WorldWideScience

Sample records for primary coolant temperature

  1. Determination of primary flow by correlation of temperatures of the coolant

    International Nuclear Information System (INIS)

    Villanueva, Jose

    2003-01-01

    Correlation techniques are often used to assess primary coolant flow in nuclear reactors. Observable fluctuations of some physical or chemical coolant properties are suitable for this purpose. This work describes a development carried out at the National Atomic Energy Commission of Argentina (CNEA) to apply this technique to correlate temperature fluctuations. A laboratory test was performed. Two thermocouples were installed on a hydraulic loop. A stationary flow of water circulated by the mentioned loop, where a mechanical turbine type flowmeter was installed. Transit times given by the correlation flowmeter, for different flow values measured with the mechanical flowmeter, were registered and a calibration between them was done. A very good linear behavior was obtained in all the measured range. It was necessary to increase the fluctuation level by adding water at different temperatures at the measuring system input. (author)

  2. Primary coolant circuits in FBR type reactors

    International Nuclear Information System (INIS)

    Kutani, Masushiro.

    1985-01-01

    Purpose: To eliminate the requirement of a pump for the forcive circulation of primary coolants and avoid the manufacturing difficulty of equipments. Constitution: In primary coolant circuits of an LMFBR type reactor having a recycling path forming a closed loop between a reactor core and a heat exchanger, coolants recycled through the recycling path are made of a magnetic fluid comprising liquid sodium incorporated with fine magnetic powder, and an electromagnet is disposed to the downstream of the heat exchanger. In the above-mentioned structure, since the magnetic fluid as the primary coolants losses its magnetic property when heated in the reactor core but recovers the property at a lower temperature after the completion of the heat exchange, the magnetic fluid can forcively be flown through the recycling path under the effect of the electromagnet disposed to the down stream of the heat exchanger to thereby forcively recycle the primary coolants. (Kawakami, Y.)

  3. Thermodynamic data for selected gas impurities in the primary coolant of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Feber, R.C.

    1976-12-01

    The literature of thermodynamic data for selected fission-product species is reviewed and supplemented in support of complex chemical equilibrium calculations applied to fission-product distributions in the primary coolant of high-temperature gas-cooled reactors. Thermodynamic functions and heats and free energies of formation are calculated and tabulated to 3000 0 K for CsI (s,l,g), Cs 2 I 2 (g), CH 3 I(g), COI 2 (g), and CsH(g). 79 references

  4. Verification results of methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    Saunin, Yuri V.; Dobrotvorski, Alexander N.; Semenikhin, Alexander V.; Korolev, Alexander S. [JSC ' ' Atomtechenergo' ' , Novovoronezh (Russian Federation). Novovoronezh Filial ' ' Novovoronezhatomtechenergo' ' ; Ryasny, Sergei I. [JSC ' ' Atomtechenergo' ' , Moscow (Russian Federation)

    2017-09-15

    The JSC ''Atomtechenergo'' experts have developed a new methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants. The necessity for developing the new methodology was determined by the need to decrease the calculation error of the weighted mean coolant temperature in the hot legs because of the coolant temperature stratification. The methodology development was based on the findings of experimental and calculating research executed by the authors. The methodology verification was fulfilled through comparison of calculation results obtained with and without the methodology use in various operational states and modes of several WWER-1000 power units. The obtained verification results have confirmed that the use of the new methodology provides objective error decrease in determining the weighted mean coolant temperature in the primary circuit hot legs. The decrease value depends on the stratification character which is various for different objects and conditions.

  5. Verification results of methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants

    International Nuclear Information System (INIS)

    Saunin, Yuri V.; Dobrotvorski, Alexander N.; Semenikhin, Alexander V.; Korolev, Alexander S.

    2017-01-01

    The JSC ''Atomtechenergo'' experts have developed a new methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants. The necessity for developing the new methodology was determined by the need to decrease the calculation error of the weighted mean coolant temperature in the hot legs because of the coolant temperature stratification. The methodology development was based on the findings of experimental and calculating research executed by the authors. The methodology verification was fulfilled through comparison of calculation results obtained with and without the methodology use in various operational states and modes of several WWER-1000 power units. The obtained verification results have confirmed that the use of the new methodology provides objective error decrease in determining the weighted mean coolant temperature in the primary circuit hot legs. The decrease value depends on the stratification character which is various for different objects and conditions.

  6. Fission product release into the primary coolant

    International Nuclear Information System (INIS)

    Apperson, C.E.

    1977-01-01

    The analytic evaluation of steady state primary coolant activity is discussed. The reported calculations account for temperature dependent fuel failure in two particle types and arbitrary radioactive decay chains. A matrix operator technique implemented in the SUVIUS code is used to solve the simultaneous equations. Results are compared with General Atomic Company's published results

  7. Effect of high-temperature filtration on impurity composition in the primary circuit coolant of power units with WWER-1000 reactors

    International Nuclear Information System (INIS)

    Efimov, A.A.; Moskvin, L.N.; Gusev, B.A.; Leont'ev, G.G.; Nekrest'yanov, S.N.

    1992-01-01

    The effects of high-temperature filtration on changes in dispersive, chemical, radioisotope and phase compositions of impurities in primary circuit coolant of NPP with the WWER-1000 reactor are studied. Special filters are used for the studies. The data obtained confirm the applicability of high-temperature filtration for purification of WWER reactor water and steam separators at NPPs with RBMK reactors

  8. Investigation of circulating temperature fluctuations of the primary coolant in order to develop an enhanced MTC estimator for VVER-440 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Sandor; Lipcsei, Sandor [Hungarian Academy of Sciences, Budapest (Hungary). Centre for Energy Research - MTA

    2017-09-15

    Our aim was to develop a method based on noise diagnostics for the estimation of the moderator temperature coefficient of reactivity (MTC) for the Paks VVER-440 units in normal operation. The method requires determining core average neutron flux and temperature fluctuations. The circulation period of the primary coolant, transfer properties of the steam generators, as well as the source and the propagation of the temperature perturbations and the proportions of the perturbation components were investigated in order to estimate the feedback caused by the circulation of the primary coolant. Finally, after developing the new MTC estimator, determining its frequency range and optimal parameters, trends were produced based on an overall evaluation of measurements made with standard instrumentation during a one-year-long period at Paks NPP.

  9. Determination of primary flow by correlation of temperatures of the coolant; Medicion de caudal primario por correlacion de temperaturas del refrigerante

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, Jose [Comision Nacional de Energia Atomica, Ezeiza (Argentina). Centro Atomico Ezeiza

    2003-07-01

    Correlation techniques are often used to assess primary coolant flow in nuclear reactors. Observable fluctuations of some physical or chemical coolant properties are suitable for this purpose. This work describes a development carried out at the National Atomic Energy Commission of Argentina (CNEA) to apply this technique to correlate temperature fluctuations. A laboratory test was performed. Two thermocouples were installed on a hydraulic loop. A stationary flow of water circulated by the mentioned loop, where a mechanical turbine type flowmeter was installed. Transit times given by the correlation flowmeter, for different flow values measured with the mechanical flowmeter, were registered and a calibration between them was done. A very good linear behavior was obtained in all the measured range. It was necessary to increase the fluctuation level by adding water at different temperatures at the measuring system input. (author)

  10. Primary coolant chemistry of the Peach Bottom and Fort St. Vrain high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Burnette, R.D.; Baldwin, N.L.

    1980-11-01

    The chemical impurities in the primary coolants of the Peach Bottom and Fort St. Vrain reactors are discussed. The impurity mixtures in the two plants were quite different because the sources of the impurities were different. In the Peach Bottom reactor, the impurities were dominated by H 2 and CH 4 , which are decomposition products of oil. In the Fort St. Vrain reactor, there were high levels of CO, CO 2 , and H 2 O. Although oil ingress at Peach Bottom created carbon deposits on virtually all surfaces, its effect on reactor operation was negligible. Slow outgassing of water from the thermal insulation at Fort St. Vrain caused delays in reactor startup. The overall graphite oxidation in both plants was negligible

  11. Primary coolant chemistry of the Peach Bottom and Fort St. Vrain high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Burnette, R.D.; Baldwin, N.L.

    1981-01-01

    The chemical impurities in the primary coolants of the Peach Bottom and Fort St. Vrain reactors are discussed. The impurity mixtures in the two plants were quite different because the sources of the impurities were different. In the Peach Bottom reactor, the impurities were dominated by H 2 and CH 4 , which are decomposition products of oil. In the Fort St. Vrain reactor, there were high levels of CO, CO 2 , and H 2 O. Although oil ingress at Peach Bottom created carbon deposits on virtually all surfaces, its effect on reactor operation was negligible. Slow outgassing of water from the thermal insulation at Fort St. Vrain caused delays in reactor startup. The overall graphite oxidation in both plants was negligible. (author)

  12. LWR primary coolant pipe rupture test rig

    International Nuclear Information System (INIS)

    Yoshitoshi, Shyoji

    1978-01-01

    The rupture test rig for primary coolant pipes is constructed in the Japan Atomic Energy Research Institute to verify the reliability of the primary coolant pipes for both PWRs and BWRs. The planned test items consisted of reaction force test, restraint test, whip test, jet test and continuous release test. A pressure vessel of about 4 m 3 volume, a circulating pump, a pressurizer, a heater, an air cooler and the related instrumentation and control system are included in this test rig. The coolant test condition is 160 kg/cm 2 g, 325 deg C for PWR test, and 70 kg/cm 2 g, saturated water and steam for BWR test, 100 ton of test load for the ruptured pipe bore of 8B Schedule 160, and 20 lit/min. discharge during 20 h for continuous release of coolant. The maximum pit internal pressure was estimated for various pipe diameters and time under the PWR and BWR conditions. The spark rupturing device was adopted for the rupture mechanics in this test rig. The computer PANAFACOM U-300 is used for the data processing. This test rig is expected to operate in 1978 effectively for the improvement of reliability of LWR primary coolant pipes. (Nakai, Y.)

  13. Reactor Coolant Temperature Measurement using Ultrasonic Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, JaeCheon [KEPCO International Nuclear graduate School, Ulsan (Korea, Republic of); Seo, YongSun; Bechue, Nicholas [Krohne Messtechnik GmbH, Duisburg (Germany)

    2016-10-15

    In NPP, the primary piping temperature is detected by four redundant RTDs (Resistance Temperature Detectors) installed 90 degrees apart on the RCS (Reactor Coolant System) piping circumferentially. Such outputs however, if applied to I and C systems would not give balanced results. The discrepancy can be explained by either thermal stratification or improper arrangement of thermo-wells and RTDs. This phenomenon has become more pronounced in the hot-leg piping than in the cold-leg. Normally, the temperature difference among channels is in the range of 1°F in Korean nuclear power Plants. Consequently, a more accurate pipe average temperate measurement technique is required. Ultrasonic methods can be used to measure average temperatures with relatively higher accuracy than RTDs because the sound wave propagation in the RCS pipe is proportional to the average temperature around pipe area. The inaccuracy of RCS temperature measurement worsens the safety margin for both DNBR and LPD. The possibility of this discrepancy has been reported with thermal stratification effect. Proposed RCS temperature measurement system based on ultrasonic technology offers a countermeasure to cope with thermal stratification effect on hot-leg piping that has been an unresolved issue in NPPs. By introducing ultrasonic technology, the average internal piping temperature can be measured with high accuracy. The inaccuracy can be decreased less than ±1℉ by this method.

  14. Primary coolant recycling device for FBR type reactor

    International Nuclear Information System (INIS)

    Kanbe, Mitsuru; Tokiwai, Moriyasu

    1998-01-01

    A primary coolants (liquid sodium) recycling device comprises a plurality of recycling pumps. The recycling pumps are operated while using, as a power source, electric power generated by a thermoelectric power generation system by utilizing heat stored in the coolants. The thermoelectric power generation system comprises a thermo-electric conversion module, heat collecting heat pipes as a high temperature side heat conduction means and heat dissipating pipes as a low temperature side heat conduction means. The heat of coolants is transferred to the surface of the high temperature side of each thermo-electric conversion elements of the thermal power generation system by the heat collecting heat pipes. The heat on the low temperature side of each of the thermo-electric conversion elements is removed by the heat dissipating pipes. Accordingly, temperature difference is caused between both surfaces of the thermo-electric conversion elements. Even upon loss of a main power source due to stoppage of electricity, electric power is generated by utilizing heat of coolants, so that the recycling pumps circulate coolants to cool a reactor core continuously. (I.N.)

  15. CAREM-25: considerations about primary coolant chemistry

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Iglesias, Alberto M.; Raffo Calderon, Maria C.; Villegas, Marina

    2000-01-01

    World operating experience, in conjunction with basic studies has been modifying chemistry specifications for the primary coolant of water cooled nuclear reactors along with the reactor type and structural materials involved in the design. For the reactor CAREM-25, the following sources of information have been used: 1) Experience gained by the Chemistry Department of the National Atomic Energy Commission (CNEA, Argentina); 2) Participation of the Chemistry Department (CNEA) in international cooperation projects; 3) Guidelines given by EPRI, Siemens-KWU, AECL, etc. Given the main objectives: materials integrity, low radiation levels and personnel safety, which are in turn a balance between the lowest corrosion and activity transport achievable and considering that the CAREM-25 is a pressurized vessel integrated reactor, a group of guidelines for the chemistry and additives for the primary coolant have been given in the present work. (author)

  16. Application of the complex equilibrium code QUIL to cesium-impurity equilibria in the primary coolant of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Feber, R.D.; Lunsford, J.L.; Stark, W.A. Jr.

    1976-05-01

    An equilibrium analysis has been made of the fission-product cesium in the primary coolant loop of the high-temperature gas-cooled reactor (HTGR). The species distributions that result at equilibrium have been calculated for various conditions of reactor operation. The cesium species considered were the monomer, dimer, oxides, hydroxides, and the hydride. The effect of cesium sorption isotherms on graphite also was included in the analysis. During normal reactor operations, the abundant species of cesium were calculated to be elemental cesium, Cs, and the monomeric hydroxide, CsOH. Under most conditions of steam ingress, the abundant species was calculated to be CsOH. Cesium adsorbed onto graphite was stable under all steam-ingress conditions considered. Thermal transients above 1500 0 K were required for equilibrium transport of cesium from the core to the coolant. The analysis was carried out using the complex equilibrium code QUIL, designed and written with special emphasis on features that make it applicable to the fission-product problem

  17. SMART core power control method by coolant temperature variation

    International Nuclear Information System (INIS)

    Lee, Chung Chan; Cho, Byung Oh

    2001-08-01

    SMART is a soluble boron-free integral type pressurized water reactor. Its moderator temperature coefficient (MTC) is strongly negative throughout the cycle. The purpose of this report is how to utilize the primary coolant temperature as a second reactivity control system using the strong negative MTC. The reactivity components associated with reactor power change are Doppler reactivity due to fuel temperature change, moderator temperature reactivity and xenon reactivity. Doppler reactivity and moderator temperature reactivity take effects almost as soon as reactor power changes. On the other hand, xenon reactivity change takes more than several hours to reach an equilibrium state. Therefore, coolant temperature at equilibrium state is chosen as the reference temperature. The power dependent reference temperature line is limited above 50% power not to affect adversely in reactor safety. To compensate transient xenon reactivity, coolant temperature operating range is expanded. The suggested coolant temperature operation range requires minimum control rod motion for 50% power change. For smaller power changes such as 25% power change, it is not necessary to move control rods to assure that fuel design limits are not exceeded

  18. EDF PWRs primary coolant purification strategies

    International Nuclear Information System (INIS)

    Gressier, Frederic; Mascarenhas, Darren; Taunier, Stephane; Le-Calvar, Marc; Bretelle, Jean-Luc; Ranchoux, Gilles

    2012-09-01

    In order to achieve a good physico-chemical quality of the primary coolant fluid, the primary water is continuously treated by the Chemical and Volume Control System (CVCS). This system is composed of a treatment chain containing filters and ion-exchange resins. In the EDF design, an upstream filter is placed before the resin so as to prevent it from being saturated with insoluble particles. Then, the fluid passes through several resin beds (up to 3 depending on the configuration) and again through a downstream filter that prevents resin fines dissemination into the reactor coolant. Much work has been conducted in the last 5 years on the homogenisation of products and usage on French EDF NPP primary coolant treatment, while taking into account the compromise between source term reduction, liquid and solid waste, and buying and disposal costs. Two national markets have been created, and two operational documents for chemists on site have been published: a filtration guideline and an ion-exchange resin guideline. Both documents give general information about the products used, how are they characterized and selected for national market (technical requirements, standards and tests), how they should be used and what are the change-out criteria. They are also periodically updated based on feedback from sites. The positive impact on resin and filter lifetime (extension of some, limitation of others), homogenisation of products and usage will be presented. Moreover, EDF is constantly in the process of improving the current purification methods, as well as researching the use of existing and novel technologies. In this field, recent experiments on short loading of resin during reactor shutdown has been tested on site with success. In addition, work is done on silica free filters, filter consumption and filter chemical release. An overview of these optimization methods will be given. (authors)

  19. Coolant clean-up system in the primary coolant circuit for nuclear reactor

    International Nuclear Information System (INIS)

    Saito, Michio.

    1981-01-01

    Purpose: To maintain the quality of coolants at a prescribed level by distillating coolants in the primary coolant circuit for a BWR type reactor to remove impurities therefrom, taking out the condensates from the top of the distillation column and extracting impurities in a concentrated state from the bottom. Constitution: Coolant water for cooling the core is recycled by a recycling pump by way of a recycling pipeway in a reactor. The coolants extracted from an extraction pipeway connected to the recycling pipeway are fed into a distillation column, where distillation is taken place. Impurities in the coolants, that is, in-core corrosion products, fission products generated in the reactor core, etc. are separated by the distillation, concentrated and solidified in the bottom of the distillation column. While on the other hand, condensates removed with the impurities, that is, coolants cleaned-up are recycled to the coolant water for cooling the reactor core. (Moriyama, K.)

  20. Microstructural characterization of primary coolant pipe steel

    International Nuclear Information System (INIS)

    Miller, M.K.; Bentley, J.

    1986-01-01

    Atom probe field-ion microscopy, analytical electron microscopy, and optical microscopy have been used to investigate the changes that occur in the microstructure of cast CF 8 primary coolant pipe stainless steel after long term thermal aging. The cast duplex microstructure consisted of austenite with 15% delta-ferrite. Investigation of the aged material revealed that the ferrite spinodally decomposed into a fine scaled network of α and α'. A fine G-phase precipitate was also observed in the ferrite. The observed degradation in mechanical properties is probably a consequence of the spinodal decomposition in the ferrite

  1. Monitoring of coolant temperature stratification on piping components in WWER-440 NPPs

    International Nuclear Information System (INIS)

    Hudcovsky, S.; Slanina, M.; Badiar, S.

    2001-01-01

    The presentation deals with the aims of non-standard temperature measurements installed on primary and secondary circuit in WWER-440 NPPs, explains reasons of coolant temperature stratification on the piping components. It describes methods of the measurements on pipings, range of installation of the temperature measurements in EBO and EMO units and illustrates results of measurements of coolant temperature stratification. (Authors)

  2. Revised Mark 22 coolant temperature coefficients

    International Nuclear Information System (INIS)

    Graves, W.E.

    1987-01-01

    Coolant temperature coefficients for the Mark 22 charge published previously are non-conservative because of the neglect of a significant mechanism which has a positive contribution to reactivity. Even after correcting for this effect, dynamic tests made on a Mark VIB charge in the early 60's suggest the results are still non-conservative. This memorandum takes both of these sources of information into account in making a best estimate of the prompt (coolant plus metal) temperature coefficient. Although no safety issues arise from this work (the overall temperature coefficient still strongly contributes to reactor stability), it is obviously desirable to use best estimates for prompt coefficients in limits and other calculations

  3. Creep properties of base metal and welded joint of Hastelloy XR produced for High-Temperature Engineering Test Reactor in simulated primary coolant helium

    International Nuclear Information System (INIS)

    Kurata, Yuji; Tsuji, Hirokazu; Shindo, Masami; Suzuki, Tomio; Tanabe, Tatsuhiko; Mutoh, Isao; Hiraga, Kenjiro

    1999-01-01

    Creep tests of base metal, weld metal and welded joint of Hastelloy XR, which had the same chemical composition as Hastelloy XR produced for an intermediate heat exchanger of the High-Temperature Engineering Test Reactor, were conducted in simulated primary coolant helium. The weld metal and welded joint showed almost equal to or longer rupture time than the base metal of Hastelloy XR at 850 and 900degC, although they gave shorter rupture time at 950degC under low stress and at 1,000degC. The welded joint of Hastelloy XR ruptured at the base metal region at 850 and 900degC. On the other hand, it ruptured at the weld metal region at 950 and 1,000degC. The steady-state creep rate of weld metal of Hastelloy XR was lower than that of base metal at 850, 900 and 950degC. The creep rupture strengths of base metal, weld metal and welded joint of Hastelloy XR obtained in this study were confirmed to be much higher than the design allowable creep-rupture stress (S R ) of the Design Allowable Limits below 950degC. (author)

  4. Method of decontaminating primary coolant circuits

    International Nuclear Information System (INIS)

    Ishibashi, Masaru; Sumi, Masao.

    1981-01-01

    Purpose: To eliminate hard contaminated layers as well as soft contaminated layers without injuring substrate materials, upon decontamination of radiation contaminated portions in equipments and pipeways constituting primary coolant circuits. Constitution: High pressure water from a high pressure pump is jetted out from the nozzle of a spray gun to the radiation contaminated portions in equipments, for example, to the surface of water chamber in a vapor evaporator. High pressure pure water or aqueous boric acid is jetted out from the periphery and boric oxide particles (of about 1 - 100 μ particle size) are jetted out from the center of the nozzle of the spray gun. The particles (blasting material) jetted out together with the high pressure water impinge on the contaminated surfaces to remove the contaminated layers. Upon impingement, the high pressure water acts as the shock absorber for the blasting material and, after the impingement, it flows down to the bottom of the water chamber, and the blasting material is dissolved in the high pressure water. (Horiuchi, T.)

  5. Evaluation of primary coolant leaks and assessment of detection methods

    International Nuclear Information System (INIS)

    Cassette, P.; Giroux, C.; Roche, H.; Seveon, J.J.

    1984-11-01

    A review of French PWR situation concerning primary coolant leaks is presented, including a description of operating technical specifications, of the collecting system of primary coolant leakage into the containment and of the detection methods. It is mainly based on a compilation over three years, 1981 to 1983, of almost all occurred leaks, their natures, causes, consequences and methods used for their detection. By analysing these data it is possible to evaluate the efficiency of the primary coolant leak detection system and the problems raised by the compliance with the criteria defined in the operating technical specifications

  6. Evaluation of primary coolant leaks and assessment of detection methods

    International Nuclear Information System (INIS)

    Cassette, P.; Giroux, C.; Roche, H.; Seveon, J.J.

    1986-01-01

    A review of the French PWR situation concerning primary coolant leaks is presented, including a description of operating technical specifications, of the collecting system of primary coolant leakage into the containment and of the detection methods. It is mainly based on a compilation over three years, 1981 to 1983, of almost all actual leaks, their natures, causes, consequences and methods used for their detection. By analysing these data it is possible to evaluate the efficiency of the primary coolant leak detection system and the problems raised by compliance with the criteria defined in the operating technical specifications

  7. Detection of primary coolant leaks in NPP

    International Nuclear Information System (INIS)

    Slavov, S.; Bakalov, I.; Vassilev, H.

    2001-01-01

    The thermo-hydraulic analyses of the SG box behaviour of Kozloduy NPP units 3 and 4 in case of small primary circuit leaks and during normal operation of the existing ventilation systems in order to determine the detectable leakages from the primary circuit by analysing different parameters used for the purposes of 'Leak before break' concept, performed by ENPRO Consult Ltd. are presented. The following methods for leak detection: measurement of relative air humidity in SG box (can be used for detection of leaks with flow rate 3.78 l/min within one hour at ambient parameters - temperature 40 0 - 60 0 C and relative humidity form 30% to 60%); measurement of water level in SG box sumps (can not be used for reliable detection of small primary circuit leakages with flow rate about 3.78 l/min); measurement of gaseous radioactivity in SG box( can be used as a general global indication for detection of small leakages from the primary circuit); measurement of condensate flow after the air coolers of P-1 venting system (can be used for primary circuit leak detection) are considered. For determination of the confinement behaviour, a model used with computer code MELCOR has been developed by ENPRO Consult Ltd. A brief summary based on the capabilities of the different methods of leak detection, from the point of view of the applicability of a particular method is given. For both Units 3 and 4 of Kozloduy NPP a qualified complex system for small leak detection is planned to be constructed. Such a system has to unite the following systems: acoustic system for leak detection 'ALUS'; system for control of the tightness of the main primary circuit pipelines by monitoring the local humidity; system for primary circuit leakage detection by measuring condensate run-off in collecting tank after ventilation system P-1 air coolers

  8. Thermal aging of primary coolant pipe steel

    International Nuclear Information System (INIS)

    Miller, M.K.; Bentley, J.; Brenner, S.S.; Spitznagel, J.A.

    1985-01-01

    The long term mechanical integrity of the pipes used to carry the primary cooling water in a pressurized water nuclear reactor is of the utmost importance for safe operation. A combined atom probe field-ion microscopy (APFIM) and transmission electron microscopy (TEM) study was performed to characterize the microstructure of this cast stainless steel and to determine the changes that occur during long-term low-temperature thermal aging. The material used in this investigation was a commercial CF 8 type stainless. The steel was examined in the as-cast, unaged condition and also after aging for 7500 h at 673K. 3 refs., 4 figs., 2 tabs

  9. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    International Nuclear Information System (INIS)

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-01-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years

  10. Method of eliminating cruds in the primary coolants of reactors

    International Nuclear Information System (INIS)

    Tamura, Takaaki.

    1984-01-01

    Purpose: To eliminate cruds in the primary coolants by using rind of onions or peanuts. Method: Since cruds contained in the reactor primary coolants increase the radioactive exposure to reactor operators, they have been intended to remove by ion exchange resins. In this invention, rind of onions or peanuts are crushed into an adequate particle size and packed into an absorption column instead of ion exchange resins into which primary coolants are circulated. The powderous onions or peanuts rind contain glucoside such as cosmosiin and has an effect of cationic exchanger, they satisfactorily catch heavy metals such as Fe and Cu. They have an excellent filtering effect even under a high pH condition and are excellent in economical point of view. They can be decrease the volume of the absorption column, reduce their devolume after use through corrosion and easily subjected to waste procession through oxidizing combustion in liquid. (Nakamoto, H.)

  11. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  12. Impedance calculations for power cables to primary coolant pump motors

    International Nuclear Information System (INIS)

    Hegerhorst, K.B.

    1977-01-01

    The LOFT primary system motor generator sets are located in Room B-239 and are connected to the primary coolant pumps by means of a power cable. The calculated average impedance of this cable is 0.005323 ohms per unit resistance and 0.006025 ohms per unit reactance based on 369.6 kVA and 480 volts. The report was written to show the development of power cable parameters that are to be used in the SICLOPS (Simulation of LOFT Reactor Coolant Loop Pumping System) digital computer program as written in LTR 1142-16 and also used in the pump coastdowns for the FSAR Analysis

  13. Design on Hygrometry System of Primary Coolant Circuit of HTR-PM

    International Nuclear Information System (INIS)

    Sun Yanfei; Zhong Shuoping; Huang Xiaojin

    2014-01-01

    Helium is the primary coolant in HTR-PM. If vapor get into the helium in primary coolant circuit because of some special reasons, such as the broken of steam-generator tube, chemical reaction will take effect between the graphite in reactor core and vapor in primary coolant circuit, and the safety of the reactor operation will be influenced. So the humidity of the helium in primary coolant circuit is one key parameter of HTR-PM to be monitored in-line. Once the humidity is too high, trigger signal of turning off the reactor must be issued. The hygrometry system of HTR-PM is consisting of filter, cooler, hygrometry sensor, flow meter, and some valves and tube. Helium with temperature of 250℃ is lead into the hygrometry system from the outlet of the main helium blower. After measuring, the helium is re-injected back to the primary circuit. No helium loses in this processing, and no other pump is needed. Key factors and calculations in design on hygrometry system of HTR-PM are described. A sample instrument has been made. Results of experiments proves that this hygrometry system is suitable for monitoring the humidity of the primary coolant of HTR-PM. (author)

  14. Method of suppressing the deposition of Co-60 to primary coolant pipeways in a nuclear reactor

    International Nuclear Information System (INIS)

    Hoshi, Michio; Tachikawa, Enzo; Goto, Satoshi; Sagawa, Chiaki; Yonezawa, Chushiro.

    1987-01-01

    Purpose: To suppress the deposition of Co-60 to primary coolant pipeways in a nuclear reactor. Method: To reduce the accumulation of Co-60 by causing chemical species of extremely similar chemical property with soluble Co-60 to be present together in coolants and replacing the deposition of Co-60 to the primary coolant pipeways in a nuclear reactor with that of the coexistent chemical spacies. Ni or Zn is used as the coexistet chemical spacies of similar chemical property with Co-60. The coexistent amount is from 5 to 10 times of the soluble Co-60 in the primary coolants. Ni or Zn solution adjusted with concentration is poured into and mixed with the coolants from a water feed source by using a high pressure constant volume pump. The amount of Co-60 taken into the pipeways caused by corrosion due to high temperature coolant is reduced to about 1/5 as compared with the case of Co-60 alone if 1 ppb of soluble Co-60 is present in water and 5 ppb of soluble Ni or Zn is added and, reduced to 1/12 if the amount of Ni or Zn is 10 ppb. (Kamimura, M.)

  15. Design criteria of primary coolant chemistry in SMART-P

    International Nuclear Information System (INIS)

    Choi, Byung Seon; Kim, Ah Young; Kim, Seong Hoon; Yoon, Ju Hyeon; Zee, Sung Qunn

    2005-01-01

    SMART-P differs significantly from commercially designed PWRs. Materials inventories used in SMART-P differ from that at PWRs. All surfaces of the primary circuit with the primary coolant are either made from or plated with stainless steel. The material of steam generator (SG) is also different from that of the standard material of the commercially operating PWRs: titanium alloy for the steam generator tubes. Also, SMART-P primary coolant technology differs from that in PWRs: ammonia is used as a pH raising agent and hydrogen formed due to radiolytic processes is kept in specific range by ammonia dosing. Nevertheless, main objectives of the SMART-P primary coolant are the same as at PWRs: to assure primary system pressure boundary integrity, fuel cladding integrity and to minimize out-of-core radiation buildup. The objective of this work is to introduce the design criteria for the primary water chemistry for SMART-P from the viewpoint of the system characteristics and the chemical design concept

  16. Membrane systems and their use in nuclear power plants. Treatment of primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Kus, Pavel; Bartova, Sarka; Skala, Martin; Vonkova, Katerina [Research Centre Rez, Husinec-Rez (Czech Republic). Technological Circuits Innovation Dept.; Zach, Vaclav; Kopa, Roman [CEZ a.s., Temelin (Czech Republic). Nuclear Power Plant Temelin

    2016-03-15

    In nuclear power plants, drained primary coolant containing boric acid is currently treated in the system of evaporators and by ion exchangers. Replacement of the system of evaporators by membrane system (MS) will result in lower operating cost mainly due to lower operation temperature. In membrane systems the feed primary coolant is separated into two output streams: retentate and permeate. Retentate stream consists of the concentrated boric acid solution together with other components, while permeate stream consists of purified water. Results are presented achieved by testing a pilot-plant unit of reverse osmosis in nuclear power plant (NPP) Temelin.

  17. Sensitivity calculation of the coolant temperature regarding the thermohydraulic parameters

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de; Silva, F.C. da; Thome Filho, Z.D.; Alvim, A.C.M.; Oliveira Barroso, A.C. de.

    1985-01-01

    It's studied the application of the Generalized Perturbation Theory (GPT) in the sensitivity calculation of thermalhydraulic problems, aiming at verifying the viability of the extension of the method. For this, the axial distribution, transient, of the coolant temperature in a PWR channel are considered. Perturbation expressions are developed using the GPT formalism, and a computer code (Tempera) is written, to calculate the channel temperature distribution and the associated importance function, as well as the effect of the thermalhydraulic parameters variations in the coolant temperature (sensitivity calculation). The results are compared with those from the direct calculation. (E.G.) [pt

  18. Evaluation of CRUDTRAN code to predict transport of corrosion products and radioactivity in the PWR primary coolant system

    International Nuclear Information System (INIS)

    Lee, C.B.

    2002-01-01

    CRUDTRAN code is to predict transport of the corrosion products and their radio-activated nuclides such as cobalt-58 and cobalt-60 in the PWR primary coolant system. In CRUDTRAN code the PWR primary circuit is divided into three principal sections such as the core, the coolant and the steam generator. The main driving force for corrosion product transport in the PWR primary coolant comes from coolant temperature change throughout the system and a subsequent change in corrosion product solubility. As the coolant temperature changes around the PWR primary circuit, saturation status of the corrosion products in the coolant also changes such that under-saturation in steam generator and super-saturation in the core. CRUDTRAN code was evaluated by comparison with the results of the in-reactor loop tests simulating the PWR primary coolant system and PWR plant data. It showed that CRUDTRAN could predict variations of cobalt-58 and cobalt-60 radioactivity with time, plant cycle and coolant chemistry in the PWR plant. (author)

  19. Crack stability analysis of low alloy steel primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  20. Nonlinear dynamic analysis of nuclear reactor primary coolant systems

    International Nuclear Information System (INIS)

    Saffell, B.F. Jr.; Macek, R.W.; Thompson, T.R.; Lippert, R.F.

    1979-01-01

    The ADINA computer code is utilized to perform mechanical response analysis of pressurized reactor primary coolant systems subjected to postulated loss-of-coolant accident (LOCA) loadings. Specifically, three plant analyses are performed utilizing the geometric and material nonlinear analysis capabilities of ADINA. Each reactor system finite element model represents the reactor vessel and internals, piping, major components, and component supports in a single coupled model. Material and geometric nonlinear capabilities of the beam and truss elements are employed in the formulation of each finite element model. Loadings applied to each plant for LOCA dynamic analysis include steady-state pressure, dead weight, strain energy release, transient piping hydraulic forces, and reactor vessel cavity pressurization. Representative results are presented with some suggestions for consideration in future ADINA code development

  1. Assessment of effects of Fort St. Vrain HTGR primary coolant on Alloy 800. Final report

    International Nuclear Information System (INIS)

    Trester, P.W.; Johnson, W.R.; Simnad, M.T.; Burnette, R.D.; Roberts, D.I.

    1982-08-01

    A comprehensive review was conducted of primary helium coolant chemistry data, based on current and past operating histories of helium-cooled, high-temperature reactors (HTGRs), including the Fort St. Vrain (FSV) HTGR. A reference observed FSV reactor coolant environment was identified. Further, a slightly drier expected FSV coolant chemistry was predicted for reactor operation at 100% of full power. The expected environment was compared with helium test environments used in the US, United Kingdom, Germany, France, and Japan. Based on a comprehensive review and analysis of mechanical property data reported for Alloy 800 tested in controlled-impurity helium environments (and in air when appropriate for comparison), an assessment was made of the effect of FSV expected helium chemistry on material properties of alloy 800, with emphasis on design properties of the Alloy 800 material utilized in the FSV steam generators

  2. Technical meeting on 'Primary coolant pipe rupture event in liquid metal cooled fast reactors'. Working material

    International Nuclear Information System (INIS)

    2003-01-01

    In Liquid Metal cooled Fast Reactors (LMFR) or in accelerator driven sub-critical systems (ADS) with LMFR like sub-critical cores, the primary coolant pipes (PCP) connect the primary coolant pumps to the grid plate. A rupture in one of these pipes could cause significant loss of coolant flow to the core with severe consequences. In loop type reactors, all primary pipelines are provided with double envelopes and inter-space coolant leak monitoring systems that permit leak detection before break. Thus, the PCP rupture event can be placed in the beyond design basis event (BDBE) category. Such an arrangement is difficult to incorporate for pool type reactors, and hence it could be argued that the PCP rupture event needs to be analysed in detail as a design basis event (DBE, category 4 event). The primary coolant pipes are made of ductile austenitic stainless steel material and operate at temperatures of the cold pool and at comparatively low pressures. For such low stressed piping with negligible creep and embrittlement effects, it is of interest to discuss under what design provisions, for pool type reactors, the guillotine rupture of PCP could be placed in the BDBE category. The topical Technical Meeting (TM) on 'Primary Coolant Pipe Rupture Event in Liquid Metal Cooled Reactors' was called to enable the specialists to present the philosophy and analyses applied on this topic in the various Member States for different LMFRs. The scope of the Technical Meeting was to provide a global forum for information exchange on the philosophy applied in the various participating Member States and the analyses performed for different LMFRs with regard to the primary coolant pipe rupture event. More specifically, the objectives of the Technical Meeting were to review the safety philosophy for the PCP rupture event in pool type LMFR, to assess the structural reliability of the PCP and the probability of rupture under different conditions (with/without in-service inspection), to

  3. Calculation of coolant temperature sensitivity related to thermohydraulic parameters

    International Nuclear Information System (INIS)

    Silva, F.C. da; Andrade Lima, F.R. de

    1985-01-01

    It is verified the viability to apply the generalized Perturbation Theory (GPT) in the calculation of sensitivity for thermal-hydraulic problems. It was developed the TEMPERA code in FORTRAN-IV to transient calculations in the axial temperature distribution in a channel of PWR reactor and the associated importance function, as well as effects of variations of thermalhydraulic parameters in the coolant temperature. The results are compared with one which were obtained by direct calculation. (M.C.K.) [pt

  4. DETERMINATION OF THE 129I IN PRIMARY COOLANT OF PWR

    Directory of Open Access Journals (Sweden)

    KE CHON CHOI

    2013-02-01

    In this report, the effect of the boron content in a pressurized-water reactor primary coolant on the separation process of 129I was examined, as was the effect of 3H on the measurement of the activity of iodine. As a result, no influence of the boron content and of the simultaneous 3H presence was found with activity concentrations of 3H lower than 50 Bq/mL, and with a boron concentration of less than 2,000 μg/mL.

  5. First Study of Helium Gas Purification System as Primary Coolant of Co-Generation Reactor

    International Nuclear Information System (INIS)

    Piping Supriatna

    2009-01-01

    The technological progress of NPP Generation-I on 1950’s, Generation-II, Generation-III recently on going, and Generation-IV which will be implemented on next year 2025, concept of nuclear power technology implementation not only for generate electrical energy, but also for other application which called cogeneration reactor. Commonly the type of this reactor is High Temperature Reactor (HTR), which have other capabilities like Hydrogen production, desalination, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor (HTR) produce thermal output higher than commonly Nuclear Power Plant, and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this report has been done study for design concept of HTR primary coolant gas purification system, including methodology by sampling He gas from Primary Coolant and purification by using Physical Helium Splitting Membrane. The examination has been designed in physical simulator by using heater as reactor core. The result of study show that the of Primary Coolant Gas Purification System is enable to be implemented on cogeneration reactor. (author)

  6. Study on primary coolant system depressurization effect factor in pressurized water reactor

    International Nuclear Information System (INIS)

    Ji Duan; Cao Xuewu

    2006-01-01

    The progression of high-pressure core melting severe accident induced by very small break loss of coolant accident plus the loss of main feed water and auxiliary feed water failure is studied, and the entry condition and modes of primary cooling system depressurization during the severe accident are also estimated. The results show that the temperature below 650 degree C is preferable depressurization input temperature allowing recovery of core cooling, and the available and effective way to depressurize reactor cooling system and to arrest very small break loss of coolant accident sequences is activating pressurizer relief valves initially, then restoring the auxiliary feedwater and opening the steam generator relief valves. It can adequately reduce the primary pressure and keep the capacity loop of long-term core cooling. (authors)

  7. Numerical FEM Analyses of primary coolant system at NPP Temelin

    International Nuclear Information System (INIS)

    Junek, L.; Slovacek, M.; Ruzek, L.; Moulis, P.

    2003-01-01

    The main goal of this paper is to inform about the beginning and first steps of implementation of an aging management system at the Temelin NPP. The aging management system is important not only for achieving the current safety level but also for reaching operational reliability of a production unit equipment above the life time assumed by the original design, typically over 40 years. A method to locate the most prominent degradation regions is described. A global shell model of the primary coolant system including all loops and their components - reactor pressure vessel (RPV), steam generator (SG), main coolant pump (MCP), pressurizer, feed water and steam pipelines system is presented. The results of stress-strain analysis on the measured service parameters base are given. Validation of the results is very important and the method to compare the service measurement data with the numerical results is described. The global/local approach is mentioned and discussed. The effects of the complete global system on the individual components under monitoring are transformed into more accurate local spatial models. The local spatial models are used to analyze the gradual lifetime exhaustion of a facility during its service operation. Two spatial local models are presented, viz. feed water nozzle of SG and main coolant piping system T-brunch. The results of analysis of the local spatial models are processed by the neural network computing method, which is also described. The actual gradual damage of the material of the components under monitoring can be obtained based on the analyses performed and on the results from the neural network in combination with the knowledge of the real material characteristics. The procedures applied are included in the DIALIFE diagnostic system

  8. The impact of radiolytic yield on the calculated ECP in PWR primary coolant circuits

    International Nuclear Information System (INIS)

    Urquidi-Macdonald, Mirna; Pitt, Jonathan; Macdonald, Digby D.

    2007-01-01

    A code, PWR-ECP, comprising chemistry, radiolysis, and mixed potential models has been developed to calculate radiolytic species concentrations and the corrosion potential of structural components at closely spaced points around the primary coolant circuits of pressurized water reactors (PWRs). The pH(T) of the coolant is calculated at each point of the primary-loop using a chemistry model for the B(OH) 3 + LiOH system. Although the chemistry/radiolysis/mixed potential code has the ability to calculate the transient reactor response, only the reactor steady state condition (normal operation) is discussed in this paper. The radiolysis model is a modified version of the code previously developed by Macdonald and coworkers to model the radiochemistry and corrosion properties of boiling water reactor primary coolant circuits. In the present work, the PWR-ECP code is used to explore the sensitivity of the calculated electrochemical corrosion potential (ECP) to the set of radiolytic yield data adopted; in this case, one set had been developed from ambient temperature experiments and another set reported elevated temperatures data. The calculations show that the calculated ECP is sensitive to the adopted values for the radiolytic yields

  9. Refurbishment of the IEAR1 primary coolant system piping supports

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Mattar Neto, Miguel

    2015-01-01

    A partial replacement of the IEA-R1 piping system was concluded in 2014. This paper presents the study and the structural analysis of the IEA-R1 primary circuit piping supports, considering all the changes involved in the replacement. The IEA-R1 is a nuclear reactor for research purposes designed by Babcox-Willcox that is operated by IPEN since 1957. The reactor life management and modernization program is being conducted for the last two decades and already resulted in a series of changes, especially on the reactor coolant system. This set of components, divided in primary and secondary circuit, is responsible for the circulation of water into the core to remove heat. In the ageing management program that includes regular inspection, some degradation was observed in the primary piping system. As result, the renewing of the piping system was conducted in 2014. Moreover the poor condition of some original piping supports gave rise to the refurbishment of all piping supports. The aim of the present work is to review the design of the primary system piping supports taking into account the current conditions after the changes and refurbishment. (author)

  10. Graphite beds for coolant filtration at high temperature

    International Nuclear Information System (INIS)

    Heathcock, R.E.; Lacy, C.S.

    1978-01-01

    High temperature filtration will be provided for new Ontario Hydro CANDU heat transport systems. Filtration has been shown to effectively reduce the concentration of circulating corrosion products in our heat transport systems, hence, minimizing the processes of activity transport. This paper will present one option we have for this application; Deep Bed Granular Graphite Filters. The filter system is described by discussing pertinent aspects of its development programme. The compatibility of the filter and the heat transport coolant are demonstrated by results from loop tests, both out- and in-reactor, and by subsequent results from a large filter installation in the NPD NGS heat transport system. (author)

  11. Determination of temperature distributions in fast reactor core coolants

    International Nuclear Information System (INIS)

    Tillman, M.

    1975-04-01

    An analytical method of determination of a temperature distribution in the coolant medium in a fuel assembly of a liquid-metal-fast-breeder-reactor (LMFBR) is presented. The temperature field obtained is applied for a constant velocity (slug flow) fluid flowing, parallel to the fuel pins of a square and hexagonal array assembly. The coolant subchannels contain irregular boundaries. The geometry of the channel due to the rod adjacent to the wall (edge rod) differs from the geometry of the other channels. The governing energy equation is solved analytically, assuming series solutions for the Poisson and diffusion equations, and the total solution is superposed by the two. The boundary conditions are specified by symmetry considerations, assembly wall insulation and a continuity of the temperature field and heat fluxes. The initial condition is arbitrary. The method satisfies the boundary conditions on the irregular boundaries and the initial condition by a least squares technique. Computed results are presented for various geometrical forms, with ratio of rod pitch-to-diameter typical for LMFBR cores. These results are applicable for various fast-reactors, and thus the influence of the transient solution (which solves the diffusion equation) on the total depends on the core parameters. (author)

  12. LOFT transient thermal analysis for 10 inch primary coolant blowdown piping weld

    International Nuclear Information System (INIS)

    Howell, S.K.

    1978-01-01

    A flaw in a weld in the 10 inch primary coolant blowdown piping was discovered by LOFT personnel. As a result of this, a thermal analysis and fracture mechanics analysis was requested by LOFT personnel. The weld and pipe section were analyzed for a complete thermal cycle, heatup and Loss of Coolant Experiment (LOCE), using COUPLE/MOD2, a two-dimensional finite element heat conduction code. The finite element representation used in this analysis was generated by the Applied Mechanics Branch. The record of nodal temperatures for the entire transient was written on tape VSN=T9N054, and has been forwarded to the Applied Mechanics Branch for use in their mechanical analysis. Specific details and assumptions used in this analysis are found in appropriate sections of this report

  13. Analysis Of Primary Coolant Suction Side Pressure In The Delay Chamber Of The RSG-GAS

    International Nuclear Information System (INIS)

    Dibyo, Sukmanto

    2000-01-01

    Delay chamber is a tank to delay flow that located in the primary cooling suction side of RSG-GAS. A void occurred when operation reactor caused by too high the delta P at inlet suction pump. The condition may be avoided by using one line mode of the cooling flow. The analysis show that void volume in the delay chamber is occurred because the coolant negative pressure lowers the saturation pressure should be avoided though decreasing the delta P until about 0.1 bar at about 45 exp 0 C. Solution suggested are to use bypass flow from the spent fuel to the delay chamber. Coolant temperature can be also decreased by decreasing the power level of the reactor as well as improving the heat exchanger and cooling tower performances

  14. Filtering device for primary coolant circuits in BWR type reactors

    International Nuclear Information System (INIS)

    Tajima, Fumio; Yamamoto, Tetsuo.

    1985-01-01

    Purpose: To obtain a filtering device with a large filtering area and requiring less space. Constitution: A condensate inlet for introducing condensates to be filtered of primary coolant circuits, a filtrate exit, a backwash water exit and a bent tube are disposed to a container, and a plurality of hollow thread membrane modules are suspended in the container. The condensates are caused to flow through the condensate inlet, filtered through the hollow thread membrane and then discharged from the filtrate exit. When the filtering treatment is proceeded to some extent, since solid contents captured in the hollow thread membranes are accumulated, a differential pressure is produced between the condensate inlet and the filtrate exit. When the differential pressure reaches a predetermined value, the backwash is conducted to discharge the liquid cleaning wastes through the backwash exit. The bent tube disposed to the container body is used for water and air draining. The hollow thread membranes are formed with porous resin such as of polyethylene. (Kawakami, Y.)

  15. Primary coolant pipe rupture event in liquid metal cooled reactors. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2004-08-01

    In liquid-metal cooled fast reactors (LMFR) the primary coolant pipes (PCP) connect the primary coolant pumps to the grid plate. A rupture in one of these pipes could cause significant loss of coolant flow to the core with severe consequences. In loop type reactors, all primary pipelines are provided with double envelopes and inter-space coolant leak monitoring systems that permit leak detection before break. Thus, the PCP rupture event can be placed in the beyond design basis event (BDBE) category. Such an arrangement is difficult to incorporate for pool type reactors, and hence it could be argued that the PCP rupture event needs to be analysed in detail as a design basis event (DBE, category 4 event). However, the primary coolant pipes are made of ductile austenitic stainless steel material and operate at temperatures of the cold pool and at comparatively low pressures. For such low stressed piping with negligible creep and embrittlement effects, it is of interest to discuss under what design provisions, for pool type reactors, the guillotine rupture of PCP could be placed in the BDBE category. The topical Technical Meeting (TM) on Primary Coolant Pipe Rupture Event in Liquid Metal Cooled Reactors (Indira Gandhi Centre for Atomic Research, Kalpakkam, India, 13-17 January 2003) was called to enable the specialists to present the philosophy and analyses applied on this topic in the various Member States for different LMFRs. The scope of the technical meeting was to provide a global forum for information exchange on the philosophy applied in the various participating Member States and the analyses performed for different LMFRs with regard to the primary coolant pipe rupture event. More specifically, the objectives of the technical meeting were to review the safety philosophy for the PCP rupture event in pool type LMFR, to assess the structural reliability of the PCP and the probability of rupture under different conditions (with/without in-service inspection), to

  16. Experiments for simulating a great leak in the primary coolant circuit of a PWR type reactor

    International Nuclear Information System (INIS)

    Liebig, E.

    1977-01-01

    A loss of coolant accident is to be simulated on a high pressure test rig. The accident is initiated by an externally induced rupture of a pair of rupture-disks installed in a coolant ejection device. Several problems of simulating leaks in the primary coolant circuit of PWR type reactors are dealt with. The selection of appropriate rupture-disks for such experiments is described

  17. Influence of n,γ-field fluctuations on critical hydrogen concentration in the reactor primary coolant

    International Nuclear Information System (INIS)

    Arkhipov, O.; Kabakchi, S.

    2014-01-01

    One of the problems arising in operation of the NPP with reactors VVER/PWR are the consequences of the primary coolant radiolysis, namely, generation of the oxidizing particles intensifying the equipment corrosion rate. During operation of the reactor a decrease in concentration of oxidizing radiolysis products is provided with introduction of molecular hydrogen into the coolant. In this connection, the reliable estimation of Critical Hydrogen Concentration (CHC), sufficient for suppression of formation of oxidizing radiolysis products under specific in-pile conditions (reactor radiation dose rate, temperature, coolant chemical composition) is of practical interest. Unfortunately, the experimental data on CHC in-pile determination differ essentially from the values calculated. Critical hydrogen concentration is in the region of kinetic instability of radiation-chemical system. A slight change in hydrogen concentration leads to a sharp (by several orders) change in concentration of both short-lived (OH, HO 2 ) and stable (O 2 , H 2 O 2 ) oxidizing particles. In essence, when reaching the CHC, the radiation-chemical system changes over from one stable state to another. The paper deals with the results of the computer simulation of influence of short-term n,γ- field fluctuations on changing of the radiation-chemical system from the state with low concentration of oxidizing particles over to the state with their high concentrations. It is demonstrated that for the correct calculation of CHC in the primary coolant of VVER/PWR the non-uniformity of n,γ-field in the core shall be taken into account. (author)

  18. On line monitoring of temperatures of coolant channels by thermal imaging in a laboratory set-up fabricated for the detection of leakage of coolants

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S; Ghosh, J K [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.; Patel, R J [Bhabha Atomic Research Centre, Mumbai (India). Refuelling Technology Division

    1994-12-31

    Leakage from coolant channels in Pressurised Heavy Water Reactors (PHWR) increases the temperatures of the faulty channels. Measurement of temperatures of the coolant channels is, therefore, one way to detect the leaking channel. Thermal imaging technique offers a unique means for this detection providing a fast, non-contact, on-line measurement. An experiment was carried out for the detection of leakage of coolants through the seal plugs of the coolant channels in PHWR using an experimental setup under the simulated conditions of temperature and pressure of the coolant channels inside the reactor and using an infrared imaging system. The experimental details and the observations have been presented. 7 figs.

  19. On line monitoring of temperatures of coolant channels by thermal imaging in a laboratory set-up fabricated for the detection of leakage of coolants

    International Nuclear Information System (INIS)

    Mukherjee, S.; Ghosh, J.K.; Patel, R.J.

    1994-01-01

    Leakage from coolant channels in Pressurised Heavy Water Reactors (PHWR) increases the temperatures of the faulty channels. Measurement of temperatures of the coolant channels is, therefore, one way to detect the leaking channel. Thermal imaging technique offers a unique means for this detection providing a fast, non-contact, on-line measurement. An experiment was carried out for the detection of leakage of coolants through the seal plugs of the coolant channels in PHWR using an experimental setup under the simulated conditions of temperature and pressure of the coolant channels inside the reactor and using an infrared imaging system. The experimental details and the observations have been presented. 7 figs

  20. Effects of molten material temperatures and coolant temperatures on vapor explosion

    Institute of Scientific and Technical Information of China (English)

    LI Tianshu; YANG Yanhua; YUAN Minghao; HU Zhihua

    2007-01-01

    An observable experiment facility for low-temperature molten materials to be dropped into water was set up in this study to investigate the mechanism of the vapor explosion. The effect of the fuel and coolant interaction(FCI) on the vapor explosion during the severe accidents of a fission nuclear reactor has been studied. The experiment results showed that the molten material temperature has an important effect on the vapor explosion behavior and pressure. The increase of the coolant temperature would decrease the pressure of the vapor explosion.

  1. Feeding and purge systems of coolant primary circuit and coolant secondary circuit control of the I sup(123) target

    International Nuclear Information System (INIS)

    Almeida, G.L. de.

    1986-01-01

    The Radiation Protection Service of IEN (Brazilian-CNEN) detected three faults in sup(123)I target cooling system during operation process for producing sup(123)I: a) non hermetic vessel containing contaminated water from primary coolant circuit; possibility of increasing radioactivity in the vessel due to accumulation of contaminators in cooling water and; situation in region used for personnels to arrange and adjust equipments in nuclear physics area, to carried out maintenance of cyclotron and target coupling in irradiation room. The primary circuit was changed by secondary circuit for target coolant circulating through coil of tank, which receive weater from secondary circuit. This solution solved the three problems simultaneously. (M.C.K.)

  2. Effects of Coolant Temperature Changes on Reactivity for Various Coolants in a Liquid Salt Cooled Very High Temperature Reactor (LS-VHTR)

    International Nuclear Information System (INIS)

    Casino, William A. Jr.

    2006-01-01

    The purpose of this study is to perform an investigation into the relative merit of various salts and salt compounds being considered for use as coolants in the liquid salt cooled very high temperature reactor platform (LS-VHTR). Most of the non-nuclear properties necessary to evaluate these salts are known, but the neutronic characteristics important to reactor core design are still in need of a more extensive examination. This report provides a two-fold approach to further this investigation. First, a list of qualifying salts is assembled based upon acceptable non-nuclear properties. Second, the effect on system reactivity for a secondary system transient or an off-normal or accident condition is examined for each of these salt choices. The specific incident to be investigated is an increase in primary coolant temperature beyond normal operating parameters. In order to perform the relative merit comparison of each candidate salt, the System Temperature Coefficient of Reactivity is calculated for each candidate salt at various state points throughout the core burn history. (author)

  3. Application of liquid chromatography techniques to the measurement of soluble transition metals in PWR primary coolant

    International Nuclear Information System (INIS)

    Amey, M.D.H.; Brown, G.R.

    1987-01-01

    Two chromatographic techniques have been developed, and evaluated for the on-line analysis of soluble transition metals, particularly cobalt, in PWR primary coolant. Automatic operation and control, together with data processing and storage has been achieved by interfacing a Dionex ion chromatograph to a microprocessor control system. An absolute detection limit of 0.1 ng cobalt has been obtained which, with on-line sample preconcentration (100 ml), has enabled measurements to be made down to part-per-trillion levels (0.001 ppb). Application of the techniques to PWR coolant analysis was demonstrated by a programme of work on the Half Megawatt Loop at Winfrith. During this work some aspects of the behaviour of soluble metal species have been studied in both de-oxygenated and hydrogenated conditions. The effects of changes in coolant chemistry, operating temperature, and sample line flowrates on circulating impurity levels are reported, together with the dramatic effects observed when part of the circuit pipework was replaced with new stainless steel tubing. (author)

  4. Upgradation of design features of primary coolant pumps of Indian 220 MWe PHWR

    International Nuclear Information System (INIS)

    Sharma, S.S.; Mhetre, S.G.; Manna, M.M.

    1994-01-01

    Evolution in the design features of Primary Coolant Pump (PCP) had started in fifties for catering to stringent specification requirements of reactor coolant systems of larger capacity reactors of various kinds. Primary coolant pumps of PWR and PHWR are employed for circulating radioactive, pressurized hot water in a circuit consisting of reactor (heat source) and steam generator (heat sink). As primary coolant pump capacity decides the station capacity, larger capacity primary coolant pumps have been evolved. Since primary coolant pump pressure containing parts are part of Primary Heat Transport system envelope, the parts are designed, manufactured, inspected and tested in accordance with the applicable system guidelines. Flywheel is mounted on the motor shaft for increasing mass moment of inertia of pump motor rotor to meet the coast down requirements of reactor cooling system under Class-IV electrical power supply failure. Due to limited accessibility of the PCP (PCP installed in shut down accessible area), quick maintenance, condition monitoring, reliable shaft seal system/bearing system aspects have been of great concern to reactor owners and pump manufacturers. In this paper upgradation of design features of RAPS, MAPS and NAPS primary coolant pumps have been covered. (author). 4 figs., 1 tab

  5. Corrosion particles in the primary coolant of VVER-440 reactors

    International Nuclear Information System (INIS)

    Vajda, N.; Molnar, Z.; Macsik, Z.; Szeles, E.; Hargittai, P.; Csordas, A.; Pinter, T.; Pinter, T.

    2010-01-01

    Corrosion and activity build-up processes are of major concern in ageing and life-extension of nuclear power reactors. Researches to study the migration of radioactive corrosion particles have been initiated at Paks Nuclear Power Plant (NPP), Hungary in order to better understand the corrosion of the primary circuit surfaces, the transport and activation of the particles of corrosion origin and their deposition on in-core and out-of-core surfaces. Radioactive corrosion particles were collected from the primary coolant and the steam generator surfaces of the 4 reactor units and subjected to detailed microanalytical and radioanalytical investigations. Scanning electron microscopy and energy dispersive X-ray microanalysis (SEM-EDX) were used to study the morphology and the composition of the matrix elements in the particles and the deposited corrosion layers. Particles identified by SEM-EDX were re-located under optical microscope by means of a coordinate transformation algorithm and were separated with a micromanipulator for further studies. Activities of γ emitting radionuclides were determined by high resolution γ spectrometry, and those of β decaying isotopes were measured by liquid scintillation (LS) spectrometry after radiochemical processing. High sensitivity of the nuclear measuring techniques allowed us to determine the low activity concentrations of the long-lived radionuclides, i.e. 60 Co, 54 Mn, 63 Ni, 55 Fe in the individual particles. Finally, high resolution sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) was applied to determine the ultralow concentrations of Co, Fe, Ni in the same particles. Specific activities of 60 Co/Co, 54 Mn/Fe, 55 Fe/Fe and 63 Ni/Ni were derived from the measured activity and concentration data. Specific activities of the radioactive corrosion products reveal the history of activity buildup processes in the particle. Typically, Fe-Cr-Ni oxide particles formed as a result of corrosion of the steel

  6. A miniature inductive temperature sensor to monitor temperature noise in the coolant of an LMFBR

    International Nuclear Information System (INIS)

    Dean, S.A.; Sandham, C.W.

    1980-01-01

    A description is given of the design and performance of miniature inductive sensors developed to monitor fast temperature fluctuations in the sodium coolant above the core of a LMFBR. These instruments, designed to be installed within existing thermocouple containment thimbles, also provide a steady-state temperature indication for reactor control purposes. (author)

  7. Analysis of an Advanced Test Reactor Small-Break Loss-of-Coolant Accident with an Engineered Safety Feature to Automatically Trip the Primary Coolant Pumps

    International Nuclear Information System (INIS)

    Polkinghorne, Steven T.; Davis, Cliff B.; McCracken, Richard T.

    2000-01-01

    A new engineered safety feature that automatically trips the primary coolant pumps following a low-pressure reactor scram was recently installed in the Advanced Test Reactor (ATR). The purpose of this engineered safety feature is to prevent the ATR's surge tank, which contains compressed air, from emptying during a small-break loss-of-coolant accident (SBLOCA). If the surge tank were to empty, the air introduced into the primary coolant loop could potentially cause the performance of the primary and/or emergency coolant pumps to degrade, thereby reducing core thermal margins. Safety analysis performed with the RELAP5 thermal-hydraulic code and the SINDA thermal analyzer shows that adequate thermal margins are maintained during an SBLOCA with the new engineered safety feature installed. The analysis also shows that the surge tank will not empty during an SBLOCA even if one of the primary coolant pumps fails to trip

  8. Grain size control method for the nozzles of AP1000 primary coolant pipes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shenglong [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Sun, Yanhui [Collaborative Innovation Center of Steel Technology, University of Science & Technology Beijing, Beijing 100083 (China); Yang, Bin, E-mail: byang@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Collaborative Innovation Center of Steel Technology, University of Science & Technology Beijing, Beijing 100083 (China); Zhang, Mingxian [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China)

    2017-04-01

    Highlights: • Design a new forging technology for AP1000 primary coolant pipe. • Method combining FEM and scale-down experiments is adopted. • The grain size and distribution in simulation and experiment are consistent. • Get optimal forging parameters for production guiding. - Abstract: AP1000 primary coolant pipe is made of 316LN austenitic stainless steel. It is a large special-shaped pipe manufactured by integral forging technology. Owing to non-uniform temperature and deformation during forging, coarse grains often occur in the boss sections of the pipe especially in the nozzles’ parts. In the present study, a new forging technology was proposed to control the grain size. The finite element method was used to optimize the forging speed and friction coefficient, then the scale-down experiments were performed for comparison. The forging speed is suggested to be less than 20 mm/s, and effective lubricants should be used to decrease the friction coefficient. The errors of the grain size between the experiment and simulation are less than 20%.

  9. Grain size control method for the nozzles of AP1000 primary coolant pipes

    International Nuclear Information System (INIS)

    Wang, Shenglong; Sun, Yanhui; Yang, Bin; Zhang, Mingxian

    2017-01-01

    Highlights: • Design a new forging technology for AP1000 primary coolant pipe. • Method combining FEM and scale-down experiments is adopted. • The grain size and distribution in simulation and experiment are consistent. • Get optimal forging parameters for production guiding. - Abstract: AP1000 primary coolant pipe is made of 316LN austenitic stainless steel. It is a large special-shaped pipe manufactured by integral forging technology. Owing to non-uniform temperature and deformation during forging, coarse grains often occur in the boss sections of the pipe especially in the nozzles’ parts. In the present study, a new forging technology was proposed to control the grain size. The finite element method was used to optimize the forging speed and friction coefficient, then the scale-down experiments were performed for comparison. The forging speed is suggested to be less than 20 mm/s, and effective lubricants should be used to decrease the friction coefficient. The errors of the grain size between the experiment and simulation are less than 20%.

  10. On-line real time gamma analysis of primary coolant

    International Nuclear Information System (INIS)

    Kalechstein, W.; Kupca, S.; Lipsett, J.J.

    1985-10-01

    The evolution of failed fuel monitoring at CANDU power stations is briefly summarized and the design of the latest system for failed fuel detection at a multi-unit power station is described. At each reactor, the system employs a germanium spectrometer combined with a novel spectrum analyzer that simultaneously accumulates the gamma-ray spectrum of the coolant and provides the control room with the concentration of radioisotope activity in the coolant for the gaseous fission products Xe-133, Xe-135, Kr-88 and I-131 in real time and with statistical precision independent of count rate. A gross gamma monitor is included to provide independent information on the level of radioactivity in the coolant and extend the measurement range at very high count rates. A central computer system archives spectra received from all four spectrum analyzers and provides both the activity concentrations and the release rates of specified isotopes. Compared with previous systems the current design offers improvements in that the activity concentrations are updated much more frequently, improved tools are provided for long term surveillance of the heat transport system and the monitor is more reliable and less costly

  11. RETRAN analysis of inter-system LOCA within the primary coolant pump

    International Nuclear Information System (INIS)

    Gangadharan, A.; Pratt, G.F.

    1992-01-01

    One example of an inter-system loss of coolant accident is the failure of the tubing within the primary coolant pump (PCP) thermal barrier heat exchanger. Such a failure would result in the entry of primary coolant into the component cooling water (CCW) system. The primary coolant flowrate through the break would rapidly pressurize the CCW system when the relief valves are too small. The piping in the CCW system at Palisades has a low pressure rating. Failures in this system outside the containment boundary could lead to primary coolant release to the atmosphere. RETRAN-02 was used to perform a simulation of the break in the PCP integral heat exchanger. The model included a detailed nodalization of the Byron-Jackson primary coolant pump internals leading up to the CCW system relief valves. Preliminary studies show the need for increased relief capacity in the CCW system. A case was run using a larger relief valve. Critical flow in the system upstream of the relief valves maintains the pressures in those volumes above the CCW design pressure. The pressures downstream from the relief valves and outside containment will be at or below the design pressure. This paper presents the results of the transient analysis

  12. Improvements of primary coolant shutdown chemistry and reactor coolant system cleanup

    International Nuclear Information System (INIS)

    Gaudard, G.; Gilles, B.; Mesnage, F.; Cattant, F.

    2002-01-01

    In the framework of a radiation exposure management program entitled >, EDF aims at decreasing the mass dosimetry of nuclear power plants workers. So, the annual dose per unit, which has improved from 2.44 m.Sv in 1991 to 1.08 in 2000, should target 0.8 mSv in the year 2005 term in order to meet the results of the best nuclear operators. One of the guidelines for irradiation source term reduction is the optimization of operation parameters, including reactor coolant system (RCS) chemistry in operation, RCS shutdown chemistry and RCS cleanup improvement. This paper presents the EDF strategy for the shutdown and start up RCS chemistry optimization. All the shutdown modes have been reviewed and for each of them, the chemical specifications will be fine tuned. A survey of some US PWRs shutdown practices has been conducted for an acid and reducing shutdown chemistry implementation test at one EDF unit. This survey shows that deviating from the EPRI recommended practice for acid and reducing shutdown chemistry is possible and that critical path impact can be minimized. The paper also presents some investigations about soluble and insoluble species behavior and characterization; the study focuses here on 110m Ag, 122 Sb, 124 Sb and iodine contamination. Concerning RCS cleanup improvement, the paper presents two studies. The first one highlights some limited design modifications that are either underway or planned, for an increased flow rate during the most critical periods of the shutdown. The second one focuses on the strategy EDF envisions for filters and resins selection criteria. Matching the study on contaminants behavior with the study of filters and resins selection criteria should allow improving the cleanup efficiency. (authors)

  13. Conceptual design of primary coolant purification system using cylindrical membrane for nuclear energy system base on HTGR

    International Nuclear Information System (INIS)

    Piping Supriatna

    2011-01-01

    The recent progress of reactor technology design for next generation reactor will be implemented on cogeneration reactor, which the aim of reactor operation not only for generating electrical energy, but also for other application like desalination, industrial manufacturing process, hydrogen production, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor concept developed for generate energy effectively, efficiently and sustainable, which reserve of uranium and thorium nuclear fuel for cogeneration reactor is supply able for world energy demand until next thousand years. The cogeneration reactor produce temperature output higher than commonly Nuclear Power Plant (NPP), and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this research has been designed modeling and assessment of primary coolant gas purification system with purify and fill up helium gas continuously, by using Cylindrical Helium Splitting Membrane and helium gas inventory system. The result of flow rate helium assessment for the purification system is 0.844x10 -3 kg/sec, where helium flow rate of reactor primary coolant is 120 kg/sec. The result of study show that the Primary Coolant Gas Purification System is enable to be implemented on Cogeneration Reactor HTGR200C. (author)

  14. Thermal-hydraulic model of the primary coolant circuits for the full-scale training facility with WWER-1000

    International Nuclear Information System (INIS)

    Kroshilin, A.E.; Zhukavin, A.P.; Pryakhin, V.N.

    1992-01-01

    The mathematical model realized in the full-scale educational facility for NPP operator training is described. The RETACT computational complex providing real time process simulation for all regimes including the maximum credible accident is used for calculation of thermohydraulic parameters of the primary coolant circuits and steam generator under stationary and transient conditions. The two-velocity two-temperature model of one-dimensional steam-water flow containing uncondensed gases is realized in the program

  15. Primary coolant feed and bleed operating regions for the Midland Plant

    International Nuclear Information System (INIS)

    Tsai, M.S.

    1985-01-01

    Operating regions for primary coolant feed and bleed cooling are developed for the Midland Plant using core decay heat, the high-pressure injection (HPI) system capacity, and flow rate relief through the power-operated relief valve (PORV). This mode of cooling is used for accident scenarios in which the normal core cooling means of a nuclear power plant is lost because of loss of water inventory in the steam generators. The HPI flow is based on the capacities of one and two pumps. Saturated steam, saturated water, and subcooled water are considered to be possible states of the fluid being relieved through the PORV. In estimating the PORV relief rate, flow equations are derived from the Electric Power Research Institute test data obtained from the same model and size valve that is used in the Midland Plant. For easy reference by operators, the operating region is displayed on a plane of reactor coolant system pressure and temperature. The technique developed for the Midland Plant provides a convenient method for examining the feed and bleed cooling capability for a nuclear power plant that employs a pressurized water reactor system

  16. Moment inertia pump analysis used in the Rsg-Gas primary coolant loop under lofa condition

    International Nuclear Information System (INIS)

    Sudarmono; Setiyanto; Dhandhang, P.; Dibyo, S.; Royadi

    1998-01-01

    The moment inertia of primary cooling system analysis under LOFA condition has been done. It is potentially one of limiting design constraints of the RSG-GAS safety because the coolant flow rate reduces very rapidly under LOFA condition due to the low inertia circulation pumps. If a loss of flow accident occurs, the mass flow will decrease rapidly and the heat transfer coefficient between cladding and coolant will also decreases. As a consequence the fuel and cladding temperature will increase. The whole core was represented by the 1/4 sector and divided into 19 subchannels and 40 axial nodes. In the present study, moment inertia of pump analysis for RSG-GAS reactor was performed with COBRA-IV-I subchannel code. As the DNB correlation, W-3 Correlation was selected for base case. The flow and power transients under pump trip accident were determined from experiments. The result above compared with the design data are 75 kg m 2 and 81 Kg m 2 respectively. The result shows that the RSG-GAS requires the inertia more than 75 kg m 2

  17. TRANSENERGY S: computer codes for coolant temperature prediction in LMFBR cores during transient events

    International Nuclear Information System (INIS)

    Glazer, S.; Todreas, N.; Rohsenow, W.; Sonin, A.

    1981-02-01

    This document is intended as a user/programmer manual for the TRANSENERGY-S computer code. The code represents an extension of the steady state ENERGY model, originally developed by E. Khan, to predict coolant and fuel pin temperatures in a single LMFBR core assembly during transient events. Effects which may be modelled in the analysis include temporal variation in gamma heating in the coolant and duct wall, rod power production, coolant inlet temperature, coolant flow rate, and thermal boundary conditions around the single assembly. Numerical formulations of energy equations in the fuel and coolant are presented, and the solution schemes and stability criteria are discussed. A detailed description of the input deck preparation is presented, as well as code logic flowcharts, and a complete program listing. TRANSENERGY-S code predictions are compared with those of two different versions of COBRA, and partial results of a 61 pin bundle test case are presented

  18. Behaviour of fission products in PWR primary coolant and defected fuel rods evaluation

    International Nuclear Information System (INIS)

    Bourgeois, P.; Stora, J.P.

    1979-01-01

    The activity surveillance of the PWR primary coolant by γ spectometry gives some informations on fuel failures. The activity of different nuclides e.g. Xenons, Kryptons, Iodines, can be correlated with the number of the defected fuel rods. Therefore the precharacterization with eventually a prelocalization of the related fuel assemblies direct the sipping-test and allows a saving of time during refueling. A model is proposed to calculate the number of the defected rods from the activity measurements of the primary coolant. A semi-empirical model of the release of the fission products has been built from the activity measurements of the primary coolant in a 900 MWe PWR. This model allows to calculate the number of the defected rods and also a typical parameter of the mean damage. Fission product release is described by three stages: release from uranium dioxide, transport across the gas gap and behaviour in the primary coolant. The model of release from the oxide considers a diffusion process in the grains with trapping. The release then occurs either directly to free surfaces or with a delay due to a transit into closed porosity of the oxide. The amount released is the same for iodine and rare gas. With the gas gap transit is associated a transport time and a probability of trapping for the iodines. In the primary coolant the purification and the radioactive decay are considered. (orig.)

  19. Effect of spacer grid mixing vanes on coolant outlet temperature distribution

    Energy Technology Data Exchange (ETDEWEB)

    Raemae, Tommi; Lahtinen, Tuukka; Brandt, Tellervo; Toppila, Timo [Fortum Power and Heat, Fortum (Finland). Nuclear Competence Center

    2012-08-15

    In Loviisa VVER-440-type NPP the coolant outlet temperature of the hot subchannel is constantly monitored during the operation. According to the authority requirement the maximum subchannel outlet temperature must not exceed the saturation temperature. Coolant temperature distribution inside the fuel assembly is affected by the efficiency of the coolant mixing. In order to enhance the coolant mixing the fuel manufacturer is introducing the additional mixing vanes on the fuel bundle spacer grids. In the paper the effect of the different mixing vane modifications is studied with computational fluid dynamics (CFD) simulation. Goal of the modelling is to find vane modifications with which sufficient mixing is reached with acceptable increase in the spacer grid pressure loss. The results of the studies are discussed in the paper. (orig.)

  20. HTGR-GT primary coolant transient resulting from postulated turbine deblading

    International Nuclear Information System (INIS)

    Cadwallader, G.J.; Deremer, R.K.

    1980-11-01

    The turbomachine is located within the primary coolant system of a nuclear closed cycle gas turbine plant (HTGR-GT). The deblading of the turbine can cause a rapid pressure equilibration transient that generates significant loads on other components in the system. Prediction of and design for this transient are important aspects of assuring the safety of the HTGR-GT. This paper describes the adaptation and use of the RATSAM program to analyze the rapid fluid transient throughout the primary coolant system during a spectrum of turbine deblading events. Included are discussions of (1) specific modifications and improvements to the basic RATSAM program, which is also briefly described; (2) typical results showing the expansion wave moving upstream from the debladed turbine through the primary coolant system; and (3) the effect on the transient results of different plenum volumes, flow resistances, times to deblade, and geometries that can choke the flow

  1. Integrated equipment for increasing and maintaining coolant pressure in primary circuit of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sykora, D.

    1986-01-01

    An open heat pump circuit is claimed connected to the primary circuit. The pump circuit consists of a steam pressurizer with a built-in steam distributor, a compressor, an expander, a reducing valve, an auxiliary pump, and of water and steam pipes. The operation is described and a block diagram is shown of integrated equipment for increasing and maintaining pressure in the nuclear power plant primary circuit. The appropriate entropy diagram is also shown. The advantage of the open pump circuit consists in reducing the electric power input and electric power consumption for the steam pressurizers, removing entropy loss in heat transfer with high temperature gradient, in the possibility of inserting, between the expander and the auxiliary pump, a primary circuit coolant treatment station, in simplified design and manufacture of the high-pressure steam pressurizer vessel, reducing the weight of the steam pressurizer by changing its shape from cylindrical to spherical, increasing the rate of pressure growth in the primary circuit. (E.S.)

  2. Using the coolant temperature noise for measuring the flow rate in the RBMK technological channels

    International Nuclear Information System (INIS)

    Selivanov, V.M.; Karlov, N.P.; Martynov, A.D.; Prostyakov, V.V.; Lysikov, B.V.; Kuznetsov, B.A.; Pallagi, D.; Khorani, Sh.; Khargitai, T.; Tezher, Sh.

    1983-01-01

    The problems are considered connected with the possibility of using thermometric correlation method to measure the coolant flow rate in the RBMK reactor technological channels. The main attention is paid to the study of the physical nature of the coolant temperature pulsations and to estimation of the effect of parameters of the primary thermaelectrical converter (TEC) on the results of measurements. In the process of reactor inspections made using the thermometric correlation flowmeter of a special design, the temperature noise distribution in the points of flow rate measurement is studied, the noise intensity and physical nature are determined, as well as the effect of different TEC parameters (TEC inertia and base distance between them) on the measurement accuracy. On the basis of the analysis of the effect on the results of the TEC thermal inertia measured value divergence, tausub(α) and transport time, tau sub(T), a conclusion is made on the necessity of choosing the base distance between TEC with tausub(T)>tausub(d)

  3. Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.F.

    2006-03-24

    The Advanced High-Temperature Reactor (AHTR) is a novel reactor design that utilizes the graphite-matrix high-temperature fuel of helium-cooled reactors, but provides cooling with a high-temperature fluoride salt. For applications at temperatures greater than 900 C the AHTR is also referred to as a Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR). This report provides an assessment of candidate salts proposed as the primary coolant for the AHTR based upon a review of physical properties, nuclear properties, and chemical factors. The physical properties most relevant for coolant service were reviewed. Key chemical factors that influence material compatibility were also analyzed for the purpose of screening salt candidates. Some simple screening factors related to the nuclear properties of salts were also developed. The moderating ratio and neutron-absorption cross-section were compiled for each salt. The short-lived activation products, long-lived transmutation activity, and reactivity coefficients associated with various salt candidates were estimated using a computational model. Table A presents a summary of the properties of the candidate coolant salts. Certain factors in this table, such as melting point, vapor pressure, and nuclear properties, can be viewed as stand-alone parameters for screening candidates. Heat-transfer properties are considered as a group in Sect. 3 in order to evaluate the combined effects of various factors. In the course of this review, it became apparent that the state of the properties database was strong in some areas and weak in others. A qualitative map of the state of the database and predictive capabilities is given in Table B. It is apparent that the property of thermal conductivity has the greatest uncertainty and is the most difficult to measure. The database, with respect to heat capacity, can be improved with modern instruments and modest effort. In general, ''lighter'' (low-Z) salts tend to

  4. Exhaust temperature analysis of four stroke diesel engine by using MWCNT/Water nanofluids as coolant

    Science.gov (United States)

    Muruganandam, M.; Mukesh Kumar, P. C.

    2017-10-01

    There has been a continuous improvement in designing of cooling system and in quality of internal combustion engine coolants. The liquid engine coolant used in early days faced many difficulties such as low boiling, freezing points and inherently poor thermal conductivity. Moreover, the conventional coolants have reached their limitations of heat dissipating capacity. New heat transfer fluids have been developed and named as nanofluids to try to replace traditional coolants. Moreover, many works are going on the application of nanofluids to avail the benefits of them. In this experimental investigation, 0.1, 0.3 and 0.5% volume concentrations of multi walled carbon nanotube (MWCNT)/water nanofluids have been prepared by two step method with surfactant and is used as a coolant in four stroke single cylinder diesel engine to assess the exhaust temperature of the engine. The nanofluid prepared is characterized with scanning electron microscope (SEM) to confirm uniform dispersion and stability of nanotube with zeta potential analyzer. Experimental tests are performed by various mass flow rate such as 270 300 330 LPH (litre per hour) of coolant nanofluids and by changing the load in the range of 0 to 2000 W and by keeping the engine speed constant. It is found that the exhaust temperature decreases by 10-20% when compared to water as coolant at the same condition.

  5. Coolant and ambient temperature control for chillerless liquid cooled data centers

    Science.gov (United States)

    Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.

    2016-02-02

    Cooling control methods include measuring a temperature of air provided to a plurality of nodes by an air-to-liquid heat exchanger, measuring a temperature of at least one component of the plurality of nodes and finding a maximum component temperature across all such nodes, comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold, and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the plurality of nodes based on the comparisons.

  6. On natural circulation in High Temperature Gas-Cooled Reactors and pebble bed reactors for different flow regimes and various coolant gases

    International Nuclear Information System (INIS)

    Melesed'Hospital, G.

    1983-01-01

    The use of CO 2 or N 2 (heavy gas) instead of helium during natural circulation leads to improved performance in both High Temperature Gas-Cooled Reactors (HTGR) and in Pebble Bed Reactors (PBR). For instance, the coolant temperature rise corresponding to a coolant pressure level and a rate of afterheat removal could be only 18% with CO 2 as compared to He, for laminar flow in HTGR; this value would be 40% in PBR. There is less difference between HTGR and PBR for turbulent flows; CO 2 is found to be always better than N 2 . These types of results derived from relationships between coolant properties, coolant flow, temperature rise, pressure, afterheat levels and core geometry, are obtained for HTGR and PBR for various flow regimes, both within the core and in the primary loop

  7. Peaking cladding temperature and break equivalent size of intermediate break loss of coolant accident

    International Nuclear Information System (INIS)

    Luo Bangqi

    2012-01-01

    The analysis results of intermediate break loss of coolant accident for the nuclear power plant of million kw level showed to be as following: (1) At the begin of life, the break occur simultaneity reactor shutdown with L(X)P. it's equivalent break size and peaking cladding temperature is respectively 20 cm and 849℃. (2) At the begin of life, the break occur simultaneity reactor shutdown without loop. the reactor coolant pumps will be stop after reactor shutdown 10 minutes, it's equivalent break size and peaking cladding temperature is respectively 10.5 cm and 921℃. (3) At the bur up of 31 GWd/t(EOC1). the break occur simultaneity reactor shutdown without loop, the reactor coolant pumps will be stop after reactor shutdown 20 minutes, it's equivalent break size and peaking cladding temperature is respectively 8 cm and 1145℃. The above analysis results showed that the peaking cladding temperature of intermediate break loss of coolant accident is not only related with the break equivalent size and core bur up, and is closely related with the stop time of coolant pumps because the coolant pumps would drive the coolant from safety system to produce the seal loop in break loop and affect the core coolant flow, results in the fuel cladding temperature increasing or damaging. Therefore, the break spectrum, burn up spectrum, the stop time of coolant pumps and operator action time will need to detail analysis and provide appropriate operating procedure, otherwise the peaking cladding temperature will exceed 1204℃ and threaten the safety of the reactor core when the intermediate break loss of coolant accident occur in some break equivalent size, burn up, stop pumps time and operator action not appropriate. The pressurizer pressure low signal simultaneity containment pressure higher signal were used as the operator manual close the signal of reactor coolant pumps after reactor shutdown of 20 minutes. have successful solved the operator intervention time from 10 minutes

  8. Analysis of containment pressure and temperature changes following loss of coolant accident (LOCA)

    International Nuclear Information System (INIS)

    Nguyen Van Thai; Kieu Ngoc Dung

    2015-01-01

    This paper present a preliminary thermal-hydraulics analysis of AP1000 containment following loss of coolant accident events such as double-end cold line break (DECLB) or main steam line break (MSLB) using MELCOR code. A break of this type will produce a rapid depressurization of the reactor pressure vessel (primary system) and release initially high pressure water into the containment followed by a much smaller release of highly superheated steam. The high pressure liquid water will flash and rapidly pressurize the containment building. The performance of passive containment cooling system for steam removal by condensation on large steel containment structure is a major contributing process, controlling the pressure and temperature maximum reached during the accident event. The results are analyzed, discussed and compared with the similar work done by Sandia National Laboratories. (author)

  9. Investigation of chloride-release of nuclear grade resin in PWR primary system coolant

    International Nuclear Information System (INIS)

    Cao Xiaoning; Li Yunde; Li Jinghong; Lin Fangliang

    1997-01-01

    A new preparation technique is developed for making the low-chloride nuclear-grade resin by commercial resin. The chloride remained in nuclear grade resin may release to PWR primary coolant. The amount of released chloride is depended on the concentration of boron, lithium, other anion impurities, and remained chloride concentration in resin

  10. New cooling system of the FRG-1 two barrier system of the primary coolant cycle

    International Nuclear Information System (INIS)

    Knop, W.; Schreiner, P.

    2003-01-01

    The GKSS research center operates the swimming pool reactor FRG-1 with a thermal power of 5 MW as national neutron source for neutron scattering experiments and sample irradiation as well. Before changing the primary coolant cycle consisted of the reactor core and the closed piping including pumps, heat exchanger and delay tank. The closed cooling circuit was located underneath the reactor pool, in the so-called radioactive cellar. This piping system served secondary coolant system. Due to the location of the primary coolant cycle below the operation pool a postulated 2-F line break and simultaneous failure of the pool slide gate valve could lead to a falling dry of the total reactor core. the new primary coolant system was built in the beginning 2002 in a partitioned cell all within the radioactive cellar, so that the reactor core remains with water with the assumed incident. Due to the new two barrier-inclusion of the primary circuit only the melting of two fuel plates (from total 252 fuel plates) has to be taken into account. This measure and the core compactness in 2000 with a neutron flux gain of a factor of 2 makes the FRG-1 ready for the next 15 years of reactor operation. (author)

  11. Decontamination between dismantling of the Rapsodie primary coolant circuit

    International Nuclear Information System (INIS)

    Costes, J.R.; Gauchon, J.P.; Antoine, P.

    1991-01-01

    The large-scale decontamination of FBR sodium loops is a novel task, as only a limited number of laboratory-scale results are available to date. The principal objective of this work is to develop a suitable decontamination procedure for application to the primary loops of the RAPSODIE fast breeder reactor as part of decommissionning to Stage 2

  12. Deposition and incorporation of corrosion product to primary coolant suppressing method

    International Nuclear Information System (INIS)

    Tsuzuki, Yasuo; Hasegawa, Naoyoshi; Fujioka, Tsunaaki.

    1992-01-01

    In a PWR type nuclear power plant, the concentration of dissolved nitrogen in primary coolants is increased by controlling the nitrogen partial pressure in a volume controlling tank gas phase portion or addition of water in a primary system water supply tank containing dissolved nitrogen to a primary system. Then ammonium is formed by a reaction with hydrogen dissolved in the primary coolants in the field of radiation rays, to control the concentration of ammonium in the coolants within a range from 0.5 to 3.5 ppm, and operate the power plant. As a result, deposition and incorporation of corrosion products to the structural materials of the primary system equipments during plant operation (pH 6.8 to 8.0) are suppressed. In other words, deposition of particulate corrosion products on the surface of fuel cladding tubes and the inner surface of pipelines in the primary system main equipments is prevented and incorporation of ionic radioactive corrosion products to the oxide membranes on the inner surface of the pipelines of the primary system main equipments is suppressed, to greatly reduce the radiation dose rate of the primary system pipelines. Thus, operator's radiation exposure can be decreased upon shut down of the plant. (N.H.)

  13. Correlation of cylinder-head temperatures and coolant heat rejections of a multicylinder, liquid-cooled engine of 1710-cubic-inch displacement

    Science.gov (United States)

    Lundin, Bruce T; Povolny, John H; Chelko, Louis J

    1949-01-01

    Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed.

  14. Real-time reactor coolant system pressure/temperature limit system

    International Nuclear Information System (INIS)

    Newton, D.G.; Schemmel, R.R.; Van Scooter, W.E. Jr.

    1991-01-01

    This patent describes an system, used in controlling the operating of a nuclear reactor coolant system, which automatically calculates and displays allowable reactor coolant system pressure/temperature limits within the nuclear reactor coolant system based upon real-time inputs. It comprises: means for producing signals representative of real-time operating parameters of the nuclear reactor cooling system; means for developing pressure and temperature limits relating the real-time operating parameters of the nuclear reactor coolant system, for normal and emergency operation thereof; means for processing the signals representative of real-time operating parameters of the nuclear reactor coolant system to perform calculations of a best estimate of signals, check manual inputs against permissible valves and test data acquisition hardware for validity and over/under range; and means for comparing the representative signals with limits for the real-time operating parameters to produce a signal for a real-time display of the pressure and temperature limits and of the real-time operating parameters use an operator in controlling the operation of the nuclear reactor coolant system

  15. Helium impurities in a PNP-primary coolant circuit

    International Nuclear Information System (INIS)

    Reif, M.

    1981-01-01

    The concentration of impurities to be expected have been defined in consideration of recent findings concerning the rates of infiltration and formation and the reaction mechanisms of the impurity components in the circuit. The data obtained correspond with the requirements on the metallic high-temperature components as well as with the requirements of limited graphite corrosion. (DG) [de

  16. Transient Temperature Distribution in a Reactor Core with Cylindrical Fuel Rods and Compressible Coolant

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, H

    1968-04-15

    Applying linearization and Laplace transformation the transient temperature distribution and weighted temperatures in fuel, canning and coolant are calculated analytically in two-dimensional cylindrical geometry for constant material properties in fuel and canning. The model to be presented includes previous models as special cases and has the following novel features: compressibility of the coolant is accounted for. The material properties of the coolant are variable. All quantities determining the temperature field are taken into account. It is shown that the solution for fuel and canning temperature may be given by the aid of 4 basic transfer functions depending on only two variables. These functions are calculated for all relevant rod geometries and material constants. The integrals involved in transfer functions determining coolant temperatures are solved for the most part generally by application of coordinate and Laplace transformation. The model was originally developed for use in steam cooled fast reactor analysis where the coolant temperature rise and compressibility are considerable. It may be applied to other fast or thermal systems after suitable simplifications.

  17. Evaluation of primary coolant pH operation methods for the domestic PWRs

    International Nuclear Information System (INIS)

    Paek, Seung Woo; Na, Jung Won; Kim, Yong Eak; Bae, Jae Heum

    1992-01-01

    Radioactive nuclides deposited on out-of-core surface after the radiation in the core by the transport of corrosion products (CRUD) through the primary coolant system in PWR which is the major plant type in Korea, are leading sources of radiation exposure to plant maintenance personnel. Thus, the optimal chemistry operation method is required for the reduction of radiation exposure by the corrosion products. This study analysed the actual water chemistry operation data of four operating domestic PWRs. And in order to evaluate the coolant chemistry operation data, a computer code which can calculate the activity buildup in the various chemistry conditions of PWR coolant was employed. Through the analysis of comparison between the activity buildup of actual water chemistry operation mode and that of assumed Elevated Li operation mode calculated by the computer code, it was found that the out-of-core radioactivity can be reduced by diminishing the deposition of corrosion products on the core in case that the Elevated Li operation mode is applied to the coolant chemistry operation of PWR. And the higher coolant pH operation was shown to have the advantage of the reduction of out-of-core activity buildup if the integrity of system structural materials and fuel cladding is guaranteed. (Author)

  18. Reactor primary coolant system pipe rupture study. Progress report No. 33, January--June 1975

    International Nuclear Information System (INIS)

    1975-10-01

    The pipe rupture study is designed to extend the understanding of failure-causing mechanisms and to provide improved capability for evaluating reactor piping systems to minimize the probability of failures. Following a detailed review to determine the effort most needed to improve nuclear system piping (Phase 1), analytical and experimental efforts (Phase 2) were started in 1965. This progress report summarizes the recent accomplishments of a broad program in (a) basic fatigue crack growth rate studies focused on LWR primary piping materials in a simulated BWR primary coolant environment, (b) at-reactor tests of the effect of primary coolant environment on the fatigue behavior of piping steels, (c) studies directed at quantifying weld sensitization in Type 304 stainless steel, (d) support studies to characterize the electrochemical potential behavior of a typical BWR primary water environment and (e) special tests related to simulation of fracture surfaces characteristic of IGSCC field failures

  19. Primary coolant pipe rupture study AT(49-24)-0202

    International Nuclear Information System (INIS)

    Hale, D.A.; Clarke, W.L. Jr.

    1977-01-01

    Fatigue crack growth rate tests were conducted on 304 stainless steel and 516 carbon steel in a simulated BWR primary water environment. A study was carried out to determine the feasibility of measuring sensitization in type 304 SS by use of an Electrochemical Potentiokinetic Reactivation (EPR) technique, develop correlations between degree of sensitization (as measured electrochemically) and the intergranular stress corrosion cracking (IGSCC) resistance of type 304 SS, and provide technical data for evaluating the degree of sensitization and IGSCC susceptibility of welded components. 27 figures, 8 tables

  20. Consideration of hot channel factors in design for providing operating margins on coolant channel outlet temperature

    International Nuclear Information System (INIS)

    Sharma, V.K.; Surendar, C.; Bapat, C.N.

    1994-01-01

    The Indian Pressurized Heavy Water Reactors (IPHWR) are horizontal pressure tube reactors using natural uranium oxide fuel in the form of short (495 mm) clusters. The fuel clusters in the Zr-Nb pressure tubes are cooled by high pressure, high temperature and subcooled circulating heavy water. Coolant flow distribution to individual channels is designed to match the power distribution so as to obtain uniform coolant outlet temperature. However, during operation, the coolant outlet temperature in individual channels deviate from their nominal value due to: tolerances in process design; effects of grid frequency on the pump speed; deviation in channel powers from the nominal values due to on-power fuelling and movement of reactivity devices, and so on. Thus an operating margin, between the highest permissible and nominal coolant outlet temperatures, is required taking into account various hot channel factors that contribute to higher coolant outlet temperatures. The paper discusses the methodology adopted to assess various hot channel factors which would provide optimum operating margins while ensuring sub-cooling. (author)

  1. Simplified model of a PWR primary coolant circuit

    International Nuclear Information System (INIS)

    Souza, A.L. de; Faya, A.J.G.

    1988-01-01

    The computer program RENUR was developed to perform a very simplified simulation of a typical PWR primary circuit. The program has mathematical models for the thermal-hydraulics of the reactor core and the pressurizer, the rest of the circuit being treated as a single volume. Heat conduction in the fuel rod is analysed by a nodal model. Average and hot channels are treated so that the bulk response of the core and DNBR can be evaluated. A Homogenenous model is employed in the pressurizer. Results are presented for a steady-state situation as well as for a loss of load transient. Agreement with the results of more elaborate computer codes is good with substantial reduction in computer costs. (author) [pt

  2. Validation of Computational Fluid Dynamics Calculation Using Rossendorf Coolant Mixing Model Flow Measurements in Primary Loop of Coolant in a Pressurized Water Reactor Model

    Directory of Open Access Journals (Sweden)

    Istvan Farkas

    2016-08-01

    Full Text Available The aim of this work is to simulate the thermohydraulic consequences of a main steam line break and to compare the obtained results with Rossendorf Coolant Mixing Model (ROCOM 1.1 experimental results. The objective is to utilize data from steady-state mixing experiments and computational fluid dynamics (CFD calculations to determine the flow distribution and the effect of thermal mixing phenomena in the primary loops for the improvement of normal operation conditions and structural integrity assessment of pressurized water reactors. The numerical model of ROCOM was developed using the FLUENT code. The positions of the inlet and outlet boundary conditions and the distribution of detailed velocity/turbulence parameters were determined by preliminary calculations. The temperature fields of transient calculation were averaged in time and compared with time-averaged experimental data. The perforated barrel under the core inlet homogenizes the flow, and therefore, a uniform temperature distribution is formed in the pressure vessel bottom. The calculated and measured values of lowest temperature were equal. The inlet temperature is an essential parameter for safety assessment. The calculation predicts precisely the experimental results at the core inlet central region. CFD results showed a good agreement (both qualitatively and quantitatively with experimental results.

  3. Research on coolant radiochemistry

    International Nuclear Information System (INIS)

    Yeon, Jei Won; Kim, W. H.; Park, Y. J.; Im, J. K.; Jung, Y. J.; Jee, K. Y.; Choi, K. C.

    2004-04-01

    The final objective of this study is to develop the technology on the reduction of radioactive material formed in reactor coolant circuit. The contents of this study are composed of the simulation of primary cooling system, chemistry measurement technology in the high-temperature high-pressure environments, and coolant chemistry control technology. The main results are as follows; High-temperature and high-pressure loop system was designed and fabricated, which is to inducing CRUD growth condition on the surface of cladding. The high-temperature pH measurement system was established with YSZ sensing electrode and Ag/AgCl reference electrode. The performance of pH electrode was confirmed in the temperature range 200∼280 .deg. C. Coolant chemistry control technologies such as the neutron irradiation technique of boric acid solution, the evaluation on high-temperature electrochemical behavior of coolant, and the measurement of physicochemical properties of micro-particles were developed. The results of this study can be useful for the understanding of chemical phenomena occurred in reactor coolant and for the study on the reduction of radioactive material in primary coolant, which will be carried out in the next research stage

  4. Study on B-10 consumption of PWR primary coolant during normal operation

    International Nuclear Information System (INIS)

    Liang, C.H.

    1994-01-01

    B-10 consumption under PWR primary coolant conditions has been analyzed. The result indicates its time-dependent change reacting with neutron in the normal operation. In this work, neutron energy assumed to be 4 eV; thermal neutron flux is in the range of 3 x 10 13 to 3 x 10 14 n/sec - cm 2 and the time of cycling of the primary coolant through the RCS is 8 sec. and its retention time in the core region is about 1 sec. Under this condition investigated, B-10 consumption is less than 5% at 3 x 10 13 n/sec - cm 2 thermal neutron flux, and closes to 27% at 3 x 10 14 n/sec - cm 2 by calculation at the 16th month of continuous operation. The effect of B-10 consumption on PWR primary water chemistry is also investigated. (author). 1 fig., 2 tabs., 4 refs

  5. Characterization of primary coolant purification system samples for assay of spent ion exchanger radionuclide inventor

    International Nuclear Information System (INIS)

    Sajin Prasad, S.; Pant, Amar; Sharma, Ranjit; Pal, Sanjit

    2018-01-01

    The primary coolant system water of a research reactor contains various fission and activation products and the water is circulated continuously through ion exchange resin cartridges, to reduce the radioactive ionic impurity present in it. The coolant purification system comprises of an ion exchange cooler, two micro filters, and a battery of six ion exchanger beds, associated valves, piping and instrumentation (Heavy water System Operating manual, 2014). The spent cartridge is finally disposed off as active solid waste which contains predominantly long lived fission and activation products. The heavy water coolant is also used to cool the structural assemblies after passing through primary heat exchanger and a metallic strainer, which accumulates the fission and activation products. When there is a reduction of coolant flow through these strainers, they are removed for cleaning and decontamination. This paper describes the characterization of ion exchange resin samples and liquid effluent generated during ultra sonic decontamination of strainer. The results obtained can be used as a methodology for the assay of the spent ion exchanger cartridges radionuclide inventory, during its disposal

  6. New mathematical method for the solution of gas-gas equilibria with special application to HTGR primary-coolant environments

    International Nuclear Information System (INIS)

    Bongartz, K.

    1983-07-01

    A new mathematical method and corresponding computer program have been developed that provide a general method for the numerical solution of an equilibrium problem involving the chemical interactions of gaseous species. The method and computer code were developed to calculate the equilibrium concentrations of impurity gases, such as CO, CO 2 , H 2 , H 2 O, CH 4 , and O 2 , which may be approached as the result of gaseous chemical reactions occurring within the hot primary coolant helium of a high-temperature gas-cooled reactor (HTGR). The method, however, can be applied to any gas mixture

  7. Analysis of a water-coolant leak into a very high-temperature vitrification chamber

    International Nuclear Information System (INIS)

    Felicione, F. S.

    1998-01-01

    A coolant-leakage incident occurred during non-radioactive operation of the Plasma Hearth Process waste-vitrification development system at Argonne National Laboratory when a stray electric arc ruptured az water-cooling jacket. Rapid evaporation of the coolant that entered the very high-temperature chamber pressurized the normally sub-atmospheric system above ambient pressure for over 13 minutes. Any positive pressurization, and particularly a lengthy one, is a safety concern since this can cause leakage of contaminants from the system. A model of the thermal phenomena that describe coolant/hot-material interactions was developed to better understand the characteristics of this type of incident. The model is described and results for a variety of hypothetical coolant-leak incidents are presented. It is shown that coolant leak rates above a certain threshold will cause coolant to accumulate in the chamber, and evaporation from this pool can maintain positive pressure in the system long after the leak has been stopped. Application of the model resulted in reasonably good agreement with the duration of the pressure measured during the incident. A closed-form analytic solution is shown to be applicable to the initial leak period in which the peak pressures are generated, and is presented and discussed

  8. Numerical simulations on a high-temperature particle moving in coolant

    International Nuclear Information System (INIS)

    Li Xiaoyan; Shang Zhi; Xu Jijun

    2006-01-01

    This study considers the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Taking momentum and energy equations of the vapor film into account, a transient single particle model under FCI conditions has been established. The numerical simulations on a high-temperature particle moving in coolant have been performed using Gear algorithm. Adaptive dynamic boundary method is adopted during simulating to matching the dynamic boundary that is caused by vapor film changing. Based on the method presented above, the transient process of high-temperature particles moving in coolant can be simulated. The experimental results prove the validity of the HPMC model. (authors)

  9. Reactivity effect of spent fuel due to spatial distributions for coolant temperature and burnup

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, T.; Yamane, Y. [Nagoya Univ., Dept. of Nuclear Engineering, Nagoya, Aichi (Japan); Suyama, K. [OECD/NEA, Paris (France); Mochizuki, H. [Japan Research Institute, Ltd., Tokyo (Japan)

    2002-03-01

    We investigated the reactivity effect of spent fuel caused by the spatial distributions of coolant temperature and burnup by using the integrated burnup calculation code system SWAT. The reactivity effect which arises from taking account of the spatial coolant temperature distribution increases as the average burnup increases, and reaches the maximum value of 0.69%{delta}k/k at 50 GWd/tU when the burnup distribution is concurrently considered. When the burnup distribution is ignored, the reactivity effect decreases by approximately one-third. (author)

  10. Primary Coolant pH Control for Soluble Boron-Free PWRs

    International Nuclear Information System (INIS)

    Cheon, Yang Ho; Lee, Nam Yeong; Park, Byeong Ho; Park, Seong Chan; Kim, Eun Kee

    2015-01-01

    These should be considered when evaluating and designing the operating pH program for nuclear power plants. This paper discusses the advanced water chemistry strategies to keep pace with the recent global trends related to pH control in the primary water system for soluble boron pressurized water reactor (PWR) plants. Finally, the objective of this work is to study primary coolant pH control for soluble boron-free PWR plants. This paper reviewed the advanced water chemistry strategies to keep pace with the recent global trends related to pH control in the primary water chemistry system for soluble boron PWR plants. The new chemistry trend for the primary coolant is towards adaption of the constant and elevated chemistry. Finally, this work studied primary coolant pH control for soluble boron-free PWR plants. The ammonia-based water chemistry related to pH control for boron-free PWR plants was discussed. The ammonia-based water chemistry is not recommended to avoid fluctuation of the pH value by ammonia radiolysis and to reduce C-14 production in reactor coolant from reaction with dissolved nitrogen. Also, the potassium-based water chemistry related to pH control for boron-free PWR plants was discussed. KOH has a potential as an alternative pH control agent for soluble boron-free PWR plants. The potassium-based water chemistry related to pH control is recommended for boron-free operation as follows

  11. Correlation between Ni base alloys surface conditioning and cation release mitigation in primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Clauzel, M.; Guillodo, M.; Foucault, M. [AREVA NP SAS, Technical Centre, Le Creusot (France); Engler, N.; Chahma, F.; Brun, C. [AREVA NP SAS, Chemistry and Radiochemistry Group, Paris La Defense (France)

    2010-07-01

    The mastering of the reactor coolant system radioactive contamination is a real stake of performance for operating plants and new builds. The reduction of activated corrosion products deposited on RCS surfaces allows minimizing the global dose integrated by workers which supports the ALARA approach. Moreover, the contamination mastering limits the volumic activities in the primary coolant and thus optimizes the reactor shutdown duration and environment releases. The main contamination sources on PWR are due to Co-60 and Co-58 nuclides which come respectively Co-59 and Ni-58, naturally present in alloys used in the RCS. Co is naturally present as an impurity in alloys or as the main component of hardfacing materials (Stellites™). Ni is released mainly by SG tubes which represent the most important surface of the RCS. PWR steam generators (SG), due to the huge wetted surface are the main source of corrosion products release in the primary coolant circuit. As corrosion products may be transported throughout the whole circuit, activated in the core, and redeposited all over circuit surfaces, resulting in an increase of activity buildup, it is of primary importance to gain a better understanding of phenomenon leading to corrosion product release from SG tubes before setting up mitigation measures. Previous studies have shown that SG tubing made of the same material had different release rates. To find the origin of these discrepancies, investigations have been performed on tubes at the as-received state and after exposure to a nominal primary chemistry in titanium recirculating loop. These investigations highlighted the existence of a correlation between the inner surface metallurgical properties and the release of corrosion products in primary coolant. Oxide films formed in nominal primary chemistry are always protective, their morphology and their composition depending strongly on the geometrical, metallurgical and physico-chemical state of the surface on which they

  12. Q-factor of coolant flow in the primary circuit of NPP with pressurised water reactors

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Belikov, S.O.; Novikov, K.S.

    2011-01-01

    Systems of preoperational vibration dynamic monitoring in of WWER are presented. The results of measurements during commission of NPP with WWER are presented. The paper provides the result of the research, that estimation of coolant fluctuations caused by pulse perturbation of pressure in the primary circuit NPP. It is shown that results could be received at known value of a Q - factor of acoustical oscillatory system only. The research demonstrates the results of dependence of the sound speed from the mass steam content in the coolant flow thru reactor core. The worked out results can be used for identification of the reasons of abnormal growth of level of vibrations of fuel assembly, fuel rod, equipment and internals, and for forecasting the operation conditions which provide of vibration - acoustical resonances in the primary loop equipment. (author)

  13. Recent bibliography on analytical and sampling problems of a PWR primary coolant Pt. 1

    International Nuclear Information System (INIS)

    Illy, H.

    1981-12-01

    The first bibliography on analytical and sampling problems of a PWR primary coolant (KFKI Report-1980-48) was published in 1980 and it covered the literature published in the previous 8-10 years. The present supplement reviews the subsequent literature up till December 1981. It also includes some references overlooked in the first volume. The serial numbers are continued from the first bibliography. (author)

  14. Hard alloys testing-machine for values of PWR primary coolant circuits

    International Nuclear Information System (INIS)

    Campan, J.L.; Sauze, A.

    1980-01-01

    Testing of valve parts or material used in valve fabrication and particularly seizing conditions in friction of plane surfaces coated with hard alloys of the type stellite. The testing equipment called Marguerite is composed of a hot pressurized water loop in conditions similar to PWR primary coolant circuits (320 0 C, 150 bars) and a testing-machine with measuring instruments. Testing conditions and samples are described [fr

  15. TMI-2 [Three Mile Island Unit 2] primary coolant mass flowrate data report

    International Nuclear Information System (INIS)

    McCormick, R.D.

    1986-12-01

    This is a report on the preparation of data from the TMI-2 primary coolant mass flowrate meters for inclusion into the TMI Data Base. The sources of the as-recorded data are discussed, and a description of the instrument is given. An explanation is given of how corrections were made to the as-recorded data and how the uncertainties were calculated. The identifiers attached to each data set in the TMI Data Base are given

  16. Analytical and sampling problems in primary coolant circuits of PWR-type reactors

    International Nuclear Information System (INIS)

    Illy, H.

    1980-10-01

    Details of recent analytical methods on the analysis and sampling of a PWR primary coolant are given in the order as follows: sampling and preparation; analysis of the gases dissolved in the water; monitoring of radiating substances; checking of boric acid concentration which controls the reactivity. The bibliography of this work and directions for its use are published in a separate report: KFKI-80-48 (1980). (author)

  17. Additional requirements for leak-before-break application to primary coolant piping in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, G. [AIB Vincotte Nuclear, Brussels (Belgium)

    1997-04-01

    Leak-Before-Break (LBB) technology has not been applied in the first design of the seven Pressurized Water Reactors the Belgian utility is currently operating. The design basis of these plants required to consider the dynamic effects associated with the ruptures to be postulated in the high energy piping. The application of the LBB technology to the existing plants has been recently approved by the Belgian Safety Authorities but with a limitation to the primary coolant loop. LBB analysis has been initiated for the Doel 3 and Tihange 2 plants to allow the withdrawal of some of the reactor coolant pump snubbers at both plants and not reinstall some of the restraints after steam generator replacement at Doel 3. LBB analysis was also found beneficial to demonstrate the acceptability of the primary components and piping to the new conditions resulting from power uprating and stretch-out operation. LBB analysis has been subsequently performed on the primary coolant loop of the Tihange I plant and is currently being performed for the Doel 4 plant. Application of the LBB to the primary coolant loop is based in Belgium on the U.S. Nuclear Regulatory Commission requirements. However the Belgian Safety Authorities required some additional analyses and put some restrictions on the benefits of the LBB analysis to maintain the global safety of the plant at a sufficient level. This paper develops the main steps of the safety evaluation performed by the Belgian Safety Authorities for accepting the application of the LBB technology to existing plants and summarizes the requirements asked for in addition to the U.S. Nuclear Regulatory Commission rules.

  18. Recent bibliography on analytical and sampling problems of a PWR primary coolant Suppl. 4

    International Nuclear Information System (INIS)

    Illy, H.

    1986-09-01

    The 4th supplement of a bibliographical series comprising the analytical and sampling problems of the primary coolant of PWR type reactors covers the literature from 1985 up to July 1986 (220 items). References are listed according to the following topics: boric acid; chloride, chlorine; general; hydrogen isotopes; iodine; iodide; noble gases; oxygen; other elements; radiation monitoring; reactor safety; sampling; water chemistry. (V.N.)

  19. In-core failure of the instrumented BWR rod by locally induced high coolant temperature

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1985-12-01

    In the BWR type light water loop instrumented in HBWR, a current BWR type fuel rod pre-irradiated up to 5.6 MWd/kgU was power ramped to 50 kW/m. During the ramp, the diameter of the rod was expanded significantly at the bottom end. The behaviour was different from which caused by pellet-cladding interaction (PCI). In the post-irradiation examination, the rod was found to be failed. In this paper, the cause of the failure was studied and obtained the followings. (1) The significant expansion of the rod diameter was attributed to marked oxidation of cladding outer diameter, appeared in the direction of 0 0 -180 0 degree with a shape of nodular. (2) The cladding in the place was softened by high coolant temperature. Coolant pressure, 7MPa intruded the cladding into inside chamfer void at pellet interface. (3) At the place of the significant oxidation, an instrumented transformer was existed and the coolant flow area was very little. The reduction of the coolant flow was enhanced by the bending of the cladding which was caused in pre-irradiation stage. They are considered to be a principal cause of local closure of coolant flow and resultant high temperature in the place. (author)

  20. Evaluation of Specific Activity in the Primary Coolant of PWRs by using SAEP

    International Nuclear Information System (INIS)

    Kim, Ha Yong; Song, Jae Seung; Kim, Keung Ku; Kim, Kyo Youn

    2008-07-01

    SAEP(Specific Activity Evaluation Program) to evaluate specific activities in the primary coolant of reactors due to fission products has been developed, which can be applied to the new concept nuclear reactor such as SMART as well as commercial PWRs in existence. Specific activities in the primary coolant were evaluated by using SAEP against reactor plants which are being operated currently in South Korea, respectively. We study the possibility of being applied to the developing commercial PWRs and the new concept reactors through the comparison the results by using SAEP with the results mentioned in the FSARs. We also verify SAEP itself through this evaluation. From the evaluation results, we know that the general trend is agreed with each other from the viewpoint of order of magnitude and that SAEP correctly executes the evaluation of specific activities in the primary coolant of reactor due to fission products for several reactor types, regardless of a reactor type. Therefore, SAEP can widely be applied to the new concept nuclear reactor development phase as well as already developed PWRs

  1. Water quality control device and water quality control method for reactor primary coolant system

    International Nuclear Information System (INIS)

    Wada, Yoichi; Ibe, Eishi; Watanabe, Atsushi.

    1995-01-01

    The present invention is suitable for preventing defects due to corrosion of structural materials in a primary coolant system of a BWR type reactor. Namely, a concentration measuring means measures the concentration of oxidative ingredients contained in a reactor water. A reducing electrode is disposed along a reactor water flow channel in the primary coolant system and reduces the oxidative ingredients. A reducing counter electrode is disposed along the reactor water flow channel in the primary coolant system, and electrically connected to the reducing electrode. The reactor structural materials are used as a reference electrode providing a reference potential to the reducing electrode and the reducing counter electrode. A potential control means controls the potential of the reducing electrode relative to the reference potential based on the signals from the concentration measuring means. A stable reference potential in a region where an effective oxygen concentration is stable can be obtained irrespective of the change of operation conditions by using the reactor structural materials disposed to a boiling region in the reactor core as a reference electrode. As a result, the water quality can be controlled at high accuracy. (I.S.)

  2. A mechanistic model for predicting flow-assisted and general corrosion of carbon steel in reactor primary coolants

    Energy Technology Data Exchange (ETDEWEB)

    Lister, D. [University of New Brunswick, Fredericton, NB (Canada). Dept. of Chemical Engineering; Lang, L.C. [Atomic Energy of Canada Ltd., Chalk River Lab., ON (Canada)

    2002-07-01

    Flow-assisted corrosion (FAC) of carbon steel in high-temperature lithiated water can be described with a model that invokes dissolution of the protective oxide film and erosion of oxide particles that are loosened as a result. General corrosion under coolant conditions where oxide is not dissolved is described as well. In the model, the electrochemistry of magnetite dissolution and precipitation and the effect of particle size on solubility move the dependence on film thickness of the diffusion processes (and therefore the corrosion rate) away from reciprocal. Particle erosion under dissolving conditions is treated stochastically and depends upon the fluid shear stress at the surface. The corrosion rate dependence on coolant flow under FAC conditions then becomes somewhat less than that arising purely from fluid shear (proportional to the velocity squared). Under non-dissolving conditions, particle erosion occurs infrequently and general corrosion is almost unaffected by flow For application to a CANDU primary circuit and its feeders, the model was bench-marked against the outlet feeder S08 removed from the Point Lepreau reactor, which furnished one value of film thickness and one of corrosion rate for a computed average coolant velocity. Several constants and parameters in the model had to be assumed or were optimised, since values for them were not available. These uncertainties are no doubt responsible for the rather high values of potential that evolved as steps in the computation. The model predicts film thickness development and corrosion rate for the whole range of coolant velocities in outlet feeders very well. In particular, the detailed modelling of FAC in the complex geometry of one outlet feeder (F11) is in good agreement with measurements. When the particle erosion computations are inserted in the balance equations for the circuit, realistic values of crud level are obtained. The model also predicts low corrosion rates and thick oxide films for inlet

  3. A mechanistic model for predicting flow-assisted and general corrosion of carbon steel in reactor primary coolants

    International Nuclear Information System (INIS)

    Lister, D.

    2002-01-01

    Flow-assisted corrosion (FAC) of carbon steel in high-temperature lithiated water can be described with a model that invokes dissolution of the protective oxide film and erosion of oxide particles that are loosened as a result. General corrosion under coolant conditions where oxide is not dissolved is described as well. In the model, the electrochemistry of magnetite dissolution and precipitation and the effect of particle size on solubility move the dependence on film thickness of the diffusion processes (and therefore the corrosion rate) away from reciprocal. Particle erosion under dissolving conditions is treated stochastically and depends upon the fluid shear stress at the surface. The corrosion rate dependence on coolant flow under FAC conditions then becomes somewhat less than that arising purely from fluid shear (proportional to the velocity squared). Under non-dissolving conditions, particle erosion occurs infrequently and general corrosion is almost unaffected by flow For application to a CANDU primary circuit and its feeders, the model was bench-marked against the outlet feeder S08 removed from the Point Lepreau reactor, which furnished one value of film thickness and one of corrosion rate for a computed average coolant velocity. Several constants and parameters in the model had to be assumed or were optimised, since values for them were not available. These uncertainties are no doubt responsible for the rather high values of potential that evolved as steps in the computation. The model predicts film thickness development and corrosion rate for the whole range of coolant velocities in outlet feeders very well. In particular, the detailed modelling of FAC in the complex geometry of one outlet feeder (F11) is in good agreement with measurements. When the particle erosion computations are inserted in the balance equations for the circuit, realistic values of crud level are obtained. The model also predicts low corrosion rates and thick oxide films for inlet

  4. Analysis of thermo-hydraulic behavior of coolant during discharge of pressurized high-temperature water

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Sobajima, Makoto; Sasaki, Shinobu; Onishi, Nobuaki; Shiba, Masayoshi

    1978-01-01

    The present report describes results of the analysis of the LOFT semiscale experiment No. 1011 using remodeled RELAP-3 code, performed at the Idaho National Engineering Laboratory to simulate a postulated loss-of-coolant accident in a pressurized water reactor. It was clarified through the analysis that coolant behavior during blowdown was influenced variously by the system components in the primary loop, comparing with coolant discharge from a pressure vessel. Good agreement was obtained between experimental and analytical results when phase separation was assumed in upper plenum and downcomer, since experimental data indicated existence of liquid level in those parts. It was also found that the use of the Wilson's equation to calculate bubble rise velocity and the use of discharge coefficient as the function of fluid quality at break location to calculate discharge flow rate resulted in good agreement with experimental data. (auth.)

  5. Study on effects of mixing vane grids on coolant temperature distribution by subchannel analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mao, H.; Yang, B.W.; Han, B. [Xi' an Jiaotong Univ., Shaanxi (China). Science and Technology Center for Advanced Nuclear Fuel Research

    2016-07-15

    Mixing vane grids (MVG) have great influence on coolant temperature field in the rod bundle. The MVG could enhance convective heat transfer between the fuel rod wall and the coolant, and promote inter-subchannel mixing at the same time. For the influence of the MVG on convective heat transfer enhancement, many experiments have been done and several correlations have been developed based on the experimental data. However, inter-subchannel mixing promotion caused by the MVG is not well estimated in subchannel analysis because the information of mixing vanes is totally missing in most subchannel codes. This paper analyzes the influence of mixing vanes on coolant temperature distribution using the improved MVG model in subchannel analysis. The coolant temperature distributions with the MVG are analyzed, and the results show that mixing vanes lead to a more uniform temperature distribution. The performances of split vane grids under different power conditions are evaluated. The results are compared with those of spacer grids without mixing vanes and some conclusions are obtained.

  6. Study on effects of mixing vane grids on coolant temperature distribution by subchannel analysis

    International Nuclear Information System (INIS)

    Mao, H.; Yang, B.W.; Han, B.

    2016-01-01

    Mixing vane grids (MVG) have great influence on coolant temperature field in the rod bundle. The MVG could enhance convective heat transfer between the fuel rod wall and the coolant, and promote inter-subchannel mixing at the same time. For the influence of the MVG on convective heat transfer enhancement, many experiments have been done and several correlations have been developed based on the experimental data. However, inter-subchannel mixing promotion caused by the MVG is not well estimated in subchannel analysis because the information of mixing vanes is totally missing in most subchannel codes. This paper analyzes the influence of mixing vanes on coolant temperature distribution using the improved MVG model in subchannel analysis. The coolant temperature distributions with the MVG are analyzed, and the results show that mixing vanes lead to a more uniform temperature distribution. The performances of split vane grids under different power conditions are evaluated. The results are compared with those of spacer grids without mixing vanes and some conclusions are obtained.

  7. An Investigation into Water Chemistry in Primary Coolant Circuit of an Advanced Boiling Water Reactor

    International Nuclear Information System (INIS)

    Wu, Bing-Jhen; Yeh, Tsung-Kuang; Wang, Mei-Ya; Sheu, Rong-Jiun

    2012-09-01

    To ensure operation safety, an optimization on the coolant chemistry in the primary coolant circuit of a nuclear reactor is essential no matter what type or generation the reactor belongs to. For a better understanding toward the water chemistry in an advanced boiling water reactor (ABWR), such as the one being constructed in the northern part of Taiwan, and for a safer operation of this ABWR, we conducted a proactive, thorough water chemistry analysis prior to the completion of this reactor in this study. A numerical simulation model for water chemistry analyses in ABWRs has been developed, based upon the core technology we established in the past. This core technology for water chemistry modeling is basically an integration of water radiolysis, thermal-hydraulics, and reactor physics. The model, by the name of DEMACE - ABWR, is an improved version of the original DEMACE model and was used for radiolysis and water chemistry prediction in the Longmen ABWR in Taiwan. Predicted results pertinent to the water chemistry variation and the corrosion behavior of structure materials in the primary coolant circuit of this ABWR under rated-power operation were reported in this paper. (authors)

  8. Coolant radiolysis studies in the high temperature, fuelled U-2 loop in the NRU reactor

    International Nuclear Information System (INIS)

    Elliot, A.J.; Stuart, C.R.

    2008-06-01

    An understanding of the radiolysis-induced chemistry in the coolant water of nuclear reactors is an important key to the understanding of materials integrity issues in reactor coolant systems. Significant materials and chemistry issues have emerged in Pressurized Water Reactors (PWR), Boiling Water Reactors (BWR) and CANDU reactors that have required a detailed understanding of the radiation chemistry of the coolant. For each reactor type, specific computer radiolysis models have been developed to gain insight into radiolysis processes and to make chemistry control adjustments to address the particular issue. In this respect, modelling the radiolysis chemistry has been successful enough to allow progress to be made. This report contains a description of the water radiolysis tests performed in the U-2 loop, NRU reactor in 1995, which measured the CHC under different physical conditions of the loop such as temperature, reactor power and steam quality. (author)

  9. High-temperature process heat reactor with solid coolant and radiant heat exchange

    International Nuclear Information System (INIS)

    Alekseev, A.M.; Bulkin, Yu.M.; Vasil'ev, S.I.

    1984-01-01

    The high temperature graphite reactor with the solid coolant in which heat transfer is realized by radiant heat exchange is described. Neutron-physical and thermal-technological features of the reactor are considered. The reactor vessel is made of sheet carbon steel in the form of a sealed rectangular annular box. The moderator is a set of graphite blocks mounted as rows of arched laying Between the moderator rows the solid coolant annular layings made of graphite blocks with high temperature nuclear fuel in the form of coated microparticles are placed. The coolant layings are mounted onto ring movable platforms, the continuous rotation of which is realizod by special electric drives. Each part of the graphite coolant laying consecutively passes through the reactor core neutron cut-off zones and technological zone. In the core the graphite is heated up to the temperature of 1350 deg C sufficient for effective radiant heat transfer. In the neutron cut-off zone the chain reaction and further graphite heating are stopped. In the technological zone the graphite transfers the accumulated heat to the walls of technological channels in which the working medium moves. The described reactor is supposed to be used in nuclear-chemical complex for ammonia production by the method of methane steam catalytic conversion

  10. IEA-R1 renewed primary coolant piping system stress analysis

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Mattar Neto, Miguel

    2015-01-01

    A partial replacement of the IEA-R1 piping system was conducted in 2014. The aim of this work is to perform the stress analysis of the renewed primary piping system of the IEA-R1, taking into account the as built conditions and the pipe modifications. The nuclear research reactor IEA-R1 is a pool type reactor designed by Babcox-Willcox, which is operated by IPEN since 1957. The primary coolant system is responsible for removing the residual heat of the Reactor core. As a part of the life management, a regular inspection detected some degradation in the primary piping system. In consequence, part of the piping system was replaced. The partial renewing of the primary piping system did not imply in major piping layout modifications. However, the stress condition of the piping systems had to be reanalyzed. The structural stress analysis of the primary piping systems is now presented and the final results are discussed. (author)

  11. Experimental simulation of low rate primary coolant leaks. For the case of vessel head penetrations affected by through wall cracking

    International Nuclear Information System (INIS)

    You, D.; Feron, D.; Turluer, G.

    2002-01-01

    An experimental simulation of primary coolant leaks was carried out to determine how the composition of the leaking liquid would change. The experiment used the EVA experimental setup, specially designed for quantitatively investigating concentration phenomena driven by evaporation. The test showed that the final composition, obtained from a solution representative of the primary coolant at the beginning of the cycle, is highly concentrated and slightly acid. The experimental results are compared with those obtained using the MULTEQ software. (authors)

  12. Noise and DC balanced outlet temperature signals for monitoring coolant flow in LMFBR fuel elements

    International Nuclear Information System (INIS)

    Edelmann, M.

    1977-01-01

    Local cooling disturbances in LMFBR fuel elements may have serious safety implications for the whole reactor core. They have to be detected reliably in an early stage of their formation therefore. This can be accomplished in principle by individual monitoring of the coolant flow rate or the coolant outlet temperature of the sub-assemblies with high precision. In this paper a method is proposed to increase the sensitivity of outlet temperature signals to cooling disturbances. Using balanced temperature signals provides a means for eliminating the normal variations from the original signals which limit the sensitivity and speed of response to cooling disturbances. It is shown that a balanced signal can be derived easily from the original temperature signal by subtracting an inlet temperature and a neutron detector signal with appropriate time shift. The method was tested with tape-recorded noise signals of the KNK I reactor at Karlsruhe. The experimental results confirm the theoretical predictions. A significant reduction of the uncertainty of measured outlet temperatures was achieved. This enables very sensitive and fast response monitoring of coolant flow. Furthermore, it was found that minimizing the variance of the balanced signal offers the possibility for a rough determination of the heat transfer coefficient of the fuel rods during normal reactor operation at power. (author)

  13. Recent bibliography on analytical and sampling problems of a PWR primary coolant Suppl. 3

    International Nuclear Information System (INIS)

    Illy, H.

    1985-03-01

    The present supplement to the bibliography on analytical and sampling problems of PWR primary coolant covers the literature published in 1984 and includes some references overlooked in the previous volumes dealing with the publications of the last 10 years. References are devided into topics characterized by the following headlines: boric acid; chloride; chlorine; carbon dioxide; general; gas analysis; hydrogen isotopes; iodine; iodide; nitrogen; noble gases and radium; ammonia; ammonium; oxygen; other elements; radiation monitoring; reactor safety; sampling; water chemistry. Under a given subject bibliographical information is listed in alphabetical order of the authors. (V.N.)

  14. Condition monitoring of primary coolant pump-motor units of Indian PHWR

    International Nuclear Information System (INIS)

    Rshikesan, P.B.; Sharma, S.S.; Mhetre, S.G.

    1994-01-01

    As the primary coolant pump motor units are located in shut down accessible area, their start up, satisfactory operation and shut down are monitored from control room. As unavailability of one pump in standardised 220 MWe station reduces the station power to about 110 MWe, satisfactory operation of the pump is also important from economic considerations. All the critical parameters of pump shaft, mechanical seal, bearing system, motor winding and shaft displacement (vibrations) are monitored/recorded to ensure satisfactory operation of critical, capital intensive pump-motor units. (author). 2 tabs., 1 fig

  15. Major activated corrosion products cobalt, silver and antimony in the primary coolant of PWR power plants

    International Nuclear Information System (INIS)

    Xu Mingxia

    2012-01-01

    The production of the major activated corrosion products such as cobalt, silver and antimony in the primary coolant of PWR power plants and the impacts on the increase of the dose rates caused by these corrosion products during the shutdown are described in the paper. Investigating the corrosion product behavior during the operation and shutdown periods aims at detecting the appearance of these radiological pollutants in the early time and searching relevant solutions that may enable eventually to decrease the dose rate. The solutions may include: Replacing critical material in the primary system's equipment and components, which contact with primary coolant circuit to possibly limit the source term, Elaborating strictly the specific chemical and shutdown procedure to optimize the purification capacity and to minimize the over-contaminations; Improving purification techniques according to the real operation circumstance, and limiting the impacts of these pollutants. It is obvious in the real practices that implementing appropriate solution will be benefit to decrease or limit the pollutants species like cobalt, silver and antimony. (author)

  16. Temperature and velocity field of coolant at inlet to WWER-440 core - evaluation of experimental data

    International Nuclear Information System (INIS)

    Jirous, F.; Klik, F.; Janeba, B.; Daliba, J.; Delis, J.

    1989-01-01

    Experimentally determined were coolant temperature and velocity fields at the inlet of the WWER-440 reactor core. The accuracy estimate is presented of temperature measurements and the relation is given for determining the resulting measurement error. An estimate is also made of the accuracy of solution of the system of equations for determining coefficients B kn using the method of the least square fit. Coefficients B kn represent the relative contribution of the mass flow of the k-th fuel assembly from the n-th loop and allow the calculation of coolant temperatures at the inlet of the k-th fuel assembly, when coolant temperatures in loops at reactor inlet are known. A comparison is made of the results of measurements on a hydrodynamic model of a WWER-440 reactor with results of measurements made at unit 4 of the Dukovany nuclear power plant. Full agreement was found for 32 model measurements and 6 reactor measurements. It may be assumed that the results of other model measurements obtained for other operating variants will also apply for an actual reactor. Their applicability may, however, only be confirmed by repeating the experiment on other WWER-440 reactors. (Z.M.). 5 figs., 7 refs

  17. Enriched boric acid as an optimized neutron absorber in the EPR primary coolant

    International Nuclear Information System (INIS)

    Cosse, Christelle; Jolivel, Fabienne; Berger, Martial

    2012-09-01

    This paper focuses on one of the most important EPR PWR reactor design optimizations, through primary coolant conditioning by enriched boric acid (EBA). On PWRs throughout the world, boric acid has already been implemented in primary coolant and associated auxiliary systems for criticality control, due to its high Boron 10 neutron absorption cross section. Boric acid also allows primary coolant pH 300C control in combination with lithium hydroxide in many PWRs. The boric acid employed in the majority of existing PWRs is the 'natural' one, with a typical isotopic atomic abundance in Boron 10 about 19.8 at.%. However, EPR requirements for neutron management are more important, due to its fully optimized design compared to older PWRs. From the boron point of view, it means that criticality could be controlled either by increased 'natural' Boron concentrations or by using EBA. Comparatively to 'natural' boric acid, EBA allows for: - the use of smaller storage volumes for an identical total Boron concentration, or lower total Boron concentration if the tank volumes are kept identical. The latter also reduces the risks of boric acid crystallization, in spite of increased neutron-absorbing properties - the application of an evolutionary chemistry operating regime called Advanced pH Control, making it possible to maintain a constant pH 300C value at 7.2 in the primary coolant at nominal conditions throughout entire cycles. This optimized stability of pH 300C will contribute to reduce the consequences of contamination of the reactor coolant system by corrosion products, and consequently, all related issues - the reduction of borated liquid wastes, thanks to maximal recycling resulting from EPR design. The increased design costs associated with EBA are consequently compensated by a reduced total consumption of this chemical. Therefore, the basic design choice for the EPR is the use of EBA. For the Flamanville 3 EPR, according to the above

  18. Reliability analysis of the automatic control of the A-1 power plant coolant temperature

    International Nuclear Information System (INIS)

    Kuklik, B.; Semerad, V.; Chylek, Z.

    Reliability analysis of the automatic control of the A-1 reactor coolant temperature is performed taking into account the effect of both the dependent failures and the routine maintenance of control system components. In a separate supplement, reliability analysis is reported of coincidence systems of the A-1 power plant reactor. Both safe and unsafe failures are taken into consideration as well as the effect of maintenance of the respective branch elements

  19. Cooling Characteristics of the V-1650-7 Engine. II - Effect of Coolant Conditions on Cylinder Temperatures and Heat Rejection at Several Engine Powers

    Science.gov (United States)

    Povolny, John H.; Bogdan, Louis J.; Chelko, Louis J.

    1947-01-01

    An investigation has been conducted on a V-1650-7 engine to determine the cylinder temperatures and the coolant and oil heat rejections over a range of coolant flows (50 to 200 gal/min) and oil inlet temperatures (160 to 2150 F) for two values of coolant outlet temperature (250 deg and 275 F) at each of four power conditions ranging from approximately 1100 to 2000 brake horsepower. Data were obtained for several values of block-outlet pressure at each of the two coolant outlet temperatures. A mixture of 30 percent by volume of ethylene glycol and 70-percent water was used as the coolant. The effect of varying coolant flow, coolant outlet temperature, and coolant outlet pressure over the ranges investigated on cylinder-head temperatures was small (0 deg to 25 F) whereas the effect of increasing the engine power condition from ll00 to 2000 brake horsepower was large (maximum head-temperature increase, 110 F).

  20. Fact and fiction in ECP measurement and control in boiling water reactor primary coolant circuits

    International Nuclear Information System (INIS)

    Macdonald, D.D.

    2005-01-01

    A review is presented of various electrochemical potentials, including the electrochemical corrosion potential (ECP), that are used in the mitigation of stress corrosion cracking in the primary coolant circuits of boiling water reactors (BWRs). Attention is paid to carefully defining each potential in terms of fundamental electrochemical concepts, so as to counter the confusion that has arisen due to the misuse of previously accepted terminology. A brief discussion is also included of reference electrodes and it is shown on the basis of experimental data that the use of a platinum redox sensor as a reference electrode in the monitoring of ECP in BWR primary coolant circuits is inappropriate and should be discouraged. If platinum is used as a reference electrode, because of extenuating circumstances (e.g., potential measurements in high dose regions in a reactor core), the onus must be placed on the user to demonstrate quantitatively that the electrode behaves as an equilibrium electrode under the specified conditions and/or that its potential is invariant with changes in the independent variables of the system. Preferably, a means should also be demonstrated of transferring the measured potential to the standard hydrogen electrode (SHE) scale. (orig.)

  1. Predicted Variations of Water Chemistry in the Primary Coolant Circuit of a Supercritical Water Reactor

    International Nuclear Information System (INIS)

    Yeh, Tsung-Kuang; Wang, Mei-Ya; Liu, Hong-Ming; Lee, Min

    2012-09-01

    In response to the demand over a higher efficiency for a nuclear power plant, various types of Generation IV nuclear reactors have been proposed. One of the new generation reactors adopts supercritical light water as the reactor coolant. While current in-service light water reactors (LWRs) bear an average thermal efficiency of 33%, the thermal efficiency of a supercritical water reactor (SCWR) could generally reach more than 44%. For LWRs, the coolants are oxidizing due to the presence of hydrogen peroxide and oxygen, and the degradation of structural materials has mainly resulted from stress corrosion cracking. Since oxygen is completely soluble in supercritical water, similar or even worse degradation phenomena are expected to appear in the structural and core components of an SCWR. To ensure proper designs of the structural components and suitable selections of the materials to meet the requirements of operation safety, it would be of great importance for the design engineers of an SCWR to be fully aware of the state of water chemistry in the primary coolant circuit (PCC). Since SCWRs are still in the stage of conceptual design and no practical data are available, a computer model was therefore developed for analyzing water chemistry variation and corrosion behavior of metallic materials in the PCC of a conceptual SCWR. In this study, a U.S. designed SCWR with a rated thermal power of 3575 MW and a coolant flow rate of 1843 kg/s was selected for investigating the variations in redox species concentration in the PCC. Our analyses indicated that the [H 2 ] and [H 2 O 2 ] at the core channel were higher than those at the other regions in the PCC of this SCWR. Due to the self-decomposition of H 2 O 2 , the core channel exhibited a lower [O 2 ] than the upper plenum. Because the middle water rod region was in parallel with the core channel region with relatively high dose rates, the [H 2 ] and [H 2 O 2 ] in this region were higher than those in the other regions

  2. Stainless steel corrosion in conditions simulating WWER-1000 primary coolant. Corrosion behaviour in mixed core

    International Nuclear Information System (INIS)

    Krasnorutskij, V.S.; Petel'guzov, I.A.; Gritsina, V.M.; Zuek, V.A.; Tret'yakov, M.V.; Rud', R.A.; Svichkar', N.V.; Slabospitskaya, E.A.; Ishchenko, N.I.

    2011-01-01

    Research into corrosion kinetics of austenitic stainless steels (06Cr18Ni10Ti, 08Cr18Ni10Ti, 12Cr18Ni10Ti) in medium which corresponds to composition and parameters of WWER-1000 primary coolant with different pH values in autoclave out-pile conditions during 14000 hours is given. Surface of oxide films on stainless steels is investigated. Visual inspection of Westinghouse and TVEL fuel was carried out after 4 cycles in WWER-1000 primary water chemistry conditions at South Ukraine NPP. Westinghouse and TVEL fuel cladding materials possess high corrosion resistance. Blushing of weldments was observed. No visual corrosion defects or deposits were observed on fuel rods.

  3. Radionuclide analyses taken during primary coolant decontamination at Three Mile Island indicate general circulation

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Baston, V.F.; Hitz, C.G.; Malinauskas, A.P.

    1983-01-01

    Radionuclide concentration data taken during decontamination of the primary reactor coolant system at Three Mile Island by a feed-and-bleed process have provided information on future defueling operations. Analysis of the radiocesium concentrations in samples taken at the letdown point indicates general circulation within the primary system, including the reactor vessel and both steam generators. A standard dilution model with parameters consistent with engineering estimates (volume, flow rate, etc.) accurately predicts the radiocesium decontamination rates. Unlike cesium, the behavior of other principal soluble radionuclides ( 90 Sr and 3 H) cannot be readily described by dilution theory. A significant appearance rate is observed for 90 Sr suggesting a chemical solubility mechanism. The use of processed water containing high 3 H for makeup causes uncertainty in the interpretation of the 3 H analysis

  4. Experience in vibro-acoustic control of primary coolant circuit aggregates

    International Nuclear Information System (INIS)

    Sedov, V.K.; Adamenkov, K.A.

    1977-01-01

    Fundamental principles and possibilities of vibro-acoustic control of the primary coolant circuit in nuclear power plants for detecting failures (slack parts, penetration of foreign bodies, crack formation, etc.) are presented. As a result of pressure and flow rate fluctuations such failures give rise to characteristic changes in apmplitude and frequency of vibration and technological noise from the different aggregates with respect to a 'calibration' spectrum taken in the intact state. Nature and location of the failures may be determined by statistical analysis of the signals recorded from pressure and acceleration gauges. Certain parts of the primary circuit are controlled, especially the main circulation pumps. Additionally, neutron noise has been measured in order to control the core insertions. The method is illustrated by means of measurements performed in the units 1 to 4 of the Novovoronezh nuclear power plant during start-up operation and continuous operation. (author)

  5. Experience in vibro-acoustic control of primary coolant circuit aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Sedov, V K; Adamenkov, K A [Nuclear power plant Novo-Voronesh (USSR)

    1977-10-01

    Fundamental principles and possibilities of vibro-acoustic control of the primary coolant circuit in nuclear power plants for detecting failures (slack parts, penetration of foreign bodies, crack formation, etc.) are presented. As a result of pressure and flow rate fluctuations such failures give rise to characteristic changes in apmplitude and frequency of vibration and technological noise from the different aggregates with respect to a 'calibration' spectrum taken in the intact state. Nature and location of the failures may be determined by statistical analysis of the signals recorded from pressure and acceleration gauges. Certain parts of the primary circuit are controlled, especially the main circulation pumps. Additionally, neutron noise has been measured in order to control the core insertions. The method is illustrated by means of measurements performed in the units 1 to 4 of the Novovoronezh nuclear power plant during start-up operation and continuous operation.

  6. Robotics in the nuclear environment-inspection and repairs inside the primary coolant system

    International Nuclear Information System (INIS)

    Guillet, J.; Marcel Tortolano

    2005-01-01

    The increase in the lifetime of the power plants and the ageing of materials require the intervention inside the components to carry out controls and possibly repairs in the event of discovered defects. Within this framework, EDF is investigating the feasibility of robotized repairs of the components and pipes of the main primary coolant system of a nuclear power plant. For several years, EDF R and D has engaged projects whose subject of study is the possibility of repairing components such as the main vessel; the pressurizer or the primary coolant pipes with the help of robots and dedicated tools. INTERVENTIONS INSIDE PRIMARY COOLANT PIPES: Studies undertaken by EDF highlighted that certain zones, particularly in pipe connections, can be affected by thermal fatigue which causes crackling defects or crackings. In anticipation of this phenomenon which would affect primary pipes and to avoid their replacements, EDF R and D has been studying the feasibility of examining and repairing these zones using robots. Robotized repair consists in introducing into the pipe while passing by the vessel, a 6 degrees of freedom manipulator mounted on a mobile carrier. This robot implements and carries out the trajectories of the different processes of repair: - Precise localization of the defects, - Elimination (possibly sampling) of the defects by machining, - Control that the defects were eliminated, - Weld metal buildup if the repair cavity is too deep, - Grinding followed by a new control of the surface. These studies and tests were conducted in the laboratory of EDF R and D in Chatou. The sequence of operations included machining by grinding and milling, profilometric control, dye penetrant testing, TIG welding and ultrasonic examinations. The results of the tests, executed on full scale models of components, are satisfactory and show the advantages of robotics compared with classical methods. ROBOTIZED INTERVENTIONS IN THE REACTOR VESSEL: Another difficult issue is the

  7. Analytical study on coolant temperature of several leak flows in the experimental VHTr core

    International Nuclear Information System (INIS)

    Fumizawa, Motoh; Arai, Taketoshi; Miyamoto, Yoshiaki

    1982-08-01

    This report describes heat transfer analysis of several leak flows which bypass main coolant flow path in the experimental VHTR core. The analysis contains the leak flow at permanent reflectors, replaceable reflectors and gaps between fuel columns. The summary of the results are as follows: (1) the temperature of the leak flow gas increases up to the surface temperature of permanent reflectors, (2) the gas temperature at replaceable reflectors increases at least 40 0 C in case of the worst analytical condition, (3) the gas temperature increases remarkably with decreasing equivalent diameter which is changed by the angle of bevel edge of the reflector, (4) while the gas temperature is low at the upper part of the fuel element, the temperature increases rapidly when it flow down along the gap of the fuel columns. (author)

  8. Experimental investigations of pressure and temperature loads on a containment after a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Kanzleiter, T.F.

    1976-01-01

    For the design of an LWR containment one of the important conditions to be considered is the rapid rise of internal pressure and temperature caused by a loss-of-coolant accident (LOCA) of the primary cooling system. The phenomena occurring within a containment during a LOCA are currently investigated through experiments with a model containment. The experimental results are compared with the results of model calculations to improve the calculational methods. An experimental facility was built, consisting of a primary coolant circuit and a special model containment. The model containment, built in conventional reinforced concrete, has a diameter of 12 m, a height of 12.5 m, a capacity of 580 m 3 and is designed for an internal pressure of 6 bar. The interior is divided by concrete walls and removable partitions into several compartments, which are interconnected through openings with adjustable cross sections. By exchanging the removable partitions it is possible to modify the interior of the containment and to simulate different containment shapes. For the first experiments a PWR configuration with nine compartments has been installed. The model scales of the compartment volumes and the overflow areas are about 1 : 64 compared to the 1200 MW PWR plant Biblis A. (Auth.)

  9. Radiation leakage monitoring method and device from primary to secondary coolant systems in nuclear reactor

    International Nuclear Information System (INIS)

    Tajiri, Yoshiaki; Umehara, Toshihiro; Yamada, Masataka.

    1993-01-01

    The present invention monitors radiation leaked from any one of primary cooling systems to secondary cooling systems in a plurality of steam generators. That is, radiation monitoring means each corresponding to steam each generators are disposed to the upstream of a position where main steam pipes are joined. With such a constitution, since the detection object of each of radiation monitoring means is secondary coolants before mixing with secondary coolants of other secondary loops or dilution, lowering of detection accuracy can be avoided. Except for the abnormal case, that is, a case neither of radiation leakage nor of background change, the device is adapted as a convenient measuring system only with calculation performance. Once abnormality occurs, a loop having a value exceeding a standard value is identified by a single channel analyzer function. The amount of radiation leakage from the steam generator belonging to the specified loop is monitored quantitatively by a multichannel analyzer function. According to the method of the present invention, since specific spectrum analysis is conducted upon occurrence of abnormality, presence of radiation leakage and the scale thereof can be judged rapidly. (I.S.)

  10. Development of Hplc Techniques for the Analysis of Trace Metal Species in the Primary Coolant of a Pressurised Water Reactor.

    Science.gov (United States)

    Barron, Keiron Robert Philip

    Available from UMI in association with The British Library. The need to monitor corrosion products in the primary circuit of a pressurised water reactor (PWR), at a concentration of 10pg ml^{-1} is discussed. A review of trace and ultra-trace metal analysis, relevant to the specific requirements imposed by primary coolant chemistry, indicated that high performance liquid chromatography (HPLC), coupled with preconcentration of sample was an ideal technique. A HPLC system was developed to determine trace metal species in simulated PWR primary coolant. In order to achieve the desired detection limit an on-line preconcentration system had to be developed. Separations were performed on Aminex A9 and Benson BC-X10 analytical columns. Detection was by post column reaction with Eriochrome Black T and Calmagite Linear calibrations of 2.5-100ng of cobalt (the main species of interest), were achieved using up to 200ml samples. The detection limit for a 200ml sample was 10pg ml^{-1}. In order to achieve the desired aim of on-line collection of species at 300^circ C, the use of inorganic ion-exchangers is essential. A novel application, utilising the attractive features of the inorganic ion-exchangers titanium dioxide, zirconium dioxide, zirconium arsenophosphate and pore controlled glass beads, was developed for the preconcentration of trace metal species at temperature and pressure. The performance of these exchangers, at ambient and 300^ circC was assessed by their inclusion in the developed analytical system and by the use of radioisotopes. The particular emphasis during the development has been upon accuracy, reproducibility of recovery, stability of reagents and system contamination, studied by the use of radioisotopes and response to post column reagents. This study in conjunction with work carried out at Winfrith, resulted in a monitoring system that could follow changes in coolant chemistry, on deposition and release of metal species in simulated PWR water loops. On

  11. Liquid metal cooled nuclear power plant with direct heat transfer from the primary coolant to the working medium

    International Nuclear Information System (INIS)

    Hahn, G.

    1974-01-01

    The cooling systems of the sodium-cooled reactor are entirely inside a containment. The heat transfer from the primary to the secondary coolant - i.e. water - is done in heat exchangers with three-layer tubes. As there is no component cooling heat exchanger, it is advantageous that the layers that are in touch with the primary coolant form part of the wall of the containment. An emergency cooling system inside the containment is also made of three-layer tubes. The tubes of the primary loops have the shape of loops, helices, and spirals surrounding the reactor tank or a biological shield. Between the tubes and the safety wall there are maintenance areas which are accessible from the outside. The three-layer construction prevents a reaction of leaked-out or evaporated sodium with the secondary coolant. (DG) [de

  12. Continuous analysis of radioiodine isotopes in the primary coolant of NPP Paks, Hungary

    International Nuclear Information System (INIS)

    Erdoes, E.; Soos, J.; Vincze, A.; Zsille, O.; Gujgiczer, A.; Solymosi, J.; Pinter, T.

    1998-01-01

    The radioiodine analyser has been installed at the Paks-3 reactor unit. The analyser is based on an efficient and simple method of radioiodine separation: the iodine compound is converted to elementary iodine quantitatively by oxidation with potassium iodate in acid medium. Owing to its volatility, iodine is evaporated quantitatively from the primary coolant (desorption) using air flow. The air is bubbled through a solution of a reducer, and iodine is absorbed in a form which is ready for measurement. A simple NaI(Tl) detector is used for the measurement of gamma spectra. The system is controlled and data are processed by a computer. The analyser displays activity concentration data of the five iodine isotopes periodically every 15 minutes. (M.D.)

  13. The empirical intensity of PWR primary coolant pumps failure and repair

    International Nuclear Information System (INIS)

    Milivojevicj, S.; Riznicj, J.

    1988-01-01

    The wealth of operating experience concerning PWR type and nuclear reactors that has been regularly monitored and systematically processes since 1971, enabled an analysis of the PWR primary coolant pumps operation. Failure intensity α and repair intensity μ of the pump during its working life were calculated, as these values are necessary in order to determine the reliability and availability of the pump as the basis for analyzing its effect on the safety and efficiency of the nuclear power plant. The trend of failure intensity α follows the theoretically expected changes in α over time, and this is around 10 -5 in the majority of life-time. Repair intensity μ indicates a slow rise during life-time, i.e. its faster return to operation. (author).7 refs.; 5 figs

  14. Reactor Primary Coolant System Pipe Rupture Study. Progress report No. 32, July--December 1974

    International Nuclear Information System (INIS)

    1975-03-01

    The pipe rupture study is designed to extend the understanding of failure-causing mechanisms and to provide improved capability for evaluating reactor piping systems to minimize the probability of failures. Following a detailed review to determine the effort most needed to improve nuclear system piping (Phase I), analytical and experimental efforts (Phase II) were started in 1965. This progress report summarizes the recent accomplishments of a broad program in (a) basic fatigue studies focused on Elastic/Plastic ASME Code Design Rules, (b) at-reactor tests of the effect of primary coolant environment on the fatigue behavior of piping steels, and (c) studies directed at quantifying weld sensitization in T-304 stainless steel. (auth)

  15. Reverse osmosis for the recovery of boric acid from the primary coolant at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bártová, Šárka, E-mail: sarka.bartova@cvrez.cz [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic); Kůs, Pavel [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic); Skala, Martin [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic); University of Chemical Technology, Prague, Department of Chemical Engineering, Technická 5, Prague 166 28 (Czech Republic); Vonková, Kateřina [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic)

    2016-04-15

    Highlights: • RO membranes tested for boric acid recovery from primary coolant of nuclear power plants. • Scanning electron microscopy was used for the characterization of the membranes. • Lab scale experiments performed under various operation conditions. • We proposed configuration of and operation conditions for RO unit in nuclear power plant. - Abstract: At nuclear power plants (NPP), evaporators are used for the treatment of primary coolant and other liquid radioactive waste containing H{sub 3}BO{sub 3}. Because the operation of evaporators is expensive, a number of more cost-effective alternatives has been considered, one of which is reverse osmosis. We tested reverse osmosis modules from several manufactures on a batch laboratory apparatus. SEM images of the tested membranes were taken to distinguish the differences between the membranes. Water permeability through membranes was evaluated from the experiments with pure water. The experiments were performed with feed solutions containing various concentrations of H{sub 3}BO{sub 3} in a range commonly occurring in radioactive waste. The pH of the feed solutions ranged from 5.2 to 11.2. Our results confirmed that the pH of the feed solution plays the most important role in membrane separation efficiency of H{sub 3}BO{sub 3}. Certain modifications to the pH of the feed solution were needed to enable the tested membranes to concentrate the H{sub 3}BO{sub 3} in the retentate stream, separate from the pure water in the permeate stream. On this basis, we propose the configuration of and operational conditions for a reverse osmosis unit at NPP.

  16. Compensation of equipment housing elements of reactor units with heavy liquid metal coolant vessel temperature deformations

    International Nuclear Information System (INIS)

    Lebedevich, V.; Ahmetshin, M.; Mendes, D.; Kaveshnikov, S.; Vinogradov, A.

    2015-01-01

    In Russia a lot of different versions of fast reactors (FRs) are investigated and one of these is FR cooled by liquid lead and liquid lead-bismuth alloy. In this poster we are interested by FR with concrete vessel; its components are placed in cavities inside the vessel, and connected by a channel system. During the installation the equipment components are placed in several equipment housings. Between these housings there are cavities with coolant. The alignment of the housings should be provided. It can be broken by irregular concrete vessel heating during FR starting or other transition regimes. Our goal is to suggest a list of designing steps to compensate temperature deformations of equipment housing elements. A simplified model of equipment housing was suggested. It consists of two cylinders - tunnels in the concrete vessel, separated by a cavity filled by coolant and inert gas. The bottom part was considered as heated to 420 C. degrees while in the top part temperature decreased to 45 C. degrees (on the concrete surface). According to this data, results show that temperature gradient leads to a concrete layer dislocation of about 12.5 mm, which can lead to damage and breaking alignment. We propose the following solution to compensate for temperature deformation: -) to chisel out part of the upper top of the insulating concrete; -) to install an adequate misalignment of equipment housing elements preliminary; and -) to use a torsion system like a piston-type device for providing additional strength in order to compensate deformation and vibrations

  17. Thermodynamic Assessment of Silica Precipitation in the Primary Coolant of PWR Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dooho; Kwon, Hyukchul; Sung, Kibang [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    Increasing silica concentration has been observed in many plants' reactor coolant system (RCS) following a refueling outage as a result of the cross contamination between the refueling cavity and the spent fuel pool. To have a better understanding of the role of silica on the fuel crud deposition, MULTEQ (MULTiple Equilibrium) calculations were performed in this study to predict high-temperature aqueous and precipitated species such as aluminum, calcium, magnesium, zinc and silica. This thermodynamic study implies that all hardness cations such as aluminum, calcium and magnesium already have precipitates with boron under current normal plant operating conditions. However, In-core boiling can increase the amount of precipitates with silica, such as CaB{sub 2}O{sub 4} and CaMg(SiO{sub 3}){sub 2}. For all cases modeled, a 1 ppm silica concentration will not result in precipitation of SiO{sub 2}.

  18. Formation and hydraulic effects of deposits in high temperature sodium coolant systems

    International Nuclear Information System (INIS)

    Yunker, W.

    1976-01-01

    Deposition of sodium impurities in the high temperature (600 0 C), high flow (Reynolds Number approximately equal to 8 x 10 4 ) regions of a sodium coolant circuit is being studied to determine its possible hydraulic effects. Increases in flow impedance (pressure drop/volume flow 2 ) of up to 30 percent have been detected in an annular flow sensor. The apparatus and preliminary results of these tests are presented. Continuing tests are to specifically identify the materials involved and the system conditions under which the formations occur

  19. Babcock and Wilcox revisions to CONTEMPT, computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Hsii, Y.H.

    1975-01-01

    The CONTEMPT computer program predicts the pressure-temperature response of a single-volume reactor building to a loss-of-coolant accident. The analytical model used for the program is described. CONTEMPT assumes that the loss-of-coolant accident can be separated into two phases; the primary system blowdown and reactor building pressurization. The results of the blowdown analysis serve as the boundary conditions and are input to the CONTEMPT program. Thus, the containment model is only concerned with the pressure and temperature in the reactor building and the temperature distribution through the reactor building structures. The program also calculates building leakage and the effects of engineered safety features such as reactor building sprays, decay heat coolers, sump coolers, etc. 11 references. (U.S.)

  20. IEA-R1 primary and secondary coolant piping systems coupled stress analysis

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A.; Mattar Neto, Miguel

    2013-01-01

    The aim of this work is to perform the stress analysis of a coupled primary and secondary piping system of the IEA-R1 based on tridimensional model, taking into account the as built conditions. The nuclear research reactor IEA-R1 is a pool type reactor projected by Babcox-Willcox, which is operated by IPEN since 1957. The operation to 5 MW power limit was only possible after the conduction of life management and modernization programs in the last two decades. In these programs the components of the coolant systems, which are responsible for the water circulation into the reactor core to remove the heat generated inside it, were almost totally refurbished. The changes in the primary and secondary systems, mainly the replacement of pump and heat-exchanger, implied in piping layout modifications, and, therefore, the stress condition of the piping systems had to be reanalyzed. In this paper the structural stress assessment of the coupled primary and secondary piping systems is presented and the final results are discussed. (author)

  1. Experimental and numerical study of hydrodynamics of flow-accelerated corrosion in CANDU primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Supa-Amornkul, S

    2006-07-01

    In CANDU-6 reactors, the pressurised high-temperature coolant flows through 380 fuel channels passing horizontally through the core. Each end of a fuel channel has a stainless steel annular end-fitting connected to a carbon steel feeder pipe. The outlet coolant, which is at 310{sup o}C with up to 0.30 steam voidage, turns through 90{sup o} as it passes from flow in the annular end-fitting to pipe flow in the feeder via a Grayloc connector. Since 1996, several CANDU stations reported excessive corrosion of their outlet feeder pipes, especially over the first metre, which consists of single or double bends. Early studies related the attack to the hydrodynamics of the coolant and verified that it was a type of flow-accelerated corrosion (FAC). Local shear stress, which is believed to be one of the important factors contributing to FAC, was approximated in the studies with standard empirical correlations. In order to understand the hydrodynamics of the coolant in the outlet feeders, flow-visualisation studies were done at AECL and UNB. At AECL, the observations were confined to a transparent simulation of an outlet feeder bend but at UNB a full-scale transparent test section simulating the geometry and orientation of an outlet feeder bend with its upstream annular end-fitting was fabricated. The feeder consisted of a 54 mm (inside diameter) acrylic pipe with a 73{sup o} bend, connected to an acrylic simulation of a Grayloc flanged fitting and annular end-fitting. The annular end-fitting consisted of an inner pipe, 110 mm outside diameter, and an outer pipe, 150 mm inside diameter, both 1.907 m long. The tests were performed with water and air at atmospheric pressure and room temperature. The maximum water volumetric flow rate was 0.019 m{sup 3}/s and the volume fraction of air varied from 0.05 to 0.56. In characterizing the flow in the UNB study, particular attention was paid to the patterns at the inside of the bend, where a CFD (computational fluid dynamics) code

  2. Experimental and numerical study of hydrodynamics of flow-accelerated corrosion in CANDU primary coolant

    International Nuclear Information System (INIS)

    Supa-Amornkul, S.

    2006-01-01

    In CANDU-6 reactors, the pressurised high-temperature coolant flows through 380 fuel channels passing horizontally through the core. Each end of a fuel channel has a stainless steel annular end-fitting connected to a carbon steel feeder pipe. The outlet coolant, which is at 310 o C with up to 0.30 steam voidage, turns through 90 o as it passes from flow in the annular end-fitting to pipe flow in the feeder via a Grayloc connector. Since 1996, several CANDU stations reported excessive corrosion of their outlet feeder pipes, especially over the first metre, which consists of single or double bends. Early studies related the attack to the hydrodynamics of the coolant and verified that it was a type of flow-accelerated corrosion (FAC). Local shear stress, which is believed to be one of the important factors contributing to FAC, was approximated in the studies with standard empirical correlations. In order to understand the hydrodynamics of the coolant in the outlet feeders, flow-visualisation studies were done at AECL and UNB. At AECL, the observations were confined to a transparent simulation of an outlet feeder bend but at UNB a full-scale transparent test section simulating the geometry and orientation of an outlet feeder bend with its upstream annular end-fitting was fabricated. The feeder consisted of a 54 mm (inside diameter) acrylic pipe with a 73 o bend, connected to an acrylic simulation of a Grayloc flanged fitting and annular end-fitting. The annular end-fitting consisted of an inner pipe, 110 mm outside diameter, and an outer pipe, 150 mm inside diameter, both 1.907 m long. The tests were performed with water and air at atmospheric pressure and room temperature. The maximum water volumetric flow rate was 0.019 m 3 /s and the volume fraction of air varied from 0.05 to 0.56. In characterizing the flow in the UNB study, particular attention was paid to the patterns at the inside of the bend, where a CFD (computational fluid dynamics) code - Fluent 6.1- had

  3. Phenomenology and modeling of particulate corrosion product behavior in Hanford N Reactor primary coolant

    International Nuclear Information System (INIS)

    Bechtold, D.B.

    1983-01-01

    The levels and composition of filterable corrosion products in the Hanford N Reactor Primary Loop are measurable by filtration. The suspended crud level has ranged from 0.0005 ppM to 6.482 ppM with a median 0.050 ppM. The composition approximates magnetite. The particle size distribution has been found in 31 cases to be uniformly a log normal distribution with a count median ranging from 1.10 to 2.31 microns with a median of 1.81 microns, and the geometric standard deviation ranging from 1.60 to 2.34 with a median of 1.84. An auto-correcting inline turbidimeter was found to respond to linearly to suspended crud levels over a range 0.05 to at least 6.5 ppM by direct comparison with filter sample weights. Cause of crud bursts in the primary loop were found to be power decreases. The crud transients associated with a reactor power drop, several reactor shutdowns, and several reactor startups could be modeled consistently with each other using a simple stirred-tank, first order exchange model of particulate between makeup, coolant, letdown, and loosely adherent crud on pipe walls. Over 3/10 of the average steady running particulate crud level could be accounted for by magnetically filterable particulate in the makeup feed. A simulation model of particulate transport has been coded in FORTRAN

  4. The application of transition metal ion chromatography to the determination of elemental and radiochemical species in PWR primary coolant

    International Nuclear Information System (INIS)

    Bridle, D.A.; Brown, G.R.; Johnson, P.A.V.

    1992-01-01

    The accurate determination of both elemental and radiochemical transition metal corrosion products, particularly cobalt and nickel, in PWR coolants is necessary if the transport mechanisms and their role in the development of out-of-core radiation fields are to be fully understood. AEA Technology, Winfrith, has collaborated for several years with a number of PWR utilities in Europe, developing advanced sampling and analytical techniques for the determination of both soluble and insoluble corrosion products in primary coolant. The design and installation of continuously flowing isokinetic capillary modifications to the existing sampling systems has been shown to be an effective method of providing a low, but representative, sample flow from high pressure systems for on-line determination of corrosion product species. Transition metal ion chromatography coupled with gamma-spectrometry has been used to determine both insoluble and soluble elemental and radiochemical species in reactor coolant, with particular attention being given to the determination of soluble elemental cobalt at levels as low as 1 ng per kg. Soluble species were determined directly following their concentration from up to 1 litre of coolant. Insoluble species collected on 0.45 micron filter membranes, following filtration of up to 1500 litres of coolant, were solubilised by fusion with potassium hydrogen sulphate before the application of ion chromatography. In each case the eluant from the chromatographic column was collected and the radionuclides determined by gamma-spectrometry

  5. Computer programmes of the Power Research Institute for the analysis of processes in the primary coolant circuit and in the containment of a WWER plant in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Misak, J.

    1976-01-01

    A brief description is given of computer programmes for the analysis of loss-of-coolant accidents (LOCA) in WWER type reactors. The LENKA programme is intended for the thermal and hydraulic analysis of the consequences of such accidents in the primary coolant circuit. The SICHTA programme is intended for the detailed calculation of the time dependence of the axial and radial distribution of heat in fuel rods from steady-state to the flooding of the core. CHEMLOC is intended for the analysis of the heat history of the core and the extent of chemical reactions in LOCA when the emergency core cooling system is not operating. The TRACO I is intended for the analysis of the initial stage of the transient process in a full-pressure containment after LOCA (the computation of the time and spatial dependences of pressures and temperatures). TRACO III is intended for the computation of the long-term time dependence of pressure and temperature in the full-pressure containment after LOCA. (B.S.)

  6. Thermohydraulic modeling of very high temperature reactors in regimes with loss of coolant using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Uebert G.; Dominguez, Dany S. [Universidade Estadual de Santa Cruz (UESC), Ilh´eus, BA (Brazil). Programa de P´os-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Mazaira, Leorlen Y.R.; Lira, Carlos A.B.O. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Hernandez, Carlos R.G., E-mail: uebert.gmoreira@gmail.com, E-mail: dsdominguez@gmail.com, E-mail: leored1984@gmail.com, E-mail: cabol@ufpe.br, E-mail: cgh@instec.cu [Instituto Superior de Tecnologas y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    The nuclear energy is a good alternative to meet the continuous increase in world energy demand. In this perspective, VHTRs (Very High Temperature Reactors) are serious candidates for energy generation due to its inherently safe performance, low power density and high conversion efficiency. However, the viability of these reactors depends on an efficient safety system in the operation of nuclear plants. The HTR (High Temperature Reactor)-10 model, an experimental reactor of the pebble bed type, is used as a case study in this work to perform the thermohydraulic simulation. Due to the complex patterns flow that appear in the pebble bed reactor core, and advances in computational capacity, CFD (Computational Fluid Dynamics) techniques are used to simulate these reactors. A realistic approach is adopted to simulate the central annular column of the reactor core, which each pebble bed element is modeled in detail. As geometrical model of the fuel elements was selected the BCC (Body Centered Cubic) arrangement. Previous works indicate this arrangement as the configuration that obtain higher fuel temperatures inside the core. Parameters considered for reactor design are available in the technical report of benchmark issues by IAEA (TECDOC-1694). Among the results obtained, we obtained the temperature profiles with different mass flow rates for the coolant. In general, the temperature distributions calculated are consistent with phenomenological behaviour. Even without consider the reactivity changes to reduce the reactor power or other safety procedures, the maximum temperatures do not exceed the recommended limits for fuel elements. (author)

  7. Thermohydraulic modeling of very high temperature reactors in regimes with loss of coolant using CFD

    International Nuclear Information System (INIS)

    Moreira, Uebert G.; Dominguez, Dany S.

    2017-01-01

    The nuclear energy is a good alternative to meet the continuous increase in world energy demand. In this perspective, VHTRs (Very High Temperature Reactors) are serious candidates for energy generation due to its inherently safe performance, low power density and high conversion efficiency. However, the viability of these reactors depends on an efficient safety system in the operation of nuclear plants. The HTR (High Temperature Reactor)-10 model, an experimental reactor of the pebble bed type, is used as a case study in this work to perform the thermohydraulic simulation. Due to the complex patterns flow that appear in the pebble bed reactor core, and advances in computational capacity, CFD (Computational Fluid Dynamics) techniques are used to simulate these reactors. A realistic approach is adopted to simulate the central annular column of the reactor core, which each pebble bed element is modeled in detail. As geometrical model of the fuel elements was selected the BCC (Body Centered Cubic) arrangement. Previous works indicate this arrangement as the configuration that obtain higher fuel temperatures inside the core. Parameters considered for reactor design are available in the technical report of benchmark issues by IAEA (TECDOC-1694). Among the results obtained, we obtained the temperature profiles with different mass flow rates for the coolant. In general, the temperature distributions calculated are consistent with phenomenological behaviour. Even without consider the reactivity changes to reduce the reactor power or other safety procedures, the maximum temperatures do not exceed the recommended limits for fuel elements. (author)

  8. Babcock and Wilcox revisions to CONTEMPT, computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Hsii, Y.H.

    1976-06-01

    The CONTEMPT computer program predicts the pressure-temperature response of a single-volume reactor building to a loss-of-coolant accident. The report describes the analytical model used for the program. CONTEMPT assumes that the loss-of-coolant accident can be separated into two phases; the primary system blowdown and reactor building pressurization. The results of the blowdown analysis serve as the boundary conditions and are input to the CONTEMPT program. Thus, the containment model is only concerned with the pressure and temperature in the reactor building and the temperature distribution through the reactor building structures. The user is required to input the description of the discharge of coolant, the boiling of residual water by reactor decay heat, the superheating of steam passing through the core, and metal-water reactions. The reactor building is separated into liquid and vapor regions. Each region is in thermal equilibrium itself, but the two may not be in thermal equilibrium; the liquid and gaseous regions may have different temperatures. The reactor building is represented as consisting of several heat-conducting structures whose thermal behavior can be described by the one-dimensional multi-region heat conduction equation. The program also calculates building leakage and the effects of engineered safety features such as reactor building sprays, decay heat coolers, sump coolers, etc

  9. Correlation of analysis with high level vibration test results for primary coolant piping

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.; Costello, J.F.

    1992-01-01

    Dynamic tests on a modified 1/2.5-scale model of pressurized water reactor (PWR) primary coolant piping were performed using a large shaking table at Tadotsu, Japan. The High Level Vibration Test (HLVT) program was part of a cooperative study between the United States (Nuclear Regulatory Commission/Brookhaven National Laboratory, NRC/BNL) and Japan (Ministry of International Trade and Industry/Nuclear Power Engineering Center). During the test program, the excitation level of each test run was gradually increased up to the limit of the shaking table and significant plastic strains, as well as cracking, were induced in the piping. To fully utilize the test results, NRC/BNL sponsored a project to develop corresponding analytical predictions for the nonlinear dynamic response of the piping for selected test runs. The analyses were performed using both simplified and detailed approaches. The simplified approaches utilize a linear solution and an approximate formulation for nonlinear dynamic effects such as the use of a deamplification factor. The detailed analyses were performed using available nonlinear finite element computer codes, including the MARC, ABAQUS, ADINA and WECAN codes. A comparison of various analysis techniques with the test results shows a higher prediction error in the detailed strain values in the overall response values. A summary of the correlation analyses was presented before the BNL. This paper presents a detailed description of the various analysis results and additional comparisons with test results

  10. Model for cobalt 60/58 deposition on primary coolant piping in a boiling water reactor

    International Nuclear Information System (INIS)

    Dehollander, W.R.

    1979-01-01

    A first principles model for deposition of radioactive metals into the corrosion films of primary coolant piping is proposed. It is shown that the predominant mechanism is the inclusion of the radioactive species such as Cobalt 60 into the spinel structure of the corrosion film during the act of active corrosion. This deposition can occupy only a defined fraction of the available plus 2 valence sites of the spinel. For cobalt ions, this ratio is roughly 4.6 x 10 -3 of the total iron sites. Since no distinction is made between Cobalt 60, Cobalt 58, and Cobalt 59 in this process, the radioactivity associated with this inclusion is a function of the ratio of the radioactive species to the nonradioactive species in the water causing the corrosion of the pipe metal. The other controlling parameter is the corrosion rate of the pipe material. This can be a function of time, for example, and it shown that freshly descaled metal when exposed to the cobalt containing water can incorporate as much as 10 x 10 -3 cobalt ions per iron atom in the initial corrosion period. This has implications for the problem of decontaminating nuclear reactor piping. Equations and selected observations are presented without reference to any specifically identified reactor or utility, so as to protect any proprietary interest

  11. A thermal analysis computer programme package for the estimation of KANUPP coolant channel flows and outlet header temperature distribution

    International Nuclear Information System (INIS)

    Siddiqui, M.S.

    1992-06-01

    COFTAN is a computer code for actual estimation of flows and temperatures in the coolant channels of a pressure tube heavy water reactor. The code is being used for Candu type reactor with coolant flowing 208 channels. The simulation model first performs the detailed calculation of flux and power distribution based on two groups diffusion theory treatment on a three dimensional mesh and then channel powers, resulting from the summation of eleven bundle powers in each of the 208 channels, are employed to make actual estimation of coolant flows using channel powers and channel outlet temperature monitored by digital computers. The code by using the design flows in individual channels and applying a correction factor based on control room monitored flows in eight selected channels, can also provide a reserve computational tool of estimating individual channel outlet temperatures, thus providing an alternate arrangements for checking Rads performance. 42 figs. (Orig./A.B.)

  12. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 3: nonseismic stress analysis. Final report

    International Nuclear Information System (INIS)

    Chan, A.L.; Curtis, D.J.; Rybicki, E.F.; Lu, S.C.

    1981-08-01

    This volume describes the analyses used to evaluate stresses due to loads other than seismic excitations in the primary coolant loop piping of a selected four-loop pressurized water reactor nuclear power station. The results of the analyses are used as input to a simulation procedure for predicting the probability of pipe fracture in the primary coolant system. Sources of stresses considered in the analyses are pressure, dead weight, thermal expansion, thermal gradients through the pipe wall, residual welding, and mechanical vibrations. Pressure and thermal transients arising from plant operations are best estimates and are based on actual plant operation records supplemented by specified plant design conditions. Stresses due to dead weight and thermal expansion are computed from a three-dimensional finite element model that uses a combination of pipe, truss, and beam elements to represent the reactor coolant loop piping, reactor pressure vessel, reactor coolant pumps, steam generators, and the pressurizer. Stresses due to pressure and thermal gradients are obtained by closed-form solutions. Calculations of residual stresses account for the actual heat impact, welding speed, weld preparation geometry, and pre- and post-heat treatments. Vibrational stresses due to pump operation are estimated by a dynamic analysis using existing measurements of pump vibrations

  13. Refurbishment of primary coolant pump stuffing boxes for RAPS-1,2

    International Nuclear Information System (INIS)

    Rshikesan, P.B.; Shirolkar, K.M.; Ahmad, S.N.

    2006-01-01

    Primary coolant pumps (PCPs) are the most critical equipment in PHWR and stuffing box is one of the critical parts of the PCP. The stuffing box houses the mechanical seals, radial bearings, throttle bushings and stationary part of wearing ring. During overhauling of PCPs it was observed that the cracks are developing on the inside face of the stuffing box and at the bolt holes where the lower bearing housing is fixed. Since consequence of failure of stuffing box will be a break in primary system boundary a detailed investigation was carried out to find out cause of failure. An immediate procurement of these from OEM (Original Equipment Manufacturer) was not feasible and indigenous procurement of such a large and precision-machined PCP component would have called for extensive development work. Under the circumstances, the only immediate option left was to repair and re-use these failed stuffing boxes. However, repair of these stuffing boxes was considered to be very difficult job as weld repair could cause distortion and any other option was not found suitable. Since the industry was not geared up to produce such components, a decision to carry out a heavy weld build up after removing the cracks up to root, was taken after considering various other options. Major weld repair and subsequent machining was carried out successfully on four stuffing boxes and subsequently these have been put in to service. The paper covers the investigations done, various options considered, how the weld repairs were carried out and the salient features of the indigenous development taken up. (author)

  14. Liquid level measurement on coolant pipeline using Raman distributed temperature sensor

    International Nuclear Information System (INIS)

    Kasinathan, M.; Sosamma, S.; Babu Rao, C.; Murali, N.; Jayakumar, T.

    2011-01-01

    Optical fibre based Raman Distributed Temperature Sensor (RDTS) has been widely used for temperature monitoring in oil pipe line, power cable and environmental monitoring. Recently it has gained importance in nuclear reactor owing to its advantages like continuous, distributed temperature monitoring and immunity from electromagnetic interference. It is important to monitor temperature based level measurement in sodium capacities and in coolant pipelines for Fast Breeder Reactor (FBR). This particular application is used for filling and draining sodium in storage tank of sodium circuits of Fast breeder reactor. There are different conventional methods to find out the sodium level in the storage tank of sodium cooled reactors. They are continuous level measurement and discontinuous level measurement. For continuous level measurement, mutual inductance type level probes are used. The disadvantage of using this method is it needs a temperature compensation circuit. For discontinuous level measurement, resistance type discontinuous level probe and mutual inductance type discontinuous level probe are used. In resistance type discontinuous level probe, each level needs a separate probe. To overcome these disadvantages, RDTS is used for level measurement based distributed temperature from optical fibre as sensor. The feasibility of using RDTS for measurement of temperature based level measurement sensor is studied using a specially designed test set-up and using hot water, instead of sodium. The test set-up consist of vertically erected Stainless Steel (SS) pipe of length 2m and diameter 10cm, with provision for filling and draining out the liquid. Bare graded index multimode fibre is laid straight along the length of the of the SS pipe. The SS pipe is filled with hot water at various levels. The hot water in the SS pipe is maintained at constant temperature by insulating the SS pipe. The temperature profile of the hot water at various levels is measured using RDTS. The

  15. Process and kinetics of the fundamental radiation-electrochemical reactions in the primary coolant loop of nuclear reactors

    International Nuclear Information System (INIS)

    Kozomara-Maic, S.

    1987-06-01

    In spite of the rather broad title of this report, its major part is devoted to the corrosion problems at the RA reactor, i.e. causes and consequences of the reactor shutdown in 1979 and 1982. Some problems of reactor chemistry are pointed out because they are significant for future reactor operation. The final conclusion of this report is that corrosion processes in the primary coolant circuit of the nuclear reactor are specific and that radiation effects cannot be excluded when processes and reaction kinetics are investigated. Knowledge about the kinetics of all the chemical reactions occurring in the primary coolant loop are of crucial significance for safe and economical reactor operation [sr

  16. Assessment of the heat carrier movement in the primary coolant circuit by its own momentum

    International Nuclear Information System (INIS)

    Kadalev, Stoyan

    2014-01-01

    Highlights: • We model the heat carrier flow alteration after the circulation pump(s) stop. • The general mathematical model used is described in details. • The model is adapted and applied to a particular example research reactor. • Assessment is presented in detail, step by step with references. • The information provided is enough to apply calculations to another facility. - Abstract: In the presented paper is considered the approach to an assessment of the heat carrier flow alteration in the primary water–water reactor coolant circuit after the circulation pump(s) stop. This topic is highly relevant trough advanced and increased nuclear safety requirements because such a process is observed in case of black-out accident or damaged pump(s). The general mathematical model used is described; enabling preparation of this evaluation adapted and applied to a particular example facility namely a pool type research reactor. The factors influencing to the heat carrier movement by its own momentum are examined. The evaluation measures and includes the factors influencing the heat carrier flow rate from the moment the pump(s) stops down to a negligible value. Assessment is presented in detail, step by step and where needed with references to specific data and/or formulae from reference books to allow repetition of the calculations and/or apply to another facility. The calculations are presented utilizing all necessary data according to the design and technological documentation. No account is given to the pressure of the natural circulation caused by the residual heat generation in the fuel after the reactor scram system extinction of the fission reaction

  17. Contribution to the optimization of the chemical and radiochemical purification of pressurized water nuclear power plants primary coolant

    International Nuclear Information System (INIS)

    Elain, L.

    2004-12-01

    The primary coolant of pressurised water reactors is permanently purified thanks to a device, composed of filters and the demineralizers furnished with ion exchange resins (IER), located in the chemical and volume control system (CVCS). The study of the retention mechanisms of the radio-contaminants by the IER implies, initially, to know the speciation of the primary coolant percolant through the demineralizers. Calculations of theoretical speciation of the primary coolant were carried out on the basis of known composition of the primary coolant and thanks to the use of an adapted chemical speciation code. A complementary study, dedicated to silver behaviour, considered badly extracted, suggests metallic aggregates existence generated by the radiolytic reduction of the Ag + ions. An analysis of the purification curves of the elements Ni, Fe, Co, Cr, Mn, Sb and their principal radionuclides, relating to the cold shutdown of Fessenheim 1-cycle 20 and Tricastin 2-cycle 21, was carried out, in the light of a model based on the concept of a coupling well term - source term. Then, a thermodynamic modelling of ion exchange phenomena in column was established. The formation of the permutation front and the enrichment zones planned was validated by frontal analysis experiments of synthetic fluids (mixtures of Ni(B(OH) 4 ) 2 , LiB(OH) 4 and AgB(OH) 4 in medium B(OH) 3 )), and of real fluid during the putting into service of the device mini-CVCS at the time of Tricastin 2 cold shutdown. New tools are thus proposed, opening the way with an optimised management of demineralizers and a more complete interpretation of the available experience feedback. (author)

  18. Coolant leakage detection device

    International Nuclear Information System (INIS)

    Ito, Takao.

    1983-01-01

    Purpose: To surely detect the coolant leakage at a time when the leakage amount is still low in the intra-reactor inlet pipeway of FBR type reactor. Constitution: Outside of the intra-reactor inlet piping for introducing coolants at low temperature into a reactor core, an outer closure pipe is furnished. The upper end of the outer closure pipe opens above the liquid level of the coolants in the reactor, and a thermocouple is inserted to the opening of the upper end. In such a structure, if the coolants in the in-reactor piping should leak to the outer closure pipe, coolants over-flows from the opening thereof, at which the thermocouple detects the temperature of the coolants at a low temperature, thereby enabling to detect the leakage of the coolants at a time when it is still low. (Kamimura, M.)

  19. Appropriate zinc addition management into PWR primary coolant after the plant long-term maintenance

    International Nuclear Information System (INIS)

    Hirose, Atsushi; Matsui, Ryo; Imamura, Haruki; Takahashi, Akira; Shimizu, Yuichi; Kogawa, Noritaka; Nagamine, Kunitaka

    2014-01-01

    Zinc addition into the PWR primary coolant is known as an effective method to reduce the radioactivity build up. The reduction effect has been confirmed by actual plant experience of the Genkai Nuclear Power Plant Unit 1 to 4 and the Sendai Nuclear Power Plant Unit 1 to 2 which are operated by Kyushu Electric Power Co. in Japan. Zinc addition is suspended at shut-down, and is resumed after heat up or arrival at full power. In usual maintenance, the period when zinc addition is not applied is short; thus it is considered that suspension of zinc addition does not have practical influence on the corrosion and the radioactivity buildup in the oxide layer of surface for the primary equipment and piping. On the other hand, in case the maintenance period is much longer, the new oxide which does not contain zinc has grown, and then the structure of the oxide layer may be changed. Therefore, it is considered that zinc addition suspension in long-term period has possibilities to deteriorate the dose reduction effect. In order to verify the effect of long-term suspension of zinc addition upon oxide layer, the lab experiment was carried out using TT690 alloy which is the constitution material of the steam generator tubes under the conditions of long-term and the subsequent resuming operations. After the experiment, the specimens were analyzed by IMA and chemical analysis. These measurement results suggest the difference of the oxide layer is little or none between long-term suspension of zinc addition and short-term suspension of zinc suspension. Hence it is considered that influence of long-term maintenance on the oxide layer is small. Furthermore, in this study, in order to evaluate the influence of the suspension of zinc addition in the operation period, specimens of oxide film formed with zinc were carried out the corrosion test in the simulated RCS condition without zinc. These measurement results indicate the effect of reduction of the activity build up will become less

  20. Modeling the transport of hydrogen in the primary coolant of pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Subramanian, H.; Velmurugan, S.; Narasimhan, S.V.; Jain, A.K.; Dash, S.C.

    2008-01-01

    Heavy water (D 2 O) is used in primary heat transport systems of PHWRs. To suppress the radiolysis of heavy water and to control oxygen, hydrogen is added at regular intervals to the primary heat transport system. The added hydrogen finds it way to the heavy water storage tank after passing through the bleed condenser. Owing to the different temperatures and two phase region present in these systems, hydrogen gets redistributed. It is important to know the concentration of dissolved hydrogen in these regions in order to ensure a steady state dissolved hydrogen concentration in the primary system. Different power stations report variations in the frequency and quantity of hydrogen added to achieve the prescribed steady state level. This paper makes an attempt to account for the inventory of hydrogen and model its transport in PHT system. (author)

  1. UO{sub 2} and PuO{sub 2} utilization in high temperature engineering test reactor with helium coolant

    Energy Technology Data Exchange (ETDEWEB)

    Waris, Abdul, E-mail: awaris@fi.itb.ac.id; Novitrian,; Pramuditya, Syeilendra; Su’ud, Zaki [Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia); Aji, Indarta K. [Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia)

    2016-03-11

    High temperature engineering test reactor (HTTR) is one of high temperature gas cooled reactor (HTGR) types which has been developed by Japanese Atomic Energy Research Institute (JAERI). The HTTR is a graphite moderator, helium gas coolant, 30 MW thermal output and 950 °C outlet coolant temperature for high temperature test operation. Original HTTR uses UO{sub 2} fuel. In this study, we have evaluated the use of UO{sub 2} and PuO{sub 2} in form of mixed oxide (MOX) fuel in HTTR. The reactor cell calculation was performed by using SRAC 2002 code, with nuclear data library was derived from JENDL3.2. The result shows that HTTR can obtain its criticality condition if the enrichment of {sup 235}U in loaded fuel is 18.0% or above.

  2. The behaviour of zirconium alloys in Santowax OM organic coolant at high temperatures

    International Nuclear Information System (INIS)

    Sawatzky, A.

    1964-10-01

    Zirconium alloys have been exposed to Santowax OM at temperatures of 320 to 400 o C for times as long as 5000 hours. Short-term experiments (less than 2 weeks) were done in stainless-steel bombs and small out-of-pile loops. The X-7 organic loop in the NRX reactor was used to study long-term oxidation and hydriding both in-flux and out-of-flux. The results obtained lead to several tentative conclusions: Aluminum cladding serves as an effective hydrogen barrier; Considerable protection against hydriding is given by zirconium oxide, provided impurities in the organic are carefully controlled; Hydriding is greatly enhanced by the presence of chlorine in the coolant; and, Hydriding is somewhat enhanced by neutron irradiation. Of considerable significance is the fact that a Zircaloy-4 in-reactor test section of the X-7 loop was exposed to Santowax OM at 320 to 400 o C for more than 5000 hours without excessive hydriding. (author)

  3. Evaluation of the fuel rod integrity in PWR reactors from the spectrometric analysis of the primary coolant

    International Nuclear Information System (INIS)

    Monteiro, Iara Arraes

    1999-02-01

    The main objective of this thesis is to provide a better comprehension of the phenomena involved in the transport of fission products, from the fuel rod to the coolant of a PWR reactor. To achieve this purpose, several steps were followed. Firstly, it was presented a description of the fuel elements and the main mechanisms of fuel rod failure, indicating the most important nuclides and their transport mechanisms. Secondly, taking both the kinetic and diffusion models for the transport of fission products as a basis, a simple analytical and semi-empirical model was developed. This model was also based on theoretical considerations and measurements of coolant's activity, according to internationally adopted methodologies. Several factors are considered in the modelling procedures: intrinsic factors to the reactor itself, factors which depend on the reactor's operational mode, isotope characteristic factors, and factors which depend on the type of rod failure. The model was applied for different reactor's operational parameters in the presence of failed rods. The main conclusions drawn from the analysis of the model's output are relative to the variation on the coolant's water activity with the fuel burnup, the linear operation power and the primary purification rate and to the different behaviour of iodine and noble gases. The model was saturated from a certain failure size and showed to be unable to distinguish between a single big fail and many small ones. (author)

  4. Effect of tungsten-187 in primary coolant on dose rate build-up in Vandellos 2

    International Nuclear Information System (INIS)

    Fernandez Lillo, E.; Llovet, R.; Boronat, M.

    1994-01-01

    The present work proposes a relationship between the Cobalt-60 piping deposited activity and the relatively high levels of Tungsten-187 in the coolant of Vandellos 2. The conclusions of this work can be applicable to other plants, since it proposes a tool to estimate and quantify the contribution of stellite to the generation of Cobalt-60 and the radiation dose build-up. (authors). 7 figs., 6 refs

  5. Mathematical Model-Based Temperature Preparation of Liquid-Propellant Components Cooled by Liquid Nitrogen in the Heat Exchanger with a Coolant

    Directory of Open Access Journals (Sweden)

    S. K. Pavlov

    2014-01-01

    Full Text Available Before fuelling the tanks of missiles, boosters, and spacecraft with liquid-propellant components (LPC their temperature preparation is needed. The missile-system ground equipment performs this operation during prelaunch processing of space-purpose missiles (SPM. Usually, the fuel cooling is necessary to increase its density and provide heat compensation during prelaunch operation of SPM. The fuel temperature control systems (FTCS using different principles of operation and types of coolants are applied for fuel cooling.To determine parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is cooled by liquid nitrogen upon contact heat exchange in the coolant reservoir, a mathematical model of this process and a design technique are necessary. Both allow us to determine design parameters of the cooling system and the required liquid nitrogen reserve to cool LPC to the appropriate temperature.The article presents an overview of foreign and domestic publications on cooling processes research and implementation using cryogenic products such as liquid nitrogen. The article draws a conclusion that it is necessary to determine the parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is liquid nitrogen-cooled upon contact heat exchange in the coolant reservoir allowing to define rational propellant cooling conditions to the specified temperature.The mathematical model describes the set task on the assumption that a heat exchange between the LPC and the coolant in the heat exchanger and with the environment through the walls of tanks and pipelines of circulation loops is quasi-stationary.The obtained curves allow us to calculate temperature changes of LPC and coolant, cooling time and liquid nitrogen consumption, depending on the process parameters such as a flow rate of liquid nitrogen, initial coolant temperature, pump characteristics, thermal

  6. Behaviour of radiation fields in the Spanish PWR by the changes in coolant chemistry and primary system materials

    International Nuclear Information System (INIS)

    Llovet, R.; Fernandez Lillo, E.

    1995-01-01

    The Spanish PWR Owners Group established a program to evaluate the behavior of ex-core radiation fields and discriminate the effects of changes in coolant chemistry and primary system materials. Data from Vandellos, Asco, Almaraz and Trillo NPPs were analyzed Vandellos 2 was chosen as the lead plant and its data were thoroughly studied. The dose-rates evolution could be explained at each plant as a consequence of this sucessful program.Actions derived from the developed knowledge on this field have produced the stabilization or even reduction of radiation fields at these plants

  7. Linear titration plot for the determination of boron in the primary coolant of a pressurized water reactor

    International Nuclear Information System (INIS)

    Midgley, D.; Gatford, C.

    1992-01-01

    A linear titration plot method has been devised for the determination of boron as boric acid in partly neutralized solution, such as occurs in the primary coolant of pressurized water reactors. The total boron and the alkali in the sample are determined simultaneously. Although it is not essential to add mannitol in this method, it is more accurate when the solution is saturated with mannitol. Comparisons are made with other modes of titration: Gran plots, first and second differential potentiometric titrations and indicator titrations. None of these gives the total boron directly in partly neutralized solutions. (author)

  8. Nonlinear dynamic response analysis in piping system for a loss of coolant accident in primary loop of pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Xiwen; He Feng; Hao Pengfei; Wang Xuefang

    2000-01-01

    Based on the elaborate force and moment analysis with characteristics method and control-volume integrating method for the piping system of primary loop under pressurized water reactor' loss of coolant accident (LOCA) conditions, the nonlinear dynamic response of this system is calculated by the updated Lagrangian formulation (ADINA code). The piping system and virtual underpinning are specially processed, the move displacement of the broken pipe with time is accurately acquired, which is very important and useful for the design of piping system and virtual underpinning

  9. Development of fast-burn combustion with elevated coolant temperatures for natural gas engines. Final report, May 1985-May 1990

    Energy Technology Data Exchange (ETDEWEB)

    Bruch, K.L.; Dennis, J.W.

    1990-09-01

    The overall objective of the work was to improve the state of the art in the gas fired spark ignited engine for use in a cogeneration system. Four characteristics were enhanced for cogeneration, namely, Low Pressure Gas Induction, Improved Shaft Thermal Efficiency, Low NOx Emissions, and Increased Jacket Coolant Temperature. Using Taguchi methods and statistical design of experiment methodologies, an engine design evolved that exhibited: The ability to run satisfactorily on supply gas pressure as low as 1.5 psig (goal: 1 psig); A brake specific fuel consumption as low as 6950 Btu/hp-hr (36.6% thermal efficiency) at 2 gm/hp-hr NOx (goal: 7000 acceptable, 6800 excellent with NOx no more than 2 gm/hp-hr); A jacket water coolant system (with oil cooler on the same circuit) temperature of 225 F (goal); and The ability to burn gas with Methane Number as low as 67 (goal).

  10. Analysis of the behaviour of pressure and temperature of the containment of a PWR reactor, submitted to a postulated loss-of-coolant accident

    International Nuclear Information System (INIS)

    Silva, D.E. da; Arrieta, L.A.J.; Costa, J.R.; Camargo, C.; Santos, C.M. dos; Rochedo, E.R.R.

    1979-12-01

    The main purpose of this work is to analyse the pressure and temperature behaviour of the metalic containment of a PWR building, submitted to a postulated loss-of-coolant accident (LOCA) caused by a double-ended rupture in the main line of the primary circuit. The scope of the study was directed to verify the Final Safety Analysis Report (FSAR) results for the integrity of the metalic containment of the Angra I power plant. The highest containment pressure peak for this unit is expected for a break in the suction line of one of the main pumps of the primary coolant. Using the same input data, our results are very similar to those presented in the FSAR which shows a reasonable equivalence between the two analytical models. Using as input data the results of a previous LOCA study at CNEN, which yields to more conservative boundary conditions than those presented by the FSAR, the pressure and temperature peak values determined by our model are quite larger than those presented by the cited Safety Report. (author) [pt

  11. Method for investigation of various iodine species in the primary coolant of the nuclear power plant in Paks

    International Nuclear Information System (INIS)

    Volent, G.; Gimesi, O.; Solymosi, J.

    1996-01-01

    Iodine isotopes formed in the course of fission in nuclear reactors may be present in the primary coolant in different oxidation states, i.e., in different chemical forms. It is important to know the chemical forms and their proportions in order to asses the environmental effect of the emitted iodine and the performance of air filters used in the primary circuit for binding iodine, species, since both depend on the chemical forms in which it is present. Volatile components were separated from water samples taken separately from each block of the nuclear power station by purging with inert gas, then the aerosol, iodine vapour and alkyl iodides were selectively bound on the filter system of the 'KOMBI' sampler. I 3 - , I - , IO - , IO 3 - and IO 4 - left in the aqueous phase after purging were separated by consecutive physical and chemical procedures (extraction, isotope exchange, reduction). The results of the investigations have shown that the water technology used in the Nuclear Power Plant in Paks is appropriate with respect to the radioiodine balance. Iodine was found to be predominant species, and no volatile iodine species were found to be present in the primary coolant. Volatile iodine species sometimes appearing in emissions may be formed from leaching waters due to secondary effects. (author)

  12. Determination of an optimum reactor coolant system average temperature within the licensed operating window

    International Nuclear Information System (INIS)

    Thaulez, F.; Basic, I.; Vrbanic, I.

    2003-01-01

    The Krsko modernization power uprate analyses have been performed in such a way as to cover plant operation in a range of average reactor coolant temperatures (Tavg) of 301.7 deg C to 307.4 deg C, with steam generator tube plugging levels of up to 5%. The upper bound is temporarily restricted to 305.7 deg C, as long as Zirc-4 fuel is present in the core. (It is, however,acceptable to operate at 307.4 deg C with a few Zirc-4 assemblies, if meeting certain conditionsand subjected to a corrosion and rod internal pressure evaluation in the frame of the cyclespecificnuclear core design.) The Tavg optimization method takes into account two effects, that are opposed to each other: the impact of steam pressure on the electrical power output versus the impact of Tavg on the cost of reactor fuel. The positive economical impact of a Tavg increase through the increase in MWe output is around 6 to 8 times higher than the corresponding negative impact on the fuel cost. From this perspective, it is desirable to have Tavg as high as possible. This statement is not affected by a change in the relationship between steam pressure and Tavg level. However, there are also other considerations intervening in the definition of the optimum. This paper discusses the procedure for selection of optimal Tavg for the forthcoming cycle in relation to the impacts of change in Tavg level and/or variations of the steam pressure versus Tavg relationship. (author)

  13. Theoretical and experimental studies on bellows type expansion joints behaviour of Chinon 3 primary coolant system

    International Nuclear Information System (INIS)

    Vrillon, B.; Jeanpierre, F.; Copin, A.; Gregoire, J.P.

    1975-01-01

    The vibration study of the bellows was performed in two stages. A series of vibration tests was performed on a real bellow joint. By comparing the experimental results with calculations using the finite elements method for revolution shells it was possible to qualify the representation of the waves and reinforcement rings. The resonant frequencies and modes were calculated for the various joints under reactor conditions. According to the excitation sources considered, the amplitude of the displacements and stresses can be determined from these characteristic modes. The corrugations are protected internally from the aerodynamic effects of the gas flow by an inner sleeve welded to the primary piping upstream and free downstream. The annular space between this sleeve and the corrugations forms a resonant volume liable to be excited by flow-induced pressure fluctuations. It was possible to calculate the characteristic resonance frequencies and modes of this gas column (air at normal temperature and pressure). A full-scale mock-up test under conditions corresponding to the calculation hypotheses gave experimental proof of the calculation results. Owing to the good correlation between the results of these two studies an attempt was made to calculate the acoustical behaviour of these cavities for nominal running conditions (temperature and pressure) as a function of the known excitation sources. The results obtained from all these tests show that the use of bellows type expansion joints on a primary reactor circuit offers the same guarantees of reliability and resistance as any other circuit component under pressure, as long as the strains they undergo remain within the limits specified by the regulations and nuclear codifications

  14. Estimation of activity in primary coolant heat exchanger of Apsara reactor after 50 years of reactor operation

    International Nuclear Information System (INIS)

    Prasad, S.K.; Anilkumar, S.; Vajpayee, L.K.; Belhe, M.S.; Yadav, R.K.B.; Deolekar, S.S.

    2012-01-01

    The primary coolant heat exchanger of Apsara Reactor was in operation for 53 years and as a part of partial decommissioning of Apsara Primary Coolant Heat Exchanger (PHEx) was decommissioned and disposed off as active waste. The long lived component deposited in the SS tubes inside the heat exchanger was assessed by taking the scrape samples and in situ gamma spectrometry technique employing NaI(Tl) detector. The data obtained by experimental measurements were validated by Monte Carlo simulation method. From the present studies, it was shown that 137 Cs and 144 Ce as the major isotopes deposited on the SS tube of heat exchanger. In this paper the authors describes the details of the methodology adopted for the assessment of radioactivity content and the results obtained. This give a reliable method to estimate the activity disposed for waste management accounting purpose in a long and heavy reactor component. The upper bound of total activity in PHEx 39.0μCi. (author)

  15. The development of robotic system for inspecting and repairing NPP primary coolant system of high-level radioactive environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Kim, Ki Ho; Jung, Seung Ho; Kim, Byung Soo; Hwang, Suk Yeoung; Kim, Chang Hoi; Seo, Yong Chil; Lee, Young Kwang; Lee, Yong Bum; Cho, Jai Wan; Lee, Jae Kyung; Lee, Yong Deok

    1997-07-01

    This project aims at developing a robotic system to automatically handle inspection and maintenance of NPP safety-related facilities in high-level radioactive environment. This robotic system under development comprises two robots depending on application fields - a mobile robot and multi-functional robot. The mobile robot is designed to be used in the area of primary coolant system during the operation of NPP. This robot enables to overcome obstacles and perform specified tasks in unstructured environment. The multi-functional robot is designed for performing inspection and maintenance tasks of steam generator and nuclear reactor vessel during the overhaul periods of NPP. Nuclear facilities can be inspected and repaired all the time by use of both the mobile robot and the multi-functional robot. Human operator, by teleoperation, monitors the movements of such robots located at remote task environment via video cameras and controls those remotely generating desired commands via master manipulator. We summarize the technology relating to the application of the mobile robot to primary coolant system environment, the applicability of the mobile robot through 3D graphic simulation, the design of the mobile robot, the design of its radiation-hardened controller. We also describe the mechanical design, modeling, and control system of the multi-functional robot. Finally, we present the design of the force-reflecting master and the modeling of virtual task environment for a training simulator. (author). 47 refs., 16 tabs., 43 figs.

  16. The development of robotic system for inspecting and repairing NPP primary coolant system of high-level radioactive environment

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Kim, Ki Ho; Jung, Seung Ho; Kim, Byung Soo; Hwang, Suk Yeoung; Kim, Chang Hoi; Seo, Yong Chil; Lee, Young Kwang; Lee, Yong Bum; Cho, Jai Wan; Lee, Jae Kyung; Lee, Yong Deok.

    1997-07-01

    This project aims at developing a robotic system to automatically handle inspection and maintenance of NPP safety-related facilities in high-level radioactive environment. This robotic system under development comprises two robots depending on application fields - a mobile robot and multi-functional robot. The mobile robot is designed to be used in the area of primary coolant system during the operation of NPP. This robot enables to overcome obstacles and perform specified tasks in unstructured environment. The multi-functional robot is designed for performing inspection and maintenance tasks of steam generator and nuclear reactor vessel during the overhaul periods of NPP. Nuclear facilities can be inspected and repaired all the time by use of both the mobile robot and the multi-functional robot. Human operator, by teleoperation, monitors the movements of such robots located at remote task environment via video cameras and controls those remotely generating desired commands via master manipulator. We summarize the technology relating to the application of the mobile robot to primary coolant system environment, the applicability of the mobile robot through 3D graphic simulation, the design of the mobile robot, the design of its radiation-hardened controller. We also describe the mechanical design, modeling, and control system of the multi-functional robot. Finally, we present the design of the force-reflecting master and the modeling of virtual task environment for a training simulator. (author). 47 refs., 16 tabs., 43 figs

  17. CFD analysis of flow distribution of reactor core and temperature rise of coolant in fuel assembly for VVER reactor

    International Nuclear Information System (INIS)

    Du Daiquan; Zeng Xiaokang; Xiong Wanyu; Yang Xiaoqiang

    2015-01-01

    Flow field of VVER-1000 reactor core was investigated by using computational fluid dynamics code CFX, and the temperature rise of coolant in hot assembly was calculated. The results show that the maximum value of flow distribution factor is 1.12 and the minimum value is 0.92. The average value of flow distribution factor in hot assembly is 0.97. The temperature rise in hot assembly is higher than current warning limit value ΔT t under the deviated operation condition. The results can provide reference for setting ΔT t during the operation of nuclear power plant. (authors)

  18. Effects of temperature on corrosion fatigue crack growth of pressure vessel steels in PWR coolant

    International Nuclear Information System (INIS)

    Tice, D.R.; Bramwell, I.L.; Fairbrother, H.; Worswick, D.

    1994-01-01

    This paper presents experimental results concerning crack propagation rates in A508-III pressure vessel steel (medium sulphur content) exposed to PWR primary water at temperatures between 130 and 290 C. The results indicate that the greatest increase in corrosion fatigue crack growth rate occurs at temperatures in the range 150 to 200 C. Under these conditions, there was a marked change in the appearance of the fracture surface, with extensive micro-branching of the crack front and occasional bifurcation of the whole crack path. In contrast, at 290 C, the fracture surface is smoother, similar to that due to inert fatigue. The implication of these observations for assessment of the pressure vessel integrity, is examined. 14 refs., 15 figs., 3 tabs

  19. Advanced High-Temperature Reactor for Production of Electricity and Hydrogen: Molten-Salt-Coolant, Graphite-Coated-Particle-Fuel

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    2002-01-01

    The objective of the Advanced High-Temperature Reactor (AHTR) is to provide the very high temperatures necessary to enable low-cost (1) efficient thermochemical production of hydrogen and (2) efficient production of electricity. The proposed AHTR uses coated-particle graphite fuel similar to the fuel used in modular high-temperature gas-cooled reactors (MHTGRs), such as the General Atomics gas turbine-modular helium reactor (GT-MHR). However, unlike the MHTGRs, the AHTR uses a molten salt coolant with a pool configuration, similar to that of the PRISM liquid metal reactor. A multi-reheat helium Brayton (gas-turbine) cycle, with efficiencies >50%, is used to produce electricity. This approach (1) minimizes requirements for new technology development and (2) results in an advanced reactor concept that operates at essentially ambient pressures and at very high temperatures. The low-pressure molten-salt coolant, with its high heat capacity and natural circulation heat transfer capability, creates the potential for (1) exceptionally robust safety (including passive decay-heat removal) and (2) allows scaling to large reactor sizes [∼1000 Mw(e)] with passive safety systems to provide the potential for improved economics

  20. Transient simulation of coolant peak temperature due to prolonged fan and/or water pump operation after the vehicle is keyed-off

    Science.gov (United States)

    Pang, Suh Chyn; Masjuki, Haji Hassan; Kalam, Md. Abul; Hazrat, Md. Ali

    2014-01-01

    Automotive designers should design a robust engine cooling system which works well in both normal and severe driving conditions. When vehicles are keyed-off suddenly after some distance of hill-climbing driving, the coolant temperature tends to increase drastically. This is because heat soak in the engine could not be transferred away in a timely manner, as both the water pump and cooling fan stop working after the vehicle is keyed-off. In this research, we aimed to visualize the coolant temperature trend over time before and after the vehicles were keyed-off. In order to prevent coolant temperature from exceeding its boiling point and jeopardizing engine life, a numerical model was further tested with prolonged fan and/or water pump operation after keying-off. One dimensional thermal-fluid simulation was exploited to model the vehicle's cooling system. The behaviour of engine heat, air flow, and coolant flow over time were varied to observe the corresponding transient coolant temperatures. The robustness of this model was proven by validation with industry field test data. The numerical results provided sensible insights into the proposed solution. In short, prolonging fan operation for 500 s and prolonging both fan and water pump operation for 300 s could reduce coolant peak temperature efficiently. The physical implementation plan and benefits yielded from implementation of the electrical fan and electrical water pump are discussed.

  1. Detection of stress corrosion cracks in reactor pressure vessel and primary coolant system anchor studs

    International Nuclear Information System (INIS)

    Light, G.M.; Joshi, N.R.

    1987-01-01

    Under Electric Power Research Institute (EPRI) contract No. 2179-2, southwest Research Institute is continuing work on the use of the cylindrically guided wave technique (CGWT) for inspecting stud bolts. Also being evaluated is the application of the CGWT to the inspection of reactor coolant pump shafts. Data have been collected for stud bolts ranging from 16 to 112 inches (40.6 to 285 cm) in length, and from 1 to 4.5 inches (2.54 to 11.4 cm) in diameter. For each bolt size, tests were conducted to determine the smallest detectable notch, the effect of thread noise, and the amount of detectable simulated corrosion. The ratio of reflected longitudinal signals to mode-converted signals was analyzed with respect to bolt diameter, bolt length, and frequency parameters. The results of these test showed the following: (1) The minimum detectable notch in the threaded region was approximately 0.05 inch (1.3 mm) for all stud bolts evaluated. (2) Thread noise could easily be detected, but the level of noise was below the minimum detectable notch signal. (3) For carbon steel, optimum transducer frequency was 5 MHz, using a transducer whose face had an impedance that matched the steel surface. (4) Simulated corrosion of 15% reduced diameter could be detected

  2. Residual-stresses in austenitic stainless-steel primary coolant pipes and welds of pressurized-water reactors

    International Nuclear Information System (INIS)

    Faure, F.; Leggatt, R.H.

    1996-01-01

    Surface and through thickness residual stress measurements were performed on an aged cast austenitic-ferritic stainless steel pipe and on an orbital TIG weld representative of those of primary coolant pipes in pressurized water reactors. An abrasive-jet hole drilling method and a block removal and layering method were used. Surface stresses and through thickness stress profiles are strongly dependent upon heat treatments, machining and welding operations. In the aged cast stainless steel pipe, stresses ranged between -250 and +175 MPa. On and near the orbital TIG weld, the outside surface of the weld was in tension both in the axial and hoop directions, with maximum values reaching 420 MPa in the weld. On the inside surface, the hoop stresses were compressive, reaching -300 MPa. However, the stresses in the axial direction at the root of the weld were tensile within 4 mm depth from the inside surface, locally reaching 280 MPa. (author)

  3. Integral forged pump casing for the primary coolant circuit of a nuclear reactor: Development in design, forging technology, and material

    International Nuclear Information System (INIS)

    Austel, W.; Korbe, H.

    1986-01-01

    Developments in the forging of large casings for primary circuit coolant pumps for light water reactors in Germany are demonstrated beginning with the multiple forging fabricated version and ending with the integral forged type. This version is the result of the joint efforts of the pump manufacturer and the forgemaster after a cost-gain evaluation and represents an optimum solution in view of its functional and economical performance and also considering the high requirements for mechanical-technological properties, including homogeneity of the material. The development from 22 NiMoCr 3 7/A 508 Class 2 to 20 MnMoNi 5 5/A 508 Class 3 and their optimization will be demonstrated. This development is based mainly on minimizing the sulfur content and on vacuum carbon deoxidation (VCD), which results in a reduction of the A-segregations, in improving fracture toughness and isotropy, and in the desired fine-grain structure

  4. CONTEMPT: computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Hsii, Y.H.

    1978-04-01

    The CONTEMPT code is used by Babcock and Wilcox for containment analysis following a postulated loss of coolant accident. An additional model is described which is used for the calculation of long term post reflood mass and energy releases to the containment that is used for the containment design basis LOCA calculations. These calculations maximize the rate of energy flow to the containment. The mass and energy data are given to the containment designer for use in calculating the containment building design pressure and temperature and in sizing containment heat removal equipment

  5. Draft of diagnostic techniques for primary coolant circuit facilities using control computer

    International Nuclear Information System (INIS)

    Suchy, R.; Procka, V.; Murin, V.; Rybarova, D.

    A method is proposed of in-service on-line diagnostics of primary circuit selected parts by means of a control computer. Computer processing will involve the measurements of neutron flux, pressure difference in pumps and in the core, and the vibrations of primary circuit mechanical parts. (H.S.)

  6. Heat and momentum transfer in a gas coolant flow through a circular pipe in a high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Ogawa, Masuro

    1989-07-01

    In Japan Atomic Energy Research Institute (JAERI), a very high temperature gas cooled reactor (VHTR) has been researched and developed with a purpose of attaining a coolant temperature of around 1000degC at the reactor outlet. In order to design VHTR, comprehensive knowledge is required on thermo-hydraulic characteristics of laminar-turbulent transition, of coolant flow with large thermal property variation due to temperature difference, and of heat transfer deterioration. In the present investigation, experimental and analytical studies are made on a gas flow in a circular tube to elucidate the thermo-hydraulic characteristics. Friction factors and heat transfer coefficients in transitional flows are obtained. Influence of thermal property variation on the friction factor is qualitatively determined. Heat transfer deterioration in the turbulent flow subjected to intense heating is experimentally found to be caused by flow laminarization. The analysis based on a k-kL two-equation model of turbulence predicts well the experimental results on friction factors and heat transfer coefficients in flows with thermal property variation and in laminarizing flows. (author)

  7. Temperature distribution in the Temelin NPP primary circuit piping

    International Nuclear Information System (INIS)

    Blaha, V.; Maca, K.; Kodl, P.; Kroj, L.

    2004-01-01

    Temperature non-homogeneity in the VVER 1000 reactor primary piping hot legs was detected during the commissioning of Temelin units 1 and 2. A quantification of temperature differences was carried out and explanation of its causes was presented. Mathematical analysis of the effect was carried out using the PHOENICS 3.4 code, and the results were processed graphically by means of a post processor PHOTON and by means of a user program allowing statistic evaluation of temperature profiles at the core outlet and in the area of the temperature-measurement pits. The coolant temperatures in the core area increased gradually following the given radial and axial distribution of output from the inlet temperature of 288.1 degC to 315-331 degC at the core outlet. The temperature profile was balanced and in the IO piping in the area of temperature-measurement pits the difference of the maximum and minimum temperature value was approx. 1 degC according to the calculation. The temperature field shape is mainly determined by the radial distribution of the core output. The mean outlet temperature from the core weighted through mass flow is determined by the flow through the core and by the total output. The calculated temperature span at the core outlet in the range of 315 - 331 degC corresponded well with the measured values during the operation. The values were in the range of 310-333 degC, however, the in-core thermocouple inaccuracy should also be taken into consideration. On the other hand, the temperature span in the area of temperature-measurement pits was actually about 4 times higher than the calculated temperature (observed: 4 degC as against the calculated 1 degC). A good agreement was reached between the analysis results and the actual condition of the nuclear unit in the area of the core outlet. (P.A.)

  8. Reverse osmosis and its use at the nuclear power plants. Purification of primary circuit coolant by the means of reverse osmosis

    International Nuclear Information System (INIS)

    Kus, Pavel; Vonkova, Katerina; Kunesova, Katerina; Bartova, Sarka; Skala, Martin; Moucha, Tomáš

    2014-01-01

    This contribution is focused on the use of membrane technologies (e.g. reverse osmosis) for the primary coolant purification at the nuclear power plants. Currently, boric acid present in the primary coolant is preconcentrated at the evaporators, but their operation is very inefficient and expensive. Therefore, reverse osmosis was proposed as one of promising methods possibly replacing evaporators. The aim of the purification process is to achieve boric acid solution of a defined concentration (40 g/l) in the retentate stream in order to recycle it and reuse it in the primary circuit. Additionally, permeate flow should consist solely of pure water. To study the efficiency of several reverse osmosis modulus in the boric acid removal form the water solutions, experimental apparatus was constructed in our laboratory. It consists of the solution reservoir, pump and reverse osmosis modulus. The arrangement of experiments was batch and the retentate flow was refluxed to the feed solution. Several modulus of commercial reverse osmosis membranes were tested. The feed solution contained various concentrations of H 3 BO 3 , KOH, LiOH and NH 3 in order to simulate real primary coolant composition. Based on the experimental results, mathematical model was developed in order to optimize experimental conditions for the best results in primary coolant purification and boric acid preconcentration. (author)

  9. Device for extracting steam or gas from the primary coolant line leading from a reactor pressure vessel to a straight through boiler or from the top primary boiler chamber of a water-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Schatz, K.

    1982-01-01

    In such a nuclear reactor, a steam or gas cushion can form when the primary system is refilled, which can cause blocking of the natural circulation or filling of the system in the area of the hot primary coolant pipe or in the top primary boiler chamber. In order to remove such a steam or gas cushion, a ventilation pipe starting from the bend of the primary coolant line is connected to the feed pipe for introducing water into the primary system. The feed pipe is designed on the principle of the vacuum pump in the area of the opening of the ventilation pipe. There is a sub-pressure in the ventilation pipe, which makes it possible to extract the steam or gas. After mixing in the area of the opening, the steam condenses or is distributed with the gas in the primary coolant. (orig.) [de

  10. Composition and concentration of soluble and particulate matter in the coolant of the reactor primary cooling system of the Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Garcia Rodenas, Luis; La Gamma, Ana M.; Villegas, Marina; Fernandez, Alberto N.; Allemandi, Walter; Manera, Raul; Rosales, Hugo

    2000-01-01

    Nuclear power plants type PWR and PHWR (pressurized water reactor and pressurized heavy water reactor) have three coolant circuits which only exchange energy among them. The primary circuit, whose coolant extracts the reactor energy, the secondary circuit or water-steam cycle and the tertiary circuit which could be lake, river or sea water. The chemistry of the primary and secondary coolants is carefully controlled with the aim of minimizing the corrosion of structural materials. However, very low rates of corrosion are inevitable and one of the consequences of the corrosion processes is the presence of soluble and particulate matter in the coolant from where several problems associated with mass transfer arisen. In this way radioactive nuclides are transported out of the core to the steam generators, hydraulic resistance increases and heat transfer capability degrades. In the present paper some alternative techniques are proposed for the quantification of both, the particulate and soluble matter present in the coolant and their correspondent composition. Some results are also included and discussed. (author)

  11. AMPTRACT: an algebraic model for computing pressure tube circumferential and steam temperature transients under stratified channel coolant conditions

    International Nuclear Information System (INIS)

    Gulshani, P.; So, C.B.

    1986-10-01

    In a number of postulated accident scenarios in a CANDU reactor, some of the horizontal fuel channels are predicted to experience periods of stratified channel coolant condition which can lead to a circumferential temperature gradient around the pressure tube. To study pressure tube strain and integrity under stratified flow channel conditions, it is, necessary to determine the pressure tube circumferential temperature distribution. This paper presents an algebraic model, called AMPTRACT (Algebraic Model for Pressure Tube TRAnsient Circumferential Temperature), developed to give the transient temperature distribution in a closed form. AMPTRACT models the following modes of heat transfer: radiation from the outermost elements to the pressure tube and from the pressure to calandria tube, convection between the fuel elements and the pressure tube and superheated steam, and circumferential conduction from the exposed to submerged part of the pressure tube. An iterative procedure is used to solve the mass and energy equations in closed form for axial steam and fuel-sheath transient temperature distributions. The one-dimensional conduction equation is then solved to obtain the pressure tube circumferential transient temperature distribution in a cosine series expansion. In the limit of large times and in the absence of convection and radiation to the calandria tube, the predicted pressure tube temperature distribution reduces identically to a parabolic profile. In this limit, however, radiation cannot be ignored because the temperatures are generally high. Convection and radiation tend to flatten the parabolic distribution

  12. Measurement data of cesium 137 yields in primary coolant of an in-pile water loop in fission products release experiment

    International Nuclear Information System (INIS)

    Ishiwatari, Nasumi; Nagai, Hitoshi; Takeda, Tsuneo

    1979-03-01

    Series of fuel rods (UO 2 pellets sheathed with stainless steel) having an artificial pinhole were irradiated in the in-pile test section of water loop JMTR OWL-1. Presented are the results of measurements of cesium 137 yields in primary coolant of OWL-1 from 1975 to 1978. (author)

  13. High temperature alloys for the primary circuit of a prototype nuclear process heat plant

    International Nuclear Information System (INIS)

    Ennis, P.J.; Schuster, H.

    1979-01-01

    As part of a comprehensive materials test programme for the High Temperature Reactor Project 'Prototype Plant for Nuclear Process Heat' (PNP), high temperature alloys are being investigated for primary circuit components operating at temperatures above 750 0 C. On the basis of important material parameters, in particular corrosion behaviour and mechanical properties in primary coolant helium, the potential of candidate alloys is discussed. By comparing specific PNP materials data with the requirements of PNP and those of conventional plant, the implications for the materials programme and component design are given. (orig.)

  14. Recent bibliography on analytical and sampling problems of a PWR primary coolant

    International Nuclear Information System (INIS)

    Illy, H.

    1980-07-01

    An extensive bibliography on the problems of analysis and sampling of the primary cooling water of PWRs is presented. The aim was to collect the analytical methods for dissolved gases. The sampling and preparation are also taken into account. last 8-10 years is included. The bibliography is arranged into alphabetical order by topics. The most important topics are as follows: boric acid, gas analysis, hydrogen isotopes, iodine, noble gases, radiation monitoring, sampling and preparation, water chemistry. (R.J.)

  15. PWR steam generator tubes. Corrosion in primary coolant circuit. Evolution of knowledge

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1986-12-01

    Cracks can occur in nickel rich austenitic alloys in pure water at 350 0 C after few months. Influence of composition, microstructure stresses, corrosive effect of the medium, hydrogen embrittlement and temperature dependence on stress corrosion of alloy 600 are studied. A model is presented for the mechanism of crack formation [fr

  16. Thermohydraulic behavior in a primary cooling system during a loss-of-coolant accident of a light-water reactor

    International Nuclear Information System (INIS)

    Shimamune, Hiroji; Shiba, Masayoshi; Adachi, Hiromichi; Suzuki, Norio; Okubo, Kaoru

    1975-12-01

    With ROSA-I (Rig of Safety Assessment - I), 61 runs of the LWR blowdown experiment have been carried out under the conditions: model reactor type, BWR and PWR; reactor core, none, no-heating and heating; rupture position, upper and lower pressure vessel nozzle; initial discharge pressure, 40, 70 and 100 kg/cm 2 G; and rupture diameter, 25, 50, 70, 100 and 125 mm. The purpose was to obtain the data of thermal and hydrodynamic behavior in the reactor pressure vessel during a blowdown, including in-vessel pressure, coolant temperature, discharge flow rate, model fuel rod surface temperature and shock wave. Analysis was also made with the codes RELAP-2 and -3 developed by NRTS of the United States, to verify the calculation model used. In addition, the results of calculation with the shockwave analysis code DEPCO developed in JAERI were compared with those by experiment. The experimental facility ROSA-I and the results obtained with it and also the analyses made in this connection, are described in detail. (auth.)

  17. Stress corrosion crack initiation of alloy 182 weld metal in primary coolant - Influence of chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Calonne, O.; Foucault, M.; Steltzlen, F. [AREVA (France); Amzallag, C. [EDF SEPTEN (France)

    2011-07-01

    Nickel-base alloys 182 and 82 have been used extensively for dissimilar metal welds. Typical applications are the J-groove welds of alloy 600 vessel head penetrations, pressurizer penetrations, heater sleeves and bottom mounted instrumented nozzles as well as some safe end butt welds. While the overall performance of these weld metals has been good, during the last decade, an increasing number of cases of stress corrosion cracking of Alloy 182 weld metal have been reported in PWRs. In this context, the role of weld defects has to be examined. Their contribution in the crack initiation mechanism requires laboratory investigations with small scale characterizations. In this study, the influence of both alloy composition and weld defects on PWSCC (Stress Corrosion Cracking in Primary Water) initiation was investigated using U-bend specimens in simulated primary water at 320 C. The main results are the following: -) the chemical compositions of the weld deposits leading to a large propensity to hot cracking are not the most susceptible to PWSCC initiation, -) macroscopically, superficial defects did not evolve during successive exposures. They can be included in large corrosion cracks but their role as 'precursors' is not yet established. (authors)

  18. Computer program MCAP-TOSS calculates steady-state fluid dynamics of coolant in parallel channels and temperature distribution in surrounding heat-generating solid

    Science.gov (United States)

    Lee, A. Y.

    1967-01-01

    Computer program calculates the steady state fluid distribution, temperature rise, and pressure drop of a coolant, the material temperature distribution of a heat generating solid, and the heat flux distributions at the fluid-solid interfaces. It performs the necessary iterations automatically within the computer, in one machine run.

  19. Requirements on cast steel for the primary coolant circuit of water cooled reactors

    International Nuclear Information System (INIS)

    The most important requirements placed on the structural components of water cooled nuclear reactors include corrosion resistance and mechanical materials properties. Intercrystalline corrosion resistance was tested using the Strauss Test in compliance with the DIN 50914 Standard. Following sensitization between 600 to 700 degC with a dwell time between 15 minutes and 100 hours, a specimen homogeneously annealed with the casting and rapidly water cooled showed no intercrystalline corrosion. Specimens cooled from 1050 degC at a rate of 100 degC per hour showed no unambiguous tendency for intercrystalline corrosion after sensitization; in some cases, however, an initial attack of intercrystalline corrosion was found. It was found that austenitic Cr-Ni cast steel containing 2.5% Mo and about 15% ferrite showed the sensitive intercrystalline corrosion range at higher temperatures and longer dwell times than rolled Cr-Ni steels. In plating the ferritic cast steel with a corrosion resistant plating material, annealing temperature after welding must not exceed 600 to 620 degC otherwise the resistance of the plated layer against intercrystalline corrosion would not be safeguarded, and following annealing for stress removal at a temperature of 600 to 620 degC all requirements must be satisfied by the weld metal and weld transition placed on the initial material. Martensite materials are used for the manufacture of components which are not used under pressure, such as alloys with 13% Cr and 1% to 6% Ni and alloys with 17% Cr and 4% Ni. Carbon content is maintained below 0.10% to guarantee good weldability and the highest corrosion resistance. Cast steels with 13% Cr and 4% Ni after a dwell of 2500 hours in fully desalinated water without oxygen and with 3600 ppm of boron at a test temperature of 95 to 300 degC showed a surface reduction of 0.005 mm annually. In identical conditions except for the water containing oxygen the reduction in surface was 0.05 mm per year. (J.B.)

  20. Physicochemical modelling of the pressurised-water reactors primary coolant for the optimisation of its purification

    International Nuclear Information System (INIS)

    Elain, L.; Doury-Berthod, M.; Berger, M.

    2002-01-01

    This paper purpose is to bring up some speciation results obtained by simulation for a complete reactor operation cycle. Calculations were performed at 25 C, which is close to the operational temperature of the CVCS purification system (30 C to 50 C). Due to the lack of a number of data, a totally predictive quantitative study proved impossible. The present modelling aims at identifying trends and giving orders of magnitude for concentrations, an essential information for clarifying the fluid evolution over a cycle. It is based on the few coherent results we were able to extract from experience feedback and on the most recent and accessible thermodynamic databases. (authors)

  1. Fuel gases generation in the primary contention during a coolant loss accident in a nuclear power plant with reactor type BWR

    International Nuclear Information System (INIS)

    Salaices, M.; Salaices, E.; Ovando, R.; Esquivias, J.

    2011-11-01

    During an accident design base of coolant loos, the hydrogen gas can accumulate inside the primary contention as a result of several generation mechanisms among those that are: 1) the reaction metal-water involving the zirconium of the fuel cladding and the reactor coolant, 2) the metals corrosion for the solutions used in the emergency cooling and dew of the contention, and 3) the radio-decomposition of the cooling solutions of post-accident emergency. In this work the contribution of each generation mechanism to the hydrogen total in the primary contention is analyzed, considering typical inventories of zirconium, zinc, aluminum and fission products in balance cycle of a reactor type BWR. In the analysis the distribution model of fission products and hydrogen production proposed in the regulator guide 1.7, Rev. 2 of the US NRC was used. The results indicate that the mechanism that more contributes to the hydrogen generation at the end of a period of 24 hours of initiate the accident is the radio-decomposition of the cooling solutions of post-accident emergency continued by the reaction metal-water involving the zirconium of the fuel cladding with the reactor coolant, and lastly the aluminum and zinc oxidation present in the primary contention. However, the reaction metal-water involving the zirconium of the fuel cladding and the reactor coolant is the mechanism that more contributes to the hydrogen generation in the first moments after the accident. This study constitutes the first part of the general analysis of the generation, transport and control of fuel gases in the primary contention during a coolant loss accident in BWRs. (Author)

  2. CREEP in tubes: theoretical notes and application to PEC primary coolant circuit

    International Nuclear Information System (INIS)

    Cesari, F.; Calcedonio Cappello, C.

    1975-01-01

    Creep and stress relaxation in the hot leg of PEC reactor are analitically examined, considering also the effects of varying loads and thermal transients. The expression, used to describe creep phenomena, are of the ''time-hardening'' type, so that the strain rate is a function only of the actual stress and the current time. A qualitative approach is attempted to describe the history of a part, when subjected to real cycles of loads/temperatures. Although in cases of rapidly varying or abrupt cyclic stresses the use of a time-hardening expression may lead to nearly absurd results, discussion on the better agreement with experiments of time or stress hardening laws is not presented. A brief illustration of physical phenomena bases and a conclusive chapter with a certain number of analytical appendices to analyse creep on simple structures due to many loads are also included

  3. Experimental and theoretical investigations on the behaviour of cracks in primary coolant piping

    International Nuclear Information System (INIS)

    Steinbuch, R.; Bartholome, G.; Felski, N.; Kastner, W.

    1981-01-01

    During the investigations of the government-sponsored R+D programs (RS 104 and RS 320) experimental and theoretical work has been performed to describe the leak before break behaviour and the extent of instable crack growth. The test pipes are 300 mm ID pipes made of 20MnMoNi55. Three of them had been welded to a pressure reservoir to simulate the situation of a real system of piping and components as related to hydrodynamics. The instrumentation of the specimen was designed to describe - temperature and pressure during failure - effect of reservoir on depressurisation - motion of the pipe - leakage area as function of time - crack arrest length. At two experiments the pressure dropped to saturation but in others for a short period the pressure was remarkably lower. (orig./GL)

  4. Simulation of fuel dispersion in the MYRRHA-FASTEF primary coolant with CFD and SIMMER-IV

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, Sophia, E-mail: sophia.buckingham@vki.ac.be [von Karman Institute, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Planquart, Philippe [von Karman Institute, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Eboli, Marica [University of Pisa, Largo Lucio Lazzarino 2, 56122 Pisa (Italy); Moreau, Vincent [CRS4, Science and Technology Park Polaris – Piscina Manna, 09010 Pula (Italy); Van Tichelen, Katrien [SCK-CEN, Boeretang 200, 2400 Mol (Belgium)

    2015-12-15

    Highlights: • A comparison between CFD and system codes applied to long-term dispersion of fuel particles inside the MYRRHA reactor is proposed. • Important accumulations at the free-surface level are to be expected. • The risk of core blockage should not be neglected. • Numerical approach and modeling assumptions have a strong influence on the simulation results and accuracy. - Abstract: The objective of this work is to assess the behavior of fuel redistribution in heavy liquid metal nuclear systems under fuel pin failure conditions. Two different modeling approaches are considered using Computational Fluid Dynamics (CFD) codes and a system code, applied to the MYRRHA facility primary coolant loop version 1.4. Two different CFD models are constructed: the first is a single-phase steady model prepared in ANSYS Fluent, while the second is a two-phase model based on the volume of fluid (VOF) method in STARCCM+ to capture the upper free-surface dynamics. Both use a Lagrangian tracking approach with oneway coupling to follow the particles throughout the reactor. The system code SIMMER-IV is used for the third model, without neutronic coupling. Although limited regarding the fluid dynamic aspects compared to the CFD codes, comparisons of particle distributions highlight strong similarities despite quantitative discrepancies in the size of fuel accumulations. These disparities should be taken into account while performing the safety analysis of nuclear systems and developing strategies for accident mitigation.

  5. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    Science.gov (United States)

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  6. Temperature sensing by primary roots of maize

    Science.gov (United States)

    Poff, K. L.

    1990-01-01

    Zea mays L. seedlings, grown on agar plates at 26 degrees C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.

  7. Measurement of the fuel temperature and the fuel-to-coolant heat transfer coefficient of Super Phenix 1 fuel elements

    International Nuclear Information System (INIS)

    Edelmann, M.

    1995-12-01

    A new measurement method for measuring the mean fuel temperature as well as the fuel-to-coolant heat transfer coefficient of fast breeder reactor subassemblies (SA) is reported. The method is based on the individual heat balance of fuel SA's after fast reactor shut-downs and uses only the plants normal SA outlet temperature and neutron power signals. The method was used successfully at the french breeder prototype Super Phenix 1. The mean SA fuel temperature as well as the heat transfer coefficient of all SPX SA's have been determined at power levels between 15 and 90% of nominal power and increasing fuel burn-up from 3 to 83 EFPD (Equivalent of Full Power-Days). The measurements also provided fuel and whole SA time constants. The estimated accuracy of measured fuel parameters is in the order of 10%. Fuel temperatures and SA outlet temperature transients were also calculated with the SPX1 systems code DYN2 for exactly the same fuel and reactor operating parameters as in the experiments. Measured fuel temperatures were higher than calculated ones in all cases. The difference between measured and calculated core mean values increases from 50 K at low power to 180 K at 90% n.p. This is about the double of the experimental error margins. Measured SA heat transfer coefficients are by nearly 20% lower than corresponding heat transfer parameters used in the calculations. Discrepancies found between measured and calculated results also indicate that either the transient heat transfer in the gap between fuel and cladding (gap conductance) might not be exactly reproduced in the computer code or that the gap in the fresh fuel was larger than assumed in the calculations. (orig.) [de

  8. Primary system hydraulic characteristics after modification of reactor coolant pumps' impeller wheels at Bohunice NPP executed in 2012 and 2013

    International Nuclear Information System (INIS)

    Hermansky, Jozef; Zavodsky, Martin

    2014-01-01

    A coolant flow through the reactor is usually determined after annual outages at Slovak NPP (VVER 440) in two distinct ways. First method is determination on the basis of the secondary system parameters - measurement of thermal balances. The value achieved by this method is used as the input parameter in the Table of allowed reactor operation modes. The second method draws from the primary system parameters - measurement of primary system hydraulic characteristics. Flow nozzles used for the measurement of feed water flow behind high pressure heaters were replaced at both Bohunice Units during outages in 2008. The feed water flow behind high pressure heaters is one of the main parameters used for the determination of coolant flow through the reactor by the first method. Compared to the measurement executed during previous fuel cycles, the calculated coolant flow through the reactor decreased considerably after the change of flow nozzles. The imaginary change of coolant flow through the reactor at Unit 3 was -1,6 %; and at Unit 4 -2,6 %. This change was not proved by the parallel measurement of primary system hydraulic characteristics. Later it was found out that the original flow nozzles used for 25 years were substantially deposited (original inner diameter of the nozzles was reduced by about 0,6-0,9 mm). Therefore feed water flow measurement was untrustworthy within the recent years. On the findings stated above, Bohunice NPP has decided to increase coolant flow through the reactor by changing the reactor coolant pumps impeller wheels. The modification of impellers wheels is planned within years 2012 to 2014. During the outages in 2013 two impeller wheels were replaced at both units. Nowadays Unit 4 is operated with all 6 new impeller wheels and Unit 3 with four new impeller wheels. Modification of last two impeller wheels at Unit 3 will be performed during the outage in 2014. On account of impeller wheels modification, non-standard measurement of PS hydraulic

  9. A study on removal of cobalt from the primary coolant by continuous electrode-ionization with various conducting spacers

    International Nuclear Information System (INIS)

    Yeon, K.H.; Song, J.H.; Moon, S.H.

    2002-01-01

    CEDI is a hybrid separation system of electrodialysis and ion exchange processes. This system does not require chemicals to regenerate the ion exchange resin and to concentrate the wastewater. In a CEDI system, the ion exchange resin bed plays a major role in the reduction of the high electrical resistance in the dilute compartment, while the ion exchange membranes lead to depletion and concentration of the solutions in the dilute compartment and concentrate compartment, respectively. The production of high purity water in the primary coolant of a nuclear power plant was investigated using a CEDI process along with various ion-conducting spacers, such as an ion exchange resin (IX), polyurethane-coated ion exchange beads (IEPU), and an ion exchange textile (IET). The ion exchange resin was introduced into the ion-depleting compartments of an electrodialysis (ED) stack, and has been used to reduce the electrical resistance of the stack since ED cannot be applied economically to the treatment of dilute solutions due to their high electrical resistances and the development of the polarization phenomena. However, packing the resin beads in the compartment and assembling the stack is laborious work, while attaining a free flowing solution is difficult because the resin beads are driven downward by gravity in the diluted compartment. Nevertheless, a resin-packed ED stack has recently been developed by Millipore, and is now commercially available from U.S. Filter as industrial units. We set out to prepare improved ion-conducting materials suitable for use in CEDI stacks. To this end, IEPU was prepared using a blending method that produces mixtures of resin beads and powder by allophanate/biuret cross-linking. IET was prepared by the radiation grafting of styrene-fulfonic acid or trimethyl-ammonium chloride onto polypropylene non-woven fabric. (authors)

  10. Development of a deformation and failure model for Zircaloy at high temperatures for light water reactor loss-of-coolant-accident investigations

    International Nuclear Information System (INIS)

    Raff, S.

    1982-11-01

    To describe Zircaloy-4 deformation and failure behaviour at high temperatures (600 to 1400 0 C), the phenomenological model NORA was developed and verified against numerous experimental results. The model can be applied to the calculation of fuel rod cladding deformation during small and large break loss-of-coolant-accidents. (orig./RW) [de

  11. Secondary coolant purification system

    International Nuclear Information System (INIS)

    Stiteler, F.Z.; Donohue, J.P.

    1978-01-01

    The present invention combines the attributes of volatile chemical addition, continuous blowdown, and full flow condensate demineralization. During normal plant operation (defined as no primary to secondary leakage) condensate from the condenser is pumped through a full flow condensate demineralizer system by the condensate pumps. Volatile chemical additions are made. Dissolved and suspended solids are removed in the condensate polishers by ion exchange and/or filtration. At the same time a continuous blowdown of approximately 1 percent of the main steaming rate of the steam generators is maintained. Radiation detectors monitor the secondary coolant. If these monitors indicate no primary to secondary leakage, the blowdown is cooled and returned directly to the condensate pump discharge. If one of the radiation monitors should indicate a primary to secondary leak, when the temperature of the effluent exiting from the blowdown heat exchanger is compatible with the resin specifications of the ion exchangers, the bypass valve causes the blowdown flow to pass through the blowdown ion exchangers

  12. Oxygen sensors for Heavy Liquid Metal coolants: Calibration and assessment of the minimum reading temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bassini, S., E-mail: serena.bassini@enea.it; Antonelli, A.; Di Piazza, I.; Tarantino, M.

    2017-04-01

    Oxygen sensors for Heavy Liquid Metals (HLMs) such as lead and LBE (lead-bismuth eutectic) will be essential devices in future Lead Fast Reactor (LFR) and Accelerator Driven System (ADS). Potentiometric sensors based on solid electrolytes were developed in recent years to this purpose. Internal reference electrodes such as Pt-air and Bi/Bi{sub 2}O{sub 3} liquid metal/metal-oxide are among the most used but they both have a weak point: Pt-air sensor has a high minimum reading temperature around 400 °C whereas Bi/Bi{sub 2}O{sub 3} suffers from internal stresses induced by Bi volume variations with temperature, which may lead to the sensor failure in the long-term. The present work describes the performance of standard Pt-air and Bi/Bi{sub 2}O{sub 3} sensors and compares them with recent Cu/Cu{sub 2}O sensor. Sensors with Yttria Partially Stabilized Zirconia (YPSZ) electrolyte were calibrated in oxygen-saturated HLM between 160 and 550 °C and the electric potential compared to the theoretical one to define the accuracy and the minimum reading temperature. Standard Pt-air sensor were also tested using Yttria Totally Stabilized Zirconia (YTSZ) to assess the effect of a different electrolyte on the minimum reading temperature. The performance of Pt-air and Cu/Cu{sub 2}O sensors with YPSZ electrolyte were then tested together in low-oxygen HLM between 200 and 450 °C. The results showed that Pt-air, Bi/Bi{sub 2}O{sub 3} and Cu/Cu{sub 2}O sensors with YPSZ measured oxygen in HLMs down to 400 °C, 290 °C and 200 °C respectively. When the YTSZ electrolyte was used in place of the YPSZ, the Pt-air sensor measured correctly down to at least 350 °C thanks to the superior ionic conductivity of the YTSZ. When Cu/Cu{sub 2}O and Pt-air sensors were tested together in the same low-oxygen HLM between 200 and 450 °C, Cu/Cu{sub 2}O sensor worked predictably in the whole temperature range whereas Pt-air sensor exhibited a correct output only above 400 °C. - Highlights:

  13. The effect of saline coolant on temperature levels during decortication with a Midas Rex: An in vitro model using sheep cervical vertebrae.

    Directory of Open Access Journals (Sweden)

    Asher eLivingston

    2015-07-01

    Full Text Available Decortication of bone with a high speed burr in the absence of coolant may lead to local thermal necrosis and decreased healing ability which may negatively impact clinical outcome. Little data is available on the impact of applying a coolant during the burring process. This study aims to establish an in vitro model to quantitatively assess peak temperatures during endplate preparation with a high speed burr.Six sheep cervical vertebrae were dissected and mounted. Both end plates were used to give a total of 12 sites. Two thermocouples were inserted into each vertebra, 2mm below the end plate surface and a thermal-camera set up to measure surface temperature. A high speed burr (Midas Rex, Medtronic, Fort Worth, TX was used to decorticate the bone in a side to side sweeping pattern, using a matchstick burr (M-8/9MH30 with light pressure. This procedure was repeated while dripping saline onto the burr and bone. Data was compared between groups using a student t-test.Application of coolant at the bone-burr interface during decortication resulted in a significant decrease in final temperature. Without coolant, maximum temperatures 2mm from the surface were not sufficient to cause thermal osteonecrosis, although peak surface temperatures would cause local damage. The use of a high speed burr provides a quick and effective method of vertebral end plate preparation. Thermal damage to the bone can be minimised through the use of light pressure and saline coolant. This has implications for any bone preparation performed with a high speed burr.

  14. The Effect of Saline Coolant on Temperature Levels during Decortication with a Midas Rex: An in Vitro Model Using Sheep Cervical Vertebrae.

    Science.gov (United States)

    Livingston, Asher; Wang, Tian; Christou, Chris; Pelletier, Matthew H; Walsh, William R

    2015-01-01

    Decortication of bone with a high-speed burr in the absence of coolant may lead to local thermal necrosis and decreased healing ability, which may negatively impact clinical outcome. Little data are available on the impact of applying a coolant during the burring process. This study aims to establish an in vitro model to quantitatively assess peak temperatures during endplate preparation with a high-speed burr. Six sheep cervical vertebrae were dissected and mounted. Both end plates were used to give a total of 12 sites. Two thermocouples were inserted into each vertebra, 2 mm below the end plate surface and a thermal camera set up to measure surface temperature. A 3 mm high-pneumatic speed burr (Midas Rex, Medtronic, Fort Worth, TX, USA) was used to decorticate the bone in a side to side sweeping pattern, using a matchstick burr (M-8/9MH30) with light pressure. This procedure was repeated while dripping saline onto the burr and bone. Data were compared between groups using a Student's t-test. Application of coolant at the bone-burr interface during decortication resulted in a significant decrease in final temperature. Without coolant, maximum temperatures 2 mm from the surface were not sufficient to cause thermal osteonecrosis, although peak surface temperatures would cause local damage. The use of a high-speed burr provides a quick and an effective method of vertebral end plate preparation. Thermal damage to the bone can be minimized through the use of light pressure and saline coolant. This has implications for any bone preparation performed with a high-speed burr.

  15. Adsorption purification of helium coolant of high-temperature gas-cooled reactors of carbon dioxide

    International Nuclear Information System (INIS)

    Varezhkin, A.V.; Zel'venskij, Ya.D.; Metlik, I.V.; Khrulev, A.A.; Fedoseenkin, A.N.

    1986-01-01

    A series experiments on adsorption purification of helium of CO 2 using national adsorbent under the conditions characteristic of HTGR type reactors cleanup system is performed. The experimnts have been conducted under the dynamic mode with immobile adsorbent layer (CaA zeolite) at gas flow rates from 0,02 to 0,055 m/s in the pressure range from 0,8 to 5 MPa at the temperature of 273 and 293 K. It is shown that the adsorption grows with the decrease of gas rate, i.e. with increase of contact time with adsorbent. The helium pressure, growth noticeably whereas the temperature decrease from 293 to 273 K results in adsorption 2,6 times increase. The conclusion is drawn that it is advisable drying and purification of helium of CO 2 to perform separately using different zeolites: NaA - for water. CaA - for CO 2 . Estimations of purification unit parameters are realized

  16. Coolant leakage detecting device

    International Nuclear Information System (INIS)

    Yamauchi, Kiyoshi; Kawai, Katsunori; Ishihara, Yoshinao.

    1995-01-01

    The device of the present invention judges an amount of leakage of primary coolants of a PWR power plant at high speed. Namely, a mass of coolants contained in a pressurizer, a volume controlling tank and loop regions is obtained based on a preset relational formula and signals of each of process amount, summed up to determine the total mass of coolants for every period of time. The amount of leakage for every period of time is calculated by a formula of Karman's filter based on the total mass of the primary coolants for every predetermined period of time, and displays it on CRT. The Karman's filter is formed on every formula for several kinds of states formed based on the preset amount of the leakage, to calculate forecasting values for every mass of coolants. An adaptable probability for every preset leakage amount is determined based on the difference between the forecast value and the observed value and the scattering thereof. The adaptable probability is compared with a predetermined threshold value, which is displayed on the CRT. This device enables earlier detection of leakage and identification of minute leakage amount as compared with the prior device. (I.S.)

  17. Contempt-LT: a computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Wheat, L.L.; Wagner, R.J.; Niederauer, G.F.; Obenchain, C.F.

    1975-06-01

    CONTEMPT-LT is a digital computer program, written in FORTRAN IV, developed to describe the long-term behavior of water-cooled nuclear reactor containment systems subjected to postulated loss-of-coolant accident (LOCA) conditions. The program calculates the time variation of compartment pressures, temperatures, mass and energy inventories, heat structure temperature distributions, and energy exchange with adjacent compartments. The program is capable of describing the effects of leakage on containment response. Models are provided to describe fan cooler and cooling spray engineered safety systems. Up to four compartments can be modeled with CONTEMPT-LT, and any compartment except the reactor system may have both a liquid pool region and an air-vapor atmosphere region above the pool. Each region is assumed to have a uniform temperature, but the temperatures of the two regions may be different. CONTEMPT-LT can be used to model all current boiling water reactor pressure suppression systems, including containments with either vertical or horizontal vent systems. CONTEMPT-LT can also be used to model pressurized water reactor dry containments, subatmospheric containments, and dual volume containments with an annulus region, and can be used to describe containment responses in experimental containment systems. The program user defines which compartments are used, specifies input mass and energy additions, defines heat structure and leakage systems, and describes the time advancement and output control. CONTEMPT-LT source decks are available in double precision extended-binary-coded-decimal-interchange-code (EBCDIC) versions. Sample problems have been run on the IBM360/75 computer. (U.S.)

  18. Predicted HIFAR fuel element temperatures for postulated loss-of-coolant accidents

    International Nuclear Information System (INIS)

    Green, W.J.

    1987-04-01

    A two-dimensional theoretical heat transfer model of a HIFAR Mark IV/Va fuel element has been developed and validated by comparing predicted thermal performances with experimental temperature responses obtained from irradiated fuel elements during simulated accident conditions. Full details of the model's development and its verification have been reported elsewhere. In this report, the model has been further used to ascertain acceptable limits of fuel element decay power for the start of two specific LOCAs which have been identified by the Regulatory Bureau of the AAEC. For a single fuel element which is positioned within a fuel load/unload flask and is not subjected to any forced convective air cooling, the model indicates that fission product decay powers must not exceed 1.86 kW if fuel surface temperatures are not to exceed 450 deg C. In the case of a HIFAR core LOCA in which the complete inventory of heavy water is lost, it is calculated that the maximum fission product decay power of a central element must not exceed 1.1 kW if fuel surface temperatures are not to exceed 450 deg C anywhere in the core

  19. Experimental investigations of pressure and temperature loads on a containment after a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Kanzleiter, T.

    1975-10-01

    The phenomena occuring within a containment during a LOCA are currently investigated through experiments with a modelcontainment at Battelle-Institut Frankfurt on behalf of the Bundesministerium fuer Forschung und Technologie, Bonn. The experimental results are to be compared with the results of model calculations in order to improve the calculational methods. An experimental facility was built, consisting of a primary coolant circuit and a special model-containment. The model-containment, built in conventional reinforced concrete, has a diameter of 12 m, a height of 12.5 m, a capacity of 580 m 3 and is designed for an internal pressure of 6 bar. The interior is divided by concrete walls and removable partitions into several compartments, which are interconnected through openings with adjustable cross section. By exchanging the removable partitions it is possible to modify the interior of the containment and to simulate different containment shapes. For the first experiment a PWR-configuration with nine compartments has been istalled. The model scale of the compartment volumes and the overflow areas are about 1:64 compared to the 1,200-MW-PWR-plant Biblis A. Later investigations will also include BWR-experiments and experiments leading to an extremely high load on special containment structures. (orig.) [de

  20. Oxygen sensor development and low temperature corrosion study in lead-alloy coolant loop

    International Nuclear Information System (INIS)

    Hwang, Il Soon; Bahn, Chi Bum; Lee, Seung Gi; Jeong, Seung Ho; Nam, Hyo On; Lim, Jun

    2007-07-01

    Oxygen sensor to measure dissolved oxygen concentration at liquid lead-bismuth eutectic environments have been developed. Developed oxygen sensor for application in lead-bismuth eutectic (LBE) system was based on the oxygen ion conductor made of YSZ ceramic having Bi/Bi2O3 reference joined by electro-magnetic swaging. Leakage problem, which was major problem of existing sensors, can be solved by using electro-magnetic swaging method. A new calibration strategy combining the oxygen titration with electrochemical impedance spectroscopy (EIS) was performed to increase the reliability of sensor. Another calibration was also conducted by controlling the oxygen concentration using OCS (oxygen control system). Materials corrosion tests of various metals (SS316, EP823, T91 and HT9) were conducted for up to 1,000 hours with specimen inspection after every 333hours at 450 .deg. C in HELIOS. Oxygen concentration was controlled at 10 -6 wt% by using the direct gas bubbling of Ar+4%H 2 , Ar+5%O 2 and pure Ar. The dissolved oxygen concentration in LBE was also monitored by two calibrated YSZ oxygen sensors located at different places under different temperatures within HELIOS. It shows a good performance during 1000 hours. Liquid metal embrittlement (LME) test of SS316L specimen in the LBE was performed at various temperature and strain rate. The result shows that the liquid metal embrittlement effect is not crucial at tested conditions

  1. Procedure to determine the optimal parameters of the main primary coolant pump after compacting the FRG-1 reactor. Pt. 2. Partial structures of the procedure

    International Nuclear Information System (INIS)

    Pihowicz, W.

    1999-01-01

    On the basis of an extensive physical and technical analysis the partial structures of the procedure had been developed. They represent a logical linkage of determination elements in the form of decision and result units. The developed partial structures enable to determine the physical parameters, which characterize the primary circuit together with the compact core as well as the main primary coolant pump coming into question after compacting the core. The report also contains a discussions and a comparison of the partial structures. (orig.) [de

  2. RELAP5 simulation of a large break Loss of Coolant Accident (LOCA) in the hot leg of the primary system in Angra 2 nuclear power plant

    International Nuclear Information System (INIS)

    Andrade, Delvonei Alves de; Sabundjian, Gaiane

    2004-01-01

    The objective of this work is to present the simulation of a large break loss of coolant accident - LBLOCA in the hot leg of the primary loop in Angra 2, with RELAP5/MOD3.2.2g code. This accident is described in the Final Safety Report Analysis of Angra 2 - FSAR and consists basically of the hot leg total break, in loop 20 of the plant. The area considered for the rupture is 4480 cm 2 , which corresponds to 100% of the pipe flow area. Besides, this work also has the objective of verifying the efficiency of the emergency core coolant system - ECCS in case of accidents and transients. The thermal-hydraulic processes inherent to the accident phenomenology, such as hot leg vaporization and consequently core vaporization causing an inappropriate flow distribution in the reactor core, can lead to a reduction in the liquid level, until the ECCS is capable to reflood it

  3. Temperature fluctuations: an assessment of their use in the detection of fast reactor coolant blockages

    International Nuclear Information System (INIS)

    Greef, C.P.

    1979-01-01

    The temperature noise technique for the detection of local blockages in fast reactor subassemblies is discussed. The main factors involved in an assessment of the technique are outlined and the experimental and theoretical work that has been carried out at BNL on the various aspects of the problem is described. It is concluded that blockings appreciably smaller than those predicted to produce boiling should be detectable against a background noise level due to subassembly power tilts, on a time scale giving protection against rapidly developing incidents. Further work required to increase confidence in the application of the technique to the reactor is outlined, including measurements in fully representative geometries, data from sodium rigs and further information on reactor background noise levels. (Auth.)

  4. Analysis of in-core coolant temperatures of FFTF instrumented fuels tests at full power

    International Nuclear Information System (INIS)

    Hoth, C.W.

    1981-01-01

    Two full size highly instrumented fuel assemblies were inserted into the core of the Fast Flux Test Facility in December of 1979. The major objectives of these instrumented tests are to provide verification of the FFTF core conditions and to characterize temperature patterns within FFTF driver fuel assemblies. A review is presented of the results obtained during the power ascents and during irradiation at a constant reactor power of 400 MWt. The results obtained from these instrumented tests verify the conservative nature of the design methods used to establish core conditions in FFTF. The success of these tests also demonstrates the ability to design, fabricate, install and irradiate complex, instrumented fuel tests in FFTF using commercially procured components

  5. Primary system temperature limits and transient mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, G.S.; Bost, D.S.

    1978-10-03

    Results of a study to determine the limiting temperature conditions in a large reactor system are presented. The study considers a sodium-cooled breeder reactor system having a loop-type primary system configuration. A temperature range of 930 to 1050/sup 0/F in reactor outlet temperature is covered. Significant findings were that the use of the materials for the 930/sup 0/F reference design, i.e., a core material of 20% cold-worked 316 stainless steel, a primary piping material of 316SS, and a steam generator material of unstabilized 2-1/4 Cr - 1 Mo resulted in limiting conditions in component performance at the higher temperatures. Means to circumvent these limits through the use of alternate materials, mitigation of thermal transients, and/or design changes are presented. The economic incentive to make some materials changes is also presented.

  6. SOCOOL-2, Molten Materials Na Coolant Interaction, Temperature and Pressure Transient

    International Nuclear Information System (INIS)

    Padilla, A. Jr.

    1973-01-01

    1 - Description of problem or function: SOCOOL2 calculates the transient temperatures, pressures, and mechanical work energy when a molten material is instantaneously and uniformly dispersed in liquid sodium which is initially under acoustic constraint. 2 - Method of solution: A unit cell consisting of a single spherical particle of molten material surrounded concentrically by sodium is used as the basis for the calculation. Heat transfer from the molten particle to the sodium is calculated by an implicit numerical technique assuming negligible contact resistance at the interface of the particle. The expansion of the heated sodium is calculated by the one-dimensional acoustic equation until vaporization conditions are attained. Upon vaporization, it is assumed that the particle becomes vapor-blanketed and that no further heat transfer to or from the sodium occurs. The heated sodium is then expanded to the specific final pressure in an isentropic expansion process. 3 - Restrictions on the complexity of the problem: The presence of an initial amount of sodium vapor or noncondensable gas cannot be taken into account. Time delays in the process of fragmentation and mixing of the molten material into the sodium cannot be considered. Heat transfer during the two-phase expansion of sodium is neglected

  7. Always at the correct temperature. Thermal management with electric coolant pump; Immer richtig temperiert. Thermomanagement mit elektrischer Kuehlmittelpumpe

    Energy Technology Data Exchange (ETDEWEB)

    Genster, A.; Stephan, W. [Pierburg GmbH, Neuss (Germany)

    2004-11-01

    Through the use of the electric coolant pump it has become possible for the first time to attain a cooling performance which is adapted precisely to the engine load and which is independent of engine speed. For cooling the new BMW six cylinder in-line Otto engine with an engine power rating of 190 kW, the electric coolant pump by Pierburg requires only 200 W of electrical power from the onboard electrical system. (orig.)

  8. Research on Coolant Radiochemistry

    International Nuclear Information System (INIS)

    Ha, Yeong Keong; Kim, W. H.; Yeon, J. W.; Jung, Y. J.; Choi, K. C.; Choi, K. S.; Park, Y. J.; Cho, Y. H.

    2007-06-01

    The final objective of this study is to develop a method for reducing radioactive materials formed in the reactor coolant circuit. This second stage research was categorized into the following three subgroups: the development of the estimation technique of microscopic chemical variation at high temperatures and pressures, the fundamental study on the thermodynamics at high temperatures and pressures, and the study on the deposition of metal oxides and the determination of the main factors responsible for the growth of CRUD. First, in the development of the estimation technique of microscopic chemical change at high temperatures and pressures, the technique for measuring coolant chemistry such as pH, conductivity and Eh was developed to be appropriate for the high temperature and pressure condition. The coolant chemistry measuring system including the self-devised high temperature pH sensor can be applied to the field of nuclear reactor and contribute on a large scale in the automation of the coolant chemistry control and the establishment of the real-time on-line measuring technique. Secondly, the dissociation constant of water and the solubility of metal oxides were measured in the fundamental study on the thermodynamics at high temperatures and pressures. Finally, in the study on the deposition of metal oxides and the determination of the main factors responsible for the growth of CRUD, the careful investigation of the deposition phenomena of micro particles on the cladding surface showed that subcooled boiling and the dissolved hydrogen are the main factors responsible for the growth of CRUD. In addition, the basis was provided for the construction of a new particle behavior model in the reactor coolant circuit

  9. Reactor coolant cleanup device

    International Nuclear Information System (INIS)

    Igarashi, Noboru.

    1986-01-01

    Purpose: To enable to introduce reactor water at high temperature and high pressure as it is, as well as effectively adsorb to eliminate cobalt in reactor water. Constitution: The coolant cleanup device comprises a vessel main body inserted to coolant pipeway circuits in a water cooled reactor power plant and filters contained within the vessel main body. The filters are prepared by coating and baking powder of metal oxides such as manganese ferrite having a function capable of adsorbing cobalt in the coolants onto the surface of supports made of metals or ceramics resistant to strong acids and alkalies in the form of three-dimensional network structure, for example, zircaloy-2, SUS 303 and the zirconia (baking) to form a basic filter elements. The basic filter elements are charged in plurality to the vessel main body. (Kawaiami, Y.)

  10. Thermal response of core and central-cavity components of a high-temperature gas-cooled reactor in the absence of forced convection coolant flow

    International Nuclear Information System (INIS)

    Whaley, R.L.; Sanders, J.P.

    1976-09-01

    A means of determining the thermal responses of the core and the components of a high-temperature gas-cooled reactor after loss of forced coolant flow is discussed. A computer program, using a finite-difference technique, is presented together with a solution of the confined natural convection. The results obtained are reasonable and demonstrate that the computer program adequately represents the confined natural convection

  11. Calculation of activity concentration and dose rates from online radioactivity measurement in primary coolant channel of TAPS-III and IV

    International Nuclear Information System (INIS)

    Chaudhury, Sanhita; Agarwal, Chhavi; Goswami, A.; Mhatre, Amol; Chaturvedi, T.P.; Tawde, N.; Gathibandhe, Manohar; Dash, S.C.

    2011-05-01

    Radioactivity measurement using CdZnTe detector and dose measurement using teletector were done at several locations of primary heat transport (PHT) system of the Tarapur Atomic Power Station-III and IV reactor during shut down as well as operating condition of the reactors. The detector efficiency for the required counting geometry was simulated using MCNP code. Using this simulated efficiency and the experimental count rate (cps), the activity concentrations (Bq/mL) of different radionuclides in coolant water were calculated. The dose rates for the counted locations were also simulated using Monte Carlo code and it matched well with the experimentally obtained dose rate. (author)

  12. A concern about the crack propagation rate of PWSCC which obtained from the investigation on primary coolant leakage portion of the reactor vessel head in Ohi 3

    International Nuclear Information System (INIS)

    Totsuka, Nobuo; Fukumura, Takuya

    2010-01-01

    There will be some concern about the content presented in the paper entitled 'Primary Coolant Leakage Path Research of Reactor Vessel Head Penetration' published in INSS JOURNAL of 2008, which may lead to misunderstanding about the PWSCC crack propagation rate, that is, the rate written in the paper seems to be faster than those reported by the previous studies. It is considered that such misunderstanding will be due to a sentence in the abstract of the paper. Therefore, we will revise a part of the abstract and explain about the outline of the paper again. (author)

  13. Experimental study on cryogenic adsorption of methane by activated carbon for helium coolant purification of High-Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Chang, Hua; Wu, Zong-Xin; Jia, Hai-Jun

    2017-01-01

    Highlights: • The cryogenic CH 4 adsorption on activated carbon was studied for design of HTGR. • The breakthrough curves at different conditions were analyzed by the MTZ model. • The CH 4 adsorption isotherm was fitted well by the Toth model and the D-R model. • The work provides valuable reference data for helium coolant purification of HTGR. - Abstract: The cryogenic adsorption behavior of methane on activated carbon was investigated for helium coolant purification of high-temperature gas-cooled reactor by using dynamic column breakthrough method. With helium as carrier gas, experiments were performed at −196 °C and low methane partial pressure range of 0–120 Pa. The breakthrough curves at different superficial velocities and different feed concentrations were measured and analyzed by the mass-transfer zone model. The methane single-component adsorption isotherm was obtained and fitted well by the Toth model and the Dubinin-Radushkevich model. The adsorption heat of methane on activated carbon was estimated. The cryogenic adsorption process of methane on activated carbon has been verified to be effective for helium coolant purification of high-temperature gas-cooled reactor.

  14. Fuel-element temperature nonstationary distribution caused by local pulsations of the factor of heat transfer to a coolant

    International Nuclear Information System (INIS)

    Pupko, V.Ya.

    1978-01-01

    The equation of nonstationary heat transfer caused by the appearance of a local pulse jump in the factor of heat transfer to a coolant is solved analytically for a cylindrical fuel element. The problem solution is generalized to a case of the periodically pulsating factor of heat transfer according to its value in an arbitrary point of the fuel element surface

  15. Influence of the S/N ratio on the corrosion release of Alloy 690 tubes in a primary coolant

    International Nuclear Information System (INIS)

    Shim, Hee-Sang; Choi, Myung Sik; Kim, Kyung Mo; Seo, Myung Ji; Hur, Do Haeng; Choi, Tack-Sang; Yoo, One

    2014-01-01

    Alloy 690TT is a promising steam generator (SG) tube material of a pressurized water reactor due to its excellent resistance to stress corrosion cracking (SCC) that has caused problems in Alloy 600 as an old SG tube material. The qualities of this material have been managed thoroughly from manufacturing step under various specification regulations as well as in in-service step. For examples, the surface roughness are prescribed as the values less than 1.6 μm for the tube outside and 0.5 μm for the inside, respectively. In addition, the surface state and defect must be qualified through the eddy current test (ECT) and the ultrasonic test (UT) according to the ASME Section III, NB2550. Then, the signal-to-noise (S/N) ratio, which is measured using ECT bobbin probe, is the important criteria to determine the material and it shall be 15 to 1 or higher at the standard frequency for any fixed 0.5 m length of any tube. The corrosion behaviours of the Alloy 690TT under high-temperature pressurized primary water have been studied widely in a point of the SCC but discussed narrowly in a point of the corrosion release. In particular, the effect of the S/N ratio on the corrosion release of this material surface has been rarely investigated. In this work, we evaluate the influence of the S/N ratio on the corrosion release of Alloy 690 SG tubes. The specimens with different S/N ratio were selected through ECT bobbin inspection and a corrosion release test was conducted using a simulated primary circulation loop. The material properties and oxidation behaviours were investigated by surface profiler, scanning electron microscopy, transmission electron microscopy, grazing incidence X-ray diffraction and etc. As a result, the corrosion rate was matched preferably with the MRPC characteristics showing macroscopic surface state rather than with the bobbin S/N ratio results. (author)

  16. Measurement of actinides in samples from effluent air, primary coolant and effluent water of nuclear power stations in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Winkler, R.; Hoetzl, H.; Rosner, G.

    1977-01-01

    Since the middle of 1973 the alpha radioactivity of a number of aerosol filters from the stack monitoring systems of some nuclear power stations, of water effluent samples from all german nuclear power stations and of samples from the primary coolant water of one nuclear power reactor was measured. Essentially, the following procedures of sample preparation for alpha spectrometry of the samples in large area gridded ionization chambers were used; cold ashing of the aerosol samples in 'excited' oxygen, coprecipitation of the alpha emitters from the effluent water samples with iron hydroxide and subsequent cold ashing of the precipitate, and evaporation of the samples from the primary cycle on stainless steel plates. The following transuranium nuclides, or some of them, were found in the samples of the primary coolant and in several aerosol filter samples: Pu-239/240, Pu-238 and/or Am-241, Cm-242 and Cm-244. Cm-242 contributes most to the alpha radioactivity in fresh samples. In the effluent water samples Cm-242, Pu-239/240 and Pu-238 and/or Am-241 were identified in some cases, in one case also Cm-244. Detection limits of the procedures used for the analysis of the above stated transuranium nuclides were in the order of 0,1 fCi per m 3 for the aerosol samples and of 0.2 pCi per 1 for the liquid samples. For the effluent air and water samples in most cases specific activities near the detection limit or somewhat higher were found. On the basis of the measurements, an estimation of the annual actinides releases from nuclear power stations in the Federal Republic of Germany is given

  17. Coolant clean-up and recycle systems

    International Nuclear Information System (INIS)

    Ito, Takao.

    1979-01-01

    Purpose: To increase the service life of mechanical seals in a shaft sealing device, eliminate leakages and improve the safety by providing a recycle pump for feeding coolants to a coolant clean-up device upon reactor shut-down and adapting the pump treat only low temperature and low pressure coolants. Constitution: The system is adapted to partially take out coolants from the pipeways of a recycling pump upon normal operation and feed them to a clean-up device. Upon reactor shut-down, the recycle pump is stopped and coolants are extracted by the recycle pump for shut-down into the clean-up device. Since the coolants are not fed to the clean-up device by the recycle pump during normal operation as conducted so far, high temperature and high pressure coolants are not directly fed to the recycle pump, thereby enabling to avoid mechanical problems in the pump. (Kamimura, M.)

  18. CONTEMPT-LT/028: a computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Hargroves, D.W.; Metcalfe, L.J.; Wheat, L.L.; Niederauer, G.F.; Obenchain, C.F.

    1979-03-01

    CONTEMPT-LT is a digital computer program, written in FORTRAN IV, developed to describe the long-term behavior of water-cooled nuclear reactor containment systems subjected to postulated loss-of-coolant accident (LOCA) conditions. The program calculates the time variation of compartment pressures, temperatures, mass and energy inventories, heat structure temperature distributions, and energy exchange with adjacent compartments. The program is capable of describing the effects of leakage on containment response. Models are provided to describe fan cooler and cooling spray engineered safety systems. An annular fan model is also provided to model pressure control in the annular region of dual containment systems. Up to four compartments can be modeled with CONTEMPT-LT, and any compartment except the reactor system may have both a liquid pool region and an air--vapor atmosphere region above the pool. Each region is assumed to have a uniform temperature, but the temperatures of the two regions may be different

  19. Measurement of vibrations in the primary coolant circuit and in the vertical experimental channel of the RA reactor

    International Nuclear Information System (INIS)

    Ristic, B.; Rakic, R.; Milosevic, M.; Jerkovic, M.

    1966-01-01

    Full text: Beginning of the work dates from 1962 with the initial objective: study of the wear-out of the bearings of the centrifugal pumps in the heavy water system. It has been expected that the increase of wear-out would initiate increase of vibration amplitudes and noise. During further study the initial task was broadened to other fields, mainly appearance of material fatigue in components of the heavy water coolant system. During operation mechanical energy is generated due to non existing equilibrium of the pump rotor, wear-out of the bearing, turbulence in the pump, cavitation process and pulsation of the operating environment. This energy is transformed into noise and vibration energy which is spread through surrounding walls and pipes causing noise finally. Obtained results were only qualitatively tested at present. For quantitative testing it would be necessary to obtain data about the material, in addition to the diagrams obtained by measurements. It would be possible to calculate the fatigue of the material at measuring points as well as estimation of the time when material fatigue would become critical [sr

  20. Application of the Severe Accident Code ATHLET-CD. Coolant injection to primary circuit of a PWR by mobile pump system in case of SBLOCA severe accident scenario

    Energy Technology Data Exchange (ETDEWEB)

    Jobst, Matthias; Wilhelm, Polina; Kliem, Soeren; Kozmenkov, Yaroslav [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety

    2017-06-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems, core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. By means of numerical analyses performed with the compute code ATHLET-CD, the effectiveness of coolant injection with a mobile pump system into the primary circuit of a PWR was studied. According to the analyses, such a system can stop the melt progression if it is activated prior to 10 % of total core is molten.

  1. Application of the Severe Accident Code ATHLET-CD. Coolant injection to primary circuit of a PWR by mobile pump system in case of SBLOCA severe accident scenario

    International Nuclear Information System (INIS)

    Jobst, Matthias; Wilhelm, Polina; Kliem, Soeren; Kozmenkov, Yaroslav

    2017-01-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems, core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. By means of numerical analyses performed with the compute code ATHLET-CD, the effectiveness of coolant injection with a mobile pump system into the primary circuit of a PWR was studied. According to the analyses, such a system can stop the melt progression if it is activated prior to 10 % of total core is molten.

  2. Analysis of water hammer-structure interaction in piping system for a loss of coolant accident in primary loop of pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Xiwen; Yang Jinglong; He Feng; Wang Xuefang

    2000-01-01

    The conventional analysis of water hammer and dynamics response of structure in piping system is divided into two parts, and the interaction between them is neglected. The mechanism of fluid-structure interaction under the double-end break pipe in piping system is analyzed. Using the characteristics method, the numerical simulation of water hammer-structure interaction in piping system is completed based on 14 parameters and 14 partial differential equations of fluid-piping cell. The calculated results for a loss of coolant accident (LOCA) in primary loop of pressurized water reactor show that the waveform and values of pressure and force with time in piping system are different from that of non-interaction between water hammer and structure in piping system, and the former is less than the later

  3. The problems of using a high-temperature sodium coolant in nuclear power plants for the production of hydrogen and other innovative applications

    Science.gov (United States)

    Sorokin, A. P.; Alexeev, V. V.; Kuzina, Ju. A.; Konovalov, M. A.

    2017-11-01

    The intensity of the hydrogen sources arriving from the third contour of installation in second in comparison with the hydrogen sources on NPP BN-600 increases by two - three order at using of high-temperature nuclear power plants with the sodium coolant (HT-NPP) for drawing of hydrogen and other innovative applications (gasification and a liquefaction of coal, profound oil refining, transformation of biomass to liquid fuel, in the chemical industry, metallurgy, the food-processing industry etc.). For these conditions basic new technological solutions are offered. The main condition of their implementation is raise of hydrogen concentration in the sodium coolant on two - three order in comparison with the modern NPP, in a combination to hydrogen removal from sodium and its pumping out through membranes from vanadium or niobium. The researches with use diffusive model have shown possibility to expel a casium inflow in sodium through a leakproof shell of fuel rods if vary such parameters as a material of fuel rods shell, its thickness and maintenance time at design of fuel rods for high-temperature NPP. However maintenance of high-temperature NPP in the presence of casium in sodium is inevitable at loss of leakproof of a fuel rods shell. In these conditions for minimisation of casium diffusion in structural materials it is necessary to provide deep clearing of sodium from cesium.

  4. Experimental and theoretical comparison of fuel temperature and bulk coolant characteristics in the Oregon State TRIGA reactor during steady state operation

    Energy Technology Data Exchange (ETDEWEB)

    Marcum, W.R., E-mail: marcumw@engr.orst.ed [Oregon State University, Department of Nuclear Engineering and Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97330 (United States); Woods, B.G.; Reese, S.R. [Oregon State University, Department of Nuclear Engineering and Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97330 (United States)

    2010-01-15

    In September of 2008 Oregon State University (OSU) completed its core conversion analysis as part of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Experimental bulk coolant temperatures were collected in various locations throughout the Oregon State TRIGA Reactor (OSTR) core in order to supplement the validity of the numerical thermal hydraulic results produced in RELAP5-3D Version 2.4.2. Axial bulk coolant temperature distributions were collected by acquiring discrete thermocouple measurements in individual subchannel locations during steady state operation at 1.0 MW{sub th}. The experimental axial temperature distribution collected was compared to one-channel, two-channel, and eight-channel RELAP5-3D models and found to match within 11.94%, 11.69%, and 8.78%, respectively, on average. Comparisons to similar studies were made based on a dimensional analysis of fluid body forces in the discrete core locations, indicating that the chosen approach produces conservative results for use in the OSTR safety analysis.

  5. Structural analysis of the as-built IEA-R1 primary coolant piping system using a complete three dimensional model

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Martins, Lucas B.; Marcolin, Gabriel; Mattar Neto, Miguel

    2011-01-01

    IEA-R1 is an open pool type research reactor, moderated by light water and upgraded from 2 MW to 5 MW of operating power level. Heat generated in the reactor core is removed by a coolant system divided in two circuits, primary and secondary, composed by pumps, piping, heat exchangers, cooling tower, and some other auxiliary components. The 5 MW operating power level is now possible due to a modernization program started in 1996. As a part of the modernization program, ageing assessment studies recommend the replacement of one of the two heat exchangers in the circuit. To manage this replacement, modifications in the layout of the primary and secondary piping and supporting systems were performed, based on preliminary stress analysis study. Then, the aim of this work is to present the final stress analysis of the primary circuit. To reach this and taking the modifications of the primary into account, a 3D model of the whole circuit, in the as-built condition, was made. Stress results and discussions are shown. (author)

  6. The radionuclides of primary coolant in HANARO and the recent activities performed to reduce the radioactivity or reactor pool water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin [HANARO Research Reactor Centre, Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1998-10-01

    In HANARO reactor, there have been activities to identify the principal radionuclides and to quantify them under the normal operation. The purposes of such activities were to establish the measure by which we can reduce the radioactivity of the reactor pool water and detect, in early stage, the abnormal symptoms due to the leakage of radioactive materials from the irradiation sample or the damage of the nuclear fuel, etc. The typical radionuclides produced by the activation of reactor coolant are N{sup 16} and Ar{sup 41}. The radionuclides produced by the activation of the core structural material consist of Na{sup 24}, Mn{sup 56}, and W{sup 187}. Of the various radionuclides, governing the radiation level at the pool surface are Na{sup 24}, Ar{sup 41}, Mn{sup 58}, and W{sup 187}. By establishing the hot water layer system on the pool surface, we expected that the radionuclides such as Ar{sup 41} and Mn{sup 56} whose half-life are relatively short could be removed to a certain extent. Since the content of radioactivity of Na{sup 24} occupies about 60% of the total radioactivity, we assumed that the total radiation level would be greatly reduced if we could decrease the radiation level of Na{sup 24}. However the actual radiation level has not been reduced as much as we expected. Therefore, some experiments have been carried out to find the actual causes afterwards. What we learned through the experiments are that any disturbance in reactor pool water layer causes increase of the pool surface radiation level and even if we maintain the hot water layer well, reactor shutdown will be very much likely to happen once the hot water layer is disturbed. (author)

  7. Effect of emergency core cooling system flow reduction on channel temperature during recirculation phase of large break loss-of-coolant accident at Wolsong unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seon Oh; Cho, Yong Jin [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Sung Joong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2017-08-15

    The feasibility of cooling in a pressurized heavy water reactor after a large break loss-of-coolant accident has been analyzed using Multidimensional Analysis of Reactor Safety-KINS Standard code during the recirculation phase. Through evaluation of sensitivity of the fuel channel temperature to various effective recirculation flow areas, it is determined that proper cooling of the fuel channels in the broken loop is feasible if the effective flow area remains above approximately 70% of the nominal flow area. When the flow area is reduced by more than approximately 25% of the nominal value, however, incipience of boiling is expected, after which the thermal integrity of the fuel channel can be threatened. In addition, if a dramatic reduction of the recirculation flow occurs, excursions and frequent fluctuations of temperature in the fuel channels are likely to be unavoidable, and thus damage to the fuel channels would be anticipated. To resolve this, emergency coolant supply through the newly installed external injection path can be used as one alternative means of cooling, enabling fuel channel integrity to be maintained and permanently preventing severe accident conditions. Thus, the external injection flow required to guarantee fuel channel coolability has been estimated.

  8. Effect of emergency core cooling system flow reduction on channel temperature during recirculation phase of large break loss-of-coolant accident at Wolsong unit 1

    Directory of Open Access Journals (Sweden)

    Seon Oh Yu

    2017-08-01

    Full Text Available The feasibility of cooling in a pressurized heavy water reactor after a large break loss-of-coolant accident has been analyzed using Multidimensional Analysis of Reactor Safety-KINS Standard code during the recirculation phase. Through evaluation of sensitivity of the fuel channel temperature to various effective recirculation flow areas, it is determined that proper cooling of the fuel channels in the broken loop is feasible if the effective flow area remains above approximately 70% of the nominal flow area. When the flow area is reduced by more than approximately 25% of the nominal value, however, incipience of boiling is expected, after which the thermal integrity of the fuel channel can be threatened. In addition, if a dramatic reduction of the recirculation flow occurs, excursions and frequent fluctuations of temperature in the fuel channels are likely to be unavoidable, and thus damage to the fuel channels would be anticipated. To resolve this, emergency coolant supply through the newly installed external injection path can be used as one alternative means of cooling, enabling fuel channel integrity to be maintained and permanently preventing severe accident conditions. Thus, the external injection flow required to guarantee fuel channel coolability has been estimated.

  9. The experimental definition of the acoustic standing wave series shapes, formed in the coolant of the primary circuit of VVER-440 type reactor

    International Nuclear Information System (INIS)

    Bulavin, V.V.; Pavelko, V.I.

    1995-01-01

    On the basis of pressure fluctuation measurements in some primary circuit loops at 2 nd Unit of Kola NPP with VVER-440 type reactors, the shapes of acoustic standing waves (ASW) were determined at frequencies corresponding to four minimal oscillation eigenfrequencies in the primary circuit coolant. On identification of the ASW modes and properties, experimental results based on six circulating loops in symmetric arrangement allowed determination of the three-dimensional space structure of the wave nodes and antinodes inside and outside of the reactor vessel (RV). As part of this analysis, the geometric features of the primary circuit that caused the formation of these standing waves were identified. Differences in each ASW shape were shown to cause different individual effects on the neutron field in the reactor core and on fuel assembly vibration. This has been partially confirmed by ex-core neutron ionization chamber noise analysis. One type of ASW, possessing an antinode inside the RV, can be used for measurement of the pressure coefficient of reactivity. However, this must be done with care to avoid the potential for incorrect results in some cases. The results presented in this paper can be readily extended to other VVER type reactors with both odd and even number of loops. (author)

  10. Determination of temperature measurements uncertainties of the heat transport primary system of Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Pomerantz, Marcelo E.; Coutsiers, Eduardo E.; Moreno, Carlos A.

    1999-01-01

    In this work, the systematic errors in temperature measurements in inlet and outlet headers of HTPS coolant channels of Embalse nuclear power plant are evaluated. These uncertainties are necessary for a later evaluation of the channel power maps transferred to the coolant. The power maps calculated in this way are used to compare power distributions using neutronic codes. Therefore, a methodology to correct systematic errors of temperature in outlet feeders and inlet headers is developed in this work. (author)

  11. The effect of zinc injection into PWR primary coolant on the reduction of radiation buildup and corrosion control. The solubilities of zinc, nickel and cobalt spinel oxides

    International Nuclear Information System (INIS)

    Miyajima, Kaori; Hirano, Hideo

    1999-01-01

    The use of zinc injection into PWR primary coolant to reduce radiation buildup has been widely studied, and te reduction effect has been experimentally confirmed. However, some items, such as the optimal concentration of zinc required to reduce radiation buildup, the corrosion control effect of zinc injection, and the influence of zinc injection on the integrity of fuel cladding, have not been clarified yet. In particular, the corrosion suppression effect of zinc remains unconfirmed. Therefore, it is necessary to measure and calculate the solubilities of zinc and nickel spinel oxides, which are formed on the surface of Ni-based alloys in PWR primary systems. In this study, in order to assess the effectiveness of zinc injection in the reduction of radiation buildup and the corrosion control of Ni-based alloy, the potential-pH diagrams for Zn-Cr-H 2 O, Ni-Cr-H 2 O, and Co-Cr-H 2 O systems at 300degC were constructed and the solubilities of Zn-Cr, Ni-Cr, and Co-Cr spinel oxides were calculated. It is concluded that under pH conditions for which NiCr 2 O 4 is stable, zinc injection is effective in corrosion control as well as in reducing radiation buildup. (author)

  12. Generic study on the relation between contamination if primary coolants and occupational radiation exposure in nuclear power plants with PWR. Final report; Generische Studie zum Zusammenhang zwischen Kontamination von Primaerkreislaufmedien und beruflicher Strahlenexposition bei Kernkraftwerken mit Druckwasserreaktor. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Artmann, Andreas; Bruhn, Gerd; Schneider, Sebastian [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Koeln (Germany); Strub, Erik [Koeln Univ. (Germany)

    2016-01-15

    A generic model for the primary cooling system contamination in pressurized water reactors and the resulting radiological consequences has been developed. The functional capability was demonstrated by means of three examples concerning manipulation procedures during revision outages. Activities at the main reactor coolant pumps were studied and the influence of the coolant contamination on the resulting dose rates and collective doses were calculated. The effect of a Co-90 hot spot in a more remote area on the radiation exposure during the specific action at the reactor pumps was considered.

  13. After-production and in-service inspections of components of nuclear power plant primary coolant circuits

    International Nuclear Information System (INIS)

    Slama, K.; Svetlik, M.

    1990-01-01

    A new diagnostic system was developed for detecting defects in the material of mechanically loaded equipment. It is based on the measurement of elastic strain waves propagating through the materials. The instrument units as well as the methodology and software are of Czechoslovak origin and can be modified to conform to the requirements and experience of the user. The way of applying the method to the diagnostics of pressure vessels, main circulation pumps of the pressurizers and of the primary piping is described. Some results of after-production and in-service acoustic emission tests are given, as are the technical parameters of the acoustic emission analyzer. (M.D.). 5 figs

  14. Improving the ALUeS diagnostic system for determining the coolant leak place from the WWER-440 primary circuit

    International Nuclear Information System (INIS)

    Markosyan, G.R.; Petrosyan, V.G.; Shakhverdyan, S.V.; Aslanyan, M.A.

    2000-01-01

    The new algorithm for localizing the leakage from the WWER-440 primary circuit, intended for operation in the Siemens ALUeS system, is proposed. The results of the algorithm realization in the leakage control system (the ALUeS system copy), installed at the Armenian NPP power unit-2, are presented. The leakage localization algorithm proposed was tested in other experiments. The leakage position in the majority of cases is determined exactly. Small (up to 5 m) deviations, the cause whereof were incorrect readings of the transducers, were observed [ru

  15. Mathematical model of the reactor coolant pump

    International Nuclear Information System (INIS)

    Kozuh, M.

    1989-01-01

    The mathematical model of reactor coolant pump is described in this paper. It is based on correlations for centrifugal reactor coolant pumps. This code is one of the elements needed for the simulation of the whole NPP primary system. In subroutine developed according to this model we tried in every possible detail to incorporate plant specific data for Krsko NPP. (author)

  16. Calculation model for predicting concentrations of radioactive corrostion products in the primary coolant of boiling water reactors

    International Nuclear Information System (INIS)

    Uchida, S.; Kikuchi, M.; Asakura, Y.; Yusa, H.; Ohsumi, K.

    1978-01-01

    A calculation model was developed to predict the shutdown dose rate around the recirculation pipes and their components in boiling water reactors (BWRs) by simulating the corrosion product transport in primary cooling water. The model is characterized by separating cobalt species in the water into soluble and insoluble materials and then calculating each concentration using the following considerations: (1) Insoluble cobalt (designated as crud cobalt is deposited directly on the fuel surface, while soluble cobalt (designated as ionic cobalt) is adsorbed on iron oxide deposits on the fuel surface. (2) Cobalt-60 activated on the fuel surface is dissolved in the water in an ionic form, and some is released with iron oxide as crud. The model can follow the reduction of 60 Co in the primary cooling water caused by the control of the iron feed rate into the reactor, which decreases the iron oxide deposits on the fuel surface and then reduces the cobalt adsorption rate. The calculated results agree satisfactorily with the measurements in several BWR plants

  17. Predicting ion exchange resins decontamination factors. Experiments on synthetic primary coolant containing Ni, Co and Ag and modeling results

    International Nuclear Information System (INIS)

    Bachet, Martin; Schneider, Hélène; Jauberty, Loïc; Windt, Laurent De; Dieuleveult, Caroline de; Tevissen, Etienne

    2014-01-01

    Experiments performed under chemical and flow conditions representative of pressurized water reactors (PWR) primary fluid purification by ion exchange resins (Amberlite IRN9882) are modeled with the OPTIPUR code, considering 1D reactive transport in the mixed-bed column with convective/dispersive transport between beads and electro-diffusive transport within the boundary film around the beads. The effectiveness of the purification in these dilute conditions is highly related to film mass transfer restrictions, which are accounted for by adjustment of a common mass transfer coefficient (MTC) on the experimental initial leakage or modeling of species diffusion through the bead film by the Nernst-Planck equation. A detailed analysis of the modeling against experimental data shows that the Nernst-Planck approach with no adjustable parameters performs as well as, or better, than the MTC approach, particularly to simulate the chromatographic elution of silver by nickel and the subsequent enrichment of the solution in the former metal. (author)

  18. Three dimensional calculations of the primary coolant flow in a 900 MW PWR vessel. Steady state and transients computations

    International Nuclear Information System (INIS)

    Martin, A.; Alvarez, D.; Cases, F.

    1996-03-01

    The paper explains the chronological account and the first results obtained in the R and D program on the mixing in the 900 MW PWR vessels. After the presentation of the plant type simulated, we define the numerical tool, the (Finite Element Modelling) FEM N3S code. Two results are presented with a comparison with the experiment results issued of the BORA BORA mock up. The first case is dealing with the isothermal steady state mixing in the vessel with the three loops mass flow rate balanced. This case identified as a validation of our numerical tool shows a good agreement. The second case is dealing with the transient mixing of a clear plug in the vessel when one primary pump starts-up. We compare the numerical and experiment results giving the mean boron concentration at the core inlet for several clear water plugs. The results show again a good agreement. (authors). 12 refs., 10 figs., 1 tab

  19. A review of pH calculation and corrosion product solubilities under PWR primary coolant chemistry conditions

    International Nuclear Information System (INIS)

    Thornton, E.W.; Polley, M.V.

    1986-12-01

    The calculation of high temperature pH in boric acid solutions is discussed and various relationships for the ionisation constant Ksub(w) or ion product Qsub(w) for water are reviewed. It is shown that the boric acid equilibria of Mesmer, Baes and Sweeton remain virtually unaltered when Marshall and Franck's relationship for Ksub(w) is substituted in a re-analysis of Mesmer, Baes and Sweeton's original experimental data. Magnetite solubility data and Westinghouse's studies of iron, nickel and cobalt solubility from mixed ferrites are collated and consideration is given to experimental difficulties which could have contributed to the variability in the data. Thermodynamic model fits have been computerised and used to compare different studies and to determine pH values at which the temperature dependence of solubility is predicted to be zero. Consideration is given to the differing dependences of solubility on dissolved hydrogen concentration in the three model fits. Two models for predicting iron and nickel solubility with respect to non-stoichiometric nickel ferrites are briefly discussed showing that only one of these is likely to be credible. (author)

  20. Analytical and experimental assessment of TVS-2006 fuel assembly thermal-mechanical shape deformation at temperature modeling of a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Afanasiev, A.; Semishkin, V.; Makarov, V.; Matvienko, I.; Puzanov, D.

    2015-01-01

    Full or partial core drying-out takes place in loss-of-coolant accidents, which leads to worsening of heat removal from the fuel rods. Depending on the accident scenario the fuel rod cladding temperature can be in a wide range from 350 to 1200°C. It is worth mentioning, that the length of the process can considerably affect the fuel rod cladding loadcarrying capacity and the FA structure as a whole, and in the long run it defines the radiation consequences of the accident and the possibility of postaccident core disassembly at low cost. Most experiments staged of late were devoted to a study of FA behaviour in the temperature range 800-900°C of α→β phase transition that is characterized by a sharp increase in the rate of zirconium alloy creep which leads to fuel rod cladding ballooning and loss of their tightness within a short period of time. The 600-700°C temperature range turned out to be less investigated whereas this is the range where the change of zirconium alloy mechanical properties is also observed but only with the retention of α-phase. The tests of a full-scale FA dummy with the skeleton of guide tubes and spacer grids connected by friction forces, carried out at the testing facility of JSC OKB “GIDROPRESS”, were devoted to a study of FA behaviour in this temperature range. The model was heated up with hot air to 650°C for 6 hours. The tests ended with fuel rod cladding ballooning due to gauge pressure and shape deformation. No loss of fuel rod cladding integrity was observed. Therefore, a conclusion can be made that a long-time core holdup at the parameters implemented at the test facility is permitted and the deformations of the FA structure do not lead to the damage that could considerably complicate the core disassembly. The test results were used for the verification of the calculational model of FA TVS-2006 structure with a welded skeleton by ANSYS code. On the basis of the verified calculational model a calculational model was

  1. Effect of ferrite on the precipitation of σ phase in cast austenitic stainless steel used for primary coolant pipes of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongqiang; Li, Na, E-mail: wangyongqiang1124@163.com [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology, Beijing (China)

    2017-11-15

    The effect of ferrite phase on the precipitation of σ phase in a Z3CN20.09M cast austenitic stainless steel (CASS) used for primary coolant pipes of pressurized water reactor (PWR) nuclear power plants was investigated by using isothermal heat-treatment, optical microscopy (OM), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA) techniques. The influence of different morphologies and volume fractions of ferrite in the σ phase formation mechanism was discussed. The amount of σ phase precipitated in all specimens with different microstructures increased with increasing of aging time, however, the precipitation rate is significant different. The formation of σ phase in specimens with the coarsest ferrite and the dispersively smallest ferrite is slowest. The lowest level Cr content in ferrite and fewest α/γ interfaces in specimen are the main reasons for the slowest σ precipitation due to they are unfavorable for the kinetics and thermodynamics of phase transformation respectively. By contraries, the fastest formation of σ phase takes place in specimens with narrow and long ferrite due to the most α/γ interfaces and higher Cr content in ferrite which are beneficial for preferential nucleation and formation thermodynamics of σ phase. (author)

  2. Studies on dissolution characteristics of simulated corrosion products on pressurized water reactor primary coolant loops. Pt.2: Cobalt simulated corrosion product

    International Nuclear Information System (INIS)

    Li Shan; Zhou Xianyu

    1997-01-01

    The studies on the dissolution characteristics of simulated corrosion product of cobalt on pressurized water reactor primary coolant loops in aqueous solution of citric acid, hydrogen peroxide and citric acid-hydrogen peroxide have been performed. The results show that the portion of the dissolved simulated corrosion product of cobalt in citric acid aqueous solution clearly increases with a rise in citric acid concentration and is ten times above the corresponding value of iron. The portion of the products that dissolve is the largest at pH 3.00 in the pH range of 2.33∼4.50 and at 70 degree C in the range of 60∼80 degree C. It is shown that the portion of the dissolved simulated corrosion product of cobalt in hydrogen peroxide aqueous solution is smaller than the corresponding value in citric acid, and that the portion of the dissolved simulated corrosion product of cobalt in aqueous solution of hydrogen peroxide-citric acid is larger than the corresponding value in single citric acid aqueous solution

  3. Reactor coolant pump seal leakage monitoring

    International Nuclear Information System (INIS)

    Stevens, D.M.; Spencer, J.W.; Morris, D.J.; James, W.; Shugars, H.G.

    1986-01-01

    Problems with reactor coolant pump seals have historically accounted for a large percentage of unscheduled outages. Studies performed for the Electric Power Research Institute (EPRI) have shown that the replacement of coolant pump seals has been one of the leading causes of nuclear plant unavailability over the last ten years. Failures of coolant pump seals can lead to primary coolant leakage rates of 200-500 gallons per minute into the reactor building. Airborne activity and high surface contamination levels following these failures require a major cleanup effort and increases the time and personnel exposure required to refurbish the pump seals. One of the problems in assessing seal integrity is the inability to accurately measure seal leakage. Because seal leakage flow is normally very small, it cannot be sensed directly with normal flow instrumentation, but must be inferred from several other temperature and flow measurements. In operating plants the leakage rate has been quantified with a tipping-bucket gauge, a device which indicates when one quart of water has been accumulated. The tipping-bucket gauge has been used for most rainfall-intensity monitoring. The need for a more accurate and less expensive gauge has been addressed. They have developed a drop-counter precipitation sensor has been developed and optimized. The applicability of the drop-counter device to the problem of measuring seal leakage is being investigated. If a review of system specification and known drop-counter performance indicates that this method is feasible for measuring seal leak rates, a drop-counter gauge will be fabricated and tested in the laboratory. If laboratory tests are successful the gauge will be demonstrated in a pump test loop at Ontario Hydro and evaluated under simulated plant conditions. 3 references, 2 figures

  4. Hydride precipitation, fracture and plasticity mechanisms in pure zirconium and Zircaloy-4 at temperatures typical for the postulated loss-of-coolant accident

    International Nuclear Information System (INIS)

    Pshenichnikov, Anton; Stuckert, Juri; Walter, Mario

    2016-01-01

    Highlights: • All δ-hydrides in Zr and Zircaloy-4 have basal or pyramidal types of habit planes. • Seven orientation relationships for δ-hydrides in Zr matrix were detected. • Decohesion fracture mechanism of hydrogenated Zr was investigated by fractography. - Abstract: The results of investigations of samples of zirconium and its alloy Zircaloy-4, hydrogenated at temperatures 900–1200 K (typical temperatures for loss-of-coolant accidents) are presented. The analyses, based on a range of complementary techniques (X-ray diffraction, scanning electron microscopy, electron backscatter diffraction) reveals the direct interrelation of internal structure transformation and hydride distribution with the degradation of mechanical properties. Formation of small-scale zirconium hydrides and their bulk distribution in zirconium and Zircaloy-4 were investigated. Fractographical analysis was performed on the ruptured samples tested in a tensile machine at room temperature. The already-known hydrogen embrittlement mechanisms based on hydride formation and hydrogen-enhanced decohesion and the applicability of them in the case of zirconium and its alloys is discussed.

  5. A procedure for temperature-stress fields calculation of WWER-1000 primary circuit in PTS event

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, G [Technical Univ., Dept. Thermal and Nuclear Power Engineering, Sofia (Bulgaria); Groudev, P; Argirov, J [Bulgarian Academy of Science, Inst. for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    1997-09-01

    The paper presents the procedure of an investigation of WWER-1000 primary circuit temperature-stress field by the use of thermohydraulic computation data for a pressurized thermal shock event ``Core overcooling``. The procedure is based on a model of the plane stress state with ideal contact between wall and medium for the calculation. The computation data are calculated on the base of WWER-1000 thermohydraulic model by the RELAP5/MOD3 codes. This model was developed jointly by the Bulgarian and BNL/USA staff to provide an analytical tool for performing safety analysis. As a result of calculations by codes the computation data for temperature field law (linear laws of a few distinguished parts) and pressure of coolant at points on inner surface of WWER-1000 primary circuit equipment are received. Such calculations can be used as a base for determination of all-important load-carrying sections of the primary circuit pipes and vessels, which need further consideration. (author). 7 refs, 2 figs, 2 tabs.

  6. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 9: PRAISE computer code user's manual. Final report

    International Nuclear Information System (INIS)

    Lim, E.Y.

    1981-08-01

    The PRAISE (Piping Reliability Analysis Including Seismic Events) computer code estimates the influence of earthquakes on the probability of failure at a weld joint in the primary coolant system of a pressurized water reactor. Failure, either a through-wall defect (leak) or a complete pipe severance (a large-LOCA), is assumed to be caused by fatigue crack growth of an as-fabricated interior surface circumferential defect. These defects are assumed to be two-dimensional and semi-elliptical in shape. The distribution of initial crack sizes is a function of crack depth and aspect ratio. Crack propagation rates are governed by a Paris-type relationship with separate RMS cyclic stress intensity factors for the depth and length. Both uniform through the wall and radial gradient thermal stresses are included in the calculation of the stress intensity factors. The failure probabilities are estimated by applying Monte Carlo methods to simulate the life histories of the selected weld joint. In order to maximize computational efficiency, a stratified sampling procedure is used to select the initial crack size. Hydrostatic proof test, pre-service inspection, and in-service inspection can be simulated. PRAISE treats the inter-arrival times of operating transients either as a constant or exponentially distributed according to observed or postulated rates. Leak rate and leak detection models are also included. The criterion for complete pipe severance is exceedance of a net section critical stress. Earthquakes of various intensity and arbitrary occurrence times can be modeled. PRAISE presently assumes that exactly one initial defect exists in the weld and that the earthquake of interest is the first earthquake experienced at the reactor

  7. Contribution to the optimization of the chemical and radiochemical purification of pressurized water nuclear power plants primary coolant; Contribution a l'optimisation de la purification chimique et radiochimique du fluide primaire des centrales nucleaires a eau sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Elain, L

    2004-12-15

    The primary coolant of pressurised water reactors is permanently purified thanks to a device, composed of filters and the demineralizers furnished with ion exchange resins (IER), located in the chemical and volume control system (CVCS). The study of the retention mechanisms of the radio-contaminants by the IER implies, initially, to know the speciation of the primary coolant percolant through the demineralizers. Calculations of theoretical speciation of the primary coolant were carried out on the basis of known composition of the primary coolant and thanks to the use of an adapted chemical speciation code. A complementary study, dedicated to silver behaviour, considered badly extracted, suggests metallic aggregates existence generated by the radiolytic reduction of the Ag{sup +} ions. An analysis of the purification curves of the elements Ni, Fe, Co, Cr, Mn, Sb and their principal radionuclides, relating to the cold shutdown of Fessenheim 1-cycle 20 and Tricastin 2-cycle 21, was carried out, in the light of a model based on the concept of a coupling well term - source term. Then, a thermodynamic modelling of ion exchange phenomena in column was established. The formation of the permutation front and the enrichment zones planned was validated by frontal analysis experiments of synthetic fluids (mixtures of Ni(B(OH){sub 4}){sub 2}, LiB(OH){sub 4} and AgB(OH){sub 4} in medium B(OH){sub 3})), and of real fluid during the putting into service of the device mini-CVCS at the time of Tricastin 2 cold shutdown. New tools are thus proposed, opening the way with an optimised management of demineralizers and a more complete interpretation of the available experience feedback. (author)

  8. Pressure-temperature response of a full-pressure PWR containment to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Misak, J.

    1976-01-01

    A mathematical model and computer code TRACO III for pressure-temperature transients in the full-pressure containment of PWR during LOCA is described. Main attention is devoted to the analysis of parametric calculations with respect to the estimation of effect of various factors on the transient process and to the comparison of the theoretical and the experimental results on CVTR. (author)

  9. Responses to Small Break Loss of Coolant Accidents for SMART

    International Nuclear Information System (INIS)

    Bae, Kyoo Hwan; Kim, Hee C.; Chang, Moon H.; Zee, Sung Q.; Kim, Si-Hwan; Lee, Un-Chul

    2004-01-01

    The SMART NSSS adopts the design characteristics of containing most of the primary circuit components, such as the reactor core, main coolant pumps (MCPs), steam generators (SGs), and N 2 gas pressurizer (PZR) in a single leak-tight Reactor Pressure Vessel (RPV) with a relatively large ratio of the primary coolant inventory to the core power compared to the conventional loop-type PWR. Due to these design characteristics, the SMART can fundamentally eliminate the possibility of Large Break Loss of Coolant Accidents (LBLOCAs), improve the natural circulation capability, and assure a sufficient time to mitigate the possibility of core uncover. Also, SMART adopts inherent safety improving features and passive engineered safety systems such as the substantially large negative moderator temperature coefficients, passive residual heat removal system, emergency core cooling system, and a steel-made leak-tight Safeguard Vessel (SV) housing the RPV. This paper presents the results of the safety analyses using a MARS/SMR code for the instantaneous guillotine ruptures of the major pipelines penetrating the RPV. The analysis results, employing conservative initial/boundary conditions and assumptions, show that the safety systems of the SMART basic design adequately remove the core decay heat without causing core uncover for all the cases of the Small Break Loss of Coolant Accidents (SBLOCAs). The sensitivity study results with variable SV conditions show that the reduced SV net free volume can shorten the time for reaching the thermal and mechanical equilibrium condition between the RPV and SV. Under these boundary conditions, the primary system inventory loss can be minimized and the core remains covered for a longer period of time without any makeup of the coolant. (authors)

  10. CANDU with supercritical water coolant: conceptual design features

    International Nuclear Information System (INIS)

    Spinks, N.

    1997-01-01

    An advanced CANDU reactor, with supercritical water as coolant, has many attractive design features. The pressure exceeds 22 MPa but coolant temperatures in excess of 370 degrees C can be reached without encountering the two-phase region with its associated fuel-dry-out and flow-instability problems. Increased coolant temperature leads to increased plant thermodynamic efficiency reducing unit energy cost through reduced specific capital cost and reduced fueling cost. Increased coolant temperature leads to reduced void reactivity via reduced coolant in-core density. Light water becomes a coolant option. To preserve neutron economy, an advanced fuel channel is needed and is described below. A supercritical-water-cooled CANDU can evolve as fuel capabilities evolve to withstand increasing coolant temperatures. (author)

  11. HANARO secondary coolant management

    International Nuclear Information System (INIS)

    Kim, Seon Duk.

    1998-02-01

    In this report, the basic theory for management of water quality, environmental factors influencing to the coolant, chemicals and its usage for quality control of coolant are mentioned, and water balance including the loss rate by evaporation (34.3 m 3 /hr), discharge rate (12.665 m 3 /hr), concentration ratio and feed rate (54.1 m 3 /hr) are calculated at 20 MW operation. Also, the analysis data of HANSU Limited for HANARO secondary coolant (feed water and circulating coolant) - turbidity, pH, conductivity, M-alkalinity, Ca-hardness, chloride ion, total iron ion, phosphoric ion and conversion rate are reviewed. It is confirmed that the feed water has good quality and the circulating coolant has been maintained within the control specification in general, but some items exceeded the control specification occasionally. Therefore it is judged that more regular discharge of coolant is needed. (author). 6 refs., 17 tabs., 18 figs

  12. Adsorption removal of carbon dioxide from the helium coolant of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Varezhin, A.V.; Fedoseenkov, A.N.; Khrulev, A.A.; Metlik, I.V.; Zel venskii, Y.D.

    1986-01-01

    This paper conducts experiments on the removal of CO 2 from helium by means of a Soviet-made adsorbent under the conditions characteristic of high-temperature gas-cooled reactor cleaning systems. The adsorption of CO 2 from helium was studied under dynamic conditions with a fixed layer of adsorbent in a flow-through apparatus with an adsorber 16 mm in diameter. The analysis of the helium was carried out by means of a TVT chromatograph. In order to compare the adsorption of CO 2 on CaA zeolite under dynamic conditions from the helium stream under pressure with the equilibrium adsorption on the basis of pure CO 2 , the authors determined the adsorption isotherm at 293 K by the volumetric method over a range of CO 2 equilibrium pressures from 260 to 11,970 Pa. Reducing the adsorption temperature to 273 K leads to a considerable reduction in the energy costs for regeneration, owing to the increase in adsorption and the decrease in the number of regeneration cycles; the amount of the heating gas used is reduced to less than half

  13. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    Reference is made to coolant channels for pressurised water and boiling water reactors and the arrangement described aims to improve heat transfer between the fuel rods and the coolant. Baffle means extending axially within the channel are provided and disposed relative to the fuel rods so as to restrict flow oscillations occurring within the coolant from being propagated transversely to the axis of the channel. (UK)

  14. Corrosion of high temperature alloys in the primary circuit helium of high temperature gas cooled reactors. Pt. 2

    International Nuclear Information System (INIS)

    Quadakkers, W.J.

    1985-01-01

    The reactive impurities H 2 O, CO, H 2 and CH 4 which are present in the primary coolant helium of high temperature gas-cooled reactors can cause scale formation, internal oxidation and carburization or decarburization of the high temperature structural alloys. In Part 1 of this contribution a theoretical model was presented, which allows the explanation and prediction of the observed corrosion effects. The model is based on a classical stability diagram for chromium, modified to account for deviations from equilibrium conditions caused by kinetic factors. In this paper it is shown how a stability diagram for a commercial alloy can be constructed and how this can be used to correlate the corrosion results with the main experimental parameters, temperature, gas and alloy composition. Using the theoretical model and the presented experimental results, conditions are derived under which a protective chromia based surface scale will be formed which prevents a rapid transfer of carbon between alloy and gas atmosphere. It is shown that this protective surface oxide can only be formed if the carbon monoxide pressure in the gas exceeds a critical value. Psub(CO), which depends on temperature and alloy composition. Additions of methane only have a limited effect provided that the methane/water ratio is not near to, or greater than, a critical value of around 100/1. The influence of minor alloying additions of strong oxide forming elements, commonly present in high temperature alloys, on the protective properties of the chromia surface scales and the kinetics of carbon transfer is illustrated. (orig.) [de

  15. EFFECT OF TEMPERATURE ON THE PROCESS OF BEER PRIMARY FERMENTATION

    OpenAIRE

    Miriam Solgajová; Helena Frančáková; Štefan Dráb; Žigmund Tóth

    2013-01-01

    Beer is a very popular and widespread drink worldwide. Beer may be defined as a foamy alcoholic drink aerated by carbon dioxide that is formed during fermentation. Sensorial and analytical character of beer is mainly formed during process of primary fermentation. Our work has monitored the influence of temperature of fermentation substrate on the process of primary fermentation during beer production. Obtained values of temperature and apparent extract out of four brews of 10% light hopped wo...

  16. High temperature filtration of radioactivable corrosion products in the primary circuit of PWR type reactors

    International Nuclear Information System (INIS)

    Dolle, L.

    1976-01-01

    A effective limitation to the deposition of radioactive corrosion products in the core of a reactor at power operation, is to be obtained by filtering the water of the primary circuit at a flow rate upper than 1% of the coolant flow rate. However, in view of accounting for more important release of corrosion products during the reactor start-up and also for some possible variations in the efficiency of the system, it is better that the flow rate to be treated by the cleaning circuit is stated at 5%. Filtration must be effected at the temperature of the primary circuit and preferably on each loop. To this end, the feasibility of electromagnetic filtration or filtration through a deep bed of granulated graphite has been studied. The on-loop tests effected on each filter gave efficiencies and yields respectively upper than 90% and 99% for magnetite and ferrite particles in suspension in water at 250 deg C. Such results confirm the interest lying in high temperature filtration and lead to envisage its application to reactors [fr

  17. Stresses and strains in the steel containment resulting from transient pressure and temperature loading during loss-of-coolant accident

    International Nuclear Information System (INIS)

    Gruner, P.; Kuntze, W.M.; Jansky, J.

    1985-01-01

    Posttest calculations of stresses and strains in the steel containment of the German research reactor HDR were performed for a simulated LOCA. The results of the theoretical investigations are presented and compared to experimental findings. The pressure and temperature loading of the shell was determined with the thermodynamic code COFLOW on the basis of a multi-compartment model. Using a three-dimensional finite element model the temporal behaviour of the containment was calculated employing the structural mechanics code ASKA. Global bending deformations and local negative straining of the steel shell is discussed. Theoretical and experimental results agree in most cases rather well. Reasons for deviations will be discussed. The specific behaviour of strains found in the vicinity of locally heated areas will be explained by means of analytical considerations. (orig.)

  18. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    International Nuclear Information System (INIS)

    Scheele, Randall D.; Casella, Andrew M.

    2010-01-01

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor. The Pacific Northwest National Laboratory, in support of the Oak Ridge National Laboratory's program to investigate an advanced molten salt cooled reactor concept for the U.S. Department of Energy, evaluated potential nitrogen trifluoride (NF 3 ) use as an agent for removing oxide and hydroxide contaminants from candidate coolants. These contaminants must be eliminated because they increase the corrosivity of the molten salt to the detriment of the materials of containment that are currently being considered. The baseline purification agent for fluoride coolant salts is hydrogen fluoride (HF) combined with hydrogen (H 2 ). Using HF/H 2 as the reference treatment, we compare HF and NF 3 industrial use, chemical and physical properties, industrial production levels, chemical, toxicity, and reactivity hazards, environmental impacts, effluent management strategies, and reaction thermodynamic values. Because NF 3 is only mildly toxic, non-corrosive, and non-reactive at room temperature, it will be easy to manage the chemical and reactivity hazards during transportation, storage, and normal operations. Industrial experience with NF 3 is also extensive because NF 3 is commonly used as an etchant and chamber cleaner in the electronics industry. In contrast HF is a highly toxic and corrosive gas at room temperature but because of its significance as the most important fluorine-containing chemical there is significant industrial experience managing HF hazards. NF 3 has been identified as having the potential to be a significant contributor to global warming and thus its release must be evaluated and/or managed depending on the amounts that would be released. Because of its importance to the electronics industry, commercial technologies using incineration or plasmas have been

  19. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, Randall D.; Casella, Andrew M.

    2010-09-28

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  20. Corrosion of nickel-base heat resistant alloys in simulated VHTR coolant helium at very high temperatures

    International Nuclear Information System (INIS)

    Shindo, Masami; Kondo, Tatsuo

    1976-01-01

    A comparative evaluation was made on three commercial nickel-base heat resistant alloys exposed to helium-base atmosphere at 1000 0 C, which contained several impurities in simulating the helium cooled very high temperature nuclear reactor (VHTR) environment. The choice of alloys was made so that the effect of elements commonly found in commercial alloys were typically examined. The corrosion in helium at 1000 0 C was characterized by the sharp selection of thermodynamically unstable elements in the oxidizing process and the resultant intergranular penetration and internal oxidation. Ni-Cr-Mo-W type solution hardened alloy such as Hastelloy-X showed comparatively good resistance. The alloy containing Al and Ti such as Inconel-617 suffered adverse effect in contrast to its good resistance to air oxidation. The alloy nominally composed only of noble elements, Ni, Fe and Mo, such as Hastelloy-B showed least apparent corrosion, while suffered internal oxidation due to small amount of active impurities commonly existing in commercial heats. The results were discussed in terms of selection and improvement of alloys for uses in VHTR and the similar systems. (auth.)

  1. Coolant voiding analysis following SGTR for an HLMC reactor

    International Nuclear Information System (INIS)

    Farmer, M.T.; Spencer, B.W.; Sienicki, J.J.

    2000-01-01

    Concepts are under development at Argonne National Laboratory for a small, modular, proliferation-resistant nuclear power steam supply system. Of primary interest here is the simplified system design, featuring steam generators that are directly immersed in the lead-bismuth eutectic (LBE) coolant of the primary system. To support the safety case for this design approach, model development and analysis of transient coolant voiding during a postulated guillotine-type steam generator tube rupture event has been carried out. For the current design, the blowdown will occur from the steam generator shell into the ruptured 12.7-mm-inside-diameter tube through which the LBE coolant passes. The steam will expand biaxially in the tube, with a portion of the flow vented upward to eventually expand into the cover-gas region, while the balance of the flow is vented downward as a jet into the surrounding downward-flowing LBE. Coolant freezing is not an issue in this case because of high feedwater temperature in relation to the freezing point of the LBE. The specific objectives of the current work are to (a) determine the penetration behavior of the steam jet into the lower cold-leg region, (b) characterize the resultant void behavior in terms of coherent bubble versus breakup into a size distribution of small bubbles, and (c) characterize the motion of the bubbles with regard to rise to the cover-gas region (via the liner-to-coolant vessel gap) versus downward transport with the flowing LBE and subsequent upflow through the core to the cover-gas region

  2. Condition monitoring of main coolant pumps, Dhruva

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Acharya, V.N.; Tikku, A.C.; Mishra, S.K.

    2002-01-01

    Full text: Dhruva is a 100 MW research reactor with natural uranium fuel, heavy water as moderator and primary coolant. Three Centrifugal pumps circulate the primary coolant across the core and the heat exchangers. Each pump is coupled to a flywheel (FW) assembly in order to meet operational safety requirements. All the 3 main coolant pump (MCP) sets are required to operate during operation of the reactor. The pump-sets are in operation since the year 1984 and have logged more than 1,00,000 hrs. Frequent breakdowns of its FW bearings were experienced during initial years of operation. Condition monitoring of these pumps, largely on vibration based parameters, was initiated on regular basis. Break-downs of main coolant pumps reduced considerably due to the fair accurate predictions of incipient break-downs and timely maintenance efforts. An effort is made in this paper to share the experience

  3. Work related to increasing the exploitation and experimental possibilities of the RA reactor, 05. Independent CO2 loop for cooling the samples irradiated in the RA vertical experimental channels (I-IV), Part II, IZ-240-0379-1963, Vol. II Head of the low temperature RA reactor coolant loop

    International Nuclear Information System (INIS)

    Pavicevic, M.

    1963-07-01

    The objective of the project was to design the head of the CO 2 coolant loop for cooling the materials during irradiation in the RA reactor. Six heads of coolant loops will be placed in the RA reactor, two in the region of heavy water in the experimental channels VEK-6 and four in the graphite reflector in the channels VEK-G. maximum generated heat in the heads of the coolant loop is 10500 kcal/h and minimum generated heat is 1500 kcal/h. The loops are cooled by CO 2 gas, coolant flow is 420 kg/h, and the pressure is 4.5 atu. There is a need to design and construct the secondary coolant loop for the low temperature coolant loop. This volume includes technical specifications of the secondary CO 2 loop with instructions for construction and testing; needed calculations; specification of materials; cost estimation for materials, equipment and construction; and graphical documentation [sr

  4. Continuous surveillance of reactor coolant circuit integrity

    International Nuclear Information System (INIS)

    1986-01-01

    Continuous surveillance is important to assuring the integrity of a reactor coolant circuit. It can give pre-warning of structural degradation and indicate where off-line inspection should be focussed. These proceedings describe the state of development of several techniques which may be used. These involve measuring structural vibration, core neutron noise, acoustic emission from cracks, coolant leakage, or operating parameters such as coolant temperature and pressure. Twenty three papers have been abstracted and indexed separately for inclusion in the data base

  5. Evaluation of the fuel rod integrity in PWR reactors from the spectrometric analysis of the primary coolant; Avaliacao da integridade de varetas combustiveis em reatores PWR a partir da analise espectrometrica da agua do primario

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Iara Arraes

    1999-02-15

    The main objective of this thesis is to provide a better comprehension of the phenomena involved in the transport of fission products, from the fuel rod to the coolant of a PWR reactor. To achieve this purpose, several steps were followed. Firstly, it was presented a description of the fuel elements and the main mechanisms of fuel rod failure, indicating the most important nuclides and their transport mechanisms. Secondly, taking both the kinetic and diffusion models for the transport of fission products as a basis, a simple analytical and semi-empirical model was developed. This model was also based on theoretical considerations and measurements of coolant's activity, according to internationally adopted methodologies. Several factors are considered in the modelling procedures: intrinsic factors to the reactor itself, factors which depend on the reactor's operational mode, isotope characteristic factors, and factors which depend on the type of rod failure. The model was applied for different reactor's operational parameters in the presence of failed rods. The main conclusions drawn from the analysis of the model's output are relative to the variation on the coolant's water activity with the fuel burnup, the linear operation power and the primary purification rate and to the different behaviour of iodine and noble gases. The model was saturated from a certain failure size and showed to be unable to distinguish between a single big fail and many small ones. (author)

  6. Thermal hydraulic analyses of accidents associated with coolant leak from the primary circuit through a hole 10 mm equivalent diameter for the needs of PTS

    International Nuclear Information System (INIS)

    Krhounkova, J.; Kral, P.; Parduba, Z.

    1999-10-01

    The conservative assumptions of the analyses were oriented towards a worsening of the process with respect to the pressurized thermal shock (PTS). Four variants were treated, viz. leaks from the cold or hot leg, each at the rated power or zero power. Since the temperature of water supplied to the primary circuit by the emergency core cooling system is an important parameter with respect to a PTS, the calculations were performed by the iterative procedure: the basic thermal hydraulic calculation was performed by the RELAP5/MOD3.2.1 code which calculates the behaviour of the primary and secondary circuits, whereas the MELCOR code was used to calculate the behaviour of the parameters in the hermetic rooms. The calculation by the RELAP code was then repeated using data from the MELCOR calculations. Interventions by the reactor operators were also considered. (P.A.)

  7. Behavior of antimony isotopes in the primary coolant of WWER-1000-type nuclear reactors in NPP Kozloduy during operation and shutdown

    International Nuclear Information System (INIS)

    Dobrevski, Ivan D.; Zaharieva, Neli N.; Minkova, Katia F.; Gerchev, Nikolay B.

    2009-01-01

    This paper focuses on the behavior of the antimony isotopes 122 Sb and 124 Sb in the coolant of the WWER reactors in the nuclear power plant Kozloduy (Bulgaria) during operation and shutdown. It is concluded that the chemical properties of their actual precursor, the isotope 121 Sb, determine the behavior of 122 Sb and 124 Sb during operation, load fluctuations, and shutdown as well as during the reactor coolant purification process. It is supposed that differences between the reactor bulk and the core fuel cladding surface chemistry as well as the presence of sub-cooled nucleate boiling at the fuel cladding may create conditions under which a local oxidizing environment may come into existence. (orig.)

  8. Containment for low temperature district nuclear-heating reactor

    International Nuclear Information System (INIS)

    He Shuyan; Dong Duo

    1992-03-01

    Integral arrangement is adopted for Low Temperature District Nuclear-heating Reactor. Primary heat exchangers, control rod drives and spent fuel elements are put in the reactor pressure vessel together with reactor core. Primary coolant flows through reactor core and primary heat exchangers in natural circulation. Primary coolant pipes penetrating the wall of reactor pressure vessel are all of small diameters. The reactor vessel constitutes the main part of pressure boundary of primary coolant. Therefore the small sized metallic containment closed to the wall of reactor vessel can be used for the reactor. Design principles and functions of the containment are as same as the containment for PWR. But the adoption of small sized containment brings about some benefits such as short period of manufacturing, relatively low cost, and easy for sealing. Loss of primary coolant accident would not be happened during the rupture accident of primary coolant pressure boundary inside the containment owing to its intrinsic safety

  9. Flow boiling test of GDP replacement coolants

    International Nuclear Information System (INIS)

    Park, S.H.

    1995-01-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C 4 F 10 and C 4 F 8 , were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C 4 F 10 mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C 4 F 10 weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd

  10. Trace organics in AGR coolants

    International Nuclear Information System (INIS)

    Smith, R.; Green, L.O.; Johnson, P.A.V.

    1980-01-01

    Several analytical techniques have been employed in previous studies of the stable organic compounds arising from the radiolysis of methane/carbon monoxide/carbon dioxide coolants. The majority of this early information was collected from the Windscale AGR prototype. Analyses were also carried out on the liquors obtained from the WAGR humidryers. Three classes of compound were found in the liquors; aliphatic acids in the aqueous phase and methyl ketones and aromatic hydrocarbons in the oily phase. Acetic acid was found to be the predominant carboxylic acid. This paper outlines the major findings from a recent analytical survey of coolants taken over a wide range of dose rate, pressure, temperature and composition, from materials testing reactor facilities, WAGR and CAGR. (author)

  11. Research on physical and chemical parameters of coolant in Light-Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Isabela C.; Mesquita, Amir Z., E-mail: icr@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEM-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The coolant radiochemical monitoring of light-water reactors, both power reactor as research reactors is one most important tasks of the system safe operation. The last years have increased the interest in the coolant chemical studying to optimize the process, to minimize the corrosion, to ensure the primary system materials integrity, and to reduce the workers exposure radiation. This paper has the objective to present the development project in Nuclear Technology Development Center (CDTN), which aims to simulate the primary water physical-chemical parameters of light-water-reactors (LWR). Among these parameters may be cited: the temperature, the pressure, the pH, the electric conductivity, and the boron concentration. It is also being studied the adverse effects that these parameters can result in the reactor integrity. The project also aims the mounting of a system to control and monitoring of temperature, electric conductivity, and pH of water in the Installation of Test in Accident Conditions (ITCA), located in the Thermal-Hydraulic Laboratory at CDTN. This facility was widely used in the years 80/90 for commissioning of several components that were installed in Angra 2 containment. In the test, the coolant must reproduce the physical and chemical conditions of the primary. It is therefore fundamental knowledge of the main control parameters of the primary cooling water from PWR reactors. Therefore, this work is contributing, with the knowledge and the reproduction with larger faithfulness of the reactors coolant in the experimental circuits. (author)

  12. The use of Zeolite into the controlling of Lithium concentration in the PWR primary water coolant (I) : the influences of Ca, Mg and Boric Acid concentration into the exchanges capacity of Ammonium Zeolite

    International Nuclear Information System (INIS)

    Sumijanto; Siti-Amini

    1996-01-01

    In this first part of research, the influences of calsium, magnesium and boric acid concentrations to the zeolite uptake of lithium in the PWR primary water coolant have been studied. The ammonium form of zeolite was found by modification of the natural zeolite which was originated from Bayah. The results showed that the boric acid concentration in the normal condition of PWR operation absolutely did not affects the lithium uptake. The Li uptake efficiency was influenced by the presence of Ca and Mg ions in order to the presence of cations competition which was dominated by Ca ion

  13. Work related to increasing the exploitation and experimental possibilities of the RA reactor, 05. Independent CO2 loop for cooling the samples irradiated in the RA vertical experimental channels (IIV), Part I, IZ-240-o379-1963, Vol. I, Head of the low temperature RA reactor coolant loop

    International Nuclear Information System (INIS)

    Pavicevic, M.

    1963-07-01

    The objective of the project was to design the head of the CO 2 coolant loop for cooling the materials during irradiation in the RA reactor. Six heads of coolant loops will be placed in the RA reactor, two in the region of heavy water in the experimental channels VEK-6 and four in the graphite reflector in the channels VEK-G. Materials for irradiation are metallurgy and chemical samples. In addition to the project objectives, this volume includes technical specifications of the coolant loop head, thermal calculations, calculations of mechanical stress, antireactivity and activation of the construction materials, cost estimation, scheme of the coolant loop head, diagrams of CO 2 gas temperature, thermal neutron flux distribution, design specifications of two proposed solutions for head of low temperature coolant loop [sr

  14. Fission Product Releases from a Core into a Coolant of a Prismatic 350-MWth HTR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Min; Jo, C. K. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A prismatic 350-MW{sub th} high temperature reactor (HTR) is a means to generate electricity and process heat for hydrogen production. The HTR will be operated for an extended fuel burnup of more than 150 GWd/MTU. Korea Atomic Energy Research Institute (KAERI) is performing a point design for the HTR which is a pre-conceptual design for the analysis and assessment of engineering feasibility of the reactor. In a prismatic HTR, metallic and gaseous fission products (FPs) are produced in the fuel, moved through fuel materials, and released into a primary coolant. The FPs released into the coolant are deposited on the various helium-wetted surfaces in the primary circuit, or they are sorbed on particulate matters in the primary coolant. The deposited or sorbed FPs are released into the environment through the leakage or venting of the primary coolant. It is necessary to rigorously estimate such radioactivity releases into the environment for securing the health and safety of the occupational personnel and the public. This study treats the FP releases from a core into a coolant of a prismatic 350-MW{sub th} HTR. These results can be utilized as input data for the estimation of FP migration from a coolant into the environment. The analysis of fission product release within a prismatic 350-MW{sub th} HTR has been done. It was assumed that the HTR was operated at constant temperature and power for 1500 EFPDs. - The final burnup is 152 GWd/tHM at packing fraction of 25 %, and the final fast fluence is about 8 X 10{sup 21} n/cm{sup 2}, E{sub n} > 0.1 MeV. - The temperatures at the compact center and at the center of a kernel located at the compact center are 884 and 893 .deg. C, respectively, when the packing fraction is 25 % and the coolant temperature is 850 .deg. C. - Xenon is the most radioactive fission product in a coolant of a prismatic HTR when there are broken TRISOs and fuel component contaminated with heavy metals. For metallic fission products, the radioactivity

  15. The sodium coolant

    International Nuclear Information System (INIS)

    Rodriguez, G.

    2004-01-01

    The sodium is the best appropriate coolant for the fast neutrons reactors technology. Thus the fast neutrons reactors development is intimately bound to the sodium technology. This document presents the sodium as a coolant point of view: atomic structure and characteristics, sodium impacts on the fast neutron reactors technology, chemical properties of the sodium and the consequences, quality control in a nuclear reactor, sodium treatment. (A.L.B.)

  16. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    A nuclear reactor coolant channel is described that is suitable for sub-cooled reactors as in pressurised water reactors as well as for bulk boiling, as in boiling water reactors and steam generating nuclear reactors. The arrangement aims to improve heat transfer between the fuel elements and the coolant. Full constructional details are given. See also other similar patents by the author. (U.K.)

  17. Extended Life Coolant Testing

    Science.gov (United States)

    2016-06-06

    number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 06-06-2016 2. REPORT TYPE Interim Report 3. DATES COVERED ... Corrosion Testing of Traditional and Extended Life Coolants 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Hansen, Gregory A. T...providing vehicle specific coolants. Several laboratory corrosion tests were performed according to ASTM D1384 and D2570, but with a 2.5x extended time

  18. Selection of nuclear reactor coolant materials

    International Nuclear Information System (INIS)

    Shi Lisheng; Wang Bairong

    2012-01-01

    Nuclear material is nuclear material or materials used in nuclear industry, the general term, it is the material basis for the construction of nuclear power, but also a leader in nuclear energy development, the two interdependent and mutually reinforcing. At the same time, nuclear materials research, development and application of the depth and breadth of science and technology reflects a nation and the level of the nuclear power industry. Coolant also known as heat-carrier agent, is an important part of the heart nuclear reactor, its role is to secure as much as possible to the economic output in the form fission energy to heat the reactor to be used: the same time cooling the core, is controlled by the various structural components allowable temperature. This paper described the definition of nuclear reactor coolant and characteristics, and then addressed the requirements of the coolant material, and finally were introduced several useful properties of the coolant and chemical control. (authors)

  19. Radiolytic reactions in the coolant of helium cooled reactors

    International Nuclear Information System (INIS)

    Tingey, G.L.; Morgan, W.C.

    1975-01-01

    The success of helium cooled reactors is dependent upon the ability to prevent significant reaction between the coolant and the other components in the reactor primary circuit. Since the thermal reaction of graphite with oxidizing gases is rapid at temperatures of interest, the thermal reactions are limited primarily by the concentration of impurity gases in the helium coolant. On the other hand, the rates of radiolytic reactions in helium are shown to be independent of reactive gas concentration until that concentration reaches a very low level. Calculated steady-state concentrations of reactive species in the reactor coolant and core burnoff rates are presented for current U. S. designed, helium cooled reactors. Since precise base data are not currently available for radiolytic rates of some reactions and thermal reaction rate data are often variable, the accuracy of the predicted gas composition is being compared with the actual gas compositions measured during startup tests of the Fort Saint Vrain high temperature gas-cooled reactor. The current status of these confirmatory tests is discussed. 12 references

  20. Predicting the conditions under which vibroacoustic resonances with external periodic loads occur in the primary coolant circuits of VVER-based NPPs

    Science.gov (United States)

    Proskuryakov, K. N.; Fedorov, A. I.; Zaporozhets, M. V.

    2015-08-01

    The accident at the Japanese Fukushima Daiichi nuclear power plant (NPP) caused by an earthquake showed the need of taking further efforts aimed at improving the design and engineering solutions for ensuring seismic resistance of NPPs with due regard to mutual influence of the dynamic processes occurring in the NPP building structures and process systems. Resonance interaction between the vibrations of NPP equipment and coolant pressure pulsations leads to an abnormal growth of dynamic stresses in structural materials, accelerated exhaustion of equipment service life, and increased number of sudden equipment failures. The article presents the results from a combined calculation-theoretical and experimental substantiation of mutual amplification of two kinds of external periodic loads caused by rotation of the reactor coolant pump (RCP) rotor and an earthquake. The data of vibration measurements at an NPP are presented, which confirm the predicted multiple amplification of vibrations in the steam generator and RCP at a certain combination of coolant thermal-hydraulic parameters. It is shown that the vibration frequencies of the main equipment may fall in the frequency band corresponding to the maximal values in the envelope response spectra constructed on the basis of floor accelerograms. The article presents the results from prediction of conditions under which vibroacoustic resonances with external periodic loads take place, which confirm the occurrence of additional earthquake-induced multiple growth of pressure pulsation intensity in the steam generator at the 8.3 Hz frequency and additional multiple growth of vibrations of the RCP and the steam generator cold header at the 16.6 Hz frequency. It is shown that at the elastic wave frequency equal to 8.3 Hz in the coolant, resonance occurs with the frequency of forced vibrations caused by the rotation of the RCP rotor. A conclusion is drawn about the possibility of exceeding the design level of equipment vibrations

  1. Electricity generation by nuclear fission reactor and closed cycle gas turbines, with core automatically shut down by coolant flow failure and dropped out of plant for sealing if temperature is excessive

    International Nuclear Information System (INIS)

    Pedrick, A.P.

    1976-01-01

    A reactor system is described in which if there is a failure of coolant flow the core automatically drops down to its control rods, so that criticality is reduced, but if the temperature of the core still stays dangerously high the core is allowed to drop down a deep shaft. Concrete blocks automatically come together after the ejected reactor core has moved past them to prevent the escape of radiation or radioactive material, until such time that the core temperature has dropped to a level that it can, with safety, be returned to its normal position in the plant. (U.K.)

  2. Conceptual design of the integral test loop (I): Reactor coolant system and secondary system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chul Hwa; Lee, Seong Je; Kwon, Tae Soon; Moon, Sang Ki [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    This report describes the conceptual design of the primary coolant system and the secondary system of the Integral Test Loop (ITL) which simulates overall thermal hydraulic phenomena of the primary system of a nuclear power plant during postulated accidents or transients. The design basis for the primary coolant system and secondary system is as follows ; Reference plant: Korean Standard Nuclear Plant (KSNP), Height ratio : 1/1, Volume ratio : 1/200, Power scale : Max. 15% of the scaled nominal power, Temperature, Pressure : Real plant conditions. The primary coolant system includes a reactor vessel, which contains a core simulator, a steam generator, a reactor coolant pump simulator, a pressurizer and piping, which consists of two hot legs, four cold legs and four intermediate legs. The secondary system consists of s steam discharge system, a feedwater supply system and a steam condensing system. This conceptual design report describes general configuration of the reference plant, and major function and operation of each system of the plant. Also described is the design philosophy of each component and system of the ITL, and specified are the design criteria and technical specifications of each component and system of the ITL in the report. 17 refs., 43 figs., 51 tabs. (Author)

  3. Some aspects of influence of coolant water chemistry on reliability of WWER and RBMK type fuels

    International Nuclear Information System (INIS)

    Solyany, V.I.; Bibilashvili, Yu.K.; Sukhanov, G.I.; Pimenov, Yu.V.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow)

    1983-01-01

    In WWER and RBMK reactors now in operation a good quality of primary coolant is achieved and the required corrosion resistance of structural materials and normal irradiation conditions are ensured. Data on commercial fuel operation and clad material (Zr 1% Nb alloy) condition are briefly generalized. Some results of reactor investigations of corrosion behaviour of commercial Zr 1% Nb alloy under the condition of WWER and RBMK coolant are discussed and compared. It is established that the chemical effect of coolant on fuel cladding does not in itself limit its serviceability at design burn-ups but due to the possible processes of crud formation, corrosion (total and local), fretting-corrosion and hydriding it can influence the fuel reliability. This influence is qualitatively assessed through a rise in the clad temperature, a reduction of material plasticity and clad thickness. (author)

  4. Some aspects of influence of coolant water chemistry on reliability of WWER and RBMK type fuels

    Energy Technology Data Exchange (ETDEWEB)

    Solyany, V I; Bibilashvili, Yu K; Sukhanov, G I; Pimenov, Yu V [Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Neorganicheskikh Materialov, Moscow (USSR); Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow)

    1983-12-01

    In WWER and RBMK reactors now in operation a good quality of primary coolant is achieved and the required corrosion resistance of structural materials and normal irradiation conditions are ensured. Data on commercial fuel operation and clad material (Zr 1% Nb alloy) condition are briefly generalized. Some results of reactor investigations of corrosion behaviour of commercial Zr 1% Nb alloy under the condition of WWER and RBMK coolant are discussed and compared. It is established that the chemical effect of coolant on fuel cladding does not in itself limit its serviceability at design burn-ups but due to the possible processes of crud formation, corrosion (total and local), fretting-corrosion and hydriding it can influence the fuel reliability. This influence is qualitatively assessed through a rise in the clad temperature, a reduction of material plasticity and clad thickness.

  5. The primary circuit of the dragon high temperature reactor experiment

    International Nuclear Information System (INIS)

    Simon, R.

    2005-01-01

    The 20 MWth Dragon Reactor Experiment was the first HTGR (High Temperature Gas-cooled Reactor) with coated particle fuel. Its purpose was to test fuel and materials for the High Temperature Reactor programmes pursued in Europe 40 years ago. This paper describes the design and construction of the primary (helium) circuit. It summarizes the main design objectives, lists the performance data and explains the flow paths of the heat removal and helium purification systems. The principal circuit accidents postulated are discussed and the choice of the main construction materials is given. (author)

  6. EFFECT OF TEMPERATURE ON THE PROCESS OF BEER PRIMARY FERMENTATION

    Directory of Open Access Journals (Sweden)

    Miriam Solgajová

    2013-02-01

    Full Text Available Beer is a very popular and widespread drink worldwide. Beer may be defined as a foamy alcoholic drink aerated by carbon dioxide that is formed during fermentation. Sensorial and analytical character of beer is mainly formed during process of primary fermentation. Our work has monitored the influence of temperature of fermentation substrate on the process of primary fermentation during beer production. Obtained values of temperature and apparent extract out of four brews of 10% light hopped wort has been recorded, during the process of primary fermentation carried out in mini brewery of SPU. We have compared our results with theoretical values of primary fermentation process commonly achieved in conditions of industrial breweries. It was found out that our results differ in some ways, moreover they exceed theoretically given values which was caused due to different construction of mini brewery fermentation tank in comparison with industrial brewery technologies. Beer produced in mini brewery of SPU showed in sensorial tests very good quality without any strange odour and any strange taste.

  7. Coolant rate distribution in horizontal steam generator under natural circulation

    International Nuclear Information System (INIS)

    Blagovechtchenski, A.; Leontieva, V.; Mitrioukhin, A.

    1997-01-01

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered

  8. Coolant rate distribution in horizontal steam generator under natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Blagovechtchenski, A.; Leontieva, V.; Mitrioukhin, A. [St. Petersburg State Technical Univ. (Russian Federation)

    1997-12-31

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered. 5 refs.

  9. Coolant rate distribution in horizontal steam generator under natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Blagovechtchenski, A; Leontieva, V; Mitrioukhin, A [St. Petersburg State Technical Univ. (Russian Federation)

    1998-12-31

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered. 5 refs.

  10. Coolant system decontamination

    International Nuclear Information System (INIS)

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P.

    1981-01-01

    An improved method for decontaminating the coolant system of water cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution. (author)

  11. Evaluation of an optimized coolant circuit conception in a thermal whole vehicle environment with respect to the consumption of primary energy; Bewertung eines optimierten Kuehlmittelkreislaufkonzeptes in einer thermischen Gesamtfahrzeugumgebung hinsichtlich des Primaerenergieverbrauchs

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Mirko; Neumann, Alexander; Tilch, Benjamin; Eilts, Peter [Technische Univ. Braunschweig (Germany). Inst. fuer Verbrennungskraftmaschinen; Niedersaechsisches Forschungszentrum Fahrzeugtechnik (NFF), Braunschweig (Germany)

    2012-11-01

    This work deals with a co-simulation vehicle environment developed by the institute of internal combustion engines (ivb) of the Technical University Braunschweig as a tool to analyze the thermal effects in the power train during the warm-up phase, especially on the fuel consumption. This allows evaluating new drive train concepts in early stages of development by using power train thermal management techniques (TMM). Therefore you are able to give an objective statement for these techniques by analyzing the changes in fuel consumption. The used simulation models will be introduced and the mechanical and thermal behavior is verified using test bench data. An optimized coolant circuit concept in GT Suite {sup registered}, developed at the institute is identified and coupled to a thermal engine model. In this paper, the potentials for reducing primary energy consumption in the New European Driving Cycle (NEDC) are presented. (orig.)

  12. Identification of flow regimes and heat transfer modes in Angra-2 core during the simulation of the small break loss of coolant accident of 250 cm2 in the cold leg of primary loop using RELAP5 code

    International Nuclear Information System (INIS)

    Borges, Eduardo M.; Sabundjian, Gaiane

    2017-01-01

    The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used by RELAP5/MOD3.2. gamma code in Angra-2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 250cm 2 of rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of Angra-2 (FSAR-A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of Angra-2 during the postulated accident. The results obtained for Angra-2 nuclear reactor core during the postulated accident were satisfactory when compared with the FSAR-A2. Additionally, the results showed the correct actuation of the ECCS guaranteeing the integrity of the reactor core. (author)

  13. Identification of flow regimes and heat transfer modes in Angra-2 core during the simulation of the small break loss of coolant accident of 250 cm{sup 2} in the cold leg of primary loop using RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Eduardo M.; Sabundjian, Gaiane, E-mail: borges.em@hotmail.com, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used by RELAP5/MOD3.2. gamma code in Angra-2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 250cm{sup 2} of rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of Angra-2 (FSAR-A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of Angra-2 during the postulated accident. The results obtained for Angra-2 nuclear reactor core during the postulated accident were satisfactory when compared with the FSAR-A2. Additionally, the results showed the correct actuation of the ECCS guaranteeing the integrity of the reactor core. (author)

  14. Automatic coolant flow control device for a nuclear reactor assembly

    Science.gov (United States)

    Hutter, Ernest

    1986-01-01

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  15. Analysis of loss-of-coolant accidents in pressurized water reactors

    International Nuclear Information System (INIS)

    Moldaschl, H.

    1982-01-01

    Analysis of loss-of-coolant accidents in pressurized water reactors -Quantification of the influence of leak size, control assembly worth, boron concentration and initial power by a dynamic operations criterion. Neutronic and thermohydraulic behaviour of a pressurized water reactor during a loss-of-coolant accident (LOCA) is mainly influenced by -change of fuel temperature, -void in the primary coolant. They cause a local stabilization of power density, that means that also in the case of small leaks local void is the main stabilization effect. As a consequence the increase of fuel temperature remains very small even under extremely hypothetical assumptions: small leak, positive reactivity feedback (positive coolant temperature coefficient, negative density coefficient) at the beginning of the accident and all control assemblies getting stuck. Restrictions which have been valid up to now for permitted start-up conditions to fulfill inherent safety requirements can be lossened substantially by a dynamic operations criterion. Burnable poisons for compensation of reactivity theorefore can be omitted. (orig.)

  16. SNR coolant system components

    International Nuclear Information System (INIS)

    De Haas Van Dorsser, A.H.; Mausbeck, H.

    1976-01-01

    The DEBENELUX prototype fast reactor power plant SNR 300 at Kalkar has a loop-type heat transfer system similar to that of the prototype LMFBR plants in the USA and Japan. There exist three 257 MW/sub th/ primary sodium loops, each with a hot leg centrifugal pump and three 85.6 MW/sub th/ intermediate heat exchangers in parallel. From there the heat is transferred to the steam generators via three secondary sodium loops with one cold leg sodium circulating pump in each. At a nominal reactor outlet temperature of 819 0 K and a turbine inlet power of 771 MW/sub th/ super heated steam of 166 bar and 733 0 K is produced, giving rise to a plant rating of 327 MW/sub e/ gross. The primary and secondary loops are described in detail

  17. Fuel coolant interaction experiment by direct electrical heating method

    International Nuclear Information System (INIS)

    Takeda, Tsuneo; Hirano, Kenmei

    1979-01-01

    In the PCM (Power Cooling Mismatch) experiments, the FCI (Fuel Coolant Interaction) test is one of necessary tests in order to predict various phenomena that occur during PCM in the core. A direct electrical heating method is used for the FCI tests for fuel pellet temperature of over 1000 0 C. Therefore, preheating is required before initiating the direct electrical heating. The fuel pin used in the FCI tests is typical LWR fuel element, which is surrounded by coolant water. It is undersirable to heat up the coolant water during preheating of the fuel pin. Therefore, a zirconia (ZrO 2 ) pellet which is similar to a UO 2 pellet in physical and chemical properties is used. Electric property (electric conductivity) of ZrO 2 is particularly suitable for direct electrical heating as in the case of UO 2 . In this experiment, ZrO 2 pellet (melting point 2500 0 C) melting was achieved by use of both preheating and direct electrical heating. Temperature changes of coolant and fuel surface, as well as the pressure change of coolant water, were measured. The molten fuel interacted with the coolant and generated shock waves. A portion of this molten fuel fragmented into small particles during this interaction. The peak pressure of the observed shock wave was about 35 bars. The damaged fuel pin was photographed after disassembly. This report shows the measured coolant pressure changes and the coolant temperature changes, as well as photographs of damaged fuel pin and fuel fragments. (author)

  18. Physical properties of organic coolants

    International Nuclear Information System (INIS)

    Debbage, A.G.; Garton, D.A.; Kinneir, J.H.

    1963-03-01

    Density, viscosity, specific heat, vapour pressure and calorific value were measured within the temperature range 100 - 400 deg C for mixtures of Santowax R with pyrolytic high boiler and Santowax R with O.M.R.E. radiolytic high boiler; in addition measurements were made on Santowax OM, X-7 standard, X-7 loop coolant and O.M.R.E. coolant supplied by Atomic Energy of Canada Ltd. The accuracy of the measurements made were density (± 1/4%), viscosity (± 2%), specific heat (± 2%), vapour pressure (± 2%) and calorific value (± 1/2%). Thermal conductivity was calculated from an improved form of the Smiths equation with an accuracy within ± 6%. Equations fitted to the vapour pressure results were used to provide data outside the experimental range for burnout correlation purposes. The general effect of high boiler content on the specific heat and calorific values was small. The differences in physical property values for corresponding values of either pyrolytic or radiolytic high boiler were small for density (0.3%) and specific heat (2%), but quite large for viscosity (70%) with the pyrolytic high boiler mixture giving the higher value. The chemical analysis of all materials was based on gas chromatography and the relationship between this and an earlier distillation method established. (author)

  19. Compartmentalized safety coolant injection system

    International Nuclear Information System (INIS)

    Johnson, F.T.

    1983-01-01

    A safety coolant injection system for nuclear reactors wherein a core reflood tank is provided to afford more reliable reflooding of the reactor core in the event of a break in one of the reactor coolant supply loops. Each reactor coolant supply loop is arranged in a separate compartment in the containment structure to contain and control the flow of spilled coolant so as to permit its use during emergency core cooling procedures. A spillway allows spilled coolant in the compartment to pass into the emergency water storage tank from where it can be pumped back to the reactor vessel. (author)

  20. Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung

    Science.gov (United States)

    Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.

  1. Simulation of a loss of primary coolant accident due to a large break in Angra 2 Nuclear Power Plant with RELAP5/MOD3.2.2G code

    International Nuclear Information System (INIS)

    Sabunddjian, Gaiane; Andrade, Delvonei Alves de

    2003-01-01

    This work presents the simulation, with RELAP5/MOD.3.2.2G code, of the postulate accident with loss of coolant in the primary circuit for large break (LBLOCA), which is described in Chapter 15 of the Final Safety Analysis Report of Angra 2 FSAR. The accident consists basically of the total break of the cold leg (Loop 20) of Angra 2 Plant. The rupture area considered is 4418 cm 2 , which represents 100% of the primary circuit pipe flow area. The Emergency Core Cooling System (ECCS) efficiency is also verified for this accident. In this simulation, failure and repair criteria are adopted for the ECCS components, in order to verify the system operation, in carrying out its function as expected by the project to preserve the integrity of the reactor core and to guarantee its cooling. LBLOCA accidents are characterized by a fast blowdown in the primary circuit to values that the low pressure injection system is activated and then, followed by the water injection by the accumulators. The thermal-hydraulic processes inherent to the accident phenomenon, such as hot leg vaporization and consequently core vaporization causing an inappropriate flow distribution in the reactor core, can lead to a reduction in the core liquid level, until the ECCS is capable to reflood it. It is important to point out that the results do not represent an independent calculation for the licensing process, but a calculation to give support to the qualification process of Angra 2 transient basic nodalization (author)

  2. Composition and concentration of soluble and particulate matter in the coolant of the reactor primary cooling system of the Embalse nuclear power plant; Composicion y concentracion del material soluble y particulado en el refrigerante del SPTC de la central nuclear Embalse

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, Mauricio; Garcia Rodenas, Luis; La Gamma, Ana M; Villegas, Marina [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Quimica; Fernandez, Alberto N; Allemandi, Walter; Manera, Raul; Rosales, Hugo [Nucleoelectrica Argentina SA (NASA), Embalse (Argentina). Central Nuclear Embalse

    2000-07-01

    Nuclear power plants type PWR and PHWR (pressurized water reactor and pressurized heavy water reactor) have three coolant circuits which only exchange energy among them. The primary circuit, whose coolant extracts the reactor energy, the secondary circuit or water-steam cycle and the tertiary circuit which could be lake, river or sea water. The chemistry of the primary and secondary coolants is carefully controlled with the aim of minimizing the corrosion of structural materials. However, very low rates of corrosion are inevitable and one of the consequences of the corrosion processes is the presence of soluble and particulate matter in the coolant from where several problems associated with mass transfer arisen. In this way radioactive nuclides are transported out of the core to the steam generators, hydraulic resistance increases and heat transfer capability degrades. In the present paper some alternative techniques are proposed for the quantification of both, the particulate and soluble matter present in the coolant and their correspondent composition. Some results are also included and discussed. (author)

  3. Loss-of-coolant accident analysis of the Savannah River new production reactor design

    International Nuclear Information System (INIS)

    Maloney, K.J.; Pryor, R.J.

    1990-11-01

    This document contains the loss-of-coolant accident analysis of the representative design for the Savannah River heavy water new production reactor. Included in this document are descriptions of the primary system, reactor vessel, and loss-of-coolant accident computer input models, the results of the cold leg and hot leg loss-of-coolant accident analyses, and the results of sensitivity calculations for the cold leg loss-of-coolant accident. 5 refs., 50 figs., 4 tabs

  4. High-Temperature Graphitization Failure of Primary Superheater Tube

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Roy, H.; Mandal, N.; Shukla, A. K.

    2015-12-01

    Failure of boiler tubes is the main cause of unit outages of the plant, which further affects the reliability, availability and safety of the unit. So failure analysis of boiler tubes is absolutely essential to predict the root cause of the failure and the steps are taken for future remedial action to prevent the failure in near future. This paper investigates the probable cause/causes of failure of the primary superheater tube in a thermal power plant boiler. Visual inspection, dimensional measurement, chemical analysis, metallographic examination and hardness measurement are conducted as the part of the investigative studies. Apart from these tests, mechanical testing and fractographic analysis are also conducted as supplements. Finally, it is concluded that the superheater tube is failed due to graphitization for prolonged exposure of the tube at higher temperature.

  5. Method and apparatus for suppressing water-solid overpressurization of coolant in nuclear reactor power apparatus

    International Nuclear Information System (INIS)

    Aanstad, O.J.; Sklencar, A.M.

    1983-01-01

    A reactor-coolant relief valve is opened for increase in mass influx if the rate of change of coolant pressure exceeds a setpoint during a predetermined interval, if, during this interval, the coolant temperature is less than a setpoint and if the level of the fluid in the pressurizer is above a predetermined setpoint (water-solid state). (author)

  6. Liquid metal coolant disposal from UKAEA reactors at Dounreay

    International Nuclear Information System (INIS)

    Adam, E.R.

    1997-01-01

    As part of the United Kingdom's Fast Reactor Development programme two reactors were built and operated at Dounreay in the North of Scotland. DFR (Dounreay Fast Reactor) was operated from 1959-1977 and PFR (Prototype Fast Reactor) was operated from 1974-1994. Both reactors are currently undergoing Stage 1 Decommissioning and are installing plant to dispose of the bulk coolant (DFR ∼ 60 tonne; PFR ∼ 1500 tonne). The coolant (NaK) remaining at DFR is mainly in the primary circuit which contains in excess of 500 TBq of Cs137. Disposal of 40 tonnes of secondary coolant has already been carried out. The paper will describe the processes used to dispose of this secondary circuit coolant and how it is intended the remaining primary circuit coolant will be handled. The programme to process the primary coolant will also be described which involves the conversion of the liquid metal to caustic and its decontamination. No PFR coolant Na has been disposed off to date. The paper will describe the current decommissioning programme activities relating to liquid metal disposal and treatment describing the materials to be disposed of and the issue of decontamination of the effluents. (author)

  7. Estimative of core damage frequency in IPEN's IEA-R1 research reactor (PSA level 1) due to the initiating event of loss of coolant caused by large rupture in the pipe of the primary circuit

    International Nuclear Information System (INIS)

    Hirata, Daniel Massami

    2009-01-01

    This work applies the methodology of probabilistic safety assessment level 1 to the research reactor IEA-R1 IPEN-CNEN/SP. Two categories of identified initiating events of accidents in the reactor are studied: loss of flow and loss of primary coolant. Among the initiating events, blockage of flow channel and loss of cooling fluid by major pipe rupture in the primary circuit are chosen for a detailed analysis. The event tree technique is used to analyze the evolution of the accident, including the actuation or the fail of actuation of the safety systems and the reactor damages. Using the fault tree the reliability of the following reactor safety systems is evaluated: reactor shutdown system, isolation of the reactor pool, emergency core cooling system (ECCS) and the electric system. Estimative for the frequency of damage to the reactor core and the probability of failure of the analyzed systems are calculated. The estimated values for the frequencies of core damage are within the expected margins and are of the same order of magnitude as those found for similar reactors. The reliability of the reactor shutdown system, isolation of the reactor pool and ECCS are satisfactory for the conditions these systems are required. However, for the electric system it is suggested an upgrade to increase its reliability. (author)

  8. Fusion-reactor blanket and coolant material compatibility

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Keough, R.F.

    1981-01-01

    Fusion reactor blanket and coolant compatibility tests are being conducted to aid in the selection and design of safe blanket and coolant systems for future fusion reactors. Results of scoping compatibility tests to date are reported for blanket material and water interactions at near operating temperatures. These tests indicate the quantitative hydrogen release, the maximum temperature and pressures produced and the rates of interactions for selected blanket materials

  9. Surface chemistry of metals and their oxides in high temperature water

    International Nuclear Information System (INIS)

    Tomlinson, M.

    1975-01-01

    Examination of oxide and metal surfaces in water at high temperature by a broad spectrum of techniques is bringing understanding of corrosion product movement and alleviation of activity transport in CANDU-type reactor primary coolant circuits. (Author)

  10. Corrosion product behaviour in the Loviisa nuclear power plant primary coolant: measures taken to lower radiation levels by modified shutdown procedures

    International Nuclear Information System (INIS)

    Jaernstroem, R.T.

    1983-01-01

    The primary circuit chemistry of the Loviisa nuclear power plant differs in some respects from the concepts commonly used in PWRs. In general, Loviisa 1, which is now in its sixth cycle, and Loviisa 2, which is in its second refuelling and maintenance shutdown (October 1982), are very clean compared with several other PWRs and it seems to be possible to keep the radiation levels low and even reduce them by using correct chemistry during operation; the shutdown conditions seem to have great influence on this matter. These modified shutdown conditions and their influence on radiation levels, dose rates and radwaste buildup are discussed. (author)

  11. Contribution to the study on the contamination of the primary coolant of pressurized water reactors by fission products. Application for evaluation of failed fuel elements

    International Nuclear Information System (INIS)

    Bourgeois, Pierre.

    1979-01-01

    After describing the radioactive substances present in the primary system, the consequences of this contamination are studied. The many publications relating to the emergence of fission products from the fuel pins are then analyzed. This study reaches the conclusion that none of the proposed methods makes it possible to interpret the activity determinations made in power reactors. This is why the opposite approach is adopted consisting in suggesting a model as from in-reactor measurements. This model will apply in the conditions for which it has been adjusted, i.e. at a steady nominal power in a 900 MWe pressurized water reactor. The originality of this model lies in the determination of a probable emergence of the can-fuel set which reflects the state of the can and the demonstration of a trapping of the iodine in the set, the consequence of which is a lower release than that of the rare gases in the primary system. After comparing the experimental results available in the literature with the results of the model, it is shown how to proceed in order to evaluate the number of failed fuel elements. Finally, on the basis of the experiments performed at the Grenoble Nuclear Study Centre, the mean and maximal predictable activites are calculated for load following working. The study of the transients is completed by a more accurate calculation of the iodine releases when the reactor is shut down which confirms the main hypotheses of the steady state model [fr

  12. Device for preventing coolant outflow in a reactor

    International Nuclear Information System (INIS)

    Nemoto, Kiyomitsu; Mochizuki, Keiichi.

    1975-01-01

    Object: To prevent outflow of coolant from a reactor vessel even in an occurrence of leaking trouble at a low position in a primary cooling system or the like in the reactor vessel. Structure: An inlet at the foremost end of a coolant inlet pipe inserted into a reactor vessel is arranged at a level lower than a core, and a check valve is positioned at a level higher than the core in a rising portion of the inlet. In normal condition, the check valve is pushed up by discharge pressure of a main circulating pump and remains closed, and hence, producing no flow loss of coolant, sodium. However, when a trouble such as rupture occurs at the lower position in the primary cooling system, the attractive force for allowing the coolant to back-flow outside the reactor vessel and the load force of the coolant within the reactor vessel cause the check valve to actuate, as a consequence of which a liquid level of the coolant downwardly moves to the position of the check valve to intake the cover gases into a gas intake, thereby cutting off a flow passage of the coolant to stop outflow thereof. (Kamimura, M.)

  13. Evaluation of tests for coastdown of reactor coolant flow and measure of primary circuit flow of Angra-1 nuclear power plant

    International Nuclear Information System (INIS)

    Galetti, M.R.S.; Camargo, C.T.M.; Pontedeiro, A.C.

    1987-05-01

    The Angra 1 Nuclear Power Plant first reload license was issued after several technical discussions among CNEN, FURNAS and KWU. During the license process CNEN has established that the plant could return to anormal operation if the requirements described in the letter CNEN-DExL-C 06/86 were satisfied. The requirements according to the CNEN Transient and Thermohydraulic Group Analysis were to do again the following tests: 'Primary Flow Measurement' to check if the excess flow measured in the first cycle was held; and Pump Coastdown' to check if the Westinghouse and KWU fuel elements are thermo-hydraulicaly compatibles during transients. The mixed core must keep at least the same safety margin presented on Angra 1 FSAR for the original core. The tests and the analysis of results are described. (Author) [pt

  14. Three dimensional calculations of the primary coolant flow in a 900 MW PWR vessel. Numerical simulation of the accurate RCP start-up flow rate

    International Nuclear Information System (INIS)

    Martin, A.; Alvarez, D.; Cases, F.; Stelletta, S.

    1997-06-01

    This report explains the last results about the mixing in the 900 MW PWR vessels. The accurate fluid flow transient, induced by the RCP starting-up, is represented. In a first time, we present the Thermalhydraulic Finite Element Code N3S used for the 3D numerical computations. After that, results obtained for one reactor operation case are given. This case is dealing with the transient mixing of a clear plug in the vessel when one primary pump starts-up. A comparison made between two injection modes; a steady state fluid flow conditions or the accurate RCP transient fluid flow conditions. The results giving the local minimum of concentration and the time response of the mean concentration at the core inlet are compared. The results show the real importance of the unsteadiness characteristics of the fluid flow transport of the clear water plug. (author)

  15. Coolant cleanup system for BWR type reactor

    International Nuclear Information System (INIS)

    Kinoshita, Shoichiro; Araki, Hidefumi.

    1993-01-01

    The cleanup system of the present invention removes impurity ions and floating materials accumulated in a reactor during evaporation of coolants in the nuclear reactor. That is, coolants pass pipelines from a pressure vessel using pressure difference between a high pressure in the pressure vessel and a low pressure at the upstream of a condensate filtration/desalting device of a condensate/feed water system as a driving source, during which cations and floating materials are removed in a high temperature filtration/desalting device and coolants flow into the condensate/feedwater system. Impurities containing anions are removed here by the condensates filtration/desalting device. Then, they return to the pressure vessel while pressurized and heated by a condensate pump, a feed water pump and a feed water heater. At least pumps, a heat exchanger for heating, a filtration/desalting device for removing anions and pipelines connecting them used exclusively for the coolant cleanup system are no more necessary. (I.S.)

  16. Estimation of aluminum and argon activation sources in the HANARO coolant

    International Nuclear Information System (INIS)

    Jun, Byung Jin; Lee, Byung Chul; Kim, Myong Seop

    2010-01-01

    The activation products of aluminum and argon are key radionuclides for operational and environmental radiological safety during the normal operation of open-tank-in-pool type research reactors using aluminum-clad fuels. Their activities measured in the primary coolant and pool surface water of HANARO have been consistent. We estimated their sources from the measured activities and then compared these values with their production rates obtained by a core calculation. For each aluminum activation product, an equivalent aluminum thickness (EAT) in which its production rate is identical to its release rate into the coolant is determined. For the argon activation calculation, the saturated argon concentration in the water at the temperature of the pool surface is assumed. The EATs are 5680, 266 and 1.2 nm, respectively, for Na-24, Mg-27 and Al-28, which are much larger than the flight lengths of the respective recoil nuclides. These values coincide with the water solubility levels and with the half-lives. The EAT for Na-24 is similar to the average oxide layer thickness (OLT) of fuel cladding as well; hence, the majority of them in the oxide layer may be released to the coolant. However, while the average OLT clearly increases with the fuel burn-up during an operation cycle, its effect on the pool-top radiation is not distinguishable. The source of Ar-41 is in good agreement with the calculated reaction rate of Ar-40 dissolved in the coolant

  17. Coolant mixing in pressurized water reactors. Proceedings

    International Nuclear Information System (INIS)

    Hoehne, T.; Grunwald, G.; Rohde, U.

    1998-10-01

    For the analysis of boron dilution transients and main steam like break scenarios the modelling of the coolant mixing inside the reactor vessel is important. The reactivity insertion due to overcooling or deboration depends strongly on the coolant temperature and boron concentration. The three-dimensional flow distribution in the downcomer and the lower plenum of PWR's was calculated with a computational fluid dynamics (CFD) code (CFX-4). Calculations were performed for the PWR's of SIEMENS KWU, Westinghouse and VVER-440 / V-230 type. The following important factors were identified: exact representation of the cold leg inlet region (bend radii etc.), extension of the downcomer below the inlet region at the PWR Konvoi, obstruction of the flow by the outlet nozzles penetrating the downcomer, etc. The k-ε turbulence model was used. Construction elements like perforated plates in the lower plenum have large influence on the velocity field. It is impossible to model all the orifices in the perforated plates. A porous region model was used to simulate perforated plates and the core. The porous medium is added with additional body forces to simulate the pressure drop through perforated plates in the VVER-440. For the PWR Konvoi the whole core was modelled with porous media parameters. The velocity fields of the PWR Konvoi calculated for the case of operation of all four main circulation pumps show a good agreement with experimental results. The CFD-calculation especially confirms the back flow areas below the inlet nozzles. The downcomer flow of the Russian VVER-440 has no recirculation areas under normal operation conditions. By CFD calculations for the downcomer and the lower plenum an analytical mixing model used in the reactor dynamic code DYN3D was verified. The measurements, the analytical model and the CFD-calculations provided very well agreeing results particularly for the inlet region. The difficulties of analytical solutions and the uncertainties of turbulence

  18. Dual coolant blanket concept

    International Nuclear Information System (INIS)

    Malang, S.; Schleisiek, K.

    1994-11-01

    A self-cooled liquid metal breeder blanket with helium-cooled first wall ('Dual Coolant Blanket Concept') for a fusion DEMO reactor is described. This is one of the four blanket concepts under development in the frame of the European fusion technology program with the aim to select in 1995 the two most promising ones for further development. Described are the design of the blankets including the ancillary loop system and the results of the theoretical and experimental work in the fields of neutronics, magnetohydrodynamics, thermohydraulics, mechanical stresses, compatibility and purification of lead-lithium, tritium control, safety, reliability, and electrically insulating coatings. The remaining open questions and the required R and D programme are identified. (orig.) [de

  19. BR-5 primary circuit decontamination

    International Nuclear Information System (INIS)

    Efimov, I.A.; Nikulin, M.P.; Smirnov-Averin, A.P.; Tymosh, B.S.; Shereshkov, V.S.

    1976-01-01

    Results and methodology of steam-water and acid decontamination of the primary coolant circuit SBR-5 reactor in 1971 are discussed. Regeneration process in a cold trap of the primary coolant circuit is discussed

  20. Review on research of small break loss of coolant accident

    International Nuclear Information System (INIS)

    Bo Jinhai; Wang Fei

    1998-01-01

    The Small Break Loss of Coolant Accident (SBLOCA) and its research art-of -work are reviewed. A typical SBLOCA process in Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) and the influence of break size, break location and reactor coolant pump on the process are described. The existing papers are classified in two categories: experimental and numerical modeling, with the primary experimental apparatuses in the world listed and the research works on SBLOCA summarized

  1. Steam as turbine blade coolant: Experimental data generation

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsen, B.; Engeda, A.; Lloyd, J.R. [Michigan State Univ., East Lansing, MI (United States)

    1995-10-01

    Steam as a coolant is a possible option to cool blades in high temperature gas turbines. However, to quantify steam as a coolant, there exists practically no experimental data. This work deals with an attempt to generate such data and with the design of an experimental setup used for the purpose. Initially, in order to guide the direction of experiments, a preliminary theoretical and empirical prediction of the expected experimental data is performed and is presented here. This initial analysis also compares the coolant properties of steam and air.

  2. Coolant channel module CCM

    International Nuclear Information System (INIS)

    Hoeld, Alois

    2007-01-01

    A complete and detailed description of the theoretical background of an '(1D) thermal-hydraulic drift-flux based mixture-fluid' coolant channel model and its resulting module CCM will be presented. The objective of this module is to simulate as universally as possible the steady state and transient behaviour of the key characteristic parameters of a single- or two-phase fluid flowing within any type of heated or non-heated coolant channel. Due to the possibility that different flow regimes can appear along any channel, such a 'basic (BC)' 1D channel is assumed to be subdivided into a number of corresponding sub-channels (SC-s). Each SC can belong to only two types of flow regime, an SC with just a single-phase fluid, containing exclusively either sub-cooled water or superheated steam, or an SC with a two-phase mixture flow. After an appropriate nodalisation of such a BC (and therefore also its SC-s) a 'modified finite volume method' has been applied for the spatial discretisation of the partial differential equations (PDE-s) which represent the basic conservation equations of thermal-hydraulics. Special attention had to be given to the possibility of variable SC entrance or outlet positions (which describe boiling boundaries or mixture levels) and thus the fact that an SC can even disappear or be created anew. The procedure yields for each SC type (and thus the entire BC), a set of non-linear ordinary 1st order differential equations (ODE-s). To link the resulting mean nodal with the nodal boundary function values, both of which are present in the discretised differential equations, a special quadratic polygon approximation procedure (PAX) had to be constructed. Together with the very thoroughly tested packages for drift-flux, heat transfer and single- and two-phase friction factors this procedure represents the central part of the here presented 'Separate-Region' approach, a theoretical model which provides the basis to the very effective working code package CCM

  3. Analysis of the loss of coolant accident for LEU cores of Pakistan research reactor-1

    International Nuclear Information System (INIS)

    Khan, L.A.; Bokhari, I.H.; Raza, S.H.

    1993-12-01

    Response of LEU cores for PARR-1 to a Loss of Coolant Accident (LOCA) has been studied. It has been assumed that pool water drains out to double ended rupture of primary coolant pipe or complete shearing of an experimental beam tube. Results show that for an operating power level of 10 MW, both the first high power and equilibrium cores would enter into melting conditions if the pool drain time is less than 22 h and 11 h respectively. However, an Emergency Core Cooling System (ECCS) capable of spraying the core at flow rate of 8.3 m/sup 3/h, for the above mentioned duration, would keep the peak core temperature much below the critical value. Maximum operating power levels below which melting would not occur have been assessed to 3.4 MW and 4.8 MW, respectively, for the first high power and equilibrium cores. (author) 5 figs

  4. Requalification of the LOFT reactor following a loss of coolant experiment (Level I)

    International Nuclear Information System (INIS)

    Cannon, J.W.

    1979-01-01

    During a Loss of Coolant Experiment (LOCE), the LOFT reactor experiences an acceleration of 10 G's and fuel cladding temperature changes at a rate of 1100 0 K/sec. These unparalleled conditions present a unique startup problem to the LOFT program: How can the integrity of the fuel be confirmed so as to minimize operation if damage has occurred. The Level I Requalification Program is designed to accomplish this. It is a progressive series of tests, designed to detect damage at the earliest possible time, and thus preclude or minimize operation if damage exists. First, fuel specialists examine the LOCE data for possible damaging conditions and the results of primary coolant sample analysis for signs of failed fuel. Second, the requalification program proceeds to a series of mechanical and physics tests

  5. Fast instrumentation for loss of coolant accident (LOCA) experimental studies pertaining to nuclear reactors

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Sreenivas Rao, G.; Belokar, D.G.; Dolas, P.K.

    1989-01-01

    The loss of coolant accident (LOCA) which involves a breach in the pressure boundary of the primary coolant system (PCS) is one of the postulated accident conditions against which the safety of the reactor system is to be ensured. Mathematical models have been developed to analyse this kind of transients. However, because of the extremely complicated nature of the phenomena involved, it is necessary to validate the analytical models with appropriate experimental data. Many parameters are to be measured during the experiments, out of which temperature, pressure, void fraction and two-phase mass flow rate are the most important parameters. Since the phenomenon is very fast, special fast response instruments are required. This paper deals with the considerations that govern the selection of appropriate instruments and the development of suitable instruments for transient two-phase flow and void fraction measurements. The requirements of the associated fast data acquisition system are also discussed. (author). 4 figs

  6. Full sized tests on a french coolant pump under two-phase flow

    International Nuclear Information System (INIS)

    Huchard, J.C.; Bore, C.; Dueymes, E.

    1997-01-01

    The French Safety Authorities required EDF to demonstrate the ability of the new N4 main coolant pump to withstand two-phase flow conditions without damage. Therefore three full sized tests, simulating a bleeding flow on the primary system, were performed on a laboratory test loop under real operating conditions (temperature = 290 deg. C, pressure = 155 b, flowrate = 7 m 3 /s; electrical power = 7 MW). The maximum value of the mean void fraction reached 75 %. The outcome of the tests is very positive: the mechanical behaviour of the main coolant pump is good, even at high void fraction. The maximum vibration levels were below the limits fixed by the manufacturer. Correlations between the mechanical behaviour of the pump and the pressure pulsation in the test loop have been found. (authors)

  7. Correlating activity incorporation with properties of oxide films formed on material samples exposed to BWR and PWR coolants in Finnish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bojinov, M.; Kinnunen, P.; Laitinen, T.; Maekelae, K.; Saario, T.; Sirkiae, P. [VTT Industrial Systems, Espoo (Finland); Buddas, T.; Halin, M.; Kvarnstroem, R.; Tompuri, K. [Fortum Power and Heat Oy, Loviisa Power Plant, Loviisa (Finland); Helin, M.; Muttilainen, E.; Reinvall, A. [Teollisuuden Voima Oy, Olkiluoto (Finland)

    2002-07-01

    The extent of activity incorporation on primary circuit surfaces in nuclear power plants is connected to the chemical composition of the coolant, to the corrosion behaviour of the material surfaces and to the structure and properties of oxide films formed on circuit surfaces due to corrosion. Possible changes in operational conditions may induce changes in the structure of the oxide films and thus in the rate of activity incorporation. To predict these changes, experimental correlations between water chemistry, oxide films and activity incorporation, as well as mechanistic understanding of the related phenomena need to be established. In order to do this, flow-through cells with material samples and facilities for high-temperature water chemistry monitoring have been installed at Olkiluoto unit 1 (BWR) and Loviisa unit 1 (PWR) in spring 2000. The cells are being used for two major purposes: To observe the changes in the structure and activity levels of oxide films formed on material samples exposed to the primary coolant. Correlating these observations with the abundant chemical and radiochemical data on coolant composition, dose rates etc. collected routinely by the plant, as well as with high-temperature water chemistry monitoring data such as the corrosion potentials of relevant material samples, the redox potential and the high-temperature conductivity of the primary coolant. We describe in this paper the scope of the work, give examples of the observations made and summarize the results on oxide films that have been obtained during one full fuel cycle at both plants. (authors)

  8. Analysis of molten fuel-coolant interaction during a reactivity-initiated accident experiment

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Hobbins, R.R.

    1981-01-01

    The results of a reactivity-initiated accident experiment, designated RIA-ST-4, are discussed and analyzed with regard to molten fuel-coolant interaction (MFCI). In this experiment, extensive amounts of molten UO 2 fuel and zircaloy cladding were produced and fragmented upon mixing with the coolant. Coolant pressurization up to 35 MPa and coolant overheating in excess of 940 K occurred after fuel rod failure. The initial coolant conditions were similar to those in boiling water reactors during a hot startup (that is, coolant pressure of 6.45 MPa, coolant temperature of 538 K, and coolant flow rate of 85 cm 3 /s). It is concluded that the high coolant pressure recorded in the RIA-ST-4 experiment was caused by an energetic MFCI and was not due to gas release from the test rod at failure, Zr/water reaction, or to UO 2 fuel vapor pressure. The high coolant temperature indicated the presence of superheated steam, which may have formed during the expansion of the working fluid back to the initial coolant pressure; yet, the thermal-to-mechanical energy conversion ratio is estimated to be only 0.3%

  9. Primary coolant system of BWR type reactor

    International Nuclear Information System (INIS)

    Ibe, Hidefumi; Takahashi, Masanori; Aoki, Yasuko

    1997-01-01

    The present invention provides a water quality control system for preventing corrosion and for extending working life of structural materials of a BWR-type reactor. Namely, a sensor group 1 and a sensor group 2 are disposed at different positions such as in a feedwater system, a recycling system, main steam pipes, and a pressure vessel, respectively. Each sensor group can record and generate alarms independently. The sensor group 1 for usual monitoring is connected to a calculation device by way of a switch to confirm that the monitored values are within a proper range by the injection of a water quality moderating agent. The sensor group 2 is caused to stand alone or connected with the calculation device by way of a switch optionally. When abnormality should occur in the sensor group 1, the sensor group 2 determines the limit for the increase/decrease of controlling amount of the moderating agent at a portion where the conditions are changed to the most severe direction by using data base. The moderating agent is injected and controlled based on the controlling amount. The system of the present invention can optionally cope with a new sensor and determination for new water quality standards. Then the evaluation/control accuracy of the entire system can be improved while covering up the errors of each sensor. (I.S.)

  10. Decontamination of CANDU primary coolant system

    International Nuclear Information System (INIS)

    Pettit, P.J.

    1975-01-01

    Decontamination of radioactive systems is necessary to reduce personnel radiation exposures and also to reduce exposure during special work. Mechanical decontamination methods are sometimes useful, but most contaminated surfaces are inaccessible, so chemical decontamination often is preferred. The A-P Citrox method will remove most contaminants from CANDU systems, but is costly and long, damages components, and produces large quantities of radioactive liquid waste. The Redox cycling process is fast and inexpensive, produces only solid wastes, but removes small quantities of deposit from Monel only. The CAN-DECON process removes deposits from most materials including fuel cladding and has many other advantages. (author)

  11. Decontamination of main coolant pumps

    International Nuclear Information System (INIS)

    Roofthooft, R.

    1988-01-01

    Last year a number of main coolant pumps in Belgian nuclear power plants were decontaminated. A new method has been developed to reduce the time taken for decontamination and the volume of waste to be treated. The method comprises two phases: Oxidation with permanganate in nitric acid and dissolution in oxalic acid. The decontamination of main coolant pumps can now be achieved in less than one day. The decontamination factors attained range between 15 and 150. (orig.) [de

  12. Bouyancy effects on sodium coolant temperature profiles measured in an electrically heated mock-up of a 61-rod breeder reactor blanket assembly

    International Nuclear Information System (INIS)

    Engel, F.C.; Markley, R.A.; Minushkin, B.

    1978-01-01

    The paper describes test results selected to demonstrate the effect of buoyancy on the temperature profiles in a 61-rod electrically heated mock-up of an LMFBR radial blanket assembly. In these assemblies, heat transfer occurs over a wide range of complex operating conditions. The range and complexity of conditions are the result of the steep flux and power gradients which are an inherent feature of the blanket region and the power generation level in an assembly which can vary from 20 to 1100 kW

  13. Components of the primary circuit of LWRs

    International Nuclear Information System (INIS)

    1980-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400 C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives. (orig.) [de

  14. Effect of the fast pyrolysis temperature on the primary and secondary products of lignin

    NARCIS (Netherlands)

    Zhou, Shuai; Garcia-Perez, Manuel; Pecha, Brennan; Kersten, Sascha R.A.; McDonald, Armando G.; Westerhof, Roel Johannes Maria

    2013-01-01

    This paper presents results on the primary pyrolysis products of organosolv lignin at temperatures between 360 and 700 °C. To study the primary products, a vacuum screen heater (heating rate of 8000 °C/s, deep vacuum of 0.7 mbar, and very fast cooling at the wall temperature of −100 °C) was used.

  15. T/sub hot/ reduction: a program for lowering primary temperatures on a PWR

    International Nuclear Information System (INIS)

    Augustine, D.B.; DiTommaso, S.M.; Manz, E.M.; Reister, P.

    1987-01-01

    This paper focuses on the key technical issues addressed in a program to support operation of the Byron Unit 1 pressurized water reactor at primary side temperatures significantly lowered with respect at primary side temperatures significantly lowered with respect to the original design temperatures. These operating temperatures were lowered in order to reduce the potential for initiation of primary water stress corrosion cracking in the steam generator tubing. The efforts of this program were aimed at maintaining operation of the unit at the maximum possible power level at the reduced temperatures. In addition, the program is designed to allow for cycle-to-cycle flexibility within a range of operating temperatures from the original design temperatures to temperatures lowered by ∼ 11 0 C (20 0 F)

  16. High temperature properties of nuclear reactor coolants and thermodynamic power cycle working fluids. Technical progress report, December 1, 1977--November 30, 1978

    International Nuclear Information System (INIS)

    Bonilla, C.F.; Holder, G.P.

    1978-09-01

    The program to determine the surface tension of sodium to high temperatures has been soundly commenced with the completion and calibration of a new all-molybdenum maximum-bubble-pressure apparatus suitable to some 1900 0 K. This property bears on boiling, condensing and two-phase flow phenomena, also related to LMFBR analysis. This same apparatus will be useful with lithium, of interest in fusion reactor cooling. Reduction of prior maximum bubble pressure results on potassium by the Schroedinger method has been repeated by the more precise but time-consuming Sugden procedure, which has increased the resulting surface tension values by an average of 0.27%. Thus the Sugden method will be employed to reduce the data for sodium and lithium

  17. Temperature conditions in an LMFBR power plant from primary sodium to steam circuits

    International Nuclear Information System (INIS)

    Aubert, M.; Chaumont, J.M.; Mougniot, J.C.; Recolin, J.; Acket.

    1977-01-01

    The optimization analysis which is presented is based on an evaluation of the tender prior to contracting Super Phenix. Process constraints are reviewed: fuel limitations, turbine, steam generators; parameter selection involves major temperatures (primary ΔT 0 , steam generator water inlet temperature, turbine steam inlet temperature) or minor temperature (secondary sodium); countervailing mechanisms include upward and downward tendencies. The optimum values obtained by the method represent a coherent balanced set of parameters. So, the most significant tendency revealed by an optimization of investment costs involves the advantages of a hot system with a steam temperature above 515 0 C, but the hot temperature range is very limited (3 0 C between the hot primary sodium temperature and the steam temperature) while the cold temperatures cover a much wide range. The tolerance range within which each critical temperature may be selected without exceeding a certain cost margin per KWh is given

  18. Effect of parameter variation of reactor coolant pump on loss of coolant accident consequence

    International Nuclear Information System (INIS)

    Dang Gaojian; Huang Daishun; Gao Yingxian; He Xiaoqiang

    2015-01-01

    In this paper, the analyses were carried out on Ling'ao nuclear power station phase II to study the consequence of the loss of coolant accident when the homologous characteristic curves and free volumes of the reactor coolant pump changed. Two different pumps used in the analysis were 100D (employed on Ling'ao nuclear power station phase II) and ANDRITZ. The thermal characteristics in the large break LOCA accident were analyzed using CATHRE GB and CONPATE4, and the reactor coolant system hydraulics load during blow-clown phase of LOCA accident was analyzed using ATHIS and FORCET. The calculated results show that the homologous characteristic curves have great effect on the thermal characteristics of reactor core during the reflood phase of the large break LOCA accident. The maximum cladding surface temperatures are quite different when the pump's homologous characteristic curves change. On the other hand, the pump's free volume changing results in the variation of the LOCA rarefaction wave propagation, and therefore, the reactor coolant system hydraulic load in LOCA accident would be different. (authors)

  19. Coolant degassing device for PWR type reactors

    International Nuclear Information System (INIS)

    Kita, Kaoru; Takezawa, Kazuaki; Minemoto, Masaki.

    1982-01-01

    Purpose: To efficiently decrease the rare gas concentration in primary coolants, as well as shorten the degassing time required for the periodical inspection in the waste gas processing system of a PWR type reactor. Constitution: Usual degassing method by supplying hydrogen or nitrogen to a volume control tank is replaced with a method of utilizing a degassing tower (method of flowing down processing liquid into the filled tower from above while uprising streams from the bottom of the tower thereby degassing the gases dissolved in the liquid into the steams). The degassing tower is combined with a hydrogen separator or hydrogen recombiner to constitute a waste gas processing system. (Ikeda, J.)

  20. Fuel-Coolant Interactions - some Basic Studies at the UKAEA Culham Laboratory

    International Nuclear Information System (INIS)

    Reynolds, J.A.; Dullforce, T.A.; Peckover, R.S.; Vaughan, G.J.

    1976-01-01

    In a hypothetical fault sequence important effects of fuel-coolant interactions include voiding and dispersion of core debris as well as the pressure damage usually discussed. The development of the fuel-coolant interaction probably depends on any pre-mixing Weber break-up that may occur, and is therefore a function of the way the fuel and coolant come together. Four contact modes are identified: jetting, shock tube, drops and static, and Culham's experiments have been mainly concerned with simulating the falling drop mode by using molten tin in water. It was observed that the fuel-coolant interaction is a short series of violent coolant oscillations centred at a localized position on the drop, generating a spray of submillimeter sized debris. The interaction started spontaneously at a specific time after the drop first contacted the water. There was a definite limited fuel-coolant interaction zone on a plot of initial coolant temperature versus initial fuel temperature outside which interactions never occurred. The. interaction time was a function of the initial temperatures. Theoretical scaling formulae are given which describe the fuel-coolant interaction zone and dwell time. Bounds of fuel and coolant temperature below which fuel-coolant interactions do not occur are explained by freezing. Upper bounds of fuel and coolant temperatures above which there were no fuel-coolant interactions are interpreted in terms of heat transfer through vapour films of various thicknesses. In conclusion: We have considered the effects of fuel-coolant interactions in a hypothetical fault sequence, emphasising that debris and vapour production as well as the pressure pulse can be important factors. The fuel-coolant interaction has been classified into types, according to possible modes of mixing in the fault sequence. Culham has been studying one type, the self-triggering of falling drops, by simulant experiments. It is found that there is a definite zone of interaction on a plot

  1. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Rowley, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Schroeder, D. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Brand, L. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.

  2. Coolant circuit water chemistry of the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Tilky, Peter; Doma, Arpad

    1985-01-01

    The numerous advantages of the proper selection of water chemistry parameters including low corrosion rate of the structural materials, hence the low-level activity build-up, depositions, radiation doses were emphasized. Major characteristics of water chemistry applied to the primary coolant of pressurized water reactors including neutral, slightly basic and strong basic ones are discussed. Boric acid is widely used to control reactivity. Primary coolant water chemistry of WWER type reactors which is based on the addition of ammonia and potassium hydroxide to boric acid is compared with that of other reactors. The demineralization of the total condensate of the steam turbines became a general trend in the water chemistry of the secondary coolant circuits. (V.N.)

  3. On possibility of application of the parallel-mixed type coolant flow scheme to NPP steam generators linked with superheaters

    International Nuclear Information System (INIS)

    Malkis, V.A.; Lokshin, V.A.

    1983-01-01

    Optimum distribution of the coolant straight-through flow between the superheater, evaporator and economizer is determined and the parallel-mixed type flow scheme is compared with other schemes. The calculations are performed for the 250 MW(e) steam generator for the WWER-1000 reactor unit the inlet and outlet primary coolant temperature of which is 324 and 290 deg C, respectively, while the feed water and saturation temperatures are 220 and 278.5 deg C, respectively. The rated superheating temperature is 300 deg C. The comparison of different schemes has been performed according to the average temperature head value at the steam-generator under the condition of equality as well as essential difference in the heat transfer coefficients in certain steam-generator sections. The calculations have shown that the use of parallel-mixed type flow permits to essentially increase the temperature head of the steam generator. At a constant heat transfer coefficient in all steam generator sections the highest temperature head is reached. At relative flow rates in the steam generator, economizer and evaporator equal to 6, 8 and 86%, respectively. The superheated steam generator temperature head in this case by 12% exceeds the temperature head of the WWER-1000 reactor unit wet steam generator. In case of heat transfer coefficient reduction in the superheater by a factor of three, the choice of the primary coolant, optimum distribution permits to maintain the steam generator temperature head at the level of the WWER-1000 reactor unit wet-steam steam generator. The use of the parallel-mixed type flow scheme permits to design a steam generator of slightly superheated steam for the parameters of the WWER-1000 unit

  4. Development of an autoclave with zirconia crystal windows for in-situ observation of sample surface under primary water conditions of pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fukumura, Takuya; Totsuka, Nobuo; Arioka, Koji [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan); Nakajima, Nobuo

    2002-09-01

    Elucidating the mechanism for primary water stress corrosion cracking (PWSCC) is important for improving the reliability of structural materials in the primary system of pressurized water reactors (PWR). For this purpose, visualization of corrosion material surface in the primary coolant environment is effective, but it was impossible because of lack of suitable window material. Yttria stabilized zirconia was newly selected as a candidate for in-situ window material in the primary coolant environment of PWR. Its sufficient corrosion resistance was proved by measuring the transmissivity of light after being immersed in the primary coolant environment. A new autoclave with two windows of yttria-stabilized zirconia was developed. The corrosion material surfaces of Alloy600 and SUS304 in the primary coolant environment were clearly observed with this autoclave. Observations of cracks generated on the surface of SUS304 specimen, suggest that its generation time depends on temperature. (author)

  5. Knock-limited performance of several internal coolants

    Science.gov (United States)

    Bellman, Donald R; Evvard, John C

    1945-01-01

    The effect of internal cooling on the knock-limited performance of an-f-28 fuel was investigated in a CFR engine, and the following internal coolants were used: (1) water, (2), methyl alcohol-water mixture, (3) ammonia-methyl alcohol-water mixture, (4) monomethylamine-water mixture, (5) dimethylamine-water mixture, and (6) trimethylamine-water mixture. Tests were run at inlet-air temperatures of 150 degrees and 250 degrees F. to indicate the temperature sensitivity of the internal-coolant solutions.

  6. Control rod drive mechanism stator loss of coolant test

    International Nuclear Information System (INIS)

    Besel, L.; Ibatuan, R.

    1977-04-01

    This report documents the stator loss of coolant test conducted at HEDL on the lead unit Control Rod Drive Mechanism (CRDM) in February, 1977. The purpose of the test was to demonstrate scram capability of the CRDM with an uncooled stator and to obtain a time versus temperature curve of an uncooled stator under power. Brief descriptions of the test, hardware used, and results obtained are presented in the report. The test demonstrated that the CRDM could be successfully scrammed with no anomalies in both the two-phase and three-phase stator winding hold conditions after the respective equilibrium stator temperatures had been obtained with no stator coolant

  7. Reactor coolant pump transportation incident

    International Nuclear Information System (INIS)

    Noce, D.

    1992-01-01

    This paper reports on an incident, which occurred on August 27, 1991, in which a Reactor Coolant Pump motor en route from Surry Power Station to Westinghouse repair facilities struck the overpass at the junction of Interstate 64 and Jefferson Avenue in Newport News, Virginia. The transport container that housed the reactor coolant pump motor failed to clear the overpass. The force of the impact dislodged the container and motor from the truck bed, and it landed on the acceleration land and road shoulder. Upon impact, the container broke open and exposed the reactor coolant pump motor. Incidental radioactively contaminated water that remained in the motor coolers drained onto the road, contaminating the aggregate as well as the underlying gravel

  8. Experimental evaluation of radiator control based on primary supply temperature for district heating substations

    International Nuclear Information System (INIS)

    Gustafsson, Jonas; Delsing, Jerker; Deventer, Jan van

    2011-01-01

    Highlights: → We compared a new radiator system control approach with traditional control. → This is an experimental verification of previous simulation results. → We examine changes in delta-T and indoor comfort. → The indoor comfort were not affected by the introduction of alt. radiator control. → The alternative control method can contribute to an increased delta-T. -- Abstract: In this paper, we evaluate whether the primary supply temperature in district heating networks can be used to control radiator systems in buildings connected to district heating; with the purpose of increasing the ΔT. The primary supply temperature in district heating systems can mostly be described as a function of outdoor temperature; similarly, the radiator supply temperature in houses, offices and industries can also be described as a function of outdoor temperature. To calibrate the radiator control system to produce an ideally optimal radiator supply temperature that produces a maximized ΔT across the substation, the relationship between the primary supply temperature and outdoor temperature must be known. However, even if the relation is known there is always a deviation between the expected primary supply temperature and the actual temperature of the received distribution media. This deviation makes the radiator control system incapable of controlling the radiator supply temperature to a point that would generate a maximized ΔT. Published simulation results show that it is possible and advantageous to utilize the primary supply temperature for radiator system control. In this paper, the simulation results are experimentally verified through implementation of the control method in a real district heating substation. The primary supply temperature is measured by the heat-meter and is shared with the radiator control system; thus no additional temperature sensors were needed to perform the experiments. However additional meters were installed for surveillance purposes

  9. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  10. Full reactor coolant system chemical decontamination qualification programs

    Energy Technology Data Exchange (ETDEWEB)

    Miller, P.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1995-03-01

    Corrosion and wear products are found throughout the reactor coolant system (RCS), or primary loop, of a PWR power plant. These products circulate with the primary coolant through the reactor where they may become activated. An oxide layer including these activated products forms on the surfaces of the RCS (including the fuel elements). The amount of radioactivity deposited on the different surface varies and depends primarily on the corrosion rate of the materials concerned, the amount of cobalt in the coolant and the chemistry of the coolant. The oxide layer, commonly called crud, on the surfaces of nuclear plant systems leads to personnel radiation exposure. The level of the radiation fields from the crud increases with time from initial plant startup and typically levels off after 4 to 6 cycles of plant operation. Thereafter, significant personnel radiation exposure may be incurred whenever major maintenance is performed. Personnel exposure is highest during refueling outages when routine maintenance on major plant components, such as steam generators and reactor coolant pumps, is performed. Administrative controls are established at nuclear plants to minimize the exposure incurred by an individual and the plant workers as a whole.

  11. RETRAN code analysis of Tsuruga-2 plant chemical volume control system (CVCS) reactor coolant leakage incident

    International Nuclear Information System (INIS)

    Kawai, Hiroshi

    2002-01-01

    In the Chemical Volume Control System (CVCS) reactor primary coolant leakage incident, which occurred in Tsuruga-2 (4-loop PWR, 3,423 MWt, 1,160 MWe) on July 12, 1999, it took about 14 hours before the leakage isolation. The delayed leakage isolation and a large amount of leakage have become a social concern. Effective procedure modification was studied. Three betterments were proposed based on a qualitative analysis to reduce the pressure and temperature of the primary loop as fast as possible by the current plant facilities while maintaining enough subcooling of the primary loop. I analyzed the incident with RETRAN code in order to quantitatively evaluate the leakage reduction when these betterments are adopted. This paper is very new because it created a typical analysis method for PWR plant behavior during plant shutdown procedure which conventional RETRAN transient analyses rarely dealt with. Also the event time is very long. To carry out this analysis successfully, I devised new models such as an Residual Heat Removal System (RHR) model etc. and simplified parts of the conventional model. Based on the analysis results, I confirmed that leakage can be reduced by about 30% by adopting these betterments. Then the Japan Atomic Power Company (JAPC) modified the operational procedure for reactor primary coolant leakage events adopting these betterments. (author)

  12. Radiolysis of the VVER-1000 reactor coolant: An experimental study and mathematical modeling

    International Nuclear Information System (INIS)

    Arkhipov, O.P.; Bugaenko, V.L.; Kabakchi, S.A.

    1995-01-01

    Variations in the composition of the coolant for the primary circuit of a VVER-1000 reactor of the Kalinin nuclear power plant upon transition from power-level operation to shutdown was studied experimentally. The data obtained were used for verification of the MORAVA-H2 program developed earlier for simulation of the coolant state in pressurized-water power reactors

  13. The corrosion products in the coolant circuits of pressurized water nuclear power plants

    International Nuclear Information System (INIS)

    Darras, R.

    1983-01-01

    The characteristics of the corrosion products formed in the primary and secondary coolant circuits of light-water pressurized reactors are reviewed. The problem induced by the pollution of coolants and metallic surface are examined. Then, the recommendations to follow to minimize the disturbing effects of this pollution by the corrosion products are indicated [fr

  14. Coolant controls of a PEM fuel cell system

    Science.gov (United States)

    Ahn, Jong-Woo; Choe, Song-Yul

    When operating the polymer electrolyte membrane (PEM) fuel cell stack, temperatures in the stack continuously change as the load current varies. The temperature directly affects the rate of chemical reactions and transport of water and reactants. Elevated temperature increases the mobility of water vapor, which reduces the ohmic over-potential in the membrane and eases removal of water produced. Adversely, the high temperature might impose thermal stress on the membrane and cathode catalyst and cause degradation. Conversely, excessive supply of coolants lowers the temperature in the stack and reduces the rate of the chemical reactions and water activity. Corresponding parasitic power dissipated at the electrical coolant pump increases and overall efficiency of the power system drops. Therefore, proper design of a control for the coolant flow plays an important role in ensuring highly reliable and efficient operations of the fuel cell system. Herein, we propose a new temperature control strategy based on a thermal circuit. The proposed thermal circuit consists of a bypass valve, a radiator with a fan, a reservoir and a coolant pump, while a blower and inlet and outlet manifolds are components of the air supply system. Classic proportional and integral (PI) controllers and a state feedback control for the thermal circuit were used in the design. In addition, the heat source term, which is dependent upon the load current, was feed-forwarded to the closed loop and the temperature effects on the air flow rate were minimized. The dynamics and performance of the designed controllers were evaluated and analyzed by computer simulations using developed dynamic fuel cell system models, where a multi-step current and an experimental current profile measured at the federal urban driving schedule (FUDS) were applied. The results show that the proposed control strategy cannot only suppress a temperature rise in the catalyst layer and prevent oxygen starvation, but also reduce the

  15. Hypothetical accident scenario analyses for a 250-MW(t) modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Harrington, R.M.; Ball, S.J.; Cleveland, J.C.

    1985-11-01

    This paper describes calculations performed to characterize the inherent safety of a 250-MW(t), 100-MW(e), pebble bed modular high temperature gas-cooled reactor (HTGR) design with vertical in-line arrangement (i.e., upflow core with steam generators directly above the core). A variety of postulated accident sequences involving combinations of loss of forced primary coolant (helium) circulation, loss of primary coolant pressurization, and loss of heat sink were studied and were discussed

  16. Vessel coolant mass depletion during a 5% SBLOCA in the Semiscale Mod-2C facility

    International Nuclear Information System (INIS)

    Shaw, R.A.; Loomis, G.G.

    1985-01-01

    Experimental results are presented from two 5% small-break loss-of-coolant accident (SBLOCA) simulations in the Semiscale Mod-2C facility. In performing the simulated 5% SBLOCAs, boundary conditions scaled from a pressurized water reactor (PWR) were used. The experiment was run with initial conditions typical of a PWR (15.6 MPa pressure and 35 K core differential temperature). The Mod-2C facility represents the state-of-the-art in small facilities scaled from PWRs. Phenomena which occurred during the transient included: primary fluid saturation (change from subcooled to saturated blowdown), break uncovery (a centerline break was simulated), condensation-induced liquid hold-up in the steam generator primary tubes, pump suction liquid seal formation and core level depression with resulting core rod temperature excursion, pump suction liquid seal clearance, loop fluid mass redistribution, and gradual core rewet. The influence of core bypass flow is also discussed. 11 refs., 13 figs

  17. Sodium as a reactor coolant

    International Nuclear Information System (INIS)

    Cesar, S.B.G.

    1989-01-01

    This work is related to the use of sodium as a reactor coolant, to the advantages and problems related to its use, its mechanical, thermophysics, eletronical, magnetic and nuclear properties. It is mainly a bibliographic review, with the aim of gathering the necessary information to persons initiating in the study of sodium and also as reference source. (author) [pt

  18. Vertical reactor coolant pump instabilities

    International Nuclear Information System (INIS)

    Jones, R.M.

    1985-01-01

    The investigation conducted at the Tennessee Valley Authority's Sequoyah Nuclear Power Plant to determine and correct increasing vibrations in the vertical reactor coolant pumps is described. Diagnostic procedures to determine the vibration causes and evaluate the corractive measures taken are also described

  19. Some experimental justifications of constructions of nuclear reactors with the use of solid coolant

    International Nuclear Information System (INIS)

    Deniskin, V.; Nalivaev, V.; Fedik, I.; Vishnevski, U.; Dmitriev, A.

    2003-01-01

    Full text: The work that has been conducted so far justifies a possibility of constructing a reactor with a non-traditional coolant to develop radically new reactors and their cycles with perfect architecture. A solid coolant, for example, the carbon-based one, allows to design the primary circuit of nuclear reactor without excess pressure. Such coolant withstands temperatures up to ∼4000 deg. K without a collapse. The analysis of theory and experiments produced requirements to be met by a solid coolant used in the primary circuit of nuclear reactor. One of the most important requirements is the arrangements for a continuous and homogeneous gravity flow of the coolant through all core sections taking into account the dust caused by wear and some amount of fractured particles. Therefore, the idea is that the mass of particles should resemble a liquid to a certain extend. The particles should be sphere like with average diameter from 0.5 to 2.0 mm and nonsphericity rate not more than 10%. 'Angle of repose' of particles to the horizon can be utilised as a validity criterion of particles which should not exceed 25 deg. The heat transfer coefficient should be increased up to the practical maximum value. In 1996 - 1997 the system of experimental facilities were built in the Scientific and Research Institute 'Luch' to prove the possibility to reliably cool a nuclear reactor with a flow of solid particles and to obtain a minimum set of data for the conceptual design of such reactor with solid coolant. The facility allows the research of the flow stability, heat mass transfer in the core, lifetime wearing of particles of the solid coolant. In 1994-1999 5 batches of particles of different size were fabricated in accordance to different technologies. Four batches were graphite-based and one was aluminium oxide-based (Al 2 O 3 ). The purpose was to verify how the heat transfer coefficient was changing as the particle size varied. The average diameter of graphite particles

  20. Efficiency of water coolant for DEMO divertor

    International Nuclear Information System (INIS)

    Fetzer, Renate; Igitkhanov, Yuri; Bazylev, Boris

    2015-01-01

    Up to now, water-cooled divertor concepts have been developed for limited incident fluxes without taking into account transient power loadings. In this paper we analyzed the efficiency of water as a coolant for the particular PFC tungsten monoblock shield with a cooling tube made from Cu alloy (Cu OFHC) as a laminate adjacent to W and a low activation martensitic steel (Eurofer) as inner tube contacting the coolant. Thermal analysis is carried out by using the code MEMOS, which simulates W armour damage under the repetitive ELM heat loads. We consider cooling conditions which allow one to keep relatively high material temperatures (in the range 300–600 °C) thus minimizing Eurofer embrittlement under neutron irradiation. Expected DEMO I and DEMO II heat loads including type I ELMs are found to cause melting of the W surface during unmitigated ELMs. By mitigation of the ELMs melting of W is avoided. DEMO I operation under these conditions is save for cooling at water pressure 15.5 MPa and temperature 325 °C, while for DEMO II with mitigated ELMs the critical heat flux is exceeded and safe operation is not provided.

  1. Efficiency of water coolant for DEMO divertor

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Renate, E-mail: renate.fetzer@kit.edu; Igitkhanov, Yuri; Bazylev, Boris

    2015-10-15

    Up to now, water-cooled divertor concepts have been developed for limited incident fluxes without taking into account transient power loadings. In this paper we analyzed the efficiency of water as a coolant for the particular PFC tungsten monoblock shield with a cooling tube made from Cu alloy (Cu OFHC) as a laminate adjacent to W and a low activation martensitic steel (Eurofer) as inner tube contacting the coolant. Thermal analysis is carried out by using the code MEMOS, which simulates W armour damage under the repetitive ELM heat loads. We consider cooling conditions which allow one to keep relatively high material temperatures (in the range 300–600 °C) thus minimizing Eurofer embrittlement under neutron irradiation. Expected DEMO I and DEMO II heat loads including type I ELMs are found to cause melting of the W surface during unmitigated ELMs. By mitigation of the ELMs melting of W is avoided. DEMO I operation under these conditions is save for cooling at water pressure 15.5 MPa and temperature 325 °C, while for DEMO II with mitigated ELMs the critical heat flux is exceeded and safe operation is not provided.

  2. Reactor coolant pump shaft seal behavior during blackout conditions

    International Nuclear Information System (INIS)

    Mings, W.J.

    1985-01-01

    The United States Nuclear Regulatory Commission has classified the problem of reactor coolant pump seal failures as an unresolved safety issue. This decision was made in large part due to experimental results obtained from a research program developed to study shaft seal performance during station blackout and reported in this paper. Testing and analysis indicated a potential for pump seal failure under postulated blackout conditions leading to a loss of primary coolant with a concomitant danger of core uncovery. The work to date has not answered all the concerns regarding shaft seal failure but it has helped scope the problem and focus future research needed to completely resolve this issue

  3. Breakup of jet and drops during premixing phase of fuel coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsson, Haraldur Oskar

    2000-05-01

    During the course of a hypothetical severe accident in a light water reactor, molten liquid may be introduced into a volatile coolant, which, under certain conditions, results in explosive interactions. Such fuel-coolant interactions (FCI) are characterised by an initial pre-mixing phase during which the molten liquid, metallic or oxidic in nature, undergoes a breakup (fragmentation) process which significantly increase the area available for melt-coolant contact, and thus energy transfer. Although substantial progress in the understanding of phenomenology of the FCI events has been achieved in recent years, there remain uncertainties in describing the primary and secondary breakup processes. The focus of this work is on the melt jet and drop breakup during the premixing phase of FCI. The objectives are to gain insight into the premixing phase of the FCI phenomena, to determine what fraction of the melt fragments and determine the size distribution. The approach is to perform experiments with various simulant materials, at different scales, different conditions and with variation of controlling parameters affecting jet and drop breakup processes. The analysis approach is to investigate processes at different level of detail and complexity to understand the physics, to rationalise experimental results and to develop and validate models. In the first chapter a brief introduction and review of the status of the FCI phenomena is performed. A review of previous and current experimental projects is performed. The status of the experimental projects and major findings are outlined. The first part of the second chapter deals with experimental investigation of jet breakup. Two series of experiments were performed with low and high temperature jets. The low temperature experiments employed cerrobend-70 as jet liquid. A systematic investigation of thermal hydraulic conditions and melt physical properties on the jet fragmentation and particle debris characteristics was

  4. Breakup of jet and drops during premixing phase of fuel coolant interactions

    International Nuclear Information System (INIS)

    Haraldsson, Haraldur Oskar

    2000-05-01

    During the course of a hypothetical severe accident in a light water reactor, molten liquid may be introduced into a volatile coolant, which, under certain conditions, results in explosive interactions. Such fuel-coolant interactions (FCI) are characterised by an initial pre-mixing phase during which the molten liquid, metallic or oxidic in nature, undergoes a breakup (fragmentation) process which significantly increase the area available for melt-coolant contact, and thus energy transfer. Although substantial progress in the understanding of phenomenology of the FCI events has been achieved in recent years, there remain uncertainties in describing the primary and secondary breakup processes. The focus of this work is on the melt jet and drop breakup during the premixing phase of FCI. The objectives are to gain insight into the premixing phase of the FCI phenomena, to determine what fraction of the melt fragments and determine the size distribution. The approach is to perform experiments with various simulant materials, at different scales, different conditions and with variation of controlling parameters affecting jet and drop breakup processes. The analysis approach is to investigate processes at different level of detail and complexity to understand the physics, to rationalise experimental results and to develop and validate models. In the first chapter a brief introduction and review of the status of the FCI phenomena is performed. A review of previous and current experimental projects is performed. The status of the experimental projects and major findings are outlined. The first part of the second chapter deals with experimental investigation of jet breakup. Two series of experiments were performed with low and high temperature jets. The low temperature experiments employed cerrobend-70 as jet liquid. A systematic investigation of thermal hydraulic conditions and melt physical properties on the jet fragmentation and particle debris characteristics was

  5. Influence of coolant pH on corrosion of 6061 aluminum under reactor heat transfer conditions

    International Nuclear Information System (INIS)

    Pawel, S.J.; Felde, D.K.; Pawel, R.E.

    1995-10-01

    To support the design of the Advanced Neutron Source (ANS), an experimental program was conducted wherein aluminum alloy specimens were exposed at high heat fluxes to high-velocity aqueous coolants in a corrosion test loop. The aluminum alloys selected for exposure were candidate fuel cladding materials, and the loop system was constructed to emulate the primary coolant system for the proposed ANS reactor. One major result of this program has been the generation of an experimental database defining oxide film growth on 6061 aluminum alloy cladding. Additionally, a data correlation was developed from the database to permit the prediction of film growth for any reasonable thermal-hydraulic excursion. This capability was utilized effectively during the conceptual design stages of the reactor. During the course of this research, it became clear that the kinetics of film growth on the aluminum alloy specimens were sensitively dependent on the chemistry of the aqueous coolant and that relatively small deviations from the intended pH 5 operational level resulted in unexpectedly large changes in the corrosion behavior. Examination of the kinetic influences and the details of the film morphology suggested that a mechanism involving mass transport from other parts of the test loop was involved. Such a mechanism would also be expected to be active in the operating reactor. This report emphasizes the results of experiments that best illustrate the influence of the nonthermal-hydraulic parameters on film growth and presents data to show that comparatively small variations in pH near 5.0 invoke a sensitive response. Simply, for operation in the temperature and heat flux range appropriate for the ANS studies, coolant pH levels from 4.5 to 4.9 produced significantly less film growth than those from pH 5.1 to 6. A mechanism for this behavior based on the concept of treating the entire loop as an active corrosion system is presented

  6. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    International Nuclear Information System (INIS)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik

    1997-01-01

    This paper presents results of experimental studies on the heat transfer and solidifcation of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. As a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 .deg. C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleight number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer

  7. Simulation of steam explosion in stratified melt-coolant configuration

    International Nuclear Information System (INIS)

    Leskovar, Matjaž; Centrih, Vasilij; Uršič, Mitja

    2016-01-01

    Highlights: • Strong steam explosions may develop spontaneously in stratified configurations. • Considerable melt-coolant premixed layer formed in subcooled water with hot melts. • Analysis with MC3D code provided insight into stratified steam explosion phenomenon. • Up to 25% of poured melt was mixed with water and available for steam explosion. • Better instrumented experiments needed to determine dominant mixing process. - Abstract: A steam explosion is an energetic fuel coolant interaction process, which may occur during a severe reactor accident when the molten core comes into contact with the coolant water. In nuclear reactor safety analyses steam explosions are primarily considered in melt jet-coolant pool configurations where sufficiently deep coolant pool conditions provide complete jet breakup and efficient premixture formation. Stratified melt-coolant configurations, i.e. a molten melt layer below a coolant layer, were up to now believed as being unable to generate strong explosive interactions. Based on the hypothesis that there are no interfacial instabilities in a stratified configuration it was assumed that the amount of melt in the premixture is insufficient to produce strong explosions. However, the recently performed experiments in the PULiMS and SES (KTH, Sweden) facilities with oxidic corium simulants revealed that strong steam explosions may develop spontaneously also in stratified melt-coolant configurations, where with high temperature melts and subcooled water conditions a considerable melt-coolant premixed layer is formed. In the article, the performed study of steam explosions in a stratified melt-coolant configuration in PULiMS like conditions is presented. The goal of this analytical work is to supplement the experimental activities within the PULiMS research program by addressing the key questions, especially regarding the explosivity of the formed premixed layer and the mechanisms responsible for the melt-water mixing. To

  8. Nuclear reactor coolant and cover gas system

    International Nuclear Information System (INIS)

    George, J.A.; Redding, A.H.; Tower, S.N.

    1976-01-01

    A core cooling system is disclosed for a nuclear reactor of the type utilizing a liquid coolant with a cover gas above free surfaces of the coolant. The disclosed system provides for a large inventory of reactor coolant and a balanced low pressure cover gas arrangement. A flow restricting device disposed within a reactor vessel achieves a pressure of the cover gas in the reactor vessel lower than the pressure of the reactor coolant in the vessel. The low gas pressure is maintained over all free surfaces of the coolant in the cooling system including a coolant reservoir tank. Reactor coolant stored in the reservoir tank allows for the large reactor coolant inventory provided by the invention

  9. Primary collector wall local temperature fluctuations in the area of water-steam phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J.; Simo, T. [Energovyzkum Ltd., Brno (Switzerland)

    1995-12-31

    A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.

  10. Primary collector wall local temperature fluctuations in the area of water-steam phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O; Klinga, J; Simo, T [Energovyzkum Ltd., Brno (Switzerland)

    1996-12-31

    A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.

  11. The temperature gradient on section of casting in process of primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-08-01

    Full Text Available The methodology of defining in article was introduced the temperature gradient in process of primary crystallization during cooling the casting from chromium cast iron on basis of measurements of thermal field in test DTA-K3. Insert also the preliminary results of investigations of influence temperature gradient on structure of studied wear resistance chromium cast iron.

  12. Development of monitoring system using acoustic emission for detection of helium gas leakage for primary cooling system and flow-induced vibration for heat transfer tube of heat exchangers for the High Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Kunitomi, Kazuhiko; Furusawa, Takayuki; Shinozaki, Masayuki; Satoh, Yoshiyuki; Yanagibashi, Minoru

    1998-10-01

    The High Temperature Engineering Test Reactor (HTTR) uses helium gas for its primary coolant, whose leakage inside reactor containment vessel is considered in design of the HTTR. It is necessary to detect leakage of helium gas at an early stage so that total amount of the leakage should be as small as possible. On the other hand, heat transfer tubes of heat exchangers of the HTTR are designed not to vibrate at normal operation, but the flow-induced vibration is to be monitored to provide against an emergency. Thus monitoring system of acoustic emission for detection of primary coolant leakage and vibration of heat transfer tubes was developed and applied to the HTTR. Before the application to the HTTR, leakage detection test was performed using 1/4 scaled model of outer tube of primary concentric hot gas duct. Result of the test covers detectable minimum leakage rate and effect of difference in gas, pressure, shape of leakage path and distance from the leaking point. Detectable minimum leakage rate was about 5 Ncc/sec. The monitoring system is promising in leakage detection, though countermeasure to noise is to be needed after the HTTR starts operating. (author)

  13. The installation welding of pressure water reactor coolant piping

    International Nuclear Information System (INIS)

    Deng Feng

    2010-01-01

    Large pressure water reactor nuclear power plants are constructing in our country. There are three symmetry standard loops in reactor coolant system. Each loop possesses a steam generator and a primary poop, in which one of the loops is equipped with a pressurizer. These components are connected with reactor pressure vessel by installation welding of the coolant piping. The integrity of reactor coolant pressure boundary is the second barrier to protect the radioactive substance from release to outside, so the safe operation of nuclear power plant is closely related to the quality of coolant piping installation welding. The heavy tube with super low carbon content austenitic stainless steel is selected for coolant piping. This kind of material has good welding behavior, but the poor thermal conductivity, the big liner expansion coefficient and the big welding deformation will cause bigger welding stress. To reduce the welding deformation, to control the dimension precision, to reduce the residual stress and to ensure the welding quality the installation sequence should be properly designed and the welding technology should be properly controlled. (authors)

  14. Coolant flow monitoring in a PWR core using noise analysis

    International Nuclear Information System (INIS)

    Kostic, Lj.

    1992-01-01

    Experimental investigations of the neutron and temperature noise field have been performed in the 1350 MW PWR nuclear power plant. Evaluation in the low frequency range, where both feedback effects and different thermohydraulics phenomena are dominant, succeeded in measuring the coolant velocity. This is important for determination and localization of essential deviations and possible anomalies. (author)

  15. Numerical experimentation on convective coolant flow in Ghana ...

    African Journals Online (AJOL)

    Numerical experiments on one dimensional convective coolant flow during steady state operation of the Ghana Research Reactor-1 (GHARR-I) were performed to determine the thermal hydraulic parameters of temperature, density and flow rate. The computational domain was the reactor vessel, including the reactor core.

  16. Coolant monitoring systems for PWR reactors

    International Nuclear Information System (INIS)

    Luzhnov, A.M.; Morozov, V.V.; Tsypin, S.G.

    1987-01-01

    The ways of improving information capacity of existing monitoring systems and the necessity of designing new ones for coolant monitoring are reviewed. A wide research program on development of coolant monitoring systems in PWR reactors is analyzed. The possible applications of in-core and out-of-core detectors for coolant monitoring are demonstrated

  17. Experiments on simulation of coolant mixing in fuel assembly head and core exit channel of WWER-440 reactor

    International Nuclear Information System (INIS)

    Kobzar, L.L; Oleksyuk, D.A.

    2006-01-01

    RRC 'Kurchatov Institute' has performed coolant mixing investigation in a head of a full-size simulator of WWER-440 fuel assembly. The experiments were focused on obtaining the data important for investigating the trends in temperature difference between the value registered by a ICIS thermocouple and the value of average temperature. The completed experiments ensure representative of configuration simulation by reproducing every construction peculiar feature of flow part of fuel assembly in the domain between the lower spacing grid and thermocouple location, and also by slightly modified fuel assembly regular elements (or analogues thereof). For the purpose of effectiveness of coolant mixing assessment within the head cross section of FA simulator, we measured coolant temperature distribution both in the place where coolant flow leaves the rod bundle simulator (in 39 data points along the cross section) and in the cross section location of regular ICIS thermocouple simulator (30 data points). The testing was conducted with pressure of (90 - 95) bar, mass coolant flow rates up to 2000 kg/(m 2 .s), temperature of coolant heating in 'hot' parts of the bundle up to 35.. and differences between coolant temperature extremes measured in rod bundle simulator outlet up to 20... Temperature fields were registered in 63 conditions that differ in coolant flow and inlet coolant temperature, electrical heating rate of FA simulator, and radial coolant distribution. In certain registered conditions we simulated coolant leakage to the space between the fuel assemblies. The received test data may be important both for investigation of dependencies between the coolant temperature in regular thermocouple location or average outlet temperature in assembly head, and for validation of CFD codes or subchannel codes (Authors)

  18. Requirements of coolants in nuclear reactors

    International Nuclear Information System (INIS)

    Abass, O. A. M.

    2014-11-01

    This study discussed the purposes and types of coolants in nuclear reactors to generate electricity. The major systems and components associated with nuclear reactors are cooling system. There are two major cooling systems utilized to convert the heat generated in the fuel into electrical power. The primary system transfers the heat from the fuel to the steam generator, where the secondary system begins. The steam formed in the steam generator is transferred by the secondary system to the main turbine generator, where it s converted into electricity after passing through the low pressure turbine. There are various coolants used in nuclear reactors-light water, heavy water and liquid metal. The two major types of water-cooled reactors are pressurized water reactors (PWR) and boiling water reactors (BWR) but pressurized water reactors are more in the world. Also discusses this study the reactors and impact of the major nuclear accidents, in the April 1986 disaster at the Chernobyl nuclear power plant in Ukraine was the product operators, and in the March 2011 at the Fukushima nuclear power plant in Japan was the product of earthquake of magnitude 9.0, the accidents caused the largest uncontrolled radioactive release into the environment.(Author)

  19. Specificities of reactor coolant pumps units with lead and lead-bismuth coolant

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Anotonenkov, M.A.; Bokov, P.A.; Baranova, V.S.; Kustov, M.S.

    2009-01-01

    The analysis results of impact of lead and lead-bismuth coolants specific properties on the coolants flow features in flow channels of the main and auxiliary circulating pumps are presented. Impossibility of cavitation initiation in flow channels of vane pumps pumping lead and lead-bismuth coolants was demonstrated. The experimental research results of discontinuity of heavy liquid metal coolant column were presented and conditions of gas cavitation initiation in coolant flow were discussed. Invalidity of traditional calculation methods of water and sodium coolants circulation pumps calculations for lead and lead-bismuth coolants circulation pumps was substantiated [ru

  20. Influence of coolant motion on structure of hardened steel element

    Directory of Open Access Journals (Sweden)

    A. Kulawik

    2008-08-01

    Full Text Available Presented paper is focused on volumetric hardening process using liquid low melting point metal as a coolant. Effect of convective motion of the coolant on material structure after hardening is investigated. Comparison with results obtained for model neglecting motion of liquid is executed. Mathematical and numerical model based on Finite Element Metod is described. Characteristic Based Split (CBS method is used to uncouple velocities and pressure and finally to solve Navier-Stokes equation. Petrov-Galerkin formulation is employed to stabilize convective term in heat transport equation. Phase transformations model is created on the basis of Johnson-Mehl and Avrami laws. Continuous cooling diagram (CTPc for C45 steel is exploited in presented model of phase transformations. Temporary temperatures, phases participation, thermal and structural strains in hardening element and coolant velocities are shown and discussed.

  1. Experimental Investigation of Heat Transfer Characteristics of Automobile Radiator using TiO2-Nanofluid Coolant

    Science.gov (United States)

    Salamon, V.; Senthil kumar, D.; Thirumalini, S.

    2017-08-01

    The use of nanoparticle dispersed coolants in automobile radiators improves the heat transfer rate and facilitates overall reduction in size of the radiators. In this study, the heat transfer characteristics of water/propylene glycol based TiO2 nanofluid was analyzed experimentally and compared with pure water and water/propylene glycol mixture. Two different concentrations of nanofluids were prepared by adding 0.1 vol. % and 0.3 vol. % of TiO2 nanoparticles into water/propylene glycol mixture (70:30). The experiments were conducted by varying the coolant flow rate between 3 to 6 lit/min for various coolant temperatures (50°C, 60°C, 70°C, and 80°C) to understand the effect of coolant flow rate on heat transfer. The results showed that the Nusselt number of the nanofluid coolant increases with increase in flow rate. At low inlet coolant temperature the water/propylene glycol mixture showed higher heat transfer rate when compared with nanofluid coolant. However at higher operating temperature and higher coolant flow rate, 0.3 vol. % of TiO2 nanofluid enhances the heat transfer rate by 8.5% when compared to base fluids.

  2. Improvement of Measurement Accuracy of Coolant Flow in a Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Kim, Jong-Bum; Joung, Chang-Young; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seoyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, to improve the measurement accuracy of coolant flow in a coolant flow simulator, elimination of external noise are enhanced by adding ground pattern in the control panel and earth around signal cables. In addition, a heating unit is added to strengthen the fluctuation signal by heating the coolant because the source of signals are heat energy. Experimental results using the improved system shows good agreement with the reference flow rate. The measurement error is reduced dramatically compared with the previous measurement accuracy and it will help to analyze the performance of nuclear fuels. For further works, out of pile test will be carried out by fabricating a test rig mockup and inspect the feasibility of the developed system. To verify the performance of a newly developed nuclear fuel, irradiation test needs to be carried out in the research reactor and measure the irradiation behavior such as fuel temperature, fission gas release, neutron dose, coolant temperature, and coolant flow rate. In particular, the heat generation rate of nuclear fuels can be measured indirectly by measuring temperature variation of coolant which passes by the fuel rod and its flow rate. However, it is very difficult to measure the flow rate of coolant at the fuel rod owing to the narrow gap between components of the test rig. In nuclear fields, noise analysis using thermocouples in the test rig has been applied to measure the flow velocity of coolant which circulates through the test loop.

  3. Natural circulation in reactor coolant system

    International Nuclear Information System (INIS)

    Han, J.T.

    1987-01-01

    Reactor coolant system (RCS) natural circulation in a PWR is the buoyancy-driven coolant circulation between the core and the upper-plenum region (in-vessel circulation) with or without a countercurrent flow in the hot leg piping between the vessel and steam generators (ex-vessel circulation). This kind of multidimensional bouyancy-driven flow circulation serves as a means of transferring the heat from the core to the structures in the upper plenum, hot legs, and possibly steam generators. As a result, the RCS piping and other pressure boundaries may be heated to high temperatures at which the structural integrity is challenged. RCS natural circulation is likely to occur during the core uncovery period of the TMLB' accident in a PWR when the vessel upper plenum and hot leg are already drained and filled with steam and possibly other gaseous species. RCS natural circulation is being studied for the Surry plant during the TMLB' accident in which station blackout coincides with the loss of auxiliary feedwater and no operator actions. The effects of the multidimensional RCS natural circulation during the TMLB' accident are discussed

  4. Components of the LWR primary circuit. Pt. 2

    International Nuclear Information System (INIS)

    1984-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400 0 C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives. (orig.) [de

  5. Primary flow and temperature measurements in PWRS using non-invasive techniques

    International Nuclear Information System (INIS)

    Favennec, J.M.; Jossinet, G.; Thomas, P.

    1995-08-01

    PWR primary flow and temperature measurements are classically done with either indirect or invasive techniques. EDF has developed and installed non-invasive innovative techniques on an industrial nuclear power plant (Chooz N1 type PWR). Primary flow-rate is determined by measurement of velocity of primary water in the hot leg: the time fluctuation of γ-ray activity from Nitrogen-16 (produced by neutron activation of 016) is measured outside of the pipe by two specially-designed detectors. The signals from both detectors are then cross-correlated to determine the transit time of primary water between the two detectors; primary flow-rate is then deduced Primary temperature is determined by measurement of sound velocity in hot and cold leg: two pairs of ultrasonic transducers, installed on pipe outer wall, emit pulses periodically, for which the time of flight along the two pipes diameters are determined. The sound velocity thus computed (diameter over time of flight) is then converted into temperature, by use of a calibration formula relating sound velocity to temperature and pressure. This paper addresses metrological and technical aspects of the methods. Experience feedback on industrial PWRs is also presented. (author). 4 refs., 13 figs

  6. The effect of temperature on primary defect formation in Ni–Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chengbin, E-mail: wangchengbin@sinap.ac.cn [Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang, Wei; Ren, Cuilan [Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Huai, Ping [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Zhu, Zhiyuan [Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-02-15

    Molecular dynamics (MD) simulations have been used to study the influence of temperature on defect generation and evolution in nickel and Ni–Fe alloy (with 15% and 50% Fe content) with a 10-keV primary knock-on atom (PKA) at six different temperatures from 0 to 1500 K. The recently available Ni–Fe potential is used with its repulsive part modified by Vörtler. The temporal evolution and temperature dependence of stable defect formation and in-cascade clustering processes are analysed. The number of stable defect and the interstitial clustering fraction are found to increase with temperature whereas the vacancy clustering fraction decreases with temperature. The alloy composition dependence of the stable defect number is also found for the PKA energy considered here. Additionally, a study of the temperature influence on the cluster size distribution is performed, revealing a systematic change in the cluster size distributions, with higher temperature cascades producing larger interstitial clusters.

  7. Analysis of a hot-leg small break loss-of-coolant accident in a three-loop westinghouse pressurized water reactor plant

    International Nuclear Information System (INIS)

    Peterson, C.E.; Chexal, V.K.; Clements, T.B.

    1985-01-01

    The RETRAN-02 computer code was used to perform a best-estimate analysis of a 7.52-cm-diam hotleg break in a three-loop Westinghouse pressurized water reactor. This break size produced a net primary coolant mass depletion through the early portion of the transient. The primary system started to refill only after the accumulator valves opened. As the primary system refilled, there were extreme temperature differentials around the system with cold, denser fluid collecting at the lower elevations and two-phase fluid at higher elevations

  8. Experiment data report for LOFT large-break loss-of-coolant experiment L2-5

    International Nuclear Information System (INIS)

    Bayless, P.D.; Divine, J.M.

    1982-08-01

    Selected pertinent and uninterpreted data from the third nuclear large break loss-of-coolant experiment (Experiment L2-5) conducted in the Loss-of-Fluid Test (LOFT) facility are presented. The LOFT facility is a 50-MW(t) pressurized water reactor (PWR) system with instruments that measure and provide data on the system thermal-hydraulic and nuclear conditions. The operation of the LOFT system is typical of large [approx. 1000 MW(e)] commercial PWR operations. Experiment L2-5 simulated a double-ended offset shear of a cold leg in the primary coolant system. The primary coolant pumps were tripped within 1 s after the break initiation, simulating a loss of site power. Consistent with the loss of power, the starting of the high- and low-pressure injection systems was delayed. The peak fuel rod cladding temperature achieved was 1078 +- 13 K. The emergency core cooling system re-covered the core and quenched the cladding. No evidence of core damage was detected

  9. Application of automatic inspection system to nondestructive test of heat transfer tubes of primary pressurized water cooler in the high temperature engineering test reactor. Joint research

    International Nuclear Information System (INIS)

    Takeda, Takeshi; Furusawa, Takayuki

    2001-07-01

    Heat transfer tubes of a primary pressurized water cooled (PPWC) in the high temperature engineering test reactor (HTTR) form the reactor pressure boundary of the primary coolant, therefore are important from the viewpoint of safety. To establish inspection techniques for the heat transfer tubes of the PPWC, an automatic inspection system was developed. The system employs a bobbin coil probe, a rotating probe for eddy current testing (ECT) and a rotating probe for ultrasonic testing (UT). Nondestructive test of a half of the heat transfer tubes of the PPWC was carried out by the automatic inspection system during reactor shutdown period of the HTTR (about 55% in the maximum reactor power in this paper). The nondestructive test results showed that the maximum signal-to-noise ratio was 1.8 in ECT. Pattern and phase of Lissajous wave, which were obtained for the heat transfer tube of the PPWC, were different from those obtained for the artificially defected tube. In UT echo amplitude of the PPWC tubes inspected was lower than 20% of distance-amplitude calibration curve. Thus, it was confirmed that there was no defect in depth, which was more than the detecting standard of the probes, on the outer surface of the heat transfer tubes of the PPWC inspected. (author)

  10. Fatigue crack growth characteristics of a533 brade b glass i plate in an environment of high-temperature primary grade nuclear reactor water

    International Nuclear Information System (INIS)

    Mager, T.R.; Moon, D.M.; Landes, J.D.

    1976-01-01

    To characterize the effect of environment on crack growth rate properties of reactor pressure vessel materials, a program was initiated as part of the Heavy Section Steel Technology Program (HSST) to evaluate the effect of Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) primary grade coolant environments. The experiments included such variables as frequency, temperature and R ratio. This paper describes the investigation and presents the results of a fracture mechanics evaluation of the fatigue crack growth rate tests of A533 Grade B Class 1 steel plate material in an environment of primary reactor grade water at 550 0 F (288 0 C). A compliance crack growth monitoring technique was utilized to measure the crack growth. The compliance crack length monitor uses a linear variable differential transformer (LVDT) to measure the specimen front face displacement which is converted to crack length by the appropriate compliance calibration curve. The crack growth rate tests were conducted on constant load universal fatigue machines, under sinusoidal tension to tension loading conditions. Tests showed an increase in growth rates at a frequency of 1 cpm over previous results obtained at frequencies of 60 cpm and higher. This increase, the general character of the crack growth rate versus the $DELTA$K curve, and the results from fractographic studies, all indicated that stress corrosion cracking might have occurred for this material and environment. However, a specimen loaded statically in a PWR environment showed no static load crack growth. 13 refs

  11. Investigation of water content in primary upper shield of high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Sumita, Junya; Sawa, Kazuhiro; Mogi, Haruyoshi; Itahashi, Shuuji; Kitami, Toshiyuki; Akutu, Youichi; Fuchita, Yasuhiro; Kawaguchi, Toru; Moriya, Masahiro

    1999-09-01

    A primary upper shield of the High Temperature Engineering Test Reactor (HTTR) is composed of concrete (grout) which is packed into iron frames. The main function of the primary upper shield is to attenuate neutron and gamma ray from the core, that leads to satisfy dose equivalent rate limit of operating floor and stand-pipe room. Water content in the concrete is one of the most important things because it strongly affects neutron-shielding ability. Then, we carried out out-of-pile experiments to investigate relationship between temperature and water content in the concrete. Based on the experimental results, a hydrolysis-diffusion model was developed to investigate water release behavior from the concrete. The model showed that water content used for shielding design in the primary upper shield of the HTTR will be maintained if temperature during operating life is under 110degC. (author)

  12. Estimative of core damage frequency in IPEN'S IEA-R1 research reactor due to the initiating event of loss of coolant caused by large rupture in the pipe of the primary circuit

    International Nuclear Information System (INIS)

    Hirata, Daniel Massami; Sabundjian, Gaiane; Cabral, Eduardo Lobo Lustosa

    2009-01-01

    The National Commission of Nuclear Energy (CNEN), which is the Brazilian nuclear regulatory commission, imposes safety and licensing standards in order to ensure that the nuclear power plants operate in a safe way. For licensing a nuclear reactor one of the demands of CNEN is the simulation of some accidents and thermalhydraulic transients considered as design base to verify the integrity of the plant when submitted to adverse conditions. The accidents that must be simulated are those that present large probability to occur or those that can cause more serious consequences. According to the FSAR (Final Safety Analysis Report) the initiating event that can cause the largest damage in the core, of the IEA-R1 research reactor at IPEN-CNEN/SP, is the LOCA (Loss of Coolant Accident). The objective of this paper is estimate the frequency of the IEA-R1 core damage, caused by this initiating event. In this paper we analyze the accident evolution and performance of the systems which should mitigate this event: the Emergency Coolant Core System (ECCS) and the isolated pool system. They will be analyzed by means of the event tree. In this work the reliability of these systems are also quantified using the fault tree. (author)

  13. Intrapulpal Temperature Rise During Light Activation of Restorative Composites in a Primary Molar.

    Science.gov (United States)

    Vinall, Craig V; Garcia-Silva, Tales C; Lou, Jennifer S B; Wells, Martha H; Tantbirojn, Daranee; Versluis, Antheunis

    2017-05-15

    To investigate intrapulpal temperature rise in a primary molar during light activation of a composite restoration to determine if clinically significant pulpal temperatures (greater than 5.5 degrees Celsius) were reached. Restorative composites (EsthetX HD, Filtek Supreme Ultra, Filtek Bulk Fill) were placed into a primary molar with occlusal preparation (1.5 mm depth; remaining pulpal floor thickness one mm). The pulp was extirpated through a root access to place a thermocouple against the pulpal roof. Temperature changes were recorded during composite restoration light polymerization with three curing lights (one quartz-tungsten-halogen, two LEDs). Sample size was 10. Samples received additional irradiation to assure complete polymerization, followed by a third irradiation for calculating the exothermic heat contribution (subtracting third irradiation temperatures from first irradiation temperatures). Cured restorations were removed after each test, and the tooth was reused. Results were analyzed with Kruskal-Wallis (α =0.05). Type of curing light and composite material affected the intrapulpal temperature rise, which was up to five degrees Celsius for one combination of LED-composite. Clinicians should be aware of the potential for clinically significant intrapulpal temperature rises when light-activating composite restorations in a primary molar with a moderately deep cavity.

  14. Impacts of temperature on primary productivity and respiration in naturally structured macroalgal assemblages.

    Directory of Open Access Journals (Sweden)

    Leigh W Tait

    Full Text Available Rising global temperatures caused by human-mediated change has already triggered significant responses in organismal physiology, distribution and ecosystem functioning. Although the effects of rising temperature on the physiology of individual organisms are well understood, the effect on community-wide processes has remained elusive. The fixation of carbon via primary productivity is an essential ecosystem function and any shifts in the balance of primary productivity and respiration could alter the carbon balance of ecosystems. Here we show through a series of tests that respiration of naturally structured algal assemblages in southern New Zealand greatly increases with rising temperature, with implications for net primary productivity (NPP. The NPP of in situ macroalgal assemblages was minimally affected by natural temperature variation, possibly through photo-acclimation or temperature acclimation responses, but respiration rates and compensating irradiance were negatively affected. However, laboratory experiments testing the impacts of rising temperature on several photosynthetic parameters showed a decline in NPP, increasing respiration rates and increasing compensating irradiance. The respiration Q10 of laboratory assemblages (the difference in metabolic rates over 10°C averaged 2.9 compared to a Q10 of 2 often seen in other autotrophs. However, gross primary productivity (GPP Q10 averaged 2, indicating that respiration was more severely affected by rising temperature. Furthermore, combined high irradiance and high temperature caused photoinhibition in the laboratory, and resulted in 50% lower NPP at high irradiance. Our study shows that communities may be more severely affected by rising global temperatures than would be expected by responses of individual species. In particular, enhanced respiration rates and rising compensation points have the potential to greatly affect the carbon balance of macroalgal assemblages through declines in

  15. Fuel-Coolant Interactions: Visualization and Mixing Measurements

    International Nuclear Information System (INIS)

    Loewen, Eric P.; Bonazza, Riccardo; Corradini, Michael L.; Johannesen, Robert E.

    2002-01-01

    Dynamic X-ray imaging of fuel-coolant interactions (FCI), including quantitative measurement of fuel-coolant volume fractions and length scales, has been accomplished with a novel imaging system at the Nuclear Safety Research Center at the University of Wisconsin, Madison. The imaging system consists of visible-light high-speed digital video, low-energy X-ray digital imaging, and high-energy X-ray digital imaging subsystems. The data provide information concerning the melt jet velocity, melt jet configuration, melt volume fractions, void fractions, and spatial and temporal quantification of premixing length scales for a model fuel-coolant system of molten lead poured into a water pool (fuel temperatures 500 to 1000 K; jet diameters 10 to 30 mm; coolant temperatures 20 to 90 deg. C). Overall results indicate that the FCI has three general regions of behavior, with the high fuel-coolant temperature region similar to what might be expected under severe accident conditions. It was observed that the melt jet leading edge has the highest void fraction and readily fragments into discrete masses, which then subsequently subdivide into smaller masses of length scales <10 mm. The intact jet penetrates <3 to 5 jet length/jet diameter before this breakup occurs into discrete masses, which continue to subdivide. Hydrodynamic instabilities can be visually identified at the leading edge and along the jet column with an interfacial region that consists of melt, vapor, and water. This interface region was observed to grow in size as the water pool temperature was increased, indicating mixing enhancement by boiling processes

  16. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean

    KAUST Repository

    Holding, J. M.

    2015-08-31

    The Arctic Ocean is warming at two to three times the global rate1 and is perceived to be a bellwether for ocean acidification2, 3. Increased CO2 concentrations are expected to have a fertilization effect on marine autotrophs4, and higher temperatures should lead to increased rates of planktonic primary production5. Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range of 145–2,099 μatm; however, the greatest effects are observed only at lower temperatures and are constrained by nutrient and light availability to the spring period. The temperature dependence of CO2-enhanced primary production has significant implications for metabolic balance in a warmer, CO2-enriched Arctic Ocean in the future. In particular, it indicates that a twofold increase in primary production during the spring is likely in the Arctic.

  17. Coolant mixing in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, T; Grunwald, G

    1998-10-01

    The behavior of PWRs during cold water or boron dilution transients is strongly influenced by the distribution of coolant temperature and boron concentration at the core inlet. This distribution is the needed input to 3-dimensional neutron kinetics to calculate the power distribution in the core. It mainly depends on how the plugs of cold or unborated water formed in a single loop are mixed in the downcomer and in the lower plenum. To simulate such mixture phenomena requires the application of 3-dimensional CFD (computational fluid dynamics) codes. The results of the simulation have to be validated against mixture experiments at scaled facilities. Therefore, in the framework of a research project funded by BMBF, the institute creates a 1:5 mixture facility representing first the geometry of a German pressurized water reactor and later the European Pressurized Water Reactor (EPR) geometry. The calculations are based on the CFD Code CFX-4. (orig.)

  18. Slow coolant phaseout could worsen warming

    Science.gov (United States)

    Reese, April

    2018-03-01

    In the summer of 2016, temperatures in Phalodi, an old caravan town on a dry plain in northwestern India, reached a blistering 51°C—a record high during a heat wave that claimed more than 1600 lives across the country. Wider access to air conditioning (AC) could have prevented many deaths—but only 8% of India's 249 million households have AC. As the nation's economy booms, that figure could rise to 50% by 2050. And that presents a dilemma: As India expands access to a life-saving technology, it must comply with international mandates—the most recent imposed just last fall—to eliminate coolants that harm stratospheric ozone or warm the atmosphere.

  19. Reactor coolant system and containment aqueous chemistry

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    1986-01-01

    Fission products released from fuel during reactor accidents can be subject to a variety of environments that will affect their ultimate behavior. In the reactor coolant system (RCS), for example, neutral or reducing steam conditions, radiation, and surfaces could all have an effect on fission product retention and chemistry. Furthermore, if water is encountered in the RCS, the high temperature aqueous chemistry of fission products must be assessed to determine the quantity and chemical form of fission products released to the containment building. In the containment building, aqueous chemistry will determine the longer-term release of volatile fission products to the containment atmosphere. Over the past few years, the principles of physical chemistry have been rigorously applied to the various chemical conditions described above. This paper reviews the current state of knowledge and discusses the future directions of chemistry research relating to the behavior of fission products in the RCS and containment

  20. Effect of step-wise change of stress and temperature on primary creep of concrete

    International Nuclear Information System (INIS)

    Furumura, Fukujiro; Abe, Takeo; Shinohara, Yasuji; Kim, Wha-Jung.

    1991-01-01

    The success of analyzing the behavior of concrete structures at elevated temperature greatly depends on how accurately certain mechanical properties, especially stress-strain curves, creep and thermal expansion, can be determined within wide temperature range. The importance of creep in the design of reinforced and prestressed concrete structures has been more recognized with the advent of the use of concrete at elevated temperature. The creep strain of concrete is affected by stress, time and temperature. The creep law which can predict the creep behavior under varying stress and temperature by using the experimental results of creep strain under constant stress and temperature is indispensable for analyzing the behavior of reinforced concrete structures under varying temperature. Accordingly the main purpose of this study is to clarify the primary creep behavior of concrete under varying stress and temperature. The cylindrical specimens, the testing procedure, the test results and the modified strain hardening law are reported. By using the modified strain hardening law, the primary creep behavior of concrete can be estimated better. (K.I.)

  1. Decontamination of primary cooling system

    International Nuclear Information System (INIS)

    Morikawa, Yoshitake.

    1985-01-01

    Purpose: To effectively eliminate radioactivity accumulated in pipeways, equipments, etc in primary coolant circuits of BWR type power plants by utilizing ion displacement reactions. Method: The reactor pressure vessel is connected with a feedwater pipeway, steam pipeway and a recycling pipeway. The recycling pipeway is disposed with a recycling pump. A recycling by-pass line is branched from the recycling pipeway and disposed with a recycling system heat exchanger and chemical injection point. Water is filled in the primary coolant and heated 280 0 C. Then, while maintaining water at that temperature, non-radioactive cobalt ions are injected and circulated within the system, by which radioactivity accumulated in pipeways, equipments or the likes can effectively be removed. (Horiuchi, T.)

  2. A study of the loss of coolant accident

    International Nuclear Information System (INIS)

    Lee, Y.W.; Chung, M.K.; Kim, S.H.; Park, J.S.; Lee, C.B.; Kim, S.B.; Won, S.Y.; Cho, Y.R.

    1983-01-01

    The primary objectives of this project are: (1) To review the published information on LOCA/ECCS study (2) To investigate reflood phenomena and to provide necessary information for analytical model development (3) To modyfy and develop a reflood analysis code. To review the published information on LOCA/ECCS, heat transfer phenomena are divided into 4 regions. Heat transfer correlations published in the references are reviewed and classified according to the regions. To investigate reflood phenomena and to provide better modeling of reflood phenomena, experments have been carried out with an electrically heated 3x3 rod bundle. Heat flux and heat transfer coefficients at the hot surface have been determined from the experimental data by HTC program. The influences of the parameters such as flooding rate, coolant subcooling and power generation on the propagation of rewetting front were also investigated. Calculations obtained from REFLUX code were compared with the experimental data to help an understanding of the reflood heat transfer mechanisms, and then some modifications of the code were provided. Improvements in heat transfer correlations of transition and inverted annular film boiling region, and the logic for the selection of heat transfer regime allowed better estimate for rod temperature behavior. (Author)

  3. Probes for corrosion-related variables in LWR coolant: Interim report

    International Nuclear Information System (INIS)

    Madou, M.; McKubre, M.C.H.

    1987-08-01

    The objectives of this study were to identify, develop, and qualify a range of sensors for the measurement and control of corrosion in high temperature, flowing water, nuclear reactor heat transport systems. Sensors were developed for the quantitative determination of pH, redox potential, and dissolved hydrogen concentration. A necessary first step in the development of voltage sensors is the availability of a stable thermodynamic reference electrode suitable for use in the high temperature aqueous environments of interest, and an external, pressure balanced, reference electrode was developed for this purpose. Experiments were performed to verify sensor function under conditions simulating those in nuclear reactor aqueous heat transport systems. The results indicate that dissolved hydrogen levels can be reliably sensed in PWR primary coolant. The probes for pH and redox potential await the development of a longer-lived reference electrode which is being actively pursued

  4. Organic coolants and their applications to fusion reactors

    International Nuclear Information System (INIS)

    Gierszewski, P.; Hollies, B.

    1986-08-01

    Organic coolants offer a unique set of characteristics for fusion applications. Their advantages include high-temperature (670 K or 400 degrees C) but low-pressure (2 MPa) operation, limited reactivity with lithium and lithium-lead, reduced corrosion and activation, good heat-transfer capabilities, no magnetohydrodynamic (MHD) effects, and an operating temperature range that extends to room temperature. The major disadvantages are decomposition and flammability. However, organic coolants have been extensively studied in Canada, including nineteen years with an operating 60-MW organic-cooled reactor. Proper attention to design and coolant chemistry controlled these potential problems to acceptable levels. This experience provides an extensive data base for design under fusion conditions. The organic fluid characteristics are described in sufficient detail to allow fusion system designers to evaluate organic coolants for specific applications. To illustrate and assess the potential applications, analyses are presented for organic-cooled blankets, first walls, high heat flux components and thermal power cycles. Designs are identified that take advantage of organic coolant features, yet have fluid decomposition related costs that are a small fraction of the overall cost of electricity. For example, organic-cooled first walls make lithium/ferritic steel blankets possible in high-field, high-surface-heat-flux tokamaks, and organic-cooled limiters (up to about 8 MW/m 2 surface heating) are a safer alternative to water cooling for liquid metal blanket concept. Organics can also be used in intermediate heat exchanger loops to provide efficient heat transfer with low reactivity and a large tritium barrier. 55 refs

  5. Simulation for temperature changing investigation at RSG-GAS cooling system

    International Nuclear Information System (INIS)

    Utaja

    2002-01-01

    The RSG-GAS cooling system considers of primary and secondary system, is used for heat rejection from reactor core to the atmosphere. For temperature changing investigation cause by atmospherics condition changing or coolant flow rate changing, is more safe done by simulation. This paper describes the simulation for determine the RSG-GAS coolant temperature changing base on heat exchange and cooling tower characteristic. The simulation is done by computer programme running under WINDOWS 95 or higher. The temperature changing is based on heat transfer process on heat exchanger and cooling tower. The simulation will show the water tank temperature changing caused by the temperature and humidity of the atmosphere or by coolant flow rate changing. For example the humidity changing from 60% to 80% atmospherics temperature 30 oC and 32400 k Watt power will change the tank temperature from 37,97 oC to 40,03 oC

  6. The module CCM for the simulation of the thermal-hydraulic situation within a coolant channel

    International Nuclear Information System (INIS)

    Hoeld, A.

    2000-01-01

    A coolant channel module (Cc) will be presented which aim is to simulate, in a very general way, the thermal-hydraulic behaviour of single- and two-phase fluids flowing along a heated (or cooled) vertical, inclined or horizontal coolant channel. It is based on a theoretical drift-flux supported 3-equation mixture-fluid model describing the steady state and transient behaviour of characteristic thermal-hydraulic parameters of a single- and two-phase flow within such a channel. The module can be applied as an element within an overall theoretical model for large and complex plant assemblies (PWR and BWR core channels, parallel channels in 3D cores, primary and secondary sides of different steam generators types etc.). The model refers to a general (basic) coolant channel (BC) which can consists of different flow regimes. The BC has thus to be subdivided accordingly into a number of subchannels (SC-s). All of them can belong, however, to only two types of SC-s (single-phase fluid with subcooled water or superheated steam or a two-phase flow regime). For both of them the possibility of variable entrance or outlet positions has to be considered. For discretization purposes the BC (and thus also the SC-s) have to be subdivided into a number of (BC and SC) nodes, discretizing thus the conservation equations for mass, energy and momentum along these nodes by applying a very general spatial procedure, namely a 'modified finite volume method'. A special quadratic polygon approximation method (PAX procedure) helps then to establish a connection between nodal boundary and mean nodal parameters. Considering their constitutive equations (among them an adequate drift-flux correlation package) yields finally a set of non-linear algebraic and non-linear ordinary differential equations for the characteristic parameters of each of these SC nodes (mass flow, pressure drop, coolant temperature and/or void fraction). Based on this theory a code package (CCM) could be established

  7. A study of the large break loss-of-coolant accident in the Angra-1 nuclear power plant

    International Nuclear Information System (INIS)

    Borges, E.M.

    1984-01-01

    The simulation of the Angra-I nuclear power plant under the condition of large break loss of coolant accident is presented, the thermal-hydraulic analysis of the primary circuit during each phase of the acident and thermal analysis of the hottest fuel rod curing reflooding are shown. Computer codes RELAP4/MOD5 (options EM and FLOOD) and TOODEE 2 are used to perform these computations. Fuel rod peak temperatures reached during the simulation are below the permissible levels. However, during the reflooding phase; the maximum oxidation of the cladding exceeds the limit of 0.17 times the original cladding thickness. (Author) [pt

  8. 14C Behaviour in PWR coolant

    International Nuclear Information System (INIS)

    Sims, Howard; Dickinson Shirley; Garbett, Keith

    2012-09-01

    Although 14 C is produced in relatively small amounts in PWR coolant, it is important to know its fate, for example whether it is released by gaseous discharge, removed by absorption on ion exchange (IX) resins or deposited on the fuel pin surfaces. 14 C can exist in a range of possible chemical forms: inorganic carbon compounds (probably mainly CO 2 ), elemental carbon, and organic compounds such as hydrocarbons. This paper presents results from a preliminary survey of the possible reactions of 14 C in PWR coolant. The main conclusions of the study are: - A combination of thermal and radiolytic reactions controls the chemistry of 14 C in reactor coolant. A simple chemical kinetic model predicts that CH 3 OH would be the initial product from radiolytic reactions of 14 C following its formation from 17 O. CH 3 OH is predicted to arise as a result of reactions of OH . with CH 4 and CH 3 , and it persists because there is no known radiation chemical reduction mechanism. - Thermodynamic considerations show that CH 3 OH can be thermally reduced to CH 4 in PWR conditions, although formation of CO 2 from small organics is the most thermodynamically favourable outcome. Such reactions could be catalysed on active nickel surfaces in the primary circuit. - Limited plant data would suggest that CH 4 is the dominant form in PWR and CO 2 in BWR. This implies that radiation chemistry may be important in determining the speciation. - Addition of acetate does not affect the amount of 14 C formed, but the addition of large amounts of stable carbon would lead to a large range of additional products, some of which would be expected to deposit on fuel pin surfaces as high molecular weight hydrocarbons. However, the subsequent thermal decomposition reactions of these products are not known. - Acetate addition may represent a small input of 12 C compared with organic material released from CVCS resins, although the importance of this may depend on whether that is predominantly soluble

  9. Coolant inlet device for nuclear reactors

    International Nuclear Information System (INIS)

    Ando, Hiroshi; Abe, Yasuhiro; Iwabuchi, Toshihiko; Yamamoto, Kenji.

    1969-01-01

    Herein disclosed is a coolant inlet device for liquid-metal cooled reactors which employs a coolant distributor serving also as a supporting means for the reactor core. The distributor is mounted within the reactor vessel so as to slide horizontally on supporting lugs, and is further slidably connected via a junction pipe to a coolant inlet conduit protruding through the floor of the vessel. The distributor is adapted to uniformly disperse the highly pressured coolant over the reactor core so as to reduce the stresses sustained by the reactor vessel as well as the supporting lugs. Moreover, the slidable nature of the distributor allows thermal shock and excessive coolant pressures to be prevented or alleviated, factors which posed major difficulties in conventional coolant inlet devices. (Owens, K. J.)

  10. Radioactive corrosion products in circuit of fast reactor loop with dissociating coolant

    International Nuclear Information System (INIS)

    Dolgov, V.M.; Katanaev, A.O.

    1982-01-01

    The results of experimental investigation into depositions of radionuclides of corrosion origin on the surfaces of a reactor-in-pile loop facility with a dissociating coolant are presented. It is stated that the ratio of radionuclides in fixed depositions linearly decreases with decrease of the coolant temperature at the core-condenser section. The element composition of non-fixed compositions quantitatively and qualitatively differs from the composition of structural material, and it is more vividly displayed for the core-condenser section. The main mechanism of circuit contamination with radioactive corrosion products is substantiated: material corrosion in the zones of coolant phase transfer, their remove by the coolant in the core, deposition, activation and wash-out by the coolant from the core surfaces

  11. Organic coolant for ARIES-III

    International Nuclear Information System (INIS)

    Sze, D.K.; Sviatoslavsky, I.; Sawan, M.; Gierszewski, P.; Hollies, R.; Sharafat, S.; Herring, S.

    1991-04-01

    ARIES-III is a D-He 3 reactor design study. It is found that the organic coolant is well suited for the D-He 3 reactor. This paper discusses the unique features of the D-He 3 reactor, and the reason that the organic coolant is compatible with those features. The problems associated with the organic coolant are also discussed. 8 refs., 2 figs., 6 tabs

  12. Qualification test of a main coolant pump for SMART pilot

    International Nuclear Information System (INIS)

    Park, Sang Jin; Yoon, Eui Soo; Oh, Hyong Woo

    2006-01-01

    SMART Pilot is a multipurpose small capacity integral type reactor. Main Coolant Pump (MCP) of SMART Pilot is a canned-motor-type axial pump to circulate the primary coolant between nuclear fuel and steam generator in the primary system. The reactor is designed to operate under condition of 310 .deg. C and 14.7 MPa. Thus MCP has to be tested under same operating condition as reactor design condition to verify its performance and safety. In present work, a test apparatus to simulate real operating situations of the reactor has been designed and constructed to test MCP. And then functional tests, performance tests, and endurance tests have been carried out upon a prototype MCP. Canned motor characteristics, homologous head/torque curves, coast-down curves, NPSH curves and life-time performance variations were obtained from the qualification test as well as hydraulic performance characteristics of MCP

  13. Primary radiation damage characterization of α-iron under irradiation temperature for various PKA energies

    Science.gov (United States)

    Sahi, Qurat-ul-ain; Kim, Yong-Soo

    2018-04-01

    The understanding of radiation-induced microstructural defects in body-centered cubic (BCC) iron is of major interest to those using advanced steel under extreme conditions in nuclear reactors. In this study, molecular dynamics (MD) simulations were implemented to examine the primary radiation damage in BCC iron with displacement cascades of energy 1, 5, 10, 20, and 30 keV at temperatures ranging from 100 to 1000 K. Statistical analysis of eight MD simulations of collision cascades were carried out along each [110], [112], [111] and a high index [135] direction and the temperature dependence of the surviving number of point defects and the in-cascade clustering of vacancies and interstitials were studied. The peak time and the corresponding number of defects increase with increasing irradiation temperature and primary knock-on atom (PKA) energy. However, the final number of surviving point defects decreases with increasing lattice temperature. This is associated with the increase of thermal spike at high PKA energy and its long timespan at higher temperatures. Defect production efficiency (i.e., surviving MD defects, per Norgett-Robinson-Torrens displacements) also showed a continuous decrease with the increasing irradiation temperature and PKA energy. The number of interstitial clusters increases with both irradiation temperature and PKA energy. However, the increase in the number of vacancy clusters with PKA energy is minimal-to-constant and decreases as the irradiation temperature increases. Similarly, the probability and cluster size distribution for larger interstitials increase with temperature, whereas only smaller size vacancy clusters were observed at higher temperatures.

  14. Some observations on simulated molten debris-coolant layer dynamics

    International Nuclear Information System (INIS)

    Greene, G.A.; Klein, J.; Klages, J.; Schwarz, E.; Sanborn, Y.

    1983-04-01

    Experiments are being performed to investigate high temperature liquid-liquid film boiling between a pool of liquid metal and an overlying coolant pool of R-11 or water. Film boiling has been observed to be stable for R-11; however, considerable liquid-liquid contact has been observed with water well beyond the minimum film boiling temperature. Unstable liquid-liquid film boiling of water has been observed to escalate into dispersive, non-energetic vapor explosions when the interface contact temperature exceeded the spontaneous nucleation temperature. Other parametric trends in the data are discussed

  15. Cleaning of aluminum after machining with coolants

    International Nuclear Information System (INIS)

    Roop, B.

    1992-01-01

    An x-ray photoemission spectroscopic study was undertaken to compare the cleaning of the Advanced Photon Source (APS) aluminum extrusion storage ring vacuum chambers after machining with and without water soluble coolants. While there was significant contamination left by the coolants, the cleaning process was capable of removing the residue. The variation of the surface and near surface composition of samples machined either dry or with coolants was negligible after cleaning. The use of such coolants in the machining process is therefore recommended

  16. Primary crystallization in Al-rich metallic glasses at unusually low temperatures

    International Nuclear Information System (INIS)

    Bokeloh, J.; Boucharat, N.; Roesner, H.; Wilde, G.

    2010-01-01

    The initial stage of the primary crystallization reaction and the glass transition of the marginal metallic glass Al 89 Y 6 Fe 5 were investigated by conventional differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC), microcalorimetry, X-ray diffraction (XRD) and transmission electron microscopy. A sharp onset of the primary crystallization was found by microcalorimetry and XRD studies at temperatures which were 120 deg. C below the primary crystallization peak observed in conventional DSC. A systematic MDSC study of annealed samples revealed a wide spectrum of glass transition onsets, which show a strong dependence on the annealing conditions. In addition, the glass transition onsets can be linked to the initial stage of the primary crystallization. The spectrum of glass transition onsets observed is discussed with respect to the occurrence of phase separation preceding the nucleation and growth of dendritic aluminium nanocrystals.

  17. Trends and experiences in reactor coolant pump motors

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    A review of the requirements and features of these motors is given as background along with a discussion of trends and experiences. Included are a discussion of thrust bearings and a review of safety related requirements and design features. Primary coolant pump motors are vertical induction motors for pumps that circulate huge quantities of water through the reactor core to carry the heat generated there to steam generator heat exchangers. 4 refs

  18. Numerical model simulation of atmospheric coolant plumes

    International Nuclear Information System (INIS)

    Gaillard, P.

    1980-01-01

    The effect of humid atmospheric coolants on the atmosphere is simulated by means of a three-dimensional numerical model. The atmosphere is defined by its natural vertical profiles of horizontal velocity, temperature, pressure and relative humidity. Effluent discharge is characterised by its vertical velocity and the temperature of air satured with water vapour. The subject of investigation is the area in the vicinity of the point of discharge, with due allowance for the wake effect of the tower and buildings and, where application, wind veer with altitude. The model equations express the conservation relationships for mometum, energy, total mass and water mass, for an incompressible fluid behaving in accordance with the Boussinesq assumptions. Condensation is represented by a simple thermodynamic model, and turbulent fluxes are simulated by introduction of turbulent viscosity and diffusivity data based on in-situ and experimental water model measurements. The three-dimensional problem expressed in terms of the primitive variables (u, v, w, p) is governed by an elliptic equation system which is solved numerically by application of an explicit time-marching algorithm in order to predict the steady-flow velocity distribution, temperature, water vapour concentration and the liquid-water concentration defining the visible plume. Windstill conditions are simulated by a program processing the elliptic equations in an axisymmetrical revolution coordinate system. The calculated visible plumes are compared with plumes observed on site with a view to validate the models [fr

  19. Speed control device for coolant recycling pump

    International Nuclear Information System (INIS)

    Kageyama, Takao.

    1992-01-01

    The present invention intends to increase a margin relative of the oscillations of neutron fluxes when the temperature of feedwater is lowered in a compulsory recycling type BWR reactor. That is, when the operation point represented by a reactor thermal power and a reactor core inlet flow rate is in a state approximate to an oscillation limit of the reactor power, the device of the present invention controls the recycling pump speed in the increasing direction depending on the lowering range of the feedwater temperature from a stationary state. With such a constitution, even if the reactor power is in the operation region near the oscillation limit in the BWR type reactor and a feedwater heating loss is caused, the speed of the coolant recycling pump is increased by 10% at the maximum depending on the extent of the reduction of the feedwater temperature, so that the oscillation of the reactor power can be prevented from lasting for a long period of time even if a reactivity external disturbance should occur in the reactor. (I.S.)

  20. Coolant Design System for Liquid Propellant Aerospike Engines

    Science.gov (United States)

    McConnell, Miranda; Branam, Richard

    2015-11-01

    Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.

  1. Design and fabrication of magnetic coolant filter

    Science.gov (United States)

    Prashanth, B. N.

    2017-07-01

    Now a day's use of coolants in industry has become dominant because of high production demands. Coolants not only help in speeding up the production but also provide many advantages in the metal working operation. As the consumption of coolants is very high a system is badly in need, so as to recirculate the used coolant. Also the amount of hazardous waste generated by industrial plants has become an increasingly costly problem for the manufactures and an additional stress on the environment. Since the purchase and disposal of the spent cutting fluids is becoming increasingly expensive, fluid recycling is a viable option for minimizing the cost. Separation of metallic chips from the coolants by using magnetic coolant separation has proven a good management and maintenance of the cutting fluid. By removing the metallic chips, the coolant life is greatly extended, increases the machining quality and reduces downtime. Above being the case, a magnetic coolant filter is developed which utilizes high energy permanent magnets to develop a dense magnetic field along a narrow flow path into which the contaminated coolant is directed. The ferromagnetic particles captured and aligned by the dense magnetic field, from the efficient filter medium. This enables the unit to remove ferromagnetic particles from the coolant. Magnetic coolant filters use the principle of magnetic separation to purify the used coolant. The developed magnetic coolant separation has the capability of purifying 40 litres per minute of coolant with the size of the contaminants ranging from 1 µm to 30 µm. The filter will be helpful in saving the production cost as the cost associated with the proposed design is well justified by the cost savings in production. The magnetic field produced by permanent magnets will be throughout the area underneath the reservoir. This produces magnetic field 30mm above the coolant reservoir. Very fine particles are arrested without slip. The magnetic material used will not

  2. Nanofluid as coolant for grinding process: An overview

    Science.gov (United States)

    Kananathan, J.; Samykano, M.; Sudhakar, K.; Subramaniam, S. R.; Selavamani, S. K.; Manoj Kumar, Nallapaneni; Keng, Ngui Wai; Kadirgama, K.; Hamzah, W. A. W.; Harun, W. S. W.

    2018-04-01

    This paper reviews the recent progress and applications of nanoparticles in lubricants as a coolant (cutting fluid) for grinding process. The role of grinding machining in manufacturing and the importance of lubrication fluids during material removal are discussed. In grinding process, coolants are used to improve the surface finish, wheel wear, flush the chips and to reduce the work-piece thermal deformation. The conventional cooling technique, i.e., flood cooling delivers a large amount of fluid and mist which hazardous to the environment and humans. Industries are actively looking for possible ways to reduce the volume of coolants used in metal removing operations due to the economical and ecological impacts. Thus as an alternative, an advanced cooling technique known as Minimum Quantity Lubrication (MQL) has been introduced to the enhance the surface finish, minimize the cost, to reduce the environmental impacts and to reduce the metal cutting fluid consumptions. Nanofluid is a new-fangled class of fluids engineered by dispersing nanometre-size solid particles into base fluids such as water, lubrication oils to further improve the properties of the lubricant or coolant. In addition to advanced cooling technique review, this paper also reviews the application of various nanoparticles and their performance in grinding operations. The performance of nanoparticles related to the cutting forces, surface finish, tool wear, and temperature at the cutting zone are briefly reviewed. The study reveals that the excellent properties of the nanofluid can be beneficial in cooling and lubricating application in the manufacturing process.

  3. Symposium on operational and environmental issues concerning use of water as a coolant in power plants and industries: proceedings

    International Nuclear Information System (INIS)

    2008-12-01

    The symposium is organised to bring together researchers, plant operators and regulatory agencies working in the area of operational and environmental problems associated with use of water as a coolant in power plants and other allied industries. The symposium targets chemists, biologists, environmental scientists, power plant operating engineers and plant designers working in various academic, governmental and non-governmental organisations. The major themes of the symposium are: water chemistry of coolant systems in power plants and other industries, chemistry of primary and moderator systems in nuclear power plants and research reactors, corrosion issues including Flow-Accelerated Corrosion (FAC) and its control in water coolant systems, chemistry of steam and water at elevated temperature in nuclear power plants, once through steam generator chemistry, industrial fire water systems, ion-exchange purification, innovative water treatment in power and industrial units, chemical cleaning and chemical decontamination, biofouling and biocorrosion, cooling water treatment chemicals and their environmental fate and environmental impact of thermal effluents. Papers relevant to INIS are indexed separately

  4. Analysis of fuel rod behaviour within a rod bundle of a pressurized water reactor under the conditions of a loss of coolant accident (LOCA) using probabilistic methodology

    International Nuclear Information System (INIS)

    Sengpiel, W.

    1980-12-01

    The assessment of fuel rod behaviour under PWR LOCA conditions aims at the evaluation of the peak cladding temperatures and the (final) maximum circumferential cladding strains. Moreover, the estimation of the amount of possible coolant channel blockages within a rod bundle is of special interest, as large coplanar clad strains of adjacent rods may result in strong local reductions of coolant channel areas. Coolant channel blockages of large radial extent may impair the long-term coolability of the corresponding rods. A model has been developed to describe these accident consequences using probabilistic methodology. This model is applied to study the behaviour of fuel rods under accident conditions following the double-ended pipe rupture between collant pump and pressure vessel in the primary system of a 1300 MW(el)-PWR. Specifically a rod bundle is considered consisting of 236 fuel rods, that is subjected to severe thermal and mechanical loading. The results obtained indicate that plastic clad deformations with circumferential clad strains of more than 30% cannot be excluded for hot rods of the reference bundle. However, coplanar coolant channel blockages of significant extent seem to be probable within that bundle only under certain boundary conditions which are assumed to be pessimistic. (orig./RW) [de

  5. Reactor having coolant recycling pump

    International Nuclear Information System (INIS)

    Goto, Tadashi; Karatsuka, Shigeki; Yamamoto, Hajime.

    1991-01-01

    In a coolant recycling pump for an LMFBR type reactor, vertical grooves are formed to a static portion which surrounds a pump shaft as far as the lower end thereof. Sodium mists present in an annular gap of the pump shaft form a rotational flow, lose its centrifugal force at the grooved portion and are collected positively to the grooved portion. Further, since the rotational flow in the grooved channel is in a state of a cavity flow, the pressure is released in the grooved portion and a secondary eddy current is formed thereby providing a depressurized state. Accordingly, by a synergestic effect of the centrifugal force and the cavity flow, sodium mists can be recovered completely. (T.M.)

  6. Organic coolant in Winnipeg riverbed sediments

    International Nuclear Information System (INIS)

    Guthrie, J.E.; Acres, O.E.

    1979-03-01

    Between January and May 1977 a prolonged leak of organic coolant occurred from the Whiteshell Nuclear Research Establishment's nuclear reactor, and a minimum of 1450 kg of coolant entered the Winnipeg River and was deposited on the riverbed. The level of radioactivity associated with this coolant was low, contributing less than 0.2 μGy (0.02 mrad) a year to the natural background gamma radiation field from the riverbed. The concentration of coolant in the water samples never exceeded 0.02 mg/L, the lower limit of detection. The mortality of crayfish, held in cages where the riverbed was covered with the largest deposits of coolant, was not significantly different from that in the control cages upstream of the outfall. No evidence of fish kill was found. (author)

  7. Evidence for a tyrosine protonation change during the primary phototransition of bacteriorhodopsin at low temperature.

    OpenAIRE

    Rothschild, K J; Roepe, P; Ahl, P L; Earnest, T N; Bogomolni, R A; Das Gupta, S K; Mulliken, C M; Herzfeld, J

    1986-01-01

    Isotopically labeled tyrosines have been selectively incorporated into bacteriorhodopsin (bR). A comparison of the low-temperature bR570 to K Fourier transform infrared-difference spectra of these samples and normal bR provides information about the role of tyrosine in the primary phototransition. Several tyrosine contributions to the difference spectrum are found. These results and comparison with the spectra of model compounds suggest that a tyrosinate group protonates during the bR570 to K...

  8. Numerical study on coolant flow distribution at the core inlet for an integral pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lin; Peng, Min Jun; Xia, Genglei; Lv, Xing; Li, Ren [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China)

    2017-02-15

    When an integral pressurized water reactor is operated under low power conditions, once-through steam generator group operation strategy is applied. However, group operation strategy will cause nonuniform coolant flow distribution at the core inlet and lower plenum. To help coolant flow mix more uniformly, a flow mixing chamber (FMC) has been designed. In this paper, computational fluid dynamics methods have been used to investigate the coolant distribution by the effect of FMC. Velocity and temperature characteristics under different low power conditions and optimized FMC configuration have been analyzed. The results illustrate that the FMC can help improve the nonuniform coolant temperature distribution at the core inlet effectively; at the same time, the FMC will induce more resistance in the downcomer and lower plenum.

  9. The operating reliability of the reactor coolant pump

    International Nuclear Information System (INIS)

    Grancy, W.

    1996-01-01

    There is a strong tendency among operating companies and manufacturers of nuclear power stations to further increase safety and operating availability of the plant and of its components. This applies also and particularly to reactor coolant pumps for the primary circuit of nuclear power stations of the type PWR. For 3 decades, ANDRITZ has developed and built such pumps and has attached great importance to the design of the complete pump rotor and of its essential surrounding elements, such as bearing and shaft seal. Apart from questions connected with design functioning of the pump there is one question of top priority: the operating reliability of the reactor coolant pump. The pump rotor (together with the rotor of the drive motor) is the only component within the primary system that permanently rotates at high speed during operation of the reactor plant. Many questions concerning design and configuration of such components cannot be answered purely theoretically, or they can only be answered partly. Therefore comprehensive development work and testing was necessary to increase the operating reliability of the pump rotor itself and of its surrounding elements. This contribution describes the current status of development and, as a focal point, discusses shaft sealing solutions elaborated so far. In this connection also a sealing system will be presented which aims for the first time at using a two-stage mechanical seal in reactor coolant pumps

  10. Loss of coolant analysis for CIRENE-LATINA heavy water reactor

    International Nuclear Information System (INIS)

    Chiantore, B.; Dubbini, M.; Proto, G.

    1978-01-01

    CIRENE is a heavy-water moderated, boiling water cooled pressure tube reactor. Fuel is natural uranium. A variety of breaks in the primary coolant system have been postulated for the analysis of the CIRENE Latina Plant (now under construction) such as double-end break of inlet header, downcomer, steam line and inlet feeders. The basic tool for analysis is the TILT-N Code which has been purposely developed for simulating the nuclear, thermal and hydrodynamic behaviour of the CIRENE core and associated heat transport system. An extensive full-scale test programme has been carried out by CNEN and CISE which fully confirms the adequacy of the model. The main results of the analysis show that maximum temperatures are far from those leading to significant fuel damage and that adequate core cooling is provided over the whole transient. (author)

  11. Discrete element method study of fuel relocation and dispersal during loss-of-coolant accidents

    Science.gov (United States)

    Govers, K.; Verwerft, M.

    2016-09-01

    The fuel fragmentation, relocation and dispersal (FFRD) during LOCA transients today retain the attention of the nuclear safety community. The fine fragmentation observed at high burnup may, indeed, affect the Emergency Core Cooling System performance: accumulation of fuel debris in the cladding ballooned zone leads to a redistribution of the temperature profile, while dispersal of debris might lead to coolant blockage or to debris circulation through the primary circuit. This work presents a contribution, by discrete element method, towards a mechanistic description of the various stages of FFRD. The fuel fragments are described as a set of interacting particles, behaving as a granular medium. The model shows qualitative and quantitative agreement with experimental observations, such as the packing efficiency in the balloon, which is shown to stabilize at about 55%. The model is then applied to study fuel dispersal, for which experimental parametric studies are both difficult and expensive.

  12. Reactor coolant system hydrostatic test and risk analysis for the first AP1000 unit

    International Nuclear Information System (INIS)

    Cao Hongjun; Yan Xiuping

    2013-01-01

    The cold hydrostatic test scheme of the primary coolant circuit, of the first AP1000 unit was described. Based on the up-stream design documents, standard specifications and design technical requirements, the select principle of test boundary was identified. The design requirements for water quality, pressure, temperature and temporary hydro-test pump were proposed. A reasonable argument for heating and pressurization rate, and cooling and depressurization rate was proposed. The possible problems and risks during the hydrostatic test were analyzed. This test scheme can provide guidance for the revisions and implementations of the follow-up test procedures. It is a good reference for hydrostatic tests of AP1000 units in the future in China. (authors)

  13. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)

  14. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)

  15. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    Energy Technology Data Exchange (ETDEWEB)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-04-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.

  16. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    International Nuclear Information System (INIS)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-01-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications

  17. Components of the LWR primary circuit. Pt. 2. Komponenten des Primaerkreises von Leichtwasserreaktoren. T. 2

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400/sup 0/C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives.

  18. Components of the LWR primary circuit. Pt. 2. Design, construction and calculation. Draft

    International Nuclear Information System (INIS)

    1995-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400 deg C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives. (orig.) [de

  19. Preliminary study on high temperature heat exchanger for nuclear steel making

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Y [Tokyo Inst. of Tech. (Japan); Ikegami, H

    1975-03-01

    In the high temperature heat exchanger as well as the steam reformer, several technical problems should be solved before realizing a nuclear plant complex for iron and steel making. Research has been carried out on heat exchanger between helium and steam, hydrogen permeation through super alloys, hydrogen removal using a titanium sponge, and creep and carburization performance of super alloys. The primary coolant used is helium having a pressure of approximately 12 kg/cm/sup 2/G and a temperature of approximately 1100/sup 0/C measured at the inlet of the high temperature heat exchanger, i.e., the test section. Steam, hydrogen and carbon monoxide are used as secondary coolants.

  20. Coolant cleanup method in a nuclear reactor

    International Nuclear Information System (INIS)

    Kubota, Masayoshi; Nishimura, Shigeoki; Takahashi, Sankichi; Izumi, Kenkichi; Motojima, Kenji.

    1983-01-01

    Purpose : To effectively adsorb to remove low molecular weight organic substances from iron exchange resins for use in the removal of various radioactive nucleides contained in reactor coolants. Method : Reactor coolants are recycled by a main recyling pump in a nuclear reactor and a portion of the coolants is cooled and, thereafter, purified in a coolant desalter. While on the other hand, high pressure steams generated from the reactor are passed through a turbine, cooled in a condensator, eliminated with claddings or the likes by the passage through a filtration desalter using powderous ion exchange resins and then further passed through a desalter (filled with granular ion exchange resins). For instance, an adsorption and removing device for organic substances (resulted through the decomposition of ion exchange resins) precoated with activated carbon powder or filled with granular activated carbon is disposed at the downstream for each of the desalters. In this way, the organic substances in the coolants are eliminated to prevent the reduction in the desalting performance of the ion exchange resins caused by the formation of complexes between organic substances and cobalt in the coolants, etc. In this way, the coolant cleanup performance is increased and the amount of wasted ion exchange resins can be decreased. (Horiuchi, T.)

  1. Alternative protections for loss of coolant accidents

    International Nuclear Information System (INIS)

    Estevez, E.A.

    1997-01-01

    One way to mitigate a small loss of coolant accident (LOCA) is by depressurizing the primary system, in order to turn the accident into a sequence where water is fed to a low pressure system. It can be achieved by two different ways: by incorporating a valve system (ADS - Automatic Depressurization System) to the design, which helps to diminish the pressure, obtaining a bigger LOCA, or by extracting heat from the system. Our analysis is centered in integrated reactors. The first characterization performed was on CAREM reactor. The idea was then to observe its behavior with LOCAs for different thermal power relations, water volume and rupture area. A simple depressurization model is presented, which enables us to find the parameter relationships which characterize this process, from which some particular cases will arise. ADS implementation is then analyzed, giving the criteria for the triggering time. A study on its reliability and the probability of a spurious opening is made, taking into account independent and dependent failures. An analysis on heat extraction as alternative for depressurizing is also made. Finally, the different reasons to choose between ADS or heat extraction as alternative are given, and the meaning of the parameters found are discussed. An alternative to classify LOCAs, instead of the traditional classification, by fracture size, is suggested. (author)

  2. Performance Analysis of Thermoelectric Based Automotive Waste Heat Recovery System with Nanofluid Coolant

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2017-09-01

    Full Text Available Output performance of a thermoelectric-based automotive waste heat recovery system with a nanofluid coolant is analyzed in this study. Comparison between Cu-Ethylene glycol (Cu-EG nanofluid coolant and ethylene glycol with water (EG-W coolant under equal mass flow rate indicates that Cu-EG nanofluid as a coolant can effectively improve power output and thermoelectric conversion efficiency for the system. Power output enhancement for a 3% concentration of nanofluid is 2.5–8 W (12.65–13.95% compared to EG-Water when inlet temperature of exhaust varies within 500–710 K. The increase of nanofluid concentration within a realizable range (6% has positive effect on output performance of the system. Study on the relationship between total area of thermoelectric modules (TEMs and output performance of the system indicates that optimal total area of TEMs exists for maximizing output performance of the system. Cu-EG nanofluid as coolant can decrease optimal total area of TEMs compared with EG-W, which will bring significant advantages for the optimization and arrangement of TEMs whether the system space is sufficient or not. Moreover, power output enhancement under Cu-EG nanofluid coolant is larger than that of EG-W coolant due to the increase of hot side heat transfer coefficient of TEMs.

  3. Assessment of Loss-of-Coolant Effect on Pressurized Heavy Water Reactors

    International Nuclear Information System (INIS)

    Kim, Won Young; Park, Joo Hwan; Kim, Bong Ghi

    2009-01-01

    A CANDU reactor is a heavy-water-moderated, natural uranium fuelled reactor with a pressure tube. The reactor contains a horizontal cylindrical vessel (calandria) and each pressure tube is isolated from the heavy-water moderator in a calandria. This allows the moderator system to be operated of a high-pressure and of a high-temperature coolant in pressure tube. This causes the pressurized liquid coolant in the channel to void and therefore give rise to a reactivity transient in the event of a break or fault in the coolant circuit. In particular, all CANDU reactors are well known to have a positive void reactivity coefficient and thus this phenomenon may lead to a positive feedback, which can cause a large power pulse. We assess the loss-of-coolant effect by coolant void reactivity versus fuel burnup, four factor parameters for fresh fuel and equilibrium fuel, reactivity change due to the change of coolant density and reactivity change in the case of half- and full-core coolant

  4. Fuel cladding interaction with water coolant in power reactors

    International Nuclear Information System (INIS)

    1985-11-01

    Water coolant chemistry and corrosion processes are important factors in reliable operation of NPP's, as at elevated temperatures water is aggressive towards structural materials. Water regimes for commercial Pressurized Water Reactors and Boiling Water Reactors were developed and proved to be satisfactory. Nevertheless, studies of operation experience continue and an amount of new Research and Development work is being conducted for further improvements of technology and better understanding of the physicochemical nature of those processes. In this report information is presented on the IAEA programme on fuel element cladding interaction with water coolant. Some results of this survey and recommendations made by the group of consultants who participated in this work are given as well as recommendations for continuation of this study. Separate abstracts were prepared for 6 papers of this report

  5. The dynamic characteristics of HTGR (High Temperature Gas Cooled Reactor) system, (2)

    International Nuclear Information System (INIS)

    Kudo, Kazuhiko; Ohta, Masao; Kawasaki, Hidenori

    1979-01-01

    The dynamic characteristics of a HTGR plant, which has two cooling loops, was investigated. The analytical model consists of the core with fuel sleeves, coolant channels and blocks, the upper and lower reflectors, the high and low temperature plenums, two double wall pipings, two intermediate heat exchangers and the secondary system. The key plant parameters for calculation were as follows: the core outlet gas temperature 1000 deg C, the reactor thermal output 50 MW, the flow rate of primary coolant gas 7.96 kg/sec-loop and the pressure of primary coolant gas 40 kg/cm 2 at the rated operating condition. The calculating parameters were fixed as follows: the time interval for core characteristic analysis 0.1 sec, the time interval for thermal characteristic analysis 5.0 sec, the number of division of fuel channels 130, and the number of division of an intermediate heat exchanger 200. The assumptions for making the model were evaluated especially for the power distribution in the core and the heat transmission coefficients in the core, the double wall piping and the intermediate heat exchangers. Concerning the analytical results, the self-control to the outer disturbance of reactivity and the plant dynamic behavior due to the change of flow rate of primary and secondary coolants, and the change of gas temperature of secondary coolant at the inlet of intermediate heat exchangers, are presented. (Nakai, Y.)

  6. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature.

    Science.gov (United States)

    Kim, Jinho; Stahl, Shannon S

    2013-07-05

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4'- t Bu 2 bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N -oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst is the turnover-limiting step of the reaction.

  7. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature

    OpenAIRE

    Kim, Jinho; Stahl, Shannon S.

    2013-01-01

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4′-tBu2bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N-oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst...

  8. Coolant processing device for nuclear reactor

    International Nuclear Information System (INIS)

    Kizawa, Hideo; Funakoshi, Toshio; Izumoji, Yoshiaki

    1981-01-01

    Purpose: To reduce an entire facility cost by concentrating and isolating tritium accumulated in coolants, removing the tritium out of the system, and returning hydrogen gas generated at a reactor accident to a recombiner in a closed loop by the switching of a valve. Constitution: Coolant from a reactor cooling system processed by a chemical volume control system facility (CVCS) and coolant drain from various devices processed by a liquid waste disposing system facility (LWDS) are fed to a tritium isolating facility, in which they are isolated into concentrated tritium water and dilute tritium water. The concentrated tritium water is removed out of the system and stored. The dilute tritium water is reused as supply water for coolant. If an accident occurs to cause hydrogen to be generated, a closed loop is formed between the containment vessel and the recombiner, the hydrogen is recombined with oxygen in the air of the closed loop to be thus returned to water. (Kamimura, M.)

  9. Fatigue management considering LWR coolant environments

    International Nuclear Information System (INIS)

    Park, Heung Bae; Jin, Tae eun

    2000-01-01

    Design fatigue curve for structural material in the ASME Boiler and Pressure Vessel Code do not explicitly address the effects of reactor coolant environments on fatigue life. Environmentally assisted cracking (EAC) of low-alloy steels in light water reactor (LWR) coolant environments has been a concern ever since the early 1970's. And, recent fatigue test data indicate a significant decrease in fatigue lives of carbon steels, low-alloy steels and austenitic stainless steels in LWR coolant environments. For these reasons, fatigue of major components has been identified as a technical issue remaining to be resolved for life management and license renewal of nuclear power plants. In the present paper, results of recent investigations by many organizations are reviewed to provide technical justification to support the development of utility approach regarding the management of fatigue considering LWR coolant environments for the purpose of life management and license renewal of nuclear power plants. (author)

  10. Standardized sampling system for reactor coolants

    International Nuclear Information System (INIS)

    Divine, J.R.; Munson, L.F.; Nelson, J.L.; McDowell, R.L.; Jankowski, M.W.

    1982-09-01

    A three-pronged approach was developed to reach the objectives of acceptable coolant sampling, assessment of occupational exposure from corrosion products, and model development for the transport and buildup of corrosion products. Emphasis is on sampler design

  11. High temperature brazing of primary-system components in the nuclear field

    International Nuclear Information System (INIS)

    Belicic, M.; Fricker, H.W.; Iversen, K.; Leukert, W.

    1981-01-01

    Apart from the well-known welding procedures, high-temperature brazing is successfully applied in the manufacture of primary components in the field of nuclear reactor construction. This technique is applied in all cases where apart from sufficient resistance and high production safety importance is laid on dimensional stability without subsequent mechanical processing of the components. High-temperature brazing is therefore very important in the manufacture of fuel rod spacers or control rod guide tubes. In this context, during one brazing process many brazing seams have to be produced in extremely narrow areas and within small tolerances. As basic materials precipitation hardening alloys with a high nickel percentage, austenitic Cr-Ni-steels or the zirconium alloy Zry 4 are used. Generally applied are: boron free nickel or zirconium brazing filler metals. (orig.)

  12. Reactor coolant pump seals: improving their performance

    International Nuclear Information System (INIS)

    Pothier, N.E.; Metcalfe, R.

    1986-06-01

    Large CANDU plants are benefitting from transient-resistant four-year reliable reactor coolant pump seal lifetimes, a direct result of AECL's 20-year comprehensive seal improvement program involving R and D staff, manufacturers, and plant designers and operators. An overview of this program is presented, which covers seal modification design, testing, post-service examination, specialized maintenance and quality control. The relevancy of this technology to Light Water Reactor Coolant Pump Seals is also discussed

  13. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Kryk, Holger, E-mail: h.kryk@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Hoffmann, Wolfgang [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany)

    2014-12-15

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products.

  14. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    International Nuclear Information System (INIS)

    Kryk, Holger; Hoffmann, Wolfgang; Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan

    2014-01-01

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products

  15. RETRAN code analysis of Tsuruga-2 plant chemical volume control system (CVCS) reactor coolant leakage incident

    International Nuclear Information System (INIS)

    Kawai, H.

    2001-01-01

    JAPC purchased RETRAN, a program for transient thermal hydraulic analysis of complex fluid flow system, from the U.S. Electric Power Research Institute in 1992. Since then, JAPC has been utilizing RETRAN to evaluate safety margins of actual plant operation, in coping with troubles (investigating trouble causes and establishing countermeasures), and supporting reactor operation (reviewing operational procedures etc.). In this paper, a result of plant analysis performed on a CVCS reactor primary coolant leakage incident which occurred at JAPC's Tsuruga-2 plant (4-loop PWR, 3423 MWt, 1160 MW) on July 12 of 1999 and, based on the result, we made a plan to modify our operational procedure for reactor primary coolant leakage events in order to make earlier plant shutdown and this reduced primary coolant leakage. (author)

  16. Radionuclide deposits on heat transfer surfaces in a circumt with dissociating N2O4 coolant

    International Nuclear Information System (INIS)

    Dolgov, V.M.; Katanaev, A.O.; Komissarov, F.D.

    1984-01-01

    Radionuclides deposits on heat transfer surfaces of a circuit with dissociating coolant are studied. The areas of preferential deposition of 54 Mn, 51 Cr, 134 Cs and their distribution along the heating and cooling surfaces are determined. The comparison of the obtained data on the nuclide and chemical compositions of the deposits in the areas of N 2 O 4 coolant heating and cooling shows that 54 Mn, 51 Cr, 134 Cs deposit preferentially on heat transfer surfaces in the area of the coolant heating. Fixed and movable deposits consists of the structural material oxides. The quantity of radionuclides in the deposits on the surfaces of heat transfer tubes in the area of cooling decreases with the coolant temperature drop

  17. Theoretical studying the stability of steady-state regime of a channel with a coolant condensation

    International Nuclear Information System (INIS)

    Savikhin, O.G.

    1987-01-01

    Based on the boiling channel stability theory, the channel steady-state stability with the coolant condensation is studied. Condensable coolants are used in the NPP steam-separator superheaters as well as in cryogenic technique. Under certain conditions the coolant flow rate and temperature fluctuations may be excited in the parallel channel system with coolant condensation, which produce a sufficient effect on the heat exchange equipment operation reliability. To describe unsteady processes of heat and mass transfer in the channel, a homogeneous two-phase flow one dimensional model is used. The results obtained allow one to make a conclusion concerning the effect of some parameters on condensing channel steady-state regime stability: reduction of inlet and outlet unheated communication length, pressure drop increase at the outlet plate and its reduction at the inlet one lead to the increase of stability margin

  18. Coolant clean up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tajima, Fumio; Iwami, Hiroshi.

    1981-01-01

    Purpose: To decrease the amount of main steams and improve the plant heat efficiency by the use of condensated water as coolants for not-regenerative heat exchangers in a coolant clean up system of a nuclear reactor. Constitution: In a coolant clean up system of a nuclear reactor, a portion of condensates is transferred to the shell of a non-regenerative heat exchanger by way of a condensate pump for non-regenerative heat exchanger through a branched pipeway provided to the outlet of a condensate desalter for using the condensates as the coolants for the shell of the heat exchanger and the condensates are then returned to the inlet of a feedwater heater after the heat exchange. The branched flow rate of the condensates is controlled by the flow rate control valve mounted in the pipeway. Condensates passed through the heat exchanger and the condensates not passed through the heat exchanger are mixed and heated in a heater and then fed to the nuclear reactor. In a case where no feedwater is necessary to the nuclear reactor such as upon shutdown of the reactor, the condensates are returned by way of feedwater bypass pipeway to the condensator. By the use of the condensates as the coolants for the heat exchanger, the main steam loss can be decreased and the thermal load for the auxiliary coolant facility can be reduced. (Kawakami, Y.)

  19. Application of damage function analysis to reactor coolant circuits

    International Nuclear Information System (INIS)

    MacDonald, D.D.

    2002-01-01

    The application of deterministic models for simulating stress corrosion cracking phenomena in Boiling Water Reactor primary coolant circuits is described. The first generation code, DAMAGE-PREDICTOR, has been used to model the radiolysis of the coolant, to estimate the electrochemical corrosion potential (ECP), and to calculate the crack growth rate (CGR) at fixed state points during reactor operation in about a dozen plants worldwide. This code has been validated in ''double-blind'' comparisons between the calculated and measured hydrogen concentration, oxygen concentration, and ECP in the recirculation system of the Leibstadt BWR in Switzerland, as well as through less formal comparisons with data from other plants. Second generation codes have now been developed, including REMAIN for simulating BWRs with internal coolant pumps and the ALERT series for modeling reactors with external pumps. One of this series, ALERT, yields the integrated damage function (IDF), which is the crack length versus time, on a component-by-component basis for a specified future operating scenario. This code therefore allows one to explore proposed future operating protocols, with the objective of identifying those that are most cost-effective and which minimizes the risk of failure of components in the coolant circuit by stress corrosion cracking. The application of this code is illustrated by exploring the benefits of partial hydrogen water chemistry (HWC) for an actual reactor, in which hydrogen is added to the feedwater over only limited periods during operation. The simulations show that the benefits, in terms of reduction in the IDFs for various components, are sensitive to when HWC was initiated in the plant life and to the length of time over which it is applied. (author)

  20. Application of damage function analysis to reactor coolant circuits

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, D.D. [Center for Electrochemical Science and Technology, Pennsylvania State Univ., University Park, PA (United States)

    2002-07-01

    The application of deterministic models for simulating stress corrosion cracking phenomena in Boiling Water Reactor primary coolant circuits is described. The first generation code, DAMAGE-PREDICTOR, has been used to model the radiolysis of the coolant, to estimate the electrochemical corrosion potential (ECP), and to calculate the crack growth rate (CGR) at fixed state points during reactor operation in about a dozen plants worldwide. This code has been validated in ''double-blind'' comparisons between the calculated and measured hydrogen concentration, oxygen concentration, and ECP in the recirculation system of the Leibstadt BWR in Switzerland, as well as through less formal comparisons with data from other plants. Second generation codes have now been developed, including REMAIN for simulating BWRs with internal coolant pumps and the ALERT series for modeling reactors with external pumps. One of this series, ALERT, yields the integrated damage function (IDF), which is the crack length versus time, on a component-by-component basis for a specified future operating scenario. This code therefore allows one to explore proposed future operating protocols, with the objective of identifying those that are most cost-effective and which minimizes the risk of failure of components in the coolant circuit by stress corrosion cracking. The application of this code is illustrated by exploring the benefits of partial hydrogen water chemistry (HWC) for an actual reactor, in which hydrogen is added to the feedwater over only limited periods during operation. The simulations show that the benefits, in terms of reduction in the IDFs for various components, are sensitive to when HWC was initiated in the plant life and to the length of time over which it is applied. (author)