Restricting to the case N = 1, we derive a one-loop equation of state for 2 < d < 4 naturally parameterized by a ratio of nonlinear scaling fields. For d = 3 we show that a non-parameterized analytic form can be deduced. Various asymptotic amplitudes are calculated directly from the equation of state in all three asymptotic limits of interest and comparison made with known results. By positing a scaling form for the equation of state inspired by the one-loop result, but adjusted to fit the known values of the critical exponents, we obtain better agreement with known asymptotic amplitudes
The Schroedinger-Newton equation as model of self-gravitating quantum systems
International Nuclear Information System (INIS)
Grossardt, Andre
2013-01-01
The Schroedinger-Newton equation (SN equation) describes a quantummechanical one-particle-system with gravitational self-interaction and might play a role answering the question if gravity must be quantised. As non-relativistic limit of semi-classical gravity, it provides testable predictions of the effects that classical gravity has on genuinely quantum mechanical systems in the mass regime between a few thousand proton masses and the Planck mass, which is experimentally unexplored. In this thesis I subsume the mathematical properties of the SN equation and justify it as a physical model. I will give a short outline of the controversial debate around semi-classical gravity as a fundamental theory, along with the idea of the SN equation as a model of quantum state reduction. Subsequently, I will respond to frequent objections against nonlinear Schrodinger equations. I will show how the SN equation can be obtained from Einstein's General Relativity coupled to either a KleinGordon or a Dirac equation, in the same sense as the linear Schroedinger equation can be derived in flat Minkowski space-time. The equation is, to this effect, a non-relativistic approximation of the semi-classical Einstein equations. Additionally, I will discuss, first by means of analytic estimations and later numerically, in which parameter range effects of gravitational selfinteraction - e.g. in molecular-interferometry experiments - should be expected. Besides the one-particle SN equation I will provide justification for a modified equation describing the centre-of-mass wave-function of a many-particle system. Furthermore, for this modified equation, I will examine, numerically, the consequences for experiments. Although one arrives at the conclusion that no effects of the SN equation can be expected for masses up to six or seven orders of magnitude above those considered in contemporary molecular interferometry experiments, tests of the equation, for example in satellite experiments, seem
Empiric model for mean generation time adjustment factor for classic point kinetics equations
Energy Technology Data Exchange (ETDEWEB)
Goes, David A.B.V. de; Martinez, Aquilino S.; Goncalves, Alessandro da C., E-mail: david.goes@poli.ufrj.br, E-mail: aquilino@lmp.ufrj.br, E-mail: alessandro@con.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Nuclear
2017-11-01
Point reactor kinetics equations are the easiest way to observe the neutron production time behavior in a nuclear reactor. These equations are derived from the neutron transport equation using an approximation called Fick's law leading to a set of first order differential equations. The main objective of this study is to review classic point kinetics equation in order to approximate its results to the case when it is considered the time variation of the neutron currents. The computational modeling used for the calculations is based on the finite difference method. The results obtained with this model are compared with the reference model and then it is determined an empirical adjustment factor that modifies the point reactor kinetics equation to the real scenario. (author)
Empiric model for mean generation time adjustment factor for classic point kinetics equations
International Nuclear Information System (INIS)
Goes, David A.B.V. de; Martinez, Aquilino S.; Goncalves, Alessandro da C.
2017-01-01
Point reactor kinetics equations are the easiest way to observe the neutron production time behavior in a nuclear reactor. These equations are derived from the neutron transport equation using an approximation called Fick's law leading to a set of first order differential equations. The main objective of this study is to review classic point kinetics equation in order to approximate its results to the case when it is considered the time variation of the neutron currents. The computational modeling used for the calculations is based on the finite difference method. The results obtained with this model are compared with the reference model and then it is determined an empirical adjustment factor that modifies the point reactor kinetics equation to the real scenario. (author)
Kim, Seohyun; Lu, Zhenqiu; Cohen, Allan S.
2018-01-01
Bayesian algorithms have been used successfully in the social and behavioral sciences to analyze dichotomous data particularly with complex structural equation models. In this study, we investigate the use of the Polya-Gamma data augmentation method with Gibbs sampling to improve estimation of structural equation models with dichotomous variables.…
Petko, Dominik; Prasse, Doreen; Cantieni, Andrea
2018-01-01
Decades of research have shown that technological change in schools depends on multiple interrelated factors. Structural equation models explaining the interplay of factors often suffer from high complexity and low coherence. To reduce complexity, a more robust structural equation model was built with data from a survey of 349 Swiss primary school…
Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang
2006-01-01
This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…
Model identification using stochastic differential equation grey-box models in diabetes.
Duun-Henriksen, Anne Katrine; Schmidt, Signe; Røge, Rikke Meldgaard; Møller, Jonas Bech; Nørgaard, Kirsten; Jørgensen, John Bagterp; Madsen, Henrik
2013-03-01
The acceptance of virtual preclinical testing of control algorithms is growing and thus also the need for robust and reliable models. Models based on ordinary differential equations (ODEs) can rarely be validated with standard statistical tools. Stochastic differential equations (SDEs) offer the possibility of building models that can be validated statistically and that are capable of predicting not only a realistic trajectory, but also the uncertainty of the prediction. In an SDE, the prediction error is split into two noise terms. This separation ensures that the errors are uncorrelated and provides the possibility to pinpoint model deficiencies. An identifiable model of the glucoregulatory system in a type 1 diabetes mellitus (T1DM) patient is used as the basis for development of a stochastic-differential-equation-based grey-box model (SDE-GB). The parameters are estimated on clinical data from four T1DM patients. The optimal SDE-GB is determined from likelihood-ratio tests. Finally, parameter tracking is used to track the variation in the "time to peak of meal response" parameter. We found that the transformation of the ODE model into an SDE-GB resulted in a significant improvement in the prediction and uncorrelated errors. Tracking of the "peak time of meal absorption" parameter showed that the absorption rate varied according to meal type. This study shows the potential of using SDE-GBs in diabetes modeling. Improved model predictions were obtained due to the separation of the prediction error. SDE-GBs offer a solid framework for using statistical tools for model validation and model development. © 2013 Diabetes Technology Society.
Primitive Path Analysis and Stress Distribution in Highly Strained Macromolecules.
Hsu, Hsiao-Ping; Kremer, Kurt
2018-01-16
Polymer material properties are strongly affected by entanglement effects. For long polymer chains and composite materials, they are expected to be at the origin of many technically important phenomena, such as shear thinning or the Mullins effect, which microscopically can be related to topological constraints between chains. Starting from fully equilibrated highly entangled polymer melts, we investigate the effect of isochoric elongation on the entanglement structure and force distribution of such systems. Theoretically, the related viscoelastic response usually is discussed in terms of the tube model. We relate stress relaxation in the linear and nonlinear viscoelastic regimes to a primitive path analysis (PPA) and show that tension forces both along the original paths and along primitive paths, that is, the backbone of the tube, in the stretching direction correspond to each other. Unlike homogeneous relaxation along the chain contour, the PPA reveals a so far not observed long-lived clustering of topological constraints along the chains in the deformed state.
Caglar, Mehmet Umut; Pal, Ranadip
2011-03-01
Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.
Nonaligned shocks for discrete velocity models of the Boltzmann equation
Directory of Open Access Journals (Sweden)
J. M. Greenberg
1991-05-01
Full Text Available At the conclusion of I. Bonzani's presentation on the existence of structured shock solutions to the six-velocity, planar, discrete Boltzmann equation (with binary and triple collisions, Greenberg asked whether such solutions were possible in directions e(α=(cosα ,sinα when α was not one of the particle flow directions. This question generated a spirited discussion but the question was still open at the conclusion of the conference. In this note the author will provide a partial resolution to the question raised above. Using formal perturbation arguments he will produce approximate solutions to the equation considered by Bonzani which represent traveling waves propagating in any direction e(α=(cosα ,sinα.
Linares, Oscar A; Schiesser, William E; Fudin, Jeffrey; Pham, Thien C; Bettinger, Jeffrey J; Mathew, Roy O; Daly, Annemarie L
2015-01-01
Oscar A Linares,1 William E Schiesser,2 Jeffrey Fudin,3–6 Thien C Pham,6 Jeffrey J Bettinger,6 Roy O Mathew,6 Annemarie L Daly7 1Translational Genomic Medicine Lab, Plymouth Pharmacokinetic Modeling Study Group, Plymouth, MI, 2Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, 3University of Connecticut School of Pharmacy, Storrs, CT, 4Western New England College of Pharmacy, Springfield, MA, 5Albany College of Pharmacy and Health Sciences, Albany...
A time dependent mixing model to close PDF equations for transport in heterogeneous aquifers
Schüler, L.; Suciu, N.; Knabner, P.; Attinger, S.
2016-10-01
Probability density function (PDF) methods are a promising alternative to predicting the transport of solutes in groundwater under uncertainty. They make it possible to derive the evolution equations of the mean concentration and the concentration variance, used in moment methods. The mixing model, describing the transport of the PDF in concentration space, is essential for both methods. Finding a satisfactory mixing model is still an open question and due to the rather elaborate PDF methods, a difficult undertaking. Both the PDF equation and the concentration variance equation depend on the same mixing model. This connection is used to find and test an improved mixing model for the much easier to handle concentration variance. Subsequently, this mixing model is transferred to the PDF equation and tested. The newly proposed mixing model yields significantly improved results for both variance modelling and PDF modelling.
Modeling imperfectly repaired system data via grey differential equations with unequal-gapped times
International Nuclear Information System (INIS)
Guo Renkuan
2007-01-01
In this paper, we argue that grey differential equation models are useful in repairable system modeling. The arguments starts with the review on GM(1,1) model with equal- and unequal-spaced stopping time sequence. In terms of two-stage GM(1,1) filtering, system stopping time can be partitioned into system intrinsic function and repair effect. Furthermore, we propose an approach to use grey differential equation to specify a semi-statistical membership function for system intrinsic function times. Also, we engage an effort to use GM(1,N) model to model system stopping times and the associated operating covariates and propose an unequal-gapped GM(1,N) model for such analysis. Finally, we investigate the GM(1,1)-embed systematic grey equation system modeling of imperfectly repaired system operating data. Practical examples are given in step-by-step manner to illustrate the grey differential equation modeling of repairable system data
A four-equation friction model for water hammer calculation in quasi-rigid pipelines
International Nuclear Information System (INIS)
Ghodhbani, Abdelaziz; Haj Taïeb, Ezzeddine
2017-01-01
Friction coupling affects water hammer evolution in pipelines according to the initial flow regime. Unsteady friction models are only validated with uncoupled formulation. On the other hand, coupled models such as four-equation model, provide more accurate prediction of water hammer since fluid-structure interaction (FSI) is taken into account, but they are limited to steady-state friction formulation. This paper deals with the creation of the “four-equation friction model” which is based on the incorporation of the unsteady head loss given by an unsteady friction model into the four-equation model. For transient laminar flow cases, the Zielke model is considered. The proposed model is applied to a quasi-rigid pipe with axial moving valve, and then calculated by the method of characteristics (MOC). Damping and shape of the numerical solution are in good agreement with experimental data. Thus, the proposed model can be incorporated into a new computer code. - Highlights: • Both Zielke model and four-equation model are insufficient to predict water hammer. • The four-equation friction model proposed is obtained by incorporating the unsteady head loss in the four-equation model. • The solution obtained by the proposed model is in good agreement with experimental data. • The wave-speed adjustment scheme is more efficient than interpolations schemes.
The lattice Boltzmann model for the second-order Benjamin–Ono equations
International Nuclear Information System (INIS)
Lai, Huilin; Ma, Changfeng
2010-01-01
In this paper, in order to extend the lattice Boltzmann method to deal with more complicated nonlinear equations, we propose a 1D lattice Boltzmann scheme with an amending function for the second-order (1 + 1)-dimensional Benjamin–Ono equation. With the Taylor expansion and the Chapman–Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The equilibrium distribution function and the amending function are obtained. Numerical simulations are carried out for the 'good' Boussinesq equation and the 'bad' one to validate the proposed model. It is found that the numerical results agree well with the analytical solutions. The present model can be used to solve more kinds of nonlinear partial differential equations
Modeling biological gradient formation: combining partial differential equations and Petri nets.
Bertens, Laura M F; Kleijn, Jetty; Hille, Sander C; Heiner, Monika; Koutny, Maciej; Verbeek, Fons J
2016-01-01
Both Petri nets and differential equations are important modeling tools for biological processes. In this paper we demonstrate how these two modeling techniques can be combined to describe biological gradient formation. Parameters derived from partial differential equation describing the process of gradient formation are incorporated in an abstract Petri net model. The quantitative aspects of the resulting model are validated through a case study of gradient formation in the fruit fly.
MR imaging of persistent primitive trigeminal artery
International Nuclear Information System (INIS)
Ashikaga, Ryuichiro; Araki, Yutaka; Ono, Yukihiko; Ishida, Osamu; Mabuchi, Nobuhisa.
1997-01-01
The persistent trigeminal artery is the most common anomaly of the primitive carotid-vertebrobasilar anastomoses. We reviewed MR images and MR angiographies of 11 patients with primitive trigeminal artery. In 8 of the 11 cases, PTA were identified with conventional long TR spin-echo images. In 8 of 11 cases, a hypoplastic basilar trunk associated with PTA was seen on both MR images and MR angiographies. In 7 of 11 cases, a hypoplasia or agenesis of the ipsilateral posterior communicating artery was seen on MR angiographies. (author)
International Nuclear Information System (INIS)
Foroutan, A.
1992-05-01
The essential mathematical challenge in transport theory is based on the nonlinearity of the integro-differential equations governing classical thermodynamic systems on molecular kinetic level. It is the aim of this thesis to gain exact analytical solutions to the model Boltzmann equation suggested by Tjon and Wu. Such solutions afford a deeper insight into the dynamics of rarefied gases. Tjon and Wu have provided a stochastic model of a Boltzmann equation. Its transition probability depends only on the relative speed of the colliding particles. This assumption leads in the case of two translational degrees of freedom to an integro-differential equation of convolution type. According to this convolution structure the integro-differential equation is Laplace transformed. The result is a nonlinear partial differential equation. The investigation of the symmetries of this differential equation by means of Lie groups of transformation enables us to transform the originally nonlinear partial differential equation into ordinary differential equation into ordinary differential equations of Bernoulli type. (author)
LeMesurier, Brenton
2012-01-01
A new approach is described for generating exactly energy-momentum conserving time discretizations for a wide class of Hamiltonian systems of DEs with quadratic momenta, including mechanical systems with central forces; it is well-suited in particular to the large systems that arise in both spatial discretizations of nonlinear wave equations and lattice equations such as the Davydov System modeling energetic pulse propagation in protein molecules. The method is unconditionally stable, making it well-suited to equations of broadly “Discrete NLS form”, including many arising in nonlinear optics. Key features of the resulting discretizations are exact conservation of both the Hamiltonian and quadratic conserved quantities related to continuous linear symmetries, preservation of time reversal symmetry, unconditional stability, and respecting the linearity of certain terms. The last feature allows a simple, efficient iterative solution of the resulting nonlinear algebraic systems that retain unconditional stability, avoiding the need for full Newton-type solvers. One distinction from earlier work on conservative discretizations is a new and more straightforward nearly canonical procedure for constructing the discretizations, based on a “discrete gradient calculus with product rule” that mimics the essential properties of partial derivatives. This numerical method is then used to study the Davydov system, revealing that previously conjectured continuum limit approximations by NLS do not hold, but that sech-like pulses related to NLS solitons can nevertheless sometimes arise.
IT vendor selection model by using structural equation model & analytical hierarchy process
Maitra, Sarit; Dominic, P. D. D.
2012-11-01
Selecting and evaluating the right vendors is imperative for an organization's global marketplace competitiveness. Improper selection and evaluation of potential vendors can dwarf an organization's supply chain performance. Numerous studies have demonstrated that firms consider multiple criteria when selecting key vendors. This research intends to develop a new hybrid model for vendor selection process with better decision making. The new proposed model provides a suitable tool for assisting decision makers and managers to make the right decisions and select the most suitable vendor. This paper proposes a Hybrid model based on Structural Equation Model (SEM) and Analytical Hierarchy Process (AHP) for long-term strategic vendor selection problems. The five steps framework of the model has been designed after the thorough literature study. The proposed hybrid model will be applied using a real life case study to assess its effectiveness. In addition, What-if analysis technique will be used for model validation purpose.
Driving Style Analysis Using Primitive Driving Patterns With Bayesian Nonparametric Approaches
Wang, Wenshuo; Xi, Junqiang; Zhao, Ding
2017-01-01
Analysis and recognition of driving styles are profoundly important to intelligent transportation and vehicle calibration. This paper presents a novel driving style analysis framework using the primitive driving patterns learned from naturalistic driving data. In order to achieve this, first, a Bayesian nonparametric learning method based on a hidden semi-Markov model (HSMM) is introduced to extract primitive driving patterns from time series driving data without prior knowledge of the number...
Blowup with vorticity control for a 2D model of the Boussinesq equations
Hoang, V.; Orcan-Ekmekci, B.; Radosz, M.; Yang, H.
2018-06-01
We propose a system of equations with nonlocal flux in two space dimensions which is closely modeled after the 2D Boussinesq equations in a hyperbolic flow scenario. Our equations involve a vorticity stretching term and a non-local Biot-Savart law and provide insight into the underlying intrinsic mechanisms of singularity formation. We prove stable, controlled finite time blowup involving upper and lower bounds on the vorticity up to the time of blowup for a wide class of initial data.
Algebraic models for the hierarchy structure of evolution equations at small x
International Nuclear Information System (INIS)
Rembiesa, P.; Stasto, A.M.
2005-01-01
We explore several models of QCD evolution equations simplified by considering only the rapidity dependence of dipole scattering amplitudes, while provisionally neglecting their dependence on transverse coordinates. Our main focus is on the equations that include the processes of pomeron splittings. We examine the algebraic structures of the governing equation hierarchies, as well as the asymptotic behavior of their solutions in the large-rapidity limit
Integrable discretizations for the short-wave model of the Camassa-Holm equation
International Nuclear Information System (INIS)
Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro
2010-01-01
The link between the short-wave model of the Camassa-Holm equation (SCHE) and bilinear equations of the two-dimensional Toda lattice equation is clarified. The parametric form of the N-cuspon solution of the SCHE in Casorati determinant is then given. Based on the above finding, integrable semi-discrete and full-discrete analogues of the SCHE are constructed. The determinant solutions of both semi-discrete and fully discrete analogues of the SCHE are also presented.
International Nuclear Information System (INIS)
Granita; Bahar, A.
2015-01-01
This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found
Energy Technology Data Exchange (ETDEWEB)
Granita, E-mail: granitafc@gmail.com [Dept. Mathematical Education, State Islamic University of Sultan Syarif Kasim Riau, 28293 Indonesia and Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor (Malaysia); Bahar, A. [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor Malaysia and UTM Center for Industrial and Applied Mathematics (UTM-CIAM) (Malaysia)
2015-03-09
This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.
On singularity formation of a 3D model for incompressible Navier–Stokes equations
Hou, Thomas Y.; Shi, Zuoqiang; Wang, Shu
2012-01-01
We investigate the singularity formation of a 3D model that was recently proposed by Hou and Lei (2009) in [15] for axisymmetric 3D incompressible Navier–Stokes equations with swirl. The main difference between the 3D model of Hou and Lei and the reformulated 3D Navier–Stokes equations is that the convection term is neglected in the 3D model. This model shares many properties of the 3D incompressible Navier–Stokes equations. One of the main results of this paper is that we prove rigorously th...
Transitions between discrete and rhythmic primitives in a unimanual task
Sternad, Dagmar; Marino, Hamal; Charles, Steven K.; Duarte, Marcos; Dipietro, Laura; Hogan, Neville
2013-01-01
Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements in order to “stress” the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: starting at 2 s, the metronome intervals decreased by 36 ms per cycle to 200 ms, stayed at 200 ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models. PMID:23888139
Transitions between Discrete and Rhythmic Primitives in a Unimanual Task
Directory of Open Access Journals (Sweden)
Dagmar eSternad
2013-07-01
Full Text Available Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements, in order to stress the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: Starting at 2s the metronome intervals decreased by 36ms per cycle to 200ms, stayed at 200ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models.
ON A PARABOLIC FREE BOUNDARY EQUATION MODELING PRICE FORMATION
MARKOWICH, P. A.
2009-10-01
We discuss existence and uniqueness of solutions for a one-dimensional parabolic evolution equation with a free boundary. This problem was introduced by Lasry and Lions as description of the dynamical formation of the price of a trading good. Short time existence and uniqueness is established by a contraction argument. Then we discuss the issue of global-in-time-extension of the local solution which is closely related to the regularity of the free boundary. We also present numerical results. © 2009 World Scientific Publishing Company.
Statistical approach to LHCD modeling using the wave kinetic equation
International Nuclear Information System (INIS)
Kupfer, K.; Moreau, D.; Litaudon, X.
1993-04-01
Recent work has shown that for parameter regimes typical of many present day current drive experiments, the orbits of the launched LH rays are chaotic (in the Hamiltonian sense), so that wave energy diffuses through the stochastic layer and fills the spectral gap. We have analyzed this problem using a statistical approach, by solving the wave kinetic equation for the coarse-grained spectral energy density. An interesting result is that the LH absorption profile is essentially independent of both the total injected power and the level of wave stochastic diffusion
ON A PARABOLIC FREE BOUNDARY EQUATION MODELING PRICE FORMATION
MARKOWICH, P. A.; MATEVOSYAN, N.; PIETSCHMANN, J.-F.; WOLFRAM, M.-T.
2009-01-01
We discuss existence and uniqueness of solutions for a one-dimensional parabolic evolution equation with a free boundary. This problem was introduced by Lasry and Lions as description of the dynamical formation of the price of a trading good. Short time existence and uniqueness is established by a contraction argument. Then we discuss the issue of global-in-time-extension of the local solution which is closely related to the regularity of the free boundary. We also present numerical results. © 2009 World Scientific Publishing Company.
Hamiltonian models for the Madelung fluid and generalized Langevin equations
International Nuclear Information System (INIS)
Nonnenmacher, T.F.
1985-01-01
We present a Hamiltonian formulation of some type of an 'electromagnetic' Madelung fluid leading to a fluid mechanics interpretation of the Aharonov-Bohm effect and to a subsidary condition to be required in order to make the correspondence between Schroedinger's quantum mechanics and Madelung's fluid mechanics unique. Then we discuss some problems related with the Brownian oscillator. Our aim is to start out with a Hamiltonian for the composite system with surrounding heat bath) and to finally arrive at a stochastic differential equation with completely determined statistical properties. (orig./HSI)
Model Identification Using Stochastic Differential Equation Grey-Box Models in Diabetes
DEFF Research Database (Denmark)
Duun-Henriksen, Anne Katrine; Schmidt, Signe; Røge, Rikke Meldgaard
2013-01-01
are uncorrelated and provides the possibility to pinpoint model deficiencies. METHODS: An identifiable model of the glucoregulatory system in a type 1 diabetes mellitus (T1DM) patient is used as the basis for development of a stochastic-differential-equation-based grey-box model (SDE-GB). The parameters...... in a significant improvement in the prediction and uncorrelated errors. Tracking of the "peak time of meal absorption" parameter showed that the absorption rate varied according to meal type. CONCLUSION: This study shows the potential of using SDE-GBs in diabetes modeling. Improved model predictions were obtained...... are estimated on clinical data from four T1DM patients. The optimal SDE-GB is determined from likelihood-ratio tests. Finally, parameter tracking is used to track the variation in the "time to peak of meal response" parameter. RESULTS: We found that the transformation of the ODE model into an SDE-GB resulted...
Chow, Sy-Miin; Ou, Lu; Ciptadi, Arridhana; Prince, Emily B; You, Dongjun; Hunter, Michael D; Rehg, James M; Rozga, Agata; Messinger, Daniel S
2018-06-01
A growing number of social scientists have turned to differential equations as a tool for capturing the dynamic interdependence among a system of variables. Current tools for fitting differential equation models do not provide a straightforward mechanism for diagnosing evidence for qualitative shifts in dynamics, nor do they provide ways of identifying the timing and possible determinants of such shifts. In this paper, we discuss regime-switching differential equation models, a novel modeling framework for representing abrupt changes in a system of differential equation models. Estimation was performed by combining the Kim filter (Kim and Nelson State-space models with regime switching: classical and Gibbs-sampling approaches with applications, MIT Press, Cambridge, 1999) and a numerical differential equation solver that can handle both ordinary and stochastic differential equations. The proposed approach was motivated by the need to represent discrete shifts in the movement dynamics of [Formula: see text] mother-infant dyads during the Strange Situation Procedure (SSP), a behavioral assessment where the infant is separated from and reunited with the mother twice. We illustrate the utility of a novel regime-switching differential equation model in representing children's tendency to exhibit shifts between the goal of staying close to their mothers and intermittent interest in moving away from their mothers to explore the room during the SSP. Results from empirical model fitting were supplemented with a Monte Carlo simulation study to evaluate the use of information criterion measures to diagnose sudden shifts in dynamics.
Energy Technology Data Exchange (ETDEWEB)
Gregoire, O
2008-07-01
In order to simulate nuclear reactor cores, we presently use the 4 equation model implemented within FLICA4 code. This model is complemented with 2 algebraic closures for thermal disequilibrium and relative velocity between phases. Using such closures, means an 'a priori' knowledge of flows calculated in order to ensure that modelling assumptions apply. In order to improve the degree of universality to our macroscopic modelling, we propose in the report to derive a more general 6 equation model (balance equations for mass, momentum and enthalpy for each phase) for 2-phase flows. We apply the up-scaling procedure (Whitaker, 1999) classically used in porous media analysis to the statistically averaged equations (Aniel-Buchheit et al., 2003). By doing this, we apply the double-averaging procedure (Pedras and De Lemos, 2001 and Pinson et al. 2006): statistical and spatial averages. Then, using weighted averages (analogous to Favre's average) we extend the spatial averaging concept to variable density and 2-phase flows. This approach allows the global recovering of the structure of the systems of equations implemented in industrial codes. Supplementary contributions, such as dispersion, are also highlighted. Mechanical and thermal exchanges between solids and fluid are formally derived. Then, thanks to realistic simplifying assumptions, we show how it is possible to derive the original 4 equation model from the full 6 equation model. (author)
Stochastic partial differential equations a modeling, white noise functional approach
Holden, Helge; Ubøe, Jan; Zhang, Tusheng
1996-01-01
This book is based on research that, to a large extent, started around 1990, when a research project on fluid flow in stochastic reservoirs was initiated by a group including some of us with the support of VISTA, a research coopera tion between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap A.S. (Statoil). The purpose of the project was to use stochastic partial differential equations (SPDEs) to describe the flow of fluid in a medium where some of the parameters, e.g., the permeability, were stochastic or "noisy". We soon realized that the theory of SPDEs at the time was insufficient to handle such equations. Therefore it became our aim to develop a new mathematically rigorous theory that satisfied the following conditions. 1) The theory should be physically meaningful and realistic, and the corre sponding solutions should make sense physically and should be useful in applications. 2) The theory should be general enough to handle many of the interesting SPDEs that occur in r...
Simplified TBA equations of the AdS5 × S5 mirror model
Arutyunov, G.E.; Frolov, S.
2009-01-01
We use the recently found integral representation for the dressing phase in the kinematic region of the mirror theory to simplify the TBA equations for the AdS5 × S5 mirror model. The resulting set of equations provides an efficient starting point for both analytic and numerical studies.
Averaging of the Equations of the Standard Cosmological Model over Rapid Oscillations
Ignat'ev, Yu. G.; Samigullina, A. R.
2017-11-01
An averaging of the equations of the standard cosmological model (SCM) is carried out. It is shown that the main contribution to the macroscopic energy density of the scalar field comes from its microscopic oscillations with the Compton period. The effective macroscopic equation of state of the oscillations of the scalar field corresponds to the nonrelativistic limit.
Modeling Noisy Data with Differential Equations Using Observed and Expected Matrices
Deboeck, Pascal R.; Boker, Steven M.
2010-01-01
Complex intraindividual variability observed in psychology may be well described using differential equations. It is difficult, however, to apply differential equation models in psychological contexts, as time series are frequently short, poorly sampled, and have large proportions of measurement and dynamic error. Furthermore, current methods for…
International Nuclear Information System (INIS)
Portugal, R.; Soares, I.D.
1985-01-01
Two new classes of spatially homogeneous cosmological solutions of Einstein-Maxwell equations are obtained by considering a class of exact perturbations of the static Bertotti-Robinson (BR) model. The BR solution is shown to be unstable under these perturbations, being perturbed into exact cosmological solutions with perfect fluid (equations of state p = lambda rho, O [pt
Integral equation models for image restoration: high accuracy methods and fast algorithms
International Nuclear Information System (INIS)
Lu, Yao; Shen, Lixin; Xu, Yuesheng
2010-01-01
Discrete models are consistently used as practical models for image restoration. They are piecewise constant approximations of true physical (continuous) models, and hence, inevitably impose bottleneck model errors. We propose to work directly with continuous models for image restoration aiming at suppressing the model errors caused by the discrete models. A systematic study is conducted in this paper for the continuous out-of-focus image models which can be formulated as an integral equation of the first kind. The resulting integral equation is regularized by the Lavrentiev method and the Tikhonov method. We develop fast multiscale algorithms having high accuracy to solve the regularized integral equations of the second kind. Numerical experiments show that the methods based on the continuous model perform much better than those based on discrete models, in terms of PSNR values and visual quality of the reconstructed images
Evolution of Computational Toxicology-from Primitive ...
Presentation at the Health Canada seminar in Ottawa, ON, Canada on Nov. 15. 2016 Presentation at the Health Canada seminar in Ottawa, ON, Canada on Nov. 15. 2016 on the Evolution of Computational Toxicology-from Primitive Beginnings to Sophisticated Application
Melville and the Tradition of Primitive Utopia.
Beauchamp, Gorman
1981-01-01
Discusses the relationships among the myth of the Golden Age, the concept of the Noble Savage, and the dream of Utopia. Uses Lewis Mumford's division of utopias into two basic types, i.e., reconstruction and escape utopias, to examine Herman Melville's "Typee" as an example of the primitive escapist utopia. (Editor/DMM)
Multiloop soliton and multibreather solutions of the short pulse model equation
International Nuclear Information System (INIS)
Matsuno, Yoshimasa
2007-01-01
We develop a systematic procedure for constructing the multisoliton solutions of the short pulse (SP) model equation which describes the propagation of ultra-short pulses in nonlinear medica. We first introduce a novel hodograph transformation to convert the SP equation into the sine-Gordon (sG) equation. With the soliton solutions of the sG equation, the system of linear partial differential equations governing the inverse mapping can be integrated analytically to obtain the soliton solutions of the SP equation in the form of the parametric representation. By specifying the soliton parameters, we obtain the multiloop and multibreather solutions. We investigate the asymptotic behavior of both solutions and confirm their solitonic feature. The nonsingular breather solutions may play an important role in studying the propagation of ultra-short pulses in an optical fibre. (author)
River water quality model no. 1 (RWQM1): II. Biochemical process equations
DEFF Research Database (Denmark)
Reichert, P.; Borchardt, D.; Henze, Mogens
2001-01-01
In this paper, biochemical process equations are presented as a basis for water quality modelling in rivers under aerobic and anoxic conditions. These equations are not new, but they summarise parts of the development over the past 75 years. The primary goals of the presentation are to stimulate...... transformation processes. This paper is part of a series of three papers. In the first paper, the general modelling approach is described; in the present paper, the biochemical process equations of a complex model are presented; and in the third paper, recommendations are given for the selection of a reasonable...
International Nuclear Information System (INIS)
Lin-Jie, Chen; Chang-Feng, Ma
2010-01-01
This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form u t + αuu x + βu n u x + γu xx + δu xxx + ζu xxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman–Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions. (general)
Henkels, Julia; Oh, Jaeho; Xu, Wenwei; Owen, Drew; Sulchek, Todd; Zamir, Evan
2013-02-01
Large-scale morphogenetic movements during early embryo development are driven by complex changes in biochemical and biophysical factors. Current models for amniote primitive streak morphogenesis and gastrulation take into account numerous genetic pathways but largely ignore the role of mechanical forces. Here, we used atomic force microscopy (AFM) to obtain for the first time precise biomechanical properties of the early avian embryo. Our data reveal that the primitive streak is significantly stiffer than neighboring regions of the epiblast, and that it is stiffer than the pre-primitive streak epiblast. To test our hypothesis that these changes in mechanical properties are due to a localized increase of actomyosin contractility, we inhibited actomyosin contractility via the Rho kinase (ROCK) pathway using the small-molecule inhibitor Y-27632. Our results using several different assays show the following: (1) primitive streak formation was blocked; (2) the time-dependent increase in primitive streak stiffness was abolished; and (3) convergence of epiblast cells to the midline was inhibited. Taken together, our data suggest that actomyosin contractility is necessary for primitive streak morphogenesis, and specifically, ROCK plays a critical role. To better understand the underlying mechanisms of this fundamental process, future models should account for the findings presented in this study.
Differential Equations Related to the Williams-Bjerknes Tumour Model
Indian Academy of Sciences (India)
Bjerknes tumour model for a cancer which spreads through an epithelial basal layer modeled on ⊂ 2. The solution of this problem is a family =(()), where each () could be considered as an approximation to the probability that the ...
Lattice Boltzmann model for high-order nonlinear partial differential equations
Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang
2018-01-01
In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂tϕ +∑k=1mαk∂xkΠk(ϕ ) =0 (1 ≤k ≤m ≤6 ), αk are constant coefficients, Πk(ϕ ) are some known differential functions of ϕ . As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K (n ,n ) -Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009), 10.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009), 10.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.
Lattice Boltzmann model for high-order nonlinear partial differential equations.
Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang
2018-01-01
In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂_{t}ϕ+∑_{k=1}^{m}α_{k}∂_{x}^{k}Π_{k}(ϕ)=0 (1≤k≤m≤6), α_{k} are constant coefficients, Π_{k}(ϕ) are some known differential functions of ϕ. As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K(n,n)-Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009)1672-179910.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009)PHYADX0378-437110.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.
Umut Caglar, Mehmet; Pal, Ranadip
2010-10-01
The central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid.'' However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of data in the cellular level and probabilistic nature of interactions. Probabilistic models like Stochastic Master Equation (SME) or deterministic models like differential equations (DE) can be used to analyze these types of interactions. SME models based on chemical master equation (CME) can provide detailed representation of genetic regulatory system, but their use is restricted by the large data requirements and computational costs of calculations. The differential equations models on the other hand, have low calculation costs and much more adequate to generate control procedures on the system; but they are not adequate to investigate the probabilistic nature of interactions. In this work the success of the mapping between SME and DE is analyzed, and the success of a control policy generated by DE model with respect to SME model is examined. Index Terms--- Stochastic Master Equation models, Differential Equation Models, Control Policy Design, Systems biology
The solution space of the unitary matrix model string equation and the Sato Grassmannian
International Nuclear Information System (INIS)
Anagnostopoulos, K.N.; Bowick, M.J.; Schwarz, A.
1992-01-01
The space of all solutions to the string equation of the symmetric unitary one-matrix model is determined. It is shown that the string equations is equivalent to simple conditions on points V 1 and V 2 in the big cell Gr (0) of the Sato Grassmannian Gr. This is a consequence of a well-defined continuum limit in which the string equation has the simple form [P, 2 - ]=1, with P and 2 - 2x2 matrices of differential operators. These conditions on V 1 and V 2 yield a simple system of first order differential equations whose analysis determines the space of all solutions to the string equation. This geometric formulation leads directly to the Virasoro constraints L n (n≥0), where L n annihilate the two modified-KdV τ-functions whose product gives the partition function of the Unitary Matrix Model. (orig.)
Quantum Security of Cryptographic Primitives
Gagliardoni, Tommaso
2017-01-01
We call quantum security the area of IT security dealing with scenarios where one or more parties have access to quantum hardware. This encompasses both the fields of post-quantum cryptography (that is, traditional cryptography engineered to be resistant against quantum adversaries), and quantum cryptography (that is, security protocols designed to be natively run on a quantum infrastructure, such as quantum key distribution). Moreover, there exist also hybrid models, where traditional crypto...
Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces
Wang, Chi R.
2005-01-01
This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one-equation
Equation-free modeling unravels the behavior of complex ecological systems
DeAngelis, Donald L.; Yurek, Simeon
2015-01-01
Ye et al. (1) address a critical problem confronting the management of natural ecosystems: How can we make forecasts of possible future changes in populations to help guide management actions? This problem is especially acute for marine and anadromous fisheries, where the large interannual fluctuations of populations, arising from complex nonlinear interactions among species and with varying environmental factors, have defied prediction over even short time scales. The empirical dynamic modeling (EDM) described in Ye et al.’s report, the latest in a series of papers by Sugihara and his colleagues, offers a promising quantitative approach to building models using time series to successfully project dynamics into the future. With the term “equation-free” in the article title, Ye et al. (1) are suggesting broader implications of their approach, considering the centrality of equations in modern science. From the 1700s on, nature has been increasingly described by mathematical equations, with differential or difference equations forming the basic framework for describing dynamics. The use of mathematical equations for ecological systems came much later, pioneered by Lotka and Volterra, who showed that population cycles might be described in terms of simple coupled nonlinear differential equations. It took decades for Lotka–Volterra-type models to become established, but the development of appropriate differential equations is now routine in modeling ecological dynamics. There is no question that the injection of mathematical equations, by forcing “clarity and precision into conjecture” (2), has led to increased understanding of population and community dynamics. As in science in general, in ecology equations are a key method of communication and of framing hypotheses. These equations serve as compact representations of an enormous amount of empirical data and can be analyzed by the powerful methods of mathematics.
Testing strong factorial invariance using three-level structural equation modeling
Jak, Suzanne
Within structural equation modeling, the most prevalent model to investigate measurement bias is the multigroup model. Equal factor loadings and intercepts across groups in a multigroup model represent strong factorial invariance (absence of measurement bias) across groups. Although this approach is
Modelling the heat dynamics of a building using stochastic differential equations
DEFF Research Database (Denmark)
Andersen, Klaus Kaae; Madsen, Henrik; Hansen, Lars Henrik
2000-01-01
estimation and model validation, while physical knowledge is used in forming the model structure. The suggested lumped parameter model is thus based on thermodynamics and formulated as a system of stochastic differential equations. Due to the continuous time formulation the parameters of the model...
A Study of Enhanced, Higher Order Boussinesq-Type Equations and Their Numerical Modelling
DEFF Research Database (Denmark)
Banijamali, Babak
model is designated for the solution of higher-order Boussinesq-type equations, formulated in terms of the horizontal velocity at an arbitrary depth vector. Various discretisation techniques and grid definitions have been considered in this endeavour, undertaking a detailed analysis of the selected......This project has encompassed efforts in two separate veins: on the one hand, the acquiring of highly accurate model equations of the Boussinesq-type, and on the other hand, the theoretical and practical work in implementing such equations in the form of conventional numerical models, with obvious...... potential for applications to the realm of numerical modelling in coastal engineering. The derivation and analysis of several forms of higher-order in dispersion and non-linearity Boussinesq-type equations have been undertaken, obtaining and investigating the properties of a new and generalised class...
Gas-evolution oscillators. 10. A model based on a delay equation
Energy Technology Data Exchange (ETDEWEB)
Bar-Eli, K.; Noyes, R.M. [Univ. of Oregon, Eugene, OR (United States)
1992-09-17
This paper develops a simplified method to model the behavior of a gas-evolution oscillator with two differential delay equations in two unknowns consisting of the population of dissolved molecules in solution and the pressure of the gas.
Gas-evolution oscillators. 10. A model based on a delay equation
International Nuclear Information System (INIS)
Bar-Eli, K.; Noyes, R.M.
1992-01-01
This paper develops a simplified method to model the behavior of a gas-evolution oscillator with two differential delay equations in two unknowns consisting of the population of dissolved molecules in solution and the pressure of the gas
The transition equation of the state intensities for exciton model and the calculation program
International Nuclear Information System (INIS)
Yu Xian; Zheng Jiwen; Liu Guoxing; Chen Keliang
1995-01-01
An equation set of the exciton model is given and calculation program is developed. The process of approaching to equilibrium state has been investigated with the program for 12 C + 64 Ni reaction at energy 72 MeV
Fast and accurate calculation of dilute quantum gas using Uehling–Uhlenbeck model equation
Energy Technology Data Exchange (ETDEWEB)
Yano, Ryosuke, E-mail: ryosuke.yano@tokiorisk.co.jp
2017-02-01
The Uehling–Uhlenbeck (U–U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U–U model equation. DSMC analysis based on the U–U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U–U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculating the viscosity coefficient of a Bose gas on the basis of the Green–Kubo expression and the shock layer of a dilute Bose gas around a cylinder.
Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J
2015-03-01
We consider model selection and estimation in a context where there are competing ordinary differential equation (ODE) models, and all the models are special cases of a "full" model. We propose a computationally inexpensive approach that employs statistical estimation of the full model, followed by a combination of a least squares approximation (LSA) and the adaptive Lasso. We show the resulting method, here called the LSA method, to be an (asymptotically) oracle model selection method. The finite sample performance of the proposed LSA method is investigated with Monte Carlo simulations, in which we examine the percentage of selecting true ODE models, the efficiency of the parameter estimation compared to simply using the full and true models, and coverage probabilities of the estimated confidence intervals for ODE parameters, all of which have satisfactory performances. Our method is also demonstrated by selecting the best predator-prey ODE to model a lynx and hare population dynamical system among some well-known and biologically interpretable ODE models. © 2014, The International Biometric Society.
Equation-oriented specification of neural models for simulations
Directory of Open Access Journals (Sweden)
Marcel eStimberg
2014-02-01
Full Text Available Simulating biological neuronal networks is a core method of research in computational neuroscience. A full specification of such a network model includes a description of the dynamics and state changes of neurons and synapses, as well as the synaptic connectivity patterns and the initial values of all parameters. A standard approach in neuronal modelling software is to build models based on a library of pre-defined models and mechanisms; if a model component does not yet exist, it has to be defined in a special-purpose or general low-level language and potentially be compiled and linked with the simulator. Here we propose an alternative approach that allows flexible definition of models by writing textual descriptions based on mathematical notation. We demonstrate that this approach allows the definition of a wide range of models with minimal syntax. Furthermore, such explicit model descriptions allow the generation of executable code for various target languages and devices, since the description is not tied to an implementation. Finally, this approach also has advantages for readability and reproducibility, because the model description is fully explicit, and because it can be automatically parsed and transformed into formatted descriptions.The presented approach has been implemented in the Brian2 simulator.
Modified two-fluid model for the two-group interfacial area transport equation
International Nuclear Information System (INIS)
Sun Xiaodong; Ishii, Mamoru; Kelly, Joseph M.
2003-01-01
This paper presents a modified two-fluid model that is ready to be applied in the approach of the two-group interfacial area transport equation. The two-group interfacial area transport equation was developed to provide a mechanistic constitutive relation for the interfacial area concentration in the two-fluid model. In the two-group transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 while cap/slug/churn-turbulent bubbles as Group 2. Therefore, this transport equation can be employed in the flow regimes spanning from bubbly, cap bubbly, slug to churn-turbulent flows. However, the introduction of the two groups of bubbles requires two gas velocity fields. Yet it is not practical to solve two momentum equations for the gas phase alone. In the current modified two-fluid model, a simplified approach is proposed. The momentum equation for the averaged velocity of both Group-1 and Group-2 bubbles is retained. By doing so, the velocity difference between Group-1 and Group-2 bubbles needs to be determined. This may be made either based on simplified momentum equations for both Group-1 and Group-2 bubbles or by a modified drift-flux model
International Nuclear Information System (INIS)
Fujii, Akira; Kluemper, Andreas
1999-01-01
We derive the non-linear integral equations determining the free energy of the three-state pure bosonic Uimin-Sutherland model. In order to find a complete set of auxiliary functions, the anti-symmetric fusion procedure is utilized. We solve the non-linear integral equations numerically and see that the low-temperature behavior coincides with that predicted by conformal field theory. The magnetization and magnetic susceptibility are also calculated by means of the non-linear integral equation
Modeling adsorption of cationic surfactants at air/water interface without using the Gibbs equation.
Phan, Chi M; Le, Thu N; Nguyen, Cuong V; Yusa, Shin-ichi
2013-04-16
The Gibbs adsorption equation has been indispensable in predicting the surfactant adsorption at the interfaces, with many applications in industrial and natural processes. This study uses a new theoretical framework to model surfactant adsorption at the air/water interface without the Gibbs equation. The model was applied to two surfactants, C14TAB and C16TAB, to determine the maximum surface excesses. The obtained values demonstrated a fundamental change, which was verified by simulations, in the molecular arrangement at the interface. The new insights, in combination with recent discoveries in the field, expose the limitations of applying the Gibbs adsorption equation to cationic surfactants at the air/water interface.
International Nuclear Information System (INIS)
Ding Qing
2007-01-01
We prove that the integrable-nonintegrable discrete nonlinear Schroedinger equation (AL-DNLS) introduced by Cai, Bishop and Gronbech-Jensen (Phys. Rev. Lett. 72 591(1994)) is the discrete gauge equivalent to an integrable-nonintegrable discrete Heisenberg model from the geometric point of view. Then we study whether the transmission and bifurcation properties of the AL-DNLS equation are preserved under the action of discrete gauge transformations. Our results reveal that the transmission property of the AL-DNLS equation is completely preserved and the bifurcation property is conditionally preserved to those of the integrable-nonintegrable discrete Heisenberg model
Continuum model of the two-component Becker-Döring equations
Directory of Open Access Journals (Sweden)
Ali Reza Soheili
2004-01-01
Full Text Available The process of collision between particles is a subject of interest in many fields of physics, astronomy, polymer physics, atmospheric physics, and colloid chemistry. If two types of particles are allowed to participate in the cluster coalescence, then the time evolution of the cluster distribution has been described by an infinite system of ordinary differential equations. In this paper, we describe the model with a second-order two-dimensional partial differential equation, as a continuum model.
Equations for the kinetic modeling of supersonically flowing electrically excited lasers
International Nuclear Information System (INIS)
Lind, R.C.
1973-01-01
The equations for the kinetic modeling of a supersonically flowing electrically excited laser system are presented. The work focuses on the use of diatomic gases, in particular carbon monoxide mixtures. The equations presented include the vibrational rate equation which describes the vibrational population distribution, the electron, ion and electronic level rate equations, the gasdynamic equations for an ionized gas in the presence of an applied electric field, and the free electron Boltzmann equation including flow and gradient coupling terms. The model developed accounts for vibration--vibration collisions, vibration-translation collisions, electron-molecule inelastic excitation and superelastic de-excitation collisions, charge particle collisions, ionization and three body recombination collisions, elastic collisions, and radiative decay, all of which take place in such a system. A simplified form of the free electron Boltzmann equation is developed and discussed with emphasis placed on its coupling with the supersonic flow. A brief description of a possible solution procedure for the set of coupled equations is discussed
Stochastic substitute for coupled rate equations in the modeling of highly ionized transient plasmas
International Nuclear Information System (INIS)
Eliezer, S.; Falquina, R.; Minguez, E.
1994-01-01
Plasmas produced by intense laser pulses incident on solid targets often do not satisfy the conditions for local thermodynamic equilibrium, and so cannot be modeled by transport equations relying on equations of state. A proper description involves an excessively large number of coupled rate equations connecting many quantum states of numerous species having different degrees of ionization. Here we pursue a recent suggestion to model the plasma by a few dominant states perturbed by a stochastic driving force. The driving force is taken to be a Poisson impulse process, giving a Langevin equation which is equivalent to a Fokker-Planck equation for the probability density governing the distribution of electron density. An approximate solution to the Langevin equation permits calculation of the characteristic relaxation rate. An exact stationary solution to the Fokker-Planck equation is given as a function of the strength of the stochastic driving force. This stationary solution is used, along with a Laplace transform, to convert the Fokker-Planck equation to one of Schroedinger type. We consider using the classical Hamiltonian formalism and the WKB method to obtain the time-dependent solution
Bayesian inference with information content model check for Langevin equations
DEFF Research Database (Denmark)
Krog, Jens F. C.; Lomholt, Michael Andersen
2017-01-01
The Bayesian data analysis framework has been proven to be a systematic and effective method of parameter inference and model selection for stochastic processes. In this work we introduce an information content model check which may serve as a goodness-of-fit, like the chi-square procedure...
Predictive Model Equations for Palm Kernel (Elaeis guneensis J ...
African Journals Online (AJOL)
Estimated error of ± 0.18 and ± 0.2 are envisaged while applying the models for predicting palm kernel and sesame oil colours respectively. Keywords: Palm kernel, Sesame, Palm kernel, Oil Colour, Process Parameters, Model. Journal of Applied Science, Engineering and Technology Vol. 6 (1) 2006 pp. 34-38 ...
Quality of peas modelled by a structural equation system
DEFF Research Database (Denmark)
Bech, A. C.; Juhl, H. J.; Hansen, M.
2000-01-01
in a PLS structural model with the Total Food Quality Model as starting point. The results show that texture and flavour do have approximately the same effect on consumers' perception of overall quality. Quality development goals for plant breeders would be to optimse perceived flavour directly...
Testing strong factorial invariance using three-level structural equation modeling
Directory of Open Access Journals (Sweden)
Suzanne eJak
2014-07-01
Full Text Available Within structural equation modeling, the most prevalent model to investigate measurement bias is the multigroup model. Equal factor loadings and intercepts across groups in a multigroup model represent strong factorial invariance (absence of measurement bias across groups. Although this approach is possible in principle, it is hardly practical when the number of groups is large or when the group size is relatively small. Jak, Oort and Dolan (2013 showed how strong factorial invariance across large numbers of groups can be tested in a multilevel structural equation modeling framework, by treating group as a random instead of a fixed variable. In the present study, this model is extended for use with three-level data. The proposed method is illustrated with an investigation of strong factorial invariance across 156 school classes and 50 schools in a Dutch dyscalculia test, using three-level structural equation modeling.
Semantic Primitives of Time and Space in Hong Kong Cantonese.
Tong, Malindy; And Others
1997-01-01
Semantic primitives for time and space, as proposed in Natural Semantic Metalanguage theory, are examined for lexical equivalents in Hong Kong Cantonese. Temporal primitives are all found to have clear Cantonese exponents that can be combined as predicted with other metalanguage elements, with two exceptions. Spatial primitives all appear to have…
Isotopic variations in primitive meteorites
International Nuclear Information System (INIS)
Clayton, R.N.; Chicago Univ., IL; Chicago Univ., IL
1981-01-01
The presence of large internal 16 O variability in ordinary chondrites greatly extends the range of meteorite types in which this phenomenon has been observed. These results may lead to identification of major gas and dust reservoirs in the cloud from which the Solar System formed. The demonstration that live 107 Pd was present in the differentiated parent bodies of some iron meteorites supports the million year time scale between a major nucleosynthetic event and Solar System formation, as implied by the presence of live 26 Al in carbonaceous chondrites. However, the variability of radiogenic 26 Mg abundances in these meteorites makes it clear that the data cannot be interpreted simply in terms of time variations. Models of nucleosynthesis for elements from calcium to the iron peak should be aided by the new observations of abundances of titanium isotopes. Progress has been made in establishing the carrier phases of isotopically anomalous xenon and krypton. The apparent location of anomalous xenon and 14 N-rich nitrogen in identical carriers supports the notion that nucleosynthetic anomalies in nitrogen are also present in Allende. (author)
International Nuclear Information System (INIS)
Mehta, Siddharth; Chauhan, K. Prashanth; Kanagaraj, S.
2011-01-01
Nanofluid is an innovative heat transfer fluid with superior potential for enhancing the heat transfer performance of conventional fluids. Though many attempts have been made to investigate the abnormal high thermal conductivity of nanofluids, the existing models cannot precisely predict the same. An attempt has been made to develop a model for predicting the thermal conductivity of different types of nanofluids. The model presented here is derived based on the fact that thermal conductivity of nanofluids depends on thermal conductivity of particle and fluid as well as micro-convective heat transfer due to Brownian motion of nanoparticles. Novelty of the article lies in giving a unique equation which predicts thermal conductivity of nanofluids for different concentrations and particle sizes which also correctly predicts the trends observed in experimental data over a wide range of particle sizes, temperatures, and particle concentrations.
Quantum Lattice-Gas Model for the Diffusion Equation
National Research Council Canada - National Science Library
Yepez, J
2001-01-01
.... It is a minimal model with two qubits per node of a one-dimensional lattice and it is suitable for implementation on a large array of small quantum computers interconnected by nearest-neighbor...
Coarse Analysis of Microscopic Models using Equation-Free Methods
DEFF Research Database (Denmark)
Marschler, Christian
of these models might be high-dimensional, the properties of interest are usually macroscopic and lowdimensional in nature. Examples are numerous and not necessarily restricted to computer models. For instance, the power output, energy consumption and temperature of engines are interesting quantities....... Applications include the learning behavior in the barn owl’s auditory system, traffic jam formation in an optimal velocity model for circular car traffic and oscillating behavior of pedestrian groups in a counter-flow through a corridor with narrow door. The methods do not only quantify interesting properties...... in these models (learning outcome, traffic jam density, oscillation period), but also allow to investigate unstable solutions, which are important information to determine basins of attraction of stable solutions and thereby reveal information on the long-term behavior of an initial state....
Simulation of Zitterbewegung by modelling the Dirac equation in Metamaterials
Ahrens, Sven; Jiang, Jun; Sun, Yong; Zhu, Shi-Yao
2015-01-01
We develop a dynamic description of an effective Dirac theory in metamaterials, in which the wavefunction is modeled by the corresponding electric and magnetic field in the metamaterial. This electro-magnetic field can be probed in the experimental setup, which means that the wavefunction of the effective theory is directly accessible by measurement. Our model is based on a plane wave expansion, which ravels the identification of Dirac spinors with single-frequency excitations of the electro-...
TBA equations for excited states in the sine-Gordon model
International Nuclear Information System (INIS)
Balog, Janos; Hegedus, Arpad
2004-01-01
We propose thermodynamic Bethe ansatz (TBA) integral equations for multi-particle soliton (fermion) states in the sine-Gordon (massive Thirring) model. This is based on T-system and Y-system equations, which follow from the Bethe ansatz solution in the light-cone lattice formulation of the model. Even and odd charge sectors are treated on an equal footing, corresponding to periodic and twisted boundary conditions, respectively. The analytic properties of the Y-system functions are conjectured on the basis of the large volume solution of the system, which we find explicitly. A simple relation between the TBA Y-functions and the counting function variable of the alternative non-linear integral equation (Destri-de Vega equation) description of the model is given. At the special value β 2 = 6π of the sine-Gordon coupling, exact expressions for energy and momentum eigenvalues of one-particle states are found
Stochastic modeling of stock price process induced from the conjugate heat equation
Paeng, Seong-Hun
2015-02-01
Currency can be considered as a ruler for values of commodities. Then the price is the measured value by the ruler. We can suppose that inflation and variation of exchange rate are caused by variation of the scale of the ruler. In geometry, variation of the scale means that the metric is time-dependent. The conjugate heat equation is the modified heat equation which satisfies the heat conservation law for the time-dependent metric space. We propose a new model of stock prices by using the stochastic process whose transition probability is determined by the kernel of the conjugate heat equation. Our model of stock prices shows how the volatility term is affected by inflation and exchange rate. This model modifies the Black-Scholes equation in light of inflation and exchange rate.
Kinar, N. J.
2017-05-01
An equation was proposed to model the height of blowing snow accumulation downwind of an obstacle such as vegetation, a snow fence, a building, or a topographic feature. The equation does not require aerodynamic flow condition parameters such as wind speed, allowing for the spatial distribution of snow to be determined at locations where meteorological data is not available. However, snow particle diffusion, drift, and erosion coefficients must be estimated for application of the equation. These coefficients can be used to provide insight into the relative magnitude of blowing snow processes at a field location. Further research is required to determine efficient methods for coefficient estimation. The equation could be used with other models of wind-transported snow to predict snow accumulation downwind of an obstacle without the need for wind speed adjustments or correction equations. Applications for this equation include the design of snow fences, and the use of this equation with other hydrological models to predict snow distribution, climate change, drought, flooding, and avalanches.
Hard Spheres on the Primitive Surface
Dotera, Tomonari; Takahashi, Yusuke
2015-03-01
Recently hierarchical structures associated with the gyroid in several soft-matter systems have been reported. One of fundamental questions is regular arrangement or tiling on minimal surfaces. We have found certain numbers of hard spheres per unit cell on the gyroid surface are entropically self-organized. Here, new results for the primitive surface are presented. 56/64/72 per unit cell on the primitive minimal surface are entropically self-organized. Numerical evidences for the fluid-solid transition as a function of hard sphere radius are obtained in terms of the acceptance ratio of Monte Carlo moves and order parameters. These arrangements, which are the extensions of the hexagonal arrangement on a flat surface, can be viewed as hyperbolic tiling on the Poincaré disk with a negative Gaussian curvature.
Structural-equation models of migration: an example from the Upper Midwest USA.
Cadwallader, M
1985-01-01
"To date, most migration models have been specified in terms of a single equation, whereby a set of regional characteristics are used to predict migration rates for various kinds of spatial units. These models are inadequate in at least two respects. First, they omit any causal links between the explanatory variables, thus ignoring indirect effects between these variables and migration. Second, they ignore the possibility of reciprocal causation, or feedback effects, between migration and the explanatory variables...." The author uses data for State Economic Areas to construct a path model and simultaneous-equation model to identify both indirect and feedback effects on migration in the Upper Midwestern United States. "On the basis of the path model, it is suggested that the direct effects of many variables on migration are at least partially offset by the indirect effects, whereas the simultaneous-equation model emphasizes the reciprocal relationship between income and migration." excerpt
Primary primitive neuroectodermal tumor of the orbit
Directory of Open Access Journals (Sweden)
Das Dipankar
2009-01-01
Full Text Available Primitive neuroectodermal tumor (PNET is a small round cell malignant tumor of neuroectodermal origin. Most of the PNETs occur in the central nervous system (CNS. PNETs recognized outside of CNS are diagnosed as peripheral PNET (pPNET. This tumor which expresses MIC-2 gene (CD99 seems to be least aggressive after complete tumor resection. We describe a rare case of PNET in a young girl.
A new differential equations-based model for nonlinear history-dependent magnetic behaviour
International Nuclear Information System (INIS)
Aktaa, J.; Weth, A. von der
2000-01-01
The paper presents a new kind of numerical model describing nonlinear magnetic behaviour. The model is formulated as a set of differential equations taking into account history dependence phenomena like the magnetisation hysteresis as well as saturation effects. The capability of the model is demonstrated carrying out comparisons between measurements and calculations
DEFF Research Database (Denmark)
Duun-Henriksen, Anne Katrine; Schmidt, S.; Nørgaard, K.
2013-01-01
extension incorporating exercise effects on insulin and glucose dynamics. Our model is constructed as a stochastic state space model consisting of a set of stochastic differential equations (SDEs). In a stochastic state space model, the residual error is split into random measurement error...
Neutron star models with realistic high-density equations of state
International Nuclear Information System (INIS)
Malone, R.C.; Johnson, M.B.; Bethe, H.A.
1975-01-01
We calculate neutron star models using four realistic high-density models of the equation of state. We conclude that the maximum mass of a neutron star is unlikely to exceed 2 M/sub sun/. All of the realistic models are consistent with current estimates of the moment of inertia of the Crab pulsar
Accounting for primitive terms in mathematics
Directory of Open Access Journals (Sweden)
D.F.M. Strauss
2005-07-01
Full Text Available The philosophical problem of unity and diversity entails a challenge to the rationalist aim to define everything. Definitions of this kind surface in various academic disciplines in formulations like uniqueness, irreducibility, and what has acquired the designation “primitive terms”. Not even the most “exact” disciplines, such as mathematics, can avoid the implications entailed in giving an account of such primitive terms. A mere look at the historical development of mathematics highlights the fact that alternative perspectives prevailed – from the arithmeticism of Pythagoreanism, the eventual geometrisation of mathematics after the discovery of incommensurability up to the revival of arithmeticism in the mathematics of Cauchy, Weierstrass, Dedekind and Cantor (with the later orientation of Frege, who completed the circle by returning to the view that mathematics essentially is geometry. An assessment of logicism and axiomatic formalism is followed by looking at the primitive meaning of wholeness (and the whole-parts relation. With reference to the views of Hilbert, Weyl and Bernays the article concludes by suggesting that in opposition to arithmeticism and geometricism an alternative option ought to be pursued – one in which both the uniqueness and mutual coherence between the aspects of number and space are acknowledged.
Stable lattice Boltzmann model for Maxwell equations in media
Hauser, A.; Verhey, J. L.
2017-12-01
The present work shows a method for stable simulations via the lattice Boltzmann (LB) model for electromagnetic waves (EM) transiting homogeneous media. LB models for such media were already presented in the literature, but they suffer from numerical instability when the media transitions are sharp. We use one of these models in the limit of pure vacuum derived from Liu and Yan [Appl. Math. Model. 38, 1710 (2014), 10.1016/j.apm.2013.09.009] and apply an extension that treats the effects of polarization and magnetization separately. We show simulations of simple examples in which EM waves travel into media to quantify error scaling, stability, accuracy, and time scaling. For conductive media, we use the Strang splitting and check the simulations accuracy at the example of the skin effect. Like pure EM propagation, the error for the static limits, which are constructed with a current density added in a first-order scheme, can be less than 1 % . The presented method is an easily implemented alternative for the stabilization of simulation for EM waves propagating in spatially complex structured media properties and arbitrary transitions.
Implicit Lagrangian equations and the mathematical modeling of physical systems
Moreau, Luc; van der Schaft, Arjan
2002-01-01
We introduce a class of optimal control problems on manifolds which gives rise (via the Pontryagin maximum principle) to a class of implicit Lagrangian systems (a notion which is introduced in the paper). We apply this to the mathematical modeling of interconnected mechanical systems and mechanical
Navy Quality of Life Survey: Structural Equation Modeling
National Research Council Canada - National Science Library
Craiger, J
1997-01-01
...: conflict between being in the Navy and one's personal life, Navy life compared with civilian life, and the extent to which Navy experiences matched expectations. Computer software was developed for the first model, so that Navy managers could predict the impact of life domain experiences on perceived QOL.
On Models with Uncountable Set of Spin Values on a Cayley Tree: Integral Equations
International Nuclear Information System (INIS)
Rozikov, Utkir A.; Eshkobilov, Yusup Kh.
2010-01-01
We consider models with nearest-neighbor interactions and with the set [0, 1] of spin values, on a Cayley tree of order k ≥ 1. We reduce the problem of describing the 'splitting Gibbs measures' of the model to the description of the solutions of some nonlinear integral equation. For k = 1 we show that the integral equation has a unique solution. In case k ≥ 2 some models (with the set [0, 1] of spin values) which have a unique splitting Gibbs measure are constructed. Also for the Potts model with uncountable set of spin values it is proven that there is unique splitting Gibbs measure.
DEFF Research Database (Denmark)
Jørgensen, Bo Hoffmann
2003-01-01
The goal of this brief report is to express the model equations for an incompressible flow which is horizontally homogeneous. It is intended as a computationally inexpensive starting point of a more complete solution for neutral atmospheric flow overcomplex terrain. This idea was set forth...... by Ayotte and Taylor (1995) and in the work of Beljaars et al. (1987). Unlike the previous models, the present work uses general orthogonal coordinates. Strong conservation form of the model equations is employedto allow a robust and consistent numerical procedure. An invariant tensor form of the model...
Exploring Convenience Food Consumption through a Structural Equation Model
Botonaki, Anna; Natos, Dimitrios; Mattas, Konstadinos
2007-01-01
In this study the model of convenience orientation suggested by Scholderer and Grunert (2005) is applied in order to examine consumer behavior in the context of convenience food usage. The empirical results indicate that socio-demographic characteristics affect behavior both directly and indirectly through perceived time resources and convenience orientation towards meal preparation and clearing up. Findings seem to be important for all the bodies involved in the marketing of convenience food...
Integrodifferential equations and delay models in population dynamics
Cushing, Jim M
1977-01-01
These notes are, for the most part, the result of a course I taught at the University of Arizona during the Spring of 1977. Their main purpose is to inves tigate the effect that delays (of Volterra integral type) have when placed in the differential models of mathematical ecology, as far as stability of equilibria and the nature of oscillations of species densities are concerned. A secondary pur pose of the course out of which they evolved was to give students an (at least elementary) introduction to some mathematical modeling in ecology as well as to some purely mathematical subjects, such as stability theory for integrodifferentia1 systems, bifurcation theory, and some simple topics in perturbation theory. The choice of topics of course reflects my personal interests; and while these notes were not meant to exhaust the topics covered, I think they and the list of refer ences come close to covering the literature to date, as far as integrodifferentia1 models in ecology are concerned. I would like to th...
Parameter Estimation of Structural Equation Modeling Using Bayesian Approach
Directory of Open Access Journals (Sweden)
Dewi Kurnia Sari
2016-05-01
Full Text Available Leadership is a process of influencing, directing or giving an example of employees in order to achieve the objectives of the organization and is a key element in the effectiveness of the organization. In addition to the style of leadership, the success of an organization or company in achieving its objectives can also be influenced by the commitment of the organization. Where organizational commitment is a commitment created by each individual for the betterment of the organization. The purpose of this research is to obtain a model of leadership style and organizational commitment to job satisfaction and employee performance, and determine the factors that influence job satisfaction and employee performance using SEM with Bayesian approach. This research was conducted at Statistics FNI employees in Malang, with 15 people. The result of this study showed that the measurement model, all significant indicators measure each latent variable. Meanwhile in the structural model, it was concluded there are a significant difference between the variables of Leadership Style and Organizational Commitment toward Job Satisfaction directly as well as a significant difference between Job Satisfaction on Employee Performance. As for the influence of Leadership Style and variable Organizational Commitment on Employee Performance directly declared insignificant.
The Cauchy problem for the Bogolyubov hierarchy of equations. The BCS model
International Nuclear Information System (INIS)
Vidybida, A.K.
1975-01-01
A chain of Bogolyubov's kinetic equations for an infinite quantum system of particles distributed in space with the mean density 1/V and interacting with the BCS model operator is considered as a single abstract equation in some countable normalized space bsup(v) of sequences of integral operators. In this case an unique solution of the Cauchy problem has been obtained at arbitrary initial conditions from bsup(v), stationary solutions of the equation have been derived, and the class of the initial conditions which approach to stationary ones is indicated
Analytic solution of boundary-value problems for nonstationary model kinetic equations
International Nuclear Information System (INIS)
Latyshev, A.V.; Yushkanov, A.A.
1993-01-01
A theory for constructing the solutions of boundary-value problems for non-stationary model kinetic equations is constructed. This theory was incorrectly presented equation, separation of the variables is used, this leading to a characteristic equation. Eigenfunctions are found in the space of generalized functions, and the eigenvalue spectrum is investigated. An existence and uniqueness theorem for the expansion of the Laplace transform of the solution with respect to the eigenfunctions is proved. The proof is constructive and gives explicit expressions for the expansion coefficients. An application to the Rayleigh problem is obtained, and the corresponding result of Cercignani is corrected
Effective methods of solving of model equations of certain class of thermal systems
International Nuclear Information System (INIS)
Lach, J.
1985-01-01
A number of topics connected with solving of model equations of certain class of thermal systems by the method of successive approximations is touched. A system of partial differential equations of the first degree, appearing most frequently in practical applications of heat and mass transfer theory is reduced to an equivalent system of Volterra integral equations of the second kind. Among a few sample applications the thermal processes appearing in the fuel channel of nuclear reactor are solved. The theoretical analysis is illustrated by the results of numerical calculations given in tables and diagrams. 111 refs., 17 figs., 16 tabs. (author)
Fractal diffusion equations: Microscopic models with anomalous diffusion and its generalizations
International Nuclear Information System (INIS)
Arkhincheev, V.E.
2001-04-01
To describe the ''anomalous'' diffusion the generalized diffusion equations of fractal order are deduced from microscopic models with anomalous diffusion as Comb model and Levy flights. It is shown that two types of equations are possible: with fractional temporal and fractional spatial derivatives. The solutions of these equations are obtained and the physical sense of these fractional equations is discussed. The relation between diffusion and conductivity is studied and the well-known Einstein relation is generalized for the anomalous diffusion case. It is shown that for Levy flight diffusion the Ohm's law is not applied and the current depends on electric field in a nonlinear way due to the anomalous character of Levy flights. The results of numerical simulations, which confirmed this conclusion, are also presented. (author)
Modelling with the master equation solution methods and applications in social and natural sciences
Haag, Günter
2017-01-01
This book presents the theory and practical applications of the Master equation approach, which provides a powerful general framework for model building in a variety of disciplines. The aim of the book is to not only highlight different mathematical solution methods, but also reveal their potential by means of practical examples. Part I of the book, which can be used as a toolbox, introduces selected statistical fundamentals and solution methods for the Master equation. In Part II and Part III, the Master equation approach is applied to important applications in the natural and social sciences. The case studies presented mainly hail from the social sciences, including urban and regional dynamics, population dynamics, dynamic decision theory, opinion formation and traffic dynamics; however, some applications from physics and chemistry are treated as well, underlining the interdisciplinary modelling potential of the Master equation approach. Drawing upon the author’s extensive teaching and research experience...
Pepe, Daniele; Do, Jin Hwan
2015-12-16
Increasing evidence indicates that different morphological types of cell death coexist in the brain of patients with Parkinson's disease (PD), but the molecular explanation for this is still under investigation. In this study, we identified perturbed pathways in two different cell models for PD through the following procedures: (1) enrichment pathway analysis with differentially expressed genes and the Reactome pathway database, and (2) construction of the shortest path model for the enriched pathway and detection of significant shortest path model with fitting time-course microarray data of each PD cell model to structural equation model. Two PD cell models constructed by the same neurotoxin showed different perturbed pathways. That is, one showed perturbation of three Reactome pathways, including cellular senescence, chromatin modifying enzymes, and chromatin organization, while six modules within metabolism pathway represented perturbation in the other. This suggests that the activation of common upstream cell death pathways in PD may result in various down-stream processes, which might be associated with different morphological types of cell death. In addition, our results might provide molecular clues for coexistence of different morphological types of cell death in PD patients.
Development of multidimensional two-fluid model code ACE-3D for evaluation of constitutive equations
Energy Technology Data Exchange (ETDEWEB)
Ohnuki, Akira; Akimoto, Hajime [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kamo, Hideki
1996-11-01
In order to perform design calculations for a passive safety reactor with good accuracy by a multidimensional two-fluid model, we developed an analysis code, ACE-3D, which can apply for evaluation of constitutive equations. The developed code has the following features: 1. The basic equations are based on 3-dimensional two-fluid model and the orthogonal or the cylindrical coordinate system can be selected. The fluid system is air-water or steam-water. 2. The basic equations are formulated by the finite-difference scheme of staggered mesh. The convection term is formulated by an upwind scheme and the diffusion term by a center-difference scheme. 3. Semi-implicit numerical scheme is adopted and the mass and the energy equations are treated equally in convergent steps for Jacobi equations. 4. The interfacial stress term consists of drag force, life force, turbulent dispersion force, wall force and virtual mass force. 5. A {kappa}-{epsilon} turbulent model for bubbly flow is incorporated as the turbulent model. The predictive capability of ACE-3D has been verified using a data-base for bubbly flow in a small-scale vertical pipe. In future, the constitutive equations will be improved with a data-base in a large vertical pipe developed in our laboratory and we have a plan to construct a reliable analytical tool through the improvement work, the progress of calculational speed with vector and parallel processing, the assessments for phase change terms and so on. This report describes the outline for the basic equations and the finite-difference equations in ACE-3D code and also the outline for the program structure. Besides, the results for the assessments of ACE-3D code for the small-scale pipe are summarized. (author)
Hadronic equation of state in the statistical bootstrap model and linear graph theory
International Nuclear Information System (INIS)
Fre, P.; Page, R.
1976-01-01
Taking a statistical mechanical point og view, the statistical bootstrap model is discussed and, from a critical analysis of the bootstrap volume comcept, it is reached a physical ipothesis, which leads immediately to the hadronic equation of state provided by the bootstrap integral equation. In this context also the connection between the statistical bootstrap and the linear graph theory approach to interacting gases is analyzed
Continuum model of the two-component Becker-Döring equations
Soheili, Ali Reza
2004-01-01
The process of collision between particles is a subject of interest in many fields of physics, astronomy, polymer physics, atmospheric physics, and colloid chemistry. If two types of particles are allowed to participate in the cluster coalescence, then the time evolution of the cluster distribution has been described by an infinite system of ordinary differential equations. In this paper, we describe the model with a second-order two-dimensional partial differential equation, as a continuum m...
Discrete Bogomolny equations for the nonlinear O(3) σ model in 2+1 dimensions
International Nuclear Information System (INIS)
Leese, R.
1989-01-01
Discrete analogues of the topological charge and of the Bogomolny equations are constructed for the nonlinear O(3) σ model in 2+1 dimensions, subject to the restriction that the energy density be radially symmetric. These are then incorporated into a discretized version of the evolution equations. Using the discrete Bogomolny relations to construct the initial data for numerical simulations removes the ''lattice wobble'' sometimes observed at low kinetic energies. This feature is very important for the delicate question of instanton stability
Modeling of superconductors based on the timedependent Ginsburg-Landau equations
Grishakov, K. S.; Degtyarenko, P. N.; Degtyarenko, N. N.; Elesin, V. F.; Kruglov, V. S.
2009-11-01
Results of modeling of superconductor magnetization process based on a numerical solution of the timedependent Ginsburg-Landau equations are presented. Methods of grid approximation of the equations and method of finite elements are used. Two-dimensional patterns of changes in the order parameter and supercurrent distribution in superconductors are calculated and visualized. The main results are in agreement with the well-known representations for type I and II superconductors.
Prompt form of relativistic equations of motion in a model of singular lagrangian formalism
International Nuclear Information System (INIS)
Gajda, R.P.; Duviryak, A.A.; Klyuchkovskij, Yu.B.
1983-01-01
The purpose of the paper is to develope the way of transition from equations of motion in singular lagrangian formalism to three-dimensional equations of Newton type in the prompt form of dynamics in the framework of c -2 parameter expansion (s. c. quasireltativistic approaches), as well as to find corresponding integrals of motion. The first quasirelativistifc approach for Dominici, Gomis, Longhi model was obtained and investigated
Development of multidimensional two-fluid model code ACE-3D for evaluation of constitutive equations
International Nuclear Information System (INIS)
Ohnuki, Akira; Akimoto, Hajime; Kamo, Hideki.
1996-11-01
In order to perform design calculations for a passive safety reactor with good accuracy by a multidimensional two-fluid model, we developed an analysis code, ACE-3D, which can apply for evaluation of constitutive equations. The developed code has the following features: 1. The basic equations are based on 3-dimensional two-fluid model and the orthogonal or the cylindrical coordinate system can be selected. The fluid system is air-water or steam-water. 2. The basic equations are formulated by the finite-difference scheme of staggered mesh. The convection term is formulated by an upwind scheme and the diffusion term by a center-difference scheme. 3. Semi-implicit numerical scheme is adopted and the mass and the energy equations are treated equally in convergent steps for Jacobi equations. 4. The interfacial stress term consists of drag force, life force, turbulent dispersion force, wall force and virtual mass force. 5. A κ-ε turbulent model for bubbly flow is incorporated as the turbulent model. The predictive capability of ACE-3D has been verified using a data-base for bubbly flow in a small-scale vertical pipe. In future, the constitutive equations will be improved with a data-base in a large vertical pipe developed in our laboratory and we have a plan to construct a reliable analytical tool through the improvement work, the progress of calculational speed with vector and parallel processing, the assessments for phase change terms and so on. This report describes the outline for the basic equations and the finite-difference equations in ACE-3D code and also the outline for the program structure. Besides, the results for the assessments of ACE-3D code for the small-scale pipe are summarized. (author)
Microfluidic assay of the deformability of primitive erythroblasts.
Zhou, Sitong; Huang, Yu-Shan; Kingsley, Paul D; Cyr, Kathryn H; Palis, James; Wan, Jiandi
2017-09-01
Primitive erythroblasts (precursors of red blood cells) enter vascular circulation during the embryonic period and mature while circulating. As a result, primitive erythroblasts constantly experience significant hemodynamic shear stress. Shear-induced deformation of primitive erythroblasts however, is poorly studied. In this work, we examined the deformability of primitive erythroblasts at physiologically relevant flow conditions in microfluidic channels and identified the regulatory roles of the maturation stage of primitive erythroblasts and cytoskeletal protein 4.1 R in shear-induced cell deformation. The results showed that the maturation stage affected the deformability of primitive erythroblasts significantly and that primitive erythroblasts at later maturational stages exhibited a better deformability due to a matured cytoskeletal structure in the cell membrane.
The SMM Model as a Boundary Value Problem Using the Discrete Diffusion Equation
Campbell, Joel
2007-01-01
A generalized single step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.
Meffin, Hamish; Tahayori, Bahman; Grayden, David B; Burkitt, Anthony N
2012-12-01
Neuroprosthetic devices, such as cochlear and retinal implants, work by directly stimulating neurons with extracellular electrodes. This is commonly modeled using the cable equation with an applied extracellular voltage. In this paper a framework for modeling extracellular electrical stimulation is presented. To this end, a cylindrical neurite with confined extracellular space in the subthreshold regime is modeled in three-dimensional space. Through cylindrical harmonic expansion of Laplace's equation, we derive the spatio-temporal equations governing different modes of stimulation, referred to as longitudinal and transverse modes, under types of boundary conditions. The longitudinal mode is described by the well-known cable equation, however, the transverse modes are described by a novel ordinary differential equation. For the longitudinal mode, we find that different electrotonic length constants apply under the two different boundary conditions. Equations connecting current density to voltage boundary conditions are derived that are used to calculate the trans-impedance of the neurite-plus-thin-extracellular-sheath. A detailed explanation on depolarization mechanisms and the dominant current pathway under different modes of stimulation is provided. The analytic results derived here enable the estimation of a neurite's membrane potential under extracellular stimulation, hence bypassing the heavy computational cost of using numerical methods.
Development of uncertainty-based work injury model using Bayesian structural equation modelling.
Chatterjee, Snehamoy
2014-01-01
This paper proposed a Bayesian method-based structural equation model (SEM) of miners' work injury for an underground coal mine in India. The environmental and behavioural variables for work injury were identified and causal relationships were developed. For Bayesian modelling, prior distributions of SEM parameters are necessary to develop the model. In this paper, two approaches were adopted to obtain prior distribution for factor loading parameters and structural parameters of SEM. In the first approach, the prior distributions were considered as a fixed distribution function with specific parameter values, whereas, in the second approach, prior distributions of the parameters were generated from experts' opinions. The posterior distributions of these parameters were obtained by applying Bayesian rule. The Markov Chain Monte Carlo sampling in the form Gibbs sampling was applied for sampling from the posterior distribution. The results revealed that all coefficients of structural and measurement model parameters are statistically significant in experts' opinion-based priors, whereas, two coefficients are not statistically significant when fixed prior-based distributions are applied. The error statistics reveals that Bayesian structural model provides reasonably good fit of work injury with high coefficient of determination (0.91) and less mean squared error as compared to traditional SEM.
Barbarossa, Maria Vittoria; Kuttler, Christina; Zinsl, Jonathan
2012-04-01
In this work we present a mathematical model for tumor growth based on the biology of the cell cycle. For an appropriate description of the effects of phase-specific drugs, it is necessary to look at the cell cycle and its phases. Our model reproduces the dynamics of three different tumor cell populations: quiescent cells, cells during the interphase and mitotic cells. Starting from a partial differential equations (PDEs) setting, a delay differential equations (DDE) model is derived for an easier and more realistic approach. Our equations also include interactions of tumor cells with immune system effectors. We investigate the model both from the analytical and the numerical point of view, give conditions for positivity of solutions and focus on the stability of the cancer-free equilibrium. Different immunotherapeutic strategies and their effects on the tumor growth are considered, as well.
Modeling ultrashort electromagnetic pulses with a generalized Kadomtsev-Petviashvili equation
Hofstrand, A.; Moloney, J. V.
2018-03-01
In this paper we derive a properly scaled model for the nonlinear propagation of intense, ultrashort, mid-infrared electromagnetic pulses (10-100 femtoseconds) through an arbitrary dispersive medium. The derivation results in a generalized Kadomtsev-Petviashvili (gKP) equation. In contrast to envelope-based models such as the Nonlinear Schrödinger (NLS) equation, the gKP equation describes the dynamics of the field's actual carrier wave. It is important to resolve these dynamics when modeling ultrashort pulses. We proceed by giving an original proof of sufficient conditions on the initial pulse for a singularity to form in the field after a finite propagation distance. The model is then numerically simulated in 2D using a spectral-solver with initial data and physical parameters highlighting our theoretical results.
DEFF Research Database (Denmark)
Mikkelsen, Frederik Vissing
eective computational tools for estimating unknown structures in dynamical systems, such as gene regulatory networks, which may be used to predict downstream eects of interventions in the system. A recommended algorithm based on the computational tools is presented and thoroughly tested in various......Broadly speaking, this thesis is devoted to model selection applied to ordinary dierential equations and risk estimation under model selection. A model selection framework was developed for modelling time course data by ordinary dierential equations. The framework is accompanied by the R software...... package, episode. This package incorporates a collection of sparsity inducing penalties into two types of loss functions: a squared loss function relying on numerically solving the equations and an approximate loss function based on inverse collocation methods. The goal of this framework is to provide...
Application of Fokker-Planck equation in positron diffusion trapping model
International Nuclear Information System (INIS)
Bartosova, I.; Ballo, P.
2015-01-01
This paper is a theoretical prelude to future work involving positron diffusion in solids for the purpose of positron annihilation lifetime spectroscopy (PALS). PALS is a powerful tool used to study defects present in materials. However, the behavior of positrons in solids is a process hard to describe. Various models have been established to undertake this task. Our preliminary model is based on the Diffusion Trapping Model (DTM) described by partial differential Fokker-Planck equation and is solved via time discretization. Fokker-Planck equation describes the time evolution of the probability density function of velocity of a particle under the influence of various forces. (authors)
International Nuclear Information System (INIS)
Rupšys, P.
2015-01-01
A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE
Energy Technology Data Exchange (ETDEWEB)
Rupšys, P. [Aleksandras Stulginskis University, Studenų g. 11, Akademija, Kaunas district, LT – 53361 Lithuania (Lithuania)
2015-10-28
A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE.
Causal Analysis of Religious Violence, a Structural Equation Modeling Approach
Directory of Open Access Journals (Sweden)
M Munajat
2015-12-01
[Penelitian ini berusaha mengkaji sebab kekerasan keagamaan dengan menggunakan pendekatan Model Persamaan Struktur (SEM. Penelitian kuantitatif terdahulu dalam bidang gerakan sosial dan kekerasan politik menunjukkan bahwa setidaknya ada tiga faktor yang diduga kuat menjadi penyebab kekerasan kolektif, seperti kekerasan agama, yaitu: 1 semakin fundamentalis seseorang, maka ia akan semakin cenderung menyetujui pernggunaan cara kekerasan, 2 semakin rendah kepercayaan seseorang terhadap pemerintah, maka ia akan semakin menyetujui penggunaan kekerasan, 3 berbeda dengan pendapat ke-dua, hanya orang yang rendah kepercayaanya kepada pemerintah, namun mempunyai semangat politik tinggi, yang akan menyetujui penggunaan cara-cara kekerasan. Berdasarkan pada data yang diambil dari 343 responden dari para aktivis, Front Pembela Islam, Muhammadiyah dan Nahdlatul Ulama, penelitian ini mengkonfirmasi bahwa semakin fundamentalis seseorang, maka ia akan semakin cenderung menyetujui kekerasan, terlepas dari afiliasi organisasi mereka. Namun demikian, penelitian ini tidak mendukung hubungan antara kepercayaan terhadap pemerintah dan kekerasan. Demikian juga, hubungan antara kekerasan dan interaksi antara kepercayaan pemerintah dan semangat politik tidak dapat dibuktikan dari data dalam penelitian ini. Oleh karena itu, penelitian ini menyimpulkan bahwa fundamentalisme, sebagai salah satu bentuk keagamaan, merupakan faktor yang sangat penting dalam menjelaskan kekerasan keagamaan.
Individual acceptance of the biogas innovation: A structural equation model
International Nuclear Information System (INIS)
Emmann, Carsten H.; Arens, Ludwig; Theuvsen, Ludwig
2013-01-01
The rapid spread of biogas production in Germany has resulted in an increased public debate over this new business branch. Today the production of biogas is much more controversially debated than several years ago. At the same time it could be proven that even among farmers themselves the acceptance of biogas production in some regions is somewhat dampened due to accompanying “collateral damages”. Therefore, the goal of this paper is to identify relevant influencing factors that determine the acceptance of the innovation “biogas” among farmers by applying a causal analysis. Initial results among the five investigated determinants show that not only an individual attitude toward biogas but also the farmers' personal innovativeness strongly and significantly influences an individual's acceptance of the innovation “biogas”. -- Highlights: •Strong expansion of biogas production based on renewable resources in Germany since 2004. •Low acceptance of biogas production in some regions. •Identification of influencing factors that determine the individual acceptance of the biogas innovation among German farmers. •Compared to existing studies, personal innovativeness was taken into account in the causal model. •Results are important for the further expansion of biogas production in Germany as well as in other countries
Governing equations for a seriated continuum: an unequal velocity model for two-phase flow
International Nuclear Information System (INIS)
Solbrig, C.W.; Hughes, E.D.
1975-05-01
The description of the flow of two-phase fluids is important in many engineering devices. Unexpected transient conditions which occur in these devices cannot, in general, be treated with single-component momentum equations. Instead, the use of momentum equations for each phase is necessary in order to describe the varied transient situations which can occur. These transient conditions can include phases moving in the opposite directions, such as steam moving upward and liquid moving downward, as well as phases moving in the same direction. The derivation of continuity and momentum equations for each phase and an overall energy equation for the mixture are presented. Terms describing interphase forces are described. A seriated (series of) continuum is distinguished from an interpenetrating medium by the representation of interphase friction with velocity differences in the former and velocity gradients in the latter. The seriated continuum also considers imbedded stationary solid surfaces such as occur in nuclear reactor cores. These stationary surfaces are taken into account with source terms. Sufficient constitutive equations are presented to form a complete set of equations. Methods are presented to show that all these coefficients are determinable from microscopic models and well known experimental results. Comparison of the present deviation with previous work is also given. The equations derived here may also be employed in certain multiphase, multicomponent flow applications. (U.S.)
Connection between Einstein equations, nonlinear sigma models, and self-dual Yang-Mills theory
International Nuclear Information System (INIS)
Sanchez, N.; Whiting, B.
1986-01-01
The authors analyze the connection between nonlinear sigma models self-dual Yang-Mills theory, and general relativity (self-dual and non-self-dual, with and without killing vectors), both at the level of the equations and at the level of the different type of solutions (solitons and calorons) of these theories. They give a manifestly gauge invariant formulation of the self-dual gravitational field analogous to that given by Yang for the self-dual Yang-Mills field. This formulation connects in a direct and explicit way the self-dual Yang-Mills and the general relativity equations. They give the ''R gauge'' parametrization of the self-dual gravitational field (which corresponds to modified Yang's-type and Ernst equations) and analyze the correspondence between their different types of solutions. No assumption about the existence of symmetries in the space-time is needed. For the general case (non-self-dual), they show that the Einstein equations contain an O nonlinear sigma model. This connection with the sigma model holds irrespective of the presence of symmetries in the space-time. They found a new class of solutions of Einstein equations depending on holomorphic and antiholomorphic functions and we relate some subclasses of these solutions to solutions of simpler nonlinear field equations that are well known in other branches of physics, like sigma models, SineGordon, and Liouville equations. They include gravitational plane wave solutions. They analyze the response of different accelerated quantum detector models, compare them to the case when the detectors are linterial in an ordinary Planckian gas at a given temperature, and discuss the anisotropy of the detected response for Rindler observers
DEFF Research Database (Denmark)
Arya, Alay; Liang, Xiaodong; von Solms, Nicolas
2017-01-01
In this study, different modeling approaches using the Cubic Plus Association (CPA) equation of state (EoS) are developed to calculate the asphaltene precipitation onset condition and asphaltene yield from degassed crude oil during the addition of n-paraffin. A single model parameter is fitted...
Bifurcation Analysis of Gene Propagation Model Governed by Reaction-Diffusion Equations
Directory of Open Access Journals (Sweden)
Guichen Lu
2016-01-01
Full Text Available We present a theoretical analysis of the attractor bifurcation for gene propagation model governed by reaction-diffusion equations. We investigate the dynamical transition problems of the model under the homogeneous boundary conditions. By using the dynamical transition theory, we give a complete characterization of the bifurcated objects in terms of the biological parameters of the problem.
Residuals and the Residual-Based Statistic for Testing Goodness of Fit of Structural Equation Models
Foldnes, Njal; Foss, Tron; Olsson, Ulf Henning
2012-01-01
The residuals obtained from fitting a structural equation model are crucial ingredients in obtaining chi-square goodness-of-fit statistics for the model. The authors present a didactic discussion of the residuals, obtaining a geometrical interpretation by recognizing the residuals as the result of oblique projections. This sheds light on the…
Dijkstra, T.K.; Henseler, J.
2011-01-01
The recent advent of nonlinear structural equation models with indices poses a new challenge to the measurement of scientific constructs. We discuss, exemplify and add to a family of statistical methods aimed at creating linear indices, and compare their suitability in a complex path model with
Matrix Solution of Coupled Differential Equations and Looped Car Following Models
McCartney, Mark
2008-01-01
A simple mathematical model for the behaviour of how vehicles follow each other along a looped stretch of road is described. The resulting coupled first order differential equations are solved using appropriate matrix techniques and the physical significance of the model is discussed. A number possible classroom exercises are suggested to help…
Chen, Ying-Chieh; Li, Ren-Hau; Chen, Sheng-Hwang
2013-01-01
The purpose of this cross-sectional study was to test a cause-and-effect model of factors affecting leisure satisfaction among Taiwanese adolescents. A structural equation model was proposed in which the relationships among leisure motivation, leisure involvement, and leisure satisfaction were explored. The study collected data from 701 adolescent…
Introduction of the Notion of Differential Equations by Modelling Based Teaching
Budinski, Natalija; Takaci, Djurdjica
2011-01-01
This paper proposes modelling based learning as a tool for learning and teaching mathematics. The example of modelling real world problems leading to the exponential function as the solution of differential equations is described, as well as the observations about students' activities during the process. The students were acquainted with the…
Elrod, Terry; Haubl, Gerald; Tipps, Steven W.
2012-01-01
Recent research reflects a growing awareness of the value of using structural equation models to analyze repeated measures data. However, such data, particularly in the presence of covariates, often lead to models that either fit the data poorly, are exceedingly general and hard to interpret, or are specified in a manner that is highly data…
Parallel Algorithm for Solving TOV Equations for Sequence of Cold and Dense Nuclear Matter Models
Ayriyan, Alexander; Buša, Ján; Grigorian, Hovik; Poghosyan, Gevorg
2018-04-01
We have introduced parallel algorithm simulation of neutron star configurations for set of equation of state models. The performance of the parallel algorithm has been investigated for testing set of EoS models on two computational systems. It scales when using with MPI on modern CPUs and this investigation allowed us also to compare two different types of computational nodes.
Prescriptive Statements and Educational Practice: What Can Structural Equation Modeling (SEM) Offer?
Martin, Andrew J.
2011-01-01
Longitudinal structural equation modeling (SEM) can be a basis for making prescriptive statements on educational practice and offers yields over "traditional" statistical techniques under the general linear model. The extent to which prescriptive statements can be made will rely on the appropriate accommodation of key elements of research design,…
Silberg, Judy L.; And Others
1994-01-01
Applied structural equation modeling to twin data to assess impact of genetic and environmental factors on children's behavioral and emotional functioning. Applied models to maternal ratings of behavior of 515 monozygotic and 749 dizygotic twin pairs. Importance of genetic, shared, and specific environmental factors for explaining variation was…
Estimating structural equation models with non-normal variables by using transformations
Montfort, van K.; Mooijaart, A.; Meijerink, F.
2009-01-01
We discuss structural equation models for non-normal variables. In this situation the maximum likelihood and the generalized least-squares estimates of the model parameters can give incorrect estimates of the standard errors and the associated goodness-of-fit chi-squared statistics. If the sample
Karadag, Engin; Kilicoglu, Gökhan; Yilmaz, Derya
2014-01-01
The purpose of this study is to explain constructed theoretical models that organizational cynicism perceptions of primary school teachers affect school culture and academic achievement, by using structural equation modeling. With the assumption that there is a cause-effect relationship between three main variables, the study was constructed with…
Lagrangian derivation of the two coupled field equations in the Janus cosmological model
Petit, Jean-Pierre; D'Agostini, G.
2015-05-01
After a review citing the results obtained in previous articles introducing the Janus Cosmological Model, consisting of a set of two coupled field equations, where one metrics refers to the positive masses and the other to the negative masses, which explains the observed cosmic acceleration and the nature of dark energy, we present the Lagrangian derivation of the model.
Cheung, Mike W. L.; Chan, Wai
2009-01-01
Structural equation modeling (SEM) is widely used as a statistical framework to test complex models in behavioral and social sciences. When the number of publications increases, there is a need to systematically synthesize them. Methodology of synthesizing findings in the context of SEM is known as meta-analytic SEM (MASEM). Although correlation…
Smoothed particle hydrodynamics model for phase separating fluid mixtures. I. General equations
Thieulot, C; Janssen, LPBM; Espanol, P
We present a thermodynamically consistent discrete fluid particle model for the simulation of a recently proposed set of hydrodynamic equations for a phase separating van der Waals fluid mixture [P. Espanol and C.A.P. Thieulot, J. Chem. Phys. 118, 9109 (2003)]. The discrete model is formulated by
Identifying the primitive path mesh in entangled polymer liquids
International Nuclear Information System (INIS)
Sukumaran, Sathish K.; Kremer, Kurt; Grest, Gary Stephen; Everaers, Ralf
2004-01-01
Similar to entangled ropes, polymer chains cannot slide through each other. These topological constraints, the so-called entanglements, dominate the viscoelastic behavior of high-molecular-weight polymeric liquids. Tube models of polymer dynamics and rheology are based on the idea that entanglements confine a chain to small fluctuations around a primitive path which follows the coarse-grained chain contour. To establish the microscopic foundation for these highly successful phenomenological models, we have recently introduced a method for identifying the primitive path mesh that characterizes the microscopic topological state of computer-generated conformations of long-chain polymer melts and solutions. Here we give a more detailed account of the algorithm and discuss several key aspects of the analysis that are pertinent for its successful use in analyzing the topology of the polymer configurations. We also present a slight modification of the algorithm that preserves the previously neglected self-entanglements and allows us to distinguish between local self-knots and entanglements between distant sections of the same chain. Our results indicate that the latter make a negligible contribution to the tube and that the contour length between local self-knots, N 1k is significantly larger than the entanglement length N e
Validation of an employee satisfaction model: A structural equation model approach
Directory of Open Access Journals (Sweden)
Ophillia Ledimo
2015-01-01
Full Text Available The purpose of this study was to validate an employee satisfaction model and to determine the relationships between the different dimensions of the concept, using the structural equation modelling approach (SEM. A cross-sectional quantitative survey design was used to collect data from a random sample of (n=759 permanent employees of a parastatal organisation. Data was collected using the Employee Satisfaction Survey (ESS to measure employee satisfaction dimensions. Following the steps of SEM analysis, the three domains and latent variables of employee satisfaction were specified as organisational strategy, policies and procedures, and outcomes. Confirmatory factor analysis of the latent variables was conducted, and the path coefficients of the latent variables of the employee satisfaction model indicated a satisfactory fit for all these variables. The goodness-of-fit measure of the model indicated both absolute and incremental goodness-of-fit; confirming the relationships between the latent and manifest variables. It also indicated that the latent variables, organisational strategy, policies and procedures, and outcomes, are the main indicators of employee satisfaction. This study adds to the knowledge base on employee satisfaction and makes recommendations for future research.
Shah, A A; Xing, W W; Triantafyllidis, V
2017-04-01
In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.
DEFF Research Database (Denmark)
Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode
2009-01-01
are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE1 approximation......The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model...... development, J. Pharmacokinet. Pharmacodyn. 32 (February(l)) (2005) 109-141; C.W. Tornoe, R.V Overgaard, H. Agerso, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8...
Tao, Youshan; Guo, Qian; Aihara, Kazuyuki
2014-10-01
Hormonal therapy with androgen suppression is a common treatment for advanced prostate tumors. The emergence of androgen-independent cells, however, leads to a tumor relapse under a condition of long-term androgen deprivation. Clinical trials suggest that intermittent androgen suppression (IAS) with alternating on- and off-treatment periods can delay the relapse when compared with continuous androgen suppression (CAS). In this paper, we propose a mathematical model for prostate tumor growth under IAS therapy. The model elucidates initial hormone sensitivity, an eventual relapse of a tumor under CAS therapy, and a delay of a relapse under IAS therapy, which are due to the coexistence of androgen-dependent cells, androgen-independent cells resulting from reversible changes by adaptation, and androgen-independent cells resulting from irreversible changes by genetic mutations. The model is formulated as a free boundary problem of partial differential equations that describe the evolution of populations of the abovementioned three types of cells during on-treatment periods and off-treatment periods. Moreover, the model can be transformed into a piecewise linear ordinary differential equation model by introducing three new volume variables, and the study of the resulting model may help to devise optimal IAS schedules.
Ivanova, Iryna V; Tasca, Giorgio A; Proulx, Geneviève; Bissada, Hany
2015-11-01
Interpersonal model has been validated with binge-eating disorder (BED), but it is not yet known if the model applies across a range of eating disorders (ED). The goal of this study was to investigate the validity of the interpersonal model in anorexia nervosa (restricting type; ANR and binge-eating/purge type; ANBP), bulimia nervosa (BN), BED, and eating disorder not otherwise specified (EDNOS). Data from a cross-sectional sample of 1459 treatment-seeking women diagnosed with ANR, ANBP, BN, BED and EDNOS were examined for indirect effects of interpersonal problems on ED psychopathology mediated through negative affect. Findings from structural equation modeling demonstrated the mediating role of negative affect in four of the five diagnostic groups. There were significant, medium to large (.239, .558), indirect effects in the ANR, BN, BED and EDNOS groups but not in the ANBP group. The results of the first reverse model of interpersonal problems as a mediator between negative affect and ED psychopathology were nonsignificant, suggesting the specificity of these hypothesized paths. However, in the second reverse model ED psychopathology was related to interpersonal problems indirectly through negative affect. This is the first study to find support for the interpersonal model of ED in a clinical sample of women with diverse ED diagnoses, though there may be a reciprocal relationship between ED psychopathology and relationship problems through negative affect. Negative affect partially explains the relationship between interpersonal problems and ED psychopathology in women diagnosed with ANR, BN, BED and EDNOS. Interpersonal psychotherapies for ED may be addressing the underlying interpersonal-affective difficulties, thereby reducing ED psychopathology. Copyright © 2015 Elsevier Inc. All rights reserved.
Identifying generalized Fitzhugh-Nagumo equation from a numerical solution of Hodgkin-Huxley model
Directory of Open Access Journals (Sweden)
Nikola V. Georgiev
2003-01-01
Full Text Available An analytic time series in the form of numerical solution (in an appropriate finite time interval of the Hodgkin-Huxley current clamped (HHCC system of four differential equations, well known in the neurophysiology as an exact empirical model of excitation of a giant axon of Loligo, is presented. Then we search for a second-order differential equation of generalized Fitzhugh-Nagumo (GFN type, having as a solution the given single component (action potential of the numerical solution. The given time series is used as a basis for reconstructing orders, powers, and coefficients of the polynomial right-hand sides of GFN equation approximately governing the process of action potential. For this purpose, a new geometrical method for determining phase space dimension of the unknown dynamical system (GFN equation and a specific modification of least squares method for identifying unknown coefficients are developed and applied.
Nonlinear integral equations for thermodynamics of the sl(r + 1) Uimin-Sutherland model
International Nuclear Information System (INIS)
Tsuboi, Zengo
2003-01-01
We derive traditional thermodynamic Bethe ansatz (TBA) equations for the sl(r+1) Uimin-Sutherland model from the T-system of the quantum transfer matrix. These TBA equations are identical to the those from the string hypothesis. Next we derive a new family of nonlinear integral equations (NLIEs). In particular, a subset of these NLIEs forms a system of NLIEs which contains only a finite number of unknown functions. For r=1, this subset of NLIEs reduces to Takahashi's NLIE for the XXX spin chain. A relation between the traditional TBA equations and our new NLIEs is clarified. Based on our new NLIEs, we also calculate the high-temperature expansion of the free energy
Role of secondary instability theory and parabolized stability equations in transition modeling
El-Hady, Nabil M.; Dinavahi, Surya P.; Chang, Chau-Lyan; Zang, Thomas A.
1993-01-01
In modeling the laminar-turbulent transition region, the designer depends largely on benchmark data from experiments and/or direct numerical simulations that are usually extremely expensive. An understanding of the evolution of the Reynolds stresses, turbulent kinetic energy, and quantifies in the transport equations like the dissipation and production is essential in the modeling process. The secondary instability theory and the parabolized stability equations method are used to calculate these quantities, which are then compared with corresponding quantities calculated from available direct numerical simulation data for the incompressible boundary-layer flow of laminar-turbulent transition conditions. The potential of the secondary instability theory and the parabolized stability equations approach in predicting these quantities is discussed; results indicate that inexpensive data that are useful for transition modeling in the early stages of the transition region can be provided by these tools.
The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders
International Nuclear Information System (INIS)
Gurau, Razvan
2012-01-01
Random tensor models for a generic complex tensor generalize matrix models in arbitrary dimensions and yield a theory of random geometries. They support a 1/N expansion dominated by graphs of spherical topology. Their Schwinger Dyson equations, generalizing the loop equations of matrix models, translate into constraints satisfied by the partition function. The constraints have been shown, in the large N limit, to close a Lie algebra indexed by colored rooted D-ary trees yielding a first generalization of the Virasoro algebra in arbitrary dimensions. In this paper we complete the Schwinger Dyson equations and the associated algebra at all orders in 1/N. The full algebra of constraints is indexed by D-colored graphs, and the leading order D-ary tree algebra is a Lie subalgebra of the full constraints algebra.
A single-equation study of US petroleum consumption: The role of model specificiation
International Nuclear Information System (INIS)
Jones, C.T.
1993-01-01
The price responsiveness of US petroleum consumption began to attract a great deal of attention following the unexpected and substantial oil price increases of 1973-74. There have been a number of large, multi-equation econometric studies of US energy demand since then which have focused primarily on estimating short run and long run price and income elasticities of individual energy resources (coal, oil, natural gas ampersand electricity) for various consumer sectors (residential, industrial, commercial). Following these early multi-equation studies there have been several single-equation studies of aggregate US petroleum consumption. When choosing an economic model specification for a single-equation study of aggregate US petroleum consumption, an easily estimated model that will provide unbiased price and income elasticity estimates and yield accurate forecasts is needed. Using Hendry's general-to-simple specification search technique and annual data to obtain a restricted, data-acceptable simplification of a general ADL model yielded GNP and short run price elasticities near the consensus estimates, but a long run price elasticity substantially smaller than existing estimates. Comparisons with three other seemingly acceptable simple-to-general models showed that popular model specifications often involve untested, unacceptable parameter restrictions. These models may also demonstrate poorer forecasting performance. Based on results, the general-to-simple approach appears to offer a more accurate methodology for generating superior forecast models of petroleum consumption and other energy use patterns
Observational constraints on cosmological models with Chaplygin gas and quadratic equation of state
International Nuclear Information System (INIS)
Sharov, G.S.
2016-01-01
Observational manifestations of accelerated expansion of the universe, in particular, recent data for Type Ia supernovae, baryon acoustic oscillations, for the Hubble parameter H ( z ) and cosmic microwave background constraints are described with different cosmological models. We compare the ΛCDM, the models with generalized and modified Chaplygin gas and the model with quadratic equation of state. For these models we estimate optimal model parameters and their permissible errors with different approaches to calculation of sound horizon scale r s ( z d ). Among the considered models the best value of χ 2 is achieved for the model with quadratic equation of state, but it has 2 additional parameters in comparison with the ΛCDM and therefore is not favored by the Akaike information criterion.
Primitive Endoderm Differentiation: From Specification to Epithelialization.
Bassalert, Cécilia; Valverde-Estrella, Lorena; Chazaud, Claire
2018-01-01
At the time of implantation, the mouse blastocyst has developed three cell lineages: the epiblast (Epi), the primitive endoderm (PrE), and the trophectoderm (TE). The PrE and TE are extraembryonic tissues but their interactions with the Epi are critical to sustain embryonic growth, as well as to pattern the embryo. We review here the cellular and molecular events that lead to the production of PrE and Epi lineages and discuss the different hypotheses that are proposed for the induction of these cell types. In the second part, we report the current knowledge about the epithelialization of the PrE. © 2018 Elsevier Inc. All rights reserved.
Primary primitive neuroectodermal tumor of the cervix
Li, Bo; Ouyang, Ling; Han, Xue; Zhou, Yang; Tong, Xin; Zhang, Shulang; Zhang, Qingfu
2013-01-01
Primary primitive neuroectodermal tumors (PNETs) are rare and high-grade malignant tumors that mostly occur in children and young adults. The most common sites are the trunk, limbs, and retroperitoneum. Herein, we present a case of a PNET involving the cervix uteri in a 27-year-old woman. The lesion showed characteristic histologic features of a PNET and was positive for the immunohistochemical markers cluster of differentiation (CD) 99, vimentin, neuron-specific enolase, neural cell adhesion molecule 1 (CD56), and CD117 (c-kit), further defining the tumor while helping to confirm PNET. The clinical Stage IIIB tumor was treated with chemotherapy and radiotherapy. PMID:23836982
An Overview of DRAM-Based Security Primitives
Directory of Open Access Journals (Sweden)
Nikolaos Athanasios Anagnostopoulos
2018-03-01
Full Text Available Recent developments have increased the demand for adequate security solutions, based on primitives that cannot be easily manipulated or altered, such as hardware-based primitives. Security primitives based on Dynamic Random Access Memory (DRAM can provide cost-efficient and practical security solutions, especially for resource-constrained devices, such as hardware used in the Internet of Things (IoT, as DRAMs are an intrinsic part of most contemporary computer systems. In this work, we present a comprehensive overview of the literature regarding DRAM-based security primitives and an extended classification of it, based on a number of different criteria. In particular, first, we demonstrate the way in which DRAMs work and present the characteristics being exploited for the implementation of security primitives. Then, we introduce the primitives that can be implemented using DRAM, namely Physical Unclonable Functions (PUFs and True Random Number Generators (TRNGs, and present the applications of each of the two types of DRAM-based security primitives. We additionally proceed to assess the security such primitives can provide, by discussing potential attacks and defences, as well as the proposed security metrics. Subsequently, we also compare these primitives to other hardware-based security primitives, noting their advantages and shortcomings, and proceed to demonstrate their potential for commercial adoption. Finally, we analyse our classification methodology, by reviewing the criteria employed in our classification and examining their significance.
A close look at the mammalian blastocyst: epiblast and primitive endoderm formation.
Artus, Jérôme; Chazaud, Claire
2014-09-01
During early development, the mammalian embryo undergoes a series of profound changes that lead to the formation of two extraembryonic tissues--the trophectoderm and the primitive endoderm. These tissues encapsulate the pluripotent epiblast at the time of implantation. The current model proposes that the formation of these lineages results from two consecutive binary cell fate decisions. The first controls the formation of the trophectoderm and the inner cell mass, and the second controls the formation of the primitive endoderm and the epiblast within the inner cell mass. While early mammalian embryos develop with extensive plasticity, the embryonic pattern prior to implantation is remarkably reproducible. Here, we review the molecular mechanisms driving the cell fate decision between primitive endoderm and epiblast in the mouse embryo and integrate data from recent studies into the current model of the molecular network regulating the segregation between these lineages and their subsequent differentiation.
Wu, Liejun; Chen, Maoxue; Chen, Yongli; Li, Qing X.
2013-01-01
Gas holdup time (tM) is a basic parameter in isothermal gas chromatography (GC). Determination and evaluation of tM and retention behaviors of n-alkanes under isothermal GC conditions have been extensively studied since the 1950s, but still remains unresolved. The difference equation (DE) model [J. Chromatogr. A 1260:215–223] reveals retention behaviors of n-alkanes excluding tM, while the quadratic equation (QE) model [J. Chromatogr. A 1260:224–231] including tM is suitable for applications. In the present study, tM values were calculated with the QE model, which is referred to as tMT, evaluated and compared with other three typical nonlinear models. The QE model gives an accurate estimation of tM in isothermal GC. The tMT values are highly accurate, stable, and easy to calculate and use. There is only one tMT value at each GC condition. The proper classification of tM values can clarify their disagreement and facilitate GC retention data standardization for which tMT values are promising reference tM values. PMID:23726077
Directory of Open Access Journals (Sweden)
Hashem Salarzadeh Jenatabadi
2016-11-01
Full Text Available There are many factors which could influence the sustainability of airlines. The main purpose of this study is to introduce a framework for a financial sustainability index and model it based on structural equation modeling (SEM with maximum likelihood and Bayesian predictors. The introduced framework includes economic performance, operational performance, cost performance, and financial performance. Based on both Bayesian SEM (Bayesian-SEM and Classical SEM (Classical-SEM, it was found that economic performance with both operational performance and cost performance are significantly related to the financial performance index. The four mathematical indices employed are root mean square error, coefficient of determination, mean absolute error, and mean absolute percentage error to compare the efficiency of Bayesian-SEM and Classical-SEM in predicting the airline financial performance. The outputs confirmed that the framework with Bayesian prediction delivered a good fit with the data, although the framework predicted with a Classical-SEM approach did not prepare a well-fitting model. The reasons for this discrepancy between Classical and Bayesian predictions, as well as the potential advantages and caveats with the application of Bayesian approach in airline sustainability studies, are debated.
Sanz, Luis; Alonso, Juan Antonio
2017-12-01
In this work we develop approximate aggregation techniques in the context of slow-fast linear population models governed by stochastic differential equations and apply the results to the treatment of populations with spatial heterogeneity. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of 'global' variables, in such a way that the dynamics of the former can be approximated by that of the latter. In our model we contemplate a linear fast deterministic process together with a linear slow process in which the parameters are affected by additive noise, and give conditions for the solutions corresponding to positive initial conditions to remain positive for all times. By letting the fast process reach equilibrium we build a reduced system with a lesser number of variables, and provide results relating the asymptotic behaviour of the first- and second-order moments of the population vector for the original and the reduced system. The general technique is illustrated by analysing a multiregional stochastic system in which dispersal is deterministic and the rate growth of the populations in each patch is affected by additive noise.
Grymin, David J.
This dissertation addresses motion planning, modeling, and feedback control for autonomous vehicle systems. A hierarchical approach for motion planning and control of nonlinear systems operating in obstacle environments is presented. To reduce computation time during the motion planning process, dynamically feasible trajectories are generated in real-time through concatenation of pre-specified motion primitives. The motion planning task is posed as a search over a directed graph, and the applicability of informed graph search techniques is investigated. Specifically, a locally greedy algorithm with effective backtracking ability is developed and compared to weighted A* search. The greedy algorithm shows an advantage with respect to solution cost and computation time when larger motion primitive libraries that do not operate on a regular state lattice are utilized. Linearization of the nonlinear system equations about the motion primitive library results in a hybrid linear time-varying model, and an optimal control algorithm using the l 2-induced norm as the performance measure is applied to ensure that the system tracks the desired trajectory. The ability of the resulting controller to closely track the trajectory obtained from the motion planner, despite various disturbances and uncertainties, is demonstrated through simulation. Additionally, an approach for obtaining dynamically feasible reference trajectories and feedback controllers for a small unmanned aerial vehicle (UAV) based on an aerodynamic model derived from flight tests is presented. The modeling approach utilizes the two step method (TSM) with stepwise multiple regression to determine relevant explanatory terms for the aerodynamic models. Dynamically feasible trajectories are then obtained through the solution of an optimal control problem using pseudospectral optimal control software. Discretetime feedback controllers are then obtained to regulate the vehicle along the desired reference trajectory
Analytic solution of vector model kinetic equations with constant kernel and their applications
International Nuclear Information System (INIS)
Latyshev, A.V.
1993-01-01
For the first time exact solutions the heif-space boundary value problems for model kinetic equations is obtained. Here x > 0, μ is an element of (-∞, 0) union (0, +∞), Σ = diag {σ 1 , σ 2 }, C = [c ij ] - 2 x 2-matrix, Ψ (x, μ) is vector-column with elements ψ 1 and ψ 2 . Exact solution of the diffusion slip flow of the binary gas mixture as a application for the model Boltzmann equation with collision operator in the McCormack's form is found. 18 refs
Lee, Sik-Yum
2012-01-01
This book provides clear instructions to researchers on how to apply Structural Equation Models (SEMs) for analyzing the inter relationships between observed and latent variables. Basic and Advanced Bayesian Structural Equation Modeling introduces basic and advanced SEMs for analyzing various kinds of complex data, such as ordered and unordered categorical data, multilevel data, mixture data, longitudinal data, highly non-normal data, as well as some of their combinations. In addition, Bayesian semiparametric SEMs to capture the true distribution of explanatory latent variables are introduce
Development of a polynomial nodal model to the multigroup transport equation in one dimension
International Nuclear Information System (INIS)
Feiz, M.
1986-01-01
A polynomial nodal model that uses Legendre polynomial expansions was developed for the multigroup transport equation in one dimension. The development depends upon the least-squares minimization of the residuals using the approximate functions over the node. Analytical expressions were developed for the polynomial coefficients. The odd moments of the angular neutron flux over the half ranges were used at the internal interfaces, and the Marshak boundary condition was used at the external boundaries. Sample problems with fine-mesh finite-difference solutions of the diffusion and transport equations were used for comparison with the model
The discretized Schroedinger equation and simple models for semiconductor quantum wells
International Nuclear Information System (INIS)
Boykin, Timothy B; Klimeck, Gerhard
2004-01-01
The discretized Schroedinger equation is one of the most commonly employed methods for solving one-dimensional quantum mechanics problems on the computer, yet many of its characteristics remain poorly understood. The differences with the continuous Schroedinger equation are generally viewed as shortcomings of the discrete model and are typically described in purely mathematical terms. This is unfortunate since the discretized equation is more productively viewed from the perspective of solid-state physics, which naturally links the discrete model to realistic semiconductor quantum wells and nanoelectronic devices. While the relationship between the discrete model and a one-dimensional tight-binding model has been known for some time, the fact that the discrete Schroedinger equation admits analytic solutions for quantum wells has gone unnoted. Here we present a solution to this new analytically solvable problem. We show that the differences between the discrete and continuous models are due to their fundamentally different bandstructures, and present evidence for our belief that the discrete model is the more physically reasonable one
Self-dual form of Ruijsenaars–Schneider models and ILW equation with discrete Laplacian
Directory of Open Access Journals (Sweden)
A. Zabrodin
2018-02-01
Full Text Available We discuss a self-dual form or the Bäcklund transformations for the continuous (in time variable glN Ruijsenaars–Schneider model. It is based on the first order equations in N+M complex variables which include N positions of particles and M dual variables. The latter satisfy equations of motion of the glM Ruijsenaars–Schneider model. In the elliptic case it holds M=N while for the rational and trigonometric models M is not necessarily equal to N. Our consideration is similar to the previously obtained results for the Calogero–Moser models which are recovered in the non-relativistic limit. We also show that the self-dual description of the Ruijsenaars–Schneider models can be derived from complexified intermediate long wave equation with discrete Laplacian by means of the simple pole ansatz likewise the Calogero–Moser models arise from ordinary intermediate long wave and Benjamin–Ono equations.
Ginzburg-Landau equation as a heuristic model for generating rogue waves
Lechuga, Antonio
2016-04-01
Envelope equations have many applications in the study of physical systems. Particularly interesting is the case 0f surface water waves. In steady conditions, laboratory experiments are carried out for multiple purposes either for researches or for practical problems. In both cases envelope equations are useful for understanding qualitative and quantitative results. The Ginzburg-Landau equation provides an excellent model for systems of that kind with remarkable patterns. Taking into account the above paragraph the main aim of our work is to generate waves in a water tank with almost a symmetric spectrum according to Akhmediev (2011) and thus, to produce a succession of rogue waves. The envelope of these waves gives us some patterns whose model is a type of Ginzburg-Landau equation, Danilov et al (1988). From a heuristic point of view the link between the experiment and the model is achieved. Further, the next step consists of changing generating parameters on the water tank and also the coefficients of the Ginzburg-Landau equation, Lechuga (2013) in order to reach a sufficient good approach.
Critical Domain Problem for the Reaction–Telegraph Equation Model of Population Dynamics
Directory of Open Access Journals (Sweden)
Weam Alharbi
2018-04-01
Full Text Available A telegraph equation is believed to be an appropriate model of population dynamics as it accounts for the directional persistence of individual animal movement. Being motivated by the problem of habitat fragmentation, which is known to be a major threat to biodiversity that causes species extinction worldwide, we consider the reaction–telegraph equation (i.e., telegraph equation combined with the population growth on a bounded domain with the goal to establish the conditions of species survival. We first show analytically that, in the case of linear growth, the expression for the domain’s critical size coincides with the critical size of the corresponding reaction–diffusion model. We then consider two biologically relevant cases of nonlinear growth, i.e., the logistic growth and the growth with a strong Allee effect. Using extensive numerical simulations, we show that in both cases the critical domain size of the reaction–telegraph equation is larger than the critical domain size of the reaction–diffusion equation. Finally, we discuss possible modifications of the model in order to enhance the positivity of its solutions.
Effects of primitive photosynthesis on Earth's early climate system
Ozaki, Kazumi; Tajika, Eiichi; Hong, Peng K.; Nakagawa, Yusuke; Reinhard, Christopher T.
2018-01-01
The evolution of different forms of photosynthetic life has profoundly altered the activity level of the biosphere, radically reshaping the composition of Earth's oceans and atmosphere over time. However, the mechanistic impacts of a primitive photosynthetic biosphere on Earth's early atmospheric chemistry and climate are poorly understood. Here, we use a global redox balance model to explore the biogeochemical and climatological effects of different forms of primitive photosynthesis. We find that a hybrid ecosystem of H2-based and Fe2+-based anoxygenic photoautotrophs—organisms that perform photosynthesis without producing oxygen—gives rise to a strong nonlinear amplification of Earth's methane (CH4) cycle, and would thus have represented a critical component of Earth's early climate system before the advent of oxygenic photosynthesis. Using a Monte Carlo approach, we find that a hybrid photosynthetic biosphere widens the range of geochemical conditions that allow for warm climate states well beyond either of these metabolic processes acting in isolation. Our results imply that the Earth's early climate was governed by a novel and poorly explored set of regulatory feedbacks linking the anoxic biosphere and the coupled H, C and Fe cycles. We suggest that similar processes should be considered when assessing the potential for sustained habitability on Earth-like planets with reducing atmospheres.