WorldWideScience

Sample records for primary oxidation product

  1. Primary atmospheric oxidation mechanism for toluene.

    Science.gov (United States)

    Baltaretu, Cristian O; Lichtman, Eben I; Hadler, Amelia B; Elrod, Matthew J

    2009-01-08

    The products of the primary OH-initiated oxidation of toluene were investigated using the turbulent flow chemical ionization mass spectrometry technique at temperatures ranging from 228 to 298 K. A major dienedial-producing pathway was detected for the first time for toluene oxidation, and glyoxal and methylglyoxal were found to be minor primary oxidation products. The results suggest that secondary oxidation processes involving dienedial and epoxide primary products are likely responsible for previous observations of glyoxal and methylglyoxal products from toluene oxidation. Because the dienedial-producing pathway is a null cycle for tropospheric ozone production and glyoxal and methylglyoxal are important secondary organic aerosol precursors, these new findings have important implications for the modeling of toluene oxidation in the atmosphere.

  2. Primary oxidation and reduction products in x-irradiated aspartic acid

    International Nuclear Information System (INIS)

    Adams, S.M.; Budzinski, E.E.; Box, H.C.

    1976-01-01

    The primary reduction products identified by ESR--ENDOR spectroscopy in single crystals of DL-aspartic acid hydrochloride irradiated at 4.2degreeK are anions formed by addition of an electron to the carbonyl oxygen atoms of the carboxylic acid groups. The main consequence of the oxidation process is to produce a hole centered mainly on atomic chlorine

  3. Production and release of acylcarnitines by primary myotubes reflect the differences in fasting fat oxidation of the donors.

    Science.gov (United States)

    Wolf, Magnus; Chen, Shili; Zhao, Xinjie; Scheler, Mika; Irmler, Martin; Staiger, Harald; Beckers, Johannes; de Angelis, Martin Hrabé; Fritsche, Andreas; Häring, Hans-Ulrich; Schleicher, Erwin D; Xu, Guowang; Lehmann, Rainer; Weigert, Cora

    2013-06-01

    Acylcarnitines are biomarkers of incomplete β-oxidation and mitochondrial lipid overload but indicate also high rates of mitochondrial fatty acid oxidation. It is unknown whether the production of acylcarnitines in primary human myotubes obtained from lean, metabolically healthy subjects reflects the fat oxidation in vivo. Our objective was to quantify the acylcarnitine production in myotubes obtained from subjects with low and high fasting respiratory quotient (RQ). Fasting RQ was determined by indirect calorimetry. Muscle biopsies from the vastus lateralis muscle were taken from 6 subjects with low fasting RQ (mean 0.79 ± 0.03) and 6 with high fasting RQ (0.90 ± 0.03), and satellite cells were isolated, cultured, and differentiated to myotubes. Myotubes were cultivated with 125 μM (13)C-labeled palmitate for 30 minutes and 4 and 24 hours. Quantitative profiling of 42 intracellular and 31 extracellular acylcarnitines was performed by stable isotope dilution-based metabolomics analysis by liquid chromatography coupled to mass spectrometry. Myotubes from donors with high fasting RQ produced and released significant higher amounts of medium-chain acylcarnitines. High (13)C8 and (13)C10 acylcarnitine levels in the extracellular compartment correlated with high fasting RQ. The decreased expression of medium-chain acyl-coenzyme A dehydrogenase (MCAD) in these myotubes can explain the higher rate of incomplete fatty acid oxidation. A lower intracellular [(13)C]acetylcarnitine to carnitine and lower intracellular (13)C16/(13)C18 acylcarnitine to carnitine ratio indicate reduced fatty acid oxidation capacity in these myotubes. Mitochondrial DNA content was not different. Acylcarnitine production and release from primary human myotubes of donors with high fasting RQ indicate a reduced fatty acid oxidation capacity and a higher rate of incomplete fatty acid oxidation. Thus, quantitative profiling of acylcarnitine production in human myotubes can be a suitable tool to

  4. Method for the production of primary amines

    NARCIS (Netherlands)

    Baldenius, Kai-Uwe; Ditrich, Klaus; Breurer, Michael; Navickas, Vaidotas; Janssen, Dick; Crismaru, Ciprian; Bartsch, Sebastian

    2014-01-01

    The present invention relates to a novel enzymatically catalyzed method for the production of aliphatic primary amines, which method comprises the enzymatic oxidation of a primary aliphatic alcohol catalyzed by an alcohol dehydrogenase, amination of the resulting oxocompound catalyzed by a

  5. Chemoselective organocatalytic aerobic oxidation of primary amines to secondary imines.

    Science.gov (United States)

    Wendlandt, Alison E; Stahl, Shannon S

    2012-06-01

    Biomimetic aerobic oxidation of primary benzylic amines has been achieved by using a quinone catalyst. Excellent selectivity is observed for primary, unbranched benzylic amines relative to secondary/tertiary amines, branched benzylic amines, and aliphatic amines. The exquisite selectivity for benzylic amines enables oxidative self-sorting within dynamic mixtures of amines and imines to afford high yields of cross-coupled imine products.

  6. Oxidative stress in primary glomerular diseases

    DEFF Research Database (Denmark)

    Markan, Suchita; Kohli, Harbir Singh; Sud, Kamal

    2008-01-01

    To evaluate the status of oxidative stress in patients with different primary glomerular diseases (PGD) which have differential predisposition to renal failure.......To evaluate the status of oxidative stress in patients with different primary glomerular diseases (PGD) which have differential predisposition to renal failure....

  7. Corrosion-product transport, oxidation state and remedial measures

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Brett, M.E.; Tapping, R.L.

    1998-01-01

    The issues associated with monitoring and controlling corrosion-product transport (CPT) in the balance-of-plant (BOP) and steam generators (SG) of CANDU stations are briefly reviewed. The efforts are focused on minimizing corrosion of carbon steel, which is used extensively in the CANDU primary and secondary systems. Emphasis is placed on the corrosion-product oxidation state as a monitor of water chemistry effectiveness, and as a monitor of system corrosion effects. The discussion is based mostly on the results and observations from Ontario Hydro plants, and their comparisons with PWRs. The effects of low oxygen and elevated hydrazine chemistry are reviewed, as well as the effects of lay-up and various start-up conditions. Progress in monitoring electrochemical potential (ECP) at Ontario Hydro plants and its relationship to the oxidation state of corrosion products is reviewed. Observations on corrosion-product transport on the primary side of steam generators are also discussed. (author)

  8. Corrosion-product transport, oxidation state and remedial measures

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Brett, M.E.; Tapping, R.L.

    1998-10-01

    The issues associated with monitoring and controlling corrosion-product transport (CPT) in the balance-of-plant (BOP) and steam generators (SG) of CANDU stations are briefly reviewed. Efforts are focused on minimizing corrosion of carbon steel, which is used extensively in the CANDU primary and secondary systems. Emphasis is placed on the corrosion-product oxidation state as a monitor of water chemistry effectiveness and as a monitor of system corrosion effects. The discussion is based mostly on the results of observations from Ontario Hydro plants, and their comparisons with pressurized-water reactors. The effects of low oxygen and elevated hydrazine chemistry are reviewed, as well as the effects of layup and various startup conditions. Progress in monitoring electrochemical potential (ECP) at Ontario Hydro plants and its relationship to the oxidation state of corrosion products is reviewed. Observations on CPT on the primary side of SGs are also discussed. (author)

  9. Thiol dioxygenase turnover yields benzothiazole products from 2-mercaptoaniline and O2-dependent oxidation of primary alcohols.

    Science.gov (United States)

    Morrow, William P; Sardar, Sinjinee; Thapa, Pawan; Hossain, Mohammad S; Foss, Frank W; Pierce, Brad S

    2017-10-01

    Thiol dioxygenases are non-heme mononuclear iron enzymes that catalyze the O 2 -dependent oxidation of free thiols (-SH) to produce the corresponding sulfinic acid (-SO 2 - ). Previous chemical rescue studies identified a putative Fe III -O 2 - intermediate that precedes substrate oxidation in Mus musculus cysteine dioxygenase (Mm CDO). Given that a similar reactive intermediate has been identified in the extradiol dioxygenase 2, 3-HCPD, it is conceivable that these enzymes share other mechanistic features with regard to substrate oxidation. To explore this possibility, enzymatic reactions with Mm CDO (as well as the bacterial 3-mercaptopropionic acid dioxygenase, Av MDO) were performed using a substrate analogue (2-mercaptoaniline, 2ma). This aromatic thiol closely approximates the catecholic substrate of homoprotocatechuate of 2, 3-HPCD while maintaining the 2-carbon thiol-amine separation preferred by Mm CDO. Remarkably, both enzymes exhibit 2ma-gated O 2 -consumption; however, none of the expected products for thiol dioxygenase or intra/extradiol dioxygenase reactions were observed. Instead, benzothiazoles are produced by the condensation of 2ma with aldehydes formed by an off-pathway oxidation of primary alcohols added to aqueous reactions to solubilize the substrate. The observed oxidation of 1º-alcohols in 2ma-reactions is consistent with the formation of a high-valent intermediate similar to what has been reported for cytochrome P450 and mononuclear iron model complexes. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Metal-Free Oxidation of Primary Amines to Nitriles through Coupled Catalytic Cycles.

    Science.gov (United States)

    Lambert, Kyle M; Bobbitt, James M; Eldirany, Sherif A; Kissane, Liam E; Sheridan, Rose K; Stempel, Zachary D; Sternberg, Francis H; Bailey, William F

    2016-04-04

    Synergism among several intertwined catalytic cycles allows for selective, room temperature oxidation of primary amines to the corresponding nitriles in 85-98% isolated yield. This metal-free, scalable, operationally simple method employs a catalytic quantity of 4-acetamido-TEMPO (ACT; TEMPO=2,2,6,6-tetramethylpiperidine N-oxide) radical and the inexpensive, environmentally benign triple salt oxone as the terminal oxidant under mild conditions. Simple filtration of the reaction mixture through silica gel affords pure nitrile products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Chemistry and liquid chromatography methods for the analyses of primary oxidation products of triacylglycerols.

    Science.gov (United States)

    Zeb, A

    2015-05-01

    Triacylglycerols (TAGs) are one of the major components of the cells in higher biological systems, which can act as an energy reservoir in the living cells. The unsaturated fatty acid moiety is the key site of oxidation and formation of oxidation compounds. The TAG free radical generates several primary oxidation compounds. These include hydroperoxides, hydroxides, epidioxides, hydroperoxy epidioxides, hydroxyl epidioxides, and epoxides. The presence of these oxidized TAGs in the cell increases the chances of several detrimental processes. For this purpose, several liquid chromatography (LC) methods were reported in their analyses. This review is therefore focused on the chemistry, oxidation, extraction, and the LC methods reported in the analyses of oxidized TAGs. The studies on thin-layer chromatography were mostly focused on the total oxidized TAGs separation and employ hexane as major solvent. High-performance LC (HPLC) methods were discussed in details along with their merits and demerits. It was found that most of the HPLC methods employed isocratic elution with methanol and acetonitrile as major solvents with an ultraviolet detector. The coupling of HPLC with mass spectrometry (MS) highly increases the efficiency of analysis as well as enables reliable structural elucidation. The use of MS was found to be helpful in studying the oxidation chemistry of TAGs and needs to be extended to the complex biological systems.

  12. Chlorine as a primary radical: evaluation of methods to understand its role in initiation of oxidative cycles

    Science.gov (United States)

    Young, C. J.; Washenfelder, R. A.; Edwards, P. M.; Parrish, D. D.; Gilman, J. B.; Kuster, W. C.; Mielke, L. H.; Osthoff, H. D.; Tsai, C.; Pikelnaya, O.; Stutz, J.; Veres, P. R.; Roberts, J. M.; Griffith, S.; Dusanter, S.; Stevens, P. S.; Flynn, J.; Grossberg, N.; Lefer, B.; Holloway, J. S.; Peischl, J.; Ryerson, T. B.; Atlas, E. L.; Blake, D. R.; Brown, S. S.

    2014-04-01

    The role of chlorine atoms (Cl) in atmospheric oxidation has been traditionally thought to be limited to the marine boundary layer, where they are produced through heterogeneous reactions involving sea salt. However, recent observation of photolytic Cl precursors (ClNO2 and Cl2) formed from anthropogenic pollution has expanded the potential importance of Cl to include coastal and continental urban areas. Measurements of ClNO2 in Los Angeles during CalNex (California Nexus - Research at the Nexus of Air Quality and Climate Change) showed it to be an important primary (first generation) radical source. Evolution of ratios of volatile organic compounds (VOCs) has been proposed as a method to quantify Cl oxidation, but we find no evidence from this approach for a significant role of Cl oxidation in Los Angeles. We use a box model with the Master Chemical Mechanism (MCM v3.2) chemistry scheme, constrained by observations in Los Angeles, to examine the Cl sensitivity of commonly used VOC ratios as a function of NOx and secondary radical production. Model results indicate VOC tracer ratios could not detect the influence of Cl unless the ratio of [OH] to [Cl] was less than 200 for at least a day. However, the model results also show that secondary (second generation) OH production resulting from Cl oxidation of VOCs is strongly influenced by NOx, and that this effect obscures the importance of Cl as a primary oxidant. Calculated concentrations of Cl showed a maximum in mid-morning due to a photolytic source from ClNO2 and loss primarily to reactions with VOCs. The [OH] to [Cl] ratio was below 200 for approximately 3 h in the morning, but Cl oxidation was not evident from the measured ratios of VOCs. Instead, model simulations show that secondary OH production causes VOC ratio evolution to follow that expected for OH oxidation, despite the significant input of primary Cl from ClNO2 photolysis in the morning. Even though OH is by far the dominant oxidant in Los Angeles, Cl

  13. The production of iron oxide during peridotite serpentinization: Influence of pyroxene

    Directory of Open Access Journals (Sweden)

    Ruifang Huang

    2017-11-01

    Full Text Available Serpentinization produces molecular hydrogen (H2 that can support communities of microorganisms in hydrothermal fields; H2 results from the oxidation of ferrous iron in olivine and pyroxene into ferric iron, and consequently iron oxide (magnetite or hematite forms. However, the mechanisms that control H2 and iron oxide formation are poorly constrained. In this study, we performed serpentinization experiments at 311 °C and 3.0 kbar on olivine (with <5% pyroxene, orthopyroxene, and peridotite. The results show that serpentine and iron oxide formed when olivine and orthopyroxene individually reacted with a saline starting solution. Olivine-derived serpentine had a significantly lower FeO content (6.57 ± 1.30 wt.% than primary olivine (9.86 wt.%, whereas orthopyroxene-derived serpentine had a comparable FeO content (6.26 ± 0.58 wt.% to that of primary orthopyroxene (6.24 wt.%. In experiments on peridotite, olivine was replaced by serpentine and iron oxide. However, pyroxene transformed solely to serpentine. After 20 days, olivine-derived serpentine had a FeO content of 8.18 ± 1.56 wt.%, which was significantly higher than that of serpentine produced in olivine-only experiments. By contrast, serpentine after orthopyroxene had a slightly higher FeO content (6.53 ± 1.01 wt.% than primary orthopyroxene. Clinopyroxene-derived serpentine contained a significantly higher FeO content than its parent mineral. After 120 days, the FeO content of olivine-derived serpentine decreased significantly (5.71 ± 0.35 wt.%, whereas the FeO content of orthopyroxene-derived serpentine increased (6.85 ± 0.63 wt.% over the same period. This suggests that iron oxide preferentially formed after olivine serpentinization. Pyroxene in peridotite gained some Fe from olivine during the serpentinization process, which may have led to a decrease in iron oxide production. The correlation between FeO content and SiO2 or Al2O3 content in olivine- and

  14. Primary productivity

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Parulekar, A.H.

    Photosynthetic production in the oceans in relation to light, nutrients and mixing processes is discussed. Primary productivity in the estuarine region is reported to be high in comparison to coastal and oceanic waters. Upwelling phenomenon...

  15. Deposition and incorporation of corrosion product to primary coolant suppressing method

    International Nuclear Information System (INIS)

    Tsuzuki, Yasuo; Hasegawa, Naoyoshi; Fujioka, Tsunaaki.

    1992-01-01

    In a PWR type nuclear power plant, the concentration of dissolved nitrogen in primary coolants is increased by controlling the nitrogen partial pressure in a volume controlling tank gas phase portion or addition of water in a primary system water supply tank containing dissolved nitrogen to a primary system. Then ammonium is formed by a reaction with hydrogen dissolved in the primary coolants in the field of radiation rays, to control the concentration of ammonium in the coolants within a range from 0.5 to 3.5 ppm, and operate the power plant. As a result, deposition and incorporation of corrosion products to the structural materials of the primary system equipments during plant operation (pH 6.8 to 8.0) are suppressed. In other words, deposition of particulate corrosion products on the surface of fuel cladding tubes and the inner surface of pipelines in the primary system main equipments is prevented and incorporation of ionic radioactive corrosion products to the oxide membranes on the inner surface of the pipelines of the primary system main equipments is suppressed, to greatly reduce the radiation dose rate of the primary system pipelines. Thus, operator's radiation exposure can be decreased upon shut down of the plant. (N.H.)

  16. Nitroxyl-mediated oxidation of lignin and polycarboxylated products

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Shannon S.; Rafiee, Mohammad

    2018-02-27

    Methods of selectively modifying lignin, polycarboxylated products thereof, and methods of deriving aromatic compounds therefrom. The methods comprise electrochemically oxidizing lignin using stable nitroxyl radicals to selectively oxidize primary hydroxyls on .beta.-O-4 phenylpropanoid units to corresponding carboxylic acids while leaving the secondary hydroxyls unchanged. The oxidation results in polycarboxylated lignin in the form of a polymeric .beta.-hydroxy acid. The polymeric .beta.-hydroxy acid has a high loading of carboxylic acid and can be isolated in acid form, deprotonated, and/or converted to a salt. The .beta.-hydroxy acid, anion, or salt can also be subjected to acidolysis to generate various aromatic monomers or oligomers. The initial oxidation of lignin to the polycarboxylated form renders the lignin more susceptible to acidolysis and thereby enhances the yield of aromatic monomers and oligomers obtained through acidolysis.

  17. Studies of Heterogenous Palladium and Related Catalysts for Aerobic Oxidation of Primary Alcohols

    Science.gov (United States)

    Ahmed, Maaz S.

    Development of aerobic oxidation methods is of critical importance for the advancement of green chemistry, where the only byproduct produced is water. Recent work by our lab has produced an efficient Pd based heterogenous catalyst capable of preforming the aerobic oxidation of a wide spectrum of alcohols to either carboxylic acid or methyl ester. The well-defined catalyst PdBi 0.35Te0.23/C (PBT/C) catalyst has been shown to can perform the aerobic oxidation of alcohols to carboxylic acids in basic conditions. Additionally, we explored this catalyst for a wide range of alcohols and probed the nature of the selectivity of PBT/C for methyl esterification over other side products. Finally, means by which the catalyst operates with respect to oxidation states of the three components, Pd, Bi, and Te, was probed. Carboxylic acids are an important functional group due to their prevalence in various pharmaceutically active agents, agrochemicals, and commodity scale chemicals. The well-defined catalyst PBT/C catalyst was discovered to be effective for the oxidation of a wide spectrum of alcohols to carboxylic acid. The demonstrated substrate scope and functional group tolerance are the widest reported for an aerobic heterogeneous catalyst. Additionally, the catalyst has been implemented in a packed bed reactor with quantitative yield of benzoic acid maintained throughout a two-day run. Biomass derived 5-(hydroxymethyl)furfural (HMF) is also oxidized to 2,5-furandicarboxylic acid (FDCA) in high yield. Exploration of PBT/C for the oxidative methyl esterification was found to exhibit exquisite selectivity for the initial oxidation of primary alcohol instead of methanol, which is the bulk solvent. We explored this selectivity and conclude that it results from various substrate-surface interactions, which are not attainable by methanol. The primary alcohol can outcompete the methanol for binding on the catalyst surface through various interactions between the side chain of the

  18. Study of cryoprotectors effect on oxidation processes at storage of frozen halffinished products

    Directory of Open Access Journals (Sweden)

    O. Glushkov

    2016-12-01

    Full Text Available The publication presents data on the effect of polysaccharides as cryoprotectants on changes of the lipid fraction of quick-frozen semi-finished products during storage. Since the structure of minced systems is formed as a result of the destruction of the native structure of the meat and the formation of a new secondary structure, it is important to establish the effect of cryoprotectants on the key functional and technological properties of meat systems after freezing, and in the process of storage. Based on studies of the kinetics of the oxidation of fat and accumulation data on the accumulation of the primary and secondary products of oxidation inhibition of oxidative processes has been found.

  19. Application of Primary Abatement Technology for Reduction of N2O Emmision in Petrokemija Nitric Acid Production

    Directory of Open Access Journals (Sweden)

    Ćosić, L.

    2013-01-01

    Full Text Available Industrial nitric acid production by oxidation of gaseous ammonia with Ostwald procedure produces an unwanted by-product – colorless nitrous oxide, N2O. As emission of N2O represents a very serious problem due of its huge contribution to global warming, certain measures focused on its maximum reduction should be undertaken. Minimization of N2O emission in nitric acid production can be achieved in different parts of the process flow, depending on the applied available technologies. For the abatement of N2O emissions in Petrokemija's nitric acid production processes from the list of the best available technologies chosen were primary and secondary abatement technologies. The mentioned ensures reduction of N2O by use of improved selective heterogeneous catalysts in the step of gaseous ammonia oxidation. Precious metals in the shape of gauzes are used as selective heterogeneous catalyst in primary technology, while in the case of secondary technology the Fe2 O3 catalyst on Al2O3 support in the shape of spherical pellets is chosen. Shown is the application of primary technology for the abatement of N2O in both nitric acid production facilities and their comparison with classical heterogeneous catalyst and preparation for the installation of secondary selective catalyst. N2O emissions with the application of primary technology in both production facilities were reduced from 12 kg of N2O to 7 kg of N2O per ton of pure HNO3. With the primary reduction in N2O emissions the foundation was established for further reduction with the secondary technology to the final value of 0.7 kg of N2O per ton of pure HNO3, which represents mass concentration in the tail gas below 200 mg m-3 (at n. c.. With the applied technologies for the abatement of N2O emissions in Petrokemija's nitric acid production the future prescribed emission limit value will be satisfied.

  20. Corrosion products in the primary circuits of PWRs

    International Nuclear Information System (INIS)

    Darras, R.

    1983-01-01

    The characteristics of PWR primary circuits are recalled, particularly the chemical specifications of the medium and the various materials used (austenitic steel, nickel alloys, cobalt-based alloys and zirconium alloys). The behaviour of these materials as regards general corrosion in nominal and transient conditions is then outlined briefly, special emphasis being laid on the effect of the determining parameters on the quantity of corrosion products formed. The release of the latter into the primary coolant is caused by two main processes: solubilization and erosion. Particular attention was given therefore to the laws governing the solubility of the oxides involved, especially as a function of temperature and pH. Erosion, or release in the form of solid particles, is relatively severe during transient events. As these corrosion products are then carried through all circuits, they cause deposits to form in favourable places on the walls as a result either of precipitation of soluble species or of sedimentation followed by consolidation of suspended particles. The presence of corrosion products in the primary circuits creates a particular impact since they become radioactive as they pass through the core and especially when they remain in it in the form of deposits; as a result, the products are capable of contaminating the entire system. Finally, although long-term reliability is obviously an essential condition for materials developed, attention must also be given to problems associated with a build-up of corrosion products in the cooling circuits and efforts made to minimize them. To that end, a number of precautions are recommended, and various remedies can be applied: selecting materials which are not readily activated, keeping structures clean, purifying fluids properly, restricting solubilization and precipitation, and perhaps, periodic decontamination. (author)

  1. HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) as a Percentage of Net Primary Product (NPP) portion of the HANPP Collection represents a map identifying...

  2. Behaviour of fission products in PWR primary coolant and defected fuel rods evaluation

    International Nuclear Information System (INIS)

    Bourgeois, P.; Stora, J.P.

    1979-01-01

    The activity surveillance of the PWR primary coolant by γ spectometry gives some informations on fuel failures. The activity of different nuclides e.g. Xenons, Kryptons, Iodines, can be correlated with the number of the defected fuel rods. Therefore the precharacterization with eventually a prelocalization of the related fuel assemblies direct the sipping-test and allows a saving of time during refueling. A model is proposed to calculate the number of the defected rods from the activity measurements of the primary coolant. A semi-empirical model of the release of the fission products has been built from the activity measurements of the primary coolant in a 900 MWe PWR. This model allows to calculate the number of the defected rods and also a typical parameter of the mean damage. Fission product release is described by three stages: release from uranium dioxide, transport across the gas gap and behaviour in the primary coolant. The model of release from the oxide considers a diffusion process in the grains with trapping. The release then occurs either directly to free surfaces or with a delay due to a transit into closed porosity of the oxide. The amount released is the same for iodine and rare gas. With the gas gap transit is associated a transport time and a probability of trapping for the iodines. In the primary coolant the purification and the radioactive decay are considered. (orig.)

  3. Copper(I)/TEMPO Catalyzed Aerobic Oxidation of Primary Alcohols to Aldehydes with Ambient Air

    Science.gov (United States)

    Hoover, Jessica M.; Steves, Janelle E.; Stahl, Shannon S.

    2012-01-01

    This protocol describes a practical laboratory-scale method for aerobic oxidation of primary alcohols to aldehydes, using a chemoselective CuI/TEMPO catalyst system. The catalyst is prepared in situ from commercially available reagents, and the reactions are performed in a common organic solvent (acetonitrile) with ambient air as the oxidant. Three different reaction conditions and three procedures for the isolation and purification of the aldehyde product are presented. The oxidations of eight different alcohols, described here, include representative examples of each reaction condition and purification method. Reaction times vary from 20 min to 24 h, depending on the alcohol, while the purification methods each take about 2 h. The total time necessary for the complete protocol ranges from 3 – 26 h. PMID:22635108

  4. Oxidation of primary amines to oximes with molecular oxygen using 1,1-diphenyl-2-picrylhydrazyl and WO3/Al2O3 as catalysts.

    Science.gov (United States)

    Suzuki, Ken; Watanabe, Tomonari; Murahashi, Shun-Ichi

    2013-03-15

    The oxidative transformation of primary amines to their corresponding oximes proceeds with high efficiency under molecular oxygen diluted with molecular nitrogen (O2/N2 = 7/93 v/v, 5 MPa) in the presence of the catalysts 1,1-diphenyl-2-picrylhydrazyl (DPPH) and tungusten oxide/alumina (WO3/Al2O3). The method is environmentally benign, because the reaction requires only molecular oxygen as the terminal oxidant and gives water as a side product. Various alicyclic amines and aliphatic amines can be converted to their corresponding oximes in excellent yields. It is noteworthy that the oxidative transformation of primary amines proceeds chemoselectively in the presence of other functional groups. The key step of the present oxidation is a fast electron transfer from the primary amine to DPPH followed by proton transfer to give the α-aminoalkyl radical intermediate, which undergoes reaction with molecular oxygen and hydrogen abstraction to give α-aminoalkyl hydroperoxide. Subsequent reaction of the peroxide with WO3/Al2O3 gives oximes. The aerobic oxidation of secondary amines gives the corresponding nitrones. Aerobic oxidative transformation of cyclohexylamines to cyclohexanone oximes is important as a method for industrial production of ε-caprolactam, a raw material for Nylon 6.

  5. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring.

    Science.gov (United States)

    David P. Turner; William D. Ritts; Warren B. Cohen; Thomas K. Maeirsperger; Stith T. Gower; Al A. Kirschbaum; Steve W. Runnings; Maosheng Zhaos; Steven C. Wofsy; Allison L. Dunn; Beverly E. Law; John L. Campbell; Walter C. Oechel; Hyo Jung Kwon; Tilden P. Meyers; Eric E. Small; Shirley A. Kurc; John A. Gamon

    2005-01-01

    Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site-level studies across a range of biomes, with close attention to numerous scaling...

  6. Kinetics of corrosion products release from nickel-base alloys corroding in primary water conditions. A new modeling of release

    International Nuclear Information System (INIS)

    Carrette, F.; Guinard, L.; Pieraggi, B.

    2002-01-01

    The radioactivity in the primary circuit arises mainly from the activation of corrosion products in the core of pressurised water reactors; corrosion products dissolve from the oxide scales developed on steam generator tubes of alloy 690. The controlling and modelling of this process require a detailed knowledge of the microstructure and chemical composition of oxide scales as well as the kinetics of their corrosion and dissolution. Alloy 690 was studied as tubes and sheets, with three various surface states (as-received, cold-worked, electropolished). Corrosion tests were performed at 325 C and 155 bar in primary water conditions (B/Li - 1000/2 ppm, [H 2 ] 30 cm 3 .kg -1 TPN, [O 2 ] < 5 ppb); test durations ranged between 24 and 2160 hours. Corrosion tests in the TITANE loop provided mainly corrosion and oxidation kinetics, and tests in the BOREAL loop yielded release kinetics. This study revealed asymptotic type kinetics. Characterisation of the oxide scales grown in representative conditions of the primary circuit was performed by several techniques (SEM, TEM, SIMS, XPS, GIXRD). These analyses revealed the essential role of the fine grained cold-worked scale present on as-received and cold-worked materials. This scale controls the corrosion and release phenomena. The kinetic study and the characterisation of the oxide scales contributed to the modelling of the corrosion/release process. A growth/dissolution model was proposed for corrosion product scales grown in non-saturated dynamic fluid. This model provided the temporal evolution of oxide scales and release kinetics for different species (Fe, Ni, Cr). The model was validated for several surface states and several alloys. (authors)

  7. Oxidation of the Primary Alcoholic Moiety Selectively in the Presence of the Secondary Alcoholic Moieties

    International Nuclear Information System (INIS)

    Tin Myint Htwe

    2011-12-01

    Both primary and secondary alcoholic moieties are very sensitive to oxidation reactions. But sometimes it is necessary to oxidized only the primary alcoholic moiety. Such cases are usually found in Food Industries. In this situation, TEMPO (1, 1, 6, 6-Tetramethyl-1-Piperidine Oxoammonium) was used as an oxidizing agent. In this paper, Alpha starch was successfully oxidized using TEMPO as the oxidizing agent in combination with sodium hypochlorite with and without sodium bromide. The oxidation of primary alcoholic moiety only and the remaining untouched secondary alcoholic moiety were proved by infrared spectroscopy method.

  8. Visible-Light-Promoted Metal-Free Aerobic Oxidation of Primary Amines to Acids and Lactones.

    Science.gov (United States)

    Cheng, Xiaokai; Yang, Bo; Hu, Xingen; Xu, Qing; Lu, Zhan

    2016-12-05

    A unique metal-free aerobic oxidation of primary amines via visible light photocatalytic double carbon-carbon bonds cleavage and multi carbon-hydrogen bonds oxidation was observed. Aerobic oxidation of primary amines could be controlled to afford acids by using dioxane with 18 W CFL, and lactones by using DMF with 8 W green LEDs, respectively. A plausible mechanism was proposed based on control experiments. This observation showed direct evidences for the fragmentation in the aerobic oxidation of aliphatic primary amines. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Oxidative Stability and Sensory Attributes of Fermented Milk Product Fortified with Fish Oil and Marine Phospholipids

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Thomsen, Birgitte Raagaard; Hyldig, Grethe

    2013-01-01

    Marine phospholipids (PL) are potential ingredients for food fortification due to its numerous advantages. The main objective of this study was to investigate whether a fermented milk product fortified with a mixture of marine PL and fish oil had better oxidative stability than a fermented milk...... product fortified with fish oil alone. Fortification of a fermented milk product with marine PL was performed by incorporating 1 % w/w lipids, either in the form of neat oil or in the form of a pre-emulsion. Lipid oxidation was investigated in the neat emulsions and fortified products by the measurements...... of primary, secondary volatile oxidation products and tocopherol content upon 32 days storage at 2 °C and 28 days storage at 5 °C, respectively. Analyses of particle size distribution, viscosity and microbial growth were also performed. In addition, sensory attributes such as sour, fishy and rancid flavor...

  10. Lipid oxidation. Part 2. Oxidation products of olive oil methyl esters.

    Science.gov (United States)

    Pokorný, J; Tài, P; Parízková, H; Smidrkalová, E; El-Tarras, M F; Janícek, G

    1976-01-01

    Olive oil was converted into methyl esters which were autoxidized at 60 degrees C. The composition of oxidized products was determined by the comparison of infrared spectra and NMR spectra of the original and acetylated samples, the sample reduced with potassium iodide and the acetylated reduced sample. Oxidized products were separated by preparative thin layer chromatography on silica gel and characterized by selective detection and by infrared spectrometry of the fractions. The oxidation products consisted of hydroperoxido butyl oleate, substituted hydroperoxides, mono- and disubstituted monomeric derivatives and a small amount of oligomers.

  11. Continuous-flow oxidative cyanation of primary and secondary amines using singlet oxygen.

    Science.gov (United States)

    Ushakov, Dmitry B; Gilmore, Kerry; Kopetzki, Daniel; McQuade, D Tyler; Seeberger, Peter H

    2014-01-07

    Primary and secondary amines can be rapidly and quantitatively oxidized to the corresponding imines by singlet oxygen. This reactive form of oxygen was produced using a variable-temperature continuous-flow LED-photoreactor with a catalytic amount of tetraphenylporphyrin as the sensitizer. α-Aminonitriles were obtained in good to excellent yields when trimethylsilyl cyanide served as an in situ imine trap. At 25°C, primary amines were found to undergo oxidative coupling prior to cyanide addition and yielded secondary α-aminonitriles. Primary α-aminonitriles were synthesized from the corresponding primary amines for the first time, by an oxidative Strecker reaction at -50 °C. This atom-economic and protecting-group-free pathway provides a route to racemic amino acids, which was exemplified by the synthesis of tert-leucine hydrochloride from neopentylamine. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Directory of Open Access Journals (Sweden)

    C. R. Löscher

    2012-07-01

    Full Text Available The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA over their bacterial counterparts (AOB in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O that occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been reported to produce N2O.

    Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA were detectable throughout the water column of the eastern tropical North Atlantic (ETNA and eastern tropical South Pacific (ETSP Oceans. Particularly in the ETNA, comparable patterns of abundance and expression of archaeal amoA genes and N2O co-occurred in the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved

  13. Nitrous Oxide Production by Abundant Benthic Macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Schramm, Andreas

    of the short-term metabolic induction of gut denitrification is the preferential production of nitrous oxide rather than dinitrogen. On a large scale, gut denitrification in, for instance, Chironomus plumosus larvae can increase the overall nitrous oxide emission of lake sediment by a factor of eight. We...... screened more than 20 macrofauna species for nitrous oxide production and identified filter-feeders and deposit-feeders that occur ubiquitously and at high abundance (e.g., chironomids, ephemeropterans, snails, and mussels) as the most important emitters of nitrous oxide. In contrast, predatory species...... that do not ingest large quantities of microorganisms produced insignificant amounts of nitrous oxide. Ephemera danica, a very abundant mayfly larva, was monitored monthly in a nitrate-polluted stream. Nitrous oxide production by this filter-feeder was highly dependent on nitrate availability...

  14. Modeling of nitrous oxide production by autotrophic ammonia-oxidizing bacteria with multiple production pathways.

    Science.gov (United States)

    Ni, Bing-Jie; Peng, Lai; Law, Yingyu; Guo, Jianhua; Yuan, Zhiguo

    2014-04-01

    Autotrophic ammonia oxidizing bacteria (AOB) have been recognized as a major contributor to N2O production in wastewater treatment systems. However, so far N2O models have been proposed based on a single N2O production pathway by AOB, and there is still a lack of effective approach for the integration of these models. In this work, an integrated mathematical model that considers multiple production pathways is developed to describe N2O production by AOB. The pathways considered include the nitrifier denitrification pathway (N2O as the final product of AOB denitrification with NO2(-) as the terminal electron acceptor) and the hydroxylamine (NH2OH) pathway (N2O as a byproduct of incomplete oxidation of NH2OH to NO2(-)). In this model, the oxidation and reduction processes are modeled separately, with intracellular electron carriers introduced to link the two types of processes. The model is calibrated and validated using experimental data obtained with two independent nitrifying cultures. The model satisfactorily describes the N2O data from both systems. The model also predicts shifts of the dominating pathway at various dissolved oxygen (DO) and nitrite levels, consistent with previous hypotheses. This unified model is expected to enhance our ability to predict N2O production by AOB in wastewater treatment systems under varying operational conditions.

  15. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers

    Science.gov (United States)

    Anderson, I. C.; Levine, J. S.

    1986-01-01

    An account is given of the atmospheric chemical and photochemical effects of biogenic nitric and nitrous oxide emissions. The magnitude of the biogenic emission of NO is noted to remain uncertain. Possible soil sources of NO and N2O encompass nitrification by autotropic and heterotropic nitrifiers, denitrification by nitrifiers and denitrifiers, nitrate respiration by fermenters, and chemodenitrification. Oxygen availability is the primary determinant of these organisms' relative rates of activity. The characteristics of this major influence are presently investigated in light of the effect of oxygen partial pressure on NO and N2O production by a wide variety of common soil-nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The results obtained indicate that aerobic soils are primary sources only when there is sufficient moisture to furnish anaerobic microsites for denitrification.

  16. Transparent conducting oxides and production thereof

    Science.gov (United States)

    Gessert, Timothy A.; Yoshida, Yuki; Coutts, Timothy J.

    2014-06-10

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber. The method may also comprise depositing a metal oxide on the target in the process chamber to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  17. Comparison of Endoflas and Zinc oxide Eugenol as root canal filling materials in primary dentition

    Directory of Open Access Journals (Sweden)

    Nivedita Rewal

    2014-01-01

    Full Text Available Background: Zinc oxide eugenol has long been the material of choice of pediatric dentists worldwide, although it fails to meet the ideal requirements of root canal filling material for primary teeth. Endoflas, a mixture of zinc oxide eugenol, calcium hydroxide, and iodoform, can be considered to be an effective root canal filling material in primary teeth as compared with zinc oxide eugenol. This study was carried out to compare zinc oxide eugenol with endoflas for pulpectomy in primary dentition. Aim: The objective of the study was to compare clinically and radiographically success rates of zinc oxide eugenol with endoflas for the root canal filling of primary teeth at 3, 6, and 9 months. Design: Fifty primary molars were included in the study with 26 teeth in Group I (Endoflas and 24 in Group II (zinc oxide eugenol. A single visit pulpectomy was carried out. Results: The overall success rate of zinc oxide eugenol was 83% whereas 100% success was found in the case of endoflas. The obtained results were compiled and subjected to statistical analysis using the chi-square test. The difference in the success rate between the two was statistically significant (P < 0.05. Conclusion: Endoflas has shown to have better results than zinc oxide eugenol. It should therefore be the material of choice for root canal treatment in deciduous dentition.

  18. Primary production in the Kattegat - past and present

    DEFF Research Database (Denmark)

    Richardson, K.; Heilmann, Jens

    1995-01-01

    data collected during the period 1984-1993 are calculated using the method employed in the 1950s. It is concluded that primary production in the Kattegat has increased from less than 100 g C m(-2) y(- 1) to about 200 g C m(-2) y(-1) since the 1950s. This increase is not seen during the winter months...... to be responses to increases in primary production. However, for most areas, there are insufficient data to demonstrate whether or not increases in primary production have actually occurred. In this study, the evidence for increased primary production in the Kattegat is examined by comparing primary production...... measurements from the 1950s and measurements made in the period 1984-1993. The methods employed during the two periods differ considerably. These differences and how they may affect the validity of a comparison of the results from the studies carried out in two periods are addressed. The primary production...

  19. Global patterns in human consumption of net primary production

    Science.gov (United States)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence, William T.

    2004-06-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our own use. Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, energy flows within food webs and the provision of important ecosystem services. Here we present a global map showing the amount of net primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial balance sheet of net primary production `supply' and `demand' for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production `imports' and suggest policy options for slowing future growth of human appropriation of net primary production.

  20. Serum uric acid levels and leukocyte nitric oxide production in multiple sclerosis patients outside relapses

    NARCIS (Netherlands)

    Mostert, JP; Ramsaransing, GSM; Heerserna, DJ; Heerings, M; Wilczak, N; De Keyser, J

    2005-01-01

    Background: A number of studies found that patients with multiple sclerosis (MS) have low serum levels of uric acid. It is unclear whether this represents a primary deficit or secondary effect. Uric acid is a scavenger of peroxynitrite, which is the product of nitric oxide (NO) and superoxide.

  1. Recent advances in Phytosterol Oxidation Products.

    Science.gov (United States)

    O'Callaghan, Yvonne; McCarthy, Florence O; O'Brien, Nora M

    2014-04-11

    Phytosterols and their oxidation products have become increasingly investigated in recent years with respect to their roles in diet and nutrition. We present a comprehensive review of recent literature on Phytosterol Oxidation Products (POP) identifying critical areas for future investigation. It is evident that POP are formed on food storage/preparation; are absorbed and found in human serum; do not directly affect cholesterol absorption; have evidence of atherogenicity and inflammation; have distinct levels of cytotoxicity; are implicated with high levels of oxidative stress, glutathione depletion, mitochondrial dysfunction and elevated caspase activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Guoqiang, E-mail: zhougq1982@163.com; Li, Yunfei; Ma, Yanyan; Liu, Zhu; Cao, Lili; Wang, Da; Liu, Sudan; Xu, Wenshi; Wang, Wenying [Hebei University, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science (China)

    2016-05-15

    Yttrium oxide nanoparticles are an excellent host material for the rare earth metals and have high luminescence efficiency providing a potential application in photodynamic therapy and biological imaging. In this study, the effects of yttrium oxide nanoparticles with four different sizes were investigated using primary osteoblasts in vitro. The results demonstrated that the cytotoxicity generated by yttrium oxide nanoparticles depended on the particle size, and smaller particles possessed higher toxicological effects. For the purpose to elucidate the relationship between reactive oxygen species generation and cell damage, cytomembrane integrity, intracellular reactive oxygen species level, mitochondrial membrane potential, cell apoptosis rate, and activity of caspase-3 in cells were then measured. Increased reactive oxygen species level was also observed in a size-dependent way. Thus, our data demonstrated that exposure to yttrium oxide nanoparticles resulted in a size-dependent cytotoxicity in cultured primary osteoblasts, and reactive oxygen species generation should be one possible damage pathway for the toxicological effects produced by yttrium oxide particles. The results may provide useful information for more rational applications of yttrium oxide nanoparticles in the future.

  3. Differential intracellular calcium influx, nitric oxide production, ICAM-1 and IL8 expression in primary bovine endothelial cells exposed to nonesterified fatty acids.

    Science.gov (United States)

    Loaiza, Anitsi; Carretta, María D; Taubert, Anja; Hermosilla, Carlos; Hidalgo, María A; Burgos, Rafael A

    2016-02-25

    Nonesterified fatty acids (NEFAs) are involved in proinflammatory processes in cattle, including in the increased expression of adhesion molecules in endothelial cells. However, the mechanisms underlying these effects are still unknown. The aim of this study was to assess the effects of NEFAs on the intracellular calcium (Ca(2+) i) influx, nitric oxide production, and ICAM-1 and IL-8 expression in primary bovine umbilical vein endothelial cells (BUVECs). Myristic (MA), palmitic (PA), stearic (SA), oleic (OA) and linoleic acid (LA) rapidly increased Ca(2+) i. The calcium response to all tested NEFAs showed an extracellular calcium dependence and only the LA response was significantly inhibited until the intracellular calcium was chelated. The EC50 values for MA and LA were 125 μM and 37 μM, respectively, and the MA and LA effects were dependent on calcium release from the endoplasmic reticulum stores and on the L-type calcium channels. Only the calcium response to MA was significantly reduced by GW1100, a selective G-protein-coupled free fatty acid receptor (GPR40) antagonist. We also detected a functional FFAR1/GPR40 protein in BUVECs by using western blotting and the FFAR1/GPR40 agonist TAK-875. Only LA increased the cellular nitric oxide levels in a calcium-dependent manner. LA stimulation but not MA stimulation increased ICAM-1 and IL-8-expression in BUVECs. This effect was inhibited by GW1100, an antagonist of FFAR1/GPR40, but not by U-73122, a phospholipase C inhibitor. These findings strongly suggest that each individual NEFA stimulates endothelial cells in a different way, with clearly different effects on intracellular calcium mobilization, NO production, and IL-8 and ICAM-1 expression in primary BUVECs. These findings not only extend our understanding of NEFA-mediated diseases in ruminants, but also provide new insight into the different molecular mechanisms involved during endothelial cell activation by NEFAs.

  4. Impact of primary amine group from aminophospholipids and amino acids on marine phospholipids stability: Non-enzymatic browning and lipid oxidation

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2013-01-01

    The main objective of this study was to investigate the oxidative stability and non-enzymatic browning reactions of marine PL in the presence or in the absence of primary amine group from aminophospholipids and amino acids. Marine phospholipids liposomal dispersions were prepared from two authentic......) Strecker derived volatiles, (ii) yellowness index (YI), (iii) hydrophobic and (iv) hydrophilic pyrroles content. The oxidative stability of the samples was assessed through measurement of secondary lipid derived volatile oxidation products. The result showed that the presence of PE and amino acids caused...... the formation of pyrroles, generated Strecker derived volatiles, decreased the YI development and lowered lipid oxidation. The lower degree of lipid oxidation in liposomal dispersions containing amino acids might be attributed to antioxidative properties of pyrroles or amino acids....

  5. Methods for forming complex oxidation reaction products including superconducting articles

    International Nuclear Information System (INIS)

    Rapp, R.A.; Urquhart, A.W.; Nagelberg, A.S.; Newkirk, M.S.

    1992-01-01

    This patent describes a method for producing a superconducting complex oxidation reaction product of two or more metals in an oxidized state. It comprises positioning at least one parent metal source comprising one of the metals adjacent to a permeable mass comprising at least one metal-containing compound capable of reaction to form the complex oxidation reaction product in step below, the metal component of the at least one metal-containing compound comprising at least a second of the two or more metals, and orienting the parent metal source and the permeable mass relative to each other so that formation of the complex oxidation reaction product will occur in a direction towards and into the permeable mass; and heating the parent metal source in the presence of an oxidant to a temperature region above its melting point to form a body of molten parent metal to permit infiltration and reaction of the molten parent metal into the permeable mass and with the oxidant and the at least one metal-containing compound to form the complex oxidation reaction product, and progressively drawing the molten parent metal source through the complex oxidation reaction product towards the oxidant and towards and into the adjacent permeable mass so that fresh complex oxidation reaction product continues to form within the permeable mass; and recovering the resulting complex oxidation reaction product

  6. Primary Productivity (PP_Master)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set included primary production for each subregion in the study (Georges Bank, Gulf of Maine, Southern New England, Middle Atlantic Bight) . The data came...

  7. Oxidative stress and antioxidant status in primary bone and soft tissue sarcoma

    International Nuclear Information System (INIS)

    Nathan, Fatima M; Singh, Vivek A; Dhanoa, Amreeta; Palanisamy, Uma D

    2011-01-01

    Oxidative stress is characterised by an increased level of reactive oxygen species (ROS) that disrupts the intracellular reduction-oxidation (redox) balance and has been implicated in various diseases including cancer. Malignant tumors of connective tissue or sarcomas account for approximately 1% of all cancer diagnoses in adults and around 15% of paediatric malignancies per annum. There exists no information on the alterations of oxidant/antioxidant status of sarcoma patients in literature. This study was aimed to determine the levels of oxidative stress and antioxidant defence in patients with primary bone and soft tissue sarcoma and to investigate if there exists any significant differences in these levels between both the sarcomas. The study cohort consisted of 94 subjects; 20 soft tissue sarcoma, 27 primary bone sarcoma and 47 healthy controls. Malondialdehyde (MDA) and protein carbonyls were determined to assess their oxidative stress levels while antioxidant status was evaluated using catalase (CAT), superoxide dismutase (SOD), thiols and trolox equivalent antioxidant capacity (TEAC). Sarcoma patients showed significant increase in plasma and urinary MDA and serum protein carbonyl levels (p < 0.05) while significant decreases were noted in TEAC, thiols, CAT and SOD levels (p < 0.05). No significant difference in oxidative damage was noted between both the sarcomas (p > 0.05). In conclusion, an increase in oxidative stress and decrease in antioxidant status is observed in both primary bone and soft tissue sarcomas with a similar extent of damage. This study offers the basis for further work on whether the manipulation of redox balance in patients with sarcoma represents a useful approach in the design of future therapies for bone disease

  8. The effect of natural antioxidants on the rate of accumulation of oxidation products in the fat phase of butter cream

    Directory of Open Access Journals (Sweden)

    M. S. Voronina

    2016-01-01

    Full Text Available Describes the main finishing prefabricated pastries and cakes-cream. Researched range of cream depending on the fruit components and method of production. Aim: to study the degree of oxidation cream with natural antioxidants from fruits and berries processing products, namely in the form of concentrated juice of fruits and berries. Outlines the process of oxidation of lipids, one of the fundamental processes of loss of quality food products. Describes the action of antioxidants as antioxidants on accumulation intensity concentrations of primary and secondary oxidation products, making the final product unsuitable for the consumer and the bounding its shelf life. Presents the results of a study of the contents of primary and secondary oxidation products in butter cream immediately after cooking, as well as samples, stored for five days with the addition of antioxidants in the form of concentrated juice of fruits and berries in the amount of 2–7% by weight of cream. As a control sample has been used cream with no additives. Quality indicators to characterize the degree of oxidation of the product: acid, peroxide, anizidin and tioburbit number. The study found that adding a concentrated juice of fruits and berries as antioxidant in recipe cream reduces the growth rate of the concentration of free fatty acids on the fifth day, as compared with the reference sample. Adding concentrated juice of fruits and berries slows down the process of dissolution of the fat molecules in fat fraction of cream with the formation of free fatty acids; intensity decay reaction of peroxides and hydroxides slows down and, consequently, decreases the formation of aldehydes, deteriorating the taste and smell of the cream; quantitatively reduced the growth of education malondial′degida.

  9. Primary Productivity of the Cengklik Dam Boyolali

    Directory of Open Access Journals (Sweden)

    WIRYANTO

    2002-01-01

    Full Text Available Primary productivity dynamic of the water ecosystem was conducted faster in the last decades. This study was intended to find out the primary productivity of Cengklik dam Boyolali, Central Java to explain the ecosystem dynamic and to lead the maintenance of dam. This study used quantitative methods in completely randomized group design (CRD, and the data was analized by Analysis of Variance (ANAVA. Samples were taken horizontally in four sampling point, respectively in the riparian zone, around of the floating net (“karamba”, in the center of dam water and around of the ex-paddy fields. There were taken vertically in three-depth point in each of the sampling point, respectively 0.5 meter, 1.5 meter, and 2.5 meter. The results showed that the gross primary productivity of the dam was 11.122.500-22.545.600 mgC/m3/days, and the primary productivity differences in each of the point sampling caused by light intensity, nutrient supply, and abundance of the chlorophyll organisms.

  10. Do Offshore Wind Farms Influence Marine Primary Production?

    Science.gov (United States)

    Tweddle, J. F.; Murray, R. B. O.; Gubbins, M.; Scott, B. E.

    2016-02-01

    Primary producers (phytoplankton) form the basis of marine food-webs, supporting production of higher trophic levels, and act as a sink of CO2. We considered the impact of proposed large scale offshore wind farms in moderately deep waters (> 45 m) off the east coast of Scotland on rates of primary production. A 2 stage modelling process was used, employing state-of-the-art 3-D hydrographic models with the ability to capture flow at the spatial resolution of 10 m combined with 1-D vertical modelling using 7 years of local forcing data. Through influencing the strength of stratification via changes in current flow, large (100 m) modelled wind turbine foundations had a significant effect on primary producers, consistently reducing total annual primary production, although within the range of natural interannual variability. The percentage reduction was largest over submarine banks less than 54 m in depth, and was outside the range of natural interannual variability. Smaller (10 m) turbine foundations had no discernible effect on total annual primary production. The results indicate that smaller foundations should be favored as a mitigation measure, in terms of effects on primary production, and this type of analysis should be considered within sectoral planning and licensing processes for future renewable energy developments.

  11. Nitrification is a primary driver of nitrous oxide production in laboratory microcosms from different land-use soils

    Directory of Open Access Journals (Sweden)

    Rui Liu

    2016-09-01

    Full Text Available Most studies on soil N2O emissions have focused either on the quantifying of agricultural N2O fluxes or on the effect of environmental factors on N2O emissions. However very limited information is available on how land-use will affect N2O production, and nitrifiers involved in N2O emissions in agricultural soil ecosystems. Therefore, this study aimed at evaluating the relative importance of nitrification and denitrification to N2O emissions from different land-use soils and identifying the potential underlying microbial mechanisms. A 15N-tracing experiment was conducted under controlled laboratory conditions on four agricultural soils collected from different land-use. We measured N2O fluxes, nitrate (NO3− and ammonium (NH4+ concentration and15N2O, 15NO3− and 15NH4+ enrichment during the incubation. Quantitative PCR was used to quantify ammonia-oxidizing archaea (AOA and ammonia-oxidizing bacteria (AOB. Our results showed that nitrification was the main contributor to N2O production in soils from sugarcane, dairy pasture and cereal cropping systems, while denitrification played a major role in N2O production in the vegetable soil under the experimental conditions. Nitrification contributed to 96.7% of the N2O emissions in sugarcane soil followed by 71.3% in the cereal cropping soil and 70.9% in the dairy pasture soil, while only around 20.0% of N2O was produced from nitrification in vegetable soil. The proportion of nitrified nitrogen as N2O (PN2O value varied across different soils, with the highest PN2O value (0.26‰ found in the cereal cropping soil, which was around 10 times higher than that in other three systems. AOA were the abundant ammonia oxidizers, and were significantly correlated to N2O emitted from nitrification in the sugarcane soil, while AOB were significantly correlated with N2O emitted from nitrification in the cereal cropping soil. Our findings suggested that soil type and land-use might have strongly affected the

  12. Nitrification Is a Primary Driver of Nitrous Oxide Production in Laboratory Microcosms from Different Land-Use Soils.

    Science.gov (United States)

    Liu, Rui; Hu, Hangwei; Suter, Helen; Hayden, Helen L; He, Jizheng; Mele, Pauline; Chen, Deli

    2016-01-01

    Most studies on soil N2O emissions have focused either on the quantifying of agricultural N2O fluxes or on the effect of environmental factors on N2O emissions. However, very limited information is available on how land-use will affect N2O production, and nitrifiers involved in N2O emissions in agricultural soil ecosystems. Therefore, this study aimed at evaluating the relative importance of nitrification and denitrification to N2O emissions from different land-use soils and identifying the potential underlying microbial mechanisms. A (15)N-tracing experiment was conducted under controlled laboratory conditions on four agricultural soils collected from different land-use. We measured N2O fluxes, nitrate ([Formula: see text]), and ammonium ([Formula: see text]) concentration and (15)N2O, (15)[Formula: see text], and (15)[Formula: see text] enrichment during the incubation. Quantitative PCR was used to quantify ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Our results showed that nitrification was the main contributor to N2O production in soils from sugarcane, dairy pasture and cereal cropping systems, while denitrification played a major role in N2O production in the vegetable soil under the experimental conditions. Nitrification contributed to 96.7% of the N2O emissions in sugarcane soil followed by 71.3% in the cereal cropping soil and 70.9% in the dairy pasture soil, while only around 20.0% of N2O was produced from nitrification in vegetable soil. The proportion of nitrified nitrogen as N2O (PN2O-value) varied across different soils, with the highest PN2O-value (0.26‰) found in the cereal cropping soil, which was around 10 times higher than that in other three systems. AOA were the abundant ammonia oxidizers, and were significantly correlated to N2O emitted from nitrification in the sugarcane soil, while AOB were significantly correlated with N2O emitted from nitrification in the cereal cropping soil. Our findings suggested that soil

  13. Hydrogen sulfide oxidation without oxygen - oxidation products and pathways

    International Nuclear Information System (INIS)

    Fossing, H.

    1992-01-01

    Hydrogen sulfide oxidation was studied in anoxic marine sediments-both in undisturbed sediment cores and in sediment slurries. The turn over of hydrogen sulfide was followed using 35 S-radiolabeled hydrogen sulfide which was injected into the sediment. However, isotope exchange reactions between the reduced sulfur compounds, in particular between elemental sulfur and hydrogen sulfide, influenced on the specific radioactivity of these pools. It was, therefore, not possible to measure the turn over rates of the reduced sulfur pools by the radiotracer technique but merely to use the radioisotope to demonstrate some of the oxidation products. Thiosulfate was one important intermediate in the anoxic oxidation of hydrogen sulfide and was continuously turned over by reduction, oxidation and disproportionation. The author discusses the importance of isotope exchange and also presents the results from experiments in which both 35 S-radiolabeled elemental sulfur, radiolabeled hydrogen sulfide and radiolabeled thiosulfate were used to study the intermediates in the oxidative pathways of the sulfur cycle

  14. Relationship between chlorophyll-a and column primary production

    Digital Repository Service at National Institute of Oceanography (India)

    Dalal, S.G.; Bhargava, R.M.S.

    Relationship between surface chlorophyll a and column primary production has been established to help in estimating the latter more quickly and accurately. The equation derived is Primary Production, y = 0.54 Ln Chl a - 0.6. The relationship...

  15. Calculation model for predicting concentrations of radioactive corrostion products in the primary coolant of boiling water reactors

    International Nuclear Information System (INIS)

    Uchida, S.; Kikuchi, M.; Asakura, Y.; Yusa, H.; Ohsumi, K.

    1978-01-01

    A calculation model was developed to predict the shutdown dose rate around the recirculation pipes and their components in boiling water reactors (BWRs) by simulating the corrosion product transport in primary cooling water. The model is characterized by separating cobalt species in the water into soluble and insoluble materials and then calculating each concentration using the following considerations: (1) Insoluble cobalt (designated as crud cobalt is deposited directly on the fuel surface, while soluble cobalt (designated as ionic cobalt) is adsorbed on iron oxide deposits on the fuel surface. (2) Cobalt-60 activated on the fuel surface is dissolved in the water in an ionic form, and some is released with iron oxide as crud. The model can follow the reduction of 60 Co in the primary cooling water caused by the control of the iron feed rate into the reactor, which decreases the iron oxide deposits on the fuel surface and then reduces the cobalt adsorption rate. The calculated results agree satisfactorily with the measurements in several BWR plants

  16. RAGE-Specific Inhibitor FPS-ZM1 Attenuates AGEs-Induced Neuroinflammation and Oxidative Stress in Rat Primary Microglia.

    Science.gov (United States)

    Shen, Chao; Ma, Yingjuan; Zeng, Ziling; Yin, Qingqing; Hong, Yan; Hou, Xunyao; Liu, Xueping

    2017-10-01

    Advanced glycation end products (AGEs) enhance microglial activation and intensify the inflammatory response and oxidative stress in the brain. This process may occur due to direct cytotoxicity or interacting with AGEs receptors (RAGE), which are expressed on the surface of microglia. FPS-ZM1 is a high-affinity but nontoxic RAGE-specific inhibitor that has been recently shown to attenuate the Aβ-induced inflammatory response by blocking the ligation of Aβ to RAGE. In this study, we further investigated the effect of FPS-ZM1 on the AGEs/RAGE interaction and downstream elevation of neuroinflammation and oxidative stress in primary microglia cells. The results suggested that FPS-ZM1 significantly suppressed AGEs-induced RAGE overexpression, RAGE-dependent microglial activation, nuclear translocation of nuclear factor kappaB p65 (NF-κB p65), and the expression of downstream inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) and inducible nitric oxide synthase (iNOS)/nitric oxide (NO). Furthermore, FPS-ZM1 attenuated AGEs-stimulated NADPH oxidase (NOX) activation and reactive oxygen species (ROS) expression. Finally, FPS-ZM1 elevated the levels of transcription factors nuclear-factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1), as well as decreased antioxidant capacity and increased production of oxidative species. Our results suggest that FPS-ZM1 may be neuroprotective through attenuating microglial activation, oxidative stress and inflammation by blocking RAGE.

  17. Interannual Variation in Phytoplankton Primary Production at a Global Scale

    Science.gov (United States)

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2013-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of four phytoplankton groups to the total primary production. First, we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms contributed the most to the total phytoplankton production ((is)approximately 50%, the equivalent of 20 PgC·y1). Coccolithophores and chlorophytes each contributed approximately 20% ((is) approximately 7 PgC·y1) of the total primary production and cyanobacteria represented about 10% ((is) approximately 4 PgC·y1) of the total primary production. Primary production by diatoms was highest in the high latitudes ((is) greater than 40 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4% (1-2 PgC·y1). We assessed the effects of climate variability on group-specific primary production using global (i.e., Multivariate El Niño Index, MEI) and "regional" climate indices (e.g., Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p (is) less than 0.05) between the MEI and the group-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatoms/cyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect

  18. Kinetics and mechanism of oxidation of aliphatic primary alcohols by ...

    Indian Academy of Sciences (India)

    Unknown

    Kinetics and mechanism of oxidation of aliphatic primary alcohols by quinolinium bromochromate. SONU SARASWAT, VINITA SHARMA and K K BANERJI*. Department of Chemistry, JNV University, Jodhpur 342 005, India e-mail: banerjikk@rediffmail.com. MS received 4 December 2001; revised 2 November 2002.

  19. Primary production of tropical marine ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A.

    Among tropical marine ecosystems estuaries are one of the highly productive areas and act as a nursery to large number of organisms. The primary production in most of the estuaries is less during the monsoon period. Post-monsoon period shows...

  20. Valuing ecosystem services. A shadow price for net primary production

    International Nuclear Information System (INIS)

    Richmond, Amy; Kaufmann, Robert K.; Myneni, Ranga B.

    2007-01-01

    We analyze the contribution of ecosystem services to GDP and use this contribution to calculate an empirical price for ecosystem services. Net primary production is used as a proxy for ecosystem services and, along with capital and labor, is used to estimate a Cobb Douglas production function from an international panel. A positive output elasticity for net primary production probably measures both marketed and nonmarketed contributions of ecosystems services. The production function is used to calculate the marginal product of net primary production, which is the shadow price for ecosystem services. The shadow price generally is greatest for developed nations, which have larger technical scalars and use less net primary production per unit output. The rate of technical substitution indicates that the quantity of capital needed to replace a unit of net primary production tends to increase with economic development, and this rate of replacement may ultimately constrain economic growth. (author)

  1. Nitric oxide is a mediator of methamphetamine (METH)-induced neurotoxicity. In vitro evidence from primary cultures of mesencephalic cells.

    Science.gov (United States)

    Sheng, P; Cerruti, C; Ali, S; Cadet, J L

    1996-10-31

    METH is a monoaminergic toxic that destroys dopamine terminals in vivo. Oxidative mechanisms associated with DA metabolism are thought to play an important role in its toxic effects. These ideas were supported by the demonstration that CuZn-superoxide dismutase (CuZnSOD) transgenic mice were protected against the toxic effects of the drug. In the present study, we sought to determine if nitric oxide (NO) production was also involved in METH-induced neurotoxicity using primary cultures obtained from fetal rat mesencephalon. METH caused dose- and time-dependent cell death in vitro. Blockade of nitric oxide (NO) formation with several nitric oxide (NO) synthase blockers attenuated METH-mediated toxicity. Moreover, inhibition of ADP-ribosylation with nicotinamide and benzamide also provided protection against the toxicity of the drug. These results, together with our previous results in transgenic mice, support a role for free radicals in METH-induced toxic effects.

  2. Decadal Changes in Global Ocean Annual Primary Production

    Science.gov (United States)

    Gregg, Watson; Conkright, Margarita E.; Behrenfeld, Michael J.; Ginoux, Paul; Casey, Nancy W.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    The Sea-viewing Wide Field-of-View Sensor (SeaWiFS) has produced the first multi-year time series of global ocean chlorophyll observations since the demise of the Coastal Zone Color Scanner (CZCS) in 1986. Global observations from 1997-present from SeaWiFS combined with observations from 1979-1986 from the CZCS should in principle provide an opportunity to observe decadal changes in global ocean annual primary production, since chlorophyll is the primary driver for estimates of primary production. However, incompatibilities between algorithms have so far precluded quantitative analysis. We have developed and applied compatible processing methods for the CZCS, using modern advances in atmospheric correction and consistent bio-optical algorithms to advance the CZCS archive to comparable quality with SeaWiFS. We applied blending methodologies, where in situ data observations are incorporated into the CZCS and SeaWiFS data records, to provide improvement of the residuals. These re-analyzed, blended data records provide maximum compatibility and permit, for the first time, a quantitative analysis of the changes in global ocean primary production in the early-to-mid 1980's and the present, using synoptic satellite observations. An intercomparison of the global and regional primary production from these blended satellite observations is important to understand global climate change and the effects on ocean biota. Photosynthesis by chlorophyll-containing phytoplankton is responsible for biotic uptake of carbon in the oceans and potentially ultimately from the atmosphere. Global ocean annual primary decreased from the CZCS record to SeaWiFS, by nearly 6% from the early 1980s to the present. Annual primary production in the high latitudes was responsible for most of the decadal change. Conversely, primary production in the low latitudes generally increased, with the exception of the tropical Pacific. The differences and similarities of the two data records provide evidence

  3. Thermodynamics and the transport of corrosion products in PWR primary circuits

    International Nuclear Information System (INIS)

    Turner, D.J.

    1992-01-01

    It is argued that practically useful models for the activation, transport and deposition of corrosion products in PWR primary circuits can only be produced on the basis of an improved understanding of the chemical processes which control them. In particular, if a model is to make reliable predictions it is essential that its thermodynamic basis be sound. This is not the case with most current models which employ the erroneous concept of a corrosion product 'solubility'. In addition to the misuse of this term, other complications are discussed. These include the need to take account of the consequences of Gibbs' phase rule and the fact that, for mixed spinels, neither the concept of a thermodynamic solubility nor of a solubility product is valid. There is no reason to believe that measured apparent solubilities of nickel ferrites or spinel mixtures containing cobalt can give any direct guidance on the direction of transport of Ni or Co in PWR primary circuits. This is more likely to be determined by the distribution of stable and unstable ferrites and chromites than by any temperature coefficient of apparent solubility. Most of the transport of Ni and Co into and out of the core probably occurs as a consequence of either chemical or mechanical transients. Most important is likely to be the oxidative destruction and subsequent re-precipitation of chromites which occurs as a consequence of the oxygenated conditions employed during plant shutdown. (author)

  4. Unsaponifiable fraction isolated from grape (Vitis vinifera L.) seed oil attenuates oxidative and inflammatory responses in human primary monocytes.

    Science.gov (United States)

    Millan-Linares, Maria C; Bermudez, Beatriz; Martin, Maria E; Muñoz, Ernesto; Abia, Rocio; Millan, Francisco; Muriana, Francisco J G; Montserrat-de la Paz, Sergio

    2018-04-25

    Grape (Vitis vinifera L.) seed has well-known potential for production of oil as a byproduct of winemaking and is a rich source of bioactive compounds. Herein, we report that the unsaponifiable fraction (UF) isolated from grape seed oil (GSO) possesses anti-oxidative and anti-inflammatory properties towards human primary monocytes. The UF isolated from GSO was phytochemically characterized by GC-MS and HPLC. Freshly obtained human monocytes were used to analyse the effects of GSOUF (10-100 μg mL-1) on oxidative and inflammatory responses using FACS analysis, RT-qPCR, and ELISA procedures. GSOUF skewed the monocyte plasticity towards the anti-inflammatory non-classical CD14+CD16++ monocytes and reduced the inflammatory competence of LPS-treated human primary monocytes diminishing TNF-α, IL-1β, and IL-6 gene expression and secretion. In addition, GSOUF showed a strong reactive oxygen species (ROS)-scavenging activity, reducing significantly nitrite levels with a significant decrease in Nos2 gene expression. Our results suggest that the UF isolated from GSO has significant potential for the management of inflammatory and oxidative conditions and offer novel benefits derived from the consumption of GSO in the prevention of inflammation-related diseases.

  5. Oxidative stress is involved in Dasatinib-induced apoptosis in rat primary hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Tao; Luo, Peihua; Zhu, Hong; Zhao, Yuqin [Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Wu, Honghai; Gai, Renhua; Wu, Youping [Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou 310058 (China); Yang, Bo [Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Xiaochun, E-mail: yangxiaochun@zju.edu.cn [Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou 310058 (China); He, Qiaojun, E-mail: qiaojunhe@zju.edu.cn [Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou 310058 (China)

    2012-06-15

    Dasatinib, a multitargeted inhibitor of BCR–ABL and SRC kinases, exhibits antitumor activity and extends the survival of patients with chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL). However, some patients suffer from hepatotoxicity, which occurs through an unknown mechanism. In the present study, we found that Dasatinib could induce hepatotoxicity both in vitro and in vivo. Dasatinib reduced the cell viability of rat primary hepatocytes, induced the release of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) in vitro, and triggered the ballooning degeneration of hepatocytes in Sprague–Dawley rats in vivo. Apoptotic markers (chromatin condensation, cleaved caspase-3 and cleaved PARP) were detected to indicate that the injury induced by Dasatinib in hepatocytes in vitro was mediated by apoptosis. This result was further validated in vivo using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays. Here we found that Dasatinib dramatically increased the level of reactive oxygen species (ROS) in hepatocytes, reduced the intracellular glutathione (GSH) content, attenuated the activity of superoxide dismutase (SOD), generated malondialdehyde (MDA), a product of lipid peroxidation, decreased the mitochondrial membrane potential, and activated nuclear factor erythroid 2-related factor 2 (Nrf2) and mitogen-activated protein kinases (MAPK) related to oxidative stress and survival. These results confirm that oxidative stress plays a pivotal role in Dasatinib-mediated hepatotoxicity. N-acetylcysteine (NAC), a typical antioxidant, can scavenge free radicals, attenuate oxidative stress, and protect hepatocytes against Dasatinib-induced injury. Thus, relieving oxidative stress is a viable strategy for reducing Dasatinib-induced hepatotoxicity. -- Highlights: ►Dasatinib shows potential hepatotoxicity both in vitro and in vivo. ►Apoptosis plays a vital role in Dasatinib

  6. Volatile profile, lipid oxidation and protein oxidation of irradiated ready-to-eat cured turkey meat products

    International Nuclear Information System (INIS)

    Feng, Xi; Ahn, Dong Uk

    2016-01-01

    Irradiation had little effects on the thiobarbituric acid reactive substances (TBARS) values in ready-to-eat (RTE) turkey meat products, while it increased protein oxidation at 4.5 kGy. The volatile profile analyses indicated that the amount of sulfur compounds increased linearly as doses increased in RTE turkey meat products. By correlation analysis, a positive correlation was found between benzene/ benzene derivatives and alcohols with lipid oxidation, while aldehydes, ketones and alkane, alkenes and alkynes were positively correlated with protein oxidation. Principle component analysis showed that irradiated meat samples can be discriminated by two categories of volatile compounds: Strecker degradation products and radiolytic degradation products. The cluster analysis of volatile data demonstrated that low-dose irradiation had minor effects on the volatile profile of turkey sausages (<1.5 kGy). However, as the doses increased, the differences between the irradiated and non-irradiated cured turkey products became significant. - Highlights: • Irradiation had little effects on lipid oxidation of ready-to-eat cured turkey. • 4.5 kGy irradiation increased protein oxidation. • Irradiated samples were isolated due to Strecker/radiolytic degradation products. • 1.5 kGy irradiation had limited effects on the volatile profile of turkey sausages. • Dimethyl disulfide can be used as a potential marker for irradiated meat products.

  7. Oxidation kinetics of reaction products formed in uranium metal corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T. C.

    1998-04-22

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O{sub 2} and Ar-20%O{sub 2} were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates.

  8. Oxidation kinetics of reaction products formed in uranium metal corrosion

    International Nuclear Information System (INIS)

    Totemeier, T. C.

    1998-01-01

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O 2 and Ar-20%O 2 were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates

  9. HANPP Collection: Global Patterns in Net Primary Productivity (NPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Net Primary Productivity (NPP) portion of the Human Appropriation of Net Primary Productivity (HANPP) Collection maps the net amount of solar...

  10. Identification of the Products of Oxidation of Quercetin by Air Oxygenat Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Viktor A Utsal

    2007-03-01

    Full Text Available Oxidation of quercetin by air oxygen takes place in water and aqueous ethanol solutions under mild conditions, namely in moderately-basic media (pH ∼ 8-10 at ambient temperature and in the absence of any radical initiators, without enzymatic catalysis or irradiation of the reaction media by light. The principal reaction products are typical of other oxidative degradation processes of quercetin, namely 3,4-dihydroxy-benzoic (proto-catechuic and 2,4,6-trihydroxybenzoic (phloroglucinic acids, as well as the decarboxylation product of the latter – 1,3,5-trihydroxybenzene (phloroglucinol. In accordance with the literature data, this process involves the cleavage of the γ-pyrone fragment (ring C of the quercetin molecule by oxygen, with primary formation of 4,6-dihydroxy-2-(3,4-dihydroxybenzoyloxybenzoic acid (depside. However under such mild conditions the accepted mechanism of this reaction (oxidative decarbonylation with formation of carbon monoxide, CO should be reconsidered as preferably an oxidative decarboxylation with formation of carbon dioxide, CO2. Direct head-space analysis of the gaseous components formed during quercetin oxidation in aqueous solution at ambient temperature indicates that the ratio of carbon dioxide/carbon monoxide in the gas phase after acidification of the reaction media is ca. 96:4 %. Oxidation under these mild conditions is typical for other flavonols having OH groups at C3 (e.g., kaempferol, but it is completely suppressed if this hydroxyl group is substituted by a glycoside fragment (as in rutin, or a methyl substituent. An alternative oxidation mechanism involving the direct cleavage of the C2-C3 bond in the diketo-tautomer of quercetin is proposed.

  11. 40 CFR 415.50 - Applicability; description of the calcium oxide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... calcium oxide production subcategory. 415.50 Section 415.50 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Oxide Production Subcategory § 415.50 Applicability; description of the calcium... the production of calcium oxide. ...

  12. Fission product chemistry and aerosol behaviour in the primary circuit of a pressurised water reactor under severe accident conditions

    International Nuclear Information System (INIS)

    Bowsher, B.R.

    1985-09-01

    Three key accident sequences are considered covering a representative range of different environments of pressure, flow, temperature history and degree of zircaloy oxidation, and their principle thermal hydraulic and physical characteristics affecting chemistry behaviour are identified. Inventories, chemical forms and timing of fission product release are summarized together with the major sources of structural materials and their release characteristics. Chemistry of each main fission product species is reviewed from available experimental and/or theoretical data. Studies modelling primary circuit fission product behaviour are reviewed. Requirements for further study are assessed. (UK)

  13. Deep primary production in coastal pelagic systems

    DEFF Research Database (Denmark)

    Lyngsgaard, Maren Moltke; Richardson, Katherine; Markager, Stiig

    2014-01-01

    produced. The primary production (PP) occurring below the surface layer, i.e. in the pycnocline-bottom layer (PBL), is shown to contribute significantly to total PP. Oxygen concentrations in the PBL are shown to correlate significantly with the deep primary production (DPP) as well as with salinity...... that eutrophication effects may include changes in the structure of planktonic food webs and element cycling in the water column, both brought about through an altered vertical distribution of PP....

  14. Impact of green tea extract addition on oxidative changes in the lipid fraction of pastry products.

    Science.gov (United States)

    Żbikowska, Anna; Kowalska, Małgorzata; Rutkowska, Jarosława; Kozłowska, Mariola; Onacik-Gür, Sylwia

    2017-01-01

    Alongside flour, fat is the key ingredient of sponge cakes, including those with long shelf lives. It is an unstable food component, whose quality and nutritional safety depend on the composition and pres- ence of oxidation products. Consumption of fat oxidation products adversely affects the human body and contributes to the incidence of a number of medical conditions. Qualitative changes in fats extracted from thermostat sponge cakes with and without antioxidant additions were determined in this study. In the study, two types of antioxidant were used: natural - green tea extract in three doses (0.02%; 0.2% and 1.0%) and synthetic BHA (0.02%) and 100%, solid bakery shortening. Sponge-cakes were thermostatted at temperatures 63°C after twenty-eight days. In this study, the quality of the lipid fraction was analyzed. The amount of primary (PV) and secondary (AnV) oxidation products was determined, and   a Rancimat test was performed. Adding antioxidants to fats varied in the degree to which oxidation processes of lipids fractions were inhibited. The peroxide value after twenty-eight days of thermostatting ranged from 3.57 meq O/kg (BHA) and 11.14 O meq/kg (extract content - 1%) to 62.85 meq O/kg (control sample). In turn, the value of AnV after the storage period ranged from 4.84 (BHA) and 6.71 (extract content - 1%) to 16.83 (control sample). The best protective effects in the process of oxidation was achieved by BHA. The longest in- duction time and the lowest peroxide value and anisidine value were obtained for this antioxidant. It was achieved after twenty-eight days of fat thermostatting. Nonetheless, the results demonstrated it is possible to use the commercially available green tea extract to slow the adverse process of fat oxidation in sponge cake products.

  15. Method of manufacturing gadolinium oxide-incorporated nuclear fuel sintering products

    International Nuclear Information System (INIS)

    Komono, Akira; Seki, Makoto; Omori, Sadayuki.

    1987-01-01

    Purpose: To manufacture nuclear fuel sintering products excellent in burning property and mechanical property. Constitution: In the manufacturing step for nuclear fuel sintering products, specific metal oxides are added for promoting the growth of crystal grains in the sintering. Those metal oxides melted at a temperature lower than the sintering temperature of a mixture of nuclear fuel oxide powder and oxide power, or those metal oxides causing eutectic reaction are used as the metal oxide. Particularly, those compounds having oxygen atom - metal atom ratio (O/M) of not less than 2 are preferably used. As such metal oxides usable herein transition metal oxides, e.g., Nb 2 O 5 , TiO 2 , MoO 3 and WO 3 are preferred, with Nb 2 O 3 and TiO 2 being preferred particularly. (Seki, T.)

  16. Production of biogenic manganese oxides coupled with methane oxidation in a bioreactor for removing metals from wastewater.

    Science.gov (United States)

    Matsushita, Shuji; Komizo, Daisuke; Cao, Linh Thi Thuy; Aoi, Yoshiteru; Kindaichi, Tomonori; Ozaki, Noriatsu; Imachi, Hiroyuki; Ohashi, Akiyoshi

    2018-03-01

    Biogenic manganese oxide (BioMnO x ) can efficiently adsorb various minor metals. The production of BioMnO x in reactors to remove metals during wastewater treatment processes is a promising biotechnological method. However, it is difficult to preferentially enrich manganese-oxidizing bacteria (MnOB) to produce BioMnO x during wastewater treatment processes. A unique method of cultivating MnOB using methane-oxidizing bacteria (MOB) to produce soluble microbial products is proposed here. MnOB were successfully enriched in a methane-fed reactor containing MOB. BioMnO x production during the wastewater treatment process was confirmed. Long-term continual operation of the reactor allowed simultaneous removal of Mn(II), Co(II), and Ni(II). The Co(II)/Mn(II) and Ni(II)/Mn(II) removal ratios were 53% and 19%, respectively. The degree to which Mn(II) was removed indicated that the enriched MnOB used utilization-associated products and/or biomass-associated products. Microbial community analysis revealed that methanol-oxidizing bacteria belonging to the Hyphomicrobiaceae family played important roles in the oxidation of Mn(II) by using utilization-associated products. Methane-oxidizing bacteria were found to be inhibited by MnO 2 , but the maximum Mn(II) removal rate was 0.49 kg m -3  d -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Azobisisobutyronitrile initiated aerobic oxidative transformation of amines: coupling of primary amines and cyanation of tertiary amines.

    Science.gov (United States)

    Liu, Lianghui; Wang, Zikuan; Fu, Xuefeng; Yan, Chun-Hua

    2012-11-16

    In the presence of a catalytic amount of radical initiator AIBN, primary amines are oxidatively coupled to imines and tertiary amines are cyanated to α-aminonitriles. These "metal-free" aerobic oxidative coupling reactions may find applications in a wide range of "green" oxidation chemistry.

  18. Production and characterization of quality gadolinium oxide nanoparticles

    International Nuclear Information System (INIS)

    Hazarika, Samiran; Mohanta, Dambarudhar

    2013-01-01

    Rare earth system Gadolinium (Gd), in either pure form or oxide form, is highly stable against environmental attack. It has immense potential as a contrast agent in magnetic resonance imaging (MRI) devices. Being mechanically and thermally stable it is always difficult to obtain Gd 2 O 3 nanopowders directly from its bulk counterpart using conventional top-down approach. Recently, we have reported production of Gd 2 O 3 nanopowders by first converting bulk Gd 2 O 3 into a nitrate compound and subsequently reduced into a hydroxide product and finally to the oxide product (nanopowder form)

  19. Discussion on the differences between epigenetic oxidized and primary red beds

    International Nuclear Information System (INIS)

    Chen Xiaolin; Fang Xiheng; Sun Ye; Pang Yaqing; Guo Qingyin

    2008-01-01

    The red oxidation zone may be formed in the process of the interlayer oxidation. If the original gray beds formed in the moist palaeoclimatic condition and became red in oxidation, it is easy to distinguish this red oxidization zone from the original red beds. Gray sandstone sandwiched by red mudstone can be formed partially in the arid-semiarid condition. If this gray sandstone was oxidized to be red in color, almost all the strata would be red in cross section, and then it will be difficult to distinguish these red strata from the original red beds. If they are regarded as original red beds, we maybe lose the favorable opportunity to find uranium deposit. This paper presents a case study of Yaojia Formation, Upper Cretaceous in the southwestern part of Songliao Basin. Although the palaeoelimatic condition was arid-semiarid, the gray sandstones of Yaojia Formation in Qianjiadian Sag and its adjacent areas have obvious characteristics of primary depositional origin, and part of them may be formed by epigenetic reduction. The gray sandstone has formed red interlayer oxidation zone after being oxidized and it is just the red interlayer oxidation zone which controls the uranium mineralization in Qianjiadian uranium deposit. By careful contrast and analysis, identification marks of red epigenetic oxidation beds have be established, which can effectively help the distinguishing of epigenetic oxidized red beds from original red beds and extends prospecting idea. (authors)

  20. Interannual Variation in Phytoplankton Class-Specific Primary Production at a Global Scale

    Science.gov (United States)

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2014-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups to the total primary production. First we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms were the group that contributed the most to the total phytoplankton production (50, the equivalent of 20 PgC y-1. Coccolithophores and chlorophytes each contributed to 20 (7 PgC y-1 of the total primary production and cyanobacteria represented about 10 (4 PgC y(sub-1) of the total primary production. Primary production by diatoms was highest in high latitude (45) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4 (1-2 PgC y-1. We assessed the effects of climate variability on the class-specific primary production using global (i.e. Multivariate El Nio Index, MEI) and regional climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p 0.05) between the MEI and the class-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatomscyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect on the class-specific primary production in the Southern Ocean. These results provide a modeling and

  1. Modelling size-fractionated primary production in the Atlantic Ocean from remote sensing

    Science.gov (United States)

    Brewin, Robert J. W.; Tilstone, Gavin H.; Jackson, Thomas; Cain, Terry; Miller, Peter I.; Lange, Priscila K.; Misra, Ankita; Airs, Ruth L.

    2017-11-01

    Marine primary production influences the transfer of carbon dioxide between the ocean and atmosphere, and the availability of energy for the pelagic food web. Both the rate and the fate of organic carbon from primary production are dependent on phytoplankton size. A key aim of the Atlantic Meridional Transect (AMT) programme has been to quantify biological carbon cycling in the Atlantic Ocean and measurements of total primary production have been routinely made on AMT cruises, as well as additional measurements of size-fractionated primary production on some cruises. Measurements of total primary production collected on the AMT have been used to evaluate remote-sensing techniques capable of producing basin-scale estimates of primary production. Though models exist to estimate size-fractionated primary production from satellite data, these have not been well validated in the Atlantic Ocean, and have been parameterised using measurements of phytoplankton pigments rather than direct measurements of phytoplankton size structure. Here, we re-tune a remote-sensing primary production model to estimate production in three size fractions of phytoplankton (10 μm) in the Atlantic Ocean, using measurements of size-fractionated chlorophyll and size-fractionated photosynthesis-irradiance experiments conducted on AMT 22 and 23 using sequential filtration-based methods. The performance of the remote-sensing technique was evaluated using: (i) independent estimates of size-fractionated primary production collected on a number of AMT cruises using 14C on-deck incubation experiments and (ii) Monte Carlo simulations. Considering uncertainty in the satellite inputs and model parameters, we estimate an average model error of between 0.27 and 0.63 for log10-transformed size-fractionated production, with lower errors for the small size class (10 μm), and errors generally higher in oligotrophic waters. Application to satellite data in 2007 suggests the contribution of cells 2 μm to total

  2. Hydrogen Production via Steam Reforming of Ethyl Alcohol over Palladium/Indium Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Tetsuo Umegaki

    2009-01-01

    Full Text Available We report the synergetic effect between palladium and indium oxide on hydrogen production in the steam reforming reaction of ethyl alcohol. The palladium/indium oxide catalyst shows higher hydrogen production rate than indium oxide and palladium. Palladium/indium oxide affords ketonization of ethyl alcohol with negligible by-product carbon monoxide, while indium oxide mainly affords dehydration of ethyl alcohol, and palladium affords decomposition of ethyl alcohol with large amount of by-product carbon monoxide. The catalytic feature of palladium/indium oxide can be ascribed to the formation of palladium-indium intermetallic component during the reaction as confirmed by X-ray diffraction and X-ray photoelectron spectroscopic measurements.

  3. Primary production in the Bay of Bengal during August 1977

    Digital Repository Service at National Institute of Oceanography (India)

    Devassy, V.P.; Bhattathiri, P.M.A.; Radhakrishna, K.

    Primary production, chlorophyll @ia@@, phaeophytin, phytoplankton and particulate organic carbon (POC) were studied at 14 stations in the Bay of Bengal during August 1977. Column primary production, chlorophyll @ia@@, and phaeopigments varied from 0...

  4. Cathode recovery products of oxidation of oils

    Directory of Open Access Journals (Sweden)

    М.М. Захарчук

    2009-01-01

    Full Text Available  The article provides the review of electrochemical reduction of carbonic compounds – those that are among main oxidation of oils  hydrocarbons products. The principal possibility of ketons to alcohols  reduction is proved in practice based on the experimental data . The methodical algoritm of quantative control of the catod reduction is developed, which uses the reduction-oxidizing potentiometric titration method.

  5. Low nitrous oxide production in intermittent-feed high performance nitritating reactors

    DEFF Research Database (Denmark)

    Su, Qingxian; Jensen, Malene M.; Smets, Barth F.

    Nitrous oxide (N2O) production from autotrophic nitrogen removal processes, especially nitritating systems, is of growing concern. N2O dynamics were characterized and N2O production factors were quantified in two lab-scale intermittent-feed nitritating SBRs. 93 ± 14% of the oxidized ammonium...... was converted to nitrite, with the average total net N2O production of 2.1 ± 0.7% of the ammonium oxidized. Operation with intermittent feeding appears an effective optimization approach to mitigate N2O emissions from nitritating systems. Net N2O production rates transiently increased with a rise in pH after...

  6. Methylmercury bioaccumulation in stream food webs declines with increasing primary production

    Science.gov (United States)

    Walters, David; D.F. Raikow,; C.R. Hammerschmidt,; M.G. Mehling,; A. Kovach,; J.T. Oris,

    2015-01-01

    Opposing hypotheses posit that increasing primary productivity should result in either greater or lesser contaminant accumulation in stream food webs. We conducted an experiment to evaluate primary productivity effects on MeHg accumulation in stream consumers. We varied light for 16 artificial streams creating a productivity gradient (oxygen production =0.048–0.71 mg O2 L–1 d–1) among streams. Two-level food webs were established consisting of phytoplankton/filter feeding clam, periphyton/grazing snail, and leaves/shredding amphipod (Hyalella azteca). Phytoplankton and periphyton biomass, along with MeHg removal from the water column, increased significantly with productivity, but MeHg concentrations in these primary producers declined. Methylmercury concentrations in clams and snails also declined with productivity, and consumer concentrations were strongly correlated with MeHg concentrations in primary producers. Heterotroph biomass on leaves, MeHg in leaves, and MeHg in Hyalella were unrelated to stream productivity. Our results support the hypothesis that contaminant bioaccumulation declines with stream primary production via the mechanism of bloom dilution (MeHg burden per cell decreases in algal blooms), extending patterns of contaminant accumulation documented in lakes to lotic systems.

  7. Bromide-free TEMPO-mediated oxidation of primary alcohol groups in starch and methyl alpha-D-glucopyranoside.

    Science.gov (United States)

    Bragd, P L; Besemer, A C; van Bekkum, H

    2000-09-22

    TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-mediated oxidation of potato starch and methyl alpha-D-glucopyranoside (MGP) was performed in the absence of sodium bromide (NaBr) as co-catalyst, solely using sodium hypochlorite (NaOCl) as the primary oxidant. The low reaction rate associated with a bromide-free process was increased by performing the oxidation at increased temperatures. The reaction proceeded stoichiometrically and with high selectivity and with only minor depolymerisation, provided that temperature and pH were kept or = 25 degrees C) and under more alkaline conditions (pH > or = 9.0) degradation of the starch skeleton occurred. Simultaneously, side-reactions of the nitrosonium ion lowered the yield of the oxidation. Despite the absence of the NaBr catalyst, the reaction rate-controlling step was found to be the oxidation of the primary hydroxyl groups with the nitrosonium ion. The reaction was first-order in MGP and in TEMPO.

  8. A primary reduced TCA flux governs substrate oxidation in T2D skeletal muscle

    DEFF Research Database (Denmark)

    Gaster, Michael

    2012-01-01

    Our current knowledge on substrate oxidation in skeletal muscle in relation to insulin resistance and type 2 diabetes (T2D) originate mainly from in vivo studies. The oxidative capacity of skeletal muscle is highly influenced by physical activity, ageing, hormonal status, and fiber type composition...... further regulatory mechanism to our understanding of substrate oxidation in human skeletal muscle during normo- an pathophysiological conditions, focusing especially on the governing influence of a primary reduced TCA flux for the diabetic phenotype in skeletal muscle....

  9. Experimental and theoretical understanding of the gas phase oxidation of atmospheric amides with OH radicals: kinetics, products, and mechanisms.

    Science.gov (United States)

    Borduas, Nadine; da Silva, Gabriel; Murphy, Jennifer G; Abbatt, Jonathan P D

    2015-05-14

    Atmospheric amides have primary and secondary sources and are present in ambient air at low pptv levels. To better assess the fate of amides in the atmosphere, the room temperature (298 ± 3 K) rate coefficients of five different amides with OH radicals were determined in a 1 m(3) smog chamber using online proton-transfer-reaction mass spectrometry (PTR-MS). Formamide, the simplest amide, has a rate coefficient of (4.44 ± 0.46) × 10(-12) cm(3) molec(-1) s(-1) against OH, translating to an atmospheric lifetime of ∼1 day. N-methylformamide, N-methylacetamide and propanamide, alkyl versions of formamide, have rate coefficients of (10.1 ± 0.6) × 10(-12), (5.42 ± 0.19) × 10(-12), and (1.78 ± 0.43) × 10(-12) cm(3) molec(-1) s(-1), respectively. Acetamide was also investigated, but due to its slow oxidation kinetics, we report a range of (0.4-1.1) × 10(-12) cm(3) molec(-1) s(-1) for its rate coefficient with OH radicals. Oxidation products were monitored and quantified and their time traces were fitted using a simple kinetic box model. To further probe the mechanism, ab initio calculations are used to identify the initial radical products of the amide reactions with OH. Our results indicate that N-H abstractions are negligible in all cases, in contrast to what is predicted by structure-activity relationships. Instead, the reactions proceed via C-H abstraction from alkyl groups and from formyl C(O)-H bonds when available. The latter process leads to radicals that can readily react with O2 to form isocyanates, explaining the detection of toxic compounds such as isocyanic acid (HNCO) and methyl isocyanate (CH3NCO). These contaminants of significant interest are primary oxidation products in the photochemical oxidation of formamide and N-methylformamide, respectively.

  10. Primary production in the Delta: Then and now

    Science.gov (United States)

    Cloern, James E.; Robinson, April; Richey, Amy; Grenier, Letitia; Grossinger, Robin; Boyer, Katharyn E.; Burau, Jon; Canuel, Elizabeth A.; DeGeorge, John F.; Drexler, Judith Z.; Enright, Chris; Howe, Emily R.; Kneib, Ronald; Mueller-Solger, Anke; Naiman, Robert J.; Pinckney, James L.; Safran, Samuel M.; Schoellhamer, David H.; Simenstad, Charles A.

    2016-01-01

    To evaluate the role of restoration in the recovery of the Delta ecosystem, we need to have clear targets and performance measures that directly assess ecosystem function. Primary production is a crucial ecosystem process, which directly limits the quality and quantity of food available for secondary consumers such as invertebrates and fish. The Delta has a low rate of primary production, but it is unclear whether this was always the case. Recent analyses from the Historical Ecology Team and Delta Landscapes Project provide quantitative comparisons of the areal extent of 14 habitat types in the modern Delta versus the historical Delta (pre-1850). Here we describe an approach for using these metrics of land use change to: (1) produce the first quantitative estimates of how Delta primary production and the relative contributions from five different producer groups have been altered by large-scale drainage and conversion to agriculture; (2) convert these production estimates into a common currency so the contributions of each producer group reflect their food quality and efficiency of transfer to consumers; and (3) use simple models to discover how tidal exchange between marshes and open water influences primary production and its consumption. Application of this approach could inform Delta management in two ways. First, it would provide a quantitative estimate of how large-scale conversion to agriculture has altered the Delta's capacity to produce food for native biota. Second, it would provide restoration practitioners with a new approach—based on ecosystem function—to evaluate the success of restoration projects and gauge the trajectory of ecological recovery in the Delta region.

  11. MODIS-derived terrestrial primary production [chapter 28

    Science.gov (United States)

    Maosheng Zhao; Steven Running; Faith Ann Heinsch; Ramakrishna Nemani

    2011-01-01

    Temporal and spatial changes in terrestrial biological productivity have a large impact on humankind because terrestrial ecosystems not only create environments suitable for human habitation, but also provide materials essential for survival, such as food, fiber and fuel. A recent study estimated that consumption of terrestrial net primary production (NPP; a list of...

  12. The 2010 spring drought reduced primary productivity in southwestern China

    International Nuclear Information System (INIS)

    Zhang Li; Li Jing; Xiao Jingfeng; Wang Kun; Lei Liping; Guo Huadong

    2012-01-01

    Many parts of the world experience frequent and severe droughts. Summer drought can significantly reduce primary productivity and carbon sequestration capacity. The impacts of spring droughts, however, have received much less attention. A severe and sustained spring drought occurred in southwestern China in 2010. Here we examine the influence of this spring drought on the primary productivity of terrestrial ecosystems using data on climate, vegetation greenness and productivity. We first assess the spatial extent, duration and severity of the drought using precipitation data and the Palmer drought severity index. We then examine the impacts of the drought on terrestrial ecosystems using satellite data for the period 2000–2010. Our results show that the spring drought substantially reduced the enhanced vegetation index (EVI) and gross primary productivity (GPP) during spring 2010 (March–May). Both EVI and GPP also substantially declined in the summer and did not fully recover from the drought stress until August. The drought reduced regional annual GPP and net primary productivity (NPP) in 2010 by 65 and 46 Tg C yr −1 , respectively. Both annual GPP and NPP in 2010 were the lowest over the period 2000–2010. The negative effects of the drought on annual primary productivity were partly offset by the remarkably high productivity in August and September caused by the exceptionally wet conditions in late summer and early fall and the farming practices adopted to mitigate drought effects. Our results show that, like summer droughts, spring droughts can also have significant impacts on vegetation productivity and terrestrial carbon cycling. (letter)

  13. Radiolysis of dodecane--tributylphosphate and nitrous oxide solutions

    International Nuclear Information System (INIS)

    Razvi, J.

    1978-01-01

    The chemical effects of 60 Co gamma irradiation on the nuclear fuel reprocessing solvents tributylphosphate (TBP) and dodecane were studied. Nitrous oxide, with concentrations in the range 20 mM to 140 mM, was used as the standard for competition kinetics. Solutions of TBP (with electron fractions of 0.025, 0.05, 0.1 and 0.3) in dodecane were irradiated. Primary gaseous products (non-condensible at 77K) in the radiolysis were nitrogen and hydrogen. Liquid products observed were the dimer, dodecanone, dodecanol, and fragmentation products C 5 -C 11 and C 17 -C 20 . Acid products from TBP were dibutylphosphate (DBP) and monobutylphosphate (MBP). All yields were determined both as a function of TBP and nitrous oxide concentrations. Kinetic analysis of nitrogen yields from dodecane--N 2 O radiolysis gave, G(total scavengable primary species) = 6.7 molecules/100 eV. Yields of dodecane liquid products could not be analyzed quantitatively due to the complex spectrum of products. In dodecane--N 2 O solutions, the dimer showed insignificant changes in yields and product distributions, indicating formation of additional dodecyl radicals in the presence of nitrous oxide. In dodecane--TBP mixtures, dimer yields reduced significantly as did the products from carbon--carbon bond cleavage. The addition of nitrous oxide to the binary mixture caused the dimer yield to increase, confirming formation of C 12 H 25 radicals by nitrous oxide reactions

  14. Fact and Fiction of Nitrous Oxide Production By Nitrification

    Science.gov (United States)

    Stein, L. Y.; Kozlowski, J.; Stieglmeier, M.; Klotz, M. G.; Schleper, C.

    2014-12-01

    An accepted dogma in nitrification research is that ammonia-oxidizing bacteria (AOB) produce a modicum of nitrous oxide (N2O) during nitritation via incomplete oxidation of hydroxylamine, and substantially more at low oxygen concentrations via nitrifier denitrification.The nitrifier denitrification pathway involves the reduction of nitrite to N2O via nitric oxide and was thought to require activities of a copper-containing nitrite reductase (NirK) and nitric oxide reductase (NorB); inventory encoded in most, but not all AOB genome sequences. The discovery of nirK genes in ammonia-oxidizing Thaumarchaeota (AOA) resulted in a slew of publications stating that AOA must also perform nitrifier denitrification and, due to their high abundance, must control the majority of nitrification-linked N2O emissions. Prior to a publication by Stieglmeier et al. (2014), which definitively showed a lack of nitrifier denitrification by two axenic AOA cultures, other researchers relied on enrichment cultures, negative data, and heavy inferencing without direct demonstration of either a functional pathway or involvement of specific genes or enzymes. AOA genomes lack recognizable nitric oxide reductases and thermophilic AOA also lack nirK genes. Physiological and microrespirometry experiments with axenic AOB and AOA cultures allowed us to demonstrate that: 1) AOB produce N2O via nitrifier denitrification even though some lack annotated nirK and/or norB genes; 2) nitrifier denitrification by AOB is reliant on nitric oxide but ammonia oxidation is not; 3) ammonia oxidation by AOA is reliant on production of nitric oxide; 4) AOA are incapable of generating N2O via nitrifier denitrification; 5) N2O production by AOA is from chemical interactions between NO and media components, most likely not by enzyme activity. Our results reveal operation of different N oxide transformation pathways in AOB and AOA governed by different environmental controls and involving different mechanisms of N2O

  15. HANPP Collection: Human Appropriation of Net Primary Productivity (HANPP) by Country and Product

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) by Country and Product portion of the HANPP Collection contains tabular data on carbon-equivalents of...

  16. Hydrogen production by ethanol partial oxidation over nano-iron oxide catalysts produced by chemical vapour synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael Ahmed Abou Taleb Sayed

    2011-01-13

    This work presents the experimental results of the synthesis of unsupported and supported SiC iron oxide nanoparticles and their catalytic activity towards ethanol partial oxidation. For comparison, further unsupported iron oxide phases were investigated towards the ethanol partial oxidation. These {gamma}-Fe{sub 2}O{sub 3} and {alpha}/{gamma}-Fe{sub 2}O{sub 3} phase catalysts were prepared by the CVS method using Fe(CO){sub 5} as precursor, supplied by another author. The {alpha}-Fe{sub 2}O{sub 3} and SiC nanoparticles were prepared by the CVS method using a home made hot wall reactor technique at atmospheric pressure. Ferrocene and tetramethylsilane were used as precursor for the production process. Process parameters of precursor evaporation temperature, precursor concentration, gas mixture velocity and gas mixture dilution were investigated and optimised to produce particle sizes in a range of 10 nm. For Fe{sub 2}O{sub 3}/SiC catalyst series production, a new hot wall reactor setup was used. The particles were produced by simultaneous thermal decomposition of ferrocene and tetramethylsilane in one reactor from both sides. The production parameters of inlet tube distance inside the reactor, precursor evaporation temperature and carrier gas flow were investigated to produce a series of samples with different iron oxide content. The prepared catalysts composition, physical and chemical properties were characterized by XRD, EDX, SEM, BET surface area, FTIR, XPS and dynamic light scattering (DLS) techniques. The catalytic activity for the ethanol gas-phase oxidation was investigated in a temperature range from 260 C to 290 C. The product distributions obtained over all catalysts were analysed with mass spectrometry analysis tool. The activity of bulk Fe{sub 2}O{sub 3} and SiC nanoparticles was compared with prepared nano-iron oxide phase catalysts. The reaction parameters, such as reaction temperature and O{sub 2}/ethanol ratio were investigated. The catalysts

  17. An investigation of oxidation products and SOA yields from OH + pesticide reactions

    Science.gov (United States)

    Murschell, T.; Friedman, B.; Link, M.; Farmer, D.

    2016-12-01

    Pesticides are used globally in agricultural and residential areas. After application and/or volatilization from a surface, these compounds can be transported over long distances in the atmosphere. However, their chemical fate, including oxidation and gas-particle partitioning in the atmosphere, is not well understood. We present gas and particle measurements of oxidation products from pesticide + OH reactions using a dynamic solution injection system coupled to an Oxidative Flow Reactor. Products were detected with a High Resolution Time of Flight Iodide Chemical Mass Spectrometer (HR-ToF-CIMS) and a Size Mobility Particle Scanner (SMPS). The OFR allows pesticides to react with variable OH radical exposures, ranging from the equivalent of one day to a full week of atmospheric oxidative aging. In this work, we explore pesticide oxidation products from reaction with OH and ozone, and compare those products to photolysis reactions. Pesticides of similar chemical structures were explored, including acetochlor / metolachlor and permethrin / cypermethrin, to explore mechanistic differences. We present chemical parameters including average product oxidation state, average oxygen to carbon ratio, and potential secondary organic aerosol formation for each of these compounds.

  18. Oxide production program monthly report - December 2014

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Evelyn A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Whitworth, Julia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lloyd, Jane Alexandria [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hampton, David Earl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Benavidez, Amelia A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-15

    A summary of the major activities, accomplishments, milestones, financial summary, project performance and issues facing the ARIES Oxide Production Program for the month of December 2014 is presented in this Executive Summary.

  19. Graphene oxide and H2 production from bioelectrochemical graphite oxidation.

    Science.gov (United States)

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong

    2015-11-17

    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES.

  20. Bee products prevent agrichemical-induced oxidative damage in fish.

    Directory of Open Access Journals (Sweden)

    Daiane Ferreira

    Full Text Available In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™ and a group that was exposed to 0.88 mg L(-1 of TEB alone (corresponding to 16.6% of the 96-h LC50. We show that waterborne bee products, including royal jelly (RJ, honey (H, bee pollen (BP and propolis (P, reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD, catalase (CAT and glutathione-S-transferase (GST are increased.

  1. Bee products prevent agrichemical-induced oxidative damage in fish.

    Science.gov (United States)

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; da Rosa, João Gabriel Santos; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L(-1) of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased.

  2. Clinical productivity of primary care nurse practitioners in ambulatory settings.

    Science.gov (United States)

    Xue, Ying; Tuttle, Jane

    Nurse practitioners are increasingly being integrated into primary care delivery to help meet the growing demand for primary care. It is therefore important to understand nurse practitioners' productivity in primary care practice. We examined nurse practitioners' clinical productivity in regard to number of patients seen per week, whether they had a patient panel, and patient panel size. We further investigated practice characteristics associated with their clinical productivity. We conducted cross-sectional analysis of the 2012 National Sample Survey of Nurse Practitioners. The sample included full-time primary care nurse practitioners in ambulatory settings. Multivariable survey regression analyses were performed to examine the relationship between practice characteristics and nurse practitioners' clinical productivity. Primary care nurse practitioners in ambulatory settings saw an average of 80 patients per week (95% confidence interval [CI]: 79-82), and 64% of them had their own patient panel. The average patient panel size was 567 (95% CI: 522-612). Nurse practitioners who had their own patient panel spent a similar percent of time on patient care and documentation as those who did not. However, those with a patient panel were more likely to provide a range of clinical services to most patients. Nurse practitioners' clinical productivity was associated with several modifiable practice characteristics such as practice autonomy and billing and payment policies. The estimated number of patients seen in a typical week by nurse practitioners is comparable to that by primary care physicians reported in the literature. However, they had a significantly smaller patient panel. Nurse practitioners' clinical productivity can be further improved. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Effect of primary air content on formation of nitrogen oxides during combustion of Ehkibastuz coal

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Imankulov, Eh.R.

    1986-01-01

    Investigations are discussed carried out in a pilot plant at the Kaz. Power Engineering Scientific Research Institute into the effect of the amount of primary air in coal-dust flame on the final concentration of nitrogen oxides in flue gases. The tests were carried out in a 7500 mm high, 1600 mm dia vertical cylindrical combustion chamber having type P-57 burner, and air dispersed fuel plus additional air supplies located at the top. Amounts of coal dust fed by a drum feeder along the air pipe varied from 100-600 kg/h. The required air was supplied by 5000 m/sup 3//h Type TK-700/5 blowers at 0.04 MPa. Ehkibastuz coal samples contained: 1.3% moisture; 48.1% ash; 38.02% carbon; 2.56% hydrogen; 0.73% sulfur; 0.60% nitrogen; heat of combustion was 14.3 MJ/kg. Results obtained indicate that variations in the amount of primary air in swirl flow burners affect formation of fuel nitrogen; there is an optimum volume at which minimum quantities of nitrogen oxides are formed. Either an increase or decrease in the primary air results in a rise in nitrogen oxide concentration. 3 references.

  4. Nitric oxide production by Peromyscus yucatanicus (Rodentia infected with Leishmania (Leishmania mexicana

    Directory of Open Access Journals (Sweden)

    Elsy Nalleli Loría-Cervera

    2013-04-01

    Full Text Available Peromyscus yucatanicus (Rodentia: Cricetidae is a primary reservoir of Leishmania (Leishmania mexicana (Kinetoplastida: Trypanosomatidae. Nitric oxide (NO generally plays a crucial role in the containment and elimination of Leishmania. The aim of this study was to determine the amount of NO produced by P. yucatanicus infected with L. (L. mexicana. Subclinical and clinical infections were established in P. yucatanicus through inoculation with 1 x 10 2 and 2.5 x 10 6 promastigotes, respectively. Peritoneal macrophages were cultured alone or co-cultured with lymphocytes with or without soluble Leishmania antigen. The level of NO production was determined using the Griess reaction. The amount of NO produced was significantly higher (p ≤ 0.0001 in co-cultured macrophages and lymphocytes than in macrophages cultured alone. No differences in NO production were found between P. yucatanicus with subclinical L. (L. mexicana infections and animals with clinical infections. These results support the hypothesis that the immunological mechanisms of NO production in P. yucatanicus are similar to those described in mouse models of leishmaniasis and, despite NO production, P. yucatanicus is unable to clear the parasite infection.

  5. Short-term to seasonal variability in factors driving primary productivity in a shallow estuary: Implications for modeling production

    Science.gov (United States)

    Canion, Andy; MacIntyre, Hugh L.; Phipps, Scott

    2013-10-01

    The inputs of primary productivity models may be highly variable on short timescales (hourly to daily) in turbid estuaries, but modeling of productivity in these environments is often implemented with data collected over longer timescales. Daily, seasonal, and spatial variability in primary productivity model parameters: chlorophyll a concentration (Chla), the downwelling light attenuation coefficient (kd), and photosynthesis-irradiance response parameters (Pmchl, αChl) were characterized in Weeks Bay, a nitrogen-impacted shallow estuary in the northern Gulf of Mexico. Variability in primary productivity model parameters in response to environmental forcing, nutrients, and microalgal taxonomic marker pigments were analysed in monthly and short-term datasets. Microalgal biomass (as Chla) was strongly related to total phosphorus concentration on seasonal scales. Hourly data support wind-driven resuspension as a major source of short-term variability in Chla and light attenuation (kd). The empirical relationship between areal primary productivity and a combined variable of biomass and light attenuation showed that variability in the photosynthesis-irradiance response contributed little to the overall variability in primary productivity, and Chla alone could account for 53-86% of the variability in primary productivity. Efforts to model productivity in similar shallow systems with highly variable microalgal biomass may benefit the most by investing resources in improving spatial and temporal resolution of chlorophyll a measurements before increasing the complexity of models used in productivity modeling.

  6. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Anton L., E-mail: antonpopovleonid@gmail.com [Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation); Popova, Nelly R. [Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation); Selezneva, Irina I. [Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation); Pushchino State Institute of Natural sciences, Pushchino, Moscow region (Russian Federation); Akkizov, Azamat Y. [Kabardino-Balkarian State University, Nalchik (Russian Federation); Ivanov, Vladimir K. [Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); National Research Tomsk State University, Tomsk (Russian Federation)

    2016-11-01

    The increasing application of cell therapy technologies in the treatment of various diseases requires the development of new effective methods for culturing primary cells. The major limitation for the efficient use of autologous cell material is the low rate of cell proliferation. Successful cell therapy requires sufficient amounts of cell material over a short period of time with the preservation of their differentiation and proliferative potential. In this regard, the development of novel, highly efficient stimulators of proliferative activity in stem cells is a truly urgent task. In this paper we have demonstrated that citrate-stabilized cerium oxide nanoparticles (nanoceria) enhance the proliferative activity of primary mouse embryonic fibroblasts in vitro. Cerium oxide nanoparticles stimulate cell proliferation in a wide range of concentrations (10{sup −3} M–10{sup −9} M) through reduction of intracellular levels of reactive oxygen species (ROS) during the lag phase of cell growth and by modulating the expression level of the major antioxidant enzymes. We found the optimal concentration of nanoceria, which provides the greatest acceleration of cell proliferation in vitro, while maintaining the levels of intracellular ROS and mRNA of antioxidant enzymes in the physiological range. Our results confirm that nanocrystalline ceria can be considered as a basis for effective and inexpensive supplements in cell culturing. - Highlights: • Citrate-stabilized cerium oxide nanoparticles are shown to stimulate proliferation of primary embryonic cells in vitro. • Some of mechanisms involved in stimulating of the proliferation by CeO{sub 2} have been uncovered. • The most effective (optimal) concentration of CeO{sub 2} nanoparticles for stimulation of proliferation was determined.

  7. Catalytic abatement of nitrous oxide from nitric and production

    NARCIS (Netherlands)

    Oonk, J.

    1998-01-01

    Nitric acid production is identified as a main source of nitrous oxide. Options for emission reduction however are not available. TNO and Hydro Agri studied the technological and economic feasibility of catalytic decomposition of nitrous oxide in nitric acid tail-gases. Although in literature

  8. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature

    OpenAIRE

    Kim, Jinho; Stahl, Shannon S.

    2013-01-01

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4′-tBu2bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N-oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst...

  9. Environmentally friendly chemoselective oxidation of primary aliphatic amines by using a biomimetic electrocatalytic system.

    Science.gov (United States)

    Largeron, Martine; Chiaroni, Angèle; Fleury, Maurice-Bernard

    2008-01-01

    Environmentally friendly oxidation of primary aliphatic amines to imines has been successfully achieved, under metal-free conditions, by the use of diverse electrogenerated o-azaquinone mediators. High catalytic performance, together with high chemoselectivity, were observed with electron-poor o-azaquinone catalysts generated from 2-aminoresorcinol derivatives. Similar to copper amine oxidase enzymes, these mediators exhibited lower reactivity toward alpha-branched primary amines and no reactivity toward secondary amines. In the case of 3,4-aminophenol derivatives lacking a 2-hydroxy group, the generated o-azaquinone species failed to catalyze the oxidation of the amine to the corresponding imine. Further mechanistic considerations allowed a rationalization of the crucial role of the 2-hydroxy group in converting a catalytically inert species into a highly effective biomimetic catalyst.

  10. Kinetics of abiotic nitrous oxide production via oxidation of hydroxylamine by particulate metals in seawater

    Science.gov (United States)

    Cavazos, A. R.; Taillefert, M.; Glass, J. B.

    2016-12-01

    The oceans are a significant of nitrous oxide (N2O) to the atmosphere. Current models of global oceanic N2­O flux focus on microbial N2O cycling and often ignore abiotic reactions, such as the thermodynamically favorable oxidation of the nitrification intermediate hydroxylamine (NH2OH) by Mn(IV) or Fe(III). At circumneutral pH, NH2OH oxidation is more thermodynamically favorable via Mn(IV) than Fe(III) reduction. We characterized the kinetics of NH2OH oxidation in synthetic ocean water at pH 5.1-8.8 using microsensor electrodes to measure real-time N2O production. N2O production rates and yield were greater when NH2OH was oxidized by Mn(IV) than Fe(III). Accordingly, the reduction of Mn(IV) was first order with respect to NH2OH whereas the reduction of Fe(III) was zero order with respect to NH2OH. Interestingly, the order of the reaction with respect to Mn(IV) appears to be negative whereas the reaction is second order with respect to Fe(III). The inverse order with respect to Mn(IV) may be due to the aggregation of particles in seawater, which decreases their surface area and changes their reactivity. Finally, the reaction is first order with respect to protons with Fe(III) as the oxidant but zero order with Mn(IV). The stronger effect of the pH on the reaction with Fe(III) as the oxidant compared to Mn(IV) reflects the stoichiometry of these two reactions, as each mole of N2O produced by Fe(III) reduction consumes eight protons while each mole of N2O produced with Mn(IV) as the oxidant requires only four protons. Our data show that abiotic NH2OH oxidation by Mn(IV) or Fe(III) particles may represent a significant source of N2O in seawater. These findings suggest that abiotic N2O production in marine waters may be significant in areas of the oceans where particulate metals originating from aerosols, dust, or rivers may react with NH2OH released from ammonia-oxidizing microorganisms.

  11. Tritium oxide uptake and desorption kinetics in a primary producer: chlorella pyrenoidosa

    International Nuclear Information System (INIS)

    Dunstall, T.G.

    1983-01-01

    The alga Chlorella pyrenoidosa grown in batch culture under chronic tritium oxide exposure was used to model behavior of tritium at the primary producer level of an aquatic food chain. The specific activity ratio of organically bound tritium to medium tritium increased during initial growth stages, then reached an asymptotic steady state value of 0.59 after approximately seven cell doublings. The intracellular to extracellular concentrations of tritium oxide appeared to be in equilibrium. Loss of previously formed organically bound tritium in cells transferred to tritium-free media averaged less than 5 % for exponential growth phase cultures which had undergone more than three cell doublings. Over a comparable time period, a greater loss of organically bound tritium from stationary cells (average 13.4 %) was attributed to increased degradative metabolism in senescent cultures. Concentration of tritium in organically bound form may exceed environmental tritium oxide levels under dynamic conditions in which a pulse of tritium oxide to the environment is dissipated over time

  12. A review of ocean chlorophyll algorithms and primary production models

    Science.gov (United States)

    Li, Jingwen; Zhou, Song; Lv, Nan

    2015-12-01

    This paper mainly introduces the five ocean chlorophyll concentration inversion algorithm and 3 main models for computing ocean primary production based on ocean chlorophyll concentration. Through the comparison of five ocean chlorophyll inversion algorithm, sums up the advantages and disadvantages of these algorithm,and briefly analyzes the trend of ocean primary production model.

  13. Lactate Dehydrogenase and Oxidative Stress Activity in Primary Open-Angle Glaucoma Aqueous Humour

    Directory of Open Access Journals (Sweden)

    Predrag Jovanović

    2010-02-01

    Full Text Available Lactate dehydrogenase (LDH and lactate are some of the hypoxy biochemical parameters. Extracellular activity of this enzyme increases under the condition of oxidative stress, since the cell integrity can be disrupted during the lipid peroxidation process. Subsequently that leads to the increase level of the lactic acid and lactic acid salts. The objective of this investigation is establishing the level of LDH, LDH1 (HBDH and the lactate concentration in aqueous humour in patients with primary open-angle glaucoma.Biochemical analysis have been made by enzymatic-colometric method (lactate and UV-kinetic method (LDH and HBDH in aqueous humour of 30 patients (42 eyes with primary open-angle glaucoma (POAG and 30 patients (40 eyes with cataract (the control group.The increased values of lactate and the activity of LDH and HBDH enzyme in aqueous humour of POAG patients in correlation with the control group are the results not only of oxidative stress but also of hypoxy and the mitochondry oxidative function (p<0,001.The increased activity of the examined biochemical parameters in the aqueous humour of the POAG patients points to the fact that other mechanisms, besides IOP, have a role in glaucoma pathogenesis.

  14. Primary Production in the Delta: Then and Now

    Directory of Open Access Journals (Sweden)

    James E. Cloern

    2016-10-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss3art1To evaluate the role of restoration in the recovery of the Delta ecosystem, we need to have clear targets and performance measures that directly assess ecosystem function. Primary production is a crucial ecosystem process, which directly limits the quality and quantity of food available for secondary consumers such as invertebrates and fish. The Delta has a low rate of primary production, but it is unclear whether this was always the case. Recent analyses from the Historical Ecology Team and Delta Landscapes Project provide quantitative comparisons of the areal extent of 14 habitat types in the modern Delta versus the historical Delta (pre-1850. Here we describe an approach for using these metrics of land use change to: (1 produce the first quantitative estimates of how Delta primary production and the relative contributions from five different producer groups have been altered by large-scale drainage and conversion to agriculture; (2 convert these production estimates into a common currency so the contributions of each producer group reflect their food quality and efficiency of transfer to consumers; and (3 use simple models to discover how tidal exchange between marshes and open water influences primary production and its consumption. Application of this approach could inform Delta management in two ways. First, it would provide a quantitative estimate of how large-scale conversion to agriculture has altered the Delta's capacity to produce food for native biota. Second, it would provide restoration practitioners with a new approach—based on ecosystem function—to evaluate the success of restoration projects and gauge the trajectory of ecological recovery in the Delta region.

  15. Bilirubin and its oxidation products damage brain white matter

    Science.gov (United States)

    Lakovic, Katarina; Ai, Jinglu; D'Abbondanza, Josephine; Tariq, Asma; Sabri, Mohammed; Alarfaj, Abdullah K; Vasdev, Punarjot; Macdonald, Robert Loch

    2014-01-01

    Brain injury after intracerebral hemorrhage (ICH) occurs in cortex and white matter and may be mediated by blood breakdown products, including hemoglobin and heme. Effects of blood breakdown products, bilirubin and bilirubin oxidation products, have not been widely investigated in adult brain. Here, we first determined the effect of bilirubin and its oxidation products on the structure and function of white matter in vitro using brain slices. Subsequently, we determined whether these compounds have an effect on the structure and function of white matter in vivo. In all, 0.5 mmol/L bilirubin treatment significantly damaged both the function and the structure of myelinated axons but not the unmyelinated axons in brain slices. Toxicity of bilirubin in vitro was prevented by dimethyl sulfoxide. Bilirubin oxidation products (BOXes) may be responsible for the toxicity of bilirubin. In in vivo experiments, unmyelinated axons were found more susceptible to damage from bilirubin injection. These results suggest that unmyelinated axons may have a major role in white-matter damage in vivo. Since bilirubin and BOXes appear in a delayed manner after ICH, preventing their toxic effects may be worth investigating therapeutically. Dimethyl sulfoxide or its structurally related derivatives may have a potential therapeutic value at antagonizing axonal damage after hemorrhagic stroke. PMID:25160671

  16. The Evonik-Uhde HPPO process for proplene oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, B.; Baerz, M. [Evonik Industries, Hanau (Germany); Schemel, J.; Kolbe, B. [Uhde GmbH, Dortmund/Bad Soden (Germany)

    2011-07-01

    In 2008 the HPPO technology has shown up as an economically and environmentally friendly alternative for manufacturing of propylene oxide. The HPPO technology offers the advantage of an on purpose process for manufacturing of propylene oxide without dependency on disposal or marketing of coupling products. (orig.)

  17. Characterization of oxidation end product of plasma albumin 'in vivo'.

    Science.gov (United States)

    Musante, Luca; Bruschi, Maurizio; Candiano, Giovanni; Petretto, Andrea; Dimasi, Nazzareno; Del Boccio, Piero; Urbani, Andrea; Rialdi, Giovanni; Ghiggeri, Gian Marco

    2006-10-20

    Anti-oxidants are paradoxically much lower in plasma than inside cells even blood is comparably exposed to the oxidative stress. 'In vitro' models suggest a critical role of albumin as substitutive anti-oxidant in plasma but no proof for this role is available 'in vivo.' Herein, we demonstrate by LC/MS/MS that plasma albumin undergoes massive oxidation in primary nephrotic syndrome, involving stable sulphonation SO3- of the free SH of Cys 34 with +48Da increase in exact mass of the protein (ESI-MS) and formation of a fast moving isoform in the pH range between 5 and 7. Physical-chemical experiments with DSC and fluorescence spectra indicate a thermal stabilization of the structure upon oxidation. This is the first demonstration of massive oxidation of albumin 'in vivo' that reflects a functional role of the protein. Free radicals should be implicated in the pathogenesis of proteinuria in human FSGS.

  18. Possibility of Localized Corrosion of PWR primary side materials in oxidative decontamination condition

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Jung, Jun Young; Won, Huijun; Kim, Seon Byeong; Choi, Wangkyu; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Primary circuit of a PWR (radionuclides uptake in the inner oxide layer and oxide/metal interface occurred inevitably. Therefore, it is necessary to remove the inner oxide layer as well as the outer oxide layer to achieve excellent decontamination effects. It is known that the outer oxide layers are typically composed of Fe{sub 3}O{sub 4} and NiFe{sub 2}O{sub 4}. On the other hand, the inner oxide layers are composed of Cr{sub 2}O{sub 3}, (Ni{sub 1-x}Ni{sub x})(Cr{sub 1-y}Fe{sub y}){sub 2}O{sub 4}, and FeCr{sub 2}O{sub 4}. Because of chromium in the trivalent oxidation state which is difficult to dissolve, the oxide layer has an excellent protectiveness and is hard to decontaminate. For the dissolution of chromium-rich oxide, there have been developed an alkaline permanganate (AP) or nitric permanganate (NP). A disadvantage of the AP process is the generation of a large volume of secondary waste. On the other hand, NP process is highly incompatible to the corrosion of the structure materials. In this study as a part of developing decontamination process, we investigated the corrosion behavior of the structure materials such as Inconel-600 and type 304 stainless steel in NP and AP oxidative decontamination conditions for the safe use of an oxidative phase in PWR system decontamination. The corrosion behavior was analyzed through the potential-pH equilibrium for the system of Cr-H{sub 2}O / Mn-H{sub 2}O at 90 .deg. C and potentiodynamic polarization in a typical AP and NP solution were evaluated. The AP or NP treated specimen surface was observed using an optical microscope and scanning electron microscopy (SEM) for an evaluation of the localized corrosion. The possibility of localized corrosion of PWR primary side materials under oxidative decontamination condition was evaluated using a potentiodynamic polarization technique, observation of localized corrosion morphology, and consideration of potential-pH diagrams at 90 .deg. C. From the results of these tests, we

  19. Yields of primary products from chloroethylenes in air under electron beam irradiation

    International Nuclear Information System (INIS)

    Hakoda, Teruyuki; Hashimoto, Shoji; Kojima, Takuji

    2003-01-01

    The quantitative analysis of toxic primary irradiation products was carried out for the development of the purification technology of chloroethylenes/air mixtures using an electron beam (EB). Degradation of chloroethylenes in humid air proceeded through the formation of primary products retaining a carbon-carbon (C-C) bond such as chloroacetyl chlorides and chloroacetyl aldehyde as well as that of primary products of COCl 2 and HCOCl through C-C bond cleavage. Chloroethylenes having one carbon bonded to two Cl atoms was decomposed into the primary products retaining a C-C bond prior to breaking a C-C bond. The number of Cl atoms of a chloroethylene molecule enhanced the formation ratio of primary products retaining a C-C bond. On the other hand, chloroethylene having two carbons bonded to one Cl atom was degraded thought the scission of a C-C bond predominantly C-C bond maintenance. (author)

  20. Interannual Variation in Phytoplankton Class-specific Primary Production at a Global Scale

    Science.gov (United States)

    Rousseaux, Cecile; Gregg, Watson

    2014-01-01

    Phytoplankton is responsible for over half of the net primary production on earth. The knowledge on the contribution of various phytoplankton groups to the total primary production is still poorly understood. Data from satellite observations suggest that for upwelling regions, photosynthetic rates by microplankton is higher than that of nanoplankton but that when the spatial extent is considered, the production by nanoplankton is comparable or even larger than microplankton. Here, we used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups to the total primary production. Globally, diatoms were the group that contributed the most to the total phytoplankton production (approx. 50%) followed by coccolithophores and chlorophytes. Primary production by diatoms was highest in high latitude (>45 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We assessed the effects of climate variability on the class-specific primary production using global (i.e. Multivariate El Nino Index, MEI) and 'regional' climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability. These results provide a modeling and data assimilation perspective to phytoplankton partitioning of primary production and contribute to our understanding of the dynamics of the carbon cycle in the oceans at a global scale.

  1. Free radicals and antioxidants in primary fibromyalgia: an oxidative stress disorder?

    Science.gov (United States)

    Bagis, Selda; Tamer, Lulufer; Sahin, Gunsah; Bilgin, Ramazan; Guler, Hayal; Ercan, Bahadir; Erdogan, Canan

    2005-04-01

    The role of free radicals in fibromyalgia is controversial. In this study, 85 female patients with primary fibromyalgia and 80 age-, height-, and weight-matched healthy women were evaluated for oxidant/antioxidant balance. Malondialdehyde is a toxic metabolite of lipid peroxidation used as a marker of free radical damage. Superoxide dismutase is an intracellular antioxidant enzyme and shows antioxidant capacity. Pain was assessed by visual analog scale. Tender points were assessed by palpation. Age, smoking, body mass index (BMI), and duration of disease were also recorded. Malondialdehyde levels were significantly higher and superoxide dismutase levels significantly lower in fibromyalgic patients than controls. Age, BMI, smoking, and duration of disease did not affect these parameters. We found no correlation between pain and number of tender points. In conclusion, oxidant/antioxidant balances were changed in fibromyalgia. Increased free radical levels may be responsible for the development of fibromyalgia. These findings may support the hypothesis of fibromyalgia as an oxidative disorder.

  2. Palaeoceanographic controls on geochemical characteristics of organic-rich Exshaw mudrocks: role of enhanced primary production

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M.L.; Bustin, R.M. [University of British Columbia, Vancouver (Canada). Dept. of Earth and Ocean Sciences

    1999-07-01

    Organic-rich source rocks have generally been attributed to enhanced preservation of organic matter under anoxic bottom waters. Here geochemical analysis of kerogen and whole rock samples of organic-rich (lithofacies B{sub 1}) and organic-lean (lithofacies B{sub 2}) laminated mudrocks of the Devonian-Carboniferous Exshaw Formation, Alberta, highlight the importance of primary production in governing the quantity and quality of organic matter. Lower Si/Al, K/Al, Ti/Al and quartz/clay ratios in lithofacies B{sub 2}, similar maceral types and the laminated fabric of the two lithofacies indicate that the quality and quantity of organic matter are not related to grain size, redox or organic matter source changes. High Total Organic Carbon (TOC) and Hydrogen Index (HI), low Oxidation Index (Ox.I. ratio of oxygen functional groups to aliphatic groups derived by FTIR), lighter {delta}{sup 15}N{sub tot} and heavier {delta}{sup 13}C{sub org} isotopes indicate that kerogen of lithofacies B{sub 1} accumulated during periods of high organic-carbon production and delivery of relatively fresh, labile, well-preserved organic matter to the sea floor. In contrast, low TOC, HI, high Ox.I., heavier {delta}{sup 15}N{sub tot} and lighter {delta}{sup 13}C{sub org} isotopes indicate low primary productivity and delivery, high recycling and poor preservation of organic matter during accumulation of lithofacies B{sub 2}. (author)

  3. Influence of hydrazine primary water chemistry on corrosion of fuel cladding and primary circuit components

    International Nuclear Information System (INIS)

    Iourmanov, V.; Pashevich, V.; Bogancs, J.; Tilky, P.; Schunk, J.; Pinter, T.

    1999-01-01

    Earlier at Paks 1-4 NPP standard ammonia chemistry was in use. The following station performance indicators were improved when hydrazine primary water chemistry was introduced: occupational radiation exposures of personnel; gamma-radiation dose rates near primary system components during refuelling and maintenance outages. The reduction of radiation exposures and radiation fields were achieved without significant expenses. Recent results of experimental studies allowed to explain the mechanism of hydrazine dosing influence on: corrosion rate of structure materials in primary coolant; behaviour of soluble and insoluble corrosion products including long-life corrosion-induced radionuclides in primary system during steady-state and transient operation modes; radiolytic generation of oxidising radiolytic products in core and its corrosion activity in primary system; radiation situation during refuelling and maintenance outages; foreign material degradation and removal (including corrosion active oxidant species) from primary system during abnormal events. Operational experience and experimental data have shown that hydrazine primary water chemistry allows to reduce corrosion wear and thereby makes it possible to extend the life-time of plant components in primary system. (author)

  4. Design considerations of fission and corrosion product in primary system of MONJU

    International Nuclear Information System (INIS)

    Yanagisawa, T.; Akagane, K.; Yamamoto, K.; Kawashima, K.

    1976-01-01

    General influence of fission and corrosion products in primary system on MONJU plant design is reviewed. Various research and development works are now in progress to decrease the generation rate, to remove the products more effectively and to develop the methods of evaluation the behaviour of radioactive products. The inventory and distribution of fission and corrosion products in the primary circuit of MONJU are given. The radiation levels on the primary components are estimated to be several roentgens per hour. (author)

  5. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature.

    Science.gov (United States)

    Kim, Jinho; Stahl, Shannon S

    2013-07-05

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4'- t Bu 2 bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N -oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst is the turnover-limiting step of the reaction.

  6. Trophic transfer potential of aluminium oxide nanoparticles using representative primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia)

    International Nuclear Information System (INIS)

    Pakrashi, Sunandan; Dalai, Swayamprava; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2014-01-01

    Highlights: • Trophic transfer of alumina nanoparticles using Chlorella ellipsoides and Ceriodaphnia dubia. • Subtle alterations in the feeding behaviour of the daphnids. • Disruption the energy flow through the food chain. • Transmission electron microscopy validated the disrupted feeding behaviour. - Abstract: The transfer of nanoparticles through the food chain can lead to bioaccumulation and biomagnification resulting in a long term negative impact on the ecosystem functions. The primary objective of this study was evaluation of aluminium oxide nanoparticles transfer from primary producers to primary consumers. A simple set up consisting of a primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia) was used. Here, C. ellipsoides were exposed to the varying concentrations of the nanoparticles ranging from 20 to 120 μg/mL (196 to 1176 μM) for 48 h and the infested algal cells were used as the feed to C. dubia. The bioaccumulation of the nanoparticles into the daphnids was noted and the biomagnification factors were computed. The exposure was noted to cause subtle alterations in the feeding behaviour of the daphnids. This might have long term consequences in the energy flow through the food chain. The reproductive behaviour of the daphnids remained unaffected upon exposure to nanoparticle infested algal feed. Distinct observations at ultra-structural scale using transmission electron microscopy provided visual evidences for the disrupted feeding behaviour upon exposure to nanoparticle treated algae. Internalization of nanoparticle like inclusion bodies in the intracellular space of algae was also detected. The findings were further substantiated by a detailed analysis of hydrodynamic stability, bioavailability and dissolution of ions from the nanoparticles over the exposure period. Altogether, the study brings out the first of its kind of observation of trophic transfer potential/behaviour of aluminium oxide nanoparticles and

  7. Trophic transfer potential of aluminium oxide nanoparticles using representative primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia)

    Energy Technology Data Exchange (ETDEWEB)

    Pakrashi, Sunandan; Dalai, Swayamprava; Chandrasekaran, Natarajan; Mukherjee, Amitava, E-mail: amit.mookerjea@gmail.com

    2014-07-01

    Highlights: • Trophic transfer of alumina nanoparticles using Chlorella ellipsoides and Ceriodaphnia dubia. • Subtle alterations in the feeding behaviour of the daphnids. • Disruption the energy flow through the food chain. • Transmission electron microscopy validated the disrupted feeding behaviour. - Abstract: The transfer of nanoparticles through the food chain can lead to bioaccumulation and biomagnification resulting in a long term negative impact on the ecosystem functions. The primary objective of this study was evaluation of aluminium oxide nanoparticles transfer from primary producers to primary consumers. A simple set up consisting of a primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia) was used. Here, C. ellipsoides were exposed to the varying concentrations of the nanoparticles ranging from 20 to 120 μg/mL (196 to 1176 μM) for 48 h and the infested algal cells were used as the feed to C. dubia. The bioaccumulation of the nanoparticles into the daphnids was noted and the biomagnification factors were computed. The exposure was noted to cause subtle alterations in the feeding behaviour of the daphnids. This might have long term consequences in the energy flow through the food chain. The reproductive behaviour of the daphnids remained unaffected upon exposure to nanoparticle infested algal feed. Distinct observations at ultra-structural scale using transmission electron microscopy provided visual evidences for the disrupted feeding behaviour upon exposure to nanoparticle treated algae. Internalization of nanoparticle like inclusion bodies in the intracellular space of algae was also detected. The findings were further substantiated by a detailed analysis of hydrodynamic stability, bioavailability and dissolution of ions from the nanoparticles over the exposure period. Altogether, the study brings out the first of its kind of observation of trophic transfer potential/behaviour of aluminium oxide nanoparticles and

  8. Production of petroleum bitumen by oxidation of heavy oil residue with sulfur

    Science.gov (United States)

    Tileuberdi, Ye.; Akkazyn, Ye. A.; Ongarbayev, Ye. K.; Imanbayev, Ye. I.; Mansurov, Z. A.

    2018-03-01

    In this paper production of bitumen adding elemental sulfur at oxidation of oil residue are investigated. The objects of research were distilled residue of Karazhanbas crude oil and elemental sulfur. These oil residue characterized by a low output of easy fractions and the high content of tar-asphaltene substances, therefore is the most comprehensible feedstock for producing bitumen. The sulfur is one of the oil product collected in oil extraction regions. Oxidation process of hydrocarbons carried out at temperatures from 180 up to 210 °С without addition of sulfur and with the addition of sulfur (5-10 wt. %) for 4 hours. At 200 °С oxidation of hydrocarbons with 5, 7 and 10 wt.% sulfur within 3-4 h allows receiving paving bitumen on the mark BND 200/300, BND 130/200, BN 90/130 and BN 70/30. Physical and mechanical characteristics of oxidation products with the addition of 5-7 wt. % sulfur corresponds to grade of paving bitumen BND 40/60. At the given temperature oxidized for 2.5-3 h, addition of 10 wt. % sulfur gave the products of oxidation describing on parameters of construction grades of bitumen (BN 90/10).

  9. Oxidative stability of a heme iron-fortified bakery product: Effectiveness of ascorbyl palmitate and co-spray-drying of heme iron with calcium caseinate.

    Science.gov (United States)

    Alemán, Mercedes; Bou, Ricard; Tres, Alba; Polo, Javier; Codony, Rafael; Guardiola, Francesc

    2016-04-01

    Fortification of food products with iron is a common strategy to prevent or overcome iron deficiency. However, any form of iron is a pro-oxidant and its addition will cause off-flavours and reduce a product's shelf life. A highly bioavailable heme iron ingredient was selected to fortify a chocolate cream used to fill sandwich-type cookies. Two different strategies were assessed for avoiding the heme iron catalytic effect on lipid oxidation: ascorbyl palmitate addition and co-spray-drying of heme iron with calcium caseinate. Oxidation development and sensory acceptability were monitored in the cookies over one-year of storage at room temperature in the dark. The addition of ascorbyl palmitate provided protection against oxidation and loss of tocopherols and tocotrienols during the preparation of cookies. In general, ascorbyl palmitate, either alone or in combination with the co-spray-dried heme iron, prevented primary oxidation and hexanal formation during storage. The combination of both strategies resulted in cookies that were acceptable from a sensory point of view after 1year of storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.

    Science.gov (United States)

    Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D

    2016-03-10

    Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.

  11. Daya antibakteri penambahan Propolis pada zinc oxide eugenol dan zinc oxide terhadap kuman campur gigi molar sulung non vital (The antibacterial effect of propolis additional to zinc oxide eugenol and zinc oxide on polybacteria of necrotic primary molar

    Directory of Open Access Journals (Sweden)

    Yemy Ameliana

    2014-12-01

    Full Text Available Background: Materials commonly used for root canal filling of primary teeth is zinc oxide eugenol. Eugenol has some disadvantages that can irritate the periapical tissues, has the risk of disturbing the growth and development of permanent tooth buds, and has a narrow antibacterial spectrum. Studies showed that propolis at concentration of 20 % has antibacterial activity against Staphylococcus aureus. Purpose: The purpose of this study was to examine the antimicrobial activity of root canal pastes with the additional of propolis additional to zinc oxide eugenol (ZOEP and to zinc oxide (ZOP. Methods: Polybacteria cultures collected from root canals of necrotic primary molar from 5 children patients who received root canal treatment. The bacteria were grown in BHI Broth, and inoculated into Muller Hinton Agar media. The agar plates was divided into 3 areas, and one well was made at each area. The first well filled with ZOE as a control, second well filled with ZOEP and the third well filled with ZOP, then incubated for 24 hour at 370 C. Antimicrobial activity was determined by measuring the diameters of inhibition zones of polybacteria growth. The data were statistically analyzed by independent T-test. Results: The pasta mixture of zinc oxide propolis had the strongest antibacterial activity against polybacteria of necrotic primary molar, followed by zinc oxide eugenol propolis paste, and zinc oxide eugenol paste. There were significant differences of inhibition zones between ZOE, ZOEP and ZOP (p<0,05. Conclusion: The study suggested that the additional of propolis to zinc oxide paste could increase the antimicrobial effect against root canal polybacteria of necrotic primary molar.Latar belakang: Bahan yang sering digunakan untuk pengisian saluran akar gigi sulung adalah zinc oxide eugenol. Eugenol memiliki beberapa kekurangan yaitu dapat mengiritasi jaringan periapikal, beresiko mengganggu pertumbuhan dan perkembangan benih gigi permanen pengganti

  12. Atmospheric oxidation of selected hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Benter, T.; Olariu, R.I.

    2002-02-01

    This work presents investigations on the gas-phase chemistry of phenol and the cresol isomers performed in a 1080 l quartz glass reactor in Wuppertal and in a large-volume outdoor photoreactor EUPHORE in Valencia, Spain. The studies aimed at clarifying the oxidation mechanisms of the reactions of these compounds with OH and NO{sub 3} radicals. Product investigations on the oxidation of phenol and the cresol isomers initiated by OH radicals were performed in the 1080 l quartz glass reactor with analyses by in situ FT-IR absorption spectroscopy. The primary focus of the investigations was on the determination of product yields. This work represents the first determination and quantification of 1,2-dihydroxybenzenes in the OH oxidation of phenolic compounds. Possible reaction pathways leading to the observed products have been elucidated. (orig.)

  13. Oxidative stability of Liposomes composed of docosahexaenoic acid-containing phospholipids

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Andresen, Thomas Lars; Jørgensen, Kent

    2007-01-01

    Oxidative stability of liposomes made of (Docosahexaenoic acid) DHA-containing phosphatidylcholine (PC) was examined during preparation and storage. After preparation of the liposomes, the concentration of primary (conjugated dienes) and secondary oxidation products (Thiobarbituric acid...

  14. Oxidation of trimethoprim by ferrate(VI): kinetics, products, and antibacterial activity.

    Science.gov (United States)

    Anquandah, George A K; Sharma, Virender K; Knight, D Andrew; Batchu, Sudha Rani; Gardinali, Piero R

    2011-12-15

    Kinetics, stoichiometry, and products of the oxidation of trimethoprim (TMP), one of the most commonly detected antibacterial agents in surface waters and municipal wastewaters, by ferrate(VI) (Fe(VI)) were determined. The pH dependent second-order rate constants of the reactions of Fe(VI) with TMP were examined using acid-base properties of Fe(VI) and TMP. The kinetics of reactions of diaminopyrimidine (DAP) and trimethoxytoluene (TMT) with Fe(VI) were also determined to understand the reactivity of Fe(VI) with TMP. Oxidation products of the reactions of Fe(VI) with TMP and DAP were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Reaction pathways of oxidation of TMP by Fe(VI) are proposed to demonstrate the cleavage of the TMP molecule to ultimately result in 3,4,5,-trimethoxybenzaldehyde and 2,4-dinitropyrimidine as among the final identified products. The oxidized products mixture exhibited no antibacterial activity against E. coli after complete consumption of TMP. Removal of TMP in the secondary effluent by Fe(VI) was achieved.

  15. Efficient and Highly Selective Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Bucky Nanodiamond.

    Science.gov (United States)

    Lin, Yangming; Wu, Kuang-Hsu Tim; Yu, Linhui; Heumann, Saskia; Su, Dang Sheng

    2017-09-11

    Selective oxidation of alcohols to aldehydes is widely applicable to the synthesis of various green chemicals. The poor chemoselectivity for complicated primary aldehydes over state-of-the-art metal-free or metal-based catalysts represents a major obstacle for industrial application. Bucky nanodiamond is a potential green catalyst that exhibits excellent chemoselectivity and cycling stability for the selective oxidation of primary alcohols in diverse structures (22 examples, including aromatic, substituted aromatic, unsaturated, heterocyclic, and linear chain alcohols) to their corresponding aldehydes. The results are comparable to reported transition-metal catalysts including conventional Pt/C and Ru/C catalysts for certain substrates under solvent-free conditions. The possible activation process of the oxidant and substrates by the surface oxygen groups and defect species are revealed with model catalysts, ex situ electrochemical measurements, and ex situ attenuated total reflectance. The zigzag edges of sp 2 carbon planes are shown to play a key role in these reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A Highly Practical Copper(I)/TEMPO Catalyst System for Chemoselective Aerobic Oxidation of Primary Alcohols

    Science.gov (United States)

    Hoover, Jessica M.; Stahl, Shannon S.

    2011-01-01

    Aerobic oxidation reactions have been the focus of considerable attention, but their use in mainstream organic chemistry has been constrained by limitations in their synthetic scope and by practical factors, such as the use of pure O2 as the oxidant or complex catalyst synthesis. Here, we report a new (bpy)CuI/TEMPO catalyst system that enables efficient and selective aerobic oxidation of a broad range of primary alcohols, including allylic, benzylic and aliphatic derivatives, to the corresponding aldehydes using readily available reagents, at room temperature with ambient air as the oxidant. The catalyst system is compatible with a wide range of functional groups and the high selectivity for 1° alcohols enables selective oxidation of diols that lack protecting groups. PMID:21861488

  17. Production of superconducting ceramic oxides by coprecipitation

    International Nuclear Information System (INIS)

    Bizaio, L.R.; Lima, M.A.F. de; Figueiredo Jardim, R.de; Pinheiro, E.A.; Galembeck, F.

    1988-01-01

    An alternative method for production of ceramic oxides is described. The method consist in the coprecipitation reaction of metallic ions with oxalic acid. The obtainment samples present additional phases characterized by X-rays and optical microscopy. (C.G.C.) [pt

  18. Artifacts Generated During Azoalkane Peroxy Radical Oxidative Stress Testing of Pharmaceuticals Containing Primary and Secondary Amines.

    Science.gov (United States)

    Nefliu, Marcela; Zelesky, Todd; Jansen, Patrick; Sluggett, Gregory W; Foti, Christopher; Baertschi, Steven W; Harmon, Paul A

    2015-12-01

    We report artifactual degradation of pharmaceutical compounds containing primary and secondary amines during peroxy radical-mediated oxidative stress carried out using azoalkane initiators. Two degradation products were detected when model drug compounds dissolved in methanol/water were heated to 40°C with radical initiators such as 2,2'-azobis(2-methylpropionitrile) (AIBN). The primary artifact was identified as an α-aminonitrile generated from the reaction of the amine group of the model drug with formaldehyde and hydrogen cyanide, generated as byproducts of the stress reaction. A minor artifact was generated from the reaction between the amine group and isocyanic acid, also a byproduct of the stress reaction. We report the effects of pH, initiator/drug molar ratio, and type of azoalkane initiator on the formation of these artifacts. Mass spectrometry and nuclear magnetic resonance were used for structure elucidation, whereas mechanistic studies, including stable isotope labeling experiments, cyanide analysis, and experiments exploring the effects of butylated hydroxyanisole addition, were employed to support the degradation pathways. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Hydrodeoxygenation of oxidized distilled bio-oil for the production of gasoline fuel type

    International Nuclear Information System (INIS)

    Luo, Yan; Guda, Vamshi Krishna; Hassan, El Barbary; Steele, Philip H.; Mitchell, Brian; Yu, Fei

    2016-01-01

    Highlights: • Oxidation had more influence on the yield of total hydrocarbons than distillation. • The highest total hydrocarbon yield was obtained from oxidized distilled bio-oil. • The 2nd-stage hydrocarbons were in the range of gasoline fuel boiling points. • The main products for upgrading of oxidized bio-oil were aliphatic hydrocarbons. • The main products for upgrading of non-oxidized bio-oil were aromatic hydrocarbons. - Abstract: Distilled and oxidized distilled bio-oils were subjected to 1st-stage mild hydrodeoxygenation and 2nd-stage full hydrodeoxygenation using nickel/silica–alumina catalyst as a means to enhance hydrocarbon yield. Raw bio-oil was treated for hydrodeoxygenation as a control to which to compare study treatments. Following two-stage hydrodeoxygenation, four types of hydrocarbons were mainly comprised of gasoline and had water contents, oxygen contents and total acid numbers of nearly zero and higher heating values of 44–45 MJ/kg. Total hydrocarbon yields for raw bio-oil, oxidized raw bio-oil, distilled bio-oil and oxidized distilled bio-oil were 11.6, 16.2, 12.9 and 20.5 wt.%, respectively. The results indicated that oxidation had the most influence on increasing the yield of gasoline fuel type followed by distillation. Gas chromatography/mass spectrometry characterization showed that 66.0–76.6% of aliphatic hydrocarbons and 19.5–31.6% of aromatic hydrocarbons were the main products for oxidized bio-oils while 35.5–38.7% of aliphatic hydrocarbons and 58.2–63.1% of aromatic hydrocarbons were the main products for non-oxidized bio-oils. Both aliphatic and aromatic hydrocarbons are important components for liquid transportation fuels and chemical products.

  20. GHG emissions from primary aluminum production in China: Regional disparity and policy implications

    International Nuclear Information System (INIS)

    Hao, Han; Geng, Yong; Hang, Wen

    2016-01-01

    Highlights: • GHG emissions from primary aluminum production in China were accounted. • The impact of regional disparity of power generation was considered for this study. • GHG emissions factor of China’s primary aluminum production was 16.5 t CO_2e/t Al ingot in 2013. • Total GHG emissions from China’s primary aluminum production were 421 mt CO_2e in 2013. - Abstract: China is the world-leading primary aluminum production country, which contributed to over half of global production in 2014. Primary aluminum production is power-intensive, for which power generation has substantial impact on overall Greenhouse Gas (GHG) emissions. In this study, we explore the impact of regional disparity of China’s power generation system on GHG emissions for the sector of primary aluminum production. Our analysis reveals that the national GHG emissions factor (GEF) of China’s primary aluminum production was 16.5 t CO_2e/t Al ingot in 2013, with province-level GEFs ranging from 8.2 to 21.7 t CO_2e/t Al ingot. There is a high coincidence of provinces with high aluminum productions and high GEFs. Total GHG emissions from China’s primary aluminum production were 421 mt CO_2e in 2013, approximately accounting for 4% of China’s total GHG emissions. Under the 2020 scenario, GEF shows a 13.2% reduction compared to the 2013 level, but total GHG emissions will increase to 551 mt CO_2e. Based on our analysis, we recommend that the government should further promote energy efficiency improvement, facilitate aluminum industry redistribution with low-carbon consideration, promote secondary aluminum production, and improve aluminum industry data reporting and disclosure.

  1. Interferon-γ and NF-κB mediate nitric oxide production by mesenchymal stromal cells

    International Nuclear Information System (INIS)

    Oh, I.; Ozaki, K.; Sato, K.; Meguro, A.; Tatara, R.; Hatanaka, K.; Nagai, T.; Muroi, K.; Ozawa, K.

    2007-01-01

    Mesenchymal stromal cells (MSCs) have been shown to have an immunosuppressive effect. Previously, we demonstrated that nitric oxide (NO) is one of the immunomodulatory mediators of MSCs. We herein show that primary mouse bone marrow MSCs and three cell lines that mimic MSCs suppress both differentiation and proliferation in Th1 condition, whereas the suppression in Th2 condition is mild. NO production is inversely correlated with T cell proliferation in Th1 and Th2 conditions. NO is highly induced in Th1 and minimally induced in Th2. Moreover, an inhibitor of NO synthase restores both proliferation and interferon-γ (IFN-γ) production in Th1 condition. Furthermore, an anti-IFN-γ antibody strongly inhibits NO production and an inhibitor of NF-κB reduces the level of induction of inducible NO synthase (iNOS) in MSCs. Taken together, our results suggest that NO plays a significant role in the modification of Th1 and Th2 differentiation by MSCs, and that both IFN-γ and NF-κB are critical for NO production by MSCs

  2. Product analysis for polyethylene degradation by radiation and thermal ageing

    International Nuclear Information System (INIS)

    Sugimoto, Masaki; Shimada, Akihiko; Kudoh, Hisaaki; Tamura, Kiyotoshi; Seguchi, Tadao

    2013-01-01

    The oxidation products in crosslinked polyethylene for cable insulation formed during thermal and radiation ageing were analyzed by FTIR-ATR. The products were composed of carboxylic acid, carboxylic ester, and carboxylic anhydride for all ageing conditions. The relative yields of carboxylic ester and carboxylic anhydride increased with an increase of temperature for radiation and thermal ageing. The carboxylic acid was the primary oxidation product and the ester and anhydride were secondary products formed by the thermally induced reactions of the carboxylic acids. The carboxylic acid could be produced by chain scission at any temperature followed by the oxidation of the free radicals formed in the polyethylene. The results of the analysis led to formulation of a new oxidation mechanism which was different from the chain reactions via peroxy radicals and peroxides. - Highlights: ► Products analysis of polyethylene degradation by radiation and thermal ageing. ► Components of carbonyl compounds produced in polyethylene by thermal and radiation oxidation were determined by FTIR. ► Carbonyl compounds comprised carboxylic acid, carboxylic ester, and carboxylic anhydride. ► Carboxylic acid was the primary oxidation product of chain scission at any oxidation temperature. ► Carboxylic ester and carboxylic anhydride are secondary products formed from carboxylic acid at higher temperature.

  3. Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems.

    Science.gov (United States)

    Chandran, Kartik; Stein, Lisa Y; Klotz, Martin G; van Loosdrecht, Mark C M

    2011-12-01

    Chemolithoautotrophic AOB (ammonia-oxidizing bacteria) form a crucial component in microbial nitrogen cycling in both natural and engineered systems. Under specific conditions, including transitions from anoxic to oxic conditions and/or excessive ammonia loading, and the presence of high nitrite (NO₂⁻) concentrations, these bacteria are also documented to produce nitric oxide (NO) and nitrous oxide (N₂O) gases. Essentially, ammonia oxidation in the presence of non-limiting substrate concentrations (ammonia and O₂) is associated with N₂O production. An exceptional scenario that leads to such conditions is the periodical switch between anoxic and oxic conditions, which is rather common in engineered nitrogen-removal systems. In particular, the recovery from, rather than imposition of, anoxic conditions has been demonstrated to result in N₂O production. However, applied engineering perspectives, so far, have largely ignored the contribution of nitrification to N₂O emissions in greenhouse gas inventories from wastewater-treatment plants. Recent field-scale measurements have revealed that nitrification-related N₂O emissions are generally far higher than emissions assigned to heterotrophic denitrification. In the present paper, the metabolic pathways, which could potentially contribute to NO and N₂O production by AOB have been conceptually reconstructed under conditions especially relevant to engineered nitrogen-removal systems. Taken together, the reconstructed pathways, field- and laboratory-scale results suggest that engineering designs that achieve low effluent aqueous nitrogen concentrations also minimize gaseous nitrogen emissions.

  4. Primary productivity of the Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A.; Devassy, V.P.

    The average surface and column primary productivity, chl a and particulate organic carbon, estimated at 24 stations during Feb. 1979, were respectively 5.3 mg C/m3/d and 273 mg C/m2 /d; 0.03 mg/m3 and 3.64 mg/m2; and 132mg/m3 and 4.59 g/m2...

  5. STIMULATION OF OXIDANT PRODUCTION IN ALVEOLAR MACROPHAGES BY POLLUTANT AND LATEX PARTICLES

    Science.gov (United States)

    Air pollutant dusts as well as chemically defined particles were examined for their activating effect on oxidant production (O2- and H2O2) in guinea pig alveolar macrophages (AM). Oxidant production was measured as chemiluminescence of albumin-bound luminol. All particles examine...

  6. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    Science.gov (United States)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  7. Twenty-million-year relationship between mammalian diversity and primary productivity

    Science.gov (United States)

    Fritz, Susanne A.; Eronen, Jussi T.; Schnitzler, Jan; Hof, Christian; Janis, Christine M.; Mulch, Andreas; Böhning-Gaese, Katrin; Graham, Catherine H.

    2016-01-01

    At global and regional scales, primary productivity strongly correlates with richness patterns of extant animals across space, suggesting that resource availability and climatic conditions drive patterns of diversity. However, the existence and consistency of such diversity–productivity relationships through geological history is unclear. Here we provide a comprehensive quantitative test of the diversity–productivity relationship for terrestrial large mammals through time across broad temporal and spatial scales. We combine >14,000 occurrences for 690 fossil genera through the Neogene (23–1.8 Mya) with regional estimates of primary productivity from fossil plant communities in North America and Europe. We show a significant positive diversity–productivity relationship through the 20-million-year record, providing evidence on unprecedented spatial and temporal scales that this relationship is a general pattern in the ecology and paleo-ecology of our planet. Further, we discover that genus richness today does not match the fossil relationship, suggesting that a combination of human impacts and Pleistocene climate variability has modified the 20-million-year ecological relationship by strongly reducing primary productivity and driving many mammalian species into decline or to extinction. PMID:27621451

  8. Secondary organic aerosol production from pinanediol, a semi-volatile surrogate for first-generation oxidation products of monoterpenes

    Science.gov (United States)

    Ye, Penglin; Zhao, Yunliang; Chuang, Wayne K.; Robinson, Allen L.; Donahue, Neil M.

    2018-05-01

    We have investigated the production of secondary organic aerosol (SOA) from pinanediol (PD), a precursor chosen as a semi-volatile surrogate for first-generation oxidation products of monoterpenes. Observations at the CLOUD facility at CERN have shown that oxidation of organic compounds such as PD can be an important contributor to new-particle formation. Here we focus on SOA mass yields and chemical composition from PD photo-oxidation in the CMU smog chamber. To determine the SOA mass yields from this semi-volatile precursor, we had to address partitioning of both the PD and its oxidation products to the chamber walls. After correcting for these losses, we found OA loading dependent SOA mass yields from PD oxidation that ranged between 0.1 and 0.9 for SOA concentrations between 0.02 and 20 µg m-3, these mass yields are 2-3 times larger than typical of much more volatile monoterpenes. The average carbon oxidation state measured with an aerosol mass spectrometer was around -0.7. We modeled the chamber data using a dynamical two-dimensional volatility basis set and found that a significant fraction of the SOA comprises low-volatility organic compounds that could drive new-particle formation and growth, which is consistent with the CLOUD observations.

  9. Production of Oxygen from Lunar Regolith by Molten Oxide Electrolysis

    Science.gov (United States)

    Curreri, Peter A.

    2009-01-01

    This paper describes the use of the molten oxide electrolysis (MOE) process for the extraction of oxygen for life support and propellant, and silicon and metallic elements for use in fabrication on the Moon. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis is ideal for extraction, since the electron is the only practical reducing agent. MOE has several advantages over other extraction methods. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. Alternatively, MOE requires no import of consumable reagents (e.g. fluorine and carbon) as other processes do, and does not rely on interfacing multiple processes to obtain refined products. Electrolytic processing has the advantage of selectivity of reaction in the presence of a multi-component feed. Products from lunar regolith can be extracted in sequence according to the stabilities of their oxides as expressed by the values of the free energy of oxide formation (e.g. chromium, manganese, Fe, Si, Ti, Al, magnesium, and calcium). Previous work has demonstrated the viability of producing Fe and oxygen from oxide mixtures similar in composition to lunar regolith by molten oxide electrolysis (electrowinning), also called magma electrolysis having shown electrolytic extraction of Si from regolith simulant. This paper describes recent advances in demonstrating the MOE process by a joint project with participation by NASA KSC and

  10. Dispersion strengthening of aluminium-aluminium-oxide products

    DEFF Research Database (Denmark)

    Hansen, Niels

    1970-01-01

    The true stress-true strain curves at room temperature and at 400°C were determined for various types of aluminium-aluminium-oxide products containing from 0.2 to 4.7 weight per cent of aluminium oxide. The effect of particles on the initial flow stress and the flow stress for 0.2% offset at room...... temperature and at 400°C is in agreement with Orowan's theory. The increase in flow stress at room temperature for strain values below 3 per cent was related to the plastic strain by the equation σ-σoy=k1ε 1/2, where σoy is the initial flow stress and where k1 increases for increasing volume fraction...... and decreasing particle size of the dispersed particles. A general expression for k1 was derived for the relationship between the dislocation density and the strain in dispersion-strengthened products...

  11. Production of beryllium oxide of nuclear purity from beryl

    Energy Technology Data Exchange (ETDEWEB)

    Copat, A; Sood, S P

    1984-01-01

    Production of beryllium oxide from beryl by the fluoride process was optimized in this study. Optimum results were obtained using a mixture of sodium hexafluorsilicate and sodium hexafluorferrate as flux and calcinating at 740/sup 0/C for 2 hours. The beryllium concentrate produced was further purified by crystallization as beryllium sulfate to obtain nuclear grade beryllium oxide

  12. Production of beryllium oxide of nuclear purity from beryl

    International Nuclear Information System (INIS)

    Copat, A.; Sood, S.P.

    1983-01-01

    Production of beryllium oxide from beryl by the fluoride process was optimized in this study. Optimum results were obtained using a mixture of sodium hexafluorsilicate and sodium hexafluorferrate as flux and calcinating at 740 0 C for 2 hours. The beryllium concentrate produced was further purified by crystallization as beryllium sulfate to obtain nuclear grade beryllium oxide (Author) [pt

  13. Photoelectrochemical and electrocatalytic properties of thermally oxidized copper oxide for efficient solar fuel production

    KAUST Repository

    Garcia Esparza, Angel T.; Limkrailassiri, Kevin; Leroy, Fré dé ric; Rasul, Shahid; Yu, Weili; Lin, Liwei; Takanabe, Kazuhiro

    2014-01-01

    We report the use of a facile and highly scalable synthesis process to control growth products of earth-abundant Cu-based oxides and their application in relevant photoelectrochemical and electrochemical solar fuel generation systems. Characterization of the synthesized Cu(I)/Cu(II) oxides indicates that their surface morphology and chemical composition can be simply tuned by varying two synthesis parameters (time and temperature). UV-Vis spectroscopy and impedance spectroscopy studies are performed to estimate the band structures and electronic properties of these p-type semiconductor materials. Photoelectrodes made of Cu oxides possess favorable energy band structures for production of hydrogen from water; the position of their conduction band is ≈1 V more negative than the water-reduction potential. High acceptor concentrations on the order of 1018-1019 cm-3 are obtained, producing large electric fields at the semiconductor-electrolyte interface and thereby enhancing charge separation. The highly crystalline pristine samples used as photocathodes in photoelectrochemical cells exhibit high photocurrents under AM 1.5G simulated illumination. When the samples are electrochemically reduced under galvanostatic conditions, the co-existence of the oxide with metallic Cu on the surface seems to function as an effective catalyst for the selective electrochemical reduction of CO2. © the Partner Organisations 2014.

  14. Analysis of microbial populations, denitrification, and nitrous oxide production in riparian buffers

    Science.gov (United States)

    Riparian buffers are used extensively to protect water bodies from nonpoint source nitrogen pollution. However there is relatively little information on the impact of these buffers on production of nitrous oxide (N2O). In this study, we assessed nitrous oxide production in riparian buffers of the so...

  15. Thermal Oxidation of Tail Gases from the Production of Oil-furnace Carbon Black

    Directory of Open Access Journals (Sweden)

    Bosak, Z.

    2009-01-01

    Full Text Available This paper describes the production technology of oil-furnace carbon black, as well as the selected solution for preventing the emissions of this process from contaminating the environment.The products of industrial oil-furnace carbon black production are different grades of carbon black and process tail gases. The qualitative composition of these tail gases during the production of oil-furnace carbon black are: carbon(IV oxide, carbon(II oxide, hydrogen, methane, hydrogen sulfide, nitrogen, oxygen, and water vapor.The quantitative composition and lower caloric value of process tail gases change depending on the type of feedstock used in the production, as well as the type of process. The lower caloric value of process tail gases is relatively small with values ranging between 1500 and 2300 kJ m–3.In the conventional production of oil-furnace carbon black, process tail gases purified from carbon black dust are freely released into the atmosphere untreated. In this manner, the process tail gases pollute the air in the town of Kutina, because their quantitative values are much higher than the prescribed emissions limits for hydrogen sulfide and carbon(II oxide. A logical solution for the prevention of such air pollution is combustion of the process tail gases, i. e. their thermal oxidation. For this purpose, a specially designed flare system has been developed. Consuming minimum amounts of natural gas needed for oxidation, the flare system is designed to combust low caloric process tail gases with 99 % efficiency. Thus, the toxic and flammable components of the tail gases (hydrogen sulfide, hydrogen, carbon(II oxide, methane and other trace hydrocarbons would be transformed into environmentally acceptable components (sulfur(IV oxide, water, carbon(IV oxide and nitrogen(IV oxide, which are in compliance with the emissions limit values prescribed by law.Proper operation of this flare system in the production of oil-furnace carbon black would solve

  16. The mechanism of the catalytic oxidation of hydrogen sulfide: II. Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur

    NARCIS (Netherlands)

    Steijns, M.; Derks, F.; Verloop, A.; Mars, P.

    1976-01-01

    The kinetics of the catalytic oxidation of hydrogen sulfide by molecular oxygen have been studied in the temperature range 20–250 °C. The primary reaction product is sulfur which may undergo further oxidation to SO2 at temperatures above 200 °C. From the kinetics of this autocatalytic reaction we

  17. Biodiesel production using calcium manganese oxide as catalyst and different raw materials

    International Nuclear Information System (INIS)

    Dias, Joana Maia; Conceição Machado Alvim-Ferraz, Maria; Fonseca Almeida, Manuel; Méndez Díaz, José Diego; Sánchez Polo, Manuel; Rivera Utrilla, José

    2013-01-01

    Highlights: ► Biodiesel production using a calcium manganese oxide catalyst was studied. ► The active specie was Ca 0.9 Mn 0.1 O and its deactivation occurred by hydration. ► The studied catalyst presented lower activation temperature than CaO. ► Biodiesel production and quality using different raw materials is reported. ► Compared to the conventional process, biodiesel water content improved. - Abstract: The use of heterogeneous catalysts for biodiesel production aims to simplify the production process as well as to reduce purification costs and related environmental impacts. Calcium manganese oxide was recently identified by the authors as an interesting heterogeneous catalyst for biodiesel production from animal fat; however, the difference between this and other catalysts, the catalyst activation/deactivation mechanisms, its behaviour in the synthesis using different raw materials as well as the impacts of its use on product quality remained unclear. Therefore, the present work: (i) compared biodiesel production using calcium manganese oxide and other catalysts (CaO and NaOH); (ii) studied the reasons leading to activation/deactivation of the heterogeneous catalyst; (iii) analysed biodiesel heterogeneous synthesis using calcium manganese oxide and different raw materials (lard, waste frying oil and a mixture); and (iv) evaluated raw material and catalyst impact on the product quality. Considering the use of different catalysts, the results showed that, after 8 h of reaction, product purity was similar using the different catalysts, being 92.5 wt.% using both NaOH and calcium manganese oxide and 93.8 wt.% using CaO. The active species of the heterogeneous catalysts were CaO, in the case of calcinated calcium carbonate, and Ca 0.9 Mn 0.1 O, in the case of calcinated calcium manganese oxide. Because the deactivating species were different for both catalysts, the calcium manganese oxide required lower activation temperature, which should be an advantage

  18. Benthic primary production and mineralization in a High Arctic Fjord

    DEFF Research Database (Denmark)

    Attard, Karl M.; Hancke, Kasper; Sejr, Mikael K.

    2016-01-01

    Coastal and shelf systems likely exert major influence on Arctic Ocean functioning, yet key ecosystem processes remain poorly quantified. We employed the aquatic eddy covariance (AEC) oxygen (O2) flux method to estimate benthic primary production and mineralization in a High Arctic Greenland fjord....... Seabed gross primary production (GPP) within the 40 m deep photic zone was highest at 10 m (29 mmol O2 m−2 d−1) and decreased to 5 mmol O2 m−2 d−1 at 40 m, while nighttime community respiration (CR) ranged from 11 to 25 mmol O2m−2 d−1. CR decreased to ~2.5 mmol O2m−2 d−1 at 80 m and remained constant...... with further depth. Fauna activity accounted for ~50% of the CR at depths ≤60 m but was primary production...

  19. A review of cobalt adsorption on transition metal oxides

    International Nuclear Information System (INIS)

    Walker, S.M.

    1987-04-01

    This report reviews studies of cobalt adsorption on transition metal oxides, in the context of corrosion product and radioactivity transport in PWR primary circuits. In general, uptake of cobalt increases with pH, with temperature and with decreasing ionic strength. Very little data are available under PWR primary circuit conditions, but the limited data available suggest that cobalt uptake by the zirconium oxide corrosion product layer on fuel pins may be significant compared to that deposited on fuel crud. If fuel crud levels can be reduced in future by coolant chemistry control then uptake by the zirconia will assume a greater relative role. It is planned to use an autoclave to study uptake of cobalt on oxidised Zircaloy surfaces at temperatures up to 593K under PWR primary circuit chemistry conditions. (author)

  20. On Tour... Primary Hardwood Processing, Products and Recycling Unit

    Science.gov (United States)

    Philip A. Araman; Daniel L. Schmoldt

    1995-01-01

    Housed within the Department of Wood Science and Forest Products at Virginia Polytechnic Institute is a three-person USDA Forest Service research work unit (with one vacancy) devoted to hardwood processing and recycling research. Phil Araman is the project leader of this truly unique and productive unit, titled ãPrimary Hardwood Processing, Products and Recycling.ä The...

  1. Methods to assess secondary volatile lipid oxidation products in complex food matrices

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Yesiltas, Betül

    A range of different methods are available to determine secondary volatile lipid oxidation products. These methods include e.g. spectrophotometric determination of anisidine values and TBARS as well as GC based methods for determination of specific volatile oxidation products such as pentanal...... headspace methods on the same food matrices will be presented....

  2. Evaluation of Organic Proxies for Quantifying Past Primary Productivity

    Science.gov (United States)

    Raja, M.; Rosell-Melé, A.; Galbraith, E.

    2017-12-01

    Ocean primary productivity is a key element of the marine carbon cycle. However, its quantitative reconstruction in the past relies on the use of biogeochemical models as the available proxy approaches are qualitative at best. Here, we present an approach that evaluates the use of phytoplanktonic biomarkers (i.e. chlorins and alkenones) as quantitative proxies to reconstruct past changes in marine productivity. We compare biomarkers contents in a global suite of core-top sediments to sea-surface chlorophyll-a abundance estimated by satellites over the last 20 years, and the results are compared to total organic carbon (TOC). We also assess satellite data and detect satellite limitations and biases due to the complexity of optical properties and the actual defined algorithms. Our findings show that sedimentary chlorins can be used to track total sea-surface chlorophyll-a abundance as an indicator for past primary productivity. However, degradation processes restrict the application of this proxy to concentrations below a threshold value (1µg/g). Below this threshold, chlorins are a useful tool to identify reducing conditions when used as part of a multiproxy approach to assess redox sedimentary conditions (e.g. using Re, U). This is based on the link between anoxic/disoxic conditions and the flux of organic matter from the sea-surface to the sediments. We also show that TOC is less accurate than chlorins for estimating sea-surface chlorophyll-a due to the contribution of terrigenous organic matter, and the different degradation pathways of all organic compounds that TOC includes. Alkenones concentration also relates to primary productivity, but they are constrained by different processes in different regions. In conclusion, as lons as specific constraints are taken into account, our study evaluates the use of chlorins and alkenones as quantitative proxies of past primary productivity, with more accuracy than by using TOC.

  3. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells

    International Nuclear Information System (INIS)

    Kunzmann, Andrea; Andersson, Britta; Vogt, Carmen; Feliu, Neus; Ye Fei; Gabrielsson, Susanne; Toprak, Muhammet S.; Buerki-Thurnherr, Tina; Laurent, Sophie; Vahter, Marie; Krug, Harald; Muhammed, Mamoun; Scheynius, Annika; Fadeel, Bengt

    2011-01-01

    Engineered nanoparticles are being considered for a wide range of biomedical applications, from magnetic resonance imaging to 'smart' drug delivery systems. The development of novel nanomaterials for biomedical applications must be accompanied by careful scrutiny of their biocompatibility. In this regard, particular attention should be paid to the possible interactions between nanoparticles and cells of the immune system, our primary defense system against foreign invasion. On the other hand, labeling of immune cells serves as an ideal tool for visualization, diagnosis or treatment of inflammatory processes, which requires the efficient internalization of the nanoparticles into the cells of interest. Here, we compare novel monodispersed silica-coated iron oxide nanoparticles with commercially available dextran-coated iron oxide nanoparticles. The silica-coated iron oxide nanoparticles displayed excellent magnetic properties. Furthermore, they were non-toxic to primary human monocyte-derived macrophages at all doses tested whereas dose-dependent toxicity of the smaller silica-coated nanoparticles (30 nm and 50 nm) was observed for primary monocyte-derived dendritic cells, but not for the similarly small dextran-coated iron oxide nanoparticles. No macrophage or dendritic cell secretion of pro-inflammatory cytokines was observed upon administration of nanoparticles. The silica-coated iron oxide nanoparticles were taken up to a significantly higher degree when compared to the dextran-coated nanoparticles, irrespective of size. Cellular internalization of the silica-coated nanoparticles was through an active, actin cytoskeleton-dependent process. We conclude that these novel silica-coated iron oxide nanoparticles are promising materials for medical imaging, cell tracking and other biomedical applications.

  4. Oxidation of Benzene by Persulfate in the Presence of Fe(III)- and Mn(IV)-Containing Oxides: Stoichiometric Efficiency and Transformation Products.

    Science.gov (United States)

    Liu, Haizhou; Bruton, Thomas A; Li, Wei; Buren, Jean Van; Prasse, Carsten; Doyle, Fiona M; Sedlak, David L

    2016-01-19

    Sulfate radical (SO4(•-)) is a strong, short-lived oxidant that is produced when persulfate (S2O8(2-)) reacts with transition metal oxides during in situ chemical oxidation (ISCO) of contaminated groundwater. Although engineers are aware of the ability of transition metal oxides to activate persulfate, the operation of ISCO remediation systems is hampered by an inadequate understanding of the factors that control SO4(•-) production and the overall efficiency of the process. To address these shortcomings, we assessed the stoichiometric efficiency and products of transition metal-catalyzed persulfate oxidation of benzene with pure iron- and manganese-containing minerals, clays, and aquifer solids. For most metal-containing solids, the stoichiometric efficiency, as determined by the loss of benzene relative to the loss of persulfate, approached the theoretical maximum. Rates of production of SO4(•-) or hydroxyl radical (HO(•)) generated from radical chain reactions were affected by the concentration of benzene, with rates of S2O8(2-) decomposition increasing as the benzene concentration increased. Under conditions selected to minimize the loss of initial transformation products through reaction with radicals, the production of phenol only accounted for 30%-60% of the benzene lost in the presence of O2. The remaining products included a ring-cleavage product that appeared to contain an α,β-unsaturated aldehyde functional group. In the absence of O2, the concentration of the ring-cleavage product increased relative to phenol. The formation of the ring-cleavage product warrants further studies of its toxicity and persistence in the subsurface.

  5. Mass extinctions: Ecological selectivity and primary production

    Science.gov (United States)

    Rhodes, Melissa Clark; Thayer, Charles W.

    1991-09-01

    If mass extinctions were caused by reduced primary productivity, then extinctions should be concentrated among animals with starvation-susceptible feeding modes, active lifestyles, and high-energy budgets. The stratigraphic ranges (by stage) of 424 genera of bivalves and 309 genera of articulate brachiopods suggest that there was an unusual reduction of primary productivity at the Cretaceous/Tertiary (K/T) boundary extinction. For bivalves at the K/T, there were (1) selective extinction of suspension feeders and other susceptible trophic categories relative to deposit feeders and other resistant categories, and (2) among suspension feed-ers, selective extinction of bivalves with active locomotion. During the Permian-Triassic (P/Tr) extinction and Jurassic background time, extinction rates among suspension feeders were greater for articulate brachiopods than for bivalves. But during the K/T event, extinction rates of articulates and suspension-feeding bivalves equalized, possibly because the low-energy budgets of articulates gave them an advantage when food was scarce.

  6. Proposition of primary methods for nitrogen oxides emissions reduction at coal-fired 200 MW power unit (Yugoslavia)

    International Nuclear Information System (INIS)

    Repic, B.; Mladenovic, R.; Crnomarkovic, N.

    1997-01-01

    The combustion of coal is followed by increased pollution of the environment with toxic products. Together with the generation of other pollutants, the emission of nitrogen oxides (NO x ) represents, due to its high toxicity, a great environmental risk. Appropriate measures must be taken for lowering NO x emission, both on new facilities and those already in operation. Basic technologies (primary reduction methods) of several generations, developed until now and used in practice, are presented in the paper. The technologies applicable on domestic facilities and adjusted to domestic coals have been given particular consideration. Proposition of primary methods for NO x emission reduction at coal-fired 200 MW power unit at TPS 'Nikola Tesla' is analyzed. The following methods have been considered in detail: flue gases recirculation, multi-stage combustion, low-NO x burners, additional over-fire air, multi-stage air intake into the furnace, staged fuel injection, grinding fineness increase, etc. Considerations were performed according to existing constructive characteristics of the furnace and the burners, and characteristics of used fuels, i. e. lignites from Kolubara pit. (Author)

  7. Work Environment and Productivity among Primary School Teachers ...

    African Journals Online (AJOL)

    User

    International Multidisciplinary Journal, Ethiopia. Vol. 5 (5), Serial No. ... work environment of Nigeria primary school teachers to greater productivity ... changes on the structure and curriculum, recommend and prescribed teaching methods and ...

  8. Large-scale Modeling of Nitrous Oxide Production: Issues of Representing Spatial Heterogeneity

    Science.gov (United States)

    Morris, C. K.; Knighton, J.

    2017-12-01

    Nitrous oxide is produced from the biological processes of nitrification and denitrification in terrestrial environments and contributes to the greenhouse effect that warms Earth's climate. Large scale modeling can be used to determine how global rate of nitrous oxide production and consumption will shift under future climates. However, accurate modeling of nitrification and denitrification is made difficult by highly parameterized, nonlinear equations. Here we show that the representation of spatial heterogeneity in inputs, specifically soil moisture, causes inaccuracies in estimating the average nitrous oxide production in soils. We demonstrate that when soil moisture is averaged from a spatially heterogeneous surface, net nitrous oxide production is under predicted. We apply this general result in a test of a widely-used global land surface model, the Community Land Model v4.5. The challenges presented by nonlinear controls on nitrous oxide are highlighted here to provide a wider context to the problem of extraordinary denitrification losses in CLM. We hope that these findings will inform future researchers on the possibilities for model improvement of the global nitrogen cycle.

  9. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Pahl, R.G.; Frank, S.M.

    1998-01-01

    The oxidation behavior of hydride-bearing uranium metal corrosion products from zero power physics reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2 , Ar-9%O 2 , and Ar-20%O 2 . Ignition of corrosion product samples from two moderately corroded plates was observed between 125 C and 150 C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride. (orig.)

  10. Comprehensive atmospheric modeling of reactive cyclic siloxanes and their oxidation products

    Science.gov (United States)

    Janechek, Nathan J.; Hansen, Kaj M.; Stanier, Charles O.

    2017-07-01

    Cyclic volatile methyl siloxanes (cVMSs) are important components in personal care products that transport and react in the atmosphere. Octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), and their gas-phase oxidation products have been incorporated into the Community Multiscale Air Quality (CMAQ) model. Gas-phase oxidation products, as the precursor to secondary organic aerosol from this compound class, were included to quantify the maximum potential for aerosol formation from gas-phase reactions with OH. Four 1-month periods were modeled to quantify typical concentrations, seasonal variability, spatial patterns, and vertical profiles. Typical model concentrations showed parent compounds were highly dependent on population density as cities had monthly averaged peak D5 concentrations up to 432 ng m-3. Peak oxidized D5 concentrations were significantly less, up to 9 ng m-3, and were located downwind of major urban areas. Model results were compared to available measurements and previous simulation results. Seasonal variation was analyzed and differences in seasonal influences were observed between urban and rural locations. Parent compound concentrations in urban and peri-urban locations were sensitive to transport factors, while parent compounds in rural areas and oxidized product concentrations were influenced by large-scale seasonal variability in OH.

  11. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea.

    Science.gov (United States)

    Stieglmeier, Michaela; Mooshammer, Maria; Kitzler, Barbara; Wanek, Wolfgang; Zechmeister-Boltenstern, Sophie; Richter, Andreas; Schleper, Christa

    2014-05-01

    Soil emissions are largely responsible for the increase of the potent greenhouse gas nitrous oxide (N2O) in the atmosphere and are generally attributed to the activity of nitrifying and denitrifying bacteria. However, the contribution of the recently discovered ammonia-oxidizing archaea (AOA) to N2O production from soil is unclear as is the mechanism by which they produce it. Here we investigate the potential of Nitrososphaera viennensis, the first pure culture of AOA from soil, to produce N2O and compare its activity with that of a marine AOA and an ammonia-oxidizing bacterium (AOB) from soil. N. viennensis produced N2O at a maximum yield of 0.09% N2O per molecule of nitrite under oxic growth conditions. N2O production rates of 4.6±0.6 amol N2O cell(-1) h(-1) and nitrification rates of 2.6±0.5 fmol NO2(-) cell(-1) h(-1) were in the same range as those of the AOB Nitrosospira multiformis and the marine AOA Nitrosopumilus maritimus grown under comparable conditions. In contrast to AOB, however, N2O production of the two archaeal strains did not increase when the oxygen concentration was reduced, suggesting that they are not capable of denitrification. In (15)N-labeling experiments we provide evidence that both ammonium and nitrite contribute equally via hybrid N2O formation to the N2O produced by N. viennensis under all conditions tested. Our results suggest that archaea may contribute to N2O production in terrestrial ecosystems, however, they are not capable of nitrifier-denitrification and thus do not produce increasing amounts of the greenhouse gas when oxygen becomes limiting.

  12. Chemical oxidation of unsymmetrical dimethylhydrazine transformation products in water

    Directory of Open Access Journals (Sweden)

    Madi Abilev

    2015-03-01

    Full Text Available Oxidation of unsymmetrical dimethylhydrazine (UDMH during a water treatment has several disadvantages including formation of stable toxic byproducts. Effectiveness of treatment methods in relation to UDMH transformation products is currently poorly studied. This work considers the effectiveness of chemical oxidants in respect to main metabolites of UDMH – 1-formyl-2,2-dimethylhydrazine, dimethylaminoacetontrile, N-nitrosodimethylamine and 1-methyl-1H-1,2,4-triazole. Experiments on chemical oxidation by Fenton's reagent, potassium permanganate and sodium nitrite were conducted. Quantitative determination was performed by HPLC. Oxidation products were identified by gas chromatography-mass spectrometry in combination with solid-phase microextraction. 1-Formyl-2,2-dimethylhydrazine was completely oxidized by Fenton's reagent with formation of formaldehyde N-formyl-N-methyl-hydrazone, 1,4-dihydro-1,4-dimethyl-5H-tetrazol-5-one by the action of potassium permanganate and N-methyl-N-nitro-methanamine in the presence of sodium nitrite. Oxidation of 1-formyl-2,2-dimethylhydrazine also resulted in formation of N-nitrosodimethylamine. Oxidation of dimethylaminoacetontrile proceeded with formation of hydroxyacetonitrile, dimethylformamide and 1,2,5-trimethylpyrrole. After 30 days, dimethylaminoacetontrile was not detected in the presence of Fenton’s reagent and potassium permanganate, but it’s concentration in samples with sodium nitrite was 77.3 mg/L. In the presence of Fenton’s reagent, potassium permanganate and sodium nitrite after 30 days, N-nitrosodimethylamine concentration decreased by 85, 80 and 50%, respectively. In control sample, N-nitrosodimethylamine concentration decreased by 50%, indicating that sodium nitrite has no effect of on N-nitrosodimethylamine concentration. Only Fenton's reagent allowed to reduce the concentration of 1-methyl-1H-1,2,4-triazole to 50% in 30 days. In the presence of other oxidants, 1-methyl-1H-1,2,4-triazole

  13. Production and Utilization of Core-Textbooks in Primary School ...

    African Journals Online (AJOL)

    Production and Utilization of Core-Textbooks in Primary School System: Impact of Authors and Publishers. ... These stakeholders have specific roles to play and cannot operate in isolation. The study, therefore investigated the influence of authorship and publishers on core textbook production and utilisation in Oyo State ...

  14. Seasonality of primary and secondary production in an Arctic river

    Science.gov (United States)

    Kendrick, M.; Huryn, A.; Deegan, L.

    2011-12-01

    Rivers and streams that freeze solid for 8-9 months each year provide excellent examples of the extreme seasonality of arctic habitats. The communities of organisms inhabiting these rivers must complete growth and development during summer, resulting in a rapid ramp-up and down of production over the short ice-free period. The effects of recent shifts in the timing of the spring thaw and autumn freeze-up on the duration and pattern of the period of active production are poorly understood. We are currently investigating: 1) the response of the biotic community of the Kuparuk River (Arctic Alaska) to shifts in the seasonality of the ice-free period, and 2) the community response to increases in phosphorous (P) supply anticipated as the volume of the permafrost active-layer increases in response to climate warming. Here algal production supports a 2-tier web of consumers. We tracked primary and secondary production from the spring thaw through mid-August in a reference reach and one receiving low-level P fertilization. Gross primary production/community respiration (GPP/R) ratios for both reaches were increasing through mid-July, with higher GPP/R in response to the P addition. Understanding the degree of synchrony between primary and secondary production in this Arctic river system will enhance further understanding of how shifts in seasonality affect trophic dynamics.

  15. Improving technology and setting-up a production line for high quality zinc oxide (99.5%) with a capacity of 150 ton/year by evaporation-oxidation process

    International Nuclear Information System (INIS)

    Phan Dinh Thinh; Pham Minh Tuan; Luong Manh Hung; Tran Ngoc Vuong

    2015-01-01

    This report presents the technology improvement and a production line to produce high quality zinc oxide of purity upper than 99.5% ZnO by evaporation-oxidation method. Secondary zinc metal recovered from galvanizing industrial will undergo a pre-treatment to meet all requirements of standardized feed material for evaporation-oxidation process. Zinc metal is melted at a temperature of about 650"oC, some impurities and metallic oxides are separated preliminary, then zinc metal is converted into liquid in evaporation pot. Here the temperature is maintained around 1050"oC, zinc liquid is evaporated, zinc vapor is oxidized by air in the oxidation chamber naturally by oxygen in the air and then zinc vapor is converted to zinc oxide. Zinc oxide is passed through a product classification systems and then go to a product collection of filtering bag design. The whole process of melting, evaporation, oxidation, particles classification and product collection is a continuous process. The efficiency of the transformation of zinc metal into zinc oxide can reach the value of 1.1 to 1.2. ZnO product quality is higher than 99.5%. (author)

  16. Oxidation of ciprofloxacin and enrofloxacin by ferrate(VI): Products identification, and toxicity evaluation

    International Nuclear Information System (INIS)

    Yang, Bin; Kookana, Rai S.; Williams, Mike; Ying, Guang-Guo; Du, Jun; Doan, Hai; Kumar, Anupama

    2016-01-01

    Ferrate(VI) (Fe(VI)) has been known to react with emerging organic contaminants containing electron-rich organic moieties, such as phenols, anilines, olefins, reduced sulfur and deprotonated amines. Oxidation of fluoroquinolone antibiotics, ciprofloxacin (CIP) and enrofloxacin (ENR), by Fe(VI) were investigated for their reaction products and toxicity changes as well as biodegradability of these products. Ten products were identified for both CIP and ENR reactions with Fe(VI) using a high-resolution accurate-mass Orbitrap mass analyzer. Structural changes to the CIP and ENR molecule included dealkylation, formation of alcohols and amides in piperazine ring and oxygen transfer to the double bond in quinolone structure. An enamine formation mechanism was tentatively proposed to facilitate the interpretation of CIP and ENR oxidation pathways. Toxicity evaluation using Microbial Assay for toxicity Risk Assessment (MARA) bioassay indicated that Fe(VI) oxidation products of CIP and ENR contributed negligible antibacterial potency and Fe(VI) oxidation treatment can remove the residual toxicity of CIP and ENR impacted source waters. The Fe(VI) oxidation treatment resulted in formation of relatively more biodegradable products (based on in silico assessment) than their corresponding parent compounds. The results showed that Fe(VI) has a good potential to degrade fluoroquinolone antibiotics and their antimicrobial potency in natural waters.

  17. Oxidation of ciprofloxacin and enrofloxacin by ferrate(VI): Products identification, and toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin, E-mail: Bin.Yang@csiro.au [CSIRO Land and Water, Waite Campus, PMB 2, Glen Osmond, South Australia 5064 (Australia); Kookana, Rai S.; Williams, Mike [CSIRO Land and Water, Waite Campus, PMB 2, Glen Osmond, South Australia 5064 (Australia); Ying, Guang-Guo [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Du, Jun; Doan, Hai; Kumar, Anupama [CSIRO Land and Water, Waite Campus, PMB 2, Glen Osmond, South Australia 5064 (Australia)

    2016-12-15

    Ferrate(VI) (Fe(VI)) has been known to react with emerging organic contaminants containing electron-rich organic moieties, such as phenols, anilines, olefins, reduced sulfur and deprotonated amines. Oxidation of fluoroquinolone antibiotics, ciprofloxacin (CIP) and enrofloxacin (ENR), by Fe(VI) were investigated for their reaction products and toxicity changes as well as biodegradability of these products. Ten products were identified for both CIP and ENR reactions with Fe(VI) using a high-resolution accurate-mass Orbitrap mass analyzer. Structural changes to the CIP and ENR molecule included dealkylation, formation of alcohols and amides in piperazine ring and oxygen transfer to the double bond in quinolone structure. An enamine formation mechanism was tentatively proposed to facilitate the interpretation of CIP and ENR oxidation pathways. Toxicity evaluation using Microbial Assay for toxicity Risk Assessment (MARA) bioassay indicated that Fe(VI) oxidation products of CIP and ENR contributed negligible antibacterial potency and Fe(VI) oxidation treatment can remove the residual toxicity of CIP and ENR impacted source waters. The Fe(VI) oxidation treatment resulted in formation of relatively more biodegradable products (based on in silico assessment) than their corresponding parent compounds. The results showed that Fe(VI) has a good potential to degrade fluoroquinolone antibiotics and their antimicrobial potency in natural waters.

  18. Primary Productivity, NASA Aqua MODIS, 4.4 km, Global, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from NASA Aqua MODIS Chl a SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific evaluation by professional...

  19. Hot-spots of primary productivity: An Alternative interpretation to Conventional upwelling models

    Science.gov (United States)

    van Ruth, Paul D.; Ganf, George G.; Ward, Tim M.

    2010-12-01

    The eastern Great Australian Bight (EGAB) forms part of the Southern and Indian Oceans and is an area of high ecological and economic importance. Although it supports a commercial fishery, quantitative estimates of the primary productivity underlying this industry are open to debate. Estimates range from 500 mg C m -2 day -1. Part of this variation may be due to the unique upwelling circulation of shelf waters in summer/autumn (November-April), which shares some similarities with highly productive eastern boundary current upwelling systems, but differs due to the influence of a northern boundary current, the Flinders current, and a wide continental shelf. This study examines spatial variations in primary productivity in the EGAB during the upwelling seasons of 2005 and 2006. Daily integral productivity calculated using the vertically generalised production model (VGPM) showed a high degree of spatial variation. Productivity was low (modelled with the VGPM, which uses surface measures of phytoplankton biomass to calculate productivity. Macro-nutrient concentrations could not be used to explain the difference in the low and high productivities (silica > 1 μmol L -1, nitrate/nitrite > 0.4 μmol L -1, phosphate > 0.1 μmol L -1). Mixing patterns or micro-nutrient concentrations are possible explanations for spatial variations in primary productivity in the EGAB. On a global scale, daily rates of primary productivity of the EGAB lie between the highly productive eastern boundary current upwelling systems, and less productive coastal regions of western and south eastern Australia, and the oligotrophic ocean. However, daily productivity rates in the upwelling hotspots of the EGAB rival productivities in Benguela and Humboldt currents.

  20. HANPP Collection: Human Appropriation of Net Primary Productivity (HANPP) by Country and Product

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Human Appropriation of Net Primary Productivity (HANPP) portion of the HANPP Collection represents a digital map of human appropriation of net...

  1. TiO2 assisted photo-oxidative pretreatment of wheat straw for biogas production

    DEFF Research Database (Denmark)

    Awais, Muhammad; Alvarado-Morales, Merlin; Tsapekos, Panagiotis

    Photo-catalytic oxidation is an advanced oxidation process in which a catalyst is used to absorb light energy and oxidize the target substrates such as organic polymers. A number of metal oxides and metal ions can efficiently increase substrate’s depolymerisation during the process of photo...... to be markedly higher in the pretreated samples that were exposed for 180min with 1.5 wt% and 2 wt% of TiO2 compared to the untreated wheat straw. Moreover, it was concluded that the products of lignin oxidation and also, the presence of TiO2 did not inhibit the AD process. Finally, UV treatment or TiO2 alone......-catalytic oxidation. Titanium oxide (TiO2) is a photo-catalyst that in its rutile and anatase forms presents the property to enhance the photo-oxidation of lignin-containing substrates. Due to lignin is one of the major obstacles in methane production from lignocellulosic biomass, its destruction is a necessary step...

  2. Primary productivity in nearshore waters of Thal, Maharashtra coast

    Digital Repository Service at National Institute of Oceanography (India)

    Varshney, P.K.; Nair, V.R.; Abidi, S.A.H.

    Primary productivity off Thal, Maharashtra, India was evaluated at 3 stations during Feb. 1980 to Jan. 1981. The area was quite turbid and the euphotic zone never exceeded 2.5 m. Column production ranged from 0.69 to 605.21 mg C.m/2.d/2 (av. 78.2 mg...

  3. Model-based evaluation of the role of Anammox on nitric oxide and nitrous oxide productions in membrane aerated biofilm reactor

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Smets, Barth F.; Yuan, Zhiguo

    2013-01-01

    A multispecies one-dimensional biofilm model considering nitric oxide (NO) and nitrous oxide (N2O) productions for membrane aerated biofilm reactor (MABR) that remove nitrogen autotrophically through aerobic ammonia oxidation followed by Anammox is used to study the role of Anammox activity...... on the total nitrogen (TN) removal and the productions of NO and N2O. The model is applied to evaluate how periodic aeration as a control parameter reduces NO and N2O production but maintains high TN removal in MABR. The simulation results show over 3.5% of the removed TN could be attributed to NO and N2O...... production in MABR under the operational conditions optimal for TN removal (72%). An analysis of factors governing the Anammox activity in MABR shows that enhancing Anammox activity not only helps to achieve a high level of nitrogen removal but also reduces NO and N2O productions. Comparison of aeration...

  4. Nitrous oxide emissions of energy production

    International Nuclear Information System (INIS)

    Kinnunen, L.

    1998-01-01

    The share of energy production of the world-wide total N 2 O emissions is about 10 %. In 1991 the N 2 O emissions estimated to be up to 30 %. The previous estimates based on incorrect measurements. The measurement methods have been improved during the past few years. The present measurements have shown that the share of the combustion of fossil fuels is about 2.0 % and the share biomass combustion about 5.0 % of the total. The uncertainty of the values can be few percentage units. According to the present measurements the share of natural emissions and the fertilizers of the total N 2 O emissions is up to 60 %. The formation of nitrous oxide has been studied widely in various countries in the world. In Finland nitrous oxide has been studied in the national LIEKKI research programme. As a result of the research carried out in the programme it has been possible to reduce the formation of N 2 O by using appropriate catalysts and combustion technologies. Nitrous oxide is formed e.g. in fluidized-bed combustion of nitrogen containing fuels. The combustion temperature of other combustion methods is so high that the gas disintegrates in the furnace. By the new methods the nitrous oxide emissions of the fluidized-bed combustion has been possible to reduce from 100-200 ppm to the level less than 50 ppm of the flue gas volume. The Japanese research has shown that the nitrous oxide emissions of bubbling beds vary in between 58 - 103 ppm, but when combusting paper the emissions are 6 - 29 ppm. The corresponding value of circulating fluidized beds is 40 - 153 ppm

  5. Biodegradation of photo-oxidized lignite and characterization of the products

    Science.gov (United States)

    Li, Jiantao; Liu, Xiangrong; Yue, Zilin; Zhang, Yaowen

    2018-01-01

    Biodegradation of photo-oxidized Inner Mongolia lignite by pseudomonas aeruginosa was studied and the degradation percentage reached 56.27%, while the corresponding degradation percentage of the strain degrading raw Inner Mongolia lignite is only 23.16%. The degradation products were characterized. Proximate and ultimate analyses show that the higher oxygen content increased by photo-oxidation pretreatment maybe promoted the degradation process. Ultraviolet spectroscopy (UV) analysis of the liquid product reveals that it contains unsaturated structures and aromatic rings are the main structure units. Gas chromatography-mass spectrometry (GC-MS) analysis indicates that the main components of the ethyl acetate extracts are low molecular weight organic compounds, such as ketones, acids, hydrocarbons, esters and alcohols. Infrared spectroscopy (IR) analysis of raw lignite, photo-oxidized lignite and residual lignite demonstrates that the absorption peaks of functional groups in residual lignite disappeared or weakened obviously. Scanning electron microscopy (SEM) analysis manifests that small holes appear in photo-oxidized lignite surface, which may be promote the degradation process and this is only from the physical morphology aspects, so it can be inferred from the tests and analyses results that the more important reason of the high degradation percentage is mostly that the photo-oxidation pretreatment changes the chemical structures of lignite.

  6. ARIES Oxide Production Program Annual Report - FY14

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Evelyn A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dinehart, Steven Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-01

    A summary of the major accomplishments (September), milestones, financial summary, project performance and issues facing the ARIES Oxide Production Program at the close of FY14 is presented in this Executive Summary. Annual accomplishments are summarized in the body of the report.

  7. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    Science.gov (United States)

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 30-09-2014 to 29-09-2015 4. TITLE AND SUBTITLE The Oxidation Products of Aluminum ...Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT

  8. Food waste quantification in primary production - The Nordic countries as a case study.

    Science.gov (United States)

    Hartikainen, Hanna; Mogensen, Lisbeth; Svanes, Erik; Franke, Ulrika

    2018-01-01

    Our understanding of food waste in the food supply chain has increased, but very few studies have been published on food waste in primary production. The overall aims of this study were to quantify the total amount of food waste in primary production in Finland, Sweden, Norway and Denmark, and to create a framework for how to define and quantify food waste in primary production. The quantification of food waste was based on case studies conducted in the present study and estimates published in scientific literature. The chosen scope of the study was to quantify the amount of edible food (excluding inedible parts like peels and bones) produced for human consumption that did not end up as food. As a result, the quantification was different from the existing guidelines. One of the main differences is that food that ends up as animal feed is included in the present study, whereas this is not the case for the recently launched food waste definition of the FUSIONS project. To distinguish the 'food waste' definition of the present study from the existing definitions and to avoid confusion with established usage of the term, a new term 'side flow' (SF) was introduced as a synonym for food waste in primary production. A rough estimate of the total amount of food waste in primary production in Finland, Sweden, Norway and Denmark was made using SF and 'FUSIONS Food Waste' (FFW) definitions. The SFs in primary production in the four Nordic countries were an estimated 800,000 tonnes per year with an additional 100,000 tonnes per year from the rearing phase of animals. The 900,000 tonnes per year of SF corresponds to 3.7% of the total production of 24,000,000 tonnes per year of edible primary products. When using the FFW definition proposed by the FUSIONS project, the FFW amount was estimated at 330,000 tonnes per year, or 1% of the total production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Corrosion products behaviour under VVER primary coolant conditions

    International Nuclear Information System (INIS)

    Grygar, T.; Zmitko, M.

    2002-01-01

    The aim of this work was to collect data on thermodynamic stability of Cr, Fe, and Ni oxides, mechanisms of hydrothermal corrosion of stainless steels and to compare the real observation with the theory. We found that the electrochemical potential and pH in PWR and VVER are close to the thermodynamic boundary between two fields of stable spinel type oxides. The ways of degradation of the passivating layers due to changes in water chemistry were considered and PWR and VVER systems were found to be potentially endangered by reductive attack. In certain VVER systems the characteristics of the passivating layer on steels and also concentration of soluble corrosion products seem to be in contradiction with the theoretical expectations. (author)

  10. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    Science.gov (United States)

    Totemeier, Terry C.; Pahl, Robert G.; Frank, Steven M.

    The oxidation behavior of hydride-bearing uranium metal corrosion products from Zero Power Physics Reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2, Ar-9%O 2, and Ar-20%O 2. Ignition of corrosion product samples from two moderately corroded plates was observed between 125°C and 150°C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride.

  11. Glufosinate ammonium stimulates nitric oxide production through N-methyl D-aspartate receptors in rat cerebellum.

    Science.gov (United States)

    Nakaki, T; Mishima, A; Suzuki, E; Shintani, F; Fujii, T

    2000-09-01

    Glufosinate ammonium, a structural analogue of glutamate, is an active herbicidal ingredient. The neuronal activities of this compound were investigated by use of a microdialysis system that allowed us to measure nitric oxide production in the rat cerebellum in vivo. Kainate (0.3-30 nmol/10 microliter), N-methyl-D-aspartate (NMDA) (3-300 nmol/10 microliter) and glufosinate ammonium (30-3000 nmol/10 microliter), which were administered through the microdialysis probe at a rate of 1 microliter/min for 10 min, stimulated nitric oxide production. The glufosinate ammonium-elicited increase in nitric oxide production was suppressed by an inhibitor of nitric oxide synthase and was antagonized by NMDA receptor antagonists, but not by a kainate/(+/-)-alphaamino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist. These results suggest that glufosinate ammonium stimulates nitric oxide production through NMDA receptors.

  12. Characterization of interfacial reactions and oxide films on 316L stainless steel in various simulated PWR primary water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junjie; Xiao, Qian [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Lu, Zhanpeng, E-mail: zplu@t.shu.edu.cn [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Ru, Xiangkun; Peng, Hao; Xiong, Qi; Li, Hongjuan [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China)

    2017-06-15

    The effect of water chemistry on the electrochemical and oxidizing behaviors of 316L SS was investigated in hydrogenated, deaerated and oxygenated PWR primary water at 310 °C. Water chemistry significantly influenced the electrochemical impedance spectroscopy parameters. The highest charge-transfer resistance and oxide-film resistance occurred in oxygenated water. The highest electric double-layer capacitance and constant phase element of the oxide film were in hydrogenated water. The oxide films formed in deaerated and hydrogenated environments were similar in composition but different in morphology. An oxide film with spinel outer particles and a compact and Cr-rich inner layer was formed in both hydrogenated and deaerated water. Larger and more loosely distributed outer oxide particles were formed in deaerated water. In oxygenated water, an oxide film with hematite outer particles and a porous and Ni-rich inner layer was formed. The reaction kinetics parameters obtained by electrochemical impedance spectroscopy measurements and oxidation film properties relating to the steady or quasi-steady state conditions in the time-period of measurements could provide fundamental information for understanding stress corrosion cracking processes and controlling parameters. - Highlights: •Long-term EIS measurements of 316L SS in simulated PWR primary water. •Highest charge-transfer resistance and oxide film resistance in oxygenated water. •Highest electric double-layer capacitance and oxide film CPE in hydrogenated water. •Similar compositions, different shapes of oxides in deaerated/hydrogenated water. •Inner layer Cr-rich in hydrogenated/deaerated water, Ni-rich in oxygenated water.

  13. Anthropogenic climate change has altered primary productivity in Lake Superior.

    Science.gov (United States)

    O'Beirne, M D; Werne, J P; Hecky, R E; Johnson, T C; Katsev, S; Reavie, E D

    2017-06-09

    Anthropogenic climate change has the potential to alter many facets of Earth's freshwater resources, especially lacustrine ecosystems. The effects of anthropogenic changes in Lake Superior, which is Earth's largest freshwater lake by area, are not well documented (spatially or temporally) and predicted future states in response to climate change vary. Here we show that Lake Superior experienced a slow, steady increase in production throughout the Holocene using (paleo)productivity proxies in lacustrine sediments to reconstruct past changes in primary production. Furthermore, data from the last century indicate a rapid increase in primary production, which we attribute to increasing surface water temperatures and longer seasonal stratification related to longer ice-free periods in Lake Superior due to anthropogenic climate warming. These observations demonstrate that anthropogenic effects have become a prominent influence on one of Earth's largest, most pristine lacustrine ecosystems.

  14. Arsenite Effects on Mitochondrial Bioenergetics in Human and Mouse Primary Hepatocytes Follow a Nonlinear Dose Response

    Directory of Open Access Journals (Sweden)

    Hemantkumar Chavan

    2017-01-01

    Full Text Available Arsenite is a known carcinogen and its exposure has been implicated in a variety of noncarcinogenic health concerns. Increased oxidative stress is thought to be the primary cause of arsenite toxicity and the toxic effect is thought to be linear with detrimental effects reported at all concentrations of arsenite. But the paradigm of linear dose response in arsenite toxicity is shifting. In the present study we demonstrate that arsenite effects on mitochondrial respiration in primary hepatocytes follow a nonlinear dose response. In vitro exposure of primary hepatocytes to an environmentally relevant, moderate level of arsenite results in increased oxidant production that appears to arise from changes in the expression and activity of respiratory Complex I of the mitochondrial proton circuit. In primary hepatocytes the excess oxidant production appears to elicit adaptive responses that promote resistance to oxidative stress and a propensity to increased proliferation. Taken together, these results suggest a nonlinear dose-response characteristic of arsenite with low-dose arsenite promoting adaptive responses in a process known as mitohormesis, with transient increase in ROS levels acting as transducers of arsenite-induced mitohormesis.

  15. Oxidation of Alloy 82 in nominal PWR primary water at 340 deg. C and in hydrogenated steam at 400 deg. C

    International Nuclear Information System (INIS)

    Chaumun, Elizabeth; Guerre Catherine; Duhamel, Cecilie; Sennour, Mohamed; Curieres, Ian-de

    2012-09-01

    Nickel-base weld metals are susceptible to stress corrosion cracking (SCC) in Pressurized Water Reactor (PWR) primary water. As tests in laboratory need to last, in some cases, at least several thousand hours to get stress corrosion crack initiation or propagation in simulated primary water, pure hydrogenated steam at 400 deg. C was used to perform accelerated tests. To confirm that these conditions are still representative of primary water conditions, results of oxidation tests of coupons in hydrogenated steam at 400 deg. C and in primary water at 340 deg. C have been compared. Surface oxide layers have been characterized in order to discuss the influence of the temperature and of the media (water or steam). (authors)

  16. Influence of corium oxidation on fission product release from molten pool

    International Nuclear Information System (INIS)

    Bechta, S.V.; Krushinov, E.V.; Vitol, S.A.

    2009-01-01

    Release of low-volatile fission products and core materials from molten oxidic corium was investigated in the EVAN project under the auspices of ISTC. The experiments carried out in cold crucible with induction heating and RASPLAV test facility are described. The results are discussed in terms of reactor application; in particular, pool configuration, melt oxidation kinetics, critical influence of melt surface temperature and oxidation index on the fission product release rate and aerosol particle composition. The relevance of measured high release of Sr from the molten pool for the reactor application is highlighted. Comparisons of the experimental data with those from the COLIMA CA-U3 test and the VERCORS tests, as well as with predictions from IVTANTHERMO and GEMINI/NUCLEA are set. (author)

  17. Primary production in a tropical large lake: The role of phytoplankton composition

    International Nuclear Information System (INIS)

    Darchambeau, F.; Sarmento, H.; Descy, J.-P.

    2014-01-01

    Phytoplankton biomass and primary production in tropical large lakes vary at different time scales, from seasons to centuries. We provide a dataset made of 7 consecutive years of phytoplankton biomass and production in Lake Kivu (Eastern Africa). From 2002 to 2008, bi-weekly samplings were performed in a pelagic site in order to quantify phytoplankton composition and biomass, using marker pigments determined by HPLC. Primary production rates were estimated by 96 in situ 14 C incubations. A principal component analysis showed that the main environmental gradient was linked to a seasonal variation of the phytoplankton assemblage, with a clear separation between diatoms during the dry season and cyanobacteria during the rainy season. A rather wide range of the maximum specific photosynthetic rate (P Bm ) was found, ranging between 1.15 and 7.21 g carbon g −1 chlorophyll a h −1 , and was best predicted by a regression model using phytoplankton composition as an explanatory variable. The irradiance at the onset of light saturation (I k ) ranged between 91 and 752 μE m −2 s −1 and was linearly correlated with the mean irradiance in the mixed layer. The inter-annual variability of phytoplankton biomass and production was high, ranging from 53 to 100 mg chlorophyll a m −2 (annual mean) and from 143 to 278 g carbon m −2 y −1 , respectively. The degree of seasonal mixing determined annual production, demonstrating the sensitivity of tropical lakes to climate variability. A review of primary production of other African great lakes allows situating Lake Kivu productivity in the same range as that of lakes Tanganyika and Malawi, even if mean phytoplankton biomass was higher in Lake Kivu. - Highlights: • We provide a 7-year dataset of primary production in a tropical great lake. • Specific photosynthetic rate was determined by community composition. • Annual primary production varied between 143 and 278 mg C m −2 y −1 . • Pelagic production was highly

  18. Ozone oxidation of antidepressants in wastewater –Treatment evaluation and characterization of new by-products by LC-QToFMS

    Directory of Open Access Journals (Sweden)

    Lajeunesse André

    2013-01-01

    Full Text Available Abstract Background The fate of 14 antidepressants along with their respective N-desmethyl metabolites and the anticonvulsive drug carbamazepine was examined in a primary sewage treatment plant (STP and following advanced treatments with ozone (O3. The concentrations of each pharmaceutical compound were determined in raw sewage, effluent and sewage sludge samples by LC-MS/MS analysis. The occurrence of antidepressant by-products formed in treated effluent after ozonation was also investigated. Results Current primary treatments using physical and chemical processes removed little of the compounds (mean removal efficiency: 19%. Experimental sorption coefficients (Kd of each studied compounds were also calculated. Sorption of venlafaxine, desmethylvenlafaxine, and carbamazepine on sludge was assumed to be negligible (log Kd ≤ 2, but higher sorption behavior can be expected for sertraline (log Kd ≥ 4. Ozonation treatment with O3 (5 mg/L led to a satisfactory mean removal efficiency of 88% of the compounds. Screening of the final ozone-treated effluent samples by high resolution-mass spectrometry (LC-QqToFMS did confirm the presence of related N-oxide by-products. Conclusion Effluent ozonation led to higher mean removal efficiencies than current primary treatment, and therefore represented a promising strategy for the elimination of antidepressants in urban wastewaters. However, the use of O3 produced by-products with unknown toxicity.

  19. Molecular mechanism of catalase activity change under sodium dodecyl sulfate-induced oxidative stress in the mouse primary hepatocytes.

    Science.gov (United States)

    Wang, Jing; Wang, Jiaxi; Xu, Chi; Liu, Rutao; Chen, Yadong

    2016-04-15

    Sodium dodecyl sulfate (SDS) contributes to adverse effects of organisms probably because of its ability to induce oxidative stress via changing the activity of antioxidant enzyme catalase (CAT). But the underlying molecular mechanisms still remain unclear. This study characterized the harmful effects of SDS-induced oxidative stress on the mouse primary hepatocytes as well as the structure and function of CAT molecule and investigated the underlying molecular mechanism. After 12h SDS (0.1μM to 0.2mM) exposure, no significant change was observed in CAT activity of the hepatocytes. After 0.5 and 0.8mM SDS exposure, the state of oxidative stress stimulated CAT production in the hepatocytes. The inhibition of CAT activity induced by directly interacting with SDS was unable to catch the synthesis of CAT and therefore resulted in the increased activity and elevated ROS level. Further molecular experiments showed that SDS prefers to bind to the interface with no direct effect on the active site and the structure of heme groups of CAT molecule. When the sites in the interface is saturated, SDS interacts with VAL 73, HIS 74, ASN 147 and PHE 152, the key residues of the enzyme activity, and leads to the decrease of CAT activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques

    DEFF Research Database (Denmark)

    Woods, Alan A; Linton, Stuart M; Davies, Michael Jonathan

    2003-01-01

    Oxidation is believed to play a role in atherosclerosis. Oxidized lipids, sterols and proteins have been detected in early, intermediate and advanced human lesions at elevated levels. The spectrum of oxidized side-chain products detected on proteins from homogenates of advanced human lesions has...... been interpreted in terms of the occurrence of two oxidative mechanisms, one involving oxygen-derived radicals catalysed by trace transition metal ions, and a second involving chlorinating species (HOCl or Cl2), generated by the haem enzyme myeloperoxidase (MPO). As MPO is released extracellularly...... for 83-96% of the total oxidized protein side-chain products detected in these plaques. Oxidation of matrix components extracted from healthy artery tissue, and model proteins, with reagent HOCl is shown to give rise to a similar pattern of products to those detected in advanced human lesions...

  1. Oxidative stress and production of bioactive monoterpene indole alkaloids: biotechnological implications.

    Science.gov (United States)

    Matsuura, Hélio Nitta; Rau, Mariana Ritter; Fett-Neto, Arthur Germano

    2014-02-01

    Monoterpene indole alkaloids (MIAs) encompass plant natural products with important pharmacological relevance. They include the anti-tumoral MIAs found in Catharanthus roseus and Camptotheca acuminata. The often low yields of bioactive alkaloids in plants has prompted research to identify the factors regulating MIA production. Oxidative stress is a general response associated with biotic and abiotic stresses leading to several secondary responses, including elicitation of MIA production. These changes in secondary metabolism may take place directly or via second messengers, such as Ca(2+) and reactive oxygen species (ROS). H2O2 is the main ROS that participates in MIA biosynthesis. This review analyzes the links between oxidative stress, elicitation of bioactive MIA production and their potential roles in antioxidant defense, as well as exploring the implications to developing biotechnological strategies relevant for alkaloid supply.

  2. Physical control of primary productivity on a seasonal scale in ...

    Indian Academy of Sciences (India)

    Keywords. Primary production; upwelling; winter cooling; Ekman-pumping, nutrient transport; Arabian Sea ... on the other hand, is driven by advection from the Somalia upwelling. Surface cooling and convection resulting from reduced solar radiation and increased evaporation make the northern region productive in winter.

  3. Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors

    DEFF Research Database (Denmark)

    Su, Qingxian; Ma, Chun; Domingo-Felez, Carlos

    2017-01-01

    Nitrous oxide (N2O) production from autotrophic nitrogen conversion processes, especially nitritation systems, can be significant, requires understanding and calls for mitigation. In this study, the rates and pathways of N2O production were quantified in two lab-scale sequencing batch reactors...... to maintain high nitritation efficiency and high nitritation rates at 20-26 °C over a period of ∼300 days. Even at the high nitritation efficiencies, net N2O production was low (∼2% of the oxidized ammonium). Net N2O production rates transiently increased with a rise in pH after each feeding, suggesting...... operated with intermittent feeding and demonstrating long-term and high-rate nitritation. The resulting reactor biomass was highly enriched in ammonia-oxidizing bacteria, and converted ∼93 ± 14% of the oxidized ammonium to nitrite. The low DO set-point combined with intermittent feeding was sufficient...

  4. Advanced oxidation protein products — biological marker of oxidative stress = Zaawansowane produkty utleniania białek – biologiczne markery stresu oksydacyjnego

    Directory of Open Access Journals (Sweden)

    Anna Cwynar

    2016-09-01

      ABSTRACT Advanced oxidation protein products (AOPPs are mostly derivatives of oxidatively modified albumin. The results of many experimental studies confirm intensification of oxidative modifications of proteins and an increase in concentration of advanced oxidation protein products (AOPPs in different pathological conditions, particularly those with well documented involvement of oxidative stress in their etiopathogenesis, but also those where its role is not yet well understood. Currently intensive research is carried out on the possibility of using AOPPs as useful indicators for diagnosing, prognosis and monitoring of diseases.   Keywords: advanced oxidation protein products, autoimmune disease, oxidative stress   STRESZCZENIE Zaawansowane produkty utleniania białek (AOPPs, to najczęściej pochodne zmodyfikowanej oksydacyjnie albuminy. Wyniki licznych badań doświadczalnych potwierdzają nasilenie oksydacyjnych modyfikacji białek i wzrost stężenia zaawansowanych produktów utleniania białek (AOPPs w różnych stanach patologicznych, szczególnie tych o dobrze udokumentowanym udziale stresu oksydacyjnego w ich etiopatogenezie, ale także takich, w których jego rola nie jest jeszcze dobrze poznana.. Obecnie trwają intensywne badania nad możliwością wykorzystania AOPPs, jako użytecznych wskaźników do diagnozowania, prognozowania oraz monitorowania chorób.   Słowa kluczowe: zaawansowane produkty utleniania białek, choroby autoimmunologiczne, stres oksydacyjny

  5. Primary production measurements at three reservoirs in the state of Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Jureidini, P.; Chinez, S.J.; Agudo, E.G.

    1983-01-01

    Primary production measurements were carried out at three reservoirs in the state of Sao Paulo, Barra Bonita, Paiva Castro and Ponte nova using the 14 C technique. Meanwhile, several physical and chemical parameters of these water were also evaluated, in order to find out the limnological conditions of these reservoirs. Primary production rates ranged from 7,6mg C/m 3 d at Ponte Nova, to 247,2mg C/m 3 d at Barra Bonita. There seems to be god correlation between water quality data and primary production measurements. Regarding the results, it may be stated that the Barra Bonita reservoir has reached the eutrophic level, while the other two exibit mesotrophic levels. As a way of testing the water quality data collected was used in Churchill and Nicholas model, issuing results in agreement with those of the primary production measurements. (Author) [pt

  6. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction.

    Science.gov (United States)

    Hansel, Colleen M; Zeiner, Carolyn A; Santelli, Cara M; Webb, Samuel M

    2012-07-31

    Manganese (Mn) oxides are among the most reactive minerals within the environment, where they control the bioavailability of carbon, nutrients, and numerous metals. Although the ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides is scattered throughout the bacterial and fungal domains of life, the mechanism and physiological basis for Mn(II) oxidation remains an enigma. Here, we use a combination of compound-specific chemical assays, microspectroscopy, and electron microscopy to show that a common Ascomycete filamentous fungus, Stilbella aciculosa, oxidizes Mn(II) to Mn oxides by producing extracellular superoxide during cell differentiation. The reactive Mn oxide phase birnessite and the reactive oxygen species superoxide and hydrogen peroxide are colocalized at the base of asexual reproductive structures. Mn oxide formation is not observed in the presence of superoxide scavengers (e.g., Cu) and inhibitors of NADPH oxidases (e.g., diphenylene iodonium chloride), enzymes responsible for superoxide production and cell differentiation in fungi. Considering the recent identification of Mn(II) oxidation by NADH oxidase-based superoxide production by a common marine bacterium (Roseobacter sp.), these results introduce a surprising homology between some prokaryotic and eukaryotic organisms in the mechanisms responsible for Mn(II) oxidation, where oxidation appears to be a side reaction of extracellular superoxide production. Given the versatility of superoxide as a redox reactant and the widespread ability of fungi to produce superoxide, this microbial extracellular superoxide production may play a central role in the cycling and bioavailability of metals (e.g., Hg, Fe, Mn) and carbon in natural systems.

  7. Redox-neutral rhodium-catalyzed C-H functionalization of arylamine N-oxides with diazo compounds: primary C(sp(3))-H/C(sp(2))-H activation and oxygen-atom transfer.

    Science.gov (United States)

    Zhou, Bing; Chen, Zhaoqiang; Yang, Yaxi; Ai, Wen; Tang, Huanyu; Wu, Yunxiang; Zhu, Weiliang; Li, Yuanchao

    2015-10-05

    An unprecedented rhodium(III)-catalyzed regioselective redox-neutral annulation reaction of 1-naphthylamine N-oxides with diazo compounds was developed to afford various biologically important 1H-benzo[g]indolines. This coupling reaction proceeds under mild reaction conditions and does not require external oxidants. The only by-products are dinitrogen and water. More significantly, this reaction represents the first example of dual functiaonalization of unactivated a primary C(sp(3) )H bond and C(sp(2) )H bond with diazocarbonyl compounds. DFT calculations revealed that an intermediate iminium is most likely involved in the catalytic cycle. Moreover, a rhodium(III)-catalyzed coupling of readily available tertiary aniline N-oxides with α-diazomalonates was also developed under external oxidant-free conditions to access various aminomandelic acid derivatives by an O-atom-transfer reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Multiple stressors for oceanic primary production

    KAUST Repository

    Agusti, Susana

    2015-12-15

    Marine ecosystems are increasingly exposed to stress factors of anthropogenic origin that change their function, structure and services they deliver society. Climate change occurs simultaneously with other changes in the environment acting jointly in a context of global environmental change. For oceanic phytoplankton communities, the research conducted so far has identified stress factors associated with global change and their impact individually (warming, acidification, increased UVB radiation, pollutants). But when several stressors act simultaneously interactions and responses are not equal to the sum of individual impacts, but may have synergistic effects (the effects are multiplied) or antagonistic (cancel out the effects) that hinder predictions of the vulnerability of ecosystems to global change. Here we will examine the vulnerability of oceanic primary producers to the accumulation of different stressors associated with global change. The trend for autotrophic picoplankton to increase with temperature in the ocean has led to predictions that autotrophic picoplankton abundance will increase with warming. However, it is documented a trend towards a decline in productivity, due to declined autotroph biomass and production with warming and the associated stratification in the subtropical ocean. Models predicting an increase in abundance are in contradiction with the reported decrease in productivity in several oceanic areas, and associate oligotrophication. Here we perform a global study to analyze the relationships of autotrophic picoplankton with oceanic temperature, nutrients, underwater light and ultraviolet B (UVB) radiation, and productivity. We built a model to project the future changes of autotrophic picoplankton considering multiple environmental changes in future climate scenarios for the subtropical gyres. We considered increased water temperature, and associated changes in productivity and underwater light and UVB. The model show that warming and

  9. Multiple stressors for oceanic primary production

    KAUST Repository

    Agusti, Susana; Llabré s, Moira; Lubiá n, Luis M.; Moreno-Ostos, Enrique; Estrada, Marta; Duarte, Carlos M.; Cerezo, Maria I.

    2015-01-01

    Marine ecosystems are increasingly exposed to stress factors of anthropogenic origin that change their function, structure and services they deliver society. Climate change occurs simultaneously with other changes in the environment acting jointly in a context of global environmental change. For oceanic phytoplankton communities, the research conducted so far has identified stress factors associated with global change and their impact individually (warming, acidification, increased UVB radiation, pollutants). But when several stressors act simultaneously interactions and responses are not equal to the sum of individual impacts, but may have synergistic effects (the effects are multiplied) or antagonistic (cancel out the effects) that hinder predictions of the vulnerability of ecosystems to global change. Here we will examine the vulnerability of oceanic primary producers to the accumulation of different stressors associated with global change. The trend for autotrophic picoplankton to increase with temperature in the ocean has led to predictions that autotrophic picoplankton abundance will increase with warming. However, it is documented a trend towards a decline in productivity, due to declined autotroph biomass and production with warming and the associated stratification in the subtropical ocean. Models predicting an increase in abundance are in contradiction with the reported decrease in productivity in several oceanic areas, and associate oligotrophication. Here we perform a global study to analyze the relationships of autotrophic picoplankton with oceanic temperature, nutrients, underwater light and ultraviolet B (UVB) radiation, and productivity. We built a model to project the future changes of autotrophic picoplankton considering multiple environmental changes in future climate scenarios for the subtropical gyres. We considered increased water temperature, and associated changes in productivity and underwater light and UVB. The model show that warming and

  10. Does increased Nitric Oxide production and oxidative stress due to high fat diet affect cardiac function after myocardial infarction?

    Directory of Open Access Journals (Sweden)

    Marjan Aghajani

    2017-01-01

    Full Text Available Background &Objectives: High fat (HF diet by affecting the oxidative stress and nitric oxide (NO production may lead to different effects on function of the heart after myocardial infarction (MI. In the present study we aimed to address the hypothesis that high release of NO by activated macrophages affects LV function after MI.Methods: The animals were randomly divided into four groups comprising each of 10 rats: 1 Sham; 2 MI; 3 Sham+ HF diet; 4 MI+ HF diet. Animals fed with HF diet 30 days before sham and MI surgery. MI was induced by permanent ligation of left anterior descending coronary artery (LAD. Nitric oxide (NO production of peritoneal macrophages, the concentrations of MDA in the heart and the infarct size were measured.Results: Our study indicated that HF has adverse effects on myocardium and it may increase NO production as well as oxidative stress, resulting in augmentation of infarct size.Conclusion: Our results add to our knowledge that HF diet was associated with overproduction of NO by peritoneal macrophages and ROS that lead to development of infarct size and adverse remodeling.

  11. Two-Step Electrochemical Intercalation and Oxidation of Graphite for the Mass Production of Graphene Oxide.

    Science.gov (United States)

    Cao, Jianyun; He, Pei; Mohammed, Mahdi A; Zhao, Xin; Young, Robert J; Derby, Brian; Kinloch, Ian A; Dryfe, Robert A W

    2017-12-06

    Conventional chemical oxidation routes for the production of graphene oxide (GO), such as the Hummers' method, suffer from environmental and safety issues due to their use of hazardous and explosive chemicals. These issues are addressed by electrochemical oxidation methods, but such approaches typically have a low yield due to inhomogeneous oxidation. Herein we report a two-step electrochemical intercalation and oxidation approach to produce GO on the large laboratory scale (tens of grams) comprising (1) forming a stage 1 graphite intercalation compound (GIC) in concentrated sulfuric acid and (2) oxidizing and exfoliating the stage 1 GIC in an aqueous solution of 0.1 M ammonium sulfate. This two-step approach leads to GO with a high yield (>70 wt %), good quality (>90%, monolayer), and reasonable oxygen content (17.7 at. %). Moreover, the as-produced GO can be subsequently deeply reduced (3.2 at. % oxygen; C/O ratio 30.2) to yield highly conductive (54 600 S m -1 ) reduced GO. Electrochemical capacitors based on the reduced GO showed an ultrahigh rate capability of up to 10 V s -1 due to this high conductivity.

  12. Atmospheric chemistry of 4 : 2 fluorotelomer alcohol (CF3(CF2)(3)CH2CH2OH): Products and mechanism of Cl atom initiated oxidation

    DEFF Research Database (Denmark)

    Hurley, MD; Ball, JC; Wallington, TJ

    2004-01-01

    Smog chamber/FTIR techniques were used to study the products and mechanism of the Cl atom initiated oxidation of 4:2 fluorotelomer alcohol (CF3(CF2)(3)CH2CH2OH) in 700 Torr of N-2/O-2 diluent at 296 K. CF3(CF2)(3)CH2CHO is the sole primary oxidation product. CF3(CF2)(3)CHO, CF3(CF2)(3)CH2COOH...... respectively. Using relative rate techniques, a value of k(Cl + CF3(CF2)(3)CH2CHO) = (1.84 +/- 0.30) x 10(-11) cm(3) molecule(-1) s(-1) was determined. The yield of the perfluorinated acid, CF3(CF2)(3)COOH, from the 4:2 fluorotelomer alcohol increased with the diluent gas oxygen concentration......, and CF3(CF2)(3)CH2C(O)OOH are secondary oxidation products. Further irradiation results in the formation of CF3(CF2)(3)COOH, COF2, and CF3OH. CF3(CF2)(3)CHO, CF3(CF2)(3)CH2COOH, and CF3(CF2)(3)CH2C(O)OOH are formed from CF3(CF2)(3)CH2CHO oxidation in yields of 46 27 and less than or equal to 27...

  13. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Gustavsson, Leif [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  14. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    International Nuclear Information System (INIS)

    Sathre, Roger; Gustavsson, Leif; Bergh, Johan

    2010-01-01

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO 2equiv if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  15. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission. (author)

  16. Evaluating four mathematical models for nitrous oxide production by autotrophic ammonia-oxidizing bacteria.

    Science.gov (United States)

    Ni, Bing-Jie; Yuan, Zhiguo; Chandran, Kartik; Vanrolleghem, Peter A; Murthy, Sudhir

    2013-01-01

    There is increasing evidence showing that ammonia-oxidizing bacteria (AOB) are major contributors to N(2)O emissions from wastewater treatment plants (WWTPs). Although the fundamental metabolic pathways for N(2)O production by AOB are now coming to light, the mechanisms responsible for N(2)O production by AOB in WWTP are not fully understood. Mathematical modeling provides a means for testing hypotheses related to mechanisms and triggers for N(2)O emissions in WWTP, and can then also become a tool to support the development of mitigation strategies. This study examined the ability of four mathematical model structures to describe two distinct mechanisms of N(2)O production by AOB. The production mechanisms evaluated are (1) N(2)O as the final product of nitrifier denitrification with NO(2)- as the terminal electron acceptor and (2) N(2)O as a byproduct of incomplete oxidation of hydroxylamine (NH(2)OH) to NO(2)-. The four models were compared based on their ability to predict N(2)O dynamics observed in three mixed culture studies. Short-term batch experimental data were employed to examine model assumptions related to the effects of (1) NH4+ concentration variations, (2) dissolved oxygen (DO) variations, (3) NO(2)- accumulations and (4) NH(2OH as an externally provided substrate. The modeling results demonstrate that all these models can generally describe the NH4+, NO(2)-, and NO(3)- data. However, none of these models were able to reproduce all measured N(2)O data. The results suggest that both the denitrification and NH(2)OH pathways may be involved in N(2)O production and could be kinetically linked by a competition for intracellular reducing equivalents. A unified model capturing both mechanisms and their potential interactions needs to be developed with consideration of physiological complexity. Copyright © 2012 Wiley Periodicals, Inc.

  17. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean

    KAUST Repository

    Holding, J. M.

    2015-08-31

    The Arctic Ocean is warming at two to three times the global rate1 and is perceived to be a bellwether for ocean acidification2, 3. Increased CO2 concentrations are expected to have a fertilization effect on marine autotrophs4, and higher temperatures should lead to increased rates of planktonic primary production5. Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range of 145–2,099 μatm; however, the greatest effects are observed only at lower temperatures and are constrained by nutrient and light availability to the spring period. The temperature dependence of CO2-enhanced primary production has significant implications for metabolic balance in a warmer, CO2-enriched Arctic Ocean in the future. In particular, it indicates that a twofold increase in primary production during the spring is likely in the Arctic.

  18. Global net primary production and heterotrophic respiration for 1987

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.E. Jr.; Piper, S.C.; Nemani, R. [Univ. of Montana, Missoula, MT (United States)]|[Scripps Institute of Oceanography, La Jolla, CA (United States)] [and others

    1995-06-01

    An ecosystem process model, BIOME-BGC, was parameterized and used to simulate the actual net primary production and heterotrophic respiration using daily climatic data, land cover type, leaf area index gridded to 1{degree} latitude by 1{degree} longitude grid cells for the year 1987. Global net primary production was 52 Pg C. These estimates were validated directly by two different methods. First, the grid cells were aggregated and used as inputs to a 3D atmospheric transport model, to compare CO{sub 2} station data with predictions. We simulated the intra-annual variation of atmospheric CO{sub 2} well for the northern hemisphere, but not for the southern hemisphere. Second, we calculated the net {sup 13}C uptake of vegetation, which is a function of water use efficiency. The {sup 13}C/{sup 12}C ratios agreed with measured data, indicating a strong limitation of global primary processes by the hydrologic cycle, especially precipitation. These are different from other global carbon models as we can simulate the year-to-year variation of climate, including El Nino, on the global carbon cycle.

  19. Revised mechanism of Boyland-Sims oxidation.

    Science.gov (United States)

    Marjanović, Budimir; Juranić, Ivan; Cirić-Marjanović, Gordana

    2011-04-21

    New computational insights into the mechanism of the Boyland-Sims oxidation of arylamines with peroxydisulfate (S(2)O(8)(2-)) in an alkaline aqueous solution are presented. The key role of arylnitrenium cations, in the case of primary and secondary arylamines, and arylamine dications and immonium cations, in the case of tertiary arylamines, in the formation of corresponding o-aminoaryl sulfates, as prevalent soluble products, and oligoarylamines, as prevalent insoluble products, is proposed on the basis of the AM1 and RM1 computational study of the Boyland-Sims oxidation of aniline, ring-substituted (2-methylaniline, 3-methylaniline, 4-methylaniline, 2,6-dimethylaniline, anthranilic acid, 4-aminobenzoic acid, sulfanilic acid, sulfanilamide, 4-phenylaniline, 4-bromoaniline, 3-chloroaniline, and 2-nitroaniline) and N-substituted anilines (N-methylaniline, diphenylamine, and N,N-dimethylaniline). Arylnitrenium cations and sulfate anions (SO(4)(2-)) are generated by rate-determining two-electron oxidation of primary and secondary arylamines with S(2)O(8)(2-), while arylamine dications/immonium cations and SO(4)(2-) are initially formed by two-electron oxidation of tertiary arylamines with S(2)O(8)(2-). The subsequent regioselectivity-determining reaction of arylnitrenium cations/arylamine dications/immonium cations and SO(4)(2-), within the solvent cage, is computationally found to lead to the prevalent formation of o-aminoaryl sulfates. The formation of insoluble precipitates during the Boyland-Sims oxidation of arylamines was also computationally studied.

  20. HANPP Collection: Global Patterns in Net Primary Productivity (NPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Net Primary Productivity (NPP) portion of the HANPP Collection maps the net amount of solar energy converted to plant organic matter through...

  1. Catalytic cracking of vegetable oil with metal oxides for biofuel production

    International Nuclear Information System (INIS)

    Yigezu, Zerihun Demrew; Muthukumar, Karuppan

    2014-01-01

    Highlights: • Biofuel was synthesized from vegetable oil by catalytic cracking. • Performance of six different metal catalysts was studied. • Influence of temperature and reaction time on the process was evaluated. • Methyl and ethyl esters are the major components of the biofuel synthesized. - Abstract: This study presents the utilization of metal oxides for the biofuel production from vegetable oil. The physical and chemical properties of the diesel-like products obtained, and the influence of reaction variables on the product distribution were investigated. Six different metal oxides (Co 3 O 4 , KOH, MoO 3 , NiO, V 2 O 5 , and ZnO) were employed as catalysts and the results indicated that the metal oxides are suitable for catalyzing the conversion of oil into organic liquid products (OLPs). The maximum conversion (87.6%) was obtained with V 2 O 5 at 320 °C in 40 min whereas a minimum conversion (55.1%) was obtained with MoO 3 at 390 °C in 30 min. The physical characteristics of the product obtained (density, specific gravity, higher heat value, flash point and kinematic viscosity), were in line with ASTM D6751 (B100) standards. The hydrocarbons majorly present in the product were found to be methyl and ethyl esters. Furthermore, OLPs obtained were distilled and separated into four components. The amount of light hydrocarbons, gasoline, kerosene and heavy oil like components obtained were 18.73%, 33.62%, 24.91% and 90.93%, respectively

  2. Mo-V-Te-Nb oxides as catalysts for ethene production by oxidative dehydrogenation of ethane

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, D. [Technische Universitaet Muenchen, Garching (Germany). Dept. of Chemistry and Catalysis Research Center; Meiswinkel, A.; Thaller, C.; Bock, M.; Alvarado, L. [Linde AG, Pullach (Germany)

    2013-11-01

    The availability of ethane in shale gas, as well as the interest in valorising previously underutilized carbon feedstocks, makes the oxidative dehydrogenation (ODH) of ethane an attractive alternative to the industrially established processes for production of ethylene. Mo-V-Te-Nb mixed oxide has been chosen as catalyst for the ODH reaction in view of its outstanding ability to activate alkane molecules. Catalytic test results showed that this type of catalyst can selectively oxidize ethane to ethene at moderate temperatures (350-400 C) with minor production of CO{sub x}. The catalytic performance of Mo-V-Te-Nb mixed-oxide is mainly attributable to the crystalline phase 'M1'. Rietveld analysis of the X-Ray diffractograms allowed us to quantify the amount of MoVTeNb oxide that has crystallized as M1. In this way, it was possible to find a linear correlation of the reaction rate with the abundance of M1 in the solid. Therefore, it is clear that for improving the efficiency of MoVTeNb oxide in ODH, the amount of M1 in the catalyst should be maximized. With this purpose, several MoVTeNb oxides were subject to different thermal treatments prior to the catalytic test. Structural changes in the catalyst were monitored by in-situ XRD technique. Under oxidative atmosphere, it was observed a recrystallization of M2 and possibly, amorphous oxide, into M1 phase, leading to correspondingly more active and selective catalysts (selectivities above 95 % for ethane conversions up to 40 % under industrially relevant conditions). The active site of M1 involves V species, likely with redox properties enhanced by the proximity of Mo and Te species, while the function of the crystalline structure itself is to provide the spatial configuration that allows interaction between these species. However, ethene formation rate was observed to be independent of the V content of the samples. The vanadium species exposed at the surface were studied by LEIS and by IR spectroscopy of CO

  3. Oxidized lipids enhance RANKL production by T lymphocytes: implications for lipid-induced bone loss.

    Science.gov (United States)

    Graham, Lucia S; Parhami, Farhad; Tintut, Yin; Kitchen, Christina M R; Demer, Linda L; Effros, Rita B

    2009-11-01

    Osteoporosis is a systemic disease that is associated with increased morbidity, mortality and health care costs. Whereas osteoclasts and osteoblasts are the main regulators of bone homeostasis, recent studies underscore a key role for the immune system, particularly via activation-induced T lymphocyte production of receptor activator of NFkappaB ligand (RANKL). Well-documented as a mediator of T lymphocyte/dendritic cell interactions, RANKL also stimulates the maturation and activation of bone-resorbing osteoclasts. Given that lipid oxidation products mediate inflammatory and metabolic disorders such as osteoporosis and atherosclerosis, and since oxidized lipids affect several T lymphocyte functions, we hypothesized that RANKL production might also be subject to modulation by oxidized lipids. Here, we show that short term exposure of both unstimulated and activated human T lymphocytes to minimally oxidized low density lipoprotein (LDL), but not native LDL, significantly enhances RANKL production and promotes expression of the lectin-like oxidized LDL receptor-1 (LOX-1). The effect, which is also observed with 8-iso-Prostaglandin E2, an inflammatory isoprostane produced by lipid peroxidation, is mediated via the NFkappaB pathway, and involves increased RANKL mRNA expression. The link between oxidized lipids and T lymphocytes is further reinforced by analysis of hyperlipidemic mice, in which bone loss is associated with increased RANKL mRNA in T lymphocytes and elevated RANKL serum levels. Our results suggest a novel pathway by which T lymphocytes contribute to bone changes, namely, via oxidized lipid enhancement of RANKL production. These findings may help elucidate clinical associations between cardiovascular disease and decreased bone mass, and may also lead to new immune-based approaches to osteoporosis.

  4. Primary gas- and particle-phase emissions and secondary organic aerosol production from gasoline and diesel off-road engines.

    Science.gov (United States)

    Gordon, Timothy D; Tkacik, Daniel S; Presto, Albert A; Zhang, Mang; Jathar, Shantanu H; Nguyen, Ngoc T; Massetti, John; Truong, Tin; Cicero-Fernandez, Pablo; Maddox, Christine; Rieger, Paul; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M Matti; Robinson, Allen L

    2013-12-17

    Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.

  5. Serum Antioxidative Enzymes Levels and Oxidative Stress Products in Age-Related Cataract Patients

    Directory of Open Access Journals (Sweden)

    Dong Chang

    2013-01-01

    Full Text Available Purpose. To investigate the activity of antioxidative enzymes and the products of oxidative stress in patients with age-related cataracts and compare the findings with those in healthy control subjects. Method. Sixty patients with age-related cataract and sixty healthy controls of matched age and gender were included in this study. Serum samples were obtained to detect the antioxidative enzymes of superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px, and oxidation degradation products of malondialdehyde (MDA, 4-hydroxynonenal (4-HNE, conjugated diene (CD, advanced oxidation protein products (AOPP, protein carbonyl (PC, and 8-hydroxydeoxyguanosine (8-OHdG. Results. Serum SOD, GSH-Px, and CAT activities in cataract group were significantly decreased as compared to the control subjects (P<0.05. The levels of MDA, 4-HNE, and CD in cataract patients were significantly higher than those in the control subjects (P<0.05, P<0.01. Cataract patients had higher levels of 8-OHdG, AOPP, and PC with respect to the comparative group of normal subjects (P<0.01. And there was no statistical significance in concentration of antioxidative enzymes and oxidative stress products in patients with different subtype cataract. Conclusions. Oxidative stress is an important risk factor in the development of age-related cataract, and augmentation of the antioxidant defence systems may be of benefit to prevent or delay cataractogenesis.

  6. Solvent free oxidation of primary alcohols and diols using thymine iron(III) catalyst.

    Science.gov (United States)

    Al-Hunaiti, Afnan; Niemi, Teemu; Sibaouih, Ahlam; Pihko, Petri; Leskelä, Markku; Repo, Timo

    2010-12-28

    In this study, we developed an efficient and selective iron-based catalyst system for the synthesis of ketones from secondary alcohols and carboxylic acids from primary alcohol. In situ generated iron catalyst of thymine-1-acetate (THA) and FeCl(3) under solvent-free condition exhibits high activity. As an example, 1-octanol and 2-octanol were oxidized to 1-octanoic acid and 2-octanone with 89% and 98% yields respectively.

  7. Requirement of argininosuccinate lyase for systemic nitric oxide production.

    Science.gov (United States)

    Erez, Ayelet; Nagamani, Sandesh C S; Shchelochkov, Oleg A; Premkumar, Muralidhar H; Campeau, Philippe M; Chen, Yuqing; Garg, Harsha K; Li, Li; Mian, Asad; Bertin, Terry K; Black, Jennifer O; Zeng, Heng; Tang, Yaoping; Reddy, Anilkumar K; Summar, Marshall; O'Brien, William E; Harrison, David G; Mitch, William E; Marini, Juan C; Aschner, Judy L; Bryan, Nathan S; Lee, Brendan

    2011-11-13

    Nitric oxide (NO) is crucial in diverse physiological and pathological processes. We show that a hypomorphic mouse model of argininosuccinate lyase (encoded by Asl) deficiency has a distinct phenotype of multiorgan dysfunction and NO deficiency. Loss of Asl in both humans and mice leads to reduced NO synthesis, owing to both decreased endogenous arginine synthesis and an impaired ability to use extracellular arginine for NO production. Administration of nitrite, which can be converted into NO in vivo, rescued the manifestations of NO deficiency in hypomorphic Asl mice, and a nitric oxide synthase (NOS)-independent NO donor restored NO-dependent vascular reactivity in humans with ASL deficiency. Mechanistic studies showed that ASL has a structural function in addition to its catalytic activity, by which it contributes to the formation of a multiprotein complex required for NO production. Our data demonstrate a previously unappreciated role for ASL in NOS function and NO homeostasis. Hence, ASL may serve as a target for manipulating NO production in experimental models, as well as for the treatment of NO-related diseases.

  8. Chemical oxidation of unsymmetrical dimethylhydrazine transformation products in water

    NARCIS (Netherlands)

    Abilev, M.; Kenessov, B.N.; Batyrbekova, S.; Grotenhuis, J.T.C.

    2015-01-01

    Oxidation of unsymmetrical dimethylhydrazine (UDMH) during a water treatment has several disadvantages including formation of stable toxic byproducts. Effectiveness of treatment methods in relation to UDMH transformation products is currently poorly studied. This work considers the effectiveness of

  9. Primary production in a tropical large lake: The role of phytoplankton composition

    Energy Technology Data Exchange (ETDEWEB)

    Darchambeau, F., E-mail: francois.darchambeau@ulg.ac.be [Chemical Oceanography Unit, University of Liège, Liège (Belgium); Sarmento, H., E-mail: hugo.sarmento@gmail.com [Department of Hydrobiology, Federal University of São Carlos, 13565-905 São Carlos, São Paulo (Brazil); Descy, J.-P., E-mail: jean-pierre.descy@unamur.be [Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur (Belgium)

    2014-03-01

    Phytoplankton biomass and primary production in tropical large lakes vary at different time scales, from seasons to centuries. We provide a dataset made of 7 consecutive years of phytoplankton biomass and production in Lake Kivu (Eastern Africa). From 2002 to 2008, bi-weekly samplings were performed in a pelagic site in order to quantify phytoplankton composition and biomass, using marker pigments determined by HPLC. Primary production rates were estimated by 96 in situ {sup 14}C incubations. A principal component analysis showed that the main environmental gradient was linked to a seasonal variation of the phytoplankton assemblage, with a clear separation between diatoms during the dry season and cyanobacteria during the rainy season. A rather wide range of the maximum specific photosynthetic rate (P{sub Bm}) was found, ranging between 1.15 and 7.21 g carbon g{sup −1} chlorophyll a h{sup −1}, and was best predicted by a regression model using phytoplankton composition as an explanatory variable. The irradiance at the onset of light saturation (I{sub k}) ranged between 91 and 752 μE m{sup −2} s{sup −1} and was linearly correlated with the mean irradiance in the mixed layer. The inter-annual variability of phytoplankton biomass and production was high, ranging from 53 to 100 mg chlorophyll a m{sup −2} (annual mean) and from 143 to 278 g carbon m{sup −2} y{sup −1}, respectively. The degree of seasonal mixing determined annual production, demonstrating the sensitivity of tropical lakes to climate variability. A review of primary production of other African great lakes allows situating Lake Kivu productivity in the same range as that of lakes Tanganyika and Malawi, even if mean phytoplankton biomass was higher in Lake Kivu. - Highlights: • We provide a 7-year dataset of primary production in a tropical great lake. • Specific photosynthetic rate was determined by community composition. • Annual primary production varied between 143 and 278 mg C m

  10. Towards 250 m mapping of terrestrial primary productivity over Canada

    Science.gov (United States)

    Gonsamo, A.; Chen, J. M.

    2011-12-01

    Terrestrial ecosystems are an important part of the climate and global change systems. Their role in climate change and in the global carbon cycle is yet to be well understood. Dataset from satellite earth observation, coupled with numerical models provide the unique tools for monitoring the spatial and temporal dynamics of territorial carbon cycle. The Boreal Ecosystems Productivity Simulator (BEPS) is a remote sensing based approach to quantifying the terrestrial carbon cycle by that gross and net primary productivity (GPP and NPP) and terrestrial carbon sinks and sources expressed as net ecosystem productivity (NEP). We have currently implemented a scheme to map the GPP, NPP and NEP at 250 m for first time over Canada using BEPS model. This is supplemented by improved mapping of land cover and leaf area index (LAI) at 250 m over Canada from MODIS satellite dataset. The results from BEPS are compared with MODIS GPP product and further evaluated with estimated LAI from various sources to evaluate if the results capture the trend in amount of photosynthetic biomass distributions. Final evaluation will be to validate both BEPS and MODIS primary productivity estimates over the Fluxnet sites over Canada. The primary evaluation indicate that BEPS GPP estimates capture the over storey LAI variations over Canada very well compared to MODIS GPP estimates. There is a large offset of MODIS GPP, over-estimating the lower GPP value compared to BEPS GPP estimates. These variations will further be validated based on the measured values from the Fluxnet tower measurements over Canadian. The high resolution GPP (NPP) products at 250 m will further be used to scale the outputs between different ecosystem productivity models, in our case the Canadian carbon budget model of Canadian forest sector CBM-CFS) and the Integrated Terrestrial Ecosystem Carbon model (InTEC).

  11. Fission product behaviour in the primary circuit of an HTR

    International Nuclear Information System (INIS)

    Decken, C.B. von der; Iniotakis, N.

    1981-01-01

    The knowledge of fission product behaviour in the primary circuit of a High Temperature Reactor (HTR) is an essential requirement for the estimations of the availability of the reactor plant in normal operation, of the hazards to personnel during inspection and repair and of the potential danger to the environment from severe accidents. On the basis of the theoretical and experimental results obtained at the ''Institute for Reactor Components'' of the KFA Juelich /1/,/2/ the transport- and deposition behaviour of the fission- and activation products in the primary circuit of the PNP-500 reference plant has been investigated thoroughly. Special work had been done to quantify the uncertainties of the investigations and to calculate or estimate the dose rate level at different components of the primary cooling circuit. The contamination and the dose rate level in the inspection gap in the reactor pressure vessel is discussed in detail. For these investigations in particular the surface structure and the composition of the material, the chemical state of the fission products in the cooling gas, the composition of the cooling gas and the influence of dust on the transport- and deposition behaviour of the fission products have been taken into account. The investigations have been limited to the nuclides Ag-110m; Cs-134 and Cs-137

  12. Microarc Oxidation of Product Surfaces without Using a Bath

    Directory of Open Access Journals (Sweden)

    V. K. Shatalov

    2015-01-01

    Full Text Available While using an electrochemical method to cover the large-sized work-pieces, units, and products up to 6 м3 by protective coating, there is a certain difficulty to apply traditional anodizing techniques in a plating vat, and it is necessary to find various processing techniques.To use the existing micro-arc oxide coating (MOC methods for work-pieces of various forms and sizes in a plating vat is complicated in case it is required to provide oxide layers in separate places rather than over entire surface of a work-piece. The challenge is to treat flat surfaces in various directions, external and internal surfaces of rotation bodies, profiled surfaces, intersections, closed and through holes, pipes, as well as spline and thread openings for ensuring anti-seize properties in individual or small-scale production to meet technical requirements and operational properties of products.A design of tools to provide MOC-process of all possible surfaces of various engineering box-type products depends on many factors and can be considerably different even when processing the surfaces of the same forms. An attachment to be used is fixed directly on a large-sized design (a work-piece, a product or fastened in the special tool. The features of technological process, design shape, and arrangement of the processed surfaces define a fastening method of the attachment. Therefore it is necessary to pay much attention to a choice of the processing pattern and a design of tools.The Kaluga-branch of Bauman Moscow State Technical University is an original proposer of methods to form MOC-coatings on the separate surfaces of large-sized work-pieces using the moved and stationary electrodes to solve the above listed tasks.The following results of work will have an impact on development of the offered processing methods and their early implementation in real production:1. To provide oxide coatings on the surfaces of large-sized products or assemblies in a single or small

  13. Production and consumption of nitric oxide by three methanotrophic bacteria.

    Science.gov (United States)

    Ren, T; Roy, R; Knowles, R

    2000-09-01

    We studied nitrogen oxide production and consumption by methanotrophs Methylobacter luteus (group I), Methylosinus trichosporium OB3b (group II), and an isolate from a hardwood swamp soil, here identified by 16S ribosomal DNA sequencing as Methylobacter sp. strain T20 (group I). All could consume nitric oxide (nitrogen monoxide, NO), and produce small amounts of nitrous oxide (N(2)O). Only Methylobacter strain T20 produced large amounts of NO (>250 parts per million by volume [ppmv] in the headspace) at specific activities of up to 2.0 x 10(-17) mol of NO cell(-1) day(-1), mostly after a culture became O(2) limited. Production of NO by strain T20 occurred mostly in nitrate-containing medium under anaerobic or nearly anaerobic conditions, was inhibited by chlorate, tungstate, and O(2), and required CH(4). Denitrification (methanol-supported N(2)O production from nitrate in the presence of acetylene) could not be detected and thus did not appear to be involved in the production of NO. Furthermore, cd(1) and Cu nitrite reductases, NO reductase, and N(2)O reductase could not be detected by PCR amplification of the nirS, nirK, norB, and nosZ genes, respectively. M. luteus and M. trichosporium produced some NO in ammonium-containing medium under aerobic conditions, likely as a result of methanotrophic nitrification and chemical decomposition of nitrite. For Methylobacter strain T20, arginine did not stimulate NO production under aerobiosis, suggesting that NO synthase was not involved. We conclude that strain T20 causes assimilatory reduction of nitrate to nitrite, which then decomposes chemically to NO. The production of NO by methanotrophs such as Methylobacter strain T20 could be of ecological significance in habitats near aerobic-anaerobic interfaces where fluctuating O(2) and nitrate availability occur.

  14. Denitrification: an important pathway for nitrous oxide production in tropical mangrove sediments (Goa, India).

    Science.gov (United States)

    Fernandes, Sheryl Oliveira; Bharathi, P A Loka; Bonin, Patricia C; Michotey, Valérie D

    2010-01-01

    Net nitrous oxide production and denitrification activity were measured in two mangrove ecosystems of Goa, India. The relatively pristine site Tuvem was compared to Divar, which is prone to high nutrient input. Stratified sampling at 2-cm intervals within the 0- to 10-cm depth range showed that N2O production at both the locations decreased with depth. Elevated denitrification activity at Divar resulted in maximum production of up to 1.95 nmol N2O-N g(-1) h(-1) at 2 to 4 cm, which was three times higher than at Tuvem. Detailed investigations to understand the major pathway contributing to N2O production performed at Tuvem showed that incomplete denitrification was responsible for up to 43 to 93% of N2O production. Nitrous oxide production rates closely correlated to nitrite concentration (n = 15; r = -0.47; p production. Nitrous oxide production through nitrification was below detection, affirming that denitrification is the major pathway responsible for production of the greenhouse gas. Net N2O production in these mangrove systems are comparatively higher than those reported from other natural estuarine sediments and therefore warrant mitigation measures.

  15. Kinetics and mechanism of the selective oxidation of primary aliphatic alcohols under phase transfer catalysis

    Directory of Open Access Journals (Sweden)

    K. Bijudas

    2014-03-01

    Full Text Available Kinetics of the oxidation of primary aliphatic alcohols has been carried out using phase transferred monochromate in benzene. Tetrabutylammonium bromide (TBAB and tetrabutylphosphonium bromide (TBPB are used as phase transfer catalysts (PT catalyst. The reaction shows first order dependence on both [alcohol] and [monochromate ion]. The oxidation leads to the formation of corresponding aldehyde and no traces of carboxylic acid has been detected. The reaction mixture failed to induce the polymerization of added acrylonitrile which rules out the presence radical intermediates in the reaction. Various thermodynamic parameters have been evaluated and a suitable mechanism has been proposed.

  16. Responses of primary production, leaf litter decomposition and associated communities to stream eutrophication

    International Nuclear Information System (INIS)

    Dunck, Bárbara; Lima-Fernandes, Eva; Cássio, Fernanda; Cunha, Ana; Rodrigues, Liliana; Pascoal, Cláudia

    2015-01-01

    We assessed the eutrophication effects on leaf litter decomposition and primary production, and on periphytic algae, fungi and invertebrates. According to the subsidy-stress model, we expected that when algae and decomposers were nutrient limited, their activity and diversity would increase at moderate levels of nutrient enrichment, but decrease at high levels of nutrients, because eutrophication would lead to the presence of other stressors and overwhelm the subsidy effect. Chestnut leaves (Castanea sativa Mill) were enclosed in mesh bags and immersed in five streams of the Ave River basin (northwest Portugal) to assess leaf decomposition and colonization by invertebrates and fungi. In parallel, polyethylene slides were attached to the mesh bags to allow colonization by algae and to assess primary production. Communities of periphytic algae and decomposers discriminated the streams according to the trophic state. Primary production decomposition and biodiversity were lower in streams at both ends of the trophic gradient. - Highlights: • Algae and decomposers discriminated the streams according to the eutrophication level. • Primary production and litter decomposition are stimulated by moderate eutrophication. • Biodiversity and process rates were reduced in highly eutrophic streams. • Subsidy-stress model explained biodiversity and process rates under eutrophication. - Rates of leaf litter decomposition, primary production and richness of periphytic algae, fungi and invertebrates were lower in streams at both ends of the trophic gradient

  17. Molecular biology in studies of oceanic primary production

    International Nuclear Information System (INIS)

    LaRoche, J.; Falkowski, P.G.; Geider, R.

    1992-01-01

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies

  18. Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors.

    Science.gov (United States)

    Su, Qingxian; Ma, Chun; Domingo-Félez, Carlos; Kiil, Anne Sofie; Thamdrup, Bo; Jensen, Marlene Mark; Smets, Barth F

    2017-10-15

    Nitrous oxide (N 2 O) production from autotrophic nitrogen conversion processes, especially nitritation systems, can be significant, requires understanding and calls for mitigation. In this study, the rates and pathways of N 2 O production were quantified in two lab-scale sequencing batch reactors operated with intermittent feeding and demonstrating long-term and high-rate nitritation. The resulting reactor biomass was highly enriched in ammonia-oxidizing bacteria, and converted ∼93 ± 14% of the oxidized ammonium to nitrite. The low DO set-point combined with intermittent feeding was sufficient to maintain high nitritation efficiency and high nitritation rates at 20-26 °C over a period of ∼300 days. Even at the high nitritation efficiencies, net N 2 O production was low (∼2% of the oxidized ammonium). Net N 2 O production rates transiently increased with a rise in pH after each feeding, suggesting a potential effect of pH on N 2 O production. In situ application of 15 N labeled substrates revealed nitrifier denitrification as the dominant pathway of N 2 O production. Our study highlights operational conditions that minimize N 2 O emission from two-stage autotrophic nitrogen removal systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  20. Oxidation products are increased in patients affected by non-segmental generalized vitiligo.

    Science.gov (United States)

    Vaccaro, Mario; Bagnato, Gianluca; Cristani, Mariateresa; Borgia, Francesco; Spatari, Giovanna; Tigano, Valeria; Saja, Antonina; Guarneri, Fabrizio; Cannavò, Serafinella P; Gangemi, Sebastiano

    2017-08-01

    Several lines of evidence support the relevance of reactive oxygen species (ROS) in vitiligo, but the exact role of glycation and oxidation of macromolecules needs to be better addressed. To investigate the involvement of advanced oxidation protein products (AOPPs) and advanced glycation end-products (AGEs), we performed a case-control association study by spectrofluorimetry and spectrophotometry, in 47 patients with non-segmental generalized vitiligo and 47 age- and sex-matched controls. Significantly higher levels of both AOPPs (p vitiligo patients compared to healthy controls. In vitiligo patients, AGEs and AOPPs serum levels were directly associated with extension, duration of vitiligo, and disease activity. ROS, and in particular AGEs and AOPPs, could represent one of the main biomarkers to assess the onset and progression of vitiligo, due to the potential role as direct inducers of cell damage and also as autoimmunity triggers. Further longitudinal studies involving larger cohorts of patients are required to elucidate the role of oxidation products in the pathogenesis of vitiligo.

  1. Nitrous Oxide Production in a Granule-based Partial Nitritation Reactor: A Model-based Evaluation.

    Science.gov (United States)

    Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie

    2017-04-03

    Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N 2 O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N 2 O model, which incorporated two N 2 O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH 2 OH) oxidation). The two-pathway model was used to describe N 2 O production from a granule-based partial nitritation (PN) reactor and provide insights into the N 2 O distribution inside granules. The model was evaluated by comparing simulation results with N 2 O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N 2 O dynamics and provided useful information about the shift of N 2 O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N 2 O production. The results further revealed a linear relationship between N 2 O production and ammonia oxidation rate (AOR) (R 2  = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N 2 O production by causing a change in AOR.

  2. UV radiation and primary production in the Antarctic waters

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Krishnakumari, L.; Bhattathiri, P.M.A.; Chandramohan, D.

    at 683 nm), scalar irradiance (photosynthetically active radiation (PAR), computed primary production (pp), diffuse attenuation coefficient, and UVB (308 and 320 nm) and UVA (340 and 380 nm) radiation and ocean temperature all measured as a function...

  3. Simple proxies for estimating the concentrations of monoterpenes and their oxidation products at a boreal forest site

    Directory of Open Access Journals (Sweden)

    J. Kontkanen

    2016-10-01

    Full Text Available The oxidation products of monoterpenes likely have a crucial role in the formation and growth of aerosol particles in boreal forests. However, the continuous measurements of monoterpene concentrations are usually not available on decadal timescales, and the direct measurements of the concentrations of monoterpene oxidation product have so far been scarce. In this study we developed proxies for the concentrations of monoterpenes and their oxidation products at a boreal forest site in Hyytiälä, southern Finland. For deriving the proxies we used the monoterpene concentration measured with a proton transfer reaction mass spectrometer (PTR-MS during 2006–2013. Our proxies for the monoterpene concentration take into account the temperature-controlled emissions from the forest ecosystem, the dilution caused by the mixing within the boundary layer and different oxidation processes. All the versions of our proxies captured the seasonal variation of the monoterpene concentration, the typical proxy-to-measurements ratios being between 0.8 and 1.3 in summer and between 0.6 and 2.6 in winter. In addition, the proxies were able to describe the diurnal variation of the monoterpene concentration rather well, especially in summer months. By utilizing one of the proxies, we calculated the concentration of oxidation products of monoterpenes by considering their production in the oxidation and their loss due to condensation on aerosol particles. The concentration of oxidation products was found to have a clear seasonal cycle, with a maximum in summer and a minimum in winter. The concentration of oxidation products was lowest in the morning or around noon and highest in the evening. In the future, our proxies for the monoterpene concentration and their oxidation products can be used, for example, in the analysis of new particle formation and growth in boreal environments.

  4. Regulation of primary productivity rate in the equatorial Pacific

    International Nuclear Information System (INIS)

    Barber, R.T.; Chavez, F.P.

    1991-01-01

    Analysis of the Chl-specific rate of primary productivity (P B ) as a function of subsurface nutrient concentration at >300 equatorial stations provides an answer to the question: What processes regulate primary productivity rate in the high-nutrient, low-chlorophyll waters of the equatorial Pacific? In the western Pacific where there is a gradient in 60-m [NO 3 ] from 0 to ∼12 μM, the productivity rate is a linear function of nutrient concentration; in the eastern Pacific where the gradient is from 12 to 28 μM, the productivity rate is independent of nutrient concentration and limited to ∼36 mg C(mg Chl) -1 d -1 , or a mean euphotic zone C-specific growth rate (μ) of 0.47 d -1 . However, rates downstream of the Galapagos Islands are not limited; they are 46.4 mg C(mg Chl) -1 d -1 and μ = 0.57 d -1 , very close to the predicted nutrient-regulated rates in the absence of other limitation. This pattern of rate regulation can be accounted for by a combination of eolian Fe, subsurface nutrients, and sedimentary Fe derived from the Galapagos platform. In the low-nutrient western Pacific the eolian supply of Fe is adequate to allow productivity rate to be set by subsurface nutrient concentration. In the nutrient-rich easter equatorial region eolian Fe is inadequate to support productivity rates proportional to the higher nutrient concentrations, so in this region eolian Fe is rate limiting. Around the Galapagos Islands productivity rates reach levels consistent with nutrient concentrations; sedimentary Fe from the Galapagos platform seems adequate to support increased nutrient-regulated productivity rates in this region

  5. Aqueous-phase oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Product identification from methyl jasmonate and methyl salicylate oxidation

    Science.gov (United States)

    Hansel, Amie K.; Ehrenhauser, Franz S.; Richards-Henderson, Nicole K.; Anastasio, Cort; Valsaraj, Kalliat T.

    2015-02-01

    Green leaf volatiles (GLVs) are a group of biogenic volatile organic compounds (BVOCs) released into the atmosphere by vegetation. BVOCs produce secondary organic aerosol (SOA) via gas-phase reactions, but little is known of their aqueous-phase oxidation as a source of SOA. GLVs can partition into atmospheric water phases, e.g., fog, mist, dew or rain, and be oxidized by hydroxyl radicals (˙OH). These reactions in the liquid phase also lead to products that have higher molecular weights, increased polarity, and lower vapor pressures, ultimately forming SOA after evaporation of the droplet. To examine this process, we investigated the aqueous, ˙OH-mediated oxidation of methyl jasmonate (MeJa) and methyl salicylate (MeSa), two GLVs that produce aqueous-phase SOA. High performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to monitor product formation. The oxidation products identified exhibit higher molecular mass than their parent GLV due to either dimerization or the addition of oxygen and hydroxyl functional groups. The proposed structures of potential products are based on mechanistic considerations combined with the HPLC/ESI-MS data. Based on the structures, the vapor pressure and the Henry's law constant were estimated with multiple methods (SPARC, SIMPOL, MPBPVP, Bond and Group Estimations). The estimated vapor pressures of the products identified are significantly (up to 7 orders of magnitude) lower than those of the associated parent compounds, and therefore, the GLV oxidation products may remain as SOA after evaporation of the water droplet. The contribution of the identified oxidation products to SOA formation is estimated based on measured HPLC-ESI/MS responses relative to previous aqueous SOA mass yield measurements.

  6. Experimental and simulation analysis of hydrogen production by partial oxidation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Sikander, U. [National Univ. of Science and Technology, Islamabad (Pakistan)

    2014-10-15

    Partial oxidation of methanol is the only self-sustaining process for onboard production of hydrogen. For this a fixed bed catalytic reactor is designed, based on heterogeneous catalytic reaction. To develop an optimized process, simulation is carried out using ASPEN HYSYS v 7.1. Reaction kinetics is developed on the basis of Langmuir Hinshel wood model. 45:55:5 of CuO: ZnO: Al/sub 2/O/sub 3/ is used as a catalyst. Simulation results are studied in detail to understand the phenomenon of partial oxidation of methanol inside the reactor. An experimental rig is developed for hydrogen production through partial oxidation of methanol. Results obtained from process simulation and experimental work; are compared with each other. (author)

  7. Regionally and seasonally differentiated primary production in the North Atlantic

    Science.gov (United States)

    Sathyendranath, Shubha; Longhurst, Alan; Caverhill, Carla M.; Platt, Trevor

    1995-10-01

    A bio-geochemical classification of the N. Atlantic Basin is presented according to which the basin is first divided into four primary algal domains: Polar, West-Wind, Trades and Coastal. These are in turn sub-divided into smaller provinces. The classification is based on differences in the physical environment which are likely to influence regional algal dynamics. The seasonally-differentiated parameters of the photosynthesis-light curve ( P-I curve) and parameters that define the vertical structure in chlorophyll profile are then established for each province, based on an analysis of an archive of over 6000 chlorophyll profiles, and over 1800 P-I curves. These are then combined with satellite-derived chlorophyll data for the N. Atlantic, and information on cloud cover, to compute primary production at the annual scale. using a model that computes spectral transmission of light underwater, and spectral, photosynthetic response of phytoplankton to available light. The results are compared with earlier, satellite-derived, estimates of basin-scale primary production.

  8. Improving Technology And Setting-Up A Production Line For High Quality Zinc Oxide (99.5%) With A Capacity Of 150 Ton/Year By Reduction-Oxidation Process

    International Nuclear Information System (INIS)

    Pham Minh Tuan; Tran The Dinh; Tran Ngoc Vuong; Tuong Duy Nhan; Tran Trung Son; Le Huu Thiep; Nguyen Trung Dung; Le Thi Hong; Luong Manh Hung; Bui Huy Cuong

    2014-01-01

    Zinc oxide is used not only for the rubber industry, but also in many other industries such as pigments, ceramics, cosmetics etc. On the basis of references on international scientific researches and practical activities for the production of zinc oxide in our country, we have carried out additional research and testing to establish a zinc oxide production line for preparation of high quality (99.5%) product by treating the industrial zinc containing waste to obtain required composition materials [Zn] >50%; [Pb] < 0.3%; [Cl]/[PbO] < 0.2 for reduction-oxidation processes using reverberatory furnace. (author)

  9. Influence of corium oxidation on fission product release from molten pool

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V., E-mail: bechta@sbor.spb.s [Alexandrov Scientific-Research Institute of Technology (NITI), Sosnovy Bor (Russian Federation); Krushinov, E.V.; Vitol, S.A.; Khabensky, V.B.; Kotova, S.Yu.; Sulatsky, A.A. [Alexandrov Scientific-Research Institute of Technology (NITI), Sosnovy Bor (Russian Federation); Gusarov, V.V.; Almyashev, V.I. [Grebenschikov Institute of Silicate Chemistry of the Russian Academy of Sciences (ISC RAS), St. Petersburg (Russian Federation); Ducros, G.; Journeau, C. [CEA, DEN, Cadarache, F-13108 St. Paul lez Durance (France); Bottomley, D. [Joint Research Centre Institut fuer Transurane (ITU), Karlsruhe (Germany); Clement, B. [Institut de Radioprotection et Surete Nucleaire (IRSN), St. Paul lez Durance (France); Herranz, L. [CIEMAT, Madrid (Spain); Guentay, S. [PSI, Wuerenlingen (Switzerland); Trambauer, K. [GRS, Muenchen (Germany); Auvinen, A. [VTT, Espoo (Finland); Bezlepkin, V.V. [SPbAEP, St. Petersburg (Russian Federation)

    2010-05-15

    Qualitative and quantitative determination of the release of low-volatile fission products and core materials from molten oxidic corium was investigated in the EVAN project under the auspices of ISTC. The experiments carried out in a cold crucible with induction heating and RASPLAV test facility are described. The results are discussed in terms of reactor application; in particular, pool configuration, melt oxidation kinetics, critical influence of melt surface temperature and oxidation index on the fission product release rate, aerosol particle composition and size distribution. The relevance of measured high release of Sr from the molten pool for the reactor application is highlighted. Comparisons of the experimental data with those from the COLIMA CA-U3 test and the VERCORS tests, as well as with predictions from IVTANTHERMO and GEMINI/NUCLEA codes are made. Recommendations for further investigations are proposed following the major observations and discussions.

  10. Global resistance and resilience of primary production following extreme drought are predicted by mean annual precipitation

    Science.gov (United States)

    Stuart-Haëntjens, E. J.; De Boeck, H. J.; Lemoine, N. P.; Gough, C. M.; Kröel-Dulay, G.; Mänd, P.; Jentsch, A.; Schmidt, I. K.; Bahn, M.; Lloret, F.; Kreyling, J.; Wohlgemuth, T.; Stampfli, A.; Anderegg, W.; Classen, A. T.; Smith, M. D.

    2017-12-01

    Extreme drought is increasing globally in frequency and intensity, with uncertain consequences for the resistance and resilience of key ecosystem functions, including primary production. Primary production resistance, the capacity of an ecosystem to withstand change in primary production following extreme climate, and resilience, the degree to which primary production recovers, vary among and within ecosystem types, obscuring global patterns of resistance and resilience to extreme drought. Past syntheses on resistance have focused climatic gradients or individual ecosystem types, without assessing interactions between the two. Theory and many empirical studies suggest that forest production is more resistant but less resilient than grassland production to extreme drought, though some empirical studies reveal that these trends are not universal. Here, we conducted a global meta-analysis of sixty-four grassland and forest sites, finding that primary production resistance to extreme drought is predicted by a common continuum of mean annual precipitation (MAP). However, grasslands and forests exhibit divergent production resilience relationships with MAP. We discuss the likely mechanisms underlying the mixed production resistance and resilience patterns of forests and grasslands, including different plant species turnover times and drought adaptive strategies. These findings demonstrate the primary production responses of forests and grasslands to extreme drought are mixed, with far-reaching implications for Earth System Models, ecosystem management, and future studies of extreme drought resistance and resilience.

  11. A model for the release of low-volatility fission products in oxidizing conditions

    International Nuclear Information System (INIS)

    Cox, D.S.; Hunt, C.E.L.; Liu, Z.; Keller, N.A.; Barrand, R.D.; O'Connor, R.F.

    1991-07-01

    A thermodynamic and kinetic model has been developed for calculating low-volatility fission-product releases from UO 2 at high temperatures in oxidizing conditions. Volatilization of the UO 2 matrix is assumed to be the rate controlling process. Oxidation kinetics of the UO 2 are modelled by either interfacial rate control, gas phase oxidant transport control, or solid-state diffusion of oxygen. The vapour pressure of UO 3 in equilibrium with the oxidizing fuel is calculated from thermodynamic data, and volatilization rates are determined using a model for forced convective mass transport. Low-volatility fission-product releases are calculated from the volume of vapourized fuel. Model calculations are conservative compared to experimental data for Zr, La, Ce and Nb fission-product releases from irradiated UO 2 exposed to air at 1973-2350 K. The implications of this conservatism are discussed in terms of possible rate control by processes other than convective mass transport of UO 3 . Coefficients for effective surface area (based on experimental data) and for heterogeneous rate controlling reaction kinetics are introduced to facilitate agreement between calculations and the experimental data.

  12. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    Science.gov (United States)

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  13. Primary Neuron/Astrocyte Co-Culture on Polyelectrolyte Multilayer Films: A Template for Studying Astrocyte-Mediated Oxidative Stress in Neurons**

    OpenAIRE

    Kidambi, Srivatsan; Lee, Ilsoon; Chan, Christina

    2008-01-01

    We engineered patterned co-cultures of primary neurons and astrocytes on polyelectrolyte multilayer (PEM) films without the aid of adhesive proteins/ligands to study the oxidative stress mediated by astrocytes on neuronal cells. A number of studies have explored engineering co-culture of neurons and astrocytes predominantly using cell lines rather than primary cells owing to the difficulties involved in attaching primary cells onto synthetic surfaces. To our knowledge this is the first demons...

  14. A model of regional primary production for use with coarse resolution satellite data

    Science.gov (United States)

    Prince, S. D.

    1991-01-01

    A model of crop primary production, which was originally developed to relate the amount of absorbed photosynthetically active radiation (APAR) to net production in field studies, is discussed in the context of coarse resolution regional remote sensing of primary production. The model depends on an approximately linear relationship between APAR and the normalized difference vegetation index. A more comprehensive form of the conventional model is shown to be necessary when different physiological types of plants or heterogeneous vegetation types occur within the study area. The predicted variable in the new model is total assimilation (net production plus respiration) rather than net production alone or harvest yield.

  15. Production of aromas and fragrances through microbial oxidation of monoterpenes

    Directory of Open Access Journals (Sweden)

    H. F. Rozenbaum

    2006-09-01

    Full Text Available Aromas and fragrances can be obtained through the microbial oxidation of monoterpenes. Many microorganisms can be used to carry out extremely specific conversions using substrates of low commercial value. However, for many species, these substrates are highly toxic, consequently inhibiting their metabolism. In this work, the conversion ability of Aspergillus niger IOC-3913 for terpenic compounds was examined. This species was preselected because of its high resistance to toxic monoterpenic substrates. Though it has been grown in media containing R-limonene (one of the cheapest monoterpenic hydrocarbons, which is widely available on the market, the species has not shown the ability to metabolize it, since biotransformation products were not detected in high resolution gas chromatography analyses. For this reason, other monoterpenes (alpha-pinene, beta-pinene and camphor were used as substrates. These compounds were shown to be metabolized by the selected strain, producing oxidized compounds. Four reaction systems were used: a biotransformation in a liquid medium with cells in growth b with pre-grown cultures c with cells immobilized in a synthetic polymer network and d in a solid medium to which the substrate was added via the gas phase. The main biotransformation products were found in all the reaction systems, although the adoption of previously cultivated cells seemed to favor biotransformation. Cell immobilization seemed to be a feasible strategy for alleviating the toxic effect of the substrate. Through mass spectrometry it was possible to identify verbenone and alpha-terpineol as the biotransformation products of alpha-pinene and beta-pinene, respectively. The structures of the other oxidation products are described.

  16. Mean annual precipitation predicts primary production resistance and resilience to extreme drought.

    Science.gov (United States)

    Stuart-Haëntjens, Ellen; De Boeck, Hans J; Lemoine, Nathan P; Mänd, Pille; Kröel-Dulay, György; Schmidt, Inger K; Jentsch, Anke; Stampfli, Andreas; Anderegg, William R L; Bahn, Michael; Kreyling, Juergen; Wohlgemuth, Thomas; Lloret, Francisco; Classen, Aimée T; Gough, Christopher M; Smith, Melinda D

    2018-04-27

    Extreme drought is increasing in frequency and intensity in many regions globally, with uncertain consequences for the resistance and resilience of ecosystem functions, including primary production. Primary production resistance, the capacity to withstand change during extreme drought, and resilience, the degree to which production recovers, vary among and within ecosystem types, obscuring generalized patterns of ecological stability. Theory and many observations suggest forest production is more resistant but less resilient than grassland production to extreme drought; however, studies of production sensitivity to precipitation variability indicate that the processes controlling resistance and resilience may be influenced more by mean annual precipitation (MAP) than ecosystem type. Here, we conducted a global meta-analysis to investigate primary production resistance and resilience to extreme drought in 64 forests and grasslands across a broad MAP gradient. We found resistance to extreme drought was predicted by MAP; however, grasslands (positive) and forests (negative) exhibited opposing resilience relationships with MAP. Our findings indicate that common plant physiological mechanisms may determine grassland and forest resistance to extreme drought, whereas differences among plant residents in turnover time, plant architecture, and drought adaptive strategies likely underlie divergent resilience patterns. The low resistance and resilience of dry grasslands suggests that these ecosystems are the most vulnerable to extreme drought - a vulnerability that is expected to compound as extreme drought frequency increases in the future. Copyright © 2018. Published by Elsevier B.V.

  17. Controlling nitrous oxide emissions from grassland livestock production systems

    NARCIS (Netherlands)

    Oenema, O.; Gebauer, G.; Rodriguez, M.; Sapek, A.; Jarvis, S.C.; Corré, W.J.; Yamulki, S.

    1998-01-01

    There is growing awareness that grassland livestock production systems are major sources of nitrous oxide (N2O). Controlling these emissions requires a thorough understanding of all sources and controlling factors at the farm level. This paper examines the various controlling factors and proposes

  18. Size characterization of metal oxide nanoparticles in commercial sunscreen products

    Science.gov (United States)

    Bairi, Venu Gopal; Lim, Jin-Hee; Fong, Andrew; Linder, Sean W.

    2017-07-01

    There is an increase in the usage of engineered metal oxide (TiO2 and ZnO) nanoparticles in commercial sunscreens due to their pleasing esthetics and greater sun protection efficiency. A number of studies have been done concerning the safety of nanoparticles in sunscreen products. In order to do the safety assessment, it is pertinent to develop novel analytical techniques to analyze these nanoparticles in commercial sunscreens. This study is focused on developing analytical techniques that can efficiently determine particle size of metal oxides present in the commercial sunscreens. To isolate the mineral UV filters from the organic matrices, specific procedures such as solvent extraction were identified. In addition, several solvents (hexane, chloroform, dichloromethane, and tetrahydrofuran) have been investigated. The solvent extraction using tetrahydrofuran worked well for all the samples investigated. The isolated nanoparticles were characterized by using several different techniques such as transmission electron microscopy, scanning electron microscopy, dynamic light scattering, differential centrifugal sedimentation, and x-ray diffraction. Elemental analysis mapping studies were performed to obtain individual chemical and morphological identities of the nanoparticles. Results from the electron microscopy techniques were compared against the bulk particle sizing techniques. All of the sunscreen products tested in this study were found to contain nanosized (≤100 nm) metal oxide particles with varied shapes and aspect ratios, and four among the 11 products were showed to have anatase TiO2.

  19. Metagenomic Evidence for H2 Oxidation and H2 Production by Serpentinite-Hosted Subsurface Microbial Communities

    Science.gov (United States)

    Brazelton, William J.; Nelson, Bridget; Schrenk, Matthew O.

    2012-01-01

    Ultramafic rocks in the Earth’s mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H2). In order to assess the potential for microbial H2 utilization fueled by serpentinization, we conducted metagenomic surveys of a marine serpentinite-hosted hydrothermal chimney (at the Lost City hydrothermal field) and two continental serpentinite-hosted alkaline seeps (at the Tablelands Ophiolite, Newfoundland). Novel [NiFe]-hydrogenase sequences were identified at both the marine and continental sites, and in both cases, phylogenetic analyses indicated aerobic, potentially autotrophic Betaproteobacteria belonging to order Burkholderiales as the most likely H2-oxidizers. Both sites also yielded metagenomic evidence for microbial H2 production catalyzed by [FeFe]-hydrogenases in anaerobic Gram-positive bacteria belonging to order Clostridiales. In addition, we present metagenomic evidence at both sites for aerobic carbon monoxide utilization and anaerobic carbon fixation via the Wood–Ljungdahl pathway. In general, our results point to H2-oxidizing Betaproteobacteria thriving in shallow, oxic–anoxic transition zones and the anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These data demonstrate the feasibility of metagenomic investigations into novel subsurface habitats via surface-exposed seeps and indicate the potential for H2-powered primary production in serpentinite-hosted subsurface habitats. PMID:22232619

  20. Metagenomic evidence for h(2) oxidation and h(2) production by serpentinite-hosted subsurface microbial communities.

    Science.gov (United States)

    Brazelton, William J; Nelson, Bridget; Schrenk, Matthew O

    2012-01-01

    Ultramafic rocks in the Earth's mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H(2)). In order to assess the potential for microbial H(2) utilization fueled by serpentinization, we conducted metagenomic surveys of a marine serpentinite-hosted hydrothermal chimney (at the Lost City hydrothermal field) and two continental serpentinite-hosted alkaline seeps (at the Tablelands Ophiolite, Newfoundland). Novel [NiFe]-hydrogenase sequences were identified at both the marine and continental sites, and in both cases, phylogenetic analyses indicated aerobic, potentially autotrophic Betaproteobacteria belonging to order Burkholderiales as the most likely H(2)-oxidizers. Both sites also yielded metagenomic evidence for microbial H(2) production catalyzed by [FeFe]-hydrogenases in anaerobic Gram-positive bacteria belonging to order Clostridiales. In addition, we present metagenomic evidence at both sites for aerobic carbon monoxide utilization and anaerobic carbon fixation via the Wood-Ljungdahl pathway. In general, our results point to H(2)-oxidizing Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and the anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These data demonstrate the feasibility of metagenomic investigations into novel subsurface habitats via surface-exposed seeps and indicate the potential for H(2)-powered primary production in serpentinite-hosted subsurface habitats.

  1. Metagenomic evidence for H2 oxidation and H2 production by serpentinite-hosted subsurface microbial communities

    Directory of Open Access Journals (Sweden)

    William J Brazelton

    2012-01-01

    Full Text Available Ultramafic rocks in the Earth’s mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H2. In order to assess the potential for microbial H2 utilization fueled by serpentinization, we conducted metagenomic surveys of a marine serpentinite-hosted hydrothermal chimney (at the Lost City hydrothermal field and two continental serpentinite- hosted alkaline seeps (at the Tablelands Ophiolite, Newfoundland. Novel [NiFe]-hydrogenase sequences were identified at both the marine and continental sites, and in both cases, phylogenetic analyses indicated aerobic, potentially autotrophic Betaproteobacteria belonging to order Burkholderiales as the most likely H2-oxidizers. Both sites also yielded metagenomic evidence for microbial H2 production catalyzed by [FeFe]-hydrogenases in anaerobic Gram- positive bacteria belonging to order Clostridiales. In addition, we present metagenomic evidence at both sites for aerobic carbon monoxide utilization and anaerobic carbon fixation via the Wood-Ljungdahl pathway. In general, our results point to H2-oxidizing Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and the anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These data demonstrate the feasibility of metagenomic investigations into novel subsurface habitats via surface-exposed seeps and indicate the potential for H2- powered primary production in serpentinite-hosted subsurface habitats.

  2. Mycoplasma hyopneumoniae-derived lipid-associated membrane proteins induce apoptosis in porcine alveolar macrophage via increasing nitric oxide production, oxidative stress, and caspase-3 activation.

    Science.gov (United States)

    Bai, Fangfang; Ni, Bo; Liu, Maojun; Feng, Zhixin; Xiong, Qiyan; Xiao, Shaobo; Shao, Guoqing

    2013-09-15

    Mycoplasma hyopneumoniae is the primary etiological agent of enzootic pneumonia in swine. Lipid-associated membrane proteins (LAMP) of mycoplasma are the main pathogenicity factors in mycoplasma diseases. In this study, we investigated the effects of M. hyopneumoniae LAMP on porcine alveolar macrophage (PAM) 3D4/21 cell line. Apoptotic features, such as chromatin condensation and apoptotic bodies, were observed in LAMP-treated PAM 3D4/21 cells. Moreover, LAMP significantly increased the number of TUNEL positive apoptotic cells in PAM 3D4/21 cells compared with the untreated control. In addition, flow cytometric analysis using dual staining with annexin-V-FITC and propidium iodide (PI) showed that LAMP of M. hyopneumoniae induced a time-dependent apoptosis in PAM 3D4/21 cells. Moreover, increased levels of superoxide anion production and activated caspase-3 in PAM 3D4/21 cells were observed after exposure to LAMP. Increased production of nitric oxide (NO) was also confirmed in the cell supernatants. Besides, apoptotic rates increase and caspase-3 activation were suppressed by NOS inhibitor or antioxidant. It is suggested that LAMP of M. hyopneumoniae induced apoptosis in porcine alveolar macrophage via NO production, superoxide anion production, and caspase-3 activation. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Enhanced 15-HPETE production during oxidant stress induces apoptosis of endothelial cells.

    Science.gov (United States)

    Sordillo, Lorraine M; Weaver, James A; Cao, Yu-Zhang; Corl, Chris; Sylte, Matt J; Mullarky, Isis K

    2005-05-01

    Oxidant stress plays an important role in the etiology of vascular diseases by increasing rates of endothelial cell apoptosis, but few data exist on the mechanisms involved. Using a unique model of oxidative stress based on selenium deficiency (-Se), the effects of altered eicosanoid production on bovine aortic endothelial cells (BAEC) apoptosis was evaluated. Oxidant stress significantly increased the immediate oxygenation product of arachidonic acid metabolized by the 15-lipoxygenase pathway, 15-hydroxyperoxyeicosatetraenoic acid (15-HPETE). Treatment of -Se BAEC with TNFalpha/cyclohexamide (CHX) exhibited elevated levels of apoptosis, which was significantly reduced by the addition of a specific 15-lipoxygenase inhibitor PD146176. Furthermore, the addition of 15-HPETE to PD146176-treated BAEC, partially restored TNF/CHX-induced apoptosis. Increased exposure to 15-HPETE induced apoptosis, as determined by internucleosomal DNA fragmentation, chromatin condensation, caspase-3 activation, and caspase-9 activation, which suggests mitochondrial dysfunction. The expression of Bcl-2 protein also was decreased in -Se BAEC. Addition of a caspase-9 inhibitor (LEHD-fmk) completely blocked 15-HPETE-induced chromatin condensation in -Se BAEC, suggesting that 15-HPETE-induced apoptosis is caspase-9 dependent. Increased apoptosis of BAEC as a result of oxidant stress and subsequent production of 15-HPETE may play a critical role in a variety of inflammatory based diseases.

  4. Electrochemistry-High Resolution Mass Spectrometry to Study Oxidation Products of Trimethoprim

    Directory of Open Access Journals (Sweden)

    Marc-André Lecours

    2018-01-01

    Full Text Available The study of the fate of emerging organic contaminants (EOCs, especially the identification of transformation products, after water treatment or in the aquatic environment, is a topic of growing interest. In recent years, electrochemistry coupled to mass spectrometry has attracted a lot of attention as an alternative technique to investigate oxidation metabolites of organic compounds. The present study used different electrochemical approaches, such as cyclic voltammetry, electrolysis, electro-assisted Fenton reaction coupled offline to high resolution mass spectrometry and thin-layer flow cell coupled online to high resolution mass spectrometry, to study oxidation products of the anti-infective trimethoprim, a contaminant of emerging concern frequently reported in wastewaters and surface waters. Results showed that mono- and di-hydroxylated derivatives of trimethoprim were generated in electrochemically and possibly tri-hydroxylated derivatives as well. Those compounds have been previously reported as mammalian and bacterial metabolites as well as transformation products of advance oxidation processes applied to waters containing trimethoprim. Therefore, this study confirmed that electrochemical techniques are relevant not only to mimic specific biotransformation reactions of organic contaminants, as it has been suggested previously, but also to study the oxidation reactions of organic contaminants of interest in water treatment. The key role that redox reactions play in the environment make electrochemistry-high resolution mass spectrometry a sensitive and simple technique to improve our understanding of the fate of organic contaminants in the environment.

  5. Global oceanic production of nitrous oxide

    Science.gov (United States)

    Freing, Alina; Wallace, Douglas W. R.; Bange, Hermann W.

    2012-01-01

    We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N2O) to estimate the concentration of biologically produced N2O and N2O production rates in the ocean on a global scale. Our approach to estimate the N2O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass. We estimate that the oceanic N2O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N2O are not taken into account in our study. The largest amount of subsurface N2O is produced in the upper 500 m of the water column. The estimated global annual subsurface N2O production ranges from 3.1 ± 0.9 to 3.4 ± 0.9 Tg N yr−1. This is in agreement with estimates of the global N2O emissions to the atmosphere and indicates that a N2O source in the mixed layer is unlikely. The potential future development of the oceanic N2O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed. PMID:22451110

  6. Global oceanic production of nitrous oxide.

    Science.gov (United States)

    Freing, Alina; Wallace, Douglas W R; Bange, Hermann W

    2012-05-05

    We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N(2)O) to estimate the concentration of biologically produced N(2)O and N(2)O production rates in the ocean on a global scale. Our approach to estimate the N(2)O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass. We estimate that the oceanic N(2)O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N(2)O are not taken into account in our study. The largest amount of subsurface N(2)O is produced in the upper 500 m of the water column. The estimated global annual subsurface N(2)O production ranges from 3.1 ± 0.9 to 3.4 ± 0.9 Tg N yr(-1). This is in agreement with estimates of the global N(2)O emissions to the atmosphere and indicates that a N(2)O source in the mixed layer is unlikely. The potential future development of the oceanic N(2)O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed.

  7. Optical properties and electronic transitions of zinc oxide, ferric oxide, cerium oxide, and samarium oxide in the ultraviolet and extreme ultraviolet

    DEFF Research Database (Denmark)

    Pauly, N; Yubero, F; Espinós, J P

    2017-01-01

    Optical properties and electronic transitions of four oxides, namely zinc oxide, ferric oxide, cerium oxide, and samarium oxide, are determined in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy using primary electron energies in the range 0.3-2.0 ke...

  8. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments

    Czech Academy of Sciences Publication Activity Database

    Wilcox, K. R.; Shi, Z.; Gherardi, L. A.; Lemoine, N. P.; Koerner, S. E.; Hoover, D. L.; Bork, E.; Byrne, K. M.; Cahill, J.; Collins, S. L.; Evans, S.M.; Gilgen, Anna K.; Holub, Petr; Jiang, L.; Knapp, A. K.; LeCain, D.; Liang, J.; Garcia-Palacios, P.; Penuelas, J.; Pockman, W. T.; Smith, M. D.; Sun, S.; White, S. R.; Yahdjian, L.; Zhu, K.; Luo, Y.

    2017-01-01

    Roč. 23, č. 10 (2017), s. 4376-4385 ISSN 1354-1013 Institutional support: RVO:86652079 Keywords : net primary productivity * terrestrial ecosystems * temperate grassland * biomass allocation * plant-communities * tallgrass prairie * climate extremes * use efficiency * united-states * global-change * aboveground net primary productivity * belowground net primary productivity * biomass allocation * climate change * grasslands * meta-analysis * root biomass Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 8.502, year: 2016

  9. Patterns of new versus recycled primary production in the terrestrial biosphere

    Science.gov (United States)

    Nitrogen (N) and phosphorus (P) availability regulate plant productivity throughout the terrestrial biosphere, influencing the patterns and magnitude of net primary production (NPP) by land plants both now and into the future. These nutrients enter ecosystems via geologic and atmospheric pathways, a...

  10. Activation of the PI3K/Akt pathway by oxidative stress mediates high glucose-induced increase of adipogenic differentiation in primary rat osteoblasts.

    Science.gov (United States)

    Zhang, Yu; Yang, Jian-Hong

    2013-11-01

    Diabetes mellitus is associated with increased risk of osteopenia and bone fracture that may be related to hyperglycemia. However, the mechanisms accounting for diabetic bone disorder are unclear. Here, we showed that high glucose significantly promoted the production of reactive oxygen species (ROS) in rat primary osteoblasts. Most importantly, we reported for the first time that ROS induced by high glucose increased alkaline phosphatase activity, inhibited type I collagen (collagen I) protein level and cell mineralization, as well as gene expression of osteogenic markers including runt-related transcription factor 2 (Runx2), collagen I, and osteocalcin, but promoted lipid droplet formation and gene expression of adipogenic markers including peroxisome proliferator-activated receptor gamma, adipocyte fatty acid binding protein (aP2), and adipsin, which were restored by pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger. Moreover, high glucose-induced oxidative stress activated PI3K/Akt pathway to inhibited osteogenic differentiation but stimulated adipogenic differentiation. In contrast, NAC and a PI3K inhibitor, LY-294002, reversed the down-regulation of osteogenic markers and the up-regulation of adipogenic markers as well as the activation of Akt under high glucose. These results indicated that oxidative stress played a key role in high glucose-induced increase of adipogenic differentiation, which contributed to the inhibition of osteogenic differentiation. This process was mediated by PI3K/Akt pathway in rat primary osteoblasts. Hence, suppression of oxidative stress could be a potential therapeutic approach for diabetic osteopenia. © 2013 Wiley Periodicals, Inc.

  11. Impact of residual elements on zinc quality in the production of zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Dymáček, Petr; Pešlová, F.; Jurkovič, Z.; Barborák, O.; Stodola, J.

    2016-01-01

    Roč. 55, č. 3 (2016), s. 407-410 ISSN 0543-5846 Institutional support: RVO:68081723 Keywords : zinc * metallography * microstructure of zinc * zinc oxide * production of zinc oxide Subject RIV: JG - Metallurgy Impact factor: 0.959, year: 2014

  12. Arginase expression modulates nitric oxide production in Leishmania (Leishmania) amazonensis.

    Science.gov (United States)

    Acuña, Stephanie Maia; Aoki, Juliana Ide; Laranjeira-Silva, Maria Fernanda; Zampieri, Ricardo Andrade; Fernandes, Juliane Cristina Ribeiro; Muxel, Sandra Marcia; Floeter-Winter, Lucile Maria

    2017-01-01

    Arginase is an enzyme that converts L-arginine to urea and L-ornithine, an essential substrate for the polyamine pathway supporting Leishmania (Leishmania) amazonensis replication and its survival in the mammalian host. L-arginine is also the substrate of macrophage nitric oxide synthase 2 (NOS2) to produce nitric oxide (NO) that kills the parasite. This competition can define the fate of Leishmania infection. The transcriptomic profiling identified a family of oxidoreductases in L. (L.) amazonensis wild-type (La-WT) and L. (L.) amazonensis arginase knockout (La-arg-) promastigotes and axenic amastigotes. We highlighted the identification of an oxidoreductase that could act as nitric oxide synthase-like (NOS-like), due to the following evidences: conserved domain composition, the participation of NO production during the time course of promastigotes growth and during the axenic amastigotes differentiation, regulation dependence on arginase activity, as well as reduction of NO amount through the NOS activity inhibition. NO quantification was measured by DAF-FM labeling analysis in a flow cytometry. We described an arginase-dependent NOS-like activity in L. (L.) amazonensis and its role in the parasite growth. The increased detection of NO production in the mid-stationary and late-stationary growth phases of La-WT promastigotes could suggest that this production is an important factor to metacyclogenesis triggering. On the other hand, La-arg- showed an earlier increase in NO production compared to La-WT, suggesting that NO production can be arginase-dependent. Interestingly, La-WT and La-arg- axenic amastigotes produced higher levels of NO than those observed in promastigotes. As a conclusion, our work suggested that NOS-like is expressed in Leishmania in the stationary growth phase promastigotes and amastigotes, and could be correlated to metacyclogenesis and amastigotes growth in a dependent way to the internal pool of L-arginine and arginase activity.

  13. Continuous operation of a pilot plant for the production of beryllium oxide

    International Nuclear Information System (INIS)

    Costa, T.C.; Amaral, S.; Silveira, C.M.S.; Oliveira, A.P. de

    1975-01-01

    A method of obtaining beryllium oxide with a purity of 99,2% was developed in a pilot plant with a capacity of 7 tons per month destined to operate continuously. The operation market prospects and control of production with the objective of obtaining internacional technical grade beryllium oxide are discussed [pt

  14. Continuous operation of a pilot plant for the production of beryllium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Costa, T C; Amaral, S; Silveira, C M.S.; de Oliveira, A P [Instituto de Tecnologia, Governador Valadares (Brazil)

    1975-12-01

    A method of obtaining beryllium oxide with a purity of 99,2% was developed in a pilot plant with a capacity of 7 tons per month destined to operate continuously. The operation market prospects and control of production with the objective of obtaining internacional technical grade beryllium oxide are discussed.

  15. Modification of Casein by the Lipid Oxidation Product Malondialdehyde

    NARCIS (Netherlands)

    Adams, A.; Kimpe, de N.; Boekel, van T.

    2008-01-01

    The reaction of malondialdehyde with casein was studied in aqueous solution to evaluate the impact of this lipid oxidation product on food protein modification. By using multiresponse modeling, a kinetic model was developed for this reaction. The influence of temperature and pH on protein browning

  16. Field study of nitrous oxide production with in situ aeration in a closed landfill site.

    Science.gov (United States)

    Nag, Mitali; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Xiaoli, Chai

    2016-03-01

    Nitrous oxide (N(2)O) has gained considerable attention as a contributor to global warming and depilation of stratospheric ozone layer. Landfill is one of the high emitters of greenhouse gas such as methane and N(2)O during the biodegradation of solid waste. Landfill aeration has been attracted increasing attention worldwide for fast, controlled and sustainable conversion of landfills into a biological stabilized condition, however landfill aeration impel N(2)O emission with ammonia removal. N(2)O originates from the biodegradation, or the combustion of nitrogen-containing solid waste during the microbial process of nitrification and denitrification. During these two processes, formation of N(2)O as a by-product from nitrification, or as an intermediate product of denitrification. In this study, air was injected into a closed landfill site and investigated the major N(2)O production factors and correlations established between them. The in-situ aeration experiment was carried out by three sets of gas collection pipes along with temperature probes were installed at three different distances of one, two and three meter away from the aeration point; named points A-C, respectively. Each set of pipes consisted of three different pipes at three different depths of 0.0, 0.75 and 1.5 m from the bottom of the cover soil. Landfill gases composition was monitored weekly and gas samples were collected for analysis of nitrous oxide concentrations. It was evaluated that temperatures within the range of 30-40°C with high oxygen content led to higher generation of nitrous oxide with high aeration rate. Lower O(2) content can infuse N(2)O production during nitrification and high O(2) inhibit denitrification which would affect N(2)O production. The findings provide insights concerning the production potentials of N(2)O in an aerated landfill that may help to minimize with appropriate control of the operational parameters and biological reactions of N turnover. Investigation of

  17. A metalloenzyme-like catalytic system for the chemoselective oxidative cross-coupling of primary amines to imines under ambient conditions.

    Science.gov (United States)

    Largeron, Martine; Fleury, Maurice-Bernard

    2015-02-23

    The direct oxidative cross-coupling of primary amines is a challenging transformation as homocoupling is usually preferred. We report herein the chemoselective preparation of cross-coupled imines through the synergistic combination of low loadings of Cu(II) metal-catalyst and o-iminoquinone organocatalyst under ambient conditions. This homogeneous cooperative catalytic system has been inspired by the reaction of copper amine oxidases, a family of metalloenzymes with quinone organic cofactors that mediate the selective oxidation of primary amines to aldehydes. After optimization, the desired cross-coupled imines are obtained in high yields with broad substrate scope through a transamination process that leads to the homocoupled imine intermediate, followed by dynamic transimination. The ability to carry out the reactions at room temperature and with ambient air, rather than molecular oxygen as the oxidant, and equimolar amounts of each coupling partner is particularly attractive from an environmentally viewpoint. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea).

    Science.gov (United States)

    Yakimov, Michail M; Cono, Violetta La; Smedile, Francesco; DeLuca, Thomas H; Juárez, Silvia; Ciordia, Sergio; Fernández, Marisol; Albar, Juan Pablo; Ferrer, Manuel; Golyshin, Peter N; Giuliano, Laura

    2011-06-01

    Mesophilic Crenarchaeota have recently been thought to be significant contributors to nitrogen (N) and carbon (C) cycling. In this study, we examined the vertical distribution of ammonia-oxidizing Crenarchaeota at offshore site in Southern Tyrrhenian Sea. The median value of the crenachaeal cell to amoA gene ratio was close to one suggesting that virtually all deep-sea Crenarchaeota possess the capacity to oxidize ammonia. Crenarchaea-specific genes, nirK and ureC, for nitrite reductase and urease were identified and their affiliation demonstrated the presence of 'deep-sea' clades distinct from 'shallow' representatives. Measured deep-sea dark CO(2) fixation estimates were comparable to the median value of photosynthetic biomass production calculated for this area of Tyrrhenian Sea, pointing to the significance of this process in the C cycle of aphotic marine ecosystems. To elucidate the pivotal organisms in this process, we targeted known marine crenarchaeal autotrophy-related genes, coding for acetyl-CoA carboxylase (accA) and 4-hydroxybutyryl-CoA dehydratase (4-hbd). As in case of nirK and ureC, these genes are grouped with deep-sea sequences being distantly related to those retrieved from the epipelagic zone. To pair the molecular data with specific functional attributes we performed [(14)C]HCO(3) incorporation experiments followed by analyses of radiolabeled proteins using shotgun proteomics approach. More than 100 oligopeptides were attributed to 40 marine crenarchaeal-specific proteins that are involved in 10 different metabolic processes, including autotrophy. Obtained results provided a clear proof of chemolithoautotrophic physiology of bathypelagic crenarchaeota and indicated that this numerically predominant group of microorganisms facilitate a hitherto unrecognized sink for inorganic C of a global importance.

  19. Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Kang, Nam Kyu; Lee, Bongsoo; Choi, Gang-Guk; Moon, Myounghoon; Park, Min S.; Yang, Ji-Won; Lim, JitKang

    2014-01-01

    Ability to increase the lipid production in microalgae is one of the heavily sought-after ideas to improve the economic feasibility of microalgae-derived transportation fuels for commercial applications. We used the oxidative stress by TiO 2 nanoparticles, a well-known photocatalyst, to induce lipid production in microalgae. Chlorella vulgaris UTEX 265 was cultivated under various concentrations of TiO 2 ranging from 0.1 to 5 g/L under UV-A illumination. Maximum specific growth rate was affected in responding to TiO 2 concentrations. In the presence of UV-A, chlorophyll concentration was decreased at the highest concentration of TiO 2 (5 g/L TiO 2 ) by oxidative stress. The fatty acid methyl ester (FAME) composition analysis suggested that oxidative stress causes the accumulation and decomposition of lipids. The highest FAME productivity was 18.2 g/L/d under low concentrations of TiO 2 (0.1 g/L) and a short induction time (two days). The controlled condition of TiO 2 /UV-A inducing oxidative stress (0.1 g/L TiO 2 and two days induction) could be used to increase the lipid productivity of C. vulgaris UTEX 265. Our results show the possibility of modulating the lipid induction process through oxidative stress with TiO 2 /UV-A

  20. Enhancing Biodiesel Production Using Green Glycerol-Enriched Calcium Oxide Catalyst : An Optimization Study

    NARCIS (Netherlands)

    Avhad, Mangesh R.; Gangurde, L.S.; Sánchez, Marcos; Bouaid, Abderrahim; Aracil, José; Martínez, Mercedes; Marchetti, Jorge M.

    2018-01-01

    The present article demonstrates a superior catalytic performance of glycerol-enriched calcium oxide for biodiesel production than other calcium-based counterparts. The proficiency of glycerol-enriched calcium oxide in catalyzing the methanolysis of crude Jatropha curcas oil containing high free

  1. Lunar Metal Oxide Electrolysis with Oxygen and Photovoltaic Array Production Applications

    Science.gov (United States)

    Curreri, P. A.; Ethridge, E.; Hudson, S.; Sen, S.

    2006-01-01

    This paper presents the results of a Marshall Space Flight Center funded effort to conduct an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis (MOE) process to produce oxygen and metal from lunar resources to support human exploration of space. Oxygen extracted from lunar materials can be used for life support and propellant, and silicon and metallic elements produced can be used for in situ fabrication of thin-film solar cells for power production. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis, MOE, is chosen for extraction, since the electron is the most practical reducing agent. MOE was also chosen for following reasons. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. In the experiments reported here, melts containing iron oxide were electrolyzed in a low temperature supporting oxide electrolyte (developed by D. Sadoway, MIT). The production of oxygen and reduced iron were observed. Electrolysis was also performed on the supporting electrolyte with JSC-1 Lunar Simulant. The cell current for the supporting electrolyte alone is negligible while the current for the electrolyte with JSC-1 shows significant current and a peak at about -0.6 V indicating reductive reaction in the simulant.

  2. Oxidation of cashew tree gum exudate polysaccharide with TEMPO reagent

    International Nuclear Information System (INIS)

    Cunha, Pablyana L.R.; Maciel, Jeanny S.; Paula, Regina C.M. de; Feitosa, Judith P.A.; Sierakowski, Maria Rita

    2007-01-01

    Cashew gum (CG), an exudate polysaccharide from Anacardium occidentale trees, was oxidized with TEMPO reagent and the product (CGOX) characterized by spectroscopic techniques (FTIR and NMR), chromatographic analyses (HPLC and GPC), viscosity measurements and thermal analysis (TGA). The yield of the reaction product was 96%. The uronic acid content in starting gum (7.2 m%) was increased to 36 m%. The degree of oxidation based on free galactose and glucose units was 68%. NMR data show that oxidation occurred preferentially at primary carbons of galactose units. High degradation degree after oxidation was estimated by the difference on the expected and observed η CGOX /η CG ratio. The presence of organic and inorganic impurities in the new polyelectrolyte was detected by TGA. A less thermally stable cashew gum is formed after the oxidation with TEMPO based on initial decomposition temperature and IPDT. (author)

  3. Formaldehyde production from isoprene oxidation across NOx regimes

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2016-03-01

    Full Text Available The chemical link between isoprene and formaldehyde (HCHO is a strong, nonlinear function of NOx (i.e., NO + NO2. This relationship is a linchpin for top-down isoprene emission inventory verification from orbital HCHO column observations. It is also a benchmark for overall photochemical mechanism performance with regard to VOC oxidation. Using a comprehensive suite of airborne in situ observations over the southeast US, we quantify HCHO production across the urban–rural spectrum. Analysis of isoprene and its major first-generation oxidation products allows us to define both a "prompt" yield of HCHO (molecules of HCHO produced per molecule of freshly emitted isoprene and the background HCHO mixing ratio (from oxidation of longer-lived hydrocarbons. Over the range of observed NOx values (roughly 0.1–2 ppbv, the prompt yield increases by a factor of 3 (from 0.3 to 0.9 ppbv ppbv−1, while background HCHO increases by a factor of 2 (from 1.6 to 3.3 ppbv. We apply the same method to evaluate the performance of both a global chemical transport model (AM3 and a measurement-constrained 0-D steady-state box model. Both models reproduce the NOx dependence of the prompt HCHO yield, illustrating that models with updated isoprene oxidation mechanisms can adequately capture the link between HCHO and recent isoprene emissions. On the other hand, both models underestimate background HCHO mixing ratios, suggesting missing HCHO precursors, inadequate representation of later-generation isoprene degradation and/or underestimated hydroxyl radical concentrations. Detailed process rates from the box model simulation demonstrate a 3-fold increase in HCHO production across the range of observed NOx values, driven by a 100 % increase in OH and a 40 % increase in branching of organic peroxy radical reactions to produce HCHO.

  4. Lipid and cholesterol oxidation, color changes, and volatile compounds production in irradiated raw pork batters with different fat content

    International Nuclear Information System (INIS)

    Jo, Cheo Run; Byun, Myung Woo

    2000-01-01

    An emulsion-type product was prepared to determine the effect of irradiation on lipid and cholesterol oxidation, color change, and volatile production in raw pork with different fat content. Lipid oxidation increased with an increase in fat content or irradiation dose. Irradiated batters had higher cholesterol oxides than did non-irradiated batters, and the major cholesterol oxides formed in irradiated pork batters were 7α- and 7β- hydroxycholesterol. Hunter color a- and b-values of raw pork batters were decreased by irradiation regardless of fat content. Irradiation significantly increased the amount of volatile compounds. Although lipid oxidation of high fat products (10 and 15% fat) was higher than that of low fat products (4%), high fat products did not always produce greater amount of volatile compounds in raw pork batters. In summary, irradiation increased lipid and cholesterol oxidation, and volatile compounds production, and had detrimental effects on the color of raw pork batter under aerobic conditions

  5. Epiphytes modulate Posidonia oceanica photosynthetic production, energetic balance, antioxidant mechanisms and oxidative damage

    Directory of Open Access Journals (Sweden)

    Monya Mendes Costa

    2015-12-01

    Full Text Available Epiphytes impose physical barriers to light penetration into seagrass leaves causing shading, which may decrease the production of oxygen reactive species (ROS, but also constitute a physical aggression that may trigger the production of ROS, leading to oxidative damage. Here we investigate the effects of epiphytes on Posidonia oceanica under both interactive perspectives, light attenuation and oxidative stress. Specifically the role of epiphytes in net photosynthesis, chlorophyll a and b, photoprotection (Violaxanthin+Anteraxanthin+Zeaxanthin cycle, soluble sugar and starch contents, enzymatic (ascorbate peroxidase (APX and dehydroascorbate reductase (DHAR and global (trolox equivalent antioxidant capacity (TEAC and oxygen radical antioxidant capacity (ORAC antioxidant responses, phenolics and oxidative damage (malondialdehyde are tested. Leaves with epiphytes showed higher chlorophyll b and lower content in VAZ cycle carotenoids. Epiphyte shading was the probable reason for the lower VAZ de-epoxidation-ratio of leaves with epiphytes. In spite of being shaded, leaves with epiphytes showed higher antioxidant levels, indicating that epiphytes trigger the production of ROS. Both ORAC and TEAC and also APX and DHAR activities were higher in leaves with epiphytes, indicating that this response was related with its presence. Malondialdehyde concentrations also suggest oxidative damage caused by epiphytes. We conclude that the epiphyte load causes oxidative stress in P. oceanica and the mechanisms to scavenge ROS were not completely effective to avoid cell damage.

  6. Metal-free oxidative olefination of primary amines with benzylic C-H bonds through direct deamination and C-H bond activation.

    Science.gov (United States)

    Gong, Liang; Xing, Li-Juan; Xu, Tong; Zhu, Xue-Ping; Zhou, Wen; Kang, Ning; Wang, Bin

    2014-09-14

    An oxidative olefination reaction between aliphatic primary amines and benzylic sp(3) C-H bonds has been achieved using N-bromosuccinimide as catalyst and tert-butyl hydroperoxide as oxidant. The olefination proceeds under mild metal-free conditions through direct deamination and benzylic C-H bond activation, and provides easy access to biologically active 2-styrylquinolines with (E)-configuration.

  7. Mathematical modeling of nitrous oxide production in an anaerobic/oxic/anoxic process.

    Science.gov (United States)

    Ding, Xiaoqian; Zhao, Jianqiang; Hu, Bo; Chen, Ying; Ge, Guanghuan; Li, Xiaoling; Wang, Sha; Gao, Kun; Tian, Xiaolei

    2016-12-01

    This study incorporates three currently known nitrous oxide (N 2 O) production pathways: ammonium-oxidizing bacteria (AOB) denitrification, incomplete hydroxylamine (NH 2 OH) oxidation, and heterotrophic denitrification on intracellular polymers, into a mathematical model to describe N 2 O production in an anaerobic/oxic/anoxic (AOA) process for the first time. The developed model was calibrated and validated by four experimental cases, then evaluated by two independent anaerobic/aerobic (AO) studies from literature. The modeling results displayed good agreement with the measured data. N 2 O was primarily generated in the aerobic stage by AOB denitrification (67.84-81.64%) in the AOA system. Smaller amounts of N 2 O were produced via incomplete NH 2 OH oxidation (15.61-32.17%) and heterotrophic denitrification on intracellular polymers (0-12.47%). The high nitrite inhibition on N 2 O reductase led to the increased N 2 O accumulation in heterotrophic denitrification on intracellular polymers. The new model was capable of modeling nitrification-denitrification dynamics and heterotrophic denitrification on intracellular polymers in the AOA system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. 17O NMR investigation of oxidative degradation in polymers under γ-irradiation

    International Nuclear Information System (INIS)

    ALAM, TODD M.; CELINA, MATHIAS C.; ASSINK, ROGER A.; CLOUGH, ROGER LEE; GILLEN, KENNETH T.

    2000-01-01

    The γ-irradiated-oxidation of pentacontane (C 50 H 102 ) and the polymer polyisoprene was investigated as a function of oxidation level using 17 O nuclear magnetic resonance (NMR) spectroscopy. It is demonstrated that by using 17 O labeled O 2 gas during the γ-irradiation process, details about the oxidative degradation mechanisms can be directly obtained from the analysis of the 17 O NMR spectra. Production of carboxylic acids is the primary oxygen-containing functionality during the oxidation of pentacontane, while ethers and alcohols are the dominant oxidation product observed for polyisoprene. The formation of ester species during the oxidation process is very minor for both materials, with water also being produced in significant amounts during the radiolytic oxidation of polyisoprene. The ability to focus on the oxidative component of the degradation process using 17 O NMR spectroscopy demonstrates the selectivity of this technique over more conventional approaches

  9. Comparison of descriptive sensory analysis and chemical analysis for oxidative changes in milk

    DEFF Research Database (Denmark)

    Hedegaard, R V; Kristensen, D; Nielsen, Jacob Holm

    2006-01-01

    and lipolytic changes occurring in the milk during chill storage for 4 d. Sensory analysis and chemical analysis showed high correlation between the typical descriptors for oxidation such as cardboard, metallic taste, and boiled milk and specific chemical markers for oxidation such as hexanal. Notably, primary......Oxidation in 3 types of bovine milk with different fatty acid profiles obtained through manipulation of feed was evaluated by analytical methods quantifying the content of potential antioxidants, the tendency of formation of free radicals, and the accumulation of primary and secondary oxidation...... products. The milk samples were evaluated in parallel by descriptive sensory analysis by a trained panel, and the correlation between the chemical analysis and the descriptive sensory analysis was evaluated. The fatty acid composition of the 3 types of milk was found to influence the oxidative...

  10. High production volume chemical Amine Oxide [C8-C20] category environmental risk assessment

    DEFF Research Database (Denmark)

    Sanderson, Hans; Tibazarwa, Caritas; Greggs, William

    2009-01-01

    and personal care products. Given the lack of persistence or bioaccumulation, and the low likelihood of these chemicals partitioning to soil, the focus of the environmental assessment is on the aquatic environment. In the United States, the E-FAST model is used to estimate effluent concentrations in the United......An environmental assessment of amine oxides has been conducted under the OECD SIDS High Production Volume (HPV) Program via the Global International Council of Chemical Associations (ICCA) Amine Oxides Consortium. Amine oxides are primarily used in conjunction with surfactants in cleaning...... States from manufacturing facilities and from municipal facilities resulting from consumer product uses. Reasonable worst-case ratios of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) range from 0.04 to 0.003, demonstrating that these chemicals are a low risk...

  11. Oxidative processes in power plant oils

    International Nuclear Information System (INIS)

    Forlerer, Elena; Zambrano, Debora N.

    2007-01-01

    This paper analyzes the chemical properties differences between thermal-oxidation and radioactive-oxidation in turbine oils in order to estimate the oils' Service Life. The oils were Turbine R type, provided by Repsol-YPF with only few additives such as: anti rust, antioxidant, anticorrosion and without viscosity index improvers. The oils were ISO 32 and ISO 68 grade -with viscosity index 95- and API (American Petroleum Institute) group I, due to its viscosity index (95), the percent of paraffinic component ( 0.03%). Different samples from the heavy water main pumps were collected with different service times and radiation fields during an Embalse NPP's outage. For comparison purposes oils from feedwater pumps systems that convey light water to the steam generators in the Turbine building -without radiation- were obtained. The properties studied by ASTM standards were: colour (visual inspection), Viscosity Index VI (ASTM D227/93), viscosity at 40 C degrees (ASTM D445/96) and Total Acid Number, TAN (ASTM D974-97). Oxidative degradation of base oils could be described by two successive mechanisms that allow the definition of two stages: Primary and Secondary Oxidation. Primary oxidation begins with the thermal generation of alkylation's reactions and acid products formation. Radiation damage operates by two mechanisms: scission and cross-linking. The first one generates free radicals of low molecular weight while the other one can build-up complex molecular networks with high or low solubility in the base oil. Moreover, radiation damage destroys additives molecules and generates colour centres different from oxidative colour modification. Due to scission and cross-linking alkyl group substitution in the aromatic rings are formed. Then, radiation acts as a precursor of Primary Oxidation. Both, thermal and radioactive, damage mechanisms can act simultaneously making the isolated analysis for each one very difficult. To manage it, a Relative Damage Index (RDI) has been

  12. Fission product release by fuel oxidation after water ingress

    International Nuclear Information System (INIS)

    Schreiber.

    1990-01-01

    On the basis of data obtained by a literature search, a computer code has been established for the calculation of the degree of oxidation of the fuel in the damaged fuel particles, and hence of the fission product release as a function of the time period of steam ingress. (orig.) [de

  13. Relationships between primary production and irradiance in coral reef algal communities

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Shallow water algal turf communities are the major primary producers on coral reefs. High rates of primary production are maintained despite extremely high light intensities and exposure to ultraviolet wavelengths. The relationships between the light intensity and primary production in these assemblages are typical of algae adapted to a high light environment [low α (initial slope), high I/sub k/ (saturating light intensity), and high I/sub c/ (compensation point light intensity)]. Seasonal variations in algal standing crop due to herbivory and daylength result in some characteristic photoadaptive changes in α I/sub k/, and I/sub c/ and changes in Pnet/sub max/ rates (maximum net photosynthetic rate achieved at light saturation) on both a chlorophyll α and an areal basis. Exposure to UV wavelength results in significantly higher respiration rates but no changes in α, Pnet/sub max/, or I/sub k/, when compared with these parameters for the same algal communities incubated at the same light intensities without UV wavelengths. The apparent lack of photoinhibition in these algae allows calculation of the daily integrated production from the P vs. I parameters. This integrated production is highest in July (3.1 +/- 0.2 g C m -2 d -1 ) and is reduced by 30% from this maximum in December (2.1 +/- 0.1 g C m -2 d -1 )

  14. Primary production in the Bay of Bengal during southwest monsoon of 1978

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A.; Devassy, V.P.; Radhakrishna, K.

    Measurements of primary production, chlorophyll a and particulate organic carbon were made at 33, 43 and 44 stations respectively during August-September of 1978. The average surface production, chlorophyll a and particulate organic carbon values...

  15. Inorganic carbon addition stimulates snow algae primary productivity

    Science.gov (United States)

    Hamilton, T. L.; Havig, J. R.

    2017-12-01

    Earth has experienced glacial/interglacial oscillations throughout its history. Today over 15 million square kilometers (5.8 million square miles) of Earth's land surface is covered in ice including glaciers, ice caps, and the ice sheets of Greenland and Antarctica, most of which are retreating as a consequence of increased atmospheric CO2. Glaciers are teeming with life and supraglacial snow and ice surfaces are often red due to blooms of photoautotrophic algae. Recent evidence suggests the red pigmentation, secondary carotenoids produced in part to thrive under high irradiation, lowers albedo and accelerates melt. However, there are relatively few studies that report the productivity of snow algae communities and the parameters that constrain their growth on snow and ice surfaces. Here, we demonstrate that snow algae primary productivity can be stimulated by the addition of inorganic carbon. We found an increase in light-dependent carbon assimilation in snow algae microcosms amended with increasing amounts of inorganic carbon. Our snow algae communities were dominated by typical cosmopolitan snow algae species recovered from Alpine and Arctic environments. The climate feedbacks necessary to enter and exit glacial/interglacial oscillations are poorly understood. Evidence and models agree that global Snowball events are accompanied by changes in atmospheric CO2 with increasing CO2 necessary for entering periods of interglacial time. Our results demonstrate a positive feedback between increased CO2 and snow algal productivity and presumably growth. With the recent call for bio-albedo effects to be considered in climate models, our results underscore the need for robust climate models to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO2.

  16. Recent Primary Production and Small Phytoplankton Contribution in the Yellow Sea during the Summer in 2016

    Science.gov (United States)

    Jang, Hyo Keun; Kang, Jae Jung; Lee, Jae Hyung; Kim, Myungjoon; Ahn, So Hyun; Jeong, Jin-Yong; Yun, Mi Sun; Han, In-Seong; Lee, Sang Heon

    2018-05-01

    The high nutrient concentration associated with the mixing dynamics of two warm and cold water masses supports high primary production in the Yellow Sea. Although various environmental changes have been reported, no recent information on small phytoplankton contribution to the total primary production as an important indicator for marine ecosystem changes is currently available in the Yellow Sea. The major objective of this study is to determine the small (values decades ago. The higher contributions of small phytoplankton to the total chlorophyll a concentration and primary production might be caused by P-limited conditions and this resulted in lower chlorophyll a concentration and total primary production in this study compared to previous studies.

  17. Ultrasensitive determination of DNA oxidation products by gas chromatography-tandem mass spectrometry and the role of antioxidants in the prevention of oxidative damage.

    Science.gov (United States)

    Dawbaa, Sam; Aybastıer, Önder; Demir, Cevdet

    2017-04-15

    Oxidative stress is considered as one of the significant causes of DNA damage which in turn contributes to cell death through a series of intermediate processes such as cancer formation, mutation, and aging. Natural sources such as plant and fruit products have provided us with interesting substances of antioxidant activity that could be recruited in protecting the genetic materials of the cells. This study is an effort to discover some of those antioxidants effects in their standard and natural forms by performing an ultrasensitive determination of the products of DNA oxidation using GC-MS/MS. Experiments were used to determine the direct antioxidant activity of the substances contained in the tendrils of Vitis vinifera (var. alphonse) by extracting them and achieving Folin-Ciocalteau and CHROMAC analyses to determine the total phenolic content (TPC) and the antioxidant capacity of the extract, respectively; results revealed a phenolic content of 11.39±0.30mg Gallic Acid Equivalent (GAE)/g of the plant's fresh weight (FW) by Folin-Ciocalteau and 8.17±0.49mg Trolox Equivalent (TE)/g FW by CHROMAC assays. The qualitative analysis of the plant extract by HPLC-DAD technique revealed that two flavonoid glycosides namely rutin and isoquercitrin in addition to chlorogenic acid were contained in the extract. The determination of the DNA oxidation products was performed after putting DNA, rutin and isoquercitrin standard samples with different concentration, and the extract's sample under oxidative stress. Eighteen DNA oxidation products were traced using GC-MS/MS with ultra-sensitivity and the experiments proved a significant decrease in the concentration of the DNA oxidation products when the extract was used as a protectant against the oxidative stress. It is believed by conclusion that the extract of V. vinifera's (var. alphonse) tendrils has a good antioxidant activity; hence it is recommended to be used as a part of the daily healthy food list if possible

  18. Ethanol generation, oxidation and energy production in a cooperative bioelectrochemical system.

    Science.gov (United States)

    Pagnoncelli, Kamila C; Pereira, Andressa R; Sedenho, Graziela C; Bertaglia, Thiago; Crespilho, Frank N

    2018-08-01

    Integrating in situ biofuel production and energy conversion into a single system ensures the production of more robust networks as well as more renewable technologies. For this purpose, identifying and developing new biocatalysts is crucial. Herein, is reported a bioelectrochemical system consisting of alcohol dehydrogenase (ADH) and Saccharomyces cerevisiae, wherein both function cooperatively for ethanol production and its bioelectrochemical oxidation. Here, it is shown that it is possible to produce ethanol and use it as a biofuel in a tandem manner. The strategy is to employ flexible carbon fibres (FCF) electrode that could adsorb both the enzyme and the yeast cells. Glucose is used as a substrate for the yeast for the production of ethanol, while the enzyme is used to catalyse the oxidation of ethanol to acetaldehyde. Regarding the generation of reliable electricity based on electrochemical systems, the biosystem proposed in this study operates at a low temperature and ethanol production is proportional to the generated current. With further optimisation of electrode design, we envision the use of the cooperative biofuel cell for energy conversion and management of organic compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Primary Productivity, SeaWiFS and Pathfinder, 0.1 degrees, Global, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from SeaWiFS Chl a, Pathfinder SST, and SeaWiFS PAR data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific...

  20. Solubility of simulated PWR primary circuit corrosion products

    International Nuclear Information System (INIS)

    Kunig, R.H.; Sandler, Y.L.

    1986-08-01

    The solubility behavior of non-stoichiometric nickel ferrites, nickel-cobalt ferrites, and magnetite, as model substances for the corrosion products (''crud'') formed in nuclear pressurized water reactors, was studied in a flow system in aqueous solutions of lithium hydroxide, boric acid, and hydrogen with pH, temperature, and hydrogen concentrations as parameters. Below the temperature region of 300 to 330 0 C, at hydrogen concentrations of 25 to 40 cm 3 /kg H 2 O as used during reactor operation, the solubility of nickel-cobalt ferrite is the same as that of Ni and Co/sub x/Fe/sub 3-x/O 4 (x 3 /kg of hydrogen, the equilibrium iron and nickel solubilities increase congruently down to about 100 0 C, in a manner consistent with the solubility of Fe 3 O 4 , but sharply decline at lower temperatures, apparently due to formation of a borated layer. A cooldown experiment on a time scale of a typical Westinghouse reactor shutdown, as well as static experiments carried out on various ferrite samples at 60 0 C show that after addition of oxygen or peroxide evolution of nickel (and possibly cobalt) above the equilibrium solubility in hydrogen depends on the presence of dissociation products prior to oxidation. Thermodynamic calculations of various reduction and oxidative decomposition reactions for stoichiometric and non-stoichiometric nickel ferrite and cobalt ferrite are presented. Their significance to evolutions of nickel and cobalt on reactor shutdown is discussed. 30 refs., 38 figs., 34 tabs

  1. Nitrous oxide production in grassland soils: assessing the contribution of nitrifier denitrification

    NARCIS (Netherlands)

    Wrage, N.; Velthof, G.L.; Laanbroek, H.J.; Oenema, O.

    2004-01-01

    Nitrifier denitrification is the reduction of NO2- to N2 by nitrifiers. It leads to the production of the greenhouse gas nitrous oxide (N2O) as an intermediate and possible end product. It is not known how important nitrifier denitrification is for the production of N2O in soils. We explored N2O

  2. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary and secondary ambient air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section 50.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL...

  3. Electrochemical intercalation of lithium into polypyrrole/silver vanadium oxide composite used for lithium primary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Won; Popov, Branko N. [Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2006-10-20

    Hybrid composites of polypyrrole (PPy) and silver vanadium oxide (SVO) used for lithium primary batteries were chemically synthesized by an oxidative polymerization of pyrrole monomer on the SVO surface in an acidic medium. The composite electrode exhibited higher discharge capacity and better rate capability as compared with the pristine SVO electrode. The improvement in electrochemical performance of the composite electrode was due to PPy which accommodates lithium ions and also enhances the SVO utilization. Chronoamperometric and ac-impedance measurements indicated that lithium intercalation proceeds under the mixed control by interfacial charge transfer and diffusion. The enhanced SVO utilization in the composite electrode results from a facilitated kinetics of interfacial charge transfer in the presence of PPy. (author)

  4. Electrochemical intercalation of lithium into polypyrrole/silver vanadium oxide composite used for lithium primary batteries

    Science.gov (United States)

    Lee, Jong-Won; Popov, Branko N.

    Hybrid composites of polypyrrole (PPy) and silver vanadium oxide (SVO) used for lithium primary batteries were chemically synthesized by an oxidative polymerization of pyrrole monomer on the SVO surface in an acidic medium. The composite electrode exhibited higher discharge capacity and better rate capability as compared with the pristine SVO electrode. The improvement in electrochemical performance of the composite electrode was due to PPy which accommodates lithium ions and also enhances the SVO utilization. Chronoamperometric and ac-impedance measurements indicated that lithium intercalation proceeds under the mixed control by interfacial charge transfer and diffusion. The enhanced SVO utilization in the composite electrode results from a facilitated kinetics of interfacial charge transfer in the presence of PPy.

  5. Oxidative stability of krill oil (Euphausia superba)

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Jacobsen, Charlotte; Bruheim, I.

    Krill oil has been reported in many studies to have high oxidative stability when evaluated by peroxide value (PV) and anisidine value (AV). However, recent studies have shown that other compounds than primary and secondary oxidation products are formed when krill oil is exposed to oxidative...... conditions. These compounds include Strecker degradation compounds and pyrroles. Some of these compounds may have antioxidative effect. Commercial scale processing of krill prior to extraction may affect the oxidative stability of krill oil. Therefore, the main objective of this study was to compare lipid...... oxidation in krill oil produced in a commercial process and krill oil carefully extracted from frozen krill in the laboratory. Krill oil was incubated at different temperatures (20, 30 and 40 oC) for 1, 2, 3, 4 and 6 weeks, under conditions of constant stirring while being exposed to air. The oxidative...

  6. Effects of solid fission products forming dissolved oxide (Nd) and metallic precipitate (Ru) on the thermal conductivity of uranium base oxide fuel

    International Nuclear Information System (INIS)

    Kim, Dong-Joo; Yang, Jae-Ho; Kim, Jong-Hun; Rhee, Young-Woo; Kang, Ki-Won; Kim, Keon-Sik; Song, Kun-Woo

    2007-01-01

    The effects of solid fission products on the thermal conductivity of uranium base oxide nuclear fuel were experimentally investigated. Neodymium (Nd) and ruthenium (Ru) were added to represent the physical states of solid fission products such as 'dissolved oxide' and 'metallic precipitate', respectively. Thermal conductivity was determined on the basis of the thermal diffusivity, density and specific heat values. The effects of the additives on the thermal conductivity were quantified in the form of the thermal resistivity equation - the reciprocal of the phonon conduction equation - which was determined from the measured data. It is concluded that the thermal conductivity of the irradiated nuclear fuel is affected by both the 'dissolved oxide' and the 'metallic precipitate', however, the effects are in the opposite direction and the 'dissolved oxide' influences the thermal conductivity more significantly than that of the 'metallic precipitate'

  7. Formation and occurrence of dimer esters of pinene oxidation products in atmospheric aerosols

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Enggrob, Kirsten L.; King, S. M.

    2013-01-01

    products cis-pinic and terpenylic acids, but similar to the second-generation oxidation products 3-methyl-1,2,3-butane tricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). Dimer esters were observed within the first 30 min, indicating rapid production simultaneous to their structural...

  8. Anoxic and oxic phototrophic primary production during the Precambrian

    DEFF Research Database (Denmark)

    Ebey-Honeycutt, Christina Marie; Bjerrum, Christian J.; Canfield, Donald Eugene

    2009-01-01

    of the mixed layer often lies above the base of the photic zone . Thus, an ecosystem model for the Precambrian should reflect the net primary production (NPP) of oxygenic phototrophs in the mixed layer and anoxygenic phototrophs below (NPPox and NPPred, respectively). Satelite data and a vertically generalized...

  9. Effects of PbO on the oxide films of incoloy 800HT in simulated primary circuit of PWR

    International Nuclear Information System (INIS)

    Tan, Yu; Yang, Junhan; Wang, Wanwan; Shi, Rongxue; Liang, Kexin; Zhang, Shenghan

    2016-01-01

    Effects of trace PbO on oxide films of Incoloy 800HT were investigated in simulated primary circuit water chemistry of PWR, also with proper Co addition. The trace PbO addition in high temperature water blocked the protective spinel oxides formation of the oxide films of Incoloy 800HT. XPS results indicated that the lead, added as PbO into the high temperature water, shows not only +2 valance but also +4 and 0 valances in the oxide film of 800HT co-operated with Fe, Cr and Ni to form oxides films. Potentiodynamic polarization results indicated that as PbO concentration increased, the current densities of the less protective oxide films of Incoloy 800HT decreased in a buffer solution tested at room temperature. The capacitance results indicated that the donor densities of oxidation film of Incoloy 800HT decreased as trace PbO addition into the high temperature water. - Highlights: • Trace PbO addition into the high temperature water block the formation of spinel oxides on Incoloy 800HT. • The donor density of oxide film decreases with trace PbO addition. • The current density of potentiodynamic polarization decreases of oxide film with trace PbO addition.

  10. HPLC Separation of Vitamin E and Its Oxidation Products and Effects of Oxidized Tocotrienols on the Viability of MCF-7 Breast Cancer Cells in Vitro.

    Science.gov (United States)

    Drotleff, Astrid M; Büsing, Anne; Willenberg, Ina; Empl, Michael T; Steinberg, Pablo; Ternes, Waldemar

    2015-10-14

    Tocotrienols, a vitamin E subgroup, exert potent anticancer effects, but easily degrade due to oxidation. Eight vitamin E reference compounds, α-, β-, γ-, or δ-tocopherols or -tocotrienols, were thermally oxidized in n-hexane. The corresponding predominantly dimeric oxidation products were separated from the parent compounds by diol-modified normal-phase HPLC-UV and characterized by mass spectroscopy. The composition of test compounds, that is, α-tocotrienol, γ-tocotrienol, or palm tocotrienol-rich fraction (TRF), before and after thermal oxidation was determined by HPLC-DAD, and MCF-7 cells were treated with both nonoxidized and oxidized test compounds for 72 h. Whereas all nonoxidized test compounds (0-100 μM) led to dose-dependent decreases in cell viability, equimolar oxidized α-tocotrienol had a weaker effect, and oxidized TRF had no such effect. However, the IC50 value of oxidized γ-tocotrienol was lower (85 μM) than that of nonoxidized γ-tocotrienol (134 μM), thereby suggesting that γ-tocotrienol oxidation products are able to reduce tumor cell viability in vitro.

  11. The degradation of lining of rotary furnaces in the production of zinc oxide

    OpenAIRE

    Natália Luptáková; Evgeniy Anisimov; Františka Pešlová

    2014-01-01

    This paper is closely connected with the complex problem of degradation relating to the refractories of rotary furnace linings in the production of zinc oxide. Zinc oxide can be produced by variety of ways, but the most common method of production which is used in Europe is indirect, i.e. pyrolytic combustion of zinc. This method is also called "French process" of manufacturing ZnO. But this mentioned method of preparation leads to the creation of the enormous amount of zinc slag including ch...

  12. Interview and questionnaire guide: Quantification of food losses and waste in primary production

    DEFF Research Database (Denmark)

    Svanes, Erik; Hartikainen, Hanna; Mogensen, Lisbeth

    production in the Nordic countries. Other aims were to estimate the amount of side flow and to gain knowledge about the reasons behind it, how it can be reduced, how it is treated and how it can be better utilized.This guide contains a catalogue of questions that may be used for interviews and questionnaires...... with primary producers and other stakeholders within primary production. It also contains the justification behind the questions and some tips on how to conduct interviews.......This interview guide was developed within the Nordic project “Food losses and waste in primary production” (Franke et al. 2016). One of the main purposes of the project was to test research methods for the quantification of food losses and waste (in the project called 'side flow') from primary...

  13. Corrosion Behavior and Oxide Properties of Zr-Nb-Cu and Zr-Nb-Sn Alloy in High Dissolved Hydrogen Primary Water Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Ju; Kim, Tae Ho; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    The water-metal interface is regarded as rate-controlling site governing the rapid oxidation transition in high burn-up fuel. And the zirconium oxide is made in water-metal interface and its structure and phase do an important role in terms of oxide properties. During oxidation process, the protective tetragonal oxide layer develops at the interface due to accumulated high stress during oxide growth, and it turns into non-protective monoclinic oxide with increasing oxide thickness, thus decreasing the stress. It has been reported that Nb addition was proven to be very beneficial for increasing the corrosion resistance of the zirconium alloys. From a more recent study, Cu addition in Nb containing Zirconium alloy was reported to be effective for increasing corrosion resistance in water containing B and Li. According to the previous research conducted, Zr-Nb-Cu shows better corrosion resistance than Zircaloy-4. The dissolved hydrogen (DH) concentration is the key issue of primary water chemistry, and the effect of DH concentration on the corrosion rate of nickel based alloy has been researched. However, the effect of DH on the zirconium alloy corrosion mechanism was not fully investigated. In this study, the weight gain measurement, FIB-SEM analysis, and Raman spectroscopic measurement were conducted to investigate the effects of dissolved hydrogen concentration and the chemical composition on the corrosion resistance and oxide phase of Zr-Nb-Cu alloy and Zr-Nb-Sn alloy after oxidizing in a primary water environment for 20 d. The corrosion rate of Zr-Nb-Cu alloy is slow, when it is compared to Zr-Nb-Sn alloy. In SEM images, the oxide thickness of Zr-Nb-Cu alloy is measured to be around 1.06 μm it of Zr-Nb-Sn alloy is measured to be 1.15 μm. It is because of the Segregation made by Sn solute element when Sn solute element oxidized. And according to ex situ Raman spectra, Zr-Nb-Cu alloy oxide has more tetragonal zirconium oxide fraction than Zr-Nb-Sn alloy oxide.

  14. Effect of the fast pyrolysis temperature on the primary and secondary products of lignin

    NARCIS (Netherlands)

    Zhou, Shuai; Garcia-Perez, Manuel; Pecha, Brennan; Kersten, Sascha R.A.; McDonald, Armando G.; Westerhof, Roel Johannes Maria

    2013-01-01

    This paper presents results on the primary pyrolysis products of organosolv lignin at temperatures between 360 and 700 °C. To study the primary products, a vacuum screen heater (heating rate of 8000 °C/s, deep vacuum of 0.7 mbar, and very fast cooling at the wall temperature of −100 °C) was used.

  15. Primary water chemistry for NPP with VVER-TOI

    International Nuclear Information System (INIS)

    Susakin, S.N.; Brykov, S.I.; Zadonsky, N.V.; Bystrova, O.S.

    2012-09-01

    Nowadays within the framework of development of the nuclear power industry in Russia the VVER-TOI reactor is under designing (Standard optimized design). The given design provides for improvement of operation safety level, of technical-economic, operational and load-follow characteristics, and for the raise of competitive capacity of reactor plant and NPP as a whole. In VVER-TOI reactor plant design the primary water chemistry has been improved considering operation experience of VVER reactor plants and a possibility of RP operation under load-follow modes from the viewpoint of meeting the following requirements: - suppression of generation of oxidizing radiolytic products under power operation; - assurance of corrosion resistance of structural materials of equipment and pipelines throughout the NPP design service life; - minimization of deposits on surfaces of the reactor core fuel rods and on heat exchange surface of steam generators; - minimization of accumulation of activated corrosion products; - minimization of the amount of radioactive processing waste. In meeting these requirements an important role is devoted to suppression of generation of oxidizing radiolytic products owing to accumulation of hydrogen in the primary coolant. At NPP with VVER-1000 reactor the ammonia-potassium water chemistry is used wherein the hydrogen accumulation is provided at the expense of ammonia proportioning. Usage of ammonia leads to generation of additional amount of radioactive processing waste and to increased irregularity of maintaining the water chemistry under the daily load-follow modes. In VVER TOI design the primary water chemistry is improved by replacing the proportioning of ammonia with the proportioning of gaseous hydrogen. Different process schemes were considered that provide for a possibility of hydrogen accumulation and maintaining owing to direct proportioning of gaseous hydrogen. The obtained results showed that transition to the potassium water chemistry

  16. Oxidation of cashew tree gum exudate polysaccharide with TEMPO reagent

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Pablyana L.R.; Maciel, Jeanny S.; Paula, Regina C.M. de; Feitosa, Judith P.A. [Universidade Federal do Ceara, Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica; Sierakowski, Maria Rita [Universidade Federal do Parana, Curitiba, PR (Brazil). Dept. de Quimica]. E-mail: judith@dqoi.ufc.br

    2007-07-01

    Cashew gum (CG), an exudate polysaccharide from Anacardium occidentale trees, was oxidized with TEMPO reagent and the product (CGOX) characterized by spectroscopic techniques (FTIR and NMR), chromatographic analyses (HPLC and GPC), viscosity measurements and thermal analysis (TGA). The yield of the reaction product was 96%. The uronic acid content in starting gum (7.2 m%) was increased to 36 m%. The degree of oxidation based on free galactose and glucose units was 68%. NMR data show that oxidation occurred preferentially at primary carbons of galactose units. High degradation degree after oxidation was estimated by the difference on the expected and observed {eta}{sub CGOX}/{eta}{sub CG} ratio. The presence of organic and inorganic impurities in the new polyelectrolyte was detected by TGA. A less thermally stable cashew gum is formed after the oxidation with TEMPO based on initial decomposition temperature and IPDT. (author)

  17. Tandem Oxidative Derivatization of Nitrene Insertion Products for the Highly Diastereoselective Synthesis of 1,3-aminoalcohols.

    Science.gov (United States)

    Alderson, Juliet M; Schomaker, Jennifer M

    2017-06-27

    Transition-metal-catalyzed nitrene insertion into tertiary C-H bonds located at stereogenic carbons often results in mixtures of diastereomeric products, especially if the reaction proceeds through a concerted pathway. In this communication, we report a solution to this problem that invokes a one-pot, silver-catalyzed C-H nitrene transfer reaction. Nitrene insertion is followed by facile oxidation of the amine to an imine and nucleophilic addition to furnish α-tertiary amine 1,3-aminoalcohol products in high diastereoselectivities. The silver catalyst, PhIO oxidant, and TEMPO additive are crucial to success in this unusual oxidation, which is proposed to occur via hydrogen-atom abstraction from pre-activation of the initial nitrene insertion product by additional oxidant. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The impact of respiration and oxidative stress response on recombinant α-amylase production by Saccharomyces cerevisiae.

    Science.gov (United States)

    Martínez, José L; Meza, Eugenio; Petranovic, Dina; Nielsen, Jens

    2016-12-01

    Studying protein production is important for fundamental research on cell biology and applied research for biotechnology. Yeast Saccharomyces cerevisiae is an attractive workhorse for production of recombinant proteins as it does not secrete many endogenous proteins and it is therefore easy to purify a secreted product. However, recombinant production at high rates represents a significant metabolic burden for the yeast cells, which results in oxidative stress and ultimately affects the protein production capacity. Here we describe a method to reduce the overall oxidative stress by overexpressing the endogenous HAP1 gene in a S. cerevisiae strain overproducing recombinant α-amylase. We demonstrate how Hap1p can activate a set of oxidative stress response genes and meanwhile contribute to increase the metabolic rate of the yeast strains, therefore mitigating the negative effect of the ROS accumulation associated to protein folding and hence increasing the production capacity during batch fermentations.

  19. Variation of phytoplankton biomass and primary production in Daya Bay during spring and summer

    International Nuclear Information System (INIS)

    Song Xingyu; Huang Liangmin; Zhang Jianlin; Huang, Xiaoping; Zhang Junbin; Yin Jianqiang; Tan Yehui; Liu Sheng

    2004-01-01

    Environmental factors, phytoplankton biomass (Chl a) and primary production of two water areas in Daya Bay (Dapeng'ao Bay and Aotou Bay) were investigated during the transition period from spring to summer. Chl a ranged from 3.20 to 13.62 and 13.43 to 26.49 mg m -3 in Dapeng'ao Bay and Aotou Bay respectively, if data obtained during red tides are excluded. Primary production varied between 239.7 and 1001.4 mgC m -2 d -1 in Dapeng'ao Bay. The regional distribution of Chl a and primary production were mostly consistent from spring to summer in both bays. Seasonal transition characters have been found in Daya Bay from spring to summer, including high values of DO, nitrate and silicate. Size structures of phytoplankton and its primary production do not change very much from spring to summer, with micro-phytoplankton dominating and contributing about 50% of the whole. In Daya Bay, phytoplankton is limited by nitrogen in spring, and by phosphate in summer. Artificial impacts are evident from high temperature effluent from nuclear power stations, aquaculture and sewage. During the investigation, a red tide occurred in Aotou Bay, with a maximum Chl a of 103.23 mg m -3 at surface and primary production of 2721.9 mgC m -2 d -1 in the red tide center. Raised water temperature and nutrient supply from land-sources help to stimulate annual red tides

  20. The degradation of lining of rotary furnaces in the production of zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Pešlová, F.; Anisimov, E.

    2014-01-01

    Roč. 21, č. 3 (2014), s. 116-121 ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : zinc oxide * the production of zinc oxide * zinc slag * refractories * the degradation of rotary furnace linings Subject RIV: JG - Metallurgy http://ojs.mateng.sk/index.php/Mateng/article/view/133/194

  1. Effect of nanoparticles binding ß-amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages

    Directory of Open Access Journals (Sweden)

    Orlando A

    2013-04-01

    Full Text Available Antonina Orlando,1 Francesca Re,1 Silvia Sesana,1 Ilaria Rivolta,1 Alice Panariti,1 Davide Brambilla,2 Julien Nicolas,2 Patrick Couvreur,2 Karine Andrieux,2 Massimo Masserini,1 Emanuela Cazzaniga1 1Department of Health Sciences, University of Milano-Bicocca, Monza, Italy; 2Institut Galien Paris Sud, University Paris-Sud, Châtenay-Malabry, France Background: As part of a project designing nanoparticles for the treatment of Alzheimer’s disease, we have synthesized and characterized a small library of nanoparticles binding with high affinity to the β-amyloid peptide and showing features of biocompatibility in vitro, which are important properties for administration in vivo. In this study, we focused on biocompatibility issues, evaluating production of nitric oxide by cultured human umbilical vein endothelial cells and macrophages, used as models of cells which would be exposed to nanoparticles after systemic administration. Methods: The nanoparticles tested were liposomes and solid lipid nanoparticles carrying phosphatidic acid or cardiolipin, and PEGylated poly(alkyl cyanoacrylate nanoparticles (PEG-PACA. We measured nitric oxide production using the Griess method as well as phosphorylation of endothelial nitric oxide synthase and intracellular free calcium, which are biochemically related to nitric oxide production. MTT viability tests and caspase-3 detection were also undertaken. Results: Exposure to liposomes did not affect the viability of endothelial cells at any concentration tested. Increased production of nitric oxide was detected only with liposomes carrying phosphatidic acid or cardiolipin at the highest concentration (120 µg/mL, together with increased synthase phosphorylation and intracellular calcium levels. Macrophages exposed to liposomes showed a slightly dose-dependent decrease in viability, with no increase in production of nitric oxide. Exposure to solid lipid nanoparticles carrying phosphatidic acid decreased viability in

  2. Mesoporous Niobium Oxide Spheres as an Effective Catalyst for the Transamidation of Primary Amides with Amines

    KAUST Repository

    Ghosh, Subhash Chandra; Li, Cheng Chao; Zeng, Hua Chun; Ngiam, Joyce S Y; Seayad, Abdul M.; Chen, Anqi

    2014-01-01

    Mesoporous niobium oxide spheres (MNOS), conveniently prepared by a novel antisolvent precipitation approach, have been shown to be an effective catalyst for the transamidation of primary amides with amines. This novel transamidation can be efficiently carried out under solvent-free conditions and is applicable to a wide range of primary amides and amines to provide N-alkyl amides in good to excellent yields. The catalyst is highly stable and reusable. The application of this transamidation reaction has been demonstrated in the synthesis of antidepressant drug moclobemide and other druglike compounds. © 2014 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  3. Mesoporous Niobium Oxide Spheres as an Effective Catalyst for the Transamidation of Primary Amides with Amines

    KAUST Repository

    Ghosh, Subhash Chandra

    2014-02-06

    Mesoporous niobium oxide spheres (MNOS), conveniently prepared by a novel antisolvent precipitation approach, have been shown to be an effective catalyst for the transamidation of primary amides with amines. This novel transamidation can be efficiently carried out under solvent-free conditions and is applicable to a wide range of primary amides and amines to provide N-alkyl amides in good to excellent yields. The catalyst is highly stable and reusable. The application of this transamidation reaction has been demonstrated in the synthesis of antidepressant drug moclobemide and other druglike compounds. © 2014 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  4. Oxidant production and SOD1 protein expression in single skeletal myofibers from Down syndrome mice

    Directory of Open Access Journals (Sweden)

    Patrick M. Cowley

    2017-10-01

    Full Text Available Down syndrome (DS is a genetic condition caused by the triplication of chromosome 21. Persons with DS exhibit pronounced muscle weakness, which also occurs in the Ts65Dn mouse model of DS. Oxidative stress is thought to be an underlying factor in the development of DS-related pathologies including muscle dysfunction. High-levels of oxidative stress have been attributed to triplication and elevated expression of superoxide dismutase 1 (SOD1; a gene located on chromosome 21. The elevated expression of SOD1 is postulated to increase production of hydrogen peroxide and cause oxidative injury and cell death. However, it is unknown whether SOD1 protein expression is associated with greater oxidant production in skeletal muscle from Ts65Dn mice. Thus, our objective was to assess levels of SOD1 expression and oxidant production in skeletal myofibers from the flexor digitorum brevis obtained from Ts65Dn and control mice. Measurements of oxidant production were obtained from myofibers loaded with 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA in the basal state and following 15 min of stimulated unloaded contraction. Ts65Dn myofibers exhibited a significant decrease in basal DCF emissions (p 0.05. Myofibers from Ts65Dn mice tended to be smaller and myonuclear domain was lower (p < 0.05. In summary, myofibers from Ts65Dn mice exhibited decreased basal DCF emissions that were coupled with elevated protein expression of SOD1. Stimulated contraction in isolated myofibers did not affect DCF emissions in either group. These findings suggest the skeletal muscle dysfunction in the adult Ts65Dn mouse is not associated with skeletal muscle oxidative stress.

  5. Primary production, nutrient dynamics and mineralisation in a northeastern Greenland fjord during the summer thaw

    DEFF Research Database (Denmark)

    Rysgaard, S.; Finster, K.; Dahlgaard, H.

    1996-01-01

    This investigation represents the first integrated study of primary production, nutrient dynamics and mineralisation in a northeastern fjord of Greenland. The data presented represent conditions and activities during the early summer thaw (first 2 weeks of July). Primary production (5.3 mmol C m(...

  6. Cholesterol oxidation in meat products and its regulation by supplementation of sodium nitrite and apple polyphenol before processing.

    Science.gov (United States)

    Osada, K; Hoshina, S; Nakamura, S; Sugano, M

    2000-09-01

    The levels of cholesterol oxidation derivatives (OxChol) in eight commercial species of meat products were examined. These products contained more than 1 mg/100 g of OxChol, and 7beta-hydroxycholesterol + 5beta-epoxycholesterol (111-1092 microg/100 g), 5alpha-epoxycholesterol (80-712 microg/100 g), cholestanetriol (0-368 microg/100 g), and 7-ketocholesterol (708-1204 microg/100 g) were detected. To know the interaction of sodium nitrite supplementation against cholesterol oxidation in meat products, sausage was produced with or without varying levels of sodium nitrite and stored in the refrigerator for 15 days. As a result, cholesterol oxidation in sausage was inhibited by addition of sodium nitrite in a dose-dependent manner. This observation may be associated with inactivation of O(2)(-) radical and stabilization of polyunsaturated fatty acids (PUFAs). In fact, the levels of OxChol in sausage increased, accompanying the decrease of coexisting linoleic acid when sodium nitrite was not added to sausage meat. Thus, cholesterol oxidation in meat products seems to be considarably promoted by the oxidation of coexisting PUFAs. On the other hand, additive apple polyphenol also inhibited linoleic acid oxidation in sausage and then suppressed cholesterol oxidation through its radical scavenging effects. Therefore, apple polyphenol, having a large amount of an oligomer of catechin, may interfere with cholesterol oxidation in meat processing or storage of meat products through its antioxidative action and be useful as a new antioxitant for meat products when it is added to the original meat before processing.

  7. Combined constraints on global ocean primary production using observations and models

    Science.gov (United States)

    Buitenhuis, Erik T.; Hashioka, Taketo; Quéré, Corinne Le

    2013-09-01

    production is at the base of the marine food web and plays a central role for global biogeochemical cycles. Yet global ocean primary production is known to only a factor of 2, with previous estimates ranging from 38 to 65 Pg C yr-1 and no formal uncertainty analysis. Here, we present an improved global ocean biogeochemistry model that includes a mechanistic representation of photosynthesis and a new observational database of net primary production (NPP) in the ocean. We combine the model and observations to constrain particulate NPP in the ocean with statistical metrics. The PlankTOM5.3 model includes a new photosynthesis formulation with a dynamic representation of iron-light colimitation, which leads to a considerable improvement of the interannual variability of surface chlorophyll. The database includes a consistent set of 50,050 measurements of 14C primary production. The model best reproduces observations when global NPP is 58 ± 7 Pg C yr-1, with a most probable value of 56 Pg C yr-1. The most probable value is robust to the model used. The uncertainty represents 95% confidence intervals. It considers all random errors in the model and observations, but not potential biases in the observations. We show that tropical regions (23°S-23°N) contribute half of the global NPP, while NPPs in the Northern and Southern Hemispheres are approximately equal in spite of the larger ocean area in the South.

  8. Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples

    OpenAIRE

    Kester, R.A.; Boer, W. de; Laanbroek, H.J.

    1996-01-01

    The contribution of nitrifiers and denitrifiers to the nitrous oxide production in slurries of calcareous silt loam and river bank sediment at different oxygen concentrations was determined using acetylene as nitrification inhibitor. The addition of 10 Pa acetylene resulted in inhibition of nitrous oxide production at oxic conditions, but strongly enhanced the nitrous oxide production at oxygen-poor and anoxic conditions. Inhibition of nitrification by short exposure (1 to 24 h) to high conce...

  9. Micro-phytoplankton photosynthesis, primary production and potential export production in the Atlantic Ocean

    Science.gov (United States)

    Tilstone, Gavin H.; Lange, Priscila K.; Misra, Ankita; Brewin, Robert J. W.; Cain, Terry

    2017-11-01

    Micro-phytoplankton is the >20 μm component of the phytoplankton community and plays a major role in the global ocean carbon pump, through the sequestering of anthropogenic CO2 and export of organic carbon to the deep ocean. To evaluate the global impact of the marine carbon cycle, quantification of micro-phytoplankton primary production is paramount. In this paper we use both in situ data and a satellite model to estimate the contribution of micro-phytoplankton to total primary production (PP) in the Atlantic Ocean. From 1995 to 2013, 940 measurements of primary production were made at 258 sites on 23 Atlantic Meridional Transect Cruises from the United Kingdom to the South African or Patagonian Shelf. Micro-phytoplankton primary production was highest in the South Subtropical Convergence (SSTC ∼ 409 ± 720 mg C m-2 d-1), where it contributed between 38 % of the total PP, and was lowest in the North Atlantic Gyre province (NATL ∼ 37 ± 27 mg C m-2 d-1), where it represented 18 % of the total PP. Size-fractionated photosynthesis-irradiance (PE) parameters measured on AMT22 and 23 showed that micro-phytoplankton had the highest maximum photosynthetic rate (PmB) (∼5 mg C (mg Chl a)-1 h-1) followed by nano- (∼4 mg C (mg Chl a)-1 h-1) and pico- (∼2 mg C (mg Chl a)-1 h-1). The highest PmB was recorded in the NATL and lowest in the North Atlantic Drift Region (NADR) and South Atlantic Gyre (SATL). The PE parameters were used to parameterise a remote sensing model of size-fractionated PP, which explained 84 % of the micro-phytoplankton in situ PP variability with a regression slope close to 1. The model was applied to the SeaWiFS time series from 1998-2010, which illustrated that micro-phytoplankton PP remained constant in the NADR, NATL, Canary Current Coastal upwelling (CNRY), Eastern Tropical Atlantic (ETRA), Western Tropical Atlantic (WTRA) and SATL, but showed a gradual increase in the Benguela Upwelling zone (BENG) and South Subtropical Convergence (SSTC

  10. The effect of lipid peroxidation products on reactive oxygen species formation and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Ambrozova, Gabriela; Pekarova, Michaela; Lojek, Antonin

    2011-02-01

    Lipid peroxidation induced by oxidants leads to the formation of highly reactive metabolites. These can affect various immune functions, including reactive oxygen species (ROS) and nitric oxide (NO) production. The aim of the present study was to investigate the effects of lipid peroxidation products (LPPs) - acrolein, 4-hydroxynonenal, and malondialdehyde - on ROS and NO production in RAW 264.7 macrophages and to compare these effects with the cytotoxic properties of LPPs. Macrophages were stimulated with lipopolysaccharide (0.1 μg/ml) and treated with selected LPPs (concentration range: 0.1-100 μM). ATP test, luminol-enhanced chemiluminescence, Griess reaction, Western blotting analysis, amperometric and total peroxyl radical-trapping antioxidant parameter assay were used for determining the LPPs cytotoxicity, ROS and NO production, inducible nitric oxide synthase expression, NO scavenging, and antioxidant properties of LPPs, respectively. Our study shows that the cytotoxic action of acrolein and 4-hydroxynonenal works in a dose- and time-dependent manner. Further, our results imply that acrolein, 4-hydroxynonenal, and malondialdehyde can inhibit, to a different degree, ROS and NO production in stimulated macrophages, partially independently of their toxic effect. Also, changes in enzymatic pathways (especially NADPH-oxidase and nitric oxide synthase inhibition) and NO scavenging properties are included in the downregulation of reactive species formation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Primary and secondary oxidative stress in Bacillus

    NARCIS (Netherlands)

    Mols, Maarten; Abee, Tjakko

    Coping with oxidative stress originating from oxidizing compounds or reactive oxygen species (ROS), associated with the exposure to agents that cause environmental stresses, is one of the prerequisites for an aerobic lifestyle of Bacillus spp. such as B. subtilis, B. cereus and B. anthracis. This

  12. Primary and secondary oxidative stress in Bacillus

    NARCIS (Netherlands)

    Mols, J.M.; Abee, T.

    2011-01-01

    Coping with oxidative stress originating from oxidizing compounds or reactive oxygen species (ROS), associated with the exposure to agents that cause environmental stresses, is one of the prerequisites for an aerobic lifestyle of Bacillus spp. such as B. subtilis, B. cereus and B. anthracis. This

  13. Primary production in a shallow water lake with special reference to a reed swamp

    International Nuclear Information System (INIS)

    Andersen, F.Oe.

    1976-01-01

    Phytoplankton gross primary production ( 14 C method) in the shallow, eutrophic Danish Lake Arresoe in 1973 was 980 g C m -2 . Calculated net primary production was near zero. Macrophyte net primary production was measured by harvesting the maximum biomass, and above ground values were between 420 and 1325 g ash free dry wt m -2 , while below ground values were between 2480 and 8570 g ash free dry wt m -2 . The reed swamps were mapped on aerial photographs, and the composition of the macrophyte vegetation was determined. A comparison of macrophyte vegetation in 1944 and 1972 showed a reduction in species diversity, especially of submerged species. The seasonal variations in physical and chemical data indicated strong eutrophication in Arresoe. (author)

  14. Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Nam Kyu; Lee, Bongsoo; Choi, Gang-Guk; Moon, Myounghoon; Park, Min S.; Yang, Ji-Won [Daejeon, Daejeon (Korea, Republic of); Lim, JitKang [Universiti Sains Malaysia, Penang (Malaysia)

    2014-05-15

    Ability to increase the lipid production in microalgae is one of the heavily sought-after ideas to improve the economic feasibility of microalgae-derived transportation fuels for commercial applications. We used the oxidative stress by TiO{sub 2} nanoparticles, a well-known photocatalyst, to induce lipid production in microalgae. Chlorella vulgaris UTEX 265 was cultivated under various concentrations of TiO{sub 2} ranging from 0.1 to 5 g/L under UV-A illumination. Maximum specific growth rate was affected in responding to TiO{sub 2} concentrations. In the presence of UV-A, chlorophyll concentration was decreased at the highest concentration of TiO{sub 2} (5 g/L TiO{sub 2}) by oxidative stress. The fatty acid methyl ester (FAME) composition analysis suggested that oxidative stress causes the accumulation and decomposition of lipids. The highest FAME productivity was 18.2 g/L/d under low concentrations of TiO{sub 2} (0.1 g/L) and a short induction time (two days). The controlled condition of TiO{sub 2}/UV-A inducing oxidative stress (0.1 g/L TiO{sub 2} and two days induction) could be used to increase the lipid productivity of C. vulgaris UTEX 265. Our results show the possibility of modulating the lipid induction process through oxidative stress with TiO{sub 2}/UV-A.

  15. Electrochemical characterisation of solid oxide cell electrodes for hydrogen production

    DEFF Research Database (Denmark)

    Bernuy-Lopez, Carlos; Knibbe, Ruth; He, Zeming

    2011-01-01

    Oxygen electrodes and steam electrodes are designed and tested to develop improved solid oxide electrolysis cells for H2 production with the cell support on the oxygen electrode. The electrode performance is evaluated by impedance spectroscopy testing of symmetric cells at open circuit voltage (OCV...

  16. Piper sarmentosum increases nitric oxide production in oxidative stress: a study on human umbilical vein endothelial cells.

    Science.gov (United States)

    Ugusman, Azizah; Zakaria, Zaiton; Hui, Chua Kien; Nordin, Nor Anita Megat Mohd

    2010-07-01

    Nitric oxide produced by endothelial nitric oxide synthase (eNOS) possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs). HUVECS WERE DIVIDED INTO FOUR GROUPS: control, treatment with 180 microM hydrogen peroxide (H(2)O(2)), treatment with 150 microg/mL aqueous extract of Piper sarmentosum, and concomitant treatment with aqueous extract of PS and H(2)O(2) for 24 hours. Subsequently, HUVECs were harvested and eNOS mRNA expression was determined using qPCR. The eNOS protein level was measured using ELISA, and the eNOS activity and Nitric oxide level were determined by the Griess reaction. Human umbilical vein endothelial cells treated with aqueous extract of Piper sarmentosum showed a marked induction of Nitric oxide. Treatment with PS also resulted in increased eNOS mRNA expression, eNOS protein level and eNOS activity in HUVECs. Aqueous extract of Piper sarmentosum may improve endothelial function by promoting NO production in HUVECs.

  17. Estimation of livestock appropriation of net primary productivity in Texas Drylands

    Science.gov (United States)

    Robert Washington-Allen; Jody Fitzgerald; Stephanie Grounds; Faisar Jihadi; John Kretzschmar; Kathryn Ramirez; John Mitchell

    2009-01-01

    The ecological state of US Drylands is unknown. This research is developing procedures to determine the impact of the ecological footprint of grazing livestock on the productive capacity of US Drylands. A pilot geodatabase was developed for the state of Texas that includes 2002 data for county boundaries, net primary productivity (NPP) derived from the Moderate...

  18. Surface chemistry of metals and their oxides in high temperature water

    International Nuclear Information System (INIS)

    Tomlinson, M.

    1975-01-01

    Examination of oxide and metal surfaces in water at high temperature by a broad spectrum of techniques is bringing understanding of corrosion product movement and alleviation of activity transport in CANDU-type reactor primary coolant circuits. (Author)

  19. Net primary productivity of subalpine meadows in Yosemite National Park in relation to climate variability

    Science.gov (United States)

    Peggy E. Moore; Jan W. van Wagtendonk; Julie L. Yee; Mitchel P. McClaran; David N. Cole; Neil K. McDougald; Matthew L. Brooks

    2013-01-01

    Subalpine meadows are some of the most ecologically important components of mountain landscapes, and primary productivity is important to the maintenance of meadow functions. Understanding how changes in primary productivity are associated with variability in moisture and temperature will become increasingly important with current and anticipated changes in climate....

  20. Corrosion of alloy 800 in PHWR primary and secondary conditions

    International Nuclear Information System (INIS)

    Maroto, A.J.G.; Blesa, M.A.; Villegas, M.; Olmedo, A.M.; Bordoni, R.; Alvarez, M.G.; Sainz, R.

    1998-01-01

    A hot leg section of a steam generator tubing was removed for destructive examination from one of the steam generators (SG) of the Embalse Nuclear Power Plant. The tube material is Alloy 800 and carbon steel is the tube support plate material. Samples of the deposits were taken at the first tube support plate and at the top, mid-height and bottom of the sludge pile. Transverse sections were taken at several locations along the tube length measuring the oxide thicknesses and studying the morphology of the oxide layer by scanning electron microscopy on the primary and secondary side at each location. Deposit layers on the outer tube surface revealed iron as major component and the presence of calcium, phosphorous, zinc and manganese. The oxide scale thickness at the secondary side in the open area was around 22 to 30 μm. The oxide thickness grown under isothermal conditions on the corrosion test samples installed in the autoclaves facilities of the primary circuit of the plant was measured and compared with that found on the inner surface of the examined tube section. The oxide thickness of the test samples was around 1-2 μm showing the influence of the deposition of corrosion products from the coolant. Deposition and precipitation of oxide was also found in the actual tube, where the common feature was the irregularity of the oxide layer on the primary side and thicknesses values in the range 4 to 10 μm were measured. The autoclave tests and SG tubing examination permit to compare the influence of materials and of operating (flow rate, isothermal vs non-isothermal) conditions on corrosion and deposition. (author)

  1. Products of BVOC oxidation: ozone and organic aerosols

    Science.gov (United States)

    Wildt, Jürgen; Andres, Stefanie; Carriero, Giulia; Ehn, Mikael; Fares, Silvano; Hoffmann, Thorsten; Hacker, Lina; Kiendler-Scharr, Astrid; Kleist, Einhard; Paoletti, Elena; Pullinen, Iida; Rohrer, Franz; Rudich, Yinon; Springer, Monika; Tillmann, Ralf; Wahner, Andreas; Wu, Cheng; Mentel, Thomas

    2015-04-01

    Biogenic Volatile Organic Compounds (BVOC) are important precursors in photochemical O3 and secondary organic aerosol (SOA) formation. We conducted a series of laboratory experiments with OH-induced oxidation of monoterpenes to elucidate pathways and efficiencies of O3 and SOA formation. At high NOx conditions ([BVOC] / [NOx] monoterpene mixes emitted from different plant species we observed increasing ozone formation with increasing [NOX]. Between 2 and 3 O3-molecules were formed from 1 monoterpene when ozone formation was BVOC limited. Under such high NOX conditions, new particle formation was suppressed. Increasing [BVOC] / [NOX] ratios caused increasing efficiency of new particle formation indicating that peroxy radicals are the key intermediates in both, photochemical ozone- and new particle formation. The classical chemistry of peroxy radicals is well established (e.g. Master Chemical Mechanism). Peroxy radicals are produced by addition of molecular oxygen to the alkyl radical formed after OH attack at the BVOC. They either react with NO which leads to ozone formation or they react with other peroxy radicals and form chemically stable products (hydroperoxides, alkoholes and ketones). Much less knowledge exists on such reactions for Highly Oxidized Peroxy Radicals, (HOPR). Such HOPR were observed during ozonolysis of several volatiles and, in case of monoterpenes as precursors, they can contain more than 12 Oxygen atoms (Mentel et al., 2015). Although the OH-initiated formation of HOPR is yet not fully understood, their basic gas phase reactions seem to follow classical photochemical rules. In reactions with NO they can act as precursor for O3 and in reactions with other HOPR or with classical less oxidized peroxy radicals they can form highly oxidized stable products and alkoxy radicals. In addition, HOPR-HOPR reactions lead to the formation of dimers that, in case of monoterpenes as reactants, consist of a skeleton with 20 carbon atoms. These dimers seem to

  2. Complementary sample preparation strategies for analysis of cereal β-glucan oxidation products by UPLC-MS/MS

    Science.gov (United States)

    Boulos, Samy; Nyström, Laura

    2017-11-01

    The oxidation of cereal (1→3,1→4)-β-D-glucan can influence the health promoting and technological properties of this linear, soluble homopolysaccharide by introduction of new functional groups or chain scission. Apart from deliberate oxidative modifications, oxidation of β-glucan can already occur during processing and storage, which is mediated by hydroxyl radicals (HO•) formed by the Fenton reaction. We present four complementary sample preparation strategies to investigate oat and barley β-glucan oxidation products by hydrophilic interaction ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), employing selective enzymatic digestion, graphitized carbon solid phase extraction (SPE), and functional group labeling techniques. The combination of these methods allows for detection of both lytic (C1, C3/4, C5) and non-lytic (C2, C4/3, C6) oxidation products resulting from HO•-attack at different glucose-carbons. By treating oxidized β-glucan with lichenase and β-glucosidase, only oxidized parts of the polymer remained in oligomeric form, which could be separated by SPE from the vast majority of non-oxidized glucose units. This allowed for the detection of oligomers with mid-chain glucuronic acids (C6) and carbonyls, as well as carbonyls at the non-reducing end from lytic C3/C4 oxidation. Neutral reducing ends were detected by reductive amination with anthranilic acid/amide as labeled glucose and cross-ring cleaved units (arabinose, erythrose) after enzyme treatment and SPE. New acidic chain termini were observed by carbodiimide-mediated amidation of carboxylic acids as anilides of gluconic, arabinonic, and erythronic acids. Hence, a full characterization of all types of oxidation products was possible by combining complementary sample preparation strategies. Differences in fine structure depending on source (oat vs. barley) translates to the ratio of observed oxidized oligomers, with in-depth analysis corroborating a random HO

  3. Extracellular Polysaccharide Production in a Scytonemin-Deficient Mutant of Nostoc punctiforme Under UVA and Oxidative Stress.

    Science.gov (United States)

    Soule, Tanya; Shipe, Dexter; Lothamer, Justin

    2016-10-01

    Some cyanobacteria can protect themselves from ultraviolet radiation by producing sunscreen pigments. In particular, the sheath pigment scytonemin protects cells against long-wavelength UVA radiation and is only found in cyanobacteria which are capable of extracellular polysaccharide (EPS) production. The presence of a putative glycosyltransferase encoded within the scytonemin gene cluster, along with the localization of scytonemin and EPS to the extracellular sheath, prompted us to investigate the relationship between scytonemin and EPS production under UVA stress. In this study, it was hypothesized that there would be a relationship between the biosynthesis of scytonemin and EPS under both UVA and oxidative stress, since the latter is a by-product of UVA radiation. EPS production was measured following exposure of wild-type Nostoc punctiforme and the non-scytonemin-producing strain SCY59 to UVA and oxidative stress. Under UVA, SCY59 produced significantly more EPS than the unstressed controls and the wild type, while both strains produced more EPS under oxidative stress compared to the controls. The results suggest that EPS secretion occurs in response to the oxidative stress by-product of UVA rather than as a direct response to UVA radiation.

  4. Production of nitrous oxide in the auroral D and E regions

    Science.gov (United States)

    Zipf, E. C.; Prasad, S. S.

    1980-01-01

    A study of nitrous oxide formation mechanisms indicates that N2O concentrations greater than 10 to the 9th per cu cm could be produced in IBC III aurora or by lower-level activity lasting for many hours, and, in favorable conditions, the N2O concentration could exceed the local nitric oxide density. An upper limit on the globally averaged N2O production rate from auroral activity is estimated at 2 x 10 to the 27th per second.

  5. Reaction scheme of partial oxidation of methane to synthesis gas over yttrium-stabilized zirconia

    NARCIS (Netherlands)

    Zhu, J.J.; van Ommen, J.G.; Lefferts, Leonardus

    2004-01-01

    The partial oxidation of methane to synthesis gas over yttrium-stabilized zirconia (YSZ) was studied with in situ FTIR and both steady-state and transient experiments. The four major products, CO, H2, CO2, and H2O, are primary products of CPOM over YSZ. Besides these major products and traces of

  6. Mechanistic studies on the OH-initiated atmospheric oxidation of selected aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nehr, Sascha

    2012-07-01

    Benzene, toluene, the xylenes, and the trimethylbenzenes are among the most abundant aromatic trace constituents of the atmosphere mainly originating from anthropogenic sources. The OH-initiated atmospheric photo-oxidation of aromatic hydrocarbons is the predominant removal process resulting in the formation of O{sub 3} and secondary organic aerosol. Therefore, aromatics are important trace constituents regarding air pollution in urban environments. Our understanding of aromatic photo-oxidation processes is far from being complete. This work presents novel approaches for the investigation of OH-initiated atmospheric degradation mechanisms of aromatic hydrocarbons. Firstly, pulsed kinetic studies were performed to investigate the prompt HO{sub 2} formation from OH+ aromatic hydrocarbon reactions under ambient conditions. For these studies, the existing OH reactivity instrument, based on the flash photolysis/laser-induced fluorescence (FP/LIF) technique, was extended to the detection of HO{sub 2} radicals. The experimental design allows for the determination of HO{sub 2} formation yields and kinetics. Results of the pulsed kinetic experiments complement previous product studies and help to reduce uncertainties regarding the primary oxidation steps. Secondly, experiments with aromatic hydrocarbons were performed under atmospheric conditions in the outdoor atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber) located at Forschungszentrum Juelich. The experiments were aimed at the evaluation of up-to-date aromatic degradation schemes of the Master Chemical Mechanism (MCMv3.2). The unique combination of analytical instruments operated at SAPHIR allows for a detailed investigation of HO{sub x} and NO{sub x} budgets and for the determination of primary phenolic oxidation product yields. MCMv3.2 deficiencies were identified and most likely originate from shortcomings in the mechanistic representation of ring

  7. Carrot Loss during Primary Production : Field Waste and Pack House Waste.

    OpenAIRE

    Bond, Rebekka

    2016-01-01

    Background: it has been suggested that roughly one-third of all food produced for human consumption is lost or wasted globally. The reduction of loss and waste is seen as an important societal issue with considerable ethical, ecological and economic implications. Fruit and vegetables have the highest wastage rates of any food products; (45 %). And a big part of this waste occurs during production, but empirical data on loss during primary production is limited. Carrots are an important hortic...

  8. Molecular basis for arsenic-Induced alteration in nitric oxide production and oxidative stress: implication of endothelial dysfunction

    International Nuclear Information System (INIS)

    Kumagai, Yoshito; Pi Jingbo

    2004-01-01

    Accumulated epidemiological studies have suggested that prolonged exposure of humans to arsenic in drinking water is associated with vascular diseases. The exact mechanism of how this occurs currently unknown. Nitric oxide (NO), formed by endothelial NO synthase (eNOS), plays a crucial role in the vascular system. Decreased availability of biologically active NO in the endothelium is implicated in the pathophysiology of several vascular diseases and inhibition of eNOS by arsenic is one of the proposed mechanism s for arsenic-induced vascular diseases. In addition, during exposure to arsenic, overproduction of reactive oxygen species (ROS) can occur, resulting in oxidative stress, which is another major risk factor for vascular dysfunction. The molecular basis for decreased NO levels and increased oxidative stress during arsenic exposure is poorly understood. In this article, evidence for arsenic-mediated alteration in NO production and oxidative stress is reviewed. The results of a cross-sectional study in an endemic area of chronic arsenic poisoning and experimental animal studies to elucidate a potential mechanism for the impairment of NO formation and oxidative stress caused by prolonged exposure to arsenate in the drinking water are also reviewed

  9. A biphasic oxidation of alcohols to aldehydes and ketones using a simplified packed-bed microreactor

    Directory of Open Access Journals (Sweden)

    Andrew Bogdan

    2009-04-01

    Full Text Available We demonstrate the preparation and characterization of a simplified packed-bed microreactor using an immobilized TEMPO catalyst shown to oxidize primary and secondary alcohols via the biphasic Anelli-Montanari protocol. Oxidations occurred in high yields with great stability over time. We observed that plugs of aqueous oxidant and organic alcohol entered the reactor as plugs but merged into an emulsion on the packed-bed. The emulsion coalesced into larger plugs upon exiting the reactor, leaving the organic product separate from the aqueous by-products. Furthermore, the microreactor oxidized a wide range of alcohols and remained active in excess of 100 trials without showing any loss of catalytic activity.

  10. Hybrid Nitrous Oxide Production from a Partial Nitrifying Bioreactor: Hydroxylamine Interactions with Nitrite.

    Science.gov (United States)

    Terada, Akihiko; Sugawara, Sho; Hojo, Keisuke; Takeuchi, Yuki; Riya, Shohei; Harper, Willie F; Yamamoto, Tomoko; Kuroiwa, Megumi; Isobe, Kazuo; Katsuyama, Chie; Suwa, Yuichi; Koba, Keisuke; Hosomi, Masaaki

    2017-03-07

    The goal of this study was to elucidate the mechanisms of nitrous oxide (N 2 O) production from a bioreactor for partial nitrification (PN). Ammonia-oxidizing bacteria (AOB) enriched from a sequencing batch reactor (SBR) were subjected to N 2 O production pathway tests. The N 2 O pathway test was initiated by supplying an inorganic medium to ensure an initial NH 4 + -N concentration of 160 mg-N/L, followed by 15 NO 2 - (20 mg-N/L) and dual 15 NH 2 OH (each 17 mg-N/L) spikings to quantify isotopologs of gaseous N 2 O ( 44 N 2 O, 45 N 2 O, and 46 N 2 O). N 2 O production was boosted by 15 NH 2 OH spiking, causing exponential increases in mRNA transcription levels of AOB functional genes encoding hydroxylamine oxidoreductase (haoA), nitrite reductase (nirK), and nitric oxide reductase (norB) genes. Predominant production of 45 N 2 O among N 2 O isotopologs (46% of total produced N 2 O) indicated that coupling of 15 NH 2 OH with 14 NO 2 - produced N 2 O via N-nitrosation hybrid reaction as a predominant pathway. Abiotic hybrid N 2 O production was also observed in the absence of the AOB-enriched biomass, indicating multiple pathways for N 2 O production in a PN bioreactor. The additional N 2 O pathway test, where 15 NH 4 + was spiked into 400 mg-N/L of NO 2 - concentration, confirmed that the hybrid N 2 O production was a dominant pathway, accounting for approximately 51% of the total N 2 O production.

  11. Stability and oxidation products of hydrolysable tannins in basic conditions detected by HPLC/DAD-ESI/QTOF/MS.

    Science.gov (United States)

    Tuominen, Anu; Sundman, Terhi

    2013-01-01

    Hydrolysable tannins occur in plants that are used for food or medicine by humans or herbivores. Basic conditions can alter the structures of tannins, that is, the oxidation of phenolic groups can lead to the formation of toxic quinones. Previously, these labile quinones and other oxidation products have been studied with colorimetric or electron paramagnetic resonance methods, which give limited information about products. To study the stability and oxidation products of hydrolysable tannins in basic conditions using HPLC with a diode-array detector (DAD) combined with electrospray ionisation (ESI) and quadrupole time-of-flight (QTOF) MS. Three galloyl glucoses, four galloyl derivatives with different polyols and three ellagitannins were purified from plants. The incubation reactions of tannins were monitored by HPLC/DAD at five pH values and in reduced oxygen conditions. Reaction products were identified based on UV spectra and mass spectral fragmentation obtained with the high-resolution HPLC/DAD-ESI/QTOF/MS. The use of a base-resistant HPLC column enabled injections without the sample pre-treatment and thus detection of short-lived products. Hydrolysable tannins were unstable in basic conditions and half-lives were mostly less than 10 min at pH 10. Degradation rates were faster at pH 11 but slower at milder pH. The HPLC analyses revealed that various products were formed and identified to be the result of hydrolysis, deprotonation and oxidation. Interestingly, the main hydrolysis product was ellagic acid; it was also formed from galloyl glucoses that do not contain oxidatively coupled galloyl groups in their initial structures. HPLD/DAD-ESI/QTOF/MS was an efficient method for the identification of polyphenol oxidation products and showed how different pH conditions determine the fate of hydrolysable tannins. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Shelf-life modeling of bakery products by using oxidation indices.

    Science.gov (United States)

    Calligaris, Sonia; Manzocco, Lara; Kravina, Giuditta; Nicoli, Maria Cristina

    2007-03-07

    The aim of this work was to develop a shelf-life prediction model of lipid-containing bakery products. To this purpose (i) the temperature dependence of the oxidation rate of bakery products was modeled, taking into account the changes in lipid physical state; (ii) the acceptance limits were assessed by sensory analysis; and (iii) the relationship between chemical oxidation index and acceptance limit was evaluated. Results highlight that the peroxide number, the changes of which are linearly related to consumer acceptability, is a representative index of the quality depletion of biscuits during their shelf life. In addition, the evolution of peroxides can be predicted by a modified Arrhenius equation accounting for the changes in the physical state of biscuit fat. Knowledge of the relationship between peroxides and sensory acceptability together with the temperature dependence of peroxide formation allows a mathematical model to be set up to simply and quickly calculate the shelf life of biscuits.

  13. Nitrogenous nutrients and primary production in a tropical oceanic environment

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.; Devassy, V.P.

    Measurements of the concentrations of nitrogenous nutrients and primary production were made at 10 stations along 8 degrees N and 10 degrees N in the tropical oceanic Lakshadweep waters Inorganic nitrogen (NO3, NO2 and NH4) accounted for less than...

  14. Biodiesel Production from Castor Oil by Using Calcium Oxide Derived from Mud Clam Shell

    Directory of Open Access Journals (Sweden)

    S. Ismail

    2016-01-01

    Full Text Available The catalytic potential of calcium oxide synthesized from mud clam shell as a heterogeneous catalyst for biodiesel production was studied. The mud clam shell calcium oxide was characterized using particle size analyzer, Fourier transform infrared spectroscopy, scanning electron microscopy, and BET gas sorption analyzer. The catalyst performance of mud clam shell calcium oxide was studied in the transesterification of castor oil as biodiesel. Catalyst characterization and transesterification study results of synthesized catalyst proved the efficiency of the natural derived catalyst for biodiesel production. A highest biodiesel yield of 96.7% was obtained at optimal parameters such as 1 : 14 oil-to-methanol molar ratio, 3% w/w catalyst concentration, 60°C reaction temperature, and 2-hour reaction time. Catalyst reusability test shows that the synthesized calcium oxide from mud clam shell is reusable up to 5 times.

  15. Aluminium production

    International Nuclear Information System (INIS)

    Winter, B.; Ayers, J.; Sammer, G.

    2001-01-01

    Aluminium is the most important non-ferrous metal by quantity. Aluminium is produced by electrolysis of aluminium oxide (also known as alumina). Alumina is produced by refining bauxite. The quantity of primary and secondary aluminium production in ECE-countries between 1992 and 1998 is shown. The European aluminium industry employs approximately 200 000 employees. The annual aluminium production in the European Union was 3.58 million tonnes in 1994, of which 44 % was secondary aluminium. In 1996 3.96 million tonnes of aluminium were produced in the EU, of which 44 % was secondary aluminium. (author)

  16. Comparison of descriptive sensory analysis and chemical analysis for oxidative changes in milk

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Kristensen, D.; Nielsen, J. H.

    2006-01-01

    products. The milk samples were evaluated in parallel by descriptive sensory analysis by a trained panel, and the correlation between the chemical analysis and the descriptive sensory analysis was evaluated. The fatty acid composition of the 3 types of milk was found to influence the oxidative...... and lipolytic changes occurring in the milk during chill storage for 4 d. Sensory analysis and chemical analysis showed high correlation between the typical descriptors for oxidation such as cardboard, metallic taste, and boiled milk and specific chemical markers for oxidation such as hexanal. Notably, primary...... oxidation products (i.e., lipid hydroperoxides) and even the tendency of formation of radicals as measured by electron spin resonance spectroscopy were also highly correlated to the sensory descriptors for oxidation. Electron spin resonance spectroscopy should accordingly be further explored as a routine...

  17. Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation.

    Science.gov (United States)

    David P. Turner; William D. Ritts; Warren B. Cohen; Stith T. Gower; Maosheng Zhao; Steve W. Running; Steven C. Wofsy; Shawn Urbanski; Allison L. Dunn; J.W. Munger

    2003-01-01

    The Moderate Resolution Imaging Radiometer (MODIS) is the primary instrument in the NASA Earth Observing System for monitoring the seasonality of global terrestrial vegetation. Estimates of 8-day mean daily gross primary production (GPP) at the 1 km spatial resolution are now operationally produced by the MODIS Land Science Team for the global terrestrial surface using...

  18. Changes in water chemistry and primary productivity of a reactor cooling reservoir (Par Pond)

    International Nuclear Information System (INIS)

    Tilly, L.J.

    1975-01-01

    Water chemistry and primary productivity of a reactor cooling reservoir have been studied for 8 years. Initially the primary productivity increased sixfold, and the dissolved solids doubled. The dissolved-solids increase appears to have been caused by additions of makeup water from the Savannah River and by evaporative concentration during the cooling process. As the dissolved-solids concentrations and the conductivity of makeup water leveled off, the primary productivity stabilized. Major cation and anion concentrations generally followed total dissolved solids through the increase and plateau; however, silica concentrations declined steadily during the initial period of increased plankton productivity. Standing crops of net seston and centrifuge seston did not increase during this initial period. The collective data show the effects of thermal input to a cooling reservoir, illustrate the need for limnological studies before reactor siting, and suggest the possibility of using makeup-water additions to power reactor cooling basins as a reservoir management tool

  19. Primary Productivity, NASA Aqua MODIS and GOES Imager, 0.1 degrees, Global, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from NASA Aqua MODIS Chl a and NOAA GOES Imager SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific...

  20. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    Science.gov (United States)

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  1. Production of Nitrous Oxide from Nitrite in Stable Type II Methanotrophic Enrichments.

    Science.gov (United States)

    Myung, Jaewook; Wang, Zhiyue; Yuan, Tong; Zhang, Ping; Van Nostrand, Joy D; Zhou, Jizhong; Criddle, Craig S

    2015-09-15

    The coupled aerobic-anoxic nitrous decomposition operation is a new process for wastewater treatment that removes nitrogen from wastewater and recovers energy from the nitrogen in three steps: (1) NH4(+) oxidation to NO2(-), (2) NO2(-) reduction to N2O, and (3) N2O conversion to N2 with energy production. Here, we demonstrate that type II methanotrophic enrichments can mediate step two by coupling oxidation of poly(3-hydroxybutyrate) (P3HB) to NO2(-) reduction. Enrichments grown with NH4(+) and NO2(-) were subject to alternating 48-h aerobic and anoxic periods, in which CH4 and NO2(-) were added together in a "coupled" mode of operation or separately in a "decoupled mode". Community structure was stable in both modes and dominated by Methylocystis. In the coupled mode, production of P3HB and N2O was low. In the decoupled mode, significant P3HB was produced, and oxidation of P3HB drove reduction of NO2(-) to N2O with ∼ 70% conversion for >30 cycles (120 d). In batch tests of wasted cells from the decoupled mode, N2O production rates increased at low O2 or high NO2(-) levels. The results are significant for the development of engineered processes that remove nitrogen from wastewater and for understanding of conditions that favor environmental production of N2O.

  2. Biodiesel Production from Castor Oil by Using Calcium Oxide Derived from Mud Clam Shell

    OpenAIRE

    Ismail, S.; Ahmed, A. S.; Anr, Reddy; Hamdan, S.

    2016-01-01

    The catalytic potential of calcium oxide synthesized from mud clam shell as a heterogeneous catalyst for biodiesel production was studied. The mud clam shell calcium oxide was characterized using particle size analyzer, Fourier transform infrared spectroscopy, scanning electron microscopy, and BET gas sorption analyzer. The catalyst performance of mud clam shell calcium oxide was studied in the transesterification of castor oil as biodiesel. Catalyst characterization and transesterification s...

  3. Oxidative stress induced inflammation initiates functional decline of tear production.

    Directory of Open Access Journals (Sweden)

    Yuichi Uchino

    Full Text Available Oxidative damage and inflammation are proposed to be involved in an age-related functional decline of exocrine glands. However, the molecular mechanism of how oxidative stress affects the secretory function of exocrine glands is unclear. We developed a novel mev-1 conditional transgenic mouse model (Tet-mev-1 using a modified tetracycline system (Tet-On/Off system. This mouse model demonstrated decreased tear production with morphological changes including leukocytic infiltration and fibrosis. We found that the mev-1 gene encodes Cyt-1, which is the cytochrome b(560 large subunit of succinate-ubiquinone oxidoreductase in complex II of mitochondria (homologous to succinate dehydrogenase C subunit (SDHC in humans. The mev-1 gene induced excessive oxidative stress associated with ocular surface epithelial damage and a decrease in protein and aqueous secretory function. This new model provides evidence that mitochondrial oxidative damage in the lacrimal gland induces lacrimal dysfunction resulting in dry eye disease. Tear volume in Tet-mev-1 mice was lower than in wild type mice and histopathological analyses showed the hallmarks of lacrimal gland inflammation by intense mononuclear leukocytic infiltration and fibrosis in the lacrimal gland of Tet-mev-1 mice. These findings strongly suggest that oxidative stress can be a causative factor for the development of dry eye disease.

  4. Comprehensive Analysis of the Gas- and Particle-Phase Products of VOC Oxidation

    Science.gov (United States)

    Bakker-Arkema, J.; Ziemann, P. J.

    2017-12-01

    Controlled environmental chamber studies are important for determining atmospheric reaction mechanisms and gas and aerosol products formed in the oxidation of volatile organic compounds (VOCs). Such information is necessary for developing detailed chemical models for use in predicting the atmospheric fate of VOCs and also secondary organic aerosol (SOA) formation. However, complete characterization of atmospheric oxidation reactions, including gas- and particle-phase product yields, and reaction branching ratios, are difficult to achieve. In this work, we investigated the reactions of terminal and internal alkenes with OH radicals in the presence of NOx in an attempt to fully characterize the chemistry of these systems while minimizing and accounting for the inherent uncertainties associated with environmental chamber experiments. Gas-phase products (aldehydes formed by alkoxy radical decomposition) and particle-phase products (alkyl nitrates, β-hydroxynitrates, dihydroxynitrates, 1,4-hydroxynitrates, 1,4-hydroxycarbonyls, and dihydroxycarbonyls) formed through pathways involving addition of OH to the C=C double bond as well as H-atom abstraction were identified and quantified using a suite of analytical techniques. Particle-phase products were analyzed in real time with a thermal desorption particle beam mass spectrometer; and off-line by collection onto filters, extraction, and subsequent analysis of functional groups by derivatization-spectrophotometric methods developed in our lab. Derivatized products were also separated by liquid chromatography for molecular quantitation by UV absorbance and identification using chemical ionization-ion trap mass spectrometry. Gas phase aldehydes were analyzed off-line by collection onto Tenax and a 5-channel denuder with subsequent analysis by gas chromatography, or by collection onto DNPH-coated cartridges and subsequent analysis by liquid chromatography. The full product identification and quantitation, with careful

  5. Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds

    Directory of Open Access Journals (Sweden)

    R. Holzinger

    2005-01-01

    Full Text Available Vertical gradients of mixing ratios of volatile organic compounds have been measured in a Ponderosa pine forest in Central California (38.90° N, 120.63° W, 1315m. These measurements reveal large quantities of previously unreported oxidation products of short lived biogenic precursors. The emission of biogenic precursors must be in the range of 13-66µmol m-2h-1 to produce the observed oxidation products. That is 6-30 times the emissions of total monoterpenes observed above the forest canopy on a molar basis. These reactive precursors constitute a large fraction of biogenic emissions at this site, and are not included in current emission inventories. When oxidized by ozone they should efficiently produce secondary aerosol and hydroxyl radicals.

  6. Piper sarmentosum increases nitric oxide production in oxidative stress: a study on human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Azizah Ugusman

    2010-01-01

    Full Text Available OBJECTIVE: Nitric oxide produced by endothelial nitric oxide synthase (eNOS possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs. METHODS: HUVECs were divided into four groups: control, treatment with 180 μM hydrogen peroxide (H2O2, treatment with 150 μg/mL aqueous extract of Piper sarmentosum, and concomitant treatment with aqueous extract of PS and H2O2 for 24 hours. Subsequently, HUVECs were harvested and eNOS mRNA expression was determined using qPCR. The eNOS protein level was measured using ELISA, and the eNOS activity and Nitric oxide level were determined by the Griess reaction. RESULTS: Human umbilical vein endothelial cells treated with aqueous extract of Piper sarmentosum showed a marked induction of Nitric oxide. Treatment with PS also resulted in increased eNOS mRNA expression, eNOS protein level and eNOS activity in HUVECs. CONCLUSION: Aqueous extract of Piper sarmentosum may improve endothelial function by promoting NO production in HUVECs.

  7. Bradykinin stimulation of nitric oxide production is not sufficient for gamma-globin induction

    Directory of Open Access Journals (Sweden)

    Čokić Vladan P.

    2014-01-01

    Full Text Available Introduction. Hydroxycarbamide, used in therapy of hemoglobinopathies, enhances nitric oxide (NO production both in primary human umbilical vein endothelial cells (HUVECs and human bone marrow endothelial cell line (TrHBMEC. Moreover, NO increases γ-globin and fetal hemoglobin levels in human erythroid progenitors. Objective. In order to find out whether simple physiologic stimulation of NO production by components of hematopoietic microenvironment can increase γ-globin gene expression, the effects of NO-inducer bradykinin were examined in endothelial cells. Methods. The study was performed in co-cultures of human erythroid progenitors, TrHBMEC and HUVECs by ozone-based chemiluminescent determination of NO and real-time quantitative RT-PCR. Results. In accordance with previous reports, the endogenous factor bradykinin increased endothelial cell production of NO in a dose- and time-dependent manner (0.1-0.6 μM up to 30 minutes. This induction of NO in HUVECs and TrHBMEC by bradykinin was blocked by competitive inhibitors of NO synthase (NOS, demonstrating NOS-dependence. It has been shown that bradykinin significantly reduced endothelial NOS (eNOS mRNA level and eNOS/Я-actin ratio in HUVEC (by twofold. In addition, bradykinin failed to increase γ-globin mRNA expression in erythroid progenitors only, as well as in co-culture studies of erythroid progenitors with TrHBMEC and HUVEC after 24 hours of treatment. Furthermore, bradykinin did not induce γ/β globin ratio in erythroid progenitors in co-cultures with HUVEC. Conclusion. Bradykinin mediated eNOS activation leads to short time and low NO production in endothelial cells, insufficient to induce γ-globin gene expression. These results emphasized the significance of elevated and extended NO production in augmentation of γ-globin gene expression. [Projekat Ministarstva nauke Republike Srbije, br. 175053

  8. Dissolved organic carbon concentration controls benthic primary production: results from in situ chambers in north-temperate lakes

    Science.gov (United States)

    Godwin, Sean C.; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.

    2014-01-01

    We evaluated several potential drivers of primary production by benthic algae (periphyton) in north-temperate lakes. We used continuous dissolved oxygen measurements from in situ benthic chambers to quantify primary production by periphyton at multiple depths across 11 lakes encompassing a broad range of dissolved organic carbon (DOC) and total phosphorous (TP) concentrations. Light-use efficiency (primary production per unit incident light) was inversely related to average light availability (% of surface light) in 7 of the 11 study lakes, indicating that benthic algal assemblages exhibit photoadaptation, likely through physiological or compositional changes. DOC alone explained 86% of the variability in log-transformed whole-lake benthic production rates. TP was not an important driver of benthic production via its effects on nutrient and light availability. This result is contrary to studies in other systems, but may be common in relatively pristine north-temperate lakes. Our simple empirical model may allow for the prediction of whole-lake benthic primary production from easily obtained measurements of DOC concentration.

  9. Characterisation of Oxides Formed on the Internal Surface of Steam Generator Tubes in Alloy 690 Corroded in the Primary Environment of Pressurised Water Reactors

    International Nuclear Information System (INIS)

    Carrette, Florence; Leclercq, Stephanie; Legras, Laurent

    2012-09-01

    Since the end of the 1990s, EDF R and D has been studying the phenomenon of corrosion product release from Steam Generator tubes in order to minimize the Source Term of the contamination and radiation exposure during operation and maintenance of Pressurised Water Reactors. With the BOREAL loop, release tests in primary water at 325 deg. C were performed on various Steam Generator tubes made of alloy 690. The experimental conditions of these tests (chemistry, temperature and hydraulics) were the same for all the tests but the results showed various behaviours towards release. For some tubes, the release was weak whereas for others, it was higher; the release rate of the tubes decreased more or less quickly with time. In order to explain these results, the internal surface of the tubes was characterised before and after the tests. Before the tests, various parameters were studied; the main parameters were the roughness, the impurities, the grain size and the cold work. The results demonstrated that it was not easy to quantify the influence of each parameter on release and to differentiate the tubes. A new parameter was proposed to characterise the internal extreme surface of SG tubes: the surface nano-hardness by nano-indentation measurements. The tubes were also observed and analysed by SEM, (X)TEM. Data obtained by (X)TEM revealed differences of the surface state (layer of perturbed microstructure, density of dislocations, grain size, impurities, initial oxide,...). After the tests, the oxides formed on the internal surface and the underlying material of the samples were characterised by SEM, (X)TEM and SIMS. The examinations showed various types of oxides. For some tubes, a duplex oxide scale was identified, for the others, only one oxide scale was observed. For equivalent durations of corrosion, the thickness of the enriched - chromium oxide layer can vary from 5 nm to 100 nm and the chemical composition can be different. The examinations of the underlying

  10. Primary productivity in the Karwar Bay, Karnataka, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, U.G.; Naik, R.K.; Nayak, V.N.

    The measurement of primary production is of great importance because of its significance to the problems of aquatic ecology and fishery management. The interaction of light intensity, temperature and nutrient levels determines the photosynthetic...

  11. Remote sensing of oceanic primary production: Computations using a spectral model

    Digital Repository Service at National Institute of Oceanography (India)

    Sathyendranath, S.; Platt, T.; Caverhill, C.M.; Warnock, R.E.; Lewis, M.R.

    A spectral model of underwater irradiance is coupled with a spectral version of the photosynthesis-light relationship to compute oceanic primary production. The results are shown to be significantly different from those obtained using...

  12. Intensity of lipid oxidation and formation of cholesterol oxidation products during frozen storage of raw and cooked chicken

    OpenAIRE

    Conchillo, A. (Ana); Ansorena, D. (Diana); Astiasarán, I. (Iciar)

    2004-01-01

    Raw and cooked chicken breasts were stored at −18 °C for 3 months under aerobic and vacuum conditions, and the intensity of lipid oxidation and the formation of COP (cholesterol oxidation products) were studied. Raw samples showed low COP levels (4.60–7.40 µg g−1 fat), TBARS (thiobarbituric acid reactive substances) levels (0.01–0.03 mg kg−1) and peroxide values (not detected) under both aerobic and vacuum conditions. Cooked samples (grilled and roasted) showed TBARS levels of 0.36–0.99 mg kg...

  13. Effects of garlic extract on color, lipid oxidation and oxidative breakdown products in raw ground beef during refrigerated storage

    Directory of Open Access Journals (Sweden)

    XINZHUANG ZHANG

    2016-03-01

    Full Text Available The study aims to investigate the effects of garlic extracts on color, lipid oxidation, and oxidative breakdown products in raw ground beef during refrigerated storage. The two treatments were:control group (C, with no addition and experiment group (D, 50 mg garlic extracts added to 100 g beef. Adding garlic extracts significant increased a* value (PA ≤ 0.05, and significant decreased TBARS and PV values (PA ≤ 0.05. The pH and –SH value of D group had a decreasing tendency (PA=0.0522 and an increasing tendency (PA=0.0636 respectively compared to C group. Garlic extracts protected phospholipids, fatty acids and polypeptides from oxidation. The results indicatethat garlic extracts have the antioxidant activity, helping maintain the meat color, inhibiting lipid oxidation and protein degradation of raw ground beef during refrigerated storage.

  14. Shell biofilm-associated nitrous oxide production in marine molluscs

    DEFF Research Database (Denmark)

    Heisterkamp, I.M.; Schramm, Andreas; Larsen, Lone Heimann

    2013-01-01

    Emission of the greenhouse gas nitrous oxide (N2O) from freshwater and terrestrial invertebrates has exclusively been ascribed to N2O production by ingested denitrifying bacteria in the anoxic gut of the animals. Our study of marine molluscs now shows that also microbial biofilms on shell surfaces...... are important sites of N2O production. The shell biofilms of Mytilus edulis, Littorina littorea and Hinia reticulata contributed 18-94% to the total animal-associated N2O emission. Nitrification and denitrification were equally important sources of N2O in shell biofilms as revealed by 15N-stable isotope...... mollusc species. Ammonium excretion by the animals was found to be sufficient to sustain N2O production in the shell biofilm. Apparently, the animals provide a nutrient-enriched microenvironment that stimulates growth and N2O production of the shell biofilm. This animal-induced stimulation...

  15. Corrosion product behaviour in the primary circuit of the KNK nuclear reactor facility

    International Nuclear Information System (INIS)

    Stamm, H.H.; Stade, K.Ch.

    1976-01-01

    During nuclear operation of the KNK facility from 1972 until September 1974 the composition and behaviour of radionuclides occuring in the primary circuit were investigated. Besides traces of 140 Ba/ 140 La, no fission product activity was detectable in the KNK primary circuit. The fuel element purification from sodium deposits (prior to transport to the reprocessing plant) did not yield any indication of a fuel element failure during KNK-I operation. The activity inventory of the primary loop was exclusively made up of activated corrosion products and 22 Na. The main activity was due to 65 Zn, followed by 54 Mn, 22 Na, sup(110m)Ag, 182 Ta, 60 Co and 124 Sb. It was found that the sorption of 65 Zn and 54 Mn on crucibles made from nickel was condiserably higher than on vessels made from other materials. This observation was confirmed both in tests with material samples from the primary circuit and for disks of gate valves of the primary circuit. sup(110m)Ag did hardly exhibit any sorption effects and had been dissolved largely homogeneously in the hot primary coolant. In the first primary cold trap which was removed from the circuit after some 20,000 hours of operation, only 65 Zn and 54 Mn were detected in addition to traces of 60 Co and 182 Ta. (author)

  16. Oxidative Stress in Shiga Toxin Production by Enterohemorrhagic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katarzyna Licznerska

    2016-01-01

    Full Text Available Virulence of enterohemorrhagic Escherichia coli (EHEC strains depends on production of Shiga toxins. These toxins are encoded in genomes of lambdoid bacteriophages (Shiga toxin-converting phages, present in EHEC cells as prophages. The genes coding for Shiga toxins are silent in lysogenic bacteria, and prophage induction is necessary for their efficient expression and toxin production. Under laboratory conditions, treatment with UV light or antibiotics interfering with DNA replication are commonly used to induce lambdoid prophages. Since such conditions are unlikely to occur in human intestine, various research groups searched for other factors or agents that might induce Shiga toxin-converting prophages. Among other conditions, it was reported that treatment with H2O2 caused induction of these prophages, though with efficiency significantly lower relative to UV-irradiation or mitomycin C treatment. A molecular mechanism of this phenomenon has been proposed. It appears that the oxidative stress represents natural conditions provoking induction of Shiga toxin-converting prophages as a consequence of H2O2 excretion by either neutrophils in infected humans or protist predators outside human body. Finally, the recently proposed biological role of Shiga toxin production is described in this paper, and the “bacterial altruism” and “Trojan Horse” hypotheses, which are connected to the oxidative stress, are discussed.

  17. Agglomerates, smoke oxide particles, and carbon inclusions in condensed combustion products of an aluminized GAP-based propellant

    Science.gov (United States)

    Ao, Wen; Liu, Peijin; Yang, Wenjing

    2016-12-01

    In solid propellants, aluminum is widely used to improve the performance, however the condensed combustion products especially the large agglomerates generated from aluminum combustion significantly affect the combustion and internal flow inside the solid rocket motor. To clarify the properties of the condensed combustion products of aluminized propellants, a constant-pressure quench vessel was adopted to collect the combustion products. The morphology and chemical compositions of the collected products, were then studied by using scanning electron microscopy coupled with energy dispersive (SEM-EDS) method. Various structures have been observed in the condensed combustion products. Apart from the typical agglomerates or smoke oxide particles observed before, new structures including the smoke oxide clusters, irregular agglomerates and carbon-inclusions are discovered and investigated. Smoke oxide particles have the highest amount in the products. The highly dispersed oxide particle is spherical with very smooth surface and is on the order of 1-2 μm, but due to the high temperature and long residence time, these small particles will aggregate into smoke oxide clusters which are much larger than the initial particles. Three types of spherical agglomerates have been found. As the ambient gas temperature is much higher than the boiling point of Al2O3, the condensation layer inside which the aluminum drop is burning would evaporate quickly, which result in the fact that few "hollow agglomerates" has been found compared to "cap agglomerates" and "solid agglomerates". Irregular agglomerates usually larger than spherical agglomerates. The formation of irregular agglomerates likely happens by three stages: deformation of spherical aluminum drops; combination of particles with various shape; finally production of irregular agglomerates. EDS results show the ratio of O to Al on the surface of agglomerates is lower in comparison to smoke oxide particles. C and O account for

  18. Frontal dynamics boost primary production in the summer stratified Mediterranean sea

    Science.gov (United States)

    Olita, Antonio; Capet, Arthur; Claret, Mariona; Mahadevan, Amala; Poulain, Pierre Marie; Ribotti, Alberto; Ruiz, Simón; Tintoré, Joaquín; Tovar-Sánchez, Antonio; Pascual, Ananda

    2017-06-01

    Bio-physical glider measurements from a unique process-oriented experiment in the Eastern Alboran Sea (AlborEx) allowed us to observe the distribution of the deep chlorophyll maximum (DCM) across an intense density front, with a resolution (˜ 400 m) suitable for investigating sub-mesoscale dynamics. This front, at the interface between Atlantic and Mediterranean waters, had a sharp density gradient (Δ ρ ˜ 1 kg/m3 in ˜ 10 km) and showed imprints of (sub-)mesoscale phenomena on tracer distributions. Specifically, the chlorophyll-a concentration within the DCM showed a disrupted pattern along isopycnal surfaces, with patches bearing a relationship to the stratification (buoyancy frequency) at depths between 30 and 60 m. In order to estimate the primary production (PP) rate within the chlorophyll patches observed at the sub-surface, we applied the Morel and Andrè (J Geophys Res 96:685-698 1991) bio-optical model using the photosynthetic active radiation (PAR) from Argo profiles collected simultaneously with glider data. The highest production was located concurrently with domed isopycnals on the fresh side of the front, suggestive that (sub-)mesoscale upwelling is carrying phytoplankton patches from less to more illuminated levels, with a contemporaneous delivering of nutrients. Integrated estimations of PP (1.3 g C m-2d-1) along the glider path are two to four times larger than the estimations obtained from satellite-based algorithms, i.e., derived from the 8-day composite fields extracted over the glider trip path. Despite the differences in spatial and temporal sampling between instruments, the differences in PP estimations are mainly due to the inability of the satellite to measure DCM patches responsible for the high production. The deepest (depth > 60 m) chlorophyll patches are almost unproductive and probably transported passively (subducted) from upper productive layers. Finally, the relationship between primary production and oxygen is also investigated

  19. Productive vegetation: relationships between net primary productivity, vegetation types and climate change in the Wet Tropics bioregion

    International Nuclear Information System (INIS)

    Ramirez, Vanessa Valdez; Williams, Stephen E.; VanDerWal, Jeremy

    2007-01-01

    Full text: Full text: There is now ample evidence demonstrating the impacts of climate change on biodiversity and human society (Walther ef a/. 2002). Numerous studies have shown climate change is one of the most significant threats to tropical forests, such as the Wet Tropics Heritage Area, due to their high biodiversity and endemism (Pounds ef al. 1999; Hughes 2000; Parmesan and Yohe 2003). Williams ef al. (2003) suggested that small shifts in net primary productivity (NPP) as a result of climate change could lead to potentially massive follow-on effects for the extremely diverse and vulnerable rainforest flora and fauna. It is therefore crucial to explore the relationships between NPP and local biodiversity, especially to create models for different climate change scenarios. Nevertheless, NPP in the Wet Tropics has yet to be estimated. This is the first study to provide a general NPP estimate for the Wet Tropics bioregion using climate surrogates (Schuur 2003). This technique estimates NPP in an accurate, repeatable, and cost-effective way. NPP values were linked to vegetation types and examined under various climatic and environmental conditions. Results show a significant difference in productivity according to vegetation types and climatic variables, with temperature and rainfall seasonality as the most important determining variables. Additionally, lowland and upland vegetations showed a significant difference in productivity patterns throughout the year. Vegetation types located above 1000 metres in altitude had the lowest values of mean annual productivity due to their high rainfall and low temperatures; vegetation types located below 600 metres showed increased productivity values during the wet season (December-March). Net primary productivity will certainly be impacted by changes in temperature and rainfall, due to climate change. Although an increase in NPP values can be predicted for upland areas, the more widely distributed lowlands will drastically

  20. Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea)

    OpenAIRE

    Yakimov, Michail M.; La Cono, Violetta; Smedile, Francesco; DeLuca, Thomas H.; Juarez, Silvia; Ciordia, Sergio; Fernandez, Marisol; Albar, Juan Pablo; Ferrer, Manuel; Golyshin, Peter N.; Giuliano, Laura

    2011-01-01

    Mesophilic Crenarchaeota have recently been thought to be significant contributors to nitrogen (N) and carbon (C) cycling. In this study, we examined the vertical distribution of ammonia-oxidizing Crenarchaeota at offshore site in Southern Tyrrhenian Sea. The median value of the crenachaeal cell to amoA gene ratio was close to one suggesting that virtually all deep-sea Crenarchaeota possess the capacity to oxidize ammonia. Crenarchaea-specific genes, nirK and ureC, for nitrite reductase and u...

  1. Catalytic oxidation using nitrous oxide

    Directory of Open Access Journals (Sweden)

    Juan Carlos Beltran-Prieto

    2017-01-01

    Full Text Available Nitrous oxide is a very inert gas used generally as oxidant as it offers some advantage compared with other oxidants such as O2 but a considerably higher temperature (> 526 °C is often required. For particular cases such as the oxidation of sugar alcohols, especially for the oxidation of primary alcohols to aldehydes, N2O has the advantage over O2 of a higher reaction selectivity. In the present paper we present the modelling of oxidation reaction of sugar alcohols using an oxidizing agent in low concentrations, which is important to suppress subsequent oxidation reactions due to the very low residual concentrations of the oxidizing agent. For orientation experiments we chose nitrous oxide generated by thermal decomposition of ammonium nitrate. Kinetic modeling of the reaction was performed after determination of the differential equations that describe the system under study.

  2. Quantitative and qualitative sensing techniques for biogenic volatile organic compounds and their oxidation products.

    Science.gov (United States)

    Kim, Saewung; Guenther, Alex; Apel, Eric

    2013-07-01

    The physiological production mechanisms of some of the organics in plants, commonly known as biogenic volatile organic compounds (BVOCs), have been known for more than a century. Some BVOCs are emitted to the atmosphere and play a significant role in tropospheric photochemistry especially in ozone and secondary organic aerosol (SOA) productions as a result of interplays between BVOCs and atmospheric radicals such as hydroxyl radical (OH), ozone (O3) and NOX (NO + NO2). These findings have been drawn from comprehensive analysis of numerous field and laboratory studies that have characterized the ambient distribution of BVOCs and their oxidation products, and reaction kinetics between BVOCs and atmospheric oxidants. These investigations are limited by the capacity for identifying and quantifying these compounds. This review highlights the major analytical techniques that have been used to observe BVOCs and their oxidation products such as gas chromatography, mass spectrometry with hard and soft ionization methods, and optical techniques from laser induced fluorescence (LIF) to remote sensing. In addition, we discuss how new analytical techniques can advance our understanding of BVOC photochemical processes. The principles, advantages, and drawbacks of the analytical techniques are discussed along with specific examples of how the techniques were applied in field and laboratory measurements. Since a number of thorough review papers for each specific analytical technique are available, readers are referred to these publications rather than providing thorough descriptions of each technique. Therefore, the aim of this review is for readers to grasp the advantages and disadvantages of various sensing techniques for BVOCs and their oxidation products and to provide guidance for choosing the optimal technique for a specific research task.

  3. Variations of Terrestrial Net Primary Productivity in East Asia

    Directory of Open Access Journals (Sweden)

    Fangmin Zhang

    2012-01-01

    Full Text Available Due to the heterogeneity and complexity of terrestrial ecosystems of East Asia, a better understanding of relationships between climate change and net primary productivity (NPP distribution is important to predict future carbon dynamics. The objective of this study is to analyze the temporal-spatial patterns of NPP in East Asia (10°S - 55°N, 60 - 155°E from 1982 to 2006 using the process-based Boreal Ecosystem Productivity Simulator (BEPS model. Prior to the regional simulation, the annual simulated NPP was validated using field observed NPP demonstrating the ability of BEPS to simulate NPP in different ecosystems of East Asia.

  4. Effect of surface state on the oxidation behavior of welded 308L in simulated nominal primary water of PWR

    Science.gov (United States)

    Ming, Hongliang; Zhang, Zhiming; Wang, Jiazhen; Zhu, Ruolin; Ding, Jie; Wang, Jianqiu; Han, En-Hou; Ke, Wei

    2015-05-01

    The oxidation behavior of 308L weld metal (WM) with different surface state in the simulated nominal primary water of pressurized water reactor (PWR) was studied by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analyzer and X-ray photoelectron spectroscopy (XPS). After 480 h immersion, a duplex oxide film composed of a Fe-rich outer layer (Fe3O4, Fe2O3 and a small amount of NiFe2O4, Ni(OH)2, Cr(OH)3 and (Ni, Fe)Cr2O4) and a Cr-rich inner layer (FeCr2O4 and NiCr2O4) can be formed on the 308L WM samples with different surface state. The surface state has no influence on the phase composition of the oxide films but obviously affects the thickness of the oxide films and the morphology of the oxides (number & size). With increasing the density of dislocations and subgrain boundaries in the cold-worked superficial layer, the thickness of the oxide film, the number and size of the oxides decrease.

  5. Korean red ginseng and its primary ginsenosides inhibit ethanol-induced oxidative injury by suppression of the MAPK pathway in TIB-73 cells.

    Science.gov (United States)

    Park, Hye-Min; Kim, Shang-Jin; Mun, A-Reum; Go, Hyeon-Kyu; Kim, Gi-Beum; Kim, Sung-Zoo; Jang, Seon-Il; Lee, Sei-Jin; Kim, Jin-Shang; Kang, Hyung-Sub

    2012-06-14

    Panax ginseng (P. ginseng) is one of the most widely used medicinal plants due to its wide spectrum of medicinal effects. Among the currently available Panax ginseng products, Korea red ginseng (KRG) has been shown to exhibit a variety of antioxidative and hepatoprotective action. Our aim was to investigate the effects of KRG and its primary ginsenosides (Rg3 and Rh2) on EtOH-induced injury to mouse hepatocytes (TIB-73). We investigated the effects of KRG and its primary ginsenoside on EtOH-induced injury to TIB-73 cells and evaluated MAPKs signals as a possible mechanism of action. Hepatocytic injury was evaluated by biochemical assays as cell viability, lactate dehydrogenase (LDH), aspartate aminotransferase (AST), ROS and mitochondria membrane potential (MMP) level in TIB-73 cells. The levels of MAPK activation were analyzed by Western blots. The results showed that exposure of EtOH to TIB-73 cells led to cell death and membrane damage, accompanied by a decrease in cell viability, MMP, and Mg(2+) concentrations, but an increase in LDH, AST, ROS and MAPK activation. KRG and its primary ginsenosides reduced EtOH-induced generation of ROS and the activation of ERK and JNK, and increased Mg(2+) concentrations. These results suggest that KRG and its primary ginsenosides inhibit EtOH-induced oxidative injury by suppression of the MAPK pathway in TIB-73 cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Antioxidant properties of green tea extract protect reduced fat soft cheese against oxidation induced by light exposure

    DEFF Research Database (Denmark)

    Huvaere, Kevin André Jurgen; Nielsen, Jacob Holm; Bakman, Mette

    2011-01-01

    The effect of two different antioxidants, EDTA and green tea extract (GTE), used individually or in combination, on the light-induced oxidation of reduced fat soft cheeses (0.2 and 6% fat) was investigated. In samples with 0.2% fat, lipid hydroperoxides as primary lipid oxidation products were...

  7. Primary and heterotrophic productivity relate to multikingdom diversity in a hypersaline mat

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Hans C.; Brislawn, Colin J.; Dana, Karl; Flores-Wentz, Tobias; Cory, Alexandra B.; Fansler, Sarah J.; Fredrickson, James K.; Moran, James J.

    2017-10-01

    Benthic microbial ecosystems are widespread yet knowledge gaps still remain on the relationships between the diversity of species across kingdoms and productivity. Here, we ask two fundamental questions: 1) How does species diversity relate to the rates of primary and heterotrophic productivity? 2) How do diel variations in light-energy inputs influence productivity and microbiome diversity? To answer these questions, microbial mats from a magnesium sulfate hypersaline Lake were used to establish microcosms. Both the number and relatedness between bacterial and eukaryotic taxa in the microbiome were assayed via amplicon based sequencing of 16S and 18S rRNA genes over two diel cycles. These results correlated with biomass productivity obtained from substrate-specific 13C stable isotope incorporation that enabled comparisons between primary and heterotrophic productivity. Both bacterial and eukaryotic species richness and evenness were related only to the rates of 13C labeled glucose and acetate biomass incorporation. Interestingly, measures of these heterotrophic relationships changed from positive and negative correlations depending on carbon derived from glucose and acetate, respectively. Bacterial and eukaryotic diversity of this ecosystem is also controlled, in part, energy constraints imposed by changing irradiance over a diel cycle.

  8. Diagnosis of compliance of health care product processing in Primary Health Care

    Directory of Open Access Journals (Sweden)

    Camila Eugenia Roseira

    Full Text Available ABSTRACT Objective: identify the compliance of health care product processing in Primary Health Care and assess possible differences in the compliance among the services characterized as Primary Health Care Service and Family Health Service. Method: quantitative, observational, descriptive and inferential study with the application of structure, process and outcome indicators of the health care product processing at ten services in an interior city of the State of São Paulo - Brazil. Results: for all indicators, the compliance indices were inferior to the ideal levels. No statistically significant difference was found in the indicators between the two types of services investigated. The health care product cleaning indicators obtained the lowest compliance index, while the indicator technical-operational resources for the preparation, conditioning, disinfection/sterilization, storage and distribution of health care products obtained the best index. Conclusion: the diagnosis of compliance of health care product processing at the services assessed indicates that the quality of the process is jeopardized, as no results close to ideal levels were obtained at any service. In addition, no statistically significant difference in these indicators was found between the two types of services studied.

  9. Inhibition of palm oil oxidation by zeolite nanocrystals.

    Science.gov (United States)

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.

  10. Modeling and Monitoring Terrestrial Primary Production in a Changing Global Environment: Toward a Multiscale Synthesis of Observation and Simulation

    Directory of Open Access Journals (Sweden)

    Shufen Pan

    2014-01-01

    Full Text Available There is a critical need to monitor and predict terrestrial primary production, the key indicator of ecosystem functioning, in a changing global environment. Here we provide a brief review of three major approaches to monitoring and predicting terrestrial primary production: (1 ground-based field measurements, (2 satellite-based observations, and (3 process-based ecosystem modelling. Much uncertainty exists in the multi-approach estimations of terrestrial gross primary production (GPP and net primary production (NPP. To improve the capacity of model simulation and prediction, it is essential to evaluate ecosystem models against ground and satellite-based measurements and observations. As a case, we have shown the performance of the dynamic land ecosystem model (DLEM at various scales from site to region to global. We also discuss how terrestrial primary production might respond to climate change and increasing atmospheric CO2 and uncertainties associated with model and data. Further progress in monitoring and predicting terrestrial primary production requires a multiscale synthesis of observations and model simulations. In the Anthropocene era in which human activity has indeed changed the Earth’s biosphere, therefore, it is essential to incorporate the socioeconomic component into terrestrial ecosystem models for accurately estimating and predicting terrestrial primary production in a changing global environment.

  11. Ocean primary production and available light: Further algorithms for remote sensing

    Digital Repository Service at National Institute of Oceanography (India)

    Platt, T.; Sathyendranath, S.; Caverhill, C.M.; Lewis, M.R.

    (1986, Deep-Sea Research, 33, 149-163) Further empirical evidence is presented to show the stability of the relationship between surface light and biomass-normalized primary production of the ocean water column A theoretical explanation is given...

  12. Recruitment and condition of juvenile sandeel on the Faroe shelf in relation to primary production

    DEFF Research Database (Denmark)

    Eliasen, Kirstin; Reinert, Jákup; Gaard, Eilif

    The food of early-life sandeel is dominated by zooplankton, which again depends on primary production. On the Faroe Shelf, measurements of accumulated new primary production and chlorophyll a during spring and summer have been carried out since 1990 and 1997, respectively. Large inter...... availability. We compare the time series from the sandeel 0-group surveys with data on phytoplankton production and biomass. The results confirm that survival and condition of the early-life stages of sandeel on the Faroe Shelf is dependent on the magnitude of the primary production. Although the sandeel......-annual variations in the onset of the spring bloom and its intensity have been observed. Since 1974 juvenile sandeels have been sampled annually on the Faroe shelf. These results also show large variations – both in number and in average length. Here, we investigate the variations in recruitment in relation to food...

  13. Organic carbon fluxes in the Atlantic and the Southern Ocean: relationship to primary production compiled from satellite radiometer data

    Science.gov (United States)

    Fischer, G.; Ratmeyer, V.; Wefer, G.

    Fluxes of organic carbon normalised to a depth of 1000 m from 18 sites in the Atlantic and the Southern Ocean are presented, comprising nine biogeochemical provinces as defined by Longhurst et al. (1995. Journal of Plankton Research 17, 1245-1271). For comparison with primary production, we used a recent compilation of primary production values derived from CZCS data (Antoine et al., 1996. Global Biogeochemical Cycles 10, 57-69). In most cases, the seasonal patterns stood reasonably well in accordance with the carbon fluxes. Particularly, organic carbon flux records from two coastal sites off northwest and southwest Africa displayed a more distinct correlation to the primary production in sectors (1×1°) which are situated closer to the coastal environments. This was primarily caused by large upwelling filaments streaming far offshore, resulting in a cross-shelf carbon transport. With respect to primary production, organic carbon export to a water depth of 1000 m, and the fraction of primary production exported to a depth of 1000 m (export fraction=EF 1000), we were able to distinguish between: (1) the coastal environments with highest values (EF 1000=1.75-2.0%), (2) the eastern equatorial upwelling area with moderately high values (EF 1000=0.8-1.1%), (3) and the subtropical oligotrophic gyres that yielded lowest values (EF 1000=0.6%). Carbon export in the Southern Ocean was low to moderate, and the EF 1000 value seems to be quite low in general. Annual organic carbon fluxes were proportional to primary production, and the export fraction EF 1000 increased with primary production up to 350 gC m -2 yr-1. Latitudinal variations in primary production were reflected in the carbon flux pattern. A high temporal variability of primary production rates and a pronounced seasonality of carbon export were observed in the polar environments, in particular in coastal domains, although primary production (according to Antoine et al., 1996. Global Biogeochemical Cycles 10, 57

  14. Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock.

    Science.gov (United States)

    Mello, Paola de A; Duarte, Fábio A; Nunes, Matheus A G; Alencar, Mauricio S; Moreira, Elizabeth M; Korn, Mauro; Dressler, Valderi L; Flores, Erico M M

    2009-08-01

    A procedure using ultrasonic irradiation is proposed for sulfur removal of a petroleum product feedstock. The procedure involves the combination of a peroxyacid and ultrasound-assisted treatment in order to comply with the required sulfur content recommended by the current regulations for fuels. The ultrasound-assisted oxidative desulfurization (UAOD) process was applied to a petroleum product feedstock using dibenzothiophene as a model sulfur compound. The influence of ultrasonic irradiation time, oxidizing reagents amount, kind of solvent for the extraction step and kind of organic acid were investigated. The use of ultrasonic irradiation allowed higher efficiency for sulfur removal in comparison to experiments performed without its application, under the same reactional conditions. Using the optimized conditions for UAOD, the sulfur removal was about 95% after 9min of ultrasonic irradiation (20kHz, 750W, run at 40%), using hydrogen peroxide and acetic acid, followed by extraction with methanol.

  15. Gas phase reactions of nitrogen oxides with olefins

    Energy Technology Data Exchange (ETDEWEB)

    Altshuller, A P; Cohen, I

    1961-01-01

    The nature of the condensation products formed in the gas phase reactions of nitrogen dioxide and nitric oxide with pentene-1, 2-methylbutene-2, and 2-methylbutadiene-1,3 was investigated. The reactants were combined at partial pressures in the range of 0.1 to 2.5 mm with the total pressure at one atmosphere. The products were determined by infrared and ultraviolet spectroscopy and colorimetry. The condensates included primary and secondary nitro compounds and alkyl nitrates. Strong hydroxyl and single bond carbon to oxygen stretching vibrations indicate the presence of either nitroalcohols or simple aliphatic alcohols formed through oxidation reactions. Carbonyl stretching frequencies observable in some of the reactions support the conclusion that a portion of the reactants disappear by oxidation rather than by nitration processes. The available results do not indicate the presence of appreciable amounts of tert.-nitro compounds, conjugated nitro-olefins, or gem-dinitro-alkanes. The reactivities of the olefins with the nitrogen oxides are in the decreasing order: 2-methyl-butadiene-1,3, 2-methylbutene-2, pentene-1. 20 references.

  16. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway.

    Science.gov (United States)

    Wu, Qian; Zhong, Zhao-Ming; Zhu, Si-Yuan; Liao, Cong-Rui; Pan, Ying; Zeng, Ji-Huan; Zheng, Shuai; Ding, Ruo-Ting; Lin, Qing-Song; Ye, Qing; Ye, Wen-Bin; Li, Wei; Chen, Jian-Ting

    2016-01-01

    Pro-inflammatory cytokine-induced chondrocyte apoptosis is a primary cause of cartilage destruction in the progression of rheumatoid arthritis (RA). Advanced oxidation protein products (AOPPs), a novel pro-inflammatory mediator, have been confirmed to accumulate in patients with RA. However, the effect of AOPPs accumulation on chondrocyte apoptosis and the associated cellular mechanisms remains unclear. The present study demonstrated that the plasma formation of AOPPs was enhanced in RA rats compared with normal. Then, chondrocyte were treated with AOPPs-modified rat serum albumin (AOPPs-RSA) in vitro. Exposure of chondrocyte to AOPPs activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and increased expression of NADPH oxidase subunits, which was mediated by receptor for advanced glycation end products (RAGE), but not scavenger receptor CD36. Moreover, AOPPs challenge triggered NADPH oxidase-dependent ROS generation which induced mitochondrial dysfunction and endoplasmic reticulum stress resulted in activation of caspase family that eventually lead to apoptosis. Lastly, blockade of RAGE, instead of CD36, largely attenuated these signals. Our study demonstrated first time that AOPPs induce chondrocyte apoptosis via RAGE-mediated and redox-dependent intrinsic apoptosis pathway in vitro. These data implicates that AOPPs may represent a novel pathogenic factor that contributes to RA progression. Targeting AOPPs-triggered cellular mechanisms might emerge as a promising therapeutic option for patients with RA.

  17. Phytoplankton pigments and primary production around the oil fields off Maharashtra

    Digital Repository Service at National Institute of Oceanography (India)

    JiyalalRam, M.J.; Ramaiah, Neelam; Mehta, P.; Krishnakumari, L.; Nair, V.R.

    Studies on phytoplankton pigments, primary productivity and particulate organic carbon were made at 21 locations off Bombay (Maharashtra, India) and adjacent waters during the 48th cruise of @iORV Sagar Kanya@@ in December 1988 to January 1989...

  18. Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments.

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Newell, Silvia E; Yin, Guoyu; Yu, Chendi; Zhang, Hongli; Li, Xiaofei; Gao, Dengzhou; Gao, Juan; Wang, Rong; Liu, Cheng

    2017-08-01

    Silver nanoparticles (AgNPs) are the most common materials in nanotechnology-based consumer products globally. Because of the wide application of AgNPs, their potential environmental impact is currently a highly topical focus of concern. Nitrification is one of the processes in the nitrogen cycle most susceptible to AgNPs but the specific effects of AgNPs on nitrification in aquatic environments are not well understood. We report the influence of AgNPs on nitrification and associated nitrous oxide (N 2 O) production in estuarine sediments. AgNPs inhibited nitrification rates, which decreased exponentially with increasing AgNP concentrations. The response of nitrifier N 2 O production to AgNPs exhibited low-dose stimulation (production could be enhanced by >100% at low doses of AgNPs. This result was confirmed by metatranscriptome studies showing up-regulation of nitric oxide reductase (norQ) gene expression in the low-dose treatment. Isotopomer analysis revealed that hydroxylamine oxidation was the main N 2 O production pathway, and its contribution to N 2 O emission was enhanced when exposed to low-dose AgNPs. This study highlights the molecular underpinnings of the effects of AgNPs on nitrification activity and demonstrates that the release of AgNPs into the environment should be controlled because they interfere with nitrifying communities and stimulate N 2 O emission.

  19. Study of Nitric Oxide production by murine peritoneal macrophages induced by Brucella Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Kavoosi G

    2001-07-01

    Full Text Available Brueclla is a gram negative bacteria that causes Brucellosis. Lipopolysaccharide (LPS ", the pathogenic agent of Brucella is composed of O-chain, core oligosaccharide and lipid A. in addition, the structural and biological properties of different LPS extracted from different strains are not identical. The first defense system against LPS is nonspecific immunity that causes macrophage activation. Activated macrophages produce oxygen and nitrogen radicals that enhance the protection against intracellular pathogens.In this experiment LPS was extracted by hot phenol- water procedure and the effect of various LPSs on nitric oxide prodution by peritoneal mouse macrophages was examined.Our results demonstrated that the effect of LPS on nitric oxide production is concentration-dependent we observed the maximum response in concentration of 10-20 microgram per milliliter. Also our results demonstrate that LPS extracted from vaccine Brucella abortus (S 19 had a highe effect on nitric oxide production than the LPS from other strains

  20. Primary souring: A novel bacteria-free method for sour beer production.

    Science.gov (United States)

    Osburn, Kara; Amaral, Justin; Metcalf, Sara R; Nickens, David M; Rogers, Cody M; Sausen, Christopher; Caputo, Robert; Miller, Justin; Li, Hongde; Tennessen, Jason M; Bochman, Matthew L

    2018-04-01

    In the beverage fermentation industry, especially at the craft or micro level, there is a movement to incorporate as many local ingredients as possible to both capture terroir and stimulate local economies. In the case of craft beer, this has traditionally only encompassed locally sourced barley, hops, and other agricultural adjuncts. The identification and use of novel yeasts in brewing lags behind. We sought to bridge this gap by bio-prospecting for wild yeasts, with a focus on the American Midwest. We isolated 284 different strains from 54 species of yeast and have begun to determine their fermentation characteristics. During this work, we found several isolates of five species that produce lactic acid and ethanol during wort fermentation: Hanseniaspora vineae, Lachancea fermentati, Lachancea thermotolerans, Schizosaccharomyces japonicus, and Wickerhamomyces anomalus. Tested representatives of these species yielded excellent attenuation, lactic acid production, and sensory characteristics, positioning them as viable alternatives to lactic acid bacteria (LAB) for the production of sour beers. Indeed, we suggest a new LAB-free paradigm for sour beer production that we term "primary souring" because the lactic acid production and resultant pH decrease occurs during primary fermentation, as opposed to kettle souring or souring via mixed culture fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. On the role of tides and strong wind events in promoting summer primary production in the Barents Sea

    Science.gov (United States)

    Le Fouest, Vincent; Postlethwaite, Clare; Morales Maqueda, Miguel Angel; Bélanger, Simon; Babin, Marcel

    2011-11-01

    Tides and wind-driven mixing play a major role in promoting post-bloom productivity in subarctic shelf seas. Whether this is also true in the high Arctic remains unknown. This question is particularly relevant in a context of increasing Arctic Ocean stratification in response to global climatic change. We have used a three-dimensional ocean-sea ice-plankton ecosystem model to assess the contribution of tides and strong wind events to summer (June-August 2001) primary production in the Barents Sea. Tides are responsible for 20% (60% locally) of the post-bloom primary production above Svalbard Bank and east of the Kola Peninsula. By contrast, more than 9% of the primary production is due to winds faster than 8 m s -1 in the central Barents Sea. Locally, this contribution reaches 25%. In the marginal ice zone, both tides and wind events have only a limited effect on primary production (central Barents Sea), respectively. When integrated over all Barents Sea sub-regions, tides and strong wind events account, respectively, for 6.8% (1.55 Tg C; 1 Tg C=10 12 g C) and 4.1% (0.93 Tg C) of the post-bloom primary production (22.6 Tg C). To put this in context, this contribution to summer primary production is equivalent to the spring bloom integrated over the Svalbard area. Tides and winds are significant drivers of summer plankton productivity in the Barents Sea.

  2. Nature of hydrocarbon activation in oxidative ammonolysis of propane to acrylonitrile over a gallium-antimony oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Osipova, Z.G.; Sokolovskii, V.D.

    1979-03-01

    The nature of hydrocarbon activation in oxidative ammonolysis of propane to acrylonitrile over a gallium-antimony oxide catalyst GaSbNiPOx (1:3:1.5:1 atomic ratios of the elements) was studied by comparing the rate of this reaction at 550/sup 0/C and 5Vertical Bar3< by vol propane/6Vertical Bar3< ammonia/18.6Vertical Bar3< oxygen/70.4Vertical Bar3< helium reactant mixture with that of isobutane ammoxidation to methacrylonitrile under the same conditions, at low (Vertical Bar3; 20Vertical Bar3<) conversions that prevent secondary oxidation of the products. Both the over-all hydrocarbon conversion rate and that of nitrile formation were higher for propane, suggesting that the reactions proceed via the respective carbanions (probably primary carbanions), rather than carbocations or uncharged radicals.

  3. Distribution of phototrophic populations and primary production in a microbial mat from the Ebro Delta, Spain.

    Science.gov (United States)

    Martínez-Alonso, Maira; Mir, Joan; Caumette, Pierre; Gaju, Núria; Guerrero, Ricardo; Esteve, Isabel

    2004-03-01

    Microbial mats arising in the sand flats of the Ebro Delta (Tarragona, Spain) were investigated during the summer season, when the community was highly developed. These mats are composed of three pigmented layers of phototrophic organisms, an upper brown layer mainly composed of Lyngbya aestuarii and diatoms, an intermediate green layer of the cyanobacterium Microcoleus chthonoplastes, and an underlying pink layer of a so-far unidentified purple sulfur bacterium. In the photic zone, oxygenic phototrophs constitute about 58% of total photosynthetic biomass, measured as biovolume, and anoxygenic phototrophs represent 42%. Diatoms constitute 11.8% of the oxygenic biomass, M. chthonoplastes 61.2%, and L. aestuarii and coccoid cyanobacteria 20.6 and 6.4%, respectively. In this laminated community, organic matter has an autochthonous origin, and photosynthesis is the most important source of organic carbon. Oxygen production reaches up to 27.2 mmol O(2) m(-2) h(-1), measured at 1000 microE m(-2) s(-1) light intensity, whereas oxidation of sulfide in the light has been calculated to be 18.6 mmol S m(-2) h(-1). This amount represents 26% of the total photosynthetic production in terms of photoassimilated carbon, demonstrating the important role of anoxygenic phototrophs as primary producers in the pink layer of Ebro Delta microbial mats.

  4. Plasmon-enhanced Solar Fuel Production with Gold-metal Oxide Hybrid Nanomaterials

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Law, Matt; Zhang, Jingdong

    , provide new catalytic routes and expands the scope of solar photocatalysis. We prepare metal oxide SNPs, gold PNPs and their hybrids through mild aqueous syntheses to develop efficient photocatalyst for solar fuel production. Focus is placed on the synergetic interplay between SNPs and PNPs, understanding...

  5. Parameterization of surface irradiance and primary production in Århus Bay, SW Kattegat, Baltic Sea

    DEFF Research Database (Denmark)

    Lund-Hansen, Lars Chresten; Sørensen, Helene Munk

    2009-01-01

    . The study is based on a one year long time-series of PAR, CTD-casts (n = 45), and primary production measurements (n = 24) from Århus Bay (56°09′ N; 10°20′ E), south west Kattegat. Results showed a high and positive correlation between observed and calculated primary production in the bay, as based...

  6. Gas-phase transport of fission products

    International Nuclear Information System (INIS)

    Tang, I.N.; Munkelwitz, H.R.

    1982-01-01

    The paper presents the results of an experimental investigation to show the importance of nuclear aerosol formation as a mechanism for semi-volatile fission product transport under certain postulated HTGR accident conditions. Simulated fission product Sr and Ba as oxides are impregnated in H451 graphite and released at elevated temperatures into a dry helium flow. In the presence of graphite, the oxides are quantitatively reduced to metals, which subsequently vaporize at temperatures much lower than required for the oxides alone to vaporize in the absence of graphite. A substantial fraction of the released material is associated with particulate matter, which is collected on filters located downstream at ambient temperatures. Increasing carrier-gas flow rate greatly enhances the extent of particulate transport. The release and transport of simulated fission product Ag as metal are also investigated. Electron microscopic examinations of the collected Sr and Ag aerosols show large agglomerates composed of primary particles roughly 0.06 to 0.08 μm in diameter

  7. The production of nitric oxide in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Arnold, Robyn E; Weigent, Douglas A

    2003-01-01

    Growth hormone (GH) is produced by immunocompetent cells and has been implicated in the regulation of a multiplicity of functions in the immune system involved in growth and activation. However, the actions of endogenous or lymphocyte GH and its contribution to immune reactivity when compared with those of serum or exogenous GH are still unclear. In the present study, we overexpressed lymphocyte GH in EL4 lymphoma cells, which lack the GH receptor (GHR), to determine the role of endogenous GH in nitric oxide (NO) production and response to genotoxic stress. Western blot analysis demonstrated that the levels of GH increased approximately 40% in cells overexpressing GH (GHo) when compared with cells with vector alone. The results also show a substantial increase in NO production in cells overexpressing GH that could be blocked by N(G)-monomethyl-L-arginine (L-NMMA), an L-arginine analogue that competitively inhibits all three isoforms of nitric oxide synthase (NOS). No evidence was obtained to support an increase in peroxynitrite in cells overexpressing GH. Overexpression of GH increased NOS activity, inducible nitric oxide synthase (iNOS) promoter activity, and iNOS protein expression, whereas endothelial nitric oxide synthase and neuronal nitric oxide synthase protein levels were essentially unchanged. In addition, cells overexpressing GH showed increased arginine transport ability and intracellular arginase activity when compared with control cells. GH overexpression appeared to protect cells from the toxic effects of the DNA alkylating agent methyl methanesulfonate. This possibility was suggested by maintenance of the mitochondrial transmembrane potential in cells overexpressing GH when compared with control cells that could be blocked by L-NMMA. Taken together, the data support the notion that lymphocyte GH, independently of the GH receptor, may play a key role in the survival of lymphocytes exposed to stressful stimuli via the production of NO.

  8. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene.

    Science.gov (United States)

    Kaspar, H F; Tiedje, J M

    1981-03-01

    15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, when 13NO3- was incubated with rumen microbiota virtually no [13N]N2 was produced. Acetylene partially inhibited the reduction of nitrite to ammonium as well as the formation of nitrous oxide. It is suggested that in the rumen ecosystem nitrous oxide is a byproduct of dissimilatory nitrite reduction to ammonium rather than a product of denitrification and that the latter process is absent from the rumen habitat.

  9. Determination of polycyclic aromatic hydrocarbons and their oxy-, nitro-, and hydroxy-oxidation products

    International Nuclear Information System (INIS)

    Cochran, R.E.; Dongari, N.; Jeong, H.; Beránek, J.; Haddadi, S.; Shipp, J.; Kubátová, A.

    2012-01-01

    Highlights: ► We describe a method for determining PAHs and their oxidation products. ► Solid-phase extraction was used to fractionate PAHs and their oxidation products. ► Gas chromatography–mass spectrometry methods were optimized. ► The developed method was applied to two particulate matter (PM) samples. - Abstract: A sensitive method has been developed for the trace analysis of PAHs and their oxidation products (i.e., nitro-, oxy-, and hydroxy-PAHs) in air particulate matter (PM). Following PM extraction, PAHs, nitro-, oxy-, and hydroxy-PAHs were fractionated using solid phase extraction (SPE) based on their polarities. Gas chromatography–mass spectrometry (GC–MS) conditions were optimized, addressing injection (i.e., splitless time), negative-ion chemical ionization (NICI) parameters, i.e., source temperature and methane flow rate, and MS scanning conditions. Each class of PAH oxidation products was then analyzed using the sample preparation and appropriate ionization conditions (e.g., nitro-PAHs exhibited the greatest sensitivity when analyzed with NICI–MS while hydroxy-PAHs required chemical derivatization prior to GC–MS analysis). The analyses were performed in selected-ion-total-ion (SITI) mode, combining the increased sensitivity of selected-ion monitoring (SIM) with the identification advantages of total-ion current (TIC). The instrumental LODs determined were 6–34 pg for PAHs, 5–36 pg for oxy-PAHs, and 1–21 pg for derivatized hydroxy-PAHs using electron ionization (GC-EI-MS). NICI–MS was found to be a useful tool for confirming the tentative identification of oxy-PAHs. For nitro-PAHs, LODs were 1–10 pg using negative-ion chemical ionization (GC-NICI-MS). The developed method was successfully applied to two types of real-world PM samples, diesel exhaust standard reference material (SRM 2975) and wood smoke PM.

  10. Oxidative Stress, Apoptosis, and Mitochondrial Function in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Sonia Sifuentes-Franco

    2018-01-01

    Full Text Available Diabetic nephropathy (DN is the second most frequent and prevalent complication of diabetes mellitus (DM. The increase in the production of oxidative stress (OS is induced by the persistent hyperglycemic state capable of producing oxidative damage to the macromolecules (lipids, carbohydrates, proteins, and nucleic acids. OS favors the production of oxidative damage to the histones of the double-chain DNA and affects expression of the DNA repairer enzyme which leads to cell death from apoptosis. The chronic hyperglycemic state unchains an increase in advanced glycation end-products (AGE that interact through the cellular receptors to favor activation of the transcription factor NF-κB and the protein kinase C (PKC system, leading to the appearance of inflammation, growth, and augmentation of synthesis of the extracellular matrix (ECM in DN. The reactive oxygen species (ROS play an important role in the pathogenesis of diabetic complications because the production of ROS increases during the persistent hyperglycemia. The primary source of the excessive production of ROS is the mitochondria with the capacity to exceed production of endogenous antioxidants. Due to the fact that the mechanisms involved in the development of DN have not been fully clarified, there are different approaches to specific therapeutic targets or adjuvant management alternatives in the control of glycemia in DN.

  11. Seasonal primary production in different sectors of the EEZ of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarupria, J.S.; Bhargava, R.M.S.

    The seasonal and regional variations in the primary production, based on the data collected at 562 stations over the period from 1962 to 1988, are presented. The entire Indian Exclusive Economic Zone (EEZ), measuring 2.01 million km super(2...

  12. UV radiation and natural fluorescence linked primary production in Antarctic waters

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; KrishnaKumari, L.; Bhattathiri, P.M.A.; Chandramohan, D.

    Primary productivity and chlorophyll values have been measured using an underwater profiling radiometer for the first time in the waters around Indian Antarctic Station (70°46'S & 11°44'E) in the summer of 1994. The profiles include natural...

  13. Influence of Catalyst Acid/Base Properties in Acrolein Production by Oxidative Coupling of Ethanol and Methanol.

    Science.gov (United States)

    Lilić, Aleksandra; Bennici, Simona; Devaux, Jean-François; Dubois, Jean-Luc; Auroux, Aline

    2017-05-09

    Oxidative coupling of methanol and ethanol represents a new route to produce acrolein. In this work, the overall reaction was decoupled in two steps, the oxidation and the aldolization, by using two consecutive reactors to investigate the role of the acid/base properties of silica-supported oxide catalysts. The oxidation of a mixture of methanol and ethanol to formaldehyde and acetaldehyde was performed over a FeMoO x catalyst, and then the product mixture was transferred without intermediate separation to a second reactor, in which the aldol condensation and dehydration to acrolein were performed over the supported oxides. The impact of the acid/base properties on the selectivity towards acrolein was investigated under oxidizing conditions for the first time. The acid/base properties of the catalysts were investigated by NH 3 -, SO 2 -, and methanol-adsorption microcalorimetry. A MgO/SiO 2 catalyst was the most active in acrolein production owing to an appropriate ratio of basic to acidic sites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism.

    Science.gov (United States)

    Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María

    2015-12-15

    Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir.

    Science.gov (United States)

    Pan, Pan; Hong, Bo; Mbadinga, Serge Maurice; Wang, Li-Ying; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2017-09-01

    Acetate is a key intermediate in anaerobic crude oil biodegradation and also a precursor for methanogenesis in petroleum reservoirs. The impact of iron oxides, viz. β-FeOOH (akaganéite) and magnetite (Fe 3 O 4 ), on the methanogenic acetate metabolism in production water of a high-temperature petroleum reservoir was investigated. Methane production was observed in all the treatments amended with acetate. In the microcosms amended with acetate solely about 30% of the acetate utilized was converted to methane, whereas methane production was stimulated in the presence of magnetite (Fe 3 O 4 ) resulting in a 48.34% conversion to methane. Methane production in acetate-amended, β-FeOOH (akaganéite)-supplemented microcosms was much faster and acetate consumption was greatly improved compared to the other conditions in which the stoichiometric expected amounts of methane were not produced. Microbial community analysis showed that Thermacetogenium spp. (known syntrophic acetate oxidizers) and hydrogenotrophic methanogens closely related to Methanothermobacter spp. were enriched in acetate and acetate/magnetite (Fe 3 O 4 ) microcosms suggesting that methanogenic acetate metabolism was through hydrogenotrophic methanogenesis fueled by syntrophic acetate oxidizers. The acetate/β-FeOOH (akaganéite) microcosms, however, differed by the dominance of archaea closely related to the acetoclastic Methanosaeta thermophila. These observations suggest that supplementation of β-FeOOH (akaganéite) accelerated the production of methane further, driven the alteration of the methanogenic community, and changed the pathway of acetate methanogenesis from hydrogenotrophic methanogenesis fueled by syntrophic acetate oxidizers to acetoclastic.

  16. Electro-oxidation of the dye azure B: kinetics, mechanism, and by-products.

    Science.gov (United States)

    Olvera-Vargas, Hugo; Oturan, Nihal; Aravindakumar, C T; Paul, M M Sunil; Sharma, Virender K; Oturan, Mehmet A

    2014-01-01

    In this work, the electrochemical degradation of the dye azure B in aqueous solutions was studied by electrochemical advanced oxidation processes (EAOPs), electro-Fenton, and anodic oxidation processes, using Pt/carbon-felt and boron-doped diamond (BDD)/carbon-felt cells with H₂O₂ electrogeneration. The higher oxidation power of the electro-Fenton (EF) process using BDD anode was demonstrated. The oxidative degradation of azure B by the electrochemically generated hydroxyl radicals ((•)OH) follows a pseudo-first-order kinetics. The apparent rate constants of the oxidation of azure B by (•)OH were measured according to pseudo-first-order kinetic model. The absolute rate constant of azure B hydroxylation reaction was determined by competition kinetics method and found to be 1.19 × 10(9) M(-1) s(-1). It was found that the electrochemical degradation of the dye leads to the formation of aromatic by-products which are then oxidized to aliphatic carboxylic acids before their almost mineralization to CO₂ and inorganic ions (sulfate, nitrate, and ammonium). The evolution of the TOC removal and time course of short-chain carboxylic acids during treatment were also investigated.

  17. Decreasing Net Primary Productivity in Response to Urbanization in Liaoning Province, China

    Directory of Open Access Journals (Sweden)

    Tan Chen

    2017-01-01

    Full Text Available Regional ecosystems have been greatly affected by the rapid expansion of urban areas. In order to explore the impact of land use change on net primary productivity (NPP in rapidly developing cities during the current urbanization process, we quantified land use change in Liaoning province between 2000 and 2010 using net primary productivity as an indicator of ecosystem productivity and health. The Carnegie–Ames–Stanford Approach model was used to estimate NPP by region and land use. We used a unit circle-based evaluation model to quantify local urbanization effects on NPP around eight representative cities. The dominant land use types were farmland, woodland and urban, with urban rapidly replacing farmland. Mean annual NPP and total NPP decreased faster from 2005 to 2010 than from 2000 to 2005, reflecting increasing urbanization rates. The eastern, primarily woodland part of Liaoning province had the greatest reduction in NPP, while the western part, which was primarily farmland and grassland, had the lowest reduction.

  18. Solubilities of iron and nickel oxides under high temperature and high pressure conditions

    International Nuclear Information System (INIS)

    Choi, Ke-Chon; Jung, Yong-Ju; Yeon, Jei-Won; Jee, Kwang-Yong

    2007-01-01

    The purposes of primary coolant chemistry are to assure fuel and material integrity and to minimize out of core radiation fields. During the PWR operation, crud deposits are expected on the cladding, leading to cladding failure and raising the radioactivity. Such deposits come from the corrosion products of system surface. To achieve optimal conditions for primary coolant, basic researches on mass transfer, deposition and solubility of corrosion products are needed. The initial stage of crud formation could be the studies on the solubility of a structural material. It has been known that the solubility of metal oxides in boric acid under high temperature and high pressure condition depends on the pH and dissolved hydrogen. Thus, the effect of various pH on the solubility of metal oxide in boric acid solution was investigated in this work

  19. Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements.

    Science.gov (United States)

    Halvorsen, Bente Lise; Blomhoff, Rune

    2011-01-01

    There is convincing evidence that replacing dietary saturated fats with polyunsaturated fats (PUFA) decreases risk of cardiovascular diseases. Therefore, PUFA rich foods such as vegetable oils, fatty fish, and marine omega-3 supplements are recommended. However, PUFA are easily oxidizable and there is concern about possible negative health effects from intake of oxidized lipids. Little is known about the degree of lipid oxidation in such products. To assess the content of lipid oxidation products in a large selection of vegetable oils and marine omega-3 supplements available in Norway. Both fresh and heated vegetable oils were studied. A large selection of commercially available vegetable oils and marine omega-3 supplements was purchased from grocery stores, pharmacies, and health food stores in Norway. The content of lipid oxidation products were measured as peroxide value and alkenal concentration. Twelve different vegetable oils were heated for a temperature (225°C) and time (25 minutes) resembling conditions typically used during cooking. The peroxide values were in the range 1.04-10.38 meq/kg for omega-3 supplements and in the range 0.60-5.33 meq/kg for fresh vegetable oils. The concentration range of alkenals was 158.23-932.19 nmol/mL for omega-3 supplements and 33.24-119.04 nmol/mL for vegetable oils. After heating, a 2.9-11.2 fold increase in alkenal concentration was observed for vegetable oils. The contents of hydroperoxides and alkenals in omega-3 supplements are higher than in vegetable oils. After heating vegetable oils, a large increase in alkenal concentration was observed.

  20. Insight into nitrous oxide production processes in the western North Pacific based on a marine ecosystem isotopomer model

    Science.gov (United States)

    Yoshikawa, C.; Sasai, Y.; Wakita, M.; Honda, M. C.; Fujiki, T.; Harada, N.; Makabe, A.; Matsushima, S.; Toyoda, S.; Yoshida, N.; Ogawa, N. O.; Suga, H.; Ohkouchi, N.

    2016-02-01

    Based on the observed inverse relationship between the dissolved oxygen and N2O concentrations in the ocean, previous models have indirectly predicted marine N2O emissions from the apparent oxygen utilization (AOU), In this study, a marine ecosystem model that incorporates nitrous oxide (N2O) production processes (i.e., ammonium oxidation during nitrification and nitrite reduction during nitrifier denitrification) was newly developed to estimate the sea-air N2O flux and to quantify N2O production processes. Site preference of 15N (SP) in N2O isotopomers (14N15N16O and 15N14N16O) and the average nitrogen isotope ratio (δ15N) were added to the model because they are useful tracers to distinguish between ammonium oxidation and nitrite reduction. This model was applied to two contrasting time series sites, a subarctic station (K2) and a subtropical station (S1) in the western North Pacific. The model was validated with observed nitrogen concentration and nitrogen isotopomer datasets, and successfully simulated the higher N2O concentrations, higher δ15N values, and higher site preference values for N2O at K2 compared with S1. The annual mean N2O emissions were estimated to be 34 mg N m-2 yr-1 at K2 and 2 mg N m-2 yr-1 at S1. Using this model, we conducted three case studies: 1) estimating the ratio of in-situ biological N2O production to nitrate (NO3-) production during nitrification, 2) estimating the ratio of N2O production by ammonium oxidation to that by nitrite reduction, and 3) estimating the ratio of AOA ammonium oxidation to AOB ammonium oxidation. The results of case studies estimated the ratios of in situ biological N2O production to nitrate production during nitrification to be 0.22% at K2 and 0.06% at S1. It is also suggested that N2O was mainly produced via ammonium oxidation at K2 but was produced via both ammonium oxidation and nitrite reduction at S1. It is also revealed that 80% of the ammonium oxidation at K2 was caused by archaea in the subsurface

  1. Oxidative metabolism of 5-o-caffeoylquinic acid (chlorogenic acid), a bioactive natural product, by metalloporphyrin and rat liver mitochondria.

    Science.gov (United States)

    dos Santos, Michel D; Martins, Patrícia R; dos Santos, Pierre A; Bortocan, Renato; Iamamoto, Y; Lopes, Norberto P

    2005-09-01

    Synthetic metalloporphyrins, in the presence of monooxygen donors, are known to mimic the various reactions of cytochrome P450 enzymes systems in the oxidation and oxygenation of various drugs and biologically active compounds. This paper reports an HPLC-MS-MS investigation of chlorogenic acid (CGA) oxidation by iodosylbenzene using iron(III) tetraphenylporphyrin chloride as catalyst. The oxidation products have been detected by sequential MS analyses. In addition, CGA was submitted to an in vitro metabolism assay employing isolated rat liver mitochondria. The single oxidized product obtained from mitochondrial metabolism corresponds to the major product formed by the metalloporphyrin-catalyzed reaction. These results indicate that biomimetic oxidation reactions, in addition to in vitro metabolism assays employing isolated organs/organelles, could replace some in vivo metabolism studies, thus minimizing the problems related to the use of a large number of living animals in experimental research.

  2. Dose rate determining factors of PWR primary water

    International Nuclear Information System (INIS)

    Terachi, Takumi; Kuge, Toshiharu; Nakano, Nobuo

    2014-01-01

    The relationship between dose rate trends and water chemistry has been studied to clarify the determining factors on the dose rates. Therefore dose rate trends and water chemistry of 11 PWR plants of KEPCO (Kansai Electric Power Co., Inc.) were summarized. It is indicated that the chemical composition of the oxide film, behaviour of corrosion products and Co-58/Co-60 ratio in the primary system have effected dose rate trends based on plant operation experiences for over 40 years. According to plant operation experiences, the amount of Co-58 has been decreasing with the increasing duration of SG (Steam Generator) usage. It is indicated that the stable oxide film formation on the inner surface of SG tubing, is a major beneficial factor for radiation sources reduction. On the other hand, the reduction of the amount of Co-60 for the long term has been not clearly observed especially in particular high dose plants. The primary water parameters imply that considering release and purification balance on Co-59 is important to prevent accumulation of source term in primary water. In addition, the effect of zinc injection, which relates to the chemical composition of oxide film, was also assessed. As the results, the amount of radioactive Co has been clearly decreased. The decreasing trend seems to correlate to the half-life of Co-60, because it is considered that the injected zinc prevents the uptake of radioactive Co into the oxide film on the inner surface of the components and piping. In this paper, the influence of water chemistry and the replacement experiences of materials on the dose rates were discussed. (author)

  3. Influence of dissolved hydrogen on oxide film and PWSCC of Alloy 600 in PWR primary water

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tomokazu; Totsuka, Nobuo; Nakajima, Nobuo [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In order to investigate the influence of dissolved hydrogen (DH) on the corrosion behavior and PWSCC of Alloy 600 in primary water of PWR under actual operating temperature range, we carried out electrochemical polarization measurement, repassivation test, analysis of the oxide film on the alloy by AES, XPS and PWSCC test. In all cases, the content of DH was changed from 0 to 45 cc/kgH{sub 2}O. The anodic polarization curve reveals that the peak current density increases with increasing DH. The result of the repassivation test shows that the repassivation rate decreases with increasing DH, and the changes of the above two become larger between 11 and 22 cc/kgH{sub 2}O of DH. According to the results of oxide film analysis, it is seen that the oxide films formed below 11 cc/kgH{sub 2}O of DH are relatively thick and rich in Ni, but those formed at higher DH contents are relatively thin and rich in Cr and Fe. The susceptibility of the alloy to PWSCC has a peak at 11 cc/kgH{sub 2}O of DH, which reveals that the property of the oxide film may play important role in PWSCC of alloy. (author)

  4. HANPP Collection: Global Patterns in Human Appropriation of Net Primary Productivity (HANPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Human Appropriation of Net Primary Productivity (HANPP) portion of the HANPP Collection represents a digital map of human appropriation of net...

  5. Production of SmCo5 alloy by calciothermic reduction of samarium oxide

    International Nuclear Information System (INIS)

    Krishnan, T.S.; Gupta, C.K.

    1988-01-01

    Among the established permanent magnets, SmCo 5 magnet occupies the foremost position as it offers a unique combination of high energy product, coercivity and curie temperature. The SmCo 5 magnets are thus extensively used for high field applications. These are also best suited for use in environments where high demagnetizing field and high temperature are operative. Also, for applications where high performance and miniaturization are the over-riding considerations, the choice again falls on SmCo 5 magnets. The main deterrent to the widespread use of SmCo 5 magnet is its high cost. Both samarium and cobalt metals are high priced, and the magnets prepared from their directly melted alloy are thus naturally very expensive. An alternate process involving calcium reduction of their oxide intermediates has, therefore, been studied and the alloy prepared by this process has been evaluated and found satisfactory for magnet production. The process essentially involves compaction of the charge mix containing samarium oxide, cobalt oxide (or metal) and calcium metal and reduction of the charge compact at 1000-1300 degrees C in hydrogen atmosphere, followed by water and acid leaching, drying and classification

  6. Identification of key nitrous oxide production pathways in aerobic partial nitrifying granules.

    Science.gov (United States)

    Ishii, Satoshi; Song, Yanjun; Rathnayake, Lashitha; Tumendelger, Azzaya; Satoh, Hisashi; Toyoda, Sakae; Yoshida, Naohiro; Okabe, Satoshi

    2014-10-01

    The identification of the key nitrous oxide (N2O) production pathways is important to establish a strategy to mitigate N2O emission. In this study, we combined real-time gas-monitoring analysis, (15)N stable isotope analysis, denitrification functional gene transcriptome analysis and microscale N2O concentration measurements to identify the main N2O producers in a partial nitrification (PN) aerobic granule reactor, which was fed with ammonium and acetate. Our results suggest that heterotrophic denitrification was the main contributor to N2O production in our PN aerobic granule reactor. The heterotrophic denitrifiers were probably related to Rhodocyclales bacteria, although different types of bacteria were active in the initial and latter stages of the PN reaction cycles, most likely in response to the presence of acetate. Hydroxylamine oxidation and nitrifier denitrification occurred, but their contribution to N2O emission was relatively small (20-30%) compared with heterotrophic denitrification. Our approach can be useful to quantitatively examine the relative contributions of the three pathways (hydroxylamine oxidation, nitrifier denitrification and heterotrophic denitrification) to N2O emission in mixed microbial populations. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Accounting for graduate medical education production of primary care physicians and general surgeons: timing of measurement matters.

    Science.gov (United States)

    Petterson, Stephen; Burke, Matthew; Phillips, Robert; Teevan, Bridget

    2011-05-01

    Legislation proposed in 2009 to expand GME set institutional primary care and general surgery production eligibility thresholds at 25% at entry into training. The authors measured institutions' production of primary care physicians and general surgeons on completion of first residency versus two to four years after graduation to inform debate and explore residency expansion and physician workforce implications. Production of primary care physicians and general surgeons was assessed by retrospective analysis of the 2009 American Medical Association Masterfile, which includes physicians' training institution, residency specialty, and year of completion for up to six training experiences. The authors measured production rates for each institution based on physicians completing their first residency during 2005-2007 in family or internal medicine, pediatrics, or general surgery. They then reassessed rates to account for those who completed additional training. They compared these rates with proposed expansion eligibility thresholds and current workforce needs. Of 116,004 physicians completing their first residency, 54,245 (46.8%) were in primary care and general surgery. Of 683 training institutions, 586 met the 25% threshold for expansion eligibility. At two to four years out, only 29,963 physicians (25.8%) remained in primary care or general surgery, and 135 institutions lost eligibility. A 35% threshold eliminated 314 institutions collectively training 93,774 residents (80.8%). Residency expansion thresholds that do not account for production at least two to four years after completion of first residency overestimate eligibility. The overall primary care production rate from GME will not sustain the current physician workforce composition. Copyright © by the Association of American medical Colleges.

  8. Connectedness of land use, nutrients, primary production, and fish assemblages in oxbow lakes

    Science.gov (United States)

    Miranda, Leandro E.; Andrews, Caroline S.; Kroger, Robert

    2013-01-01

    We explored the strength of connectedness among hierarchical system components associated with oxbow lakes in the alluvial valley of the Lower Mississippi River. Specifically, we examined the degree of canonical correlation between land use (agriculture and forests), lake morphometry (depth and size), nutrients (total nitrogen and total phosphorus), primary production (chlorophyll-a), and various fish assemblage descriptors. Watershed (p < 0.01) and riparian (p = 0.02) land use, and lake depth (p = 0.05) but not size (p = 0.28), were associated with nutrient concentrations. In turn, nutrients were associated with primary production (p < 0.01), and primary production was associated with sunfish (Centrarchidae) assemblages (p < 0.01) and fish biodiversity (p = 0.08), but not with those of other taxa and functional guilds. Multiple chemical and biological components of oxbow lake ecosystems are connected to landscape characteristics such as land use and lake depth. Therefore, a top-down hierarchical approach can be useful in developing management and conservation plans for oxbow lakes in a region impacted by widespread landscape changes due to agriculture.

  9. Advanced oxidation protein products sensitized the transient receptor potential vanilloid 1 via NADPH oxidase 1 and 4 to cause mechanical hyperalgesia

    Directory of Open Access Journals (Sweden)

    Ruoting Ding

    2016-12-01

    Full Text Available Oxidative stress is a possible pathogenesis of hyperalgesia. Advanced oxidation protein products (AOPPs, a new family of oxidized protein compounds, have been considered as a novel marker of oxidative stress. However, the role of AOPPs in the mechanism of hyperalgesia remains unknown. Our study aims to investigate whether AOPPs have an effect on hyperalgesia and the possible underlying mechanisms. To identify the AOPPs involved, we induced hyperalgesia in rats by injecting complete Freund’s adjuvant (CFA in hindpaw. The level of plasma AOPPs in CFA-induced rats was 1.6-fold in comparison with what in normal rats (P<0.05. After intravenous injection of AOPPs-modified rat serum albumin (AOPPs-RSA in Sprague-Dawley rats, the paw mechanical thresholds, measured by the electronic von Frey system, significantly declined. Immunofluorescence staining indicated that AOPPs increased expressions of NADPH oxidase 1 (Nox1, NADPH oxidase 4 (Nox4, transient receptor potential vanilloid 1 (TRPV1 and calcitonin gene-related peptide (CGRP in the dorsal root ganglia (DRG tissues. In-vitro studies were performed on primary DRG neurons which were obtained from both thoracic and lumbar DRG of rats. Results indicated that AOPPs triggered reactive oxygen species (ROS production in DRG neurons, which were significantly abolished by ROS scavenger N-acetyl-l-cysteine (NAC and small-interfering RNA (siRNA silencing of Nox1 or Nox4. The expressions of Nox1, Nox4, TRPV1 and CGRP were significantly increased in AOPPs-induced DRG neurons. And relevant siRNA or inhibitors notably suppressed the expressions of these proteins and the calcium influxes in AOPPs-induced DRG neurons. In conclusion, AOPPs increased significantly in CFA-induced hyperalgesia rats and they activated Nox1/Nox4-ROS to sensitize TRPV1-dependent Ca2+ influx and CGRP release which led to inducing mechanical hyperalgesia.

  10. Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system.

    Science.gov (United States)

    Charbonnier, Fabien; Roupsard, Olivier; le Maire, Guerric; Guillemot, Joannès; Casanoves, Fernando; Lacointe, André; Vaast, Philippe; Allinne, Clémentine; Audebert, Louise; Cambou, Aurélie; Clément-Vidal, Anne; Defrenet, Elsa; Duursma, Remko A; Jarri, Laura; Jourdan, Christophe; Khac, Emmanuelle; Leandro, Patricia; Medlyn, Belinda E; Saint-André, Laurent; Thaler, Philippe; Van Den Meersche, Karel; Barquero Aguilar, Alejandra; Lehner, Peter; Dreyer, Erwin

    2017-08-01

    In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees. © 2017 John Wiley & Sons Ltd.

  11. News about the genetics of congenital primary adrenal insufficiency.

    Science.gov (United States)

    Roucher-Boulez, Florence; Mallet-Motak, Delphine; Tardy-Guidollet, Véronique; Menassa, Rita; Goursaud, Claire; Plotton, Ingrid; Morel, Yves

    2018-04-13

    Primary adrenal insufficiency (PAI) is characterized by impaired production of steroid hormones due to an adrenal cortex defect. This condition incurs a risk of acute insufficiency which may be life-threatening. Today, 80% of pediatric forms of PAI have a genetic origin but 5% have no clear genetic support. Recently discovered mutations in genes relating to oxidative stress have opened the way to research on genes unrelated to the adrenal gland. Identification of causal mutations in a gene responsible for PAI allows genetic counseling, guidance of follow-up and prevention of complications. This is particularly true for stress oxidative anomalies, as extra-adrenal manifestations may occur due to the sensitivity to oxidative stress of other organs such as the heart, thyroid, liver, kidney and pancreas. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Inherent health and environmental risk assessment of nanostructured metal oxide production processes.

    Science.gov (United States)

    Torabifard, Mina; Arjmandi, Reza; Rashidi, Alimorad; Nouri, Jafar; Mohammadfam, Iraj

    2018-01-10

    The health and environmental effects of chemical processes can be assessed during the initial stage of their production. In this paper, the Chemical Screening Tool for Exposure and Environmental Release (ChemSTEER) software was used to compare the health and environmental risks of spray pyrolysis and wet chemical techniques for the fabrication of nanostructured metal oxide on a semi-industrial scale with a capacity of 300 kg/day in Iran. The pollution sources identified in each production process were pairwise compared in Expert Choice software using indicators including respiratory damage, skin damage, and environmental damages including air, water, and soil pollution. The synthesis of nanostructured zinc oxide using the wet chemical technique (with 0.523 wt%) leads to lower health and environmental risks compared to when spray pyrolysis is used (with 0.477 wt%). The health and environmental risk assessment of nanomaterial production processes can help select safer processes, modify the operation conditions, and select or modify raw materials that can help eliminate the risks.

  13. Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment.

    Directory of Open Access Journals (Sweden)

    Ruijuan Qu

    Full Text Available Tetrabromobisphenol A (TBBPA is one of the most widely used brominated flame retardants and has attracted more and more attention. In this work, the parent TBBPA with an initial concentration of 100 mg/L was completely removed after 6 min of ozonation at pH 8.0, and alkaline conditions favored a more rapid removal than acidic and neutral conditions. The presence of typical anions and humic acid did not significantly affect the degradation of TBBPA. The quenching test using isopropanol indicated that direct ozone oxidation played a dominant role during this process. Seventeen reaction intermediates and products were identified using an electrospray time-of-flight mass spectrometer. Notably, the generation of 2,4,6-tribromophenol was first observed in the degradation process of TBBPA. The evolution of reaction products showed that ozonation is an efficient treatment for removal of both TBBPA and intermediates. Sequential transformation of organic bromine to bromide and bromate was confirmed by ion chromatography analysis. Two primary reaction pathways that involve cleavage of central carbon atom and benzene ring cleavage concomitant with debromination were thus proposed and further justified by calculations of frontier electron densities. Furthermore, the total organic carbon data suggested a low mineralization rate, even after the complete removal of TBBPA. Meanwhile, the acute aqueous toxicity of reaction solutions to Photobacterium Phosphoreum and Daphnia magna was rapidly decreased during ozonation. In addition, no obvious difference in the attenuation of TBBPA was found by ozone oxidation using different water matrices, and the effectiveness in natural waters further demonstrates that ozonation can be adopted as a promising technique to treat TBBPA-contaminated waters.

  14. Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment

    Science.gov (United States)

    Wang, Xinghao; Huang, Qingguo; Lu, Junhe; Wang, Liansheng; Wang, Zunyao

    2015-01-01

    Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardants and has attracted more and more attention. In this work, the parent TBBPA with an initial concentration of 100 mg/L was completely removed after 6 min of ozonation at pH 8.0, and alkaline conditions favored a more rapid removal than acidic and neutral conditions. The presence of typical anions and humic acid did not significantly affect the degradation of TBBPA. The quenching test using isopropanol indicated that direct ozone oxidation played a dominant role during this process. Seventeen reaction intermediates and products were identified using an electrospray time-of-flight mass spectrometer. Notably, the generation of 2,4,6-tribromophenol was first observed in the degradation process of TBBPA. The evolution of reaction products showed that ozonation is an efficient treatment for removal of both TBBPA and intermediates. Sequential transformation of organic bromine to bromide and bromate was confirmed by ion chromatography analysis. Two primary reaction pathways that involve cleavage of central carbon atom and benzene ring cleavage concomitant with debromination were thus proposed and further justified by calculations of frontier electron densities. Furthermore, the total organic carbon data suggested a low mineralization rate, even after the complete removal of TBBPA. Meanwhile, the acute aqueous toxicity of reaction solutions to Photobacterium Phosphoreum and Daphnia magna was rapidly decreased during ozonation. In addition, no obvious difference in the attenuation of TBBPA was found by ozone oxidation using different water matrices, and the effectiveness in natural waters further demonstrates that ozonation can be adopted as a promising technique to treat TBBPA-contaminated waters. PMID:26430733

  15. Wet oxidation pretreatment of rape straw for ethanol production

    International Nuclear Information System (INIS)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole slurry (Filter cake + filtrate) in SSF were also tested. Except ethanol yields, pretreatment methods were evaluated based on achieved glucose yields, amount of water used, recovery of cellulose, hemicellulose, and lignin. The highest ethanol yield obtained was 67% after fermenting the whole slurry produced by WO at 205 °C for 3 min with 12 bar of oxygen gas pressure and featured with presoaking in water. At these conditions after pre-treatment, cellulose and hemicellulose was recovered quantitatively (100%) together with 86% of the lignin. WO treatments of 2–3 min at 205–210 °C with 12 bar of oxygen gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid formation in SSF. -- Highlights: ► Wet Oxidation pretreatment on rape straw for sugar and ethanol production. ► Variables were reaction time, temperature, and oxygen gas pressure. ► Also, other configurations for increase of water and energy efficiency. ► Short Wet oxidation pretreatment (2–3 min) produced highest ethanol yield. ► After these pretreatment conditions recovery of lignin in solids was 86%.

  16. Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products

    Energy Technology Data Exchange (ETDEWEB)

    Achyuthan, Komandoor; Adams, Paul; Simmons, Blake; Singh, Anup

    2011-07-13

    Lignin composition (monolignol types of coniferyl, sinapyl or p-coumaryl alcohol) is causally related to biomass recalcitrance. We describe multiwavelength (220, 228, 240, 250, 260, 290, 295, 300, 310 or 320 nm) absorption spectroscopy of coniferyl alcohol and its laccase- or peroxidase-catalyzed products during real time kinetic, pseudo-kinetic and endpoint analyses, in optical turn on or turn off modes, under acidic or basic conditions. Reactions in microwell plates and 100 mu L volumes demonstrated assay miniaturization and high throughput screening capabilities. Bathochromic and hypsochromic shifts along with hyperchromicity or hypochromicity accompanied enzymatic oxidations by laccase or peroxidase. The limits of detection and quantitation of coniferyl alcohol averaged 2.4 and 7.1 mu M respectively, with linear trend lines over 3 to 4 orders of magnitude. Coniferyl alcohol oxidation was evident within 10 minutes or with 0.01 mu g/mL laccase and 2 minutes or 0.001 mu g/mL peroxidase. Detection limit improved to 1.0 mu M coniferyl alcohol with Km of 978.7 +/- 150.7 mu M when examined at 260 nm following 30 minutes oxidation with 1.0 mu g/mL laccase. Our assays utilized the intrinsic spectroscopic properties of coniferyl alcohol or its oxidation products for enabling detection, without requiring chemical synthesis or modification of the substrate or product(s). These studies facilitate lignin compositional analyses and augment pretreatment strategies for reducing biomass recalcitrance.

  17. Mechanism of mechanochemical synthesis of complex oxides and the peculiarities of their nano-structurization determining sintering

    Directory of Open Access Journals (Sweden)

    Zyryanov V.V.

    2005-01-01

    Full Text Available A mechanism of superfast mechanosynthesis reaction for oxide systems is proposed on the base of a dynamics study. The threshold effect and linear dependence of the chemical response on the effective temperature of the reaction zone are established. Major factors are determined: molecular mass of reagents, enthalpy and difference of reagents in Mohs’s hardness, which also influence the composition of the primary product. Primary acts are characterized by a superfast roller mechanism of mass transfer with the formation of a transient dynamic state (D*. Secondary acts slowly approximate the composition of the product to the composition of the starting mixture by diffusion mass transfer in a deformation mixing regime with a contribution of a rotation (roller mechanism. The list of structure types for complex oxides derived by mechanosynthesis includes perovskites, fluorites, pyrochlors, sheelites, and some other ones. Powders of crystal products display multilevel structurization. In all studied complex oxides strong disordering of the “anti-glass” type was observed. The mechanism of sintering was studied in BaTiO3 powders of different origin and in metastable complex oxides derived by mechanosynthesis. The major contribution in shrinkage belongs to rearrangements of crystalline particles as a whole. Structure transformations accompany, as a rule, sintering of inhomogeneous powders derived by mechanosynthesis.

  18. Exhaled and nasal nitric oxide in chronic rhinosinusitis patients with nasal polyps in primary care

    DEFF Research Database (Denmark)

    Frendø, M; Håkansson, K; Schwer, S

    2018-01-01

    BACKGROUND: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common inflammatory disorder associated with lower airway disease. However, only few studies of CRSwNP from outside secondary/tertiary care centres have been published. We recently reported an asthma frequency of 44% and 65...... patients. Compared with controls, a high level of exhaled NO was significantly more prevalent in CRSwNP irrespective of asthma-status. Nasal NO was significantly lower in patients with CRSwNP compared with controls. CONCLUSION: Subclinical eosinophilic lower airway inflammation is common in CRSwNP......% in primary and secondary care patients respectively. Therefore, we hypothesise that inflammation of the lower airways could be present in all CRSwNP patients, even without asthma. Here, we assessed the degree of lower and upper airway inflammation using exhaled and nasal nitric oxide (NO) in primary care...

  19. Temperature controls oxidative phosphorylation and reactive oxygen species production through uncoupling in rat skeletal muscle mitochondria.

    Science.gov (United States)

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Koziel, Agnieszka; Majerczak, Joanna; Zoladz, Jerzy A

    2015-06-01

    Mitochondrial respiratory and phosphorylation activities, mitochondrial uncoupling, and hydrogen peroxide formation were studied in isolated rat skeletal muscle mitochondria during experimentally induced hypothermia (25 °C) and hyperthermia (42 °C) compared to the physiological temperature of resting muscle (35 °C). For nonphosphorylating mitochondria, increasing the temperature from 25 to 42 °C led to a decrease in membrane potential, hydrogen peroxide production, and quinone reduction levels. For phosphorylating mitochondria, no temperature-dependent changes in these mitochondrial functions were observed. However, the efficiency of oxidative phosphorylation decreased, whereas the oxidation and phosphorylation rates and oxidative capacities of the mitochondria increased, with increasing assay temperature. An increase in proton leak, including uncoupling protein-mediated proton leak, was observed with increasing assay temperature, which could explain the reduced oxidative phosphorylation efficiency and reactive oxygen species production. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Evaluation of CRUDTRAN code to predict transport of corrosion products and radioactivity in the PWR primary coolant system

    International Nuclear Information System (INIS)

    Lee, C.B.

    2002-01-01

    CRUDTRAN code is to predict transport of the corrosion products and their radio-activated nuclides such as cobalt-58 and cobalt-60 in the PWR primary coolant system. In CRUDTRAN code the PWR primary circuit is divided into three principal sections such as the core, the coolant and the steam generator. The main driving force for corrosion product transport in the PWR primary coolant comes from coolant temperature change throughout the system and a subsequent change in corrosion product solubility. As the coolant temperature changes around the PWR primary circuit, saturation status of the corrosion products in the coolant also changes such that under-saturation in steam generator and super-saturation in the core. CRUDTRAN code was evaluated by comparison with the results of the in-reactor loop tests simulating the PWR primary coolant system and PWR plant data. It showed that CRUDTRAN could predict variations of cobalt-58 and cobalt-60 radioactivity with time, plant cycle and coolant chemistry in the PWR plant. (author)

  1. Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

  2. Anti-nitric oxide production, anti-proliferation and antioxidant effects of the aqueous extract from Tithonia diversifolia

    Directory of Open Access Journals (Sweden)

    Poonsit Hiransai

    2016-11-01

    Conclusions: Our study demonstrated the immunomodulation caused by the aqueous leaf extract of T. diversifolia, resulting from the inhibition of phytohemagglutinin-M-induced PBMCs proliferation and LPS-induced nitric oxide production in RAW264.7 macrophages. Although the anti-oxidative activity was presented in the chemical-based anti-oxidant assay, the extract cannot protect cell death from stress conditions.

  3. Quantification of nitrous oxide (N2O) emissions and soluble microbial product (SMP) production by a modified AOB-NOB-N2O-SMP model.

    Science.gov (United States)

    Kim, MinJeong; Wu, Guangxue; Yoo, ChangKyoo

    2017-03-01

    A modified AOB-NOB-N 2 O-SMP model able to quantify nitrous oxide (N 2 O) emissions and soluble microbial product (SMP) production during wastewater treatment is proposed. The modified AOB-NOB-N 2 O-SMP model takes into account: (1) two-step nitrification by ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), (2) N 2 O production by AOB denitrification under oxygen-limited conditions and (3) SMP production by microbial growth and endogenous respiration. Validity of the modified model is demonstrated by comparing the simulation results with experimental data from lab-scale sequencing batch reactors (SBRs). To reliably implement the modified model, a model calibration that adjusts model parameters to fit the model outputs to the experimental data is conducted. The results of this study showed that the modeling accuracy of the modified AOB-NOB-N 2 O-SMP model increases by 19.7% (NH 4 ), 51.0% (NO 2 ), 57.8% (N 2 O) and 16.7% (SMP) compared to the conventional model which does not consider the two-step nitrification and SMP production by microbial endogenous respiration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Fission and corrosion products behavior in primary circuits of LMFBR's

    International Nuclear Information System (INIS)

    Feuerstein, H.; Thorley, A.W.

    1987-08-01

    Most of the 20 presented papers report items belonging to more than one session. The equipment results of primary circuits of LMFBR's relative to corrosion and fission products, release and chemistry of fuel, measurement techniques and analytical procedures of sodium sampling, difficulties with radionuclides and particles, reactor experiences with EBR-II, FFTF, BR10, BOR60, BN350, BN600, JOYO, and KNK-II, DFR, PFR, RAPSODIE, PHENIX, and SUPERPHENIX, and at least the verification of codes for calculation models of radioactive products accumulation and distribution are described. All 20 papers presented at the meeting are separately indexed in the database. (DG)

  5. Photoelectrocatalytic Glucose Oxidation to Promote Hydrogen Production over Periodically Ordered TiO2 Nanotube Arrays Assembled of Pd Quantum Dots

    International Nuclear Information System (INIS)

    Zhang, Yajun; Zhao, Guohua; Shi, Huijie; Zhang, Ya-nan; Huang, Wenna; Huang, Xiaofeng; Wu, Zhongyi

    2015-01-01

    Highlights: • Solar-driven PEC glucose oxidation to promote hydrogen production was presented. • The excellent PEC activity of Pd QDs@TNTAs was investigated. • The rate of hydrogen production from glucose was about 15 times than water. • A low-cost and efficient method in renewables-to-hydrogen conversion was put forward. - Abstract: The development of highly efficient and low-cost approaches for catalytic hydrogen production from renewable energy is of tremendous importance for a truly sustainable hydrogen-based energy carrier in future life. Herein, the probability of utilizing solar light to product hydrogen from biomass derivative, glucose, was systematically demonstrated by using the periodically ordered TiO 2 nanotube arrays (TNTAs) assembled of Palladium quantum dots (Pd QDs), i.e. Pd QDs@ TNTAs as photoanode. The results showed that remarkably increased photocurrent density was obtained in the glucose solution compared to the pure KOH electrolyte over as-prepared photoelectrode, which indicated that the glucose could be faster oxidized than water oxidation, and thus could promote the hydrogen production on Pt cathode. The yield of hydrogen production from glucose oxidation reached as high as 164.8 μmol cm −1 over Pd QDs@TNTAs photoanode and Pt cathode system (denoted as Pd QDs@TNTAs/Pt) under the solar light irradiation for 6 h, which was about 15 times higher than that from pure water splitting. The superior hydrogen production performance could be attributed to the less endergonic process of the glucose oxidation than water, as well as the efficient synergistic photoelectrocatalytic (PEC) glucose oxidation over Pd QDs@TNTAs photoanode which possesses excellent photoelectrochemical performance and structure characteristics. Moreover, a probable mechanism for the PEC hydrogen production from biomass derivatives oxidation was proposed and discussed

  6. Oxidative stability of refined olive and sunflower oils supplemented with lycopene-rich oleoresin from tomato peels industrial by-product, during accelerated shelf-life storage.

    Science.gov (United States)

    Kehili, Mouna; Choura, Sirine; Zammel, Ayachi; Allouche, Noureddine; Sayadi, Sami

    2018-04-25

    Tomato peels by-product from a Tunisian industry was used for the extraction of lycopene-rich oleoresin using hexane solvent maceration. Tomato peels oleoresin, TPO, exhibited competitive free radicals scavenging activity with synthetic antioxidants. The efficacy of TPO in stabilizing refined olive (ROO) and sunflower (RSO) oils was investigated for five months, under accelerated shelf-life, compared to the synthetic antioxidant, butylated hydroxytoluene (BHT). TPO was added to ROO and RSO at four different concentrations, namely 250, 500, 1000 and 2000 µg/g and BHT standard at 200 µg/g. Lipid oxidation was tracked by measuring the peroxide value, acidity, conjugated dienes and trienes. Results suggested the highest efficiency of 250 µg/g and 2000 µg/g of TPO, referring to 5 µg/g and 40 µg/g of lycopene, for the oxidative stabilization of ROO and RSO, respectively. The protective effect of TPO against the primary oxidation of these refined oils was significantly correlated to their lycopene contents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Phytoplankton primary production in the world's estuarine-coastal ecosystems

    Science.gov (United States)

    Cloern, James E.; Foster, S.Q.; Kleckner, A.E.

    2014-01-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land – estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m−2 yr−1, but the range is large: from −105 (net pelagic production in the Scheldt Estuary) to 1890 g C m−2 yr−1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year to year (but we only found eight APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods reported in the literature can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148

  8. The application of HTR type modular plants in refinieries and for aluminium oxide production

    International Nuclear Information System (INIS)

    Schad, M.; Clausen, E.; Funke, A.; Heng, R.; Poesche, W.; Simon, P.; Schwarz, T.; Feltes, W.; Hague, H.; Heidkamp, H.; Hesse, K.; Kohtz, N.; Mendte, K.; Ullrich, M.; Wild, W.; Zipper, E.

    1991-02-01

    The aim of the second study of coupling the HTR module to process plants consistsed in developing concepts for potential plants and analysing them again for their technical and economic feasibility. At each of the three process plants, heat is coupled in by a He/He intermediate heat exchanger. This principle of heat coupling was consistently aimed at - in order to keep the expensive nuclear part of plant coupling as small as possible, and - in order to avoid that primary helium can get into the process plants, just as vice versa process media into the HTRM-helium circuit. For refineries this principle is easy to comply with because of the low process temperatures of below 600deg C. For aluminium oxide production which conventionally requires a temperature of about 950deg C, calcination tests were made at lower process temperatures, and parallely the feed-in of heat to reach the highest process temperature through electric heating was studied. For petrochemistry, heat transfer during naptha cracking was closely analysed. (orig./GL) [de

  9. The Effect of Buckwheat Hull Extract on Lipid Oxidation in Frozen-Stored Meat Products.

    Science.gov (United States)

    Hęś, Marzanna; Szwengiel, Artur; Dziedzic, Krzysztof; Le Thanh-Blicharz, Joanna; Kmiecik, Dominik; Górecka, Danuta

    2017-04-01

    This study investigated the effect of antioxidants on lipid stability of frozen-stored meat products. Buckwheat hull extract was used to enrich fried meatballs made from ground pork. During 180-d storage of meat products, lipid oxidation (peroxide and 2-thiobarbituric acid reactive substances [TBARS] value) was periodically monitored. The results were compared with butylated hydroxytoluene (BHT). The addition of antioxidants decreased lipid oxidation in stored meatballs. The highest ability to control peroxide and TBARS values was demonstrated for buckwheat hull extract. Moreover, buckwheat hull extract showed a higher 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity as well as higher Fe(II) ion chelating ability, as compared with BHT. The total content of phenolic compounds are highly correlated to the individual polyphenols in extract of buckwheat hull, among which the following were assayed: 3,4-dihydroxybenzoic acid, 4-hydroxybenzoic acid, gallic acid, isovanillic acid and p-coumaric acid, and flavonoids: isoorientin, quercetin, quercetin 3-d-glucoside, rutin, and vitexin. These results indicate that plant extracts can be used to prolong shelf life of products by protecting them against lipid oxidation and deterioration of their nutritional quality. © 2017 Institute of Food Technologists®.

  10. AMMONIA REMOVAL AND NITROUS OXIDE PRODUCTION IN GAS-PHASE COMPOST BIOFILTERS

    Science.gov (United States)

    Biofiltration technology is widely utilized for treating ammonia gas (NH3), with one of its potential detrimental by-products being nitrous oxide (N2O), a greenhouse gas approximately 300 times more reactive to infrared than CO2. The present work intends to provide the relation between NH3 removal d...

  11. Uranium oxidation: characterization of oxides formed by reaction with water

    International Nuclear Information System (INIS)

    Fuller, E.L. Jr.; Smyrl, N.R.; Condon, J.B.; Eager, M.H.

    1983-01-01

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. Results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. 27 figures

  12. Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site

    KAUST Repository

    Gasol, Josep M.

    2016-10-11

    We carried out monthly photosynthesis-irradiance (P-E) experiments with the 14C-method for 12 years (2003–2014) to determine the photosynthetic parameters and primary production of surface phytoplankton in the Blanes Bay Microbial Observatory, a coastal sampling station in the NW Mediterranean Sea. Our goal was to obtain seasonal trends and to establish the basis for detecting future changes of primary production in this oligotrophic area. The maximal photosynthetic rate PBmax ranged 30-fold (0.5-15 mg C mg Chl a–1 h–1), averaged 3.7 mg C mg Chl a–1 h–1 (±0.25 SE) and was highest in August and lowest in April and December. We only observed photoinhibition twice. The initial or light-limited slope of the P-E relationship, αB, was low, averaging 0.007 mg C mg Chl a–1 h–1 (μmol photons m–2 s–1)–1 (±0.001 SE, range 0.001-0.045) and showed the lowest values in spring (April-June). The light saturation parameter or saturation irradiance, EK, averaged 711 μmol photons m–2 s–1 (±58.4 SE) and tended to be higher in spring and lower in winter. Phytoplankton assemblages were typically dominated by picoeukaryotes in early winter, diatoms in late autumn and late winter, dinoflagellates in spring and cyanobacteria in summer. Total particulate primary production averaged 1.45 mg C m–3 h–1 (±0.13 SE) with highest values in winter (up to 8.50 mg C m–3 h–1) and lowest values in summer (summer average, 0.30 mg C m–3 h–1), while chlorophyll-specific primary production averaged 2.49 mg C mg Chl a–1 h–1 (±0.19, SE) and peaked in summer (up to 12.0 mg C mg Chl a–1 h–1 in August). 14C-determined phytoplankton growth rates varied between ca. 0.3 d–1 in winter and 0.5 d–1 in summer and were within 60-80% of the maximal rates of growth, based on PBmax. Chlorophyll a was a good predictor of primary production only in the winter and autumn. Seasonality appeared to explain most of the variability in the studied variables, while

  13. Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site

    Directory of Open Access Journals (Sweden)

    Josep M. Gasol

    2016-09-01

    Full Text Available We carried out monthly photosynthesis-irradiance (P-E experiments with the 14C-method for 12 years (2003–2014 to determine the photosynthetic parameters and primary production of surface phytoplankton in the Blanes Bay Microbial Observatory, a coastal sampling station in the NW Mediterranean Sea. Our goal was to obtain seasonal trends and to establish the basis for detecting future changes of primary production in this oligotrophic area. The maximal photosynthetic rate PBmax ranged 30-fold (0.5-15 mg C mg Chl a–1 h–1, averaged 3.7 mg C mg Chl a–1 h–1 (±0.25 SE and was highest in August and lowest in April and December. We only observed photoinhibition twice. The initial or light-limited slope of the P-E relationship, αB, was low, averaging 0.007 mg C mg Chl a–1 h–1 (μmol photons m–2 s–1–1 (±0.001 SE, range 0.001-0.045 and showed the lowest values in spring (April-June. The light saturation parameter or saturation irradiance, EK, averaged 711 μmol photons m–2 s–1 (± 58.4 SE and tended to be higher in spring and lower in winter. Phytoplankton assemblages were typically dominated by picoeukaryotes in early winter, diatoms in late autumn and late winter, dinoflagellates in spring and cyanobacteria in summer. Total particulate primary production averaged 1.45 mg C m-3 h–1 (±0.13 SE with highest values in winter (up to 8.50 mg C m-3 h–1 and lowest values in summer (summer average, 0.30 mg C m-3 h–1, while chlorophyll-specific primary production averaged 2.49 mg C mg Chl a–1 h–1 (±0.19, SE and peaked in summer (up to 12.0 mg C mg Chl a–1 h–1 in August. 14C-determined phytoplankton growth rates varied between ca. 0.3 d–1 in winter and 0.5 d–1 in summer and were within 60-80% of the maximal rates of growth, based on PBmax. Chlorophyll a was a good predictor of primary production only in the winter and autumn. Seasonality appeared to explain most of the variability in the studied variables, while

  14. Comparison between remote sensing and a dynamic vegetation model for estimating terrestrial primary production of Africa.

    Science.gov (United States)

    Ardö, Jonas

    2015-12-01

    Africa is an important part of the global carbon cycle. It is also a continent facing potential problems due to increasing resource demand in combination with climate change-induced changes in resource supply. Quantifying the pools and fluxes constituting the terrestrial African carbon cycle is a challenge, because of uncertainties in meteorological driver data, lack of validation data, and potentially uncertain representation of important processes in major ecosystems. In this paper, terrestrial primary production estimates derived from remote sensing and a dynamic vegetation model are compared and quantified for major African land cover types. Continental gross primary production estimates derived from remote sensing were higher than corresponding estimates derived from a dynamic vegetation model. However, estimates of continental net primary production from remote sensing were lower than corresponding estimates from the dynamic vegetation model. Variation was found among land cover classes, and the largest differences in gross primary production were found in the evergreen broadleaf forest. Average carbon use efficiency (NPP/GPP) was 0.58 for the vegetation model and 0.46 for the remote sensing method. Validation versus in situ data of aboveground net primary production revealed significant positive relationships for both methods. A combination of the remote sensing method with the dynamic vegetation model did not strongly affect this relationship. Observed significant differences in estimated vegetation productivity may have several causes, including model design and temperature sensitivity. Differences in carbon use efficiency reflect underlying model assumptions. Integrating the realistic process representation of dynamic vegetation models with the high resolution observational strength of remote sensing may support realistic estimation of components of the carbon cycle and enhance resource monitoring, providing suitable validation data is available.

  15. Study of the production of zirconium tetrachloride by chlorination of its oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.

    1983-01-01

    The studies carried out on the production of zirconium tetrachloride by chlorination of pure zirconium oxide with carbon tetrachloride and chlorine in the presence of carbon. In the process of chlorination with carbon tetrachloride, the chlorination efficiency increases with the rise in temperature at intervals between 450 and 750 0 C. The flow of the carbon tetrachloride vapour was 1.50l/min. Higher temperatures of 700 to 850 0 C were used for the zirconium oxide chlorination in the presence of carbon, and the flowrate of the chlorine gas used in the process was 0.50 l/min. Pure zirconium oxide chlorination as well as zirconium oxide - carbon misture chlorination have been studied in connection with the time of reaction at different temperatures and the apparent rate constant, the activation energies, the order of reaction in relation to the concentration of the gases (CCl 4 and Cl 2 ) and the content of carbon in the pellet have all been determined. (Author) [pt

  16. Total OH reactivity study from VOC photochemical oxidation in the SAPHIR chamber

    Science.gov (United States)

    Yu, Z.; Tillmann, R.; Hohaus, T.; Fuchs, H.; Novelli, A.; Wegener, R.; Kaminski, M.; Schmitt, S. H.; Wahner, A.; Kiendler-Scharr, A.

    2015-12-01

    It is well known that hydroxyl radicals (OH) act as a dominant reactive species in the degradation of VOCs in the atmosphere. In recent field studies, directly measured total OH reactivity often showed poor agreement with OH reactivity calculated from VOC measurements (e.g. Nölscher et al., 2013; Lu et al., 2012a). This "missing OH reactivity" is attributed to unaccounted biogenic VOC emissions and/or oxidation products. The comparison of total OH reactivity being directly measured and calculated from single component measurements of VOCs and their oxidation products gives us a further understanding on the source of unmeasured reactive species in the atmosphere. This allows also the determination of the magnitude of the contribution of primary VOC emissions and their oxidation products to the missing OH reactivity. A series of experiments was carried out in the atmosphere simulation chamber SAPHIR in Jülich, Germany, to explore in detail the photochemical degradation of VOCs (isoprene, ß-pinene, limonene, and D6-benzene) by OH. The total OH reactivity was determined from the measurement of VOCs and their oxidation products by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS) with a GC/MS/FID system, and directly measured by a laser-induced fluorescence (LIF) at the same time. The comparison between these two total OH reactivity measurements showed an increase of missing OH reactivity in the presence of oxidation products of VOCs, indicating a strong contribution to missing OH reactivity from uncharacterized oxidation products.

  17. Linking climate, gross primary productivity, and site index across forests of the western United States

    Science.gov (United States)

    Aaron R. Weiskittel; Nicholas L. Crookston; Philip J. Radtke

    2011-01-01

    Assessing forest productivity is important for developing effective management regimes and predicting future growth. Despite some important limitations, the most common means for quantifying forest stand-level potential productivity is site index (SI). Another measure of productivity is gross primary production (GPP). In this paper, SI is compared with GPP estimates...

  18. Clinical and radiographic evaluation of zinc oxide eugenol and metapex in root canal treatment of primary teeth

    Directory of Open Access Journals (Sweden)

    S Gupta

    2011-01-01

    Full Text Available Objectives: The aim of this study was to evaluate clinically and radiographically zinc oxide eugenol (ZOE and Metapex as root canal filling material in primary teeth. Materials and Methods: Forty-two necrotic primary teeth in two groups of children in the age group of 4−7 years were obturated with ZOE and Metapex and were followed up clinically and radiographically for a period of 6 months postoperatively. Results: The overall success rates of ZOE and Metapex were 85.71% and 90.48%, respectively. Conclusion: Both ZOE and Metapex gave encouraging results; however, Metapex can be used more safely whenever there is a doubt about the patient′s return for follow-up.

  19. Oxidative Stability of Granola Bars Enriched with Multilayered Fish Oil Emulsion in the Presence of Novel Brown Seaweed Based Antioxidants.

    Science.gov (United States)

    Hermund, Ditte B; Karadağ, Ayşe; Andersen, Ulf; Jónsdóttir, Rósa; Kristinsson, Hordur G; Alasalvar, Cesarettin; Jacobsen, Charlotte

    2016-11-09

    Fucus vesiculosus extracts that have both radical scavenging activity and metal chelating ability in vitro were used as natural antioxidant in granola bars enriched with fish oil emulsion by using primary and secondary emulsion systems stabilized by sodium caseinate alone and sodium caseinate-chitosan. The bars were stored at 20 °C and evaluated over a period of 10 weeks by measuring the development of primary and secondary oxidation products. The samples prepared with secondary emulsion system developed less oxidation products probably due to increased interfacial layer thickness that would act as a barrier to the penetration and diffusion of molecular species that promote oxidation. The positive charge of oil droplets in the secondary emulsion may also inhibit iron-lipid interaction through electrostatic repulsion. Additional protection against lipid oxidation was obtained when fish oil emulsions were added to the granola bars especially in combination with acetone and ethanol extracts of Fucus vesiculosus.

  20. Release of fission products during and after oxidation of trace-irradiated uranium dioxide at 300-900 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Wood, P; Bannister, G H [Central Electricity Generating Board, Berkeley Nuclear Laboratories (United Kingdom)

    1985-07-01

    Should defected UO{sub 2} fuel pins come into contact with air then oxidation of the fuel may occur, the rate and consequences of which are dependent upon temperature and oxygen partial pressure. At CEGB-BNL an experimental programme is underway investigating the kinetics, and extent, of release of fission products during and after oxidation of trace-irradiated UO{sub 2} to U{sub 3}O{sub 8}, and reduction of U{sub 3}O{sub 8} to UO{sub 2}. This paper presents preliminary results and analysis of experiments performed at 300-900 deg. C. Dense sintered UO{sub 2} has been oxidised at 300-500 deg. C using a thermo balance with simultaneous counting of released {sup 85}Kr. The kinetics of the {sup 85}Kr release are shown to correlate with the kinetics of oxidation, and the extent of release has been determined as 3-8% of that in the UO{sub 2} converted to U{sub 3}O{sub 8}. The release of {sup 106}Ru and {sup 137}Cs during this oxidation has been estimated by {gamma}-counting of the fuel sample, before and after oxidation, and of glassware in the vicinity of the sample. This indicates slight release of ruthenium and caesium. Greater fission product release is caused by oxidation at higher temperatures or by heating of the oxidation product. U{sub 3}O{sub 8} produced at 400 deg. C has been heated at 800 and 900 deg. C in air for 20 hours. This results in near total release of {sup 85}Kr and {sup 106}Ru, but still only slight release of {sup 137}Cs. The kinetics of the {sup 85}Kr release have been analysed and found to follow the Booth diffusion equation at 900 deg. C, but not at 800 deg. C. The fuel burn-up level may also have an effect. Some results of fission product release during reduction of the oxidation product U{sub 3}O{sub 8} are presented, and the influence of chemical effects upon the release of individual fission products is discussed. The future programme is outlined. (author)

  1. Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements

    Directory of Open Access Journals (Sweden)

    Rune Blomhoff

    2011-06-01

    Full Text Available Background : There is convincing evidence that replacing dietary saturated fats with polyunsaturated fats (PUFA decreases risk of cardiovascular diseases. Therefore, PUFA rich foods such as vegetable oils, fatty fish, and marine omega-3 supplements are recommended. However, PUFA are easily oxidizable and there is concern about possible negative health effects from intake of oxidized lipids. Little is known about the degree of lipid oxidation in such products. Objective : To assess the content of lipid oxidation products in a large selection of vegetable oils and marine omega-3 supplements available in Norway. Both fresh and heated vegetable oils were studied. Design : A large selection of commercially available vegetable oils and marine omega-3 supplements was purchased from grocery stores, pharmacies, and health food stores in Norway. The content of lipid oxidation products were measured as peroxide value and alkenal concentration. Twelve different vegetable oils were heated for a temperature (225°C and time (25 minutes resembling conditions typically used during cooking. Results : The peroxide values were in the range 1.04–10.38 meq/kg for omega-3 supplements and in the range 0.60–5.33 meq/kg for fresh vegetable oils. The concentration range of alkenals was 158.23–932.19 nmol/mL for omega-3 supplements and 33.24–119.04 nmol/mL for vegetable oils. After heating, a 2.9–11.2 fold increase in alkenal concentration was observed for vegetable oils. Conclusions : The contents of hydroperoxides and alkenals in omega-3 supplements are higher than in vegetable oils. After heating vegetable oils, a large increase in alkenal concentration was observed.

  2. Impacts of temperature on primary productivity and respiration in naturally structured macroalgal assemblages.

    Directory of Open Access Journals (Sweden)

    Leigh W Tait

    Full Text Available Rising global temperatures caused by human-mediated change has already triggered significant responses in organismal physiology, distribution and ecosystem functioning. Although the effects of rising temperature on the physiology of individual organisms are well understood, the effect on community-wide processes has remained elusive. The fixation of carbon via primary productivity is an essential ecosystem function and any shifts in the balance of primary productivity and respiration could alter the carbon balance of ecosystems. Here we show through a series of tests that respiration of naturally structured algal assemblages in southern New Zealand greatly increases with rising temperature, with implications for net primary productivity (NPP. The NPP of in situ macroalgal assemblages was minimally affected by natural temperature variation, possibly through photo-acclimation or temperature acclimation responses, but respiration rates and compensating irradiance were negatively affected. However, laboratory experiments testing the impacts of rising temperature on several photosynthetic parameters showed a decline in NPP, increasing respiration rates and increasing compensating irradiance. The respiration Q10 of laboratory assemblages (the difference in metabolic rates over 10°C averaged 2.9 compared to a Q10 of 2 often seen in other autotrophs. However, gross primary productivity (GPP Q10 averaged 2, indicating that respiration was more severely affected by rising temperature. Furthermore, combined high irradiance and high temperature caused photoinhibition in the laboratory, and resulted in 50% lower NPP at high irradiance. Our study shows that communities may be more severely affected by rising global temperatures than would be expected by responses of individual species. In particular, enhanced respiration rates and rising compensation points have the potential to greatly affect the carbon balance of macroalgal assemblages through declines in

  3. Yttrium bismuth titanate pyrochlore mixed oxides for photocatalytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Merka, Oliver

    2012-10-18

    In this work, the sol-gel synthesis of new non-stoichiometric pyrochlore titanates and their application in photocatalytic hydrogen production is reported. Visible light response is achieved by introducing bismuth on the A site or by doping the B site by transition metal cations featuring partially filled d orbitals. This work clearly focusses on atomic scale structural changes induced by the systematical introduction of non-stoichiometry in pyrochlore mixed oxides and the resulting influence on the activity in photocatalytic hydrogen production. The materials were characterized in detail regarding their optical properties and their atomic structure. The pyrochlore structure tolerates tremendous stoichiometry variations. The non-stoichiometry in A{sub 2}O{sub 3} rich compositions is compensated by distortions in the cationic sub-lattice for the smaller Y{sup 3+} cation and by evolution of a secondary phase for the larger Bi{sup 3+} cation on the A site. For TiO{sub 2} rich compositions, the non-stoichiometry leads to a special vacancy formation in the A and optionally O' sites. It is shown that pyrochlore mixed oxides in the yttrium bismuth titanate system represent very active and promising materials for photocatalytic hydrogen production, if precisely and carefully tuned. Whereas Y{sub 2}Ti{sub 2}O{sub 7} yields stable hydrogen production rates over time, the bismuth richer compounds of YBiTi{sub 2}O{sub 7} and Bi{sub 2}Ti{sub 2}O{sub 7} are found to be not stable under irradiation. This drawback is overcome by applying a special co-catalyst system consisting of a precious metal core and a Cr{sub 2}O{sub 3} shell on the photocatalysts.

  4. Low Temperature Selective Catalytic Reduction of Nitrogen Oxides in Production of Nitric Acid by the Use of Liquid

    Directory of Open Access Journals (Sweden)

    Kabljanac, Ž.

    2011-11-01

    Full Text Available This paper presents the application of low-temperature selective catalytic reduction of nitrous oxides in the tail gas of the dual-pressure process of nitric acid production. The process of selective catalytic reduction is carried out using the TiO2/WO3 heterogeneous catalyst applied on a ceramic honeycomb structure with a high geometric surface area per volume. The process design parameters for nitric acid production by the dual-pressure procedure in a capacity range from 75 to 100 % in comparison with designed capacity for one production line is shown in the Table 1. Shown is the effectiveness of selective catalytic reduction in the temperature range of the tail gas from 180 to 230 °C with direct application of liquid ammonia, without prior evaporation to gaseous state. The results of inlet and outlet concentrations of nitrous oxides in the tail gas of the nitric acid production process are shown in Figures 1 and 2. Figure 3 shows the temperature dependence of the selective catalytic reduction of nitrous oxides expressed as NO2in the tail gas of nitric acid production with the application of a constant mass flow of liquid ammonia of 13,0 kg h-1 and average inlet mass concentration of the nitrous oxides expressed as NO2of 800,0 mgm-3 during 100 % production capacity. The specially designed liquid-ammonia direct-dosing system along with the effective homogenization of the tail gas resulted in emission levels of nitrous oxides expressed as NO2 in tail gas ranging from 100,0 to 185,0 mg m-3. The applied low-temperature selective catalytic reduction of the nitrous oxides in the tail gases by direct use of liquid ammonia is shown in Figure 4. It is shown that low-temperature selective catalytic reduction with direct application of liquid ammonia opens a new opportunity in the reduction of nitrous oxide emissions during nitric acid production without the risk of dangerous ammonium nitrate occurring in the process of subsequent energy utilization of

  5. Marine phospholipids: The current understanding of their oxidation mechanisms and potential uses for food fortification

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2017-01-01

    reactions, namely, Strecker aldehydes, pyrroles, oxypolymers, and other impurities that may positively or negatively affect the oxidative stability and quality of marine PL. This review was undertaken to provide the industry and academia with an overview of the current understanding of the quality changes......There is a growing interest in using marine phospholipids (PL) as ingredient for food fortification due to their numerous health benefits. However, the use of marine PL for food fortification is a challenge due to the complex nature of the degradation products that are formed during the handling...... and storage of marine PL. For example, nonenzymatic browning reactions may occur between lipid oxidation products and primary amine group from phosphatidylethanolamine or amino acid residues that are present inmarine PL. Therefore, marine PL contain products from nonenzymatic browning and lipid oxidation...

  6. Preparation of a primary target for the production of fission products in a nuclear reactor

    International Nuclear Information System (INIS)

    Arino, H.; Cosolito, F.J.; George, K.D.; Thornton, A.K.

    1976-01-01

    A primary target for the production of fission products in a nuclear reactor, such as uranium or plutonium fission products, is comprised of an enclosed, cylindrical vessel, preferably comprised of stainless steel, having a thin, continuous, uniform layer of fissionable material, integrally bonded to its inner walls and a port permitting access to the interior of the vessel. A process is also provided for depositing uranium material on to the inner walls of the vessel. Upon irradiation of the target with neutrons from a nuclear reactor, radioactive fission products, such as molybdenum-99, are formed, and thereafter separated from the target by the introduction of an acidic solution through the port to dissolve the irradiated inner layer. The irradiation and dissolution are thus effected in the same vessel without the necessity of transferring the fissionable material and fission products to a separate chemical reactor. Subsequently, the desired isotopes are extracted and purified. Molybdenum-99 decays to technetium-99m which is a valuable medical diagnostic radioisotope. 3 claims, 1 drawing figure

  7. Production and analysis of ultradispersed uranium oxide powders

    Science.gov (United States)

    Zajogin, A. P.; Komyak, A. I.; Umreiko, D. S.; Umreiko, S. D.

    2010-05-01

    Spectroscopic studies are made of the laser plasma formed near the surface of a porous body containing nanoquantities of uranium compounds which is irradiated by two successive laser pulses. The feasibility of using laser chemical methods for obtaining nanoclusters of uranium oxide particles in the volume of a porous body and the simultaneous possibility of determining the uranium content with good sensitivity are demonstrated. The thermochemical and spectral characteristics of the analogs of their compounds with chlorine are determined and studied. The possibility of producing uranium dioxides under ordinary conditions and their analysis in the reaction products is demonstrated.

  8. UVA Light-excited Kynurenines Oxidize Ascorbate and Modify Lens Proteins through the Formation of Advanced Glycation End Products

    Science.gov (United States)

    Linetsky, Mikhail; Raghavan, Cibin T.; Johar, Kaid; Fan, Xingjun; Monnier, Vincent M.; Vasavada, Abhay R.; Nagaraj, Ram H.

    2014-01-01

    Advanced glycation end products (AGEs) contribute to lens protein pigmentation and cross-linking during aging and cataract formation. In vitro experiments have shown that ascorbate (ASC) oxidation products can form AGEs in proteins. However, the mechanisms of ASC oxidation and AGE formation in the human lens are poorly understood. Kynurenines are tryptophan oxidation products produced from the indoleamine 2,3-dioxygenase (IDO)-mediated kynurenine pathway and are present in the human lens. This study investigated the ability of UVA light-excited kynurenines to photooxidize ASC and to form AGEs in lens proteins. UVA light-excited kynurenines in both free and protein-bound forms rapidly oxidized ASC, and such oxidation occurred even in the absence of oxygen. High levels of GSH inhibited but did not completely block ASC oxidation. Upon UVA irradiation, pigmented proteins from human cataractous lenses also oxidized ASC. When exposed to UVA light (320–400 nm, 100 milliwatts/cm2, 45 min to 2 h), young human lenses (20–36 years), which contain high levels of free kynurenines, lost a significant portion of their ASC content and accumulated AGEs. A similar formation of AGEs was observed in UVA-irradiated lenses from human IDO/human sodium-dependent vitamin C transporter-2 mice, which contain high levels of kynurenines and ASC. Our data suggest that kynurenine-mediated ASC oxidation followed by AGE formation may be an important mechanism for lens aging and the development of senile cataracts in humans. PMID:24798334

  9. Shrubland primary production and soil respiration diverge along European climate gradient

    DEFF Research Database (Denmark)

    Reinsch, Sabine; Koller, Eva; Sowerby, Alwyn

    2017-01-01

    uncertain. Here we show the responses of ecosystem C to 8-12 years of experimental drought and night-time warming across an aridity gradient spanning seven European shrublands using indices of C assimilation (aboveground net primary production: aNPP) and soil C efflux (soil respiration: Rs). The changes...

  10. Patterns of primary production in the Red Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Qurban, M.A.; Wafar, M.; Jyothibabu, R.; Manikandan, K.P.

    for bio- phic stations occupied in e Indian Ocean (source - et al., 1995), remotely-sensed (CZCS) chlorophyll data were used to make deductions on rates of primary production at basin-scale. The conclusion consistently arrived at from all earlier studies... acquired along the axis of the basin in the 2013 cruise, Wafar et al. (2016a) identified alternating zonal currents at six locations – 18–18.5°N, 19–20.5°N, 22°N, 24°N, 24.5°N and 26°N - and concluded that they represent three successive anticyclonic cells...

  11. Nitrous oxide production kinetics during nitrate reduction in river sediments.

    Science.gov (United States)

    Laverman, Anniet M; Garnier, Josette A; Mounier, Emmanuelle M; Roose-Amsaleg, Céline L

    2010-03-01

    A significant amount of nitrogen entering river basins is denitrified in riparian zones. The aim of this study was to evaluate the influence of nitrate and carbon concentrations on the kinetic parameters of nitrate reduction as well as nitrous oxide emissions in river sediments in a tributary of the Marne (the Seine basin, France). In order to determine these rates, we used flow-through reactors (FTRs) and slurry incubations; flow-through reactors allow determination of rates on intact sediment slices under controlled conditions compared to sediment homogenization in the often used slurry technique. Maximum nitrate reduction rates (R(m)) ranged between 3.0 and 7.1microg Ng(-1)h(-1), and affinity constant (K(m)) ranged from 7.4 to 30.7mg N-NO(3)(-)L(-1). These values were higher in slurry incubations with an R(m) of 37.9microg Ng(-1)h(-1) and a K(m) of 104mg N-NO(3)(-)L(-1). Nitrous oxide production rates did not follow Michaelis-Menten kinetics, and we deduced a rate constant with an average of 0.7 and 5.4ng Ng(-1)h(-1) for FTR and slurry experiments respectively. The addition of carbon (as acetate) showed that carbon was not limiting nitrate reduction rates in these sediments. Similar rates were obtained for FTR and slurries with carbon addition, confirming the hypothesis that homogenization increases rates due to release of and increasing access to carbon in slurries. Nitrous oxide production rates in FTR with carbon additions were low and represented less than 0.01% of the nitrate reduction rates and were even negligible in slurries. Maximum nitrate reduction rates revealed seasonality with high potential rates in fall and winter and low rates in late spring and summer. Under optimal conditions (anoxia, non-limiting nitrate and carbon), nitrous oxide emission rates were low, but significant (0.01% of the nitrate reduction rates). Copyright 2009 Elsevier Ltd. All rights reserved.

  12. High-throughput technology for novel SO2 oxidation catalysts

    International Nuclear Information System (INIS)

    Loskyll, Jonas; Stoewe, Klaus; Maier, Wilhelm F

    2011-01-01

    We review the state of the art and explain the need for better SO 2 oxidation catalysts for the production of sulfuric acid. A high-throughput technology has been developed for the study of potential catalysts in the oxidation of SO 2 to SO 3 . High-throughput methods are reviewed and the problems encountered with their adaptation to the corrosive conditions of SO 2 oxidation are described. We show that while emissivity-corrected infrared thermography (ecIRT) can be used for primary screening, it is prone to errors because of the large variations in the emissivity of the catalyst surface. UV-visible (UV-Vis) spectrometry was selected instead as a reliable analysis method of monitoring the SO 2 conversion. Installing plain sugar absorbents at reactor outlets proved valuable for the detection and quantitative removal of SO 3 from the product gas before the UV-Vis analysis. We also overview some elements used for prescreening and those remaining after the screening of the first catalyst generations. (topical review)

  13. Formation of electrophilic oxidation products from mitochondrial cardiolipin in vitro and in vivo in the context of apoptosis and atherosclerosis

    Directory of Open Access Journals (Sweden)

    Huiqin Zhong

    2014-01-01

    Full Text Available Emerging evidence indicates that mitochondrial cardiolipins (CL are prone to free radical oxidation and this process appears to be intimately associated with multiple biological functions of mitochondria. Our previous work demonstrated that a significant amount of potent lipid electrophiles including 4-hydroxy-nonenal (4-HNE was generated from CL oxidation through a novel chemical mechanism. Here we provide further evidence that a characteristic class of CL oxidation products, epoxyalcohol-aldehyde-CL (EAA-CL, is formed through this novel mechanism in isolated mice liver mitochondria when treated with the pro-apoptotic protein t-Bid to induce cyt c release. Generation of these oxidation products are dose-dependently attenuated by a peroxidase inhibitor acetaminophen (ApAP. Using a mouse model of atherosclerosis, we detected significant amount of these CL oxidation products in liver tissue of low density lipoprotein receptor knockout (LDLR −/− mice after Western diet feeding. Our studies highlight the importance of lipid electrophiles formation from CL oxidation in the settings of apoptosis and atherosclerosis as inhibition of CL oxidation and lipid electrophiles formation may have potential therapeutic value in diseases linked to oxidant stress and mitochondrial dysfunctions.

  14. Vegetation-specific model parameters are not required for estimating gross primary production

    Czech Academy of Sciences Publication Activity Database

    Yuan, W.; Cai, W.; Liu, S.; Dong, W.; Chen, J.; Altaf Arain, M.; Blanken, P. D.; Cescatti, A.; Wohlfahrt, G.; Georgiadis, T.; Genesio, L.; Gianelle, D.; Grelle, A.; Kiely, G.; Knohl, A.; Liu, D.; Marek, Michal V.; Merbold, L.; Montagnani, L.; Panferov, O.; Peltoniemi, M.; Rambal, S.; Raschi, A.; Varlagin, A.; Xia, J.

    2014-01-01

    Roč. 292, NOV 24 2014 (2014), s. 1-10 ISSN 0304-3800 Institutional support: RVO:67179843 Keywords : light use efficiency * gross primary production * model parameters Subject RIV: EH - Ecology, Behaviour Impact factor: 2.321, year: 2014

  15. Effect of oxidation on the chemical nature and distribution of low-temperature pyrolysis products from bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; MacPhee, J.A.; Vancea, L.; Ciavaglia, L.A.; Nandi, B.N.

    1983-04-01

    Two bituminous coals, a high volatile Eastern Canadian and a medium volatile Western Canadian, were used to investigate the effect of oxidation on yields and chemical composition of gases, liquids and chars produced during coal pyrolysis. Pyrolysis experiments were performed at 500 C using the Fischer assay method. Mild oxidation of coals resulted in a decrease of liquid hydrocarbon yields. Further coal oxidation increased the proportion of aromatic carbon in liquid products as determined by N.M.R. and also increased the content of oxygen in liquid products. The content of oxygen in chars was markedly lower than in corresponding coals. An attempt is made to explain reactions occurring during oxidation and subsequent pyrolysis of coal on the basis of differences in chemical composition of gases, liquids and chars. (19 refs.)

  16. Effect of oxidation on the chemical nature and distribution of low-temperature pyrolysis products from bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Ciavaglia, L.A.; MacPhee, J.A.; Nandi, B.N.; Vancea, L.

    1983-04-01

    Two bituminous coals, a high volatile Eastern Canadian and a medium volatile Western Canadian, were used to investigate the effect of oxidation on yields and chemical composition of gases, liquids and chars produced during coal pyrolysis. Pyrolysis experiments were performed at 500/sup 0/C using the Fischer assay method. Mild oxidation of coals resulted in a decrease of liquid hydrocarbon yields. Further coal oxidation increased the proportion of aromatic carbon in liquid products as determined by n.m.r., and also increased the content of oxygen in liquid products. The content of oxygen in chars was markedly lower than in corresponding coals. An attempt is made to explain reactions occurring during oxidation and subsequent pyrolysis of coal on the basis of differences in chemical composition of gases, liquids and chars.

  17. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules.

    Science.gov (United States)

    Rathnayake, Rathnayake M L D; Oshiki, Mamoru; Ishii, Satoshi; Segawa, Takahiro; Satoh, Hisashi; Okabe, Satoshi

    2015-12-01

    The effects of dissolved oxygen (DO) and pH on nitrous oxide (N2O) production rates and pathways in autotrophic partial nitrification (PN) granules were investigated at the granular level. N2O was primarily produced by betaproteobacterial ammonia-oxidizing bacteria, mainly Nitrosomonas europaea, in the oxic surface layer (production increased with increasing bulk DO concentration owing to activation of the ammonia (i.e., hydroxylamine) oxidation in this layer. The highest N2O emissions were observed at pH 7.5, although the ammonia oxidation rate was unchanged between pH 6.5 and 8.5. Overall, the results of this study suggest that in situ analyses of PN granules are essential to gaining insight into N2O emission mechanisms in a granule. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer i Nàcher, Carles

    2011-01-01

    on N2O production from four different mixed culture nitrification and denitrification reactor study reports. Modeling results confirm that hydroxylamine oxidation by ammonium oxidizers (AOB) occurs 10 times slower when NO2– participates as final electron acceptor compared to the oxic pathway. Among......Nitrous oxide (N2O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N2O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N2O...

  19. Production of nitrogen oxides in air pulse-periodic discharge with apokamp

    Science.gov (United States)

    Panarin, Victor A.; Skakun, Victor S.; Sosnin, Eduard A.; Tarasenko, Victor F.

    2018-05-01

    The decomposition products of pulse-periodic discharge atmospheric pressure plasma in apokamp, diffuse and corona modes were determined by optical and chemical methods. It is shown that apokamp discharge formation starts at a critical value of dissipation power in a discharge channel. Simultaneously, due to the thermochemical reactions, plasma starts to efficiently produce nitrogen oxides.

  20. GAMMA RADIATION INTERACTS WITH MELANIN TO ALTER ITS OXIDATION-REDUCTION POTENTIAL AND RESULTS IN ELECTRIC CURRENT PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C.; Ekechukwu, A.; Milliken, C.

    2011-05-17

    The presence of melanin pigments in organisms is implicated in radioprotection and in some cases, enhanced growth in the presence of high levels of ionizing radiation. An understanding of this phenomenon will be useful in the design of radioprotective materials. However, the protective mechanism of microbial melanin in ionizing radiation fields has not yet been elucidated. Here we demonstrate through the electrochemical techniques of chronoamperometry, chronopotentiometry and cyclic voltammetry that microbial melanin is continuously oxidized in the presence of gamma radiation. Our findings establish that ionizing radiation interacts with melanin to alter its oxidation-reduction potential. Sustained oxidation resulted in electric current production and was most pronounced in the presence of a reductant, which extended the redox cycling capacity of melanin. This work is the first to establish that gamma radiation alters the oxidation-reduction behavior of melanin, resulting in electric current production. The significance of the work is that it provides the first step in understanding the initial interactions between melanin and ionizing radiation taking place and offers some insight for production of biomimetic radioprotective materials.

  1. Suppression of grasshopper sound production by nitric oxide-releasing neurons of the central complex

    Science.gov (United States)

    Weinrich, Anja; Kunst, Michael; Wirmer, Andrea; Holstein, Gay R.

    2008-01-01

    The central complex of acridid grasshoppers integrates sensory information pertinent to reproduction-related acoustic communication. Activation of nitric oxide (NO)/cyclic GMP-signaling by injection of NO donors into the central complex of restrained Chorthippus biguttulus females suppresses muscarine-stimulated sound production. In contrast, sound production is released by aminoguanidine (AG)-mediated inhibition of nitric oxide synthase (NOS) in the central body, suggesting a basal release of NO that suppresses singing in this situation. Using anti-citrulline immunocytochemistry to detect recent NO production, subtypes of columnar neurons with somata located in the pars intercerebralis and tangential neurons with somata in the ventro-median protocerebrum were distinctly labeled. Their arborizations in the central body upper division overlap with expression patterns for NOS and with the site of injection where NO donors suppress sound production. Systemic application of AG increases the responsiveness of unrestrained females to male calling songs. Identical treatment with the NOS inhibitor that increased male song-stimulated sound production in females induced a marked reduction of citrulline accumulation in central complex columnar and tangential neurons. We conclude that behavioral situations that are unfavorable for sound production (like being restrained) activate NOS-expressing central body neurons to release NO and elevate the behavioral threshold for sound production in female grasshoppers. PMID:18574586

  2. Levofloxacin oxidation by ozone and hydroxyl radicals: kinetic study, transformation products and toxicity.

    Science.gov (United States)

    Hamdi El Najjar, Nasma; Touffet, Arnaud; Deborde, Marie; Journel, Romain; Leitner, Nathalie Karpel Vel

    2013-10-01

    This work was carried out to investigate the fate of the antibiotic levofloxacin upon oxidation with ozone and hydroxyl radicals. A kinetic study was conducted at 20 °C for each oxidant. Ozonation experiments were performed using a competitive kinetic method with carbamazepin as competitor. Significant levofloxacin removal was observed during ozonation and a rate constant value of 6.0×10(4) M(-1) s(-1) was obtained at pH 7.2. An H2O2/UV system was used for the formation of hydroxyl radicals HO. The rate constant of HO was determined in the presence of a high H2O2 concentration. The kinetic expressions yielded a [Formula: see text] value of 4.5×10(9) M(-1) s(-1) at pH 6.0 and 5.2×10(9) M(-1) s(-1) at pH 7.2. These results were used to develop a model to predict the efficacy of the ozonation process and pharmaceutical removal was estimated under different ozonation conditions (i.e. oxidant concentrations and contact times). The results showed that levofloxacin was completely degraded by molecular ozone during ozonation of water and that hydroxyl radicals had no effect in real waters conditions. Moreover, LC/MS/MS and toxicity assays using Lumistox test were performed to identify ozonation transformation products. Under these conditions, four transformation products were observed and their chemical structures were proposed. The results showed an increase in toxicity during ozonation, even after degradation of all of the observed transformation products. The formation of other transformation products not identified under our experimental conditions could be responsible for the observed toxicity. These products might be ozone-resistant and more toxic to Vibrio fisheri than levofloxacin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Palm H-FAME Production through Partially Hydrogenation using Nickel/Carbon Catalyst to Increase Oxidation Stability

    Directory of Open Access Journals (Sweden)

    Ramayeni Elsa

    2018-01-01

    Full Text Available One of the methods to improve the oxidation stability of palm biodiesel is through partially hydrogenation. The production using Nickel/Carbon catalyst to speed up the reaction rate. Product is called Palm H-FAME (Hydrogenated FAME. Partial hydrogenation breaks the unsaturated bond on FAME (Fatty Acid Methyl Ester, which is a key component of the determination of oxidative properties. Changes in FAME composition by partial hydrogenation are predicted to change the oxidation stability so it does not cause deposits that can damage the injection system of diesel engine, pump system, and storage tank. Partial hydrogenation is carried out under operating conditions of 120 °C and 6 bar with 100:1, 100:3, 100:5, 100:10 % wt catalyst in the stirred batch autoclave reactor. H-FAME synthesis with 100:5 % wt Ni/C catalyst can decrease the iodine number which is the empirical measure of the number of unsaturated bonds from 91.78 to 82.38 (g-I2/100 g with an increase of oxidation stability from 585 to 602 minutes.

  4. Hydrogen production through high-temperature electrolysis in a solid oxide cell

    International Nuclear Information System (INIS)

    Herring, J.St.; Lessing, P.; O'Brien, J.E.; Stoots, C.; Hartvigsen, J.; Elangovan, S.

    2004-01-01

    An experimental research programme is being conducted by the INEEL and Ceramatec, Inc., to test the high-temperature, electrolytic production of hydrogen from steam using a solid oxide cell. The research team is designing and testing solid oxide cells for operation in the electrolysis mode, producing hydrogen rising a high-temperature heat and electrical energy. The high-temperature heat and the electrical power would be supplied simultaneously by a high-temperature nuclear reactor. Operation at high temperature reduces the electrical energy requirement for electrolysis and also increases the thermal efficiency of the power-generating cycle. The high-temperature electrolysis process will utilize heat from a specialized secondary loop carrying a steam/hydrogen mixture. It is expected that, through the combination of a high-temperature reactor and high-temperature electrolysis, the process will achieve an overall thermal conversion efficiency of 40 to 50%o while avoiding the challenging chemistry and corrosion issues associated with the thermochemical processes. Planar solid oxide cell technology is being utilised because it has the best potential for high efficiency due to minimized voltage and current losses. These losses also decrease with increasing temperature. Initial testing has determined the performance of single 'button' cells. Subsequent testing will investigate the performance of multiple-cell stacks operating in the electrolysis mode. Testing is being performed both at Ceramatec and at INEEL. The first cells to be tested were single cells based on existing materials and fabrication technology developed at Ceramatec for production of solid oxide fuel cells. These cells use a relatively thick (∼ 175 μm) electrolyte of yttria- or scandia-stabilised zirconia, with nickel-zirconia cermet anodes and strontium-doped lanthanum manganite cathodes. Additional custom cells with lanthanum gallate electrolyte have been developed and tested. Results to date have

  5. Characterization of the limonene oxidation products with liquid chromatography coupled to the tandem mass spectrometry

    Science.gov (United States)

    Witkowski, Bartłomiej; Gierczak, Tomasz

    2017-04-01

    Composition of the secondary organic aerosol (SOA) generated during ozonolysis of limonene was investigated with liquid chromatography coupled to the negative electrospray ionization (ESI), quadrupole tandem mass spectrometry (MS/MS) as well as high resolution Time-of-Flight mass spectrometry. Aerosol was generated in the flow-tube reactor. HR-MS/MS analysis allowed for proposing structures for the several up-to-date unknown limonene oxidation products. In addition to the low MW limonene oxidation products, significant quantities of oligomers characterized by elemental compositions: C19H30O5, C18H28O6, C19H28O7, C19H30O7 and C20H34O9 were detected in the SOA samples. It was concluded that these compounds are most likely esters, aldol reaction products and/or hemiacetals. In addition to detailed study of the limonene oxidation products, the reaction time as well as initial ozone concentration impact on the limonene SOA composition was investigated. The relative intensities of the two esters of the limonic acid and 7-hydroxy limononic acid increased as a result of lowering the initial ozone concentration and shortening the reaction time, indicating that esterification may be an important oligomerization pathway during limonene SOA formation.

  6. Oxidative stability during storage of fish oil from filleting by-products of rainbow trout (Oncorhynchus mykiss) is largely independent of the processing and production temperature

    DEFF Research Database (Denmark)

    Honold, Philipp; Nouard, Marie-Louise; Jacobsen, Charlotte

    2016-01-01

    Rainbow trout (Oncorhynchus mykiss) is the main fish species produced in Danish fresh water farming. Large amounts of fileting by-products like heads, bones, tails (HBT), and intestines are produced when rainbow trout is processed to smoked rainbow trout filets. The filleting by-products can...... be used to produce high quality fish oil. In this study, the oxidative stability of fish oil produced from filleting by-products was evaluated. The oil was produced from conventional or organic fish (low and high omega-3 fatty acid content) at different temperatures (70 and 90°C). The oxidative stability...

  7. Sputtered indium oxide films

    International Nuclear Information System (INIS)

    Gillery, F.H.

    1986-01-01

    A method is described for depositing on a substrate multiple layer films comprising at least one primary layer of a metal oxide and at least one primary layer of a metal other than the metal of the oxide layer. The improvement described here comprises improving the adhesion between the metal oxide and metal layers by depositing between the layers an intermediate metal-containing layer having an affinity for both the metal and metal oxide layers. An article of manufacture is described comprising a nonmetallic substrate, and deposited thereon in any order: a. at least one coating layer of metal; b. at least one coating layer of an oxide of a metal other than the metal of the metal layer; and c. deposited between the metal and metal oxide layers an intermediate metal-containing layer having an affinity for both the metal and metal oxide layers

  8. Serum Advanced Oxidation Protein Products in Oral Squamous Cell Carcinoma: Possible Markers of Diagnostic Significance

    Directory of Open Access Journals (Sweden)

    Abhishek Singh Nayyar

    2013-07-01

    Full Text Available Background: The aim of this study was to measure the concentrations (levels ofserum total proteins and advanced oxidation protein products as markers of oxidantmediated protein damage in the sera of patients with oral cancers.Methods: The study consisted of the sera analyses of serum total protein andadvanced oxidation protein products’ levels in 30 age and sex matched controls, 60patients with reported pre-cancerous lesions and/or conditions and 60 patients withhistologically proven oral squamous cell carcinoma. One way analyses of variance wereused to test the difference between groups. To determine which of the two groups’ meanswere significantly different, the post-hoc test of Bonferroni was used. The results wereaveraged as mean ± standard deviation. In the above test, P values less than 0.05 weretaken to be statistically significant. The normality of data was checked before thestatistical analysis was performed.Results: The study revealed statistically significant variations in serum levels ofadvanced oxidation protein products (P<0.001. Serum levels of total protein showedextensive variations; therefore the results were largely inconclusive and statisticallyinsignificant.Conclusion: The results emphasize the need for more studies with larger samplesizes to be conducted before a conclusive role can be determined for sera levels of totalprotein and advanced oxidation protein products as markers both for diagnosticsignificance and the transition from the various oral pre-cancerous lesions and conditionsinto frank oral cancers.

  9. Preparation and use of nitrogen (2) oxide of special purity for production of oxygen and nitrogen isotopes

    International Nuclear Information System (INIS)

    Polevoj, A.S.

    1989-01-01

    Problems related with production of oxygen and nitrogen isotopes by means of low-temperature rectification of nitrogen (2) oxide are analyzed. Special attention, in particular, is payed to the techniques of synthesis and high purification of initial NO, utilization of waste flows formed during isotope separation. Ways to affect the initial isotope composition of nitrogen oxide and the rate of its homogeneous-isotope exchange, which provide for possibility of simultaneous production of oxygen and nitrogen isotopes by means of NO rectification, are considered. Description of a new technique for high purification of nitrogen oxide, prepared at decomposition of nitric acid by sulfurous anhydride, suggested by the author is presented

  10. Rain increases methane production and methane oxidation in a boreal thermokarst bog

    Science.gov (United States)

    Neumann, R. B.; Moorberg, C.; Turner, J.; Wong, A.; Waldrop, M. P.; Euskirchen, E. S.; Edgar, C.; Turetsky, M. R.

    2017-12-01

    Bottom-up biogeochemical models of wetland methane emissions simulate the response of methane production, oxidation and transport to wetland conditions and environmental forcings. One reason for mismatches between bottom-up and top-down estimates of emissions is incomplete knowledge of factors and processes that control microbial rates and methane transport. To advance mechanistic understanding of wetland methane emissions, we conducted a multi-year field investigation and plant manipulation experiment in a thermokarst bog located near Fairbanks, Alaska. The edge of the bog is experiencing active permafrost thaw, while the center of the bog thawed 50 to 100 years ago. Our study, which captured both an average year and two of the wettest years on record, revealed how rain interacts with vascular vegetation and recently thawed permafrost to affect methane emissions. In the floating bog, rain water warmed and oxygenated the subsurface, but did not alter soil saturation. The warmer peat temperatures increased both microbial methane production and plant productivity at the edge of the bog near the actively thawing margin, but minimally altered microbial and plant activity in the center of the bog. These responses indicate processes at the edge of the bog were temperature limited while those in the center were not. The compounding effect of increased microbial activity and plant productivity at the edge of the bog doubled methane emissions from treatments with vascular vegetation during rainy years. In contrast, methane emissions from vegetated treatments in the center of the bog did not change with rain. The oxygenating influence of rain facilitated greater methane oxidation in treatments without vascular vegetation, which offset warming-induced increases in methane production at the edge of the bog and decreased methane emissions in the center of the bog. These results elucidate the complex and spatially variable response of methane production and oxidation in

  11. Compositional evolution of particle-phase reaction products and water in the heterogeneous OH oxidation of model aqueous organic aerosols

    Directory of Open Access Journals (Sweden)

    M. M. Chim

    2017-12-01

    Full Text Available Organic compounds present at or near the surface of aqueous droplets can be efficiently oxidized by gas-phase OH radicals, which alter the molecular distribution of the reaction products within the droplet. A change in aerosol composition affects the hygroscopicity and leads to a concomitant response in the equilibrium amount of particle-phase water. The variation in the aerosol water content affects the aerosol size and physicochemical properties, which in turn governs the oxidation kinetics and chemistry. To attain better knowledge of the compositional evolution of aqueous organic droplets during oxidation, this work investigates the heterogeneous OH-radical-initiated oxidation of aqueous methylsuccinic acid (C5H8O4 droplets, a model compound for small branched dicarboxylic acids found in atmospheric aerosols, at a high relative humidity of 85 % through experimental and modeling approaches. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (Direct Analysis in Real Time, DART coupled with a high-resolution mass spectrometer reveal two major products: a five carbon atom (C5 hydroxyl functionalization product (C5H8O5 and a C4 fragmentation product (C4H6O3. These two products likely originate from the formation and subsequent reactions (intermolecular hydrogen abstraction and carbon–carbon bond scission of tertiary alkoxy radicals resulting from the OH abstraction occurring at the methyl-substituted carbon site. Based on the identification of the reaction products, a kinetic model of oxidation (a two-product model coupled with the Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients (AIOMFAC model is built to simulate the size and compositional changes of aqueous methylsuccinic acid droplets during oxidation. Model results show that at the maximum OH exposure, the droplets become slightly more hygroscopic after oxidation, as the mass fraction of water is predicted to increase from

  12. ARIES Oxide Production Program Assessment of Risk to Long-term Sustainable Production Rate

    Energy Technology Data Exchange (ETDEWEB)

    Whitworth, Julia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lloyd, Jane Alexandria [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Majors, Harry W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-04

    This report describes an assessment of risks and the development of a risk watch list for the ARIES Oxide Production Program conducted in the Plutonium Facility at LANL. The watch list is an active list of potential risks and opportunities that the management team periodically considers to maximize the likelihood of program success. The initial assessments were made in FY 16. The initial watch list was reviewed in September 2016. The initial report was not issued. Revision 1 has been developed based on management review of the original watch list and includes changes that occurred during FY-16.

  13. Classification and calculation of primary failure modes in bread production line

    International Nuclear Information System (INIS)

    Tsarouhas, Panagiotis H.

    2009-01-01

    In this study, we describe the classification methodology over a 2-year period of the primary failure modes in categories based on failure data of bread production line. We estimate the probabilities of these categories applying the chi-square goodness of fit test, and we calculate their joint probabilities of mass function at workstation and line level. Then, we present numerical examples in order to predict the causes and frequencies of breakdowns for workstations and for the entire bread production line that will occur in the future. The methodology is meant to guide bread and bakery product manufacturers, improving the operation of the production lines. It can also be a useful tool to maintenance engineers, who wish to analyze and improve the reliability and efficiency of the manufacturing systems

  14. Correlation between Ni base alloys surface conditioning and cation release mitigation in primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Clauzel, M.; Guillodo, M.; Foucault, M. [AREVA NP SAS, Technical Centre, Le Creusot (France); Engler, N.; Chahma, F.; Brun, C. [AREVA NP SAS, Chemistry and Radiochemistry Group, Paris La Defense (France)

    2010-07-01

    The mastering of the reactor coolant system radioactive contamination is a real stake of performance for operating plants and new builds. The reduction of activated corrosion products deposited on RCS surfaces allows minimizing the global dose integrated by workers which supports the ALARA approach. Moreover, the contamination mastering limits the volumic activities in the primary coolant and thus optimizes the reactor shutdown duration and environment releases. The main contamination sources on PWR are due to Co-60 and Co-58 nuclides which come respectively Co-59 and Ni-58, naturally present in alloys used in the RCS. Co is naturally present as an impurity in alloys or as the main component of hardfacing materials (Stellites™). Ni is released mainly by SG tubes which represent the most important surface of the RCS. PWR steam generators (SG), due to the huge wetted surface are the main source of corrosion products release in the primary coolant circuit. As corrosion products may be transported throughout the whole circuit, activated in the core, and redeposited all over circuit surfaces, resulting in an increase of activity buildup, it is of primary importance to gain a better understanding of phenomenon leading to corrosion product release from SG tubes before setting up mitigation measures. Previous studies have shown that SG tubing made of the same material had different release rates. To find the origin of these discrepancies, investigations have been performed on tubes at the as-received state and after exposure to a nominal primary chemistry in titanium recirculating loop. These investigations highlighted the existence of a correlation between the inner surface metallurgical properties and the release of corrosion products in primary coolant. Oxide films formed in nominal primary chemistry are always protective, their morphology and their composition depending strongly on the geometrical, metallurgical and physico-chemical state of the surface on which they

  15. The formation of highly oxidized multifunctional products in the ozonolysis of cyclohexene

    DEFF Research Database (Denmark)

    Rissanen, Matti P.; Kurtén, Theo; Sipilä, Mikko

    2014-01-01

    ionization atmospheric pressure interface time-of-flight mass spectrometer with a nitrate ion (NO3 -)-based ionization scheme. Quantum chemical calculations were performed at the CCSD(T)-F12a/VDZ-F12//ωB97XD/aug-cc-pVTZ level, with kinetic modeling using multiconformer transition state theory, including...... of seconds. Dimerization of the peroxy radicals by recombination and cross-combination reactions is in competition with the formation of highly oxidized monomer species and is observed to lead to peroxides, potentially diacyl peroxides. The molar yield of these highly oxidized products (having O/C > 1...

  16. MnTM-4-PyP modulates endogenous antioxidant responses and protects primary cortical neurons against oxidative stress.

    Science.gov (United States)

    Cheng, Kuo-Yuan; Guo, Fei; Lu, Jia-Qi; Cao, Yuan-Zhao; Wang, Tian-Chang; Yang, Qi; Xia, Qing

    2015-05-01

    Oxidative stress is a direct cause of injury in various neural diseases. Manganese porphyrins (MnPs), a large category of superoxide dismutase (SOD) mimics, shown universally to have effects in numerous neural disease models in vivo. Given their complex intracellular redox activities, detailed mechanisms underlying the biomedical efficacies are not fully elucidated. This study sought to investigate the regulation of endogenous antioxidant systems by a MnP (MnTM-4-PyP) and its role in the protection against neural oxidative stress. Primary cortical neurons were treated with MnTM-4-PyP prior to hydrogen peroxide-induced oxidative stress. MnTM-4-PyP increased cell viability, reduced intracellular level of reactive oxygen species, inhibited mitochondrial apoptotic pathway, and ameliorated endoplasmic reticulum function. The protein levels and activities of endogenous SODs were elevated, but not those of catalase. SOD2 transcription was promoted in a transcription factor-specific manner. Additionally, we found FOXO3A and Sirt3 levels also increased. These effects were not observed with MnTM-4-PyP alone. Induction of various levels of endogenous antioxidant responses by MnTM-4-PyP has indispensable functions in its protection for cortical neurons against hydrogen peroxide-induced oxidative stress. © 2014 John Wiley & Sons Ltd.

  17. Asymmetric Responses of Primary Productivity to Altered Precipitation Simulated by Land Surface Models across Three Long-term Grassland Sites

    Science.gov (United States)

    Wu, D.; Ciais, P.; Viovy, N.; Knapp, A.; Wilcox, K.; Bahn, M.; Smith, M. D.; Ito, A.; Arneth, A.; Harper, A. B.; Ukkola, A.; Paschalis, A.; Poulter, B.; Peng, C.; Reick, C. H.; Hayes, D. J.; Ricciuto, D. M.; Reinthaler, D.; Chen, G.; Tian, H.; Helene, G.; Zscheischler, J.; Mao, J.; Ingrisch, J.; Nabel, J.; Pongratz, J.; Boysen, L.; Kautz, M.; Schmitt, M.; Krohn, M.; Zeng, N.; Meir, P.; Zhang, Q.; Zhu, Q.; Hasibeder, R.; Vicca, S.; Sippel, S.; Dangal, S. R. S.; Fatichi, S.; Sitch, S.; Shi, X.; Wang, Y.; Luo, Y.; Liu, Y.; Piao, S.

    2017-12-01

    Changes in precipitation variability including the occurrence of extreme events strongly influence plant growth in grasslands. Field measurements of aboveground net primary production (ANPP) in temperate grasslands suggest a positive asymmetric response with wet years resulting in ANPP gains larger than ANPP declines in dry years. Whether land surface models used for historical simulations and future projections of the coupled carbon-water system in grasslands are capable to simulate such non-symmetrical ANPP responses remains an important open research question. In this study, we evaluate the simulated responses of grassland primary productivity to altered precipitation with fourteen land surface models at the three sites of Colorado Shortgrass Steppe (SGS), Konza prairie (KNZ) and Stubai Valley meadow (STU) along a rainfall gradient from dry to wet. Our results suggest that: (i) Gross primary production (GPP), NPP, ANPP and belowground NPP (BNPP) show nonlinear response curves (concave-down) in all the models, but with different curvatures and mean values. In contrast across the sites, primary production increases and then saturates along increasing precipitation with a flattening at the wetter site. (ii) Slopes of spatial relationships between modeled primary production and precipitation are steeper than the temporal slopes (obtained from inter-annual variations). (iii) Asymmetric responses under nominal precipitation range with modeled inter-annual primary production show large uncertainties, and model-ensemble median generally suggests negative asymmetry (greater declines in dry years than increases in wet years) across the three sites. (iv) Primary production at the drier site is predicted to more sensitive to precipitation compared to wetter site, and median sensitivity consistently indicates greater negative impacts of reduced precipitation than positive effects of increased precipitation under extreme conditions. This study implies that most models

  18. Photo-oxidation products of α-pinene in coarse, fine and ultrafine aerosol: A new high sensitive HPLC-MS/MS method

    Science.gov (United States)

    Feltracco, Matteo; Barbaro, Elena; Contini, Daniele; Zangrando, Roberta; Toscano, Giuseppa; Battistel, Dario; Barbante, Carlo; Gambaro, Andrea

    2018-05-01

    Oxidation products of α-pinene represent a fraction of organic matter in the environmental aerosol. α-pinene is one of most abundant monoterpenes released in the atmosphere by plants, located typically in boreal, temperate and tropical forests. This primary compound reacts with atmospheric oxidants, such as O3, O2, OH radicals and NOx, through the major tropospheric degradation pathway for many monoterpenes under typical atmospheric condition. Although several studies identified a series of by-products deriving from the α-pinene photo-oxidation in the atmosphere, such as pinic and cis-pinonic acid, the knowledge of the mechanism of this process is partially still lacking. Thus, the investigation of the distribution of these acids in the different size aerosol particles provides additional information on this regard. The aim of this study is twofold. First, we aim to improve the existing analytical methods for the determination of pinic and cis-pinonic acid in aerosol samples, especially in terms of analytical sensitivity and limits of detection (LOD) and quantification (LOQ). We even attempted to increase the knowledge of the α-pinene photo-oxidation processes by analysing, for the first time, the particle-size distribution up to nanoparticle level of pinic and cis-pinonic acid. The analysis of aerosol samples was carried out via high-performance liquid chromatography coupled to a triple quadrupole mass spectrometer. The instrumental LOD values of cis-pinonic and pinic acid are 1.6 and 1.2 ng L-1 while LOQ values are 5.4 and 4.1 ng L-1, respectively. Samples were collected by MOUDI II™ cascade impactor with twelve cut-sizes, from March to May 2016 in the urban area of Mestre-Venice (Italy). The range concentrations in the aerosol samples were from 0.1 to 0.9 ng m-3 for cis-pinonic acid and from 0.1 to 0.8 ng m-3 for pinic acid.

  19. Nitrous oxide production associated with coastal marine invertebrates

    DEFF Research Database (Denmark)

    Heisterkamp, Ines Maria; Schramm, Andreas; de Beer, Dirk

    2010-01-01

    Several freshwater and terrestrial invertebrate species emit the greenhouse gas nitrous oxide (N2O). The N2O production associated with these animals was ascribed to incomplete denitrification by ingested sediment or soil bacteria. The present study shows that many marine invertebrates also emit N2......O at substantial rates. A total of 19 invertebrate species collected in the German Wadden Sea and in Aarhus Bay, Denmark, and 1 aquacultured shrimp species were tested for N2O emission. Potential N2O emission rates ranged from 0 to 1.354 nmol ind.–1 h–1, with an average rate of 0.320 nmol ind.–1 h–1...... with an experimentally cleaned shell. Thus, the N2O production associated with marine invertebrates is apparently not due to gut denitrification in every species, but may also result from microbial activity on the external surfaces of animals. The high abundance and potential N2O emission rates of many marine...

  20. Oxidative degradation of Boltysh shale by alkaline potassium permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Pobul, I Ya; Fomina, A S

    1974-01-01

    This reaction proceeded in stages at 47 to 48/sup 0/C with a 3 percent solution of potassium permanganate in a 1 percent alkaline solution. The products were separated into groups and identified by gas-liquid chromatography. Small amounts of monocarboxylic acids were identified, with normal and branched chains, from acetic to lauric acid. Dicarboxylic acids were mainly of normal structure, or methyl substituted, from succinic to hexadecanedicarboxylic acid. No tricarboxylic acids were detected. For products of primary oxidation insoluble in acid media, a high content of C/sub 10/-C/sub 16/ acids was characteristic, and for the final degree of oxidation C/sub 11/-C/sub 18/ acids. The organic portion of shale consists of structural units, differing in mass and in stability to alkaline permanganate.