WorldWideScience

Sample records for primary carbon metabolism

  1. Respiratory compensation to a primary metabolic alkalosis in humans.

    Science.gov (United States)

    Feldman, Mark; Alvarez, Naiara M; Trevino, Michael; Weinstein, Gary L

    2012-11-01

    There is limited and disparate information about the extent of the respiratory compensation (hypoventilation) that occurs in response to a primary metabolic alkalosis in humans. Our aim was to examine the influence of the plasma bicarbonate concentration, the plasma base excess, and the arterial pH on the arterial carbon dioxide tension in 52 adult patients with primary metabolic alkalosis, mostly due to diuretic use or vomiting. Linear regression analysis was used to correlate degrees of alkalosis with arterial carbon dioxide tensions. In this alkalotic cohort, whose arterial plasma bicarbonate averaged 31.6 mEq/l, plasma base excess averaged 7.8 mEq/l, and pH averaged 7.48, both plasma bicarbonate and base excess correlated closely with arterial carbon dioxide tensions (r = 0.97 and 0.96, respectively; p respiratory compensation (hypoventilation) to primary metabolic alkalosis than has been reported in prior smaller studies.

  2. Metabolic responses of primary and transformed cells to intracellular Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    Nadine Gillmaier

    Full Text Available The metabolic response of host cells, in particular of primary mammalian cells, to bacterial infections is poorly understood. Here, we compare the carbon metabolism of primary mouse macrophages and of established J774A.1 cells upon Listeria monocytogenes infection using (13C-labelled glucose or glutamine as carbon tracers. The (13C-profiles of protein-derived amino acids from labelled host cells and intracellular L. monocytogenes identified active metabolic pathways in the different cell types. In the primary cells, infection with live L. monocytogenes increased glycolytic activity and enhanced flux of pyruvate into the TCA cycle via pyruvate dehydrogenase and pyruvate carboxylase, while in J774A.1 cells the already high glycolytic and glutaminolytic activities hardly changed upon infection. The carbon metabolism of intracellular L. monocytogenes was similar in both host cells. Taken together, the data suggest that efficient listerial replication in the cytosol of the host cells mainly depends on the glycolytic activity of the hosts.

  3. Photosynthetic carbon metabolism in freshwater phytoplankton

    International Nuclear Information System (INIS)

    Groeger, A.W.

    1986-01-01

    Photosynthetic carbon metabolism of natural assemblages of freshwater phytoplankton was measured by following the flow of inorganic 14 C into the photosynthetic end products polysaccharide protein, lipid, and soluble metabolites. Data were collected from a wide range of physical, chemical, and trophic conditions in six southern United States reservoirs, with the primary environmental variables of interest being light intensity and nutrient supply. Polysaccharide and protein were consistently the primary products of photosynthetic carbon metabolism, comprising an average of 70% of the total carbon fixation over a wide range of light intensities. Polysaccharide was quantitatively more important at higher light intensities, and protein at lower light intensities, as light intensity varied both with depth within the water column and over diurnal cycles. Polysaccharide synthesis was more variable over the diurnal period than was protein synthesis. Phytoplankton in the downlake epilimnion of Normandy Lake, a central Tennessee reservoir, responded to summer nitrogen (N) deficiency by increasing relative rates of lipid synthesis from 10-15% to 20-25% of the total photosynthetic carbon fixation. Phytoplankton in more nitrogen-sufficient areas of the reservoir maintained lower rates of lipid synthesis throughout the summer. These results document the occurrence in nature of a relationship between N-deficiency and increased lipid synthesis previously observed only in laboratory algal culture studies

  4. Primary Metabolic Pathways and Metabolic Flux Analysis

    DEFF Research Database (Denmark)

    Villadsen, John

    2015-01-01

    his chapter introduces the metabolic flux analysis (MFA) or stoichiometry-based MFA, and describes the quantitative basis for MFA. It discusses the catabolic pathways in which free energy is produced to drive the cell-building anabolic pathways. An overview of these primary pathways provides...... the reader who is primarily trained in the engineering sciences with atleast a preliminary introduction to biochemistry and also shows how carbon is drained off the catabolic pathways to provide precursors for cell mass building and sometimes for important industrial products. The primary pathways...... to be examined in the following are: glycolysis, primarily by the EMP pathway, but other glycolytic pathways is also mentioned; fermentative pathways in which the redox generated in the glycolytic reactions are consumed; reactions in the tricarboxylic acid (TCA) cycle, which produce biomass precursors and redox...

  5. Prioritizing Popular Proteins in Liver Cancer: Remodelling One-Carbon Metabolism.

    Science.gov (United States)

    Mora, María Isabel; Molina, Manuela; Odriozola, Leticia; Elortza, Félix; Mato, José María; Sitek, Barbara; Zhang, Pumin; He, Fuchu; Latasa, María Uxue; Ávila, Matías Antonio; Corrales, Fernando José

    2017-12-01

    Primary liver cancer (HCC) is recognized as the fifth most common neoplasm and the second leading cause of cancer death worldwide. Most risk factors are known, and the molecular pathogenesis has been widely studied in the past decade; however, the underlying molecular mechanisms remain to be unveiled, as they will facilitate the definition of novel biomarkers and clinical targets for more effective patient management. We utilize the B/D-HPP popular protein strategy. We report a list of popular proteins that have been highly cocited with the expression "liver cancer". Several enzymes highlight the known metabolic remodeling of liver cancer cells, four of which participate in one-carbon metabolism. This pathway is central to the maintenance of differentiated hepatocytes, as it is considered the connection between intermediate metabolism and epigenetic regulation. We designed a targeted selective reaction monitoring (SRM) method to follow up one-carbon metabolism adaptation in mouse HCC and in regenerating liver following exposure to CCl 4 . This method allows systematic monitoring of one-carbon metabolism and could prove useful in the follow-up of HCC and of chronically liver-diseased patients (cirrhosis) at risk of HCC. The SRM data are available via ProteomeXchange in PASSEL (PASS01060).

  6. Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes

    Directory of Open Access Journals (Sweden)

    Higashi Richard M

    2008-10-01

    Full Text Available Abstract Background The functional status of a cell is expressed in its metabolic activity. We have applied stable isotope tracing methods to determine the differences in metabolic pathways in proliferating Rhabdomysarcoma cells (Rh30 and human primary myocytes in culture. Uniformly 13C-labeled glucose was used as a source molecule to follow the incorporation of 13C into more than 40 marker metabolites using NMR and GC-MS. These include metabolites that report on the activity of glycolysis, Krebs' cycle, pentose phosphate pathway and pyrimidine biosynthesis. Results The Rh30 cells proliferated faster than the myocytes. Major differences in flux through glycolysis were evident from incorporation of label into secreted lactate, which accounts for a substantial fraction of the glucose carbon utilized by the cells. Krebs' cycle activity as determined by 13C isotopomer distributions in glutamate, aspartate, malate and pyrimidine rings was considerably higher in the cancer cells than in the primary myocytes. Large differences were also evident in de novo biosynthesis of riboses in the free nucleotide pools, as well as entry of glucose carbon into the pyrimidine rings in the free nucleotide pool. Specific labeling patterns in these metabolites show the increased importance of anaplerotic reactions in the cancer cells to maintain the high demand for anabolic and energy metabolism compared with the slower growing primary myocytes. Serum-stimulated Rh30 cells showed higher degrees of labeling than serum starved cells, but they retained their characteristic anabolic metabolism profile. The myocytes showed evidence of de novo synthesis of glycogen, which was absent in the Rh30 cells. Conclusion The specific 13C isotopomer patterns showed that the major difference between the transformed and the primary cells is the shift from energy and maintenance metabolism in the myocytes toward increased energy and anabolic metabolism for proliferation in the Rh30 cells

  7. Primary metabolism in Lactobacillus sakei food isolates by proteomic analysis

    Directory of Open Access Journals (Sweden)

    Champomier-Vergès Marie-Christine

    2010-04-01

    Full Text Available Abstract Background Lactobacillus sakei is an important food-associated lactic acid bacterium commonly used as starter culture for industrial meat fermentation, and with great potential as a biopreservative in meat and fish products. Understanding the metabolic mechanisms underlying the growth performance of a strain to be used for food fermentations is important for obtaining high-quality and safe products. Proteomic analysis was used to study the primary metabolism in ten food isolates after growth on glucose and ribose, the main sugars available for L. sakei in meat and fish. Results Proteins, the expression of which varied depending on the carbon source were identified, such as a ribokinase and a D-ribose pyranase directly involved in ribose catabolism, and enzymes involved in the phosphoketolase and glycolytic pathways. Expression of enzymes involved in pyruvate and glycerol/glycerolipid metabolism were also affected by the change of carbon source. Interestingly, a commercial starter culture and a protective culture strain down-regulated the glycolytic pathway more efficiently than the rest of the strains when grown on ribose. The overall two-dimensional gel electrophoresis (2-DE protein expression pattern was similar for the different strains, though distinct differences were seen between the two subspecies (sakei and carnosus, and a variation of about 20% in the number of spots in the 2-DE gels was observed between strains. A strain isolated from fermented fish showed a higher expression of stress related proteins growing on both carbon sources. Conclusions It is obvious from the data obtained in this study that the proteomic approach efficiently identifies differentially expressed proteins caused by the change of carbon source. Despite the basic similarity in the strains metabolic routes when they ferment glucose and ribose, there were also interesting differences. From the application point of view, an understanding of regulatory

  8. A Synthetic Alternative to Canonical One-Carbon Metabolism.

    Science.gov (United States)

    Bouzon, Madeleine; Perret, Alain; Loreau, Olivier; Delmas, Valérie; Perchat, Nadia; Weissenbach, Jean; Taran, Frédéric; Marlière, Philippe

    2017-08-18

    One-carbon metabolism is an ubiquitous metabolic pathway that encompasses the reactions transferring formyl-, hydroxymethyl- and methyl-groups bound to tetrahydrofolate for the synthesis of purine nucleotides, thymidylate, methionine and dehydropantoate, the precursor of coenzyme A. An alternative cyclic pathway was designed that substitutes 4-hydroxy-2-oxobutanoic acid (HOB), a compound absent from known metabolism, for the amino acids serine and glycine as one-carbon donors. It involves two novel reactions, the transamination of l-homoserine and the transfer of a one-carbon unit from HOB to tetrahydrofolate releasing pyruvate as coproduct. Since canonical reactions regenerate l-homoserine from pyruvate by carboxylation and subsequent reduction, every one-carbon moiety made available for anabolic reactions originates from CO 2 . The HOB-dependent pathway was established in an Escherichia coli auxotroph selected for prototrophy using long-term cultivation protocols. Genetic, metabolic and biochemical evidence support the emergence of a functional HOB-dependent one-carbon pathway achieved with the recruitment of the two enzymes l-homoserine transaminase and HOB-hydroxymethyltransferase and of HOB as an essential metabolic intermediate. Escherichia coli biochemical reprogramming was achieved by minimally altering canonical metabolism and leveraging on natural selection mechanisms, thereby launching the resulting strain on an evolutionary trajectory diverging from all known extant species.

  9. Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism.

    Science.gov (United States)

    Anandhan, Annadurai; Jacome, Maria S; Lei, Shulei; Hernandez-Franco, Pablo; Pappa, Aglaia; Panayiotidis, Mihalis I; Powers, Robert; Franco, Rodrigo

    2017-07-01

    The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Net Community Metabolism and Seawater Carbonate Chemistry Scale Non-intuitively with Coral Cover

    Directory of Open Access Journals (Sweden)

    Heather N. Page

    2017-05-01

    Full Text Available Coral cover and reef health have been declining globally as reefs face local and global stressors including higher temperature and ocean acidification (OA. Ocean warming and acidification will alter rates of benthic reef metabolism (i.e., primary production, respiration, calcification, and CaCO3 dissolution, but our understanding of community and ecosystem level responses is limited in terms of functional, spatial, and temporal scales. Furthermore, dramatic changes in coral cover and benthic metabolism could alter seawater carbonate chemistry on coral reefs, locally alleviating or exacerbating OA. This study examines how benthic metabolic rates scale with changing coral cover (0–100%, and the subsequent influence of these coral communities on seawater carbonate chemistry based on mesocosm experiments in Bermuda and Hawaii. In Bermuda, no significant differences in benthic metabolism or seawater carbonate chemistry were observed for low (40% and high (80% coral cover due to large variability within treatments. In contrast, significant differences were detected between treatments in Hawaii with benthic metabolic rates increasing with increasing coral cover. Observed increases in daily net community calcification and nighttime net respiration scaled proportionally with coral cover. This was not true for daytime net community organic carbon production rates, which increased the most between 0 and 20% coral cover and then less so between 20 and 100%. Consequently, diel variability in seawater carbonate chemistry increased with increasing coral cover, but absolute values of pH, Ωa, and pCO2 were not significantly different during daytime. To place the results of the mesocosm experiments into a broader context, in situ seawater carbon dioxide (CO2 at three reef sites in Bermuda and Hawaii were also evaluated; reefs with higher coral cover experienced a greater range of diel CO2 levels, complementing the mesocosm results. The results from this study

  11. Reconstruction of the central carbon metabolism of Aspergillus niger

    DEFF Research Database (Denmark)

    David, Helga; Åkesson, Mats Fredrik; Nielsen, Jens

    2003-01-01

    The topology of central carbon metabolism of Aspergillus niger was identified and the metabolic network reconstructed, by integrating genomic, biochemical and physiological information available for this microorganism and other related fungi. The reconstructed network may serve as a valuable...... of metabolic fluxes using metabolite balancing. This framework was employed to perform an in silico characterisation of the phenotypic behaviour of A. niger grown on different carbon sources. The effects on growth of single reaction deletions were assessed and essential biochemical reactions were identified...... for different carbon sources. Furthermore, application of the stoichiometric model for assessing the metabolic capabilities of A. niger to produce metabolites was evaluated by using succinate production as a case study....

  12. Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria.

    Science.gov (United States)

    Xiong, Wei; Lee, Tai-Chi; Rommelfanger, Sarah; Gjersing, Erica; Cano, Melissa; Maness, Pin-Ching; Ghirardi, Maria; Yu, Jianping

    2015-12-07

    Central carbon metabolism in cyanobacteria comprises the Calvin-Benson-Bassham (CBB) cycle, glycolysis, the pentose phosphate (PP) pathway and the tricarboxylic acid (TCA) cycle. Redundancy in this complex metabolic network renders the rational engineering of cyanobacterial metabolism for the generation of biomass, biofuels and chemicals a challenge. Here we report the presence of a functional phosphoketolase pathway, which splits xylulose-5-phosphate (or fructose-6-phosphate) to acetate precursor acetyl phosphate, in an engineered strain of the model cyanobacterium Synechocystis (ΔglgC/xylAB), in which glycogen synthesis is blocked, and xylose catabolism enabled through the introduction of xylose isomerase and xylulokinase. We show that this mutant strain is able to metabolise xylose to acetate on nitrogen starvation. To see whether acetate production in the mutant is linked to the activity of phosphoketolase, we disrupted a putative phosphoketolase gene (slr0453) in the ΔglgC/xylAB strain, and monitored metabolic flux using (13)C labelling; acetate and 2-oxoglutarate production was reduced in the light. A metabolic flux analysis, based on isotopic data, suggests that the phosphoketolase pathway metabolises over 30% of the carbon consumed by ΔglgC/xylAB during photomixotrophic growth on xylose and CO2. Disruption of the putative phosphoketolase gene in wild-type Synechocystis also led to a deficiency in acetate production in the dark, indicative of a contribution of the phosphoketolase pathway to heterotrophic metabolism. We suggest that the phosphoketolase pathway, previously uncharacterized in photosynthetic organisms, confers flexibility in energy and carbon metabolism in cyanobacteria, and could be exploited to increase the efficiency of cyanobacterial carbon metabolism and photosynthetic productivity.

  13. Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood.

    Science.gov (United States)

    Roach, Melissa; Arrivault, Stéphanie; Mahboubi, Amir; Krohn, Nicole; Sulpice, Ronan; Stitt, Mark; Niittylä, Totte

    2017-06-15

    The contribution of transcriptional and post-transcriptional regulation to modifying carbon allocation to developing wood of trees is not well defined. To clarify the role of transcriptional regulation, the enzyme activity patterns of eight central primary metabolism enzymes across phloem, cambium, and developing wood of aspen (Populus tremula L.) were compared with transcript levels obtained by RNA sequencing of sequential stem sections from the same trees. Enzymes were selected on the basis of their importance in sugar metabolism and in linking primary metabolism to lignin biosynthesis. Existing enzyme assays were adapted to allow measurements from ~1 mm3 sections of dissected stem tissue. These experiments provided high spatial resolution of enzyme activity changes across different stages of wood development, and identified the gene transcripts probably responsible for these changes. In most cases, there was a clear positive relationship between transcripts and enzyme activity. During secondary cell wall formation, the increases in transcript levels and enzyme activities also matched with increased levels of glucose, fructose, hexose phosphates, and UDP-glucose, emphasizing an important role for transcriptional regulation in carbon allocation to developing aspen wood. These observations corroborate the efforts to increase carbon allocation to wood by engineering gene regulatory networks. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiang eTang

    2011-08-01

    Full Text Available Photosynthesis is the biological process that converts solar energy to biomass, bio-products and biofuel. It is the only major natural solar energy storage mechanism on Earth. To satisfy the increased demand for sustainable energy sources and identify the mechanism of photosynthetic carbon assimilation, which is one of the bottlenecks in photosynthesis, it is essential to understand the process of solar energy storage and associated carbon metabolism in photosynthetic organisms. Researchers have employed physiological studies, microbiological chemistry, enzyme assays, genome sequencing, transcriptomics, and 13C-based metabolomics/fluxomics to investigate central carbon metabolism and enzymes that operate in phototrophs. In this report, we review diverse CO2 assimilation pathways, acetate assimilation, carbohydrate catabolism, the TCA cycle and some key and/or unconventional enzymes in central carbon metabolism of phototrophic microorganisms. We also discuss the reducing equivalent flow during photoautotrophic and photoheterotrophic growth, evolutionary links in the central carbon metabolic network, and correlations between photosynthetic and non-photosynthetic organisms. Considering the metabolic versatility in these fascinating and diverse photosynthetic bacteria, many essential questions in their central carbon metabolism still remain to be addressed.

  15. Benthic metabolic feedbacks to carbonate chemistry on coral reefs:implications for ocean acidification

    Science.gov (United States)

    Price, N.; Rohwer, F. L.; Stuart, S. A.; Andersson, A.; Smith, J.

    2012-12-01

    The metabolic activity of resident organisms can cause spatio-temporal variability in carbonate chemistry within the benthic boundary layer, and thus potentially buffer the global impacts of ocean acidification. But, little is known about the capacity for particular species assemblages to contribute to natural daily variability in carbonate chemistry. We encapsulated replicate areas (~3m2) of reef across six Northern Line Islands in the central Pacific for 24 hrs to quantify feedbacks to carbonate chemistry within the benthic boundary layer from community metabolism. Underneath each 'tent', we quantified relative abundance and biomass of each species of corals and algae. We coupled high temporal resolution time series data on the natural diurnal variability in pH, dissolved oxygen, salinity, and temperature (using autonomous sensors) with resident organisms' net community calcification and productivity rates (using change in total dissolved carbon and total alkalinity over time) to examine feedbacks from reef metabolism to boundary layer carbonate chemistry. These reefs experienced large ranges in pH (> 0.2 amplitude) each day, similar to the magnitude of 'acidification' expected over the next century. Daily benthic pH, pCO2, and aragonite saturation state (Ωaragonite) were contrasted with seasonal threshold values estimated from open ocean climatological data extrapolated at each island to determine relative inter-island feedbacks. Diurnal amplitude in pH, pCO2, and Ωaragonite at each island was dependent upon the resident species assemblage of the benthos and was particularly reliant upon the biomass, productivity, and calcification rate of Halimeda. Net primary productivity of fleshy algae (algal turfs and Lobophora spp.) predominated on degraded, inhabited islands where net community calcification was negligible. In contrast, the chemistry over reefs on 'pristine', uninhabited islands was driven largely by net calcification of calcareous algae and stony

  16. One-Carbon Metabolism in Prostate Cancer: The Role of Androgen Signaling

    Directory of Open Access Journals (Sweden)

    Joshua M. Corbin

    2016-07-01

    Full Text Available Cancer cell metabolism differs significantly from the metabolism of non-transformed cells. This altered metabolic reprogramming mediates changes in the uptake and use of nutrients that permit high rates of proliferation, growth, and survival. The androgen receptor (AR plays an essential role in the establishment and progression of prostate cancer (PCa, and in the metabolic adaptation that takes place during this progression. In its role as a transcription factor, the AR directly affects the expression of several effectors and regulators of essential catabolic and biosynthetic pathways. Indirectly, as a modulator of the one-carbon metabolism, the AR can affect epigenetic processes, DNA metabolism, and redox balance, all of which are important factors in tumorigenesis. In this review, we focus on the role of AR-signaling on one-carbon metabolism in tumorigenesis. Clinical implications of one-carbon metabolism and AR-targeted therapies for PCa are discussed in this context.

  17. One-Carbon Metabolism in Prostate Cancer: The Role of Androgen Signaling

    Science.gov (United States)

    Corbin, Joshua M.; Ruiz-Echevarría, Maria J.

    2016-01-01

    Cancer cell metabolism differs significantly from the metabolism of non-transformed cells. This altered metabolic reprogramming mediates changes in the uptake and use of nutrients that permit high rates of proliferation, growth, and survival. The androgen receptor (AR) plays an essential role in the establishment and progression of prostate cancer (PCa), and in the metabolic adaptation that takes place during this progression. In its role as a transcription factor, the AR directly affects the expression of several effectors and regulators of essential catabolic and biosynthetic pathways. Indirectly, as a modulator of the one-carbon metabolism, the AR can affect epigenetic processes, DNA metabolism, and redox balance, all of which are important factors in tumorigenesis. In this review, we focus on the role of AR-signaling on one-carbon metabolism in tumorigenesis. Clinical implications of one-carbon metabolism and AR-targeted therapies for PCa are discussed in this context. PMID:27472325

  18. Photosynthesis: The Path of Carbon in Photosynthesis and the Primary Quantum Conversion Act of Photosynthesis

    Science.gov (United States)

    Calvin, Melvin

    1952-11-22

    This constitutes a review of the path of carbon in photosynthesis as it has been elaborated through the summer of 1952, with particular attention focused on those aspects of carbon metabolism and its variation which have led to some direct information regarding the primary quantum conversion act. An introduction to the arguments which have been adduced in support of the idea that chlorophyll is a physical sensitizer handing its excitation on to thioctic acid, a compound containing a strained 1, 2 -dithiolcyclopentane ring, is given.

  19. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay

    Science.gov (United States)

    Kemp, W.M.; Smith, E.M.; Marvin-DiPasquale, M.; Boynton, W.R.

    1997-01-01

    The major fluxes of organic carbon associated with physical transport and biological metabolism were compiled, analyzed and compared for the mainstem portion of Chesapeake Bay (USA). In addition, 5 independent methods were used to calculate the annual mean net ecosystem metabolism (NEM = production - respiration) for the integrated Bay. These methods, which employed biogeochemical models, nutrient mass-balances anti summation of individual organic carbon fluxes, yielded remarkably similar estimates, with a mean NEM of +50 g C m-2 yr-1 (?? SE = 751, which is approximately 8% of the estimated annual average gross primary production. These calculations suggest a strong cross-sectional pattern in NEM throughout the Bay, wherein net heterotrophic metabolism prevails in the pelagic zones of the main channel, while net autotrophy occurs in the littoral zones which flank the deeper central area. For computational purposes, the estuary was separated into 3 regions along the land-sea gradient: (1) the oligohaline Upper Bay (11% of total area); (2) the mesohaline Mid Bay (36% of area); and (3) the polyhaline Lower Bay (53% of area). A distinct regional trend in NEM was observed along this salinity gradient, with net here(atrophy (NEM = 87 g C m-2 yr-1) in the Upper Bay, balanced metabolism in the Mid Bay and net autotrophy (NEM = +92 g C m-2 yr-1) in the Lower Bay. As a consequence of overall net autotrophy, the ratio of dissolved inorganic nitrogen (DIN) to total organic nitrogen (TON) changed from DIN:TON = 5.1 for riverine inputs to DIN:TON = 0.04 for water exported to the ocean. A striking feature of this organic C mass-balance was the relative dominance of biologically mediated metabolic fluxes compared to physical transport fluxes. The overall ratio of physical TOC inputs (1) to biotic primary production (P) was 0.08 for the whole estuary, but varied dramatically from 2.3 in the Upper Bay to 0.03 in the Mid and Lower Bay regions. Similarly, ecosystem respiration was

  20. Metabolism of Mannose in Cultured Primary Rat Neurons.

    Science.gov (United States)

    Rastedt, Wiebke; Blumrich, Eva-Maria; Dringen, Ralf

    2017-08-01

    Glucose is the main peripheral substrate for energy production in the brain. However, as other hexoses are present in blood and cerebrospinal fluid, we have investigated whether neurons have the potential to metabolize, in addition to glucose, also the hexoses mannose, fructose or galactose. Incubation of primary cerebellar granule neurons in the absence of glucose caused severe cell toxicity within 24 h, which could not be prevented by application of galactose or fructose, while the cells remained viable during incubation in the presence of either mannose or glucose. In addition, cultured neurons produced substantial and almost identical amounts of lactate after exposure to either glucose or mannose, while lactate production was low in the presence of fructose and hardly detectable during incubations without hexoses or with galactose as carbon source. Determination of the K M values of hexokinase in lysates of cultured neurons for the hexoses revealed values in the micromolar range for mannose (32 ± 2 µM) and glucose (59 ± 10 µM) and in the millimolar range for fructose (4.4 ± 2.3 mM), demonstrating that mannose is efficiently phosphorylated by neuronal hexokinase. Finally, cultured neurons contained reasonable specific activity of the enzyme phosphomannose isomerase, which is required for isomerization of the hexokinase product mannose-6-phosphate into the glycolysis intermediate fructose-6-phosphate. These data demonstrate that cultured cerebellar granule neurons have the potential and express the required enzymes to efficiently metabolize mannose, while galactose and fructose serve at best poorly as extracellular carbon sources for neurons.

  1. Ecological network analysis for carbon metabolism of eco-industrial parks: a case study of a typical eco-industrial park in Beijing.

    Science.gov (United States)

    Lu, Yi; Chen, Bin; Feng, Kuishuang; Hubacek, Klaus

    2015-06-16

    Energy production and industrial processes are crucial economic sectors accounting for about 62% of greenhouse gas (GHG) emissions globally in 2012. Eco-industrial parks are practical attempts to mitigate GHG emissions through cooperation among businesses and the local community in order to reduce waste and pollution, efficiently share resources, and help with the pursuit of sustainable development. This work developed a framework based on ecological network analysis to trace carbon metabolic processes in eco-industrial parks and applied it to a typical eco-industrial park in Beijing. Our findings show that the entire metabolic system is dominated by supply of primary goods from the external environment and final demand. The more carbon flows through a sector, the more influence it would exert upon the whole system. External environment and energy providers are the most active and dominating part of the carbon metabolic system, which should be the first target to mitigate emissions by increasing efficiencies. The carbon metabolism of the eco-industrial park can be seen as an evolutionary system with high levels of efficiency, but this may come at the expense of larger levels of resilience. This work may provide a useful modeling framework for low-carbon design and management of industrial parks.

  2. The effects of phosphorus limitation on carbon metabolism in diatoms.

    Science.gov (United States)

    Brembu, Tore; Mühlroth, Alice; Alipanah, Leila; Bones, Atle M

    2017-09-05

    Phosphorus is an essential element for life, serving as an integral component of nucleic acids, lipids and a diverse range of other metabolites. Concentrations of bioavailable phosphorus are low in many aquatic environments. Microalgae, including diatoms, apply physiological and molecular strategies such as phosphorus scavenging or recycling as well as adjusting cell growth in order to adapt to limiting phosphorus concentrations. Such strategies also involve adjustments of the carbon metabolism. Here, we review the effect of phosphorus limitation on carbon metabolism in diatoms. Two transcriptome studies are analysed in detail, supplemented by other transcriptome, proteome and metabolite data, to gain an overview of different pathways and their responses. Phosphorus, nitrogen and silicon limitation responses are compared, and similarities and differences discussed. We use the current knowledge to propose a suggestive model for the carbon flow in phosphorus-replete and phosphorus-limited diatom cells.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Authors.

  3. Metabolic effects of Carbon Dioxide (CO 2 ) insufflation during ...

    African Journals Online (AJOL)

    Metabolic effects of Carbon Dioxide (CO 2 ) insufflation during laparoscopic surgery: changes in pH, arterial partial Pressure of Carbon Dioxide (PaCo 2 ) and End Tidal Carbon Dioxide (EtCO 2 ) ... Respiratory adjustments were done for EtCO2 levels above 60mmHg or SPO2 below 92% or adverse haemodynamic changes.

  4. Evolutionary Rate Heterogeneity of Primary and Secondary Metabolic Pathway Genes in Arabidopsis thaliana.

    Science.gov (United States)

    Mukherjee, Dola; Mukherjee, Ashutosh; Ghosh, Tapash Chandra

    2015-11-10

    Primary metabolism is essential to plants for growth and development, and secondary metabolism helps plants to interact with the environment. Many plant metabolites are industrially important. These metabolites are produced by plants through complex metabolic pathways. Lack of knowledge about these pathways is hindering the successful breeding practices for these metabolites. For a better knowledge of the metabolism in plants as a whole, evolutionary rate variation of primary and secondary metabolic pathway genes is a prerequisite. In this study, evolutionary rate variation of primary and secondary metabolic pathway genes has been analyzed in the model plant Arabidopsis thaliana. Primary metabolic pathway genes were found to be more conserved than secondary metabolic pathway genes. Several factors such as gene structure, expression level, tissue specificity, multifunctionality, and domain number are the key factors behind this evolutionary rate variation. This study will help to better understand the evolutionary dynamics of plant metabolism. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Photosystem II excitation pressure and photosynthetic carbon metabolism in Chlorella vulgaris

    International Nuclear Information System (INIS)

    Savitch, L.V.; Maxwell, D.P.; Huner, N.P.A.

    1996-01-01

    Chlorella vulgaris grown at 5 degrees C/150 micromoles m -2 s -1 mimics cells grown under high irradiance (27 degrees C/2200 micromoles m -2 s -1 ). This has been rationalized through the suggestion that both populations of cells were exposed to comparable photosystem II (PSII) excitation pressures measured as the chlorophyll a fluorescence quenching parameter, 1 - qP (D.P. Maxwell, S. Falk, N.P.A. Huner [1995] Plant Physiol 107: 687-694). To assess the possible role(s) of feedback mechanisms on PSII excitation pressure, stromal and cytosolic carbon metabolism were examined. Sucrose phosphate synthase and fructose-1,6-bisphosphatase activities as well as the ratios of fructose-1,6-bisphosphate/fructose-6 phosphate and sucrose/starch indicated that cells grown at 27 degrees C/2200 micromoles m -2 s -1 appeared to exhibit a restriction in starch metabolism. In contrast, cells grown at 5 degrees C/150 micromoles-1 m -2 s -1 appeared to exhibit a restriction in the sucrose metabolism based on decreased cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase activities as well as a low sucrose/starch ratio. These metabolic restrictions may feedback on photosynthetic electron transport and, thus, contribute to the observed PSII excitation pressure. We conclude that, although PSII excitation pressure may reflect redox regulation of photosynthetic acclimation to light and temperature in C. vulgaris, it cannot be considered the primary redox signal. Alternative metabolic sensing/signaling mechanisms are discussed

  6. Proteins involved in flor yeast carbon metabolism under biofilm formation conditions.

    Science.gov (United States)

    Moreno-García, Jaime; García-Martínez, Teresa; Moreno, Juan; Mauricio, Juan Carlos

    2015-04-01

    A lack of sugars during the production of biologically aged wines after fermentation of grape must causes flor yeasts to metabolize other carbon molecules formed during fermentation (ethanol and glycerol, mainly). In this work, a proteome analysis involving OFFGEL fractionation prior to LC/MS detection was used to elucidate the carbon metabolism of a flor yeast strain under biofilm formation conditions (BFC). The results were compared with those obtained under non-biofilm formation conditions (NBFC). Proteins associated to processes such as non-fermentable carbon uptake, the glyoxylate and TCA cycles, cellular respiration and inositol metabolism were detected at higher concentrations under BFC than under the reference conditions (NBFC). This study constitutes the first attempt at identifying the flor yeast proteins responsible for the peculiar sensory profile of biologically aged wines. A better metabolic knowledge of flor yeasts might facilitate the development of effective strategies for improved production of these special wines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Molecular Basis of Microbial One-Carbon Metabolism 2008 Gordon Research Conference (July 20-25, 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Stephen W. Ragsdale

    2009-08-12

    One-carbon (C-1) compounds play a central role in microbial metabolism. C-1 compounds include methane, carbon monoxide, CO2, and methanol as well as coenzyme-bound one-carbon compounds (methyl-B12, CH3-H4folate, etc). Such compounds are of broad global importance because several C-1 compounds (e.g., CH4) are important energy sources, some (e.g., CO2 and CH4) are potent greenhouse gases, and others (e.g., CH2Cl2) are xenobiotics. They are central in pathways of energy metabolism and carbon fixation by microbes and many are of industrial interest. Research on the pathways of one-carbon metabolism has added greatly to our understanding of evolution, structural biology, enzyme mechanisms, gene regulation, ecology, and applied biology. The 2008 meeting will include recent important findings in the following areas: (a) genomics, metagenomics, and proteomic studies that have expanded our understanding of autotrophy and C-1 metabolism and the evolution of these pathways; (b) redox regulation of carbon cycles and the interrelationship between the carbon cycle and other biogeochemical cycles (sulfur, nitrogen, oxygen); (c) novel pathways for carbon assimilation; (d) biotechnology related to C-1 metabolism; (e) novel enzyme mechanisms including channeling of C-1 intermediates during metabolism; and (f) the relationship between metal homeostasis and the global carbon cycle. The conference has a diverse and gender-balanced slate of speakers and session leaders. The wide variety of disciplines brought to the study of C-1 metabolism make the field an excellent one in which to train young researchers.

  8. Towards a sustainable bio-based economy: Redirecting primary metabolism to new products with plant synthetic biology.

    Science.gov (United States)

    Shih, Patrick M

    2018-08-01

    Humans have domesticated many plant species as indispensable sources of food, materials, and medicines. The dawning era of synthetic biology represents a means to further refine, redesign, and engineer crops to meet various societal and industrial needs. Current and future endeavors will utilize plants as the foundation of a bio-based economy through the photosynthetic production of carbohydrate feedstocks for the microbial fermentation of biofuels and bioproducts, with the end goal of decreasing our dependence on petrochemicals. As our technological capabilities improve, metabolic engineering efforts may expand the utility of plants beyond sugar feedstocks through the direct production of target compounds, including pharmaceuticals, renewable fuels, and commodity chemicals. However, relatively little work has been done to fully realize the potential in redirecting central carbon metabolism in plants for the engineering of novel bioproducts. Although our ability to rationally engineer and manipulate plant metabolism is in its infancy, I highlight some of the opportunities and challenges in applying synthetic biology towards engineering plant primary metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Genetic response to metabolic fluctuations: correlation between central carbon metabolism and DNA replication in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Szalewska-Pałasz Agnieszka

    2011-03-01

    Full Text Available Abstract Background Until now, the direct link between central carbon metabolism and DNA replication has been demonstrated only in Bacillus. subtilis. Therefore, we asked if this is a specific phenomenon, characteristic for this bacterium and perhaps for its close relatives, or a more general biological rule. Results We found that temperature-sensitivity of mutants in particular genes coding for replication proteins could be suppressed by deletions of certain genes coding for enzymes of the central carbon metabolism. Namely, the effects of dnaA46(ts mutation could be suppressed by dysfunction of pta or ackA, effects of dnaB(ts by dysfunction of pgi or pta, effects of dnaE486(ts by dysfunction of tktB, effects of dnaG(ts by dysfunction of gpmA, pta or ackA, and effects of dnaN159(ts by dysfunction of pta or ackA. The observed suppression effects were not caused by a decrease in bacterial growth rate. Conclusions The genetic correlation exists between central carbon metabolism and DNA replication in the model Gram-negative bacterium, E. coli. This link exists at the steps of initiation and elongation of DNA replication, indicating the important global correlation between metabolic status of the cell and the events leading to cell reproduction.

  10. Nutrients in Energy and One-Carbon Metabolism: Learning from Metformin Users

    Directory of Open Access Journals (Sweden)

    Fedra Luciano-Mateo

    2017-02-01

    Full Text Available Metabolic vulnerability is associated with age-related diseases and concomitant co-morbidities, which include obesity, diabetes, atherosclerosis and cancer. Most of the health problems we face today come from excessive intake of nutrients and drugs mimicking dietary effects and dietary restriction are the most successful manipulations targeting age-related pathways. Phenotypic heterogeneity and individual response to metabolic stressors are closely related food intake. Understanding the complexity of the relationship between dietary provision and metabolic consequences in the long term might provide clinical strategies to improve healthspan. New aspects of metformin activity provide a link to many of the overlapping factors, especially the way in which organismal bioenergetics remodel one-carbon metabolism. Metformin not only inhibits mitochondrial complex 1, modulating the metabolic response to nutrient intake, but also alters one-carbon metabolic pathways. Here, we discuss findings on the mechanism(s of action of metformin with the potential for therapeutic interpretations.

  11. A Natural Light/Dark Cycle Regulation of Carbon-Nitrogen Metabolism and Gene Expression in Rice Shoots.

    Science.gov (United States)

    Li, Haixing; Liang, Zhijun; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2016-01-01

    Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites, and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00, and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate, and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism, and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention, and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799) were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant growth and

  12. A natural light/dark cycle regulation of carbon-nitrogen metabolism and gene expression in rice shoots

    Directory of Open Access Journals (Sweden)

    Haixing Li

    2016-08-01

    Full Text Available Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00 and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799 were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant

  13. Annual benthic metabolism and organic carbon fluxes in a semi-enclosed Mediterranean bay dominated by the macroalgae Caulerpa prolifera.

    Directory of Open Access Journals (Sweden)

    Sergio eRuiz-Halpern

    2014-12-01

    Full Text Available Coastal areas play an important role on carbon cycling. Elucidating the dynamics on the production, transport and fate of organic carbon is relevant to gain a better understanding of the role coastal areas play in the global carbon budget. Here, we assess the metabolic status and associated organic carbon fluxes of a semi-enclosed Mediterranean bay supporting a meadow of Caulerpa prolifera. We test whether the EDOC pool is a significant component of the organic carbon pool and associated fluxes in this ecosystem. The Bay of Portocolom was in net metabolic balance on a yearly basis, but heterotrophic during the summer months. Community respiration (CR was positively correlated to C. prolifera biomass, while net community production (NCP had a negative correlation. The benthic compartment represented, on average, 72.6 ± 5.2 % of CR and 86.8 ± 4.5 % of gross primary production (GPP. Dissolved organic carbon (DOC production peaked in summer and was always positive, with the incubations performed in the dark almost doubling the flux of those performed in the light. Exchangeable dissolved organic carbon (EDOC, however, oscillated between production and uptake, being completely recycled within the system and representing around 14% of the DOC flux. The pools of bottom and surface DOC were high for an oligotrophic environment, and were positively correlated to the pool of EDOC. Thus, despite being in metabolic balance, this ecosystem acted as a conduit for organic carbon (OC, as it is able to export OC to adjacent areas derived from allochtonous inputs during heterotrophic conditions. These inputs likely come from groundwater discharge, human activity in the watershed, delivered to the sediments through the high capacity of C. prolifera to remove particles from the water column, and from the air-water exchange of EDOC, demonstrating that these communities are a major contributor to the cycling of OC in coastal embayments.

  14. Ecosystem carbon partitioning: aboveground net primary productivity correlates with the root carbon input in different land use types of Southern Alps

    Science.gov (United States)

    Rodeghiero, Mirco; Martinez, Cristina; Gianelle, Damiano; Camin, Federica; Zanotelli, Damiano; Magnani, Federico

    2013-04-01

    Terrestrial plant carbon partitioning to above- and below-ground compartments can be better understood by integrating studies on biomass allocation and estimates of root carbon input based on the use of stable isotopes. These experiments are essential to model ecosystem's metabolism and predict the effects of global change on carbon cycling. Using in-growth soil cores in conjunction with the 13C natural abundance method we quantified net plant-derived root carbon input into the soil, which has been pointed out as the main unaccounted NPP (net primary productivity) component. Four land use types located in the Trentino Region (northern Italy) and representing a range of aboveground net primary productivity (ANPP) values (155-868 gC m-2 y-1) were investigated: conifer forest, apple orchard, vineyard and grassland. Cores, filled with soil of a known C4 isotopic signature were inserted at 18 sampling points for each site and left in place for twelve months. After extraction, cores were analysed for %C and d13C, which were used to calculate the proportion of new plant-derived root C input by applying a mass balance equation. The GPP (gross primary productivity) of each ecosystem was determined by the eddy covariance technique whereas ANPP was quantified with a repeated inventory approach. We found a strong and significant relationship (R2 = 0.93; p=0.03) between ANPP and the fraction of GPP transferred to the soil as root C input across the investigated sites. This percentage varied between 10 and 25% of GPP with the grassland having the lowest value and the apple orchard the highest. Mechanistic ecosystem carbon balance models could benefit from this general relationship since ANPP is routinely and easily measured at many sites. This result also suggests that by quantifying site-specific ANPP, root carbon input can be reliably estimated, as opposed to using arbitrary root/shoot ratios which may under- or over-estimate C partitioning.

  15. Lipids Reprogram Metabolism to Become a Major Carbon Source for Histone Acetylation

    DEFF Research Database (Denmark)

    McDonnell, Eoin; Crown, Scott B; Fox, Douglas B

    2016-01-01

    Cells integrate nutrient sensing and metabolism to coordinate proper cellular responses to a particular nutrient source. For example, glucose drives a gene expression program characterized by activating genes involved in its metabolism, in part by increasing glucose-derived histone acetylation....... Here, we find that lipid-derived acetyl-CoA is a major source of carbon for histone acetylation. Using (13)C-carbon tracing combined with acetyl-proteomics, we show that up to 90% of acetylation on certain histone lysines can be derived from fatty acid carbon, even in the presence of excess glucose...

  16. Central carbon metabolism influences cellulase production in Bacillus licheniformis.

    Science.gov (United States)

    Wang, J; Liu, S; Li, Y; Wang, H; Xiao, S; Li, C; Liu, B

    2018-01-01

    Bacillus licheniformis that can produce cellulase including endo glucanase and glucosidase is an important industrial microbe for cellulose degradation. The purpose of this research was to assess the effect of endo glucanase gene bglC and glucosidase gene bglH on the central metabolic flux in B. licheniformis. bglC and bglH were knocked out using homologous recombination method, respectively, and the corresponding knockout strains were obtained for 13 C metabolic flux analysis. A significant change was observed in metabolic fluxes after 13 C metabolic flux ratio analysis. In both of the knockout strains, the increased fluxes of the pentose phosphate pathway and malic enzyme reaction enabled an elevated supply of NADPH which provided enough reducing power for the in vivo synthesis reactions. The fluxes through tricarboxylic acid cycle and anaplerotic reactions increased fast in the two knockout strains, which meant more energy generated. The changed fluxes in central carbon metabolism provided a holistic view of the physiological status in B. licheniformis and possible targets for further strain engineering. Cellulase is very important in the field of agriculture and bioenergy because of its degrading effect on cellulosic biomass. This study presented the effect of central carbon metabolism on cellulase production in Bacillus licheniformis. The study also provided a holistic view of the physiological status in B. licheniformis. The shifted metabolism provided a quantitative evaluation of the biosynthesis of cellulase and a priority ranked target list for further strain engineering. © 2017 The Society for Applied Microbiology.

  17. Carbon balance studies of glucose metabolism in rat cerebral cortical synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, U; Brand, K

    1982-07-01

    Synaptosomes were isolated from rat cerebral cortex and incubated with (U-/sup 14/C)-, (1-/sup 14/C)- or (6-/sup 14/C)glucose. Glucose utilization and the metabolic partitioning of glucose carbon in products were determined by isotopic methods. From the data obtained a carbon balance was constructed, showing lactate to be the main product of glucose metabolism, followed by CO/sup 2/, amino acids and pyruvate. Measuring the release of /sup 14/CO/sup 2/ from glucose labelled in three different positions allowed the construction of a flow diagram of glucose carbon atoms in synaptosomes, which provides information about the contribution of the various pathways of glucose metabolism. Some 2% of glucose utilized was calculated to be degraded via the pentose phosphate pathway. Addition of chlorpromazine, imipramine or haloperidol at concentrations of 10(-5) M reduced glucose utilisation by 30% without changing the distribution pattern of radioactivity in the various products.

  18. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions.

    Science.gov (United States)

    Berger, Susanne; Sinha, Alok K; Roitsch, Thomas

    2007-01-01

    Phytopathogen infection leads to changes in secondary metabolism based on the induction of defence programmes as well as to changes in primary metabolism which affect growth and development of the plant. Therefore, pathogen attack causes crop yield losses even in interactions which do not end up with disease or death of the plant. While the regulation of defence responses has been intensively studied for decades, less is known about the effects of pathogen infection on primary metabolism. Recently, interest in this research area has been growing, and aspects of photosynthesis, assimilate partitioning, and source-sink regulation in different types of plant-pathogen interactions have been investigated. Similarly, phytopathological studies take into consideration the physiological status of the infected tissues to elucidate the fine-tuned infection mechanisms. The aim of this review is to give a summary of recent advances in the mutual interrelation between primary metabolism and pathogen infection, as well as to indicate current developments in non-invasive techniques and important strategies of combining modern molecular and physiological techniques with phytopathology for future investigations.

  19. Systems assessment of transcriptional regulation on central carbon metabolism by Cra and CRP.

    Science.gov (United States)

    Kim, Donghyuk; Seo, Sang Woo; Gao, Ye; Nam, Hojung; Guzman, Gabriela I; Cho, Byung-Kwan; Palsson, Bernhard O

    2018-04-06

    Two major transcriptional regulators of carbon metabolism in bacteria are Cra and CRP. CRP is considered to be the main mediator of catabolite repression. Unlike for CRP, in vivo DNA binding information of Cra is scarce. Here we generate and integrate ChIP-exo and RNA-seq data to identify 39 binding sites for Cra and 97 regulon genes that are regulated by Cra in Escherichia coli. An integrated metabolic-regulatory network was formed by including experimentally-derived regulatory information and a genome-scale metabolic network reconstruction. Applying analysis methods of systems biology to this integrated network showed that Cra enables optimal bacterial growth on poor carbon sources by redirecting and repressing glycolysis flux, by activating the glyoxylate shunt pathway, and by activating the respiratory pathway. In these regulatory mechanisms, the overriding regulatory activity of Cra over CRP is fundamental. Thus, elucidation of interacting transcriptional regulation of core carbon metabolism in bacteria by two key transcription factors was possible by combining genome-wide experimental measurement and simulation with a genome-scale metabolic model.

  20. An Integrative Approach to Energy Carbon and Redox Metabolism In Cyanobacterium Synechocystis

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ross Overbeek

    2003-06-30

    The main objectives for the first year were to produce a detailed metabolic reconstruction of synechocystis sp.pcc6803 especially in interrelated arrears of photosynthesis respiration and central carbon metabolism to support a more complete understanding and modeling of this organism. Additionally, IG, Inc. provided detailed bioinformatic analysis of selected functional systems related to carbon and energy generation and utilization, and of the corresponding pathways functional roles and individual genes to support wet lab experiments by collaborators.

  1. Overview of the physiological ecology of carbon metabolism in seagrasses.

    Science.gov (United States)

    Touchette; Burkholder

    2000-07-30

    carbon sink to source. Unlike terrestrial plants, SPS apparently is not light-activated, and is positively influenced by increasing temperature and salinity. This response may indicate an osmotic adjustment in marine angiosperms, analogous to increased SPS activity as a cryoprotectant response in terrestrial non-halophytic plants. Sucrose synthase (SS, involved in sucrose metabolism and degradation in sink tissues) of both above- and belowground tissues decreases with tissue age. In belowground tissues, SS activity increases under low oxygen availability and with increasing temperatures, likely indicating increased metabolic carbohydrate demand. Respiration in seagrasses is primarily influenced by temperature and, in belowground tissues, by oxygen availability. Aboveground tissues (involved in C assimilation and other energy-costly processes) generally have higher respiration rates than belowground (mostly storage) tissues. Respiration rates increase with increasing temperature (in excess of 40 degrees C) and increasing water-column nitrate enrichment (Z. marina), which may help to supply the energy and carbon needed to assimilate and reduce nitrate. Seagrasses translocate oxygen from photosynthesizing leaves to belowground tissues for aerobic respiration. During darkness or extended periods of low light, belowground tissues can sustain extended anerobiosis. Documented alternate fermentation pathways have yielded high alanine, a metabolic 'strategy' that would depress production of the more toxic product ethanol, while conserving carbon skeletons and assimilated nitrogen. In comparison to the wealth of information available for terrestrial plants, little is known about the physiological ecology of seagrasses in carbon acquisition and metabolism. Many aspects of their carbon metabolism - controls by interactive environmental factors; and the role of carbon metabolism in salt tolerance, growth under resource-limited conditions, and survival through periods of dormancy

  2. Elucidation of primary metabolic pathways in Aspergillus species: orphaned research in characterizing orphan genes.

    Science.gov (United States)

    Andersen, Mikael Rørdam

    2014-11-01

    Primary metabolism affects all phenotypical traits of filamentous fungi. Particular examples include reacting to extracellular stimuli, producing precursor molecules required for cell division and morphological changes as well as providing monomer building blocks for production of secondary metabolites and extracellular enzymes. In this review, all annotated genes from four Aspergillus species have been examined. In this process, it becomes evident that 80-96% of the genes (depending on the species) are still without verified function. A significant proportion of the genes with verified metabolic functions are assigned to secondary or extracellular metabolism, leaving only 2-4% of the annotated genes within primary metabolism. It is clear that primary metabolism has not received the same attention in the post-genomic area as many other research areas--despite its role at the very centre of cellular function. However, several methods can be employed to use the metabolic networks in tandem with comparative genomics to accelerate functional assignment of genes in primary metabolism. In particular, gaps in metabolic pathways can be used to assign functions to orphan genes. In this review, applications of this from the Aspergillus genes will be examined, and it is proposed that, where feasible, this should be a standard part of functional annotation of fungal genomes. © The Author 2014. Published by Oxford University Press.

  3. Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures

    Directory of Open Access Journals (Sweden)

    Vogel Hans J

    2008-01-01

    Full Text Available Abstract Background Opium poppy (Papaver somniferum produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a model system to study plant alkaloid metabolism. The plant is cultivated as the only commercial source of the narcotic analgesics morphine and codeine, but also produces many other alkaloids including the antimicrobial agent sanguinarine. Modulations in plant secondary metabolism as a result of environmental perturbations are often associated with the altered regulation of other metabolic pathways. As a key component of our functional genomics platform for opium poppy we have used proton nuclear magnetic resonance (1H NMR metabolomics to investigate the interplay between primary and secondary metabolism in cultured opium poppy cells treated with a fungal elicitor. Results Metabolite fingerprinting and compound-specific profiling showed the extensive reprogramming of primary metabolic pathways in association with the induction of alkaloid biosynthesis in response to elicitor treatment. Using Chenomx NMR Suite v. 4.6, a software package capable of identifying and quantifying individual compounds based on their respective signature spectra, the levels of 42 diverse metabolites were monitored over a 100-hour time course in control and elicitor-treated opium poppy cell cultures. Overall, detectable and dynamic changes in the metabolome of elicitor-treated cells, especially in cellular pools of carbohydrates, organic acids and non-protein amino acids were detected within 5 hours after elicitor treatment. The metabolome of control cultures also showed substantial modulations 80 hours after the start of the time course, particularly in the levels of amino acids and phospholipid pathway intermediates. Specific flux modulations were detected throughout primary metabolism, including glycolysis, the tricarboxylic acid cycle, nitrogen assimilation, phospholipid/fatty acid synthesis and the shikimate pathway, all of which

  4. Partitioning between primary and secondary metabolism of carbon allocated to roots in four maize genotypes under water deficit and its effects on productivity

    Directory of Open Access Journals (Sweden)

    Alyne Oliveira Lavinsky

    2015-10-01

    Full Text Available Plants may respond to drought by altering biomass allocation to shoots and roots or by changing the metabolic activities in these organs. To determine how drought changes the partitioning of carbon allocated to growth and secondary metabolism in maize roots and how it affects photosynthesis (A and productivity in maize, we evaluated leaf gas exchange, yield componentes, root morphology, and primary and secondary metabolites including total soluble sugars (TSS, starch (S, phenolics (PHE, and lignin (LIG. Data were collected from pot-grown plants of four maize genotypes: BRS 1010 and 2B710 (sensitive genotypes and DKB390 and BRS1055 (tolerant genotypes under two soil water tensions: field capacity (FC, − 18 kPa and water deficit (WD, − 138 kPa. WD was applied at the pre-flowering stage for 12 days and then the water supply was restored and maintained at optimum levels until the end of the cycle. For genotype BRS 1055 under FC, the greatest A did not result in greater grain biomass (DGB because the accumulated photoassimilates had already filled the cells, and thus the excessive TSS synthesized in leaves was allocated to roots in large amounts. However, the sharp decrease in A caused by WD imposition in this genotype did not affect the influx pressure of leaf TSS, which was due largely to conversion of primary metabolites to PHE compounds to increase the length of fine roots. In leaves of DKB390 under WD, both S and TSS were reduced, whereas PHE were increased to prevent excessive water loss and xylem cavitation. Under WD, both BRS1010 and 2B710 genotypes displayed reduced allocation of biomass to shoots and roots and LIG content in leaves, as well as lower A and DGB values. In BRS1010 this response was coupled to S decrease in leaves and TSS increase in roots, whereas in 2B710 there was a concomitant S increase in roots.

  5. Metabolic Flux Analysis of Shewanella spp. Reveals Evolutionary Robustness in Central Carbon Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Martin, Hector Garcia; Dehal, Paramvir S.; Deutschbauer, Adam; Llora, Xavier; Meadows, Adam; Arkin, Adam; Keasling, Jay D.

    2009-08-19

    Shewanella spp. are a group of facultative anaerobic bacteria widely distributed in marine and fresh-water environments. In this study, we profiled the central metabolic fluxes of eight recently sequenced Shewanella species grown under the same condition in minimal med-ium with [3-13C] lactate. Although the tested Shewanella species had slightly different growth rates (0.23-0.29 h31) and produced different amounts of acetate and pyruvate during early exponential growth (pseudo-steady state), the relative intracellular metabolic flux distributions were remarkably similar. This result indicates that Shewanella species share similar regulation in regard to central carbon metabolic fluxes under steady growth conditions: the maintenance of metabolic robustness is not only evident in a single species under genetic perturbations (Fischer and Sauer, 2005; Nat Genet 37(6):636-640), but also observed through evolutionary related microbial species. This remarkable conservation of relative flux profiles through phylogenetic differences prompts us to introduce the concept of metabotype as an alternative scheme to classify microbial fluxomics. On the other hand, Shewanella spp. display flexibility in the relative flux profiles when switching their metabolism from consuming lactate to consuming pyruvate and acetate.

  6. Novel members of the Cra regulon involved in carbon metabolism in Escherichia coli.

    Science.gov (United States)

    Shimada, Tomohiro; Yamamoto, Kaneyoshi; Ishihama, Akira

    2011-02-01

    Cra (catabolite repressor activator) is a global regulator of the genes for carbon metabolism in Escherichia coli. To gain insights into the regulatory roles of Cra, attempts were made to identify the whole set of regulation targets using an improved genomic SELEX (systematic evolution of ligands by exponential enrichment) system. Surprisingly, a total of 164 binding sites were identified for Cra, 144 (88%) of which were newly identified. The majority of known targets were included in the SELEX chip pattern. The promoters examined by the lacZ reporter assay in vivo were all regulated by Cra. These two lines of evidence indicate that a total of as many as 178 promoters are under the control of Cra. The majority of Cra targets are the genes coding for the enzymes involved in central carbon metabolism, covering all the genes for the enzymes involved in glycolysis and metabolism downstream of glycolysis, including the tricarboxylic acid (TCA) cycle and aerobic respiration. Taken together, we propose that Cra plays a key role in balancing the levels of the enzymes for carbon metabolism.

  7. Aerial and underwater carbon metabolism of a

    NARCIS (Netherlands)

    Clavier, J.; Chauvaud, L.; Carlier, A.; Amice, E.; van der Geest, M.; Labrosse, P.; Diagne, A.; Hily, H.

    2011-01-01

    Community respiration and primary production were measured in a dense intertidal Zostera noltii bed on the Banc d’Arguin, Mauritania (West Africa) under aerial and submerged conditions. Metabolism was studied in situ in dark and transparent benthic chambers. CO2 fluxes in the air were measured over

  8. SELENIUM MODIFIES THE METABOLISM AND TOXICITY OF ARSENIC IN PRIMARY RAT HEPATOCYTES

    Science.gov (United States)

    ABSTRACTSelenium Modifies the Metabolism and Toxicity of Arsenic in Primary Rat Hepatocytes. Miroslav Styblo, David J. Thomas (2000) Toxicol. Appl. Pharmacol. Arsenic and selenium are metalloids with similar chemical properties and metabolic fates. Inorganic arsenic (iAs...

  9. Common motifs in the response of cereal primary metabolism to fungal pathogens are not based on similar transcriptional reprogramming

    Directory of Open Access Journals (Sweden)

    Lars Matthias Voll

    2011-08-01

    Full Text Available During compatible interactions with their host plants, biotrophic plant pathogens subvert host metabolism to ensure the sustained provision of nutrient assimilates by the colonized host cells. To investigate, whether common motifs can be revealed in the response of primary carbon and nitrogen metabolism towards colonization with biotrophic fungi in cereal leaves, we have conducted a combined metabolome and transcriptome study of three quite divergent pathosystems, the barley powdery mildew fungus (Blumeria graminis f.sp. hordei, the corn smut fungus Ustilago maydis and the maize anthracnose fungus Colletotrichum graminicola, the latter being a hemibiotroph that only exhibits an initial biotrophic phase during its establishment.Based on the analysis of 42 water-soluble metabolites, we were able to separate early biotrophic from late biotrophic interactions by hierarchical cluster analysis and principal component analysis, irrespective of the plant host. Interestingly, the corresponding transcriptome dataset could not discriminate between these stages of biotrophy, irrespective, of whether transcript data for genes of central metabolism or the entire transcriptome dataset was used. Strong differences in the transcriptional regulation of photosynthesis, glycolysis, the TCA cycle, lipid biosynthesis, and cell wall metabolism were observed between the pathosystems. Increased contents of Gln, Asn, and glucose as well as diminished contents of PEP and 3-PGA were common to early post-penetration stages of all interactions. On the transcriptional level, genes of the TCA cycle, nucleotide energy metabolism and amino acid biosynthesis exhibited consistent trends among the compared biotrophic interactions, identifying the requirement for metabolic energy and the rearrangement of amino acid pools as common transcriptional motifs during early biotrophy. Both metabolome and transcript data were employed to generate models of leaf primary metabolism during

  10. γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots.

    Science.gov (United States)

    Renault, Hugues; El Amrani, Abdelhak; Berger, Adeline; Mouille, Grégory; Soubigou-Taconnat, Ludivine; Bouchereau, Alain; Deleu, Carole

    2013-05-01

    Environmental constraints challenge cell homeostasis and thus require a tight regulation of metabolic activity. We have previously reported that the γ-aminobutyric acid (GABA) metabolism is crucial for Arabidopsis salt tolerance as revealed by the NaCl hypersensitivity of the GABA transaminase (GABA-T, At3g22200) gaba-t/pop2-1 mutant. In this study, we demonstrate that GABA-T deficiency during salt stress causes root and hypocotyl developmental defects and alterations of cell wall composition. A comparative genome-wide transcriptional analysis revealed that expression levels of genes involved in carbon metabolism, particularly sucrose and starch catabolism, were found to increase upon the loss of GABA-T function under salt stress conditions. Consistent with the altered mutant cell wall composition, a number of cell wall-related genes were also found differentially expressed. A targeted quantitative analysis of primary metabolites revealed that glutamate (GABA precursor) accumulated while succinate (the final product of GABA metabolism) significantly decreased in mutant roots after 1 d of NaCl treatment. Furthermore, sugar concentration was twofold reduced in gaba-t/pop2-1 mutant roots compared with wild type. Together, our results provide strong evidence that GABA metabolism is a major route for succinate production in roots and identify GABA as a major player of central carbon adjustment during salt stress. © 2012 Blackwell Publishing Ltd.

  11. Impact of biodiversity-climate futures on primary production and metabolism in a model benthic estuarine system.

    Science.gov (United States)

    Hicks, Natalie; Bulling, Mark T; Solan, Martin; Raffaelli, Dave; White, Piran C L; Paterson, David M

    2011-02-14

    Understanding the effects of anthropogenically-driven changes in global temperature, atmospheric carbon dioxide and biodiversity on the functionality of marine ecosystems is crucial for predicting and managing the associated impacts. Coastal ecosystems are important sources of carbon (primary production) to shelf waters and play a vital role in global nutrient cycling. These systems are especially vulnerable to the effects of human activities and will be the first areas impacted by rising sea levels. Within these coastal ecosystems, microalgal assemblages (microphytobenthos: MPB) are vital for autochthonous carbon fixation. The level of in situ production by MPB mediates the net carbon cycling of transitional ecosystems between net heterotrophic or autotrophic metabolism. In this study, we examine the interactive effects of elevated atmospheric CO(2) concentrations (370, 600, and 1000 ppmv), temperature (6°C, 12°C, and 18°C) and invertebrate biodiversity on MPB biomass in experimental systems. We assembled communities of three common grazing invertebrates (Hydrobia ulvae, Corophium volutator and Hediste diversicolor) in monoculture and in all possible multispecies combinations. This experimental design specifically addresses interactions between the selected climate change variables and any ecological consequences caused by changes in species composition or richness. The effects of elevated CO(2) concentration, temperature and invertebrate diversity were not additive, rather they interacted to determine MPB biomass, and overall this effect was negative. Diversity effects were underpinned by strong species composition effects, illustrating the importance of individual species identity. Overall, our findings suggest that in natural systems, the complex interactions between changing environmental conditions and any associated changes in invertebrate assemblage structure are likely to reduce MPB biomass. Furthermore, these effects would be sufficient to affect the

  12. Impact of biodiversity-climate futures on primary production and metabolism in a model benthic estuarine system

    Directory of Open Access Journals (Sweden)

    Raffaelli Dave

    2011-02-01

    Full Text Available Abstract Background Understanding the effects of anthropogenically-driven changes in global temperature, atmospheric carbon dioxide and biodiversity on the functionality of marine ecosystems is crucial for predicting and managing the associated impacts. Coastal ecosystems are important sources of carbon (primary production to shelf waters and play a vital role in global nutrient cycling. These systems are especially vulnerable to the effects of human activities and will be the first areas impacted by rising sea levels. Within these coastal ecosystems, microalgal assemblages (microphytobenthos: MPB are vital for autochthonous carbon fixation. The level of in situ production by MPB mediates the net carbon cycling of transitional ecosystems between net heterotrophic or autotrophic metabolism. In this study, we examine the interactive effects of elevated atmospheric CO2 concentrations (370, 600, and 1000 ppmv, temperature (6°C, 12°C, and 18°C and invertebrate biodiversity on MPB biomass in experimental systems. We assembled communities of three common grazing invertebrates (Hydrobia ulvae, Corophium volutator and Hediste diversicolor in monoculture and in all possible multispecies combinations. This experimental design specifically addresses interactions between the selected climate change variables and any ecological consequences caused by changes in species composition or richness. Results The effects of elevated CO2 concentration, temperature and invertebrate diversity were not additive, rather they interacted to determine MPB biomass, and overall this effect was negative. Diversity effects were underpinned by strong species composition effects, illustrating the importance of individual species identity. Conclusions Overall, our findings suggest that in natural systems, the complex interactions between changing environmental conditions and any associated changes in invertebrate assemblage structure are likely to reduce MPB biomass. Furthermore

  13. Chemical Constraints Governing the Origin of Metabolism: The Thermodynamic Landscape of Carbon Group Transformations

    Science.gov (United States)

    Weber, Arthur L.; Fonda, Mark (Technical Monitor)

    2001-01-01

    The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies were estimated for four types reactions of biochemical importance carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed that (1) when carbon-carbon bond cleavage involves two different types of functional groups, transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) the energy of carbon-carbon bond transformation is strongly dependent on the type of functional group that donates the shared electron-pair during cleavage, and the group that accepts the shared electron-pair during synthesis, and (3) the energetics of C-C bond transformation is determined primarily by the half-reaction energies of the couples: carbonyl/carboxylic acid, carboxylic acid/carbon dioxide, alcohol/carbonyl, and hydrocarbon/alcohol. The energy of hydrogen-transfer between carbon groups was found to depend on the functional group class of both the hydrogen-donor and hydrogen-acceptor. From these and other observations we concluded that the chemistry of the origin of metabolism (and to a lesser degree modem metabolism) is strongly constrained by the (1) limited disproportionation energy of organic substrates that can be dissipated in a few irreversible reactions, (2) the energy-dominance of few half-reaction couples in carbon-carbon bond transformation that establishes whether a chemical reaction is energetically irreversible, reversible or unfeasible, and (3) the dependence of the transformation-energy on the oxidation state of carbon groups (functional group type) which is

  14. Linking FRRF Derived Photophysiology with Carbon-based Primary Productivity: Insights from Concepts of Cellular Energy Allocation

    Science.gov (United States)

    Schuback, N.; Schallenberg, C.; Duckham, C.; Flecken, M.; Maldonado, M. T.; Tortell, P. D.

    2016-02-01

    Active chlorophyll a fluorescence approaches, including fast repetition rate fluorometry (FRRF), have the potential to provide estimates of phytoplankton primary productivity at unprecedented spatial and temporal resolution. FRRF-derived productivity rates are based on estimates of charge separation in photosystem II (ETRRCII), which must be converted into ecologically relevant units of carbon fixation. Understanding sources of variability in the coupling of ETRRCII and carbon fixation provides important physiological insight into phytoplankton photosynthesis, and is critical for the application of FRRF as a primary productivity measurement tool. We present data from a series of experiments during which we simultaneously measured phytoplankton carbon fixation and ETRRCII in the iron-limited NE subarctic Pacific. Our results show significant variability of the derived conversion factor (Ve:C/nPSII), with highest values observed under conditions of excess excitation pressure at the level of photosystem II, caused by high light and/or low iron. Our results will be discussed in the context of metabolic plasticity, which evolved in phytoplankton to simultaneously maximize growth and provide photoprotection under fluctuating light and limiting nutrient availabilities. Because the derived conversion factor is associated with conditions of excess light, it correlates with the expression of non-photochemical quenching (NPQ) in the pigment antenna, also derived from FRRF measurements. Our results demonstrate a significant correlation between NPQ and the conversion factor Ve:C/nPSII, and the potential of this relationship to improve FRRF-based estimates of phytoplankton carbon fixation rates is discussed.

  15. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86

    Science.gov (United States)

    Mohan, Karishma

    2017-01-01

    ABSTRACT Pseudomonas putida CSV86 degrades lignin-derived metabolic intermediates, viz., veratryl alcohol, ferulic acid, vanillin, and vanillic acid, as the sole sources of carbon and energy. Strain CSV86 also degraded lignin sulfonate. Cell respiration, enzyme activity, biotransformation, and high-pressure liquid chromatography (HPLC) analyses suggest that veratryl alcohol and ferulic acid are metabolized to vanillic acid by two distinct carbon source-dependent inducible pathways. Vanillic acid was further metabolized to protocatechuic acid and entered the central carbon pathway via the β-ketoadipate route after ortho ring cleavage. Genes encoding putative enzymes involved in the degradation were found to be present at fer, ver, and van loci. The transcriptional analysis suggests a carbon source-dependent cotranscription of these loci, substantiating the metabolic studies. Biochemical and quantitative real-time (qRT)-PCR studies revealed the presence of two distinct O-demethylases, viz., VerAB and VanAB, involved in the oxidative demethylation of veratric acid and vanillic acid, respectively. This report describes the various steps involved in metabolizing lignin-derived aromatic compounds at the biochemical level and identifies the genes involved in degrading veratric acid and the arrangement of phenylpropanoid metabolic genes as three distinct inducible transcription units/operons. This study provides insight into the bacterial degradation of lignin-derived aromatics and the potential of P. putida CSV86 as a suitable candidate for producing valuable products. IMPORTANCE Pseudomonas putida CSV86 metabolizes lignin and its metabolic intermediates as a carbon source. Strain CSV86 displays a unique property of preferential utilization of aromatics, including for phenylpropanoids over glucose. This report unravels veratryl alcohol metabolism and genes encoding veratric acid O-demethylase, hitherto unknown in pseudomonads, thereby providing new insight into the

  16. Low oxygen affects photophysiology and the level of expression of two-carbon metabolism genes in the seagrass Zostera muelleri.

    Science.gov (United States)

    Kim, Mikael; Brodersen, Kasper Elgetti; Szabó, Milán; Larkum, Anthony W D; Raven, John A; Ralph, Peter J; Pernice, Mathieu

    2018-05-01

    Seagrasses are a diverse group of angiosperms that evolved to live in shallow coastal waters, an environment regularly subjected to changes in oxygen, carbon dioxide and irradiance. Zostera muelleri is the dominant species in south-eastern Australia, and is critical for healthy coastal ecosystems. Despite its ecological importance, little is known about the pathways of carbon fixation in Z. muelleri and their regulation in response to environmental changes. In this study, the response of Z. muelleri exposed to control and very low oxygen conditions was investigated by using (i) oxygen microsensors combined with a custom-made flow chamber to measure changes in photosynthesis and respiration, and (ii) reverse transcription quantitative real-time PCR to measure changes in expression levels of key genes involved in C 4 metabolism. We found that very low levels of oxygen (i) altered the photophysiology of Z. muelleri, a characteristic of C 3 mechanism of carbon assimilation, and (ii) decreased the expression levels of phosphoenolpyruvate carboxylase and carbonic anhydrase. These molecular-physiological results suggest that regulation of the photophysiology of Z. muelleri might involve a close integration between the C 3 and C 4 , or other CO 2 concentrating mechanisms metabolic pathways. Overall, this study highlights that the photophysiological response of Z. muelleri to changing oxygen in water is capable of rapid acclimation and the dynamic modulation of pathways should be considered when assessing seagrass primary production.

  17. Control of fluxes towards antibiotics and the role of primary metabolism in production of antibiotics

    DEFF Research Database (Denmark)

    Gunnarsson, Nina; Eliasson Lantz, Anna; Nielsen, Jacob

    2004-01-01

    Yield improvements in antibiotic-producing strains have classically been obtained through random mutagenesis and screening. An attractive alternative to this strategy is the rational design of producer strains via metabolic engineering, an approach that offers the possibility to increase yields...... in the metabolic network. Here we describe and discuss available methods for identification of these steps, both in antibiotic biosynthesis pathways and in the primary metabolism, which serves as the supplier of precursors and cofactors for the secondary metabolism. Finally, the importance of precursor...... and cofactor supply from primary metabolism in the biosynthesis of different types of antibiotics is discussed and recent developments in metabolic engineering towards increased product yields in antibiotic producing strains are reviewed....

  18. Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples

    DEFF Research Database (Denmark)

    Otte, S.; Kuenen, JG; Nielsen, LP

    1999-01-01

    Filamentous sulfur bacteria of the genus Thioploca occur as dense mats on the continental shelf off the coast of Chile and Peru. Since little is known about their nitrogen, sulfur, and carbon metabolism, this study was undertaken to investigate their (eco)physiology. Thioploca is able to store...

  19. Novel Members of the Cra Regulon Involved in Carbon Metabolism in Escherichia coli▿ †

    Science.gov (United States)

    Shimada, Tomohiro; Yamamoto, Kaneyoshi; Ishihama, Akira

    2011-01-01

    Cra (catabolite repressor activator) is a global regulator of the genes for carbon metabolism in Escherichia coli. To gain insights into the regulatory roles of Cra, attempts were made to identify the whole set of regulation targets using an improved genomic SELEX (systematic evolution of ligands by exponential enrichment) system. Surprisingly, a total of 164 binding sites were identified for Cra, 144 (88%) of which were newly identified. The majority of known targets were included in the SELEX chip pattern. The promoters examined by the lacZ reporter assay in vivo were all regulated by Cra. These two lines of evidence indicate that a total of as many as 178 promoters are under the control of Cra. The majority of Cra targets are the genes coding for the enzymes involved in central carbon metabolism, covering all the genes for the enzymes involved in glycolysis and metabolism downstream of glycolysis, including the tricarboxylic acid (TCA) cycle and aerobic respiration. Taken together, we propose that Cra plays a key role in balancing the levels of the enzymes for carbon metabolism. PMID:21115656

  20. Prognosis of breast cancer is associated with one-carbon metabolism related nutrients among Korean women

    Directory of Open Access Journals (Sweden)

    Lee Yunhee

    2012-08-01

    Full Text Available Abstract Background The 5-year survival rate for breast cancer among Korean women has increased steadily; however, breast cancer remains the leading cause of cancer mortality among women. One-carbon metabolism, which requires an adequate supply of methyl group donors and B vitamins, may affect the prognosis of breast cancer. This aim of this study was to investigate the associations of dietary intake of vitamin B2, vitamin B6 and folate before diagnosis on the prognosis of breast cancer. Methods We assessed the dietary intake using a food frequency questionnaire with 980 women who were newly diagnosed and histopathologically confirmed to have primary breast cancer from hospitals in Korea, and 141 disease progression events occurred. Cox’s proportional hazard regression models were used to estimate the hazard ratio (HR and 95% confidence interval (95% CI adjusting for age, education, recruitment sites, TNM stage, hormone status, nuclear grade and total calorie. Results There was no significant association between any one-carbon metabolism related nutrients (vitamin B2, B6 and folate and the progression of breast cancer overall. However, one-carbon metabolism related nutrients were associated with disease progression in breast cancer patients stratified by subtypes. In ER + and/or PR + breast cancers, no association was observed; however, in ER–/PR– breast cancers, a high intake of vitamin B2 and folate statistically elevated the HR of breast cancer progression (HR = 2.28; 95% CI, 1.20-4.35, HR = 1.84; 95% CI, 1.02-3.32, respectively compared to a low intake. This positive association between the ER/PR status and progression of the disease was profound when the nutrient intakes were categorized in a combined score (Pinteraction = 0.018. In ER–/PR– breast cancers, high combined scores were associated with a significantly poor DFS compared to those belonging to the low score group (HR = 3.84; 95% CI, 1

  1. One-carbon metabolism in acetogenic and sulfate-reducing bacteria

    NARCIS (Netherlands)

    Visser, M.

    2015-01-01

    ABSTRACT

    One-carbon metabolism in acetogenic and sulfate-reducing bacteria

    Life on earth is sustained by the constant cycling of six essential elements: oxygen, hydrogen, nitrogen,

  2. Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus

    DEFF Research Database (Denmark)

    Colebatch, Gillian; Desbrosses, Guilhem; Ott, Thomas

    2004-01-01

    Research on legume nodule metabolism has contributed greatly to our knowledge of primary carbon and nitrogen metabolism in plants in general, and in symbiotic nitrogen fixation in particular. However, most previous studies focused on one or a few genes/enzymes involved in selected metabolic...

  3. Biosynthesis and metabolic fate of phenylalanine in conifers

    Directory of Open Access Journals (Sweden)

    María Belén Pascual

    2016-07-01

    Full Text Available The amino acid phenylalanine (Phe is a critical metabolic node that plays an essential role in the interconnection between primary and secondary metabolism in plants. Phe is used as a protein building block but it is also as a precursor for numerous plant compounds that are crucial for plant reproduction, growth, development and defense against different types of stresses. The metabolism of Phe plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of phenylpropanoids. The study of this metabolic pathway is particularly relevant in trees, which divert large amounts of carbon into the biosynthesis of Phe-derived compounds, particularly lignin, an important constituent of wood. The trunks of trees are metabolic sinks that consume a considerable percentage of carbon and energy from photosynthesis, and carbon is finally immobilized in wood. This paper reviews recent advances in the biosynthesis and metabolic utilization of Phe in conifer trees. Two alternative routes have been identified: the ancient phenylpyruvate pathway that is present in microorganisms, and the arogenate pathway that possibly evolved later during plant evolution. Additionally, an efficient nitrogen recycling mechanism is required to maintain sustained growth during xylem formation. The relevance of phenylalanine metabolic pathways in wood formation, the biotic interactions and ultraviolet protection is discussed. The genetic manipulation and transcriptional regulation of the pathways are also outlined.

  4. Biosynthesis and Metabolic Fate of Phenylalanine in Conifers.

    Science.gov (United States)

    Pascual, María B; El-Azaz, Jorge; de la Torre, Fernando N; Cañas, Rafael A; Avila, Concepción; Cánovas, Francisco M

    2016-01-01

    The amino acid phenylalanine (Phe) is a critical metabolic node that plays an essential role in the interconnection between primary and secondary metabolism in plants. Phe is used as a protein building block but it is also as a precursor for numerous plant compounds that are crucial for plant reproduction, growth, development, and defense against different types of stresses. The metabolism of Phe plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of phenylpropanoids. The study of this metabolic pathway is particularly relevant in trees, which divert large amounts of carbon into the biosynthesis of Phe-derived compounds, particularly lignin, an important constituent of wood. The trunks of trees are metabolic sinks that consume a considerable percentage of carbon and energy from photosynthesis, and carbon is finally immobilized in wood. This paper reviews recent advances in the biosynthesis and metabolic utilization of Phe in conifer trees. Two alternative routes have been identified: the ancient phenylpyruvate pathway that is present in microorganisms, and the arogenate pathway that possibly evolved later during plant evolution. Additionally, an efficient nitrogen recycling mechanism is required to maintain sustained growth during xylem formation. The relevance of phenylalanine metabolic pathways in wood formation, the biotic interactions, and ultraviolet protection is discussed. The genetic manipulation and transcriptional regulation of the pathways are also outlined.

  5. Carbon conversion and metabolic rate in two marine sponges

    NARCIS (Netherlands)

    Koopmans, M.; Van Rijswijk, P.; Martens, D.; Egorova-Zachernyuk, T.A.; Middelburg, J.J.; Wijffels, R.H.

    2011-01-01

    The carbon metabolism of two marine sponges, Haliclona oculata and Dysidea avara, has been studied using a 13C isotope pulse-chase approach. The sponges were fed 13C-labeled diatoms (Skeletonema costatum) for 8 h and they took up between 75 and 85%. At different times, sponges were sampled for total

  6. Relation between Hormonal Disorders and Components of Metabolic Syndrome in Patients with Primary Hypothyroidism

    Directory of Open Access Journals (Sweden)

    Т.Yu. Yuzvenko

    2016-09-01

    Full Text Available During the last decade plenty of the researches dedicated to the problem of hypothyroidism were published, that radically changed views to the value of thyroid pathology on the whole. Neurohumoral changes are considered as a nosotropic factor of hypothyroidism development in persons with metabolic syndrome (MS. Aim of the research is to study the features of hormonal disorders and their correlation with the components of metabolic syndrome in patients with primary hypothyroidism. Materials and methods. The study involved 80 patients with primary hypothyroidism: 61 had metabolic syndrome and 19 did not have metabolic syndrome. Results. Statistically significant increased levels of leptin, insulin, cortisol, C-peptide were revealed in patients with hypothyroidism and metabolic syndrome while the most marked changes were found in patients with multiple metabolic abnormalities. Conclusions. The interrelations between hyperleptinemia and fasting glucose, glycated hemoglobin, insulin levels, thyroid-stimulating hormone, index HOMA were determined indicating the modulating role of chronic hyperglycemia, hormonal disorders and insulin resistance in the expression and realization of the biological action of leptin in patients with hypothyroidism and metabolic syndrome.

  7. Biosynthesis and Metabolic Fate of Phenylalanine in Conifers

    OpenAIRE

    Pascual, María B.; El-Azaz, Jorge; de la Torre, Fernando N.; Cañas, Rafael A.; Avila, Concepción; Cánovas, Francisco M.

    2016-01-01

    The amino acid phenylalanine (Phe) is a critical metabolic node that plays an essential role in the interconnection between primary and secondary metabolism in plants. Phe is used as a protein building block but it is also as a precursor for numerous plant compounds that are crucial for plant reproduction, growth, development, and defense against different types of stresses. The metabolism of Phe plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of pheny...

  8. The relationship between vascular and metabolic characteristics of primary breast tumours

    International Nuclear Information System (INIS)

    Semple, Scott I.K.; Gilbert, Fiona J.; Redpath, Thomas W.; Staff, Roger T.; Ahearn, Trevor S.; Welch, Andrew E.; Heys, Steven D.; Hutcheon, Andrew W.; Smyth, Elizabeth H.; Chaturvedi, Shailesh

    2004-01-01

    The objective of this study was to investigate the relationship between vascular and metabolic characteristics of breast tumours in vivo, using contrast-enhanced dynamic MRI and 2-[ 18 F] fluoro-2-deoxy-d-glucose (FDG) PET imaging. Twenty patients with large or locally advanced primary breast cancers were imaged prior to therapy. MRI data were acquired using a dynamic gradient echo sequence and analysed using two pharmacokinetic models. Static PET data were acquired in 2D mode. A significant association (P<0.05) was observed between the calculated exchange rate constants of both pharmacokinetic models and calculated PET FDG dose uptake ratios (DUR). Statistical analysis showed that the exchange rate constants can explain between 27 and 44% of the variance observed in the PET FDG uptake ratios. A relationship was demonstrated between the vascular and metabolic characteristics of primary breast tumours showing that any assessment of tumour metabolic activity using PET may be controlled at least in part by delivery of uptake agent due to the vascular characteristics of the tumour. MRI and PET provide methods of assessing breast tumour vascularity and metabolism in vivo using the exchange rate constants of dynamic MRI, and DUR of PET, respectively, these measures being related but not equivalent. (orig.)

  9. Sugar-starvation-induced changes of carbon metabolism in excised maize root tips

    International Nuclear Information System (INIS)

    Dieuaide-Noubhani, M.; Canioni, P.; Raymond, P.

    1997-01-01

    Excised maize (Zea mays L.) root tips were used to study the early metabolic effects of glucose (Glc) starvation. Root tips were prelabeled with [1-13C]Glc so that carbohydrates and metabolic intermediates were close to steady-state labeling, but lipids and proteins were scarcely labeled. They were then incubated in a sugar-deprived medium for carbon starvation. Changes in the level of soluble sugars, the respiratory quotient, and the 13C enrichment of intermediates, as measured by 13C and 1H nuclear magnetic resonance, were studied to detect changes in carbon fluxes through glycolysis and the tricarboxylic acid cycle. Labeling of glutamate carbons revealed two major changes in carbon input into the tricarboxylic acid cycle: (a) the phosphoenolpyruvate carboxylase flux stopped early after the start of Glc starvation, and (b) the contribution of glycolysis as the source of acetyl-coenzyme A for respiration decreased progressively, indicating an increasing contribution of the catabolism of protein amino acids, fatty acids, or both. The enrichment of glutamate carbons gave no evidence for proteolysis in the early steps of starvation, indicating that the catabolism of proteins was delayed compared with that of fatty acids. Labeling of carbohydrates showed that sucrose turnover continues during sugar starvation, but gave no indication for any significant flux through gluconeogenesis

  10. Metabolic fluxes in the central carbon metabolism of Dinoroseobacter shibae and Phaeobacter gallaeciensis, two members of the marine Roseobacter clade

    Directory of Open Access Journals (Sweden)

    Rabus Ralf

    2009-09-01

    Full Text Available Abstract Background In the present work the central carbon metabolism of Dinoroseobacter shibae and Phaeobacter gallaeciensis was studied at the level of metabolic fluxes. These two strains belong to the marine Roseobacter clade, a dominant bacterial group in various marine habitats, and represent surface-associated, biofilm-forming growth (P. gallaeciensis and symbiotic growth with eukaryotic algae (D. shibae. Based on information from recently sequenced genomes, a rich repertoire of pathways has been identified in the carbon core metabolism of these organisms, but little is known about the actual contribution of the various reactions in vivo. Results Using 13C labelling techniques in specifically designed experiments, it could be shown that glucose-grown cells of D. shibae catabolise the carbon source exclusively via the Entner-Doudoroff pathway, whereas alternative routes of glycolysis and the pentose phosphate pathway are obviously utilised for anabolic purposes only. Enzyme assays confirmed this flux pattern and link the lack of glycolytic flux to the absence of phosphofructokinase activity. The previously suggested formation of phosphoenolpyruvate from pyruvate during mixotrophic CO2 assimilation was found to be inactive under the conditions studied. Moreover, it could be shown that pyruvate carboxylase is involved in CO2 assimilation and that the cyclic respiratory mode of the TCA cycle is utilised. Interestingly, the use of intracellular pathways was highly similar for P. gallaeciensis. Conclusion The present study reveals the first insight into pathway utilisation within the Roseobacter group. Fluxes through major intracellular pathways of the central carbon metabolism, which are closely linked to the various important traits found for the Roseobacter clade, could be determined. The close similarity of fluxes between the two physiologically rather different species might provide the first indication of more general key properties among

  11. Advanced Carbon Fluorides For Primary Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Guérin K.

    2017-01-01

    Full Text Available Li-CFx battery using a specific fluorinated nanocarbon as cathode material exhibits a capacity exceeding the expected theoretical value when used as an electrode material in primary lithium battery. Carbon nanodiscs were partially fluorinated by atomic fluorine released by thermal decomposition of TbF4, and the capacity of this material was up to 1180 mAh.g−1, whereas a theoretical value of 847 mAh.g−1 for the CF0.95 sample was calculated. The obtained value is also higher than the maximum one of 865 mAh.g−1 expected for CF1 carbon fluorides. The discharge mechanism was investigated using mainly SEM and solid state NMR in order to understand this “extracapacity”. Both the unfluorinated carbon and the LiF covering, which is formed outside the carbon lattice during the discharge mechanism, play a key role for the achievement of the extracapacity by the consumption of Li+ to form Li2F+ species stabilized by the carbon host structure formed after the electrochemical defluorination.

  12. Genetic signatures in choline and 1-carbon metabolism are associated with the severity of hepatic steatosis

    Science.gov (United States)

    Corbin, Karen D.; Abdelmalek, Manal F.; Spencer, Melanie D.; da Costa, Kerry-Ann; Galanko, Joseph A.; Sha, Wei; Suzuki, Ayako; Guy, Cynthia D.; Cardona, Diana M.; Torquati, Alfonso; Diehl, Anna Mae; Zeisel, Steven H.

    2013-01-01

    Choline metabolism is important for very low-density lipoprotein secretion, making this nutritional pathway an important contributor to hepatic lipid balance. The purpose of this study was to assess whether the cumulative effects of multiple single nucleotide polymorphisms (SNPs) across genes of choline/1-carbon metabolism and functionally related pathways increase susceptibility to developing hepatic steatosis. In biopsy-characterized cases of nonalcoholic fatty liver disease and controls, we assessed 260 SNPs across 21 genes in choline/1-carbon metabolism. When SNPs were examined individually, using logistic regression, we only identified a single SNP (PNPLA3 rs738409) that was significantly associated with severity of hepatic steatosis after adjusting for confounders and multiple comparisons (P=0.02). However, when groupings of SNPs in similar metabolic pathways were defined using unsupervised hierarchical clustering, we identified groups of subjects with shared SNP signatures that were significantly correlated with steatosis burden (P=0.0002). The lowest and highest steatosis clusters could also be differentiated by ethnicity. However, unique SNP patterns defined steatosis burden irrespective of ethnicity. Our results suggest that analysis of SNP patterns in genes of choline/1-carbon metabolism may be useful for prediction of severity of steatosis in specific subsets of people, and the metabolic inefficiencies caused by these SNPs should be examined further.—Corbin, K. D., Abdelmalek, M. F., Spencer, M. D., da Costa, K.-A., Galanko, J. A., Sha, W., Suzuki, A., Guy, C. D., Cardona, D. M., Torquati, A., Diehl, A. M., Zeisel, S. H. Genetic signatures in choline and 1-carbon metabolism are associated with the severity of hepatic steatosis. PMID:23292069

  13. Cellular lead toxicity and metabolism in primary and clonal osteoblastic bone cells

    International Nuclear Information System (INIS)

    Long, G.J.; Rosen, J.F.; Pounds, J.G.

    1990-01-01

    A knowledge of bone lead metabolism is critical for understanding the toxicological importance of bone lead, as a toxicant both to bone cells and to soft tissues of the body, as lead is mobilized from large reservoirs in hard tissues. To further understand the processes that mediate metabolism of lead in bone, it is necessary to determine lead metabolism at the cellular level. Experiments were conducted to determine the intracellular steady-state 210 Pb kinetics in cultures of primary and clonal osteoblastic bone cells. Osteoblastic bone cells obtained by sequential collagenase digestion of mouse calvaria or rat osteosarcoma (ROS 17/2.8) cells were labeled with 210 Pb as 5 microM lead acetate for 20 hr, and kinetic parameters were determined by measuring the efflux of 210 Pb from the cells over a 210 -min period. The intracellular metabolism of 210 Pb was characterized by three kinetic pools of 210 Pb in both cell types. Although the values of these parameters differed between the primary osteoblastic cells and ROS cells, the profile of 210 Pb was remarkably similar in both cell types. Both types exhibited one large, slowly exchanging pool (S3), indicative of mitochondrial lead. These data show that primary osteoblastic bone cells and ROS cells exhibit similar steady-state lead kinetics, and intracellular lead distribution. These data also establish a working model of lead kinetics in osteoblastic bone cells and now permit an integrated view of lead kinetics in bone

  14. Evaluation of carbon storage in soil and plant biomass of primary ...

    African Journals Online (AJOL)

    Carbon sequestration in a forest ecosystem is an important determinant of the local and regional carbon stock. This study monitored forest types and carbon storage in both biomass and soil within primary mixed deciduous forests (PMDF) and secondary mixed deciduous forests (SMDF). One study plot measuring 50 x 50 m ...

  15. Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing

    International Nuclear Information System (INIS)

    Zhang, Yan; Zheng, Hongmei; Fath, Brian D.

    2014-01-01

    Cities consume 80% of the world's energy; therefore, analyzing urban energy metabolism and the resulting carbon footprint provides basic data for formulating target carbon emission reductions. While energy metabolism includes both direct and indirect consumptions among sectors, few researchers have studied indirect consumption due to a lack of data. In this study, we used input–output analysis to calculate the energy flows among directly linked sectors. Building on this, we used ecological network analysis to develop a model of urban energy flows and also account for energy consumption embodied by the flows among indirectly linked sectors (represented numerically as paths with a length of 2 or more). To illustrate the model, monetary input–output tables for Beijing from 2000 to 2010 were analyzed to determine the embodied energy consumption and associated carbon footprints of these sectors. This analysis reveals the environmental pressure based on the source (energy consumption) and sink (carbon footprint) values. Indirect consumption was Beijing's primary form, and the carbon footprint therefore resulted mainly from indirect consumption (both accounting for ca. 60% of the total, though with considerable variation among sectors). To reduce emissions, the utilization efficiency of indirect consumption must improve. - Highlights: • We quantified the embodied energy transfers among Beijing's socioeconomic sectors. • We calculated the sectors' intensity of energy consumption and carbon footprint. • The indirect energy consumption was higher than the direct for all sectors. • The high-indirect-consumption sectors are at the end of industrial supply chains. • High-indirect-consumption sectors can improve upstream products energy efficiency

  16. The metabolism of the Antartic crytoendolithic microbiota

    Science.gov (United States)

    Vestal, J. Robie

    1989-01-01

    The carbon metabolism of the cryptoendolithic microbiota in sandstones from the Ross Desert region of Antarctica was studied in situ and in vitro. Organic and inorganic compounds were metabolized by the microbiota, with bicarbonate being metabolized maximally in the light. There was a linear response of photosynthesis to light up to 200 to 300 micromole photons/sq m/s. The community photosynthetic response to temperature was a minimum at -5 C, two optima at +5 and +15 C and a maximum at +35 C. Photosynthetic metabolism occurred maximally in the presence of liquid water, but could occur in an environment of water vapor. Biomass of the cryptoendolithic microbiota was measured as the amount of lipid phosphate present. The in situ biomass ranged from 1.92 to 3.26 g carbon/sq m of rock and 2 orders of magnitude less than epilithic lichen microbiota from Antarctica in a location 7 degrees more north in latitude. With these data, it was possible to calculate primary production and carbon turnover in this simple microbiota. Production values ranged from 0.108 to 4.41 mg carbon/sq m/yr, while carbon turnover values ranged from 576 to 23,520 years. These values are the lowest and longest yet recorded for any ecosystem on Earth. If life did evolve on Mars to the level of prokaryotes or primitive eukaryotes, the possibility that the organisms retreated, to the protection of the inside of the rock so that metabolism could continue during planetary cooling, cannot be overlooked.

  17. The relationship between microbial metabolic activity and biocorrosion of carbon steel.

    Science.gov (United States)

    Dzierzewicz, Z; Cwalina, B; Chodurek, E; Wilczok, T

    1997-12-01

    The effect of metabolic activity (expressed by generation time, rate of H2S production and the activity of hydrogenase and adenosine phosphosulphate (APS)-reductase enzymes) of the 8 wild strains of Desulfovibrio desulfuricans and of their resistance to metal ions (Hg2+, Cu2+, Mn2+, Zn2+, Ni2+, Cr3+) on the rate of corrosion of carbon steel was studied. The medium containing lactate as the carbon source and sulphate as the electron acceptor was used for bacterial metabolic activity examination and in corrosive assays. Bacterial growth inhibition by metal ions was investigated in the sulphate-free medium. The rate of H2S production was approximately directly proportional to the specific activities of the investigated enzymes. These activities were inversely proportional to the generation time. The rate of microbiologically induced corrosion (MIC) of carbon steel was directly proportional to bacterial resistance to metal ions (correlation coefficient r = 0.95). The correlation between the MIC rate and the activity of enzymes tested, although weaker, was also observed (r = 0.41 for APS-reductase; r = 0.69 for hydrogenase; critical value rc = 0.30, p = 0.05, n = 40).

  18. Effect of Carbon Monoxide on Active Oxygen Metabolism of Postharvest Jujube

    OpenAIRE

    Shaoying Zhang; Qin Li; Yulan Mao

    2014-01-01

    To prolong the shelf life postharvest jujube, the effect of carbon monoxide (CO) on senescence of postharvest jujube in relation to active oxygen metabolism was investigated. Jujubes were fumigated with CO gas at 5, 10, 20 or 40μmol/L for 1 h, and then stored for 30 days at room temperature. Changes in membrane permeability, malonaldehyde (MDA), H2O2, O2•− content, and activities of active oxygen metabolism associated enzymes including superoxide dismutase (SOD), catalase (CAT) and peroxidase...

  19. Neuro-Compatible Metabolic Glycan Labeling of Primary Hippocampal Neurons in Noncontact, Sandwich-Type Neuron-Astrocyte Coculture.

    Science.gov (United States)

    Choi, Ji Yu; Park, Matthew; Cho, Hyeoncheol; Kim, Mi-Hee; Kang, Kyungtae; Choi, Insung S

    2017-12-20

    Glycans are intimately involved in several facets of neuronal development and neuropathology. However, the metabolic labeling of surface glycans in primary neurons is a difficult task because of the neurotoxicity of unnatural monosaccharides that are used as a metabolic precursor, hindering the progress of metabolic engineering in neuron-related fields. Therefore, in this paper, we report a neurosupportive, neuron-astrocyte coculture system that neutralizes the neurotoxic effects of unnatural monosaccharides, allowing for the long-term observation and characterization of glycans in primary neurons in vitro. Polysialic acids in neurons are selectively imaged, via the metabolic labeling of sialoglycans with peracetylated N-azidoacetyl-d-mannosamine (Ac 4 ManNAz), for up to 21 DIV. Two-color labeling shows that neuronal activities, such as neurite outgrowth and recycling of membrane components, are highly dynamic and change over time during development. In addition, the insertion sites of membrane components are suggested to not be random, but be predominantly localized in developing neurites. This work provides a new research platform and also suggests advanced 3D systems for metabolic-labeling studies of glycans in primary neurons.

  20. Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism.

    Science.gov (United States)

    Cuyàs, E; Fernández-Arroyo, S; Verdura, S; García, R Á-F; Stursa, J; Werner, L; Blanco-González, E; Montes-Bayón, M; Joven, J; Viollet, B; Neuzil, J; Menendez, J A

    2018-02-15

    The anti-diabetic biguanide metformin may exert health-promoting effects via metabolic regulation of the epigenome. Here we show that metformin promotes global DNA methylation in non-cancerous, cancer-prone and metastatic cancer cells by decreasing S-adenosylhomocysteine (SAH), a strong feedback inhibitor of S-adenosylmethionine (SAM)-dependent DNA methyltransferases, while promoting the accumulation of SAM, the universal methyl donor for cellular methylation. Using metformin and a mitochondria/complex I (mCI)-targeted analog of metformin (norMitoMet) in experimental pairs of wild-type and AMP-activated protein kinase (AMPK)-, serine hydroxymethyltransferase 2 (SHMT2)- and mCI-null cells, we provide evidence that metformin increases the SAM:SAH ratio-related methylation capacity by targeting the coupling between serine mitochondrial one-carbon flux and CI activity. By increasing the contribution of one-carbon units to the SAM from folate stores while decreasing SAH in response to AMPK-sensed energetic crisis, metformin can operate as a metabolo-epigenetic regulator capable of reprogramming one of the key conduits linking cellular metabolism to the DNA methylation machinery.

  1. Carbon-carbon primary structure for SSTO vehicles

    Science.gov (United States)

    Croop, Harold C.; Lowndes, Holland B.

    1997-01-01

    A hot structures development program is nearing completion to validate use of carbon-carbon composite structure for primary load carrying members in a single-stage-to-orbit, or SSTO, vehicle. A four phase program was pursued which involved design development and fabrication of a full-scale wing torque box demonstration component. The design development included vehicle and component selection, design criteria and approach, design data development, demonstration component design and analysis, test fixture design and analysis, demonstration component test planning, and high temperature test instrumentation development. The fabrication effort encompassed fabrication of structural elements for mechanical property verification as well as fabrication of the demonstration component itself and associated test fixturing. The demonstration component features 3D woven graphite preforms, integral spars, oxidation inhibited matrix, chemical vapor deposited (CVD) SiC oxidation protection coating, and ceramic matrix composite fasteners. The demonstration component has been delivered to the United States Air Force (USAF) for testing in the Wright Laboratory Structural Test Facility, WPAFB, OH. Multiple thermal-mechanical load cycles will be applied simulating two atmospheric cruise missions and one orbital mission. This paper discusses the overall approach to validation testing of the wing box component and presents some preliminary analytical test predictions.

  2. Leishmania carbon metabolism in the macrophage phagolysosome- feast or famine?

    Science.gov (United States)

    McConville, Malcolm J; Saunders, Eleanor C; Kloehn, Joachim; Dagley, Michael J

    2015-01-01

    A number of medically important microbial pathogens target and proliferate within macrophages and other phagocytic cells in their mammalian hosts. While the majority of these pathogens replicate within the host cell cytosol or non-hydrolytic vacuolar compartments, a few, including protists belonging to the genus Leishmania, proliferate long-term within mature lysosome compartments.  How these parasites achieve this feat remains poorly defined. In this review, we highlight recent studies that suggest that Leishmania virulence is intimately linked to programmed changes in the growth rate and carbon metabolism of the obligate intra-macrophage stages. We propose that activation of a slow growth and a stringent metabolic response confers resistance to multiple stresses (oxidative, temperature, pH), as well as both nutrient limitation and nutrient excess within this niche. These studies highlight the importance of metabolic processes as key virulence determinants in Leishmania.

  3. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity.

    Directory of Open Access Journals (Sweden)

    Andreas F Haas

    Full Text Available Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata--Ochrophyta; Amansia rhodantha--Rhodophyta; Halimeda opuntia--Chlorophyta, a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii and a dominant hermatypic coral (Porites lobata. Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h⁻¹ dm⁻², stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h⁻¹ and concomitant oxygen drawdown (0.16±0.05 µmol L⁻¹ h⁻¹ dm⁻². Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence

  4. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production: Progress report, February 1, 1987-February 1, 1988

    International Nuclear Information System (INIS)

    Zeikus, J.G.; Shen, Gwo-Jenn.

    1988-01-01

    These studies concern the fundamental biochemical mechanisms that control carbon and electron flow in anaerobic bacteria that conserve energy when coupling hydrogen consumption to the production of acetic, propionic, or butyric acids. Two acidogens, Propionispira arboris and Butyribacterium methylotrophicum were chosen as model systems to understand the function of oxidoreductases and electron carriers in the regulation of hydrogen metabolism and single carbon metabolism. In P. arboris, H 2 consumption was linked to the inhibition of CO 2 production and an increase in the propionate/acetate rate; whereas, H 2 consumption was linked to a stimulation of CO 2 consumption and an increase in the butyrate/acetate ratio in B. methylotrophicum. We report studies on the enzymes involved in the regulation of singe carbon metabolism, the enzyme activities and pathways responsible for conversion of multicarbon components to acetate and propionate or butyrate, and how low pH inhibits H 2 and acetic acid production in Sarcina ventriculi as a consequence of hydrogenase regulation. 9 refs

  5. Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli

    Science.gov (United States)

    2012-10-22

    optimally, balancing effectively the conversion of carbon into energy versus biomass . To investigate the link between the metabolism of different nutrients...diverse nutrient conditions, E. coli  grows nearly optimally, balancing effectively the  conversion  of carbon  into energy versus  biomass . Here we  show... enzymatic  connections, with kinetic parameters taken from the  literature or computationally  inferred  based on  the data  from Aim 1. As proposed  initially

  6. Estimating autotrophic respiration in streams using daily metabolism data

    Science.gov (United States)

    Knowing the fraction of gross primary production (GPP) that is immediately respired by autotrophs and their closely associated heterotrophs (ARf) is necessary to understand the trophic base and carbon spiraling in streams. We show a means to estimate ARf from daily metabolism da...

  7. Towards an understanding of the molecular regulation of carbon allocation in diatoms: the interaction of energy and carbon allocation.

    Science.gov (United States)

    Wagner, Heiko; Jakob, Torsten; Fanesi, Andrea; Wilhelm, Christian

    2017-09-05

    In microalgae, the photosynthesis-driven CO 2 assimilation delivers cell building blocks that are used in different biosynthetic pathways. Little is known about how the cell regulates the subsequent carbon allocation to, for example, cell growth or for storage. However, knowledge about these regulatory mechanisms is of high biotechnological and ecological importance. In diatoms, the situation becomes even more complex because, as a consequence of their secondary endosymbiotic origin, the compartmentation of the pathways for the primary metabolic routes is different from green algae. Therefore, the mechanisms to manipulate the carbon allocation pattern cannot be adopted from the green lineage. This review describes the general pathways of cellular energy distribution from light absorption towards the final allocation of carbon into macromolecules and summarizes the current knowledge of diatom-specific allocation patterns. We further describe the (limited) knowledge of regulatory mechanisms of carbon partitioning between lipids, carbohydrates and proteins in diatoms. We present solutions to overcome the problems that hinder the identification of regulatory elements of carbon metabolism.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  8. Comprehensive evaluation of one-carbon metabolism pathway gene variants and renal cell cancer risk.

    Directory of Open Access Journals (Sweden)

    Todd M Gibson

    Full Text Available Folate and one-carbon metabolism are linked to cancer risk through their integral role in DNA synthesis and methylation. Variation in one-carbon metabolism genes, particularly MTHFR, has been associated with risk of a number of cancers in epidemiologic studies, but little is known regarding renal cancer.Tag single nucleotide polymorphisms (SNPs selected to produce high genomic coverage of 13 gene regions of one-carbon metabolism (ALDH1L1, BHMT, CBS, FOLR1, MTHFR, MTR, MTRR, SHMT1, SLC19A1, TYMS and the closely associated glutathione synthesis pathway (CTH, GGH, GSS were genotyped for 777 renal cell carcinoma (RCC cases and 1,035 controls in the Central and Eastern European Renal Cancer case-control study. Associations of individual SNPs (n = 163 with RCC risk were calculated using unconditional logistic regression adjusted for age, sex and study center. Minimum p-value permutation (Min-P tests were used to identify gene regions associated with risk, and haplotypes were evaluated within these genes.The strongest associations with RCC risk were observed for SLC19A1 (P(min-P = 0.03 and MTHFR (P(min-P = 0.13. A haplotype consisting of four SNPs in SLC19A1 (rs12483553, rs2838950, rs2838951, and rs17004785 was associated with a 37% increased risk (p = 0.02, and exploratory stratified analysis suggested the association was only significant among those in the lowest tertile of vegetable intake.To our knowledge, this is the first study to comprehensively examine variation in one-carbon metabolism genes in relation to RCC risk. We identified a novel association with SLC19A1, which is important for transport of folate into cells. Replication in other populations is required to confirm these findings.

  9. Butenolide inhibits marine fouling by altering the primary metabolism of three target organisms

    KAUST Repository

    Zhang, Yifan

    2012-06-15

    Butenolide is a very promising antifouling compound that inhibits ship hull fouling by a variety of marine organisms, but its antifouling mechanism was previously unknown. Here we report the first study of butenolides molecular targets in three representative fouling organisms. In the barnacle Balanus (=Amphibalanus) amphitrite, butenolide bound to acetyl-CoA acetyltransferase 1 (ACAT1), which is involved in ketone body metabolism. Both the substrate and the product of ACAT1 increased larval settlement under butenolide treatment, suggesting its functional involvement. In the bryozoan Bugula neritina, butenolide bound to very long chain acyl-CoA dehydrogenase (ACADVL), actin, and glutathione S-transferases (GSTs). ACADVL is the first enzyme in the very long chain fatty acid β-oxidation pathway. The inhibition of this primary pathway for energy production in larvae by butenolide was supported by the finding that alternative energy sources (acetoacetate and pyruvate) increased larval attachment under butenolide treatment. In marine bacterium Vibrio sp. UST020129-010, butenolide bound to succinyl-CoA synthetase β subunit (SCSβ) and inhibited bacterial growth. ACAT1, ACADVL, and SCSβ are all involved in primary metabolism for energy production. These findings suggest that butenolide inhibits fouling by influencing the primary metabolism of target organisms. © 2012 American Chemical Society.

  10. Carbon Capture Methods and Relative Competitiveness of Primary Energies

    International Nuclear Information System (INIS)

    Amigues, Jean-Pierre; Lafforgue, Gilles; Moreaux, Michel

    2016-01-01

    We characterise the optimal exploitation paths of two primary energies (coal and solar) that supply the energy needs of two sectors. Sector 1 can reduce its carbon emissions at a reasonable cost thanks to a CCS device. Sector 2 has access only to air capture technology, but at a significantly higher cost. We assume that the atmospheric carbon stock cannot exceed a given ceiling. We show that the optimal approach consists in, first, fully capturing sector-1 emissions before the ceiling is reached and, second, deploying air capture to partially abate sector-2 emissions. The optimal carbon tax should increase in the pre-ceiling phase then decline in stages to zero

  11. Thermo-mechanical evaluation of carbon-carbon primary structure for SSTO vehicles

    Science.gov (United States)

    Croop, Harold C.; Lowndes, Holland B.; Hahn, Steven E.; Barthel, Chris A.

    1998-01-01

    An advanced development program to demonstrate carbon-carbon composite structure for use as primary load carrying structure has entered the experimental validation phase. The component being evaluated is a wing torque box section for a single-stage-to-orbit (SSTO) vehicle. The validation or demonstration component features an advanced carbon-carbon design incorporating 3D woven graphite preforms, integral spars, oxidation inhibited matrix, chemical vapor deposited (CVD) oxidation protection coating, and ceramic matrix composite fasteners. The validation component represents the culmination of a four phase design and fabrication development effort. Extensive developmental testing was performed to verify material properties and integrity of basic design features before committing to fabrication of the full scale box. The wing box component is now being set up for testing in the Air Force Research Laboratory Structural Test Facility at Wright-Patterson Air Force Base, Ohio. One of the important developmental tests performed in support of the design and planned testing of the full scale box was the fabrication and test of a skin/spar trial subcomponent. The trial subcomponent incorporated critical features of the full scale wing box design. This paper discusses the results of the trial subcomponent test which served as a pathfinder for the upcoming full scale box test.

  12. The carbon storage regulator (Csr) system exerts a nutrient-specific control over central metabolism in Escherichia coli strain Nissle 1917.

    Science.gov (United States)

    Revelles, Olga; Millard, Pierre; Nougayrède, Jean-Philippe; Dobrindt, Ulrich; Oswald, Eric; Létisse, Fabien; Portais, Jean-Charles

    2013-01-01

    The role of the post-transcriptional carbon storage regulator (Csr) system in nutrient utilization and in the control of the central metabolism in E. coli reference commensal strain Nissle 1917 was investigated. Analysis of the growth capabilities of mutants altered for various components of the Csr system (csrA51, csrB, csrC and csrD mutations) showed that only the protein CsrA - the key component of the system - exerts a marked role in carbon nutrition. Attenuation of CsrA activity in the csrA51 mutant affects the growth efficiency on a broad range of physiologically relevant carbon sources, including compounds utilized by the Entner-Doudoroff (ED) pathway. Detailed investigations of the metabolomes and fluxomes of mutants and wild-type cells grown on carbon sources representative of glycolysis and of the ED pathway (glucose and gluconate, respectively), revealed significant re-adjusting of central carbon metabolism for both compounds in the csrA51 mutant. However, the metabolic re-adjusting observed on gluconate was strikingly different from that observed on glucose, indicating a nutrient-specific control of metabolism by the Csr system.

  13. Enhancing Carbon Fixation by Metabolic Engineering: A Model System of Complex Network Modulation

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gregory Stephanopoulos

    2008-04-10

    In the first two years of this research we focused on the development of a DNA microarray for transcriptional studies in the photosynthetic organism Synechocystis and the elucidation of the metabolic pathway for biopolymer synthesis in this organism. In addition we also advanced the molecular biological tools for metabolic engineering of biopolymer synthesis in Synechocystis and initiated a series of physiological studies for the elucidation of the carbon fixing pathways and basic central carbon metabolism of these organisms. During the last two-year period we focused our attention on the continuation and completion of the last task, namely, the development of tools for basic investigations of the physiology of these cells through, primarily, the determination of their metabolic fluxes. The reason for this decision lies in the importance of fluxes as key indicators of physiology and the high level of information content they carry in terms of identifying rate limiting steps in a metabolic pathway. While flux determination is a well-advanced subject for heterotrophic organisms, for the case of autotrophic bacteria, like Synechocystis, some special challenges had to be overcome. These challenges stem mostly from the fact that if one uses {sup 13}C labeled CO{sub 2} for flux determination, the {sup 13}C label will mark, at steady state, all carbon atoms of all cellular metabolites, thus eliminating the necessary differentiation required for flux determination. This peculiarity of autotrophic organisms makes it imperative to carry out flux determination under transient conditions, something that had not been accomplished before. We are pleased to report that we have solved this problem and we are now able to determine fluxes in photosynthetic organisms from stable isotope labeling experiments followed by measurements of label enrichment in cellular metabolites using Gas Chromatography-Mass Spectrometry. We have conducted extensive simulations to test the method and

  14. Thermo-mechanical cyclic testing of carbon-carbon primary structure for an SSTO vehicle

    Science.gov (United States)

    Croop, Harold C.; Leger, Kenneth B.; Lowndes, Holland B.; Hahn, Steven E.; Barthel, Chris A.

    1999-01-01

    An advanced carbon-carbon structural component is being experimentally evaluated for use as primary load carrying structure for future single-stage-to-orbit (SSTO) vehicles. The component is a wing torque box section featuring an advanced, three-spar design. This design features 3D-woven, angle-interlock skins, 3D integrally woven spar webs and caps, oxidation inhibited matrix, chemical vapor deposited (CVD) oxidation protection coating, and ceramic matrix composite fasteners. The box spar caps are nested into the skins which, when processed together through the carbon-carbon processing cycle, resulted in monolithic box halves. The box half sections were then joined at the spar web intersections using ceramic matrix composite fasteners. This method of fabrication eliminated fasteners through both the upper and lower skins. Development of the carbon-carbon wing box structure was accomplished in a four phase design and fabrication effort, conducted by Boeing, Information, Space and Defense Systems, Seattle, WA, under contract to the Air Force Research Laboratory (AFRL). The box is now set up for testing and will soon begin cyclic loads testing in the AFRL Structural Test Facility at Wright-Patterson Air Force Base (WPAFB), OH. This paper discusses the latest test setup accomplishments and the results of the pre-cyclic loads testing performed to date.

  15. Initial water deficit effects on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance: metabolic reorganization prior to early stress responses

    Czech Academy of Sciences Publication Activity Database

    Pinheiro, C.; António, C.; Dobrev, Petre; Vaňková, Radomíra; Wilson, J. C.

    2011-01-01

    Roč. 62, č. 14 (2011), s. 4965-4974 ISSN 0022-0957 Institutional research plan: CEZ:AV0Z50380511 Keywords : Carbon metabolism * hormone balance * LC-MS Subject RIV: EF - Botanics Impact factor: 5.364, year: 2011

  16. Differential expression of metabolic genes in tumor and stromal components of primary and metastatic loci in pancreatic adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Nina V Chaika

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States with a five-year survival rate of 6%. It is characterized by extremely aggressive tumor growth rate and high incidence of metastasis. One of the most common and profound biochemical phenotypes of animal and human cancer cells is their ability to metabolize glucose at high rates, even under aerobic conditions. However, the contribution of metabolic interrelationships between tumor cells and cells of the surrounding microenvironment to the progression of cancer is not well understood. We evaluated differential expression of metabolic genes and, hence, metabolic pathways in primary tumor and metastases of patients with pancreatic adenocarcinoma.We analyzed the metabolic gene (those involved in glycolysis, tri-carboxylic acid pathway, pentose-phosphate pathway and fatty acid metabolism expression profiles of primary and metastatic lesions from pancreatic cancer patients by gene expression arrays. We observed two principal results: genes that were upregulated in primary and most of the metastatic lesions; and genes that were upregulated only in specific metastatic lesions in a site-specific manner. Immunohistochemical (IHC analyses of several metabolic gene products confirmed the gene expression patterns at the protein level. The IHC analyses also revealed differential tumor and stromal expression patterns of metabolic enzymes that were correlated with the metastasis sites.Here, we present the first comprehensive studies that establish differential metabolic status of tumor and stromal components and elevation of aerobic glycolysis gene expression in pancreatic cancer.

  17. Beaver-mediated lateral hydrologic connectivity, fluvial carbon and nutrient flux, and aquatic ecosystem metabolism

    Science.gov (United States)

    Wegener, Pam; Covino, Tim; Wohl, Ellen

    2017-06-01

    River networks that drain mountain landscapes alternate between narrow and wide valley segments. Within the wide segments, beaver activity can facilitate the development and maintenance of complex, multithread planform. Because the narrow segments have limited ability to retain water, carbon, and nutrients, the wide, multithread segments are likely important locations of retention. We evaluated hydrologic dynamics, nutrient flux, and aquatic ecosystem metabolism along two adjacent segments of a river network in the Rocky Mountains, Colorado: (1) a wide, multithread segment with beaver activity; and, (2) an adjacent (directly upstream) narrow, single-thread segment without beaver activity. We used a mass balance approach to determine the water, carbon, and nutrient source-sink behavior of each river segment across a range of flows. While the single-thread segment was consistently a source of water, carbon, and nitrogen, the beaver impacted multithread segment exhibited variable source-sink dynamics as a function of flow. Specifically, the multithread segment was a sink for water, carbon, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along the multithread relative to the single-thread segment. Our data suggest that beaver activity in wide valleys can create a physically complex hydrologic environment that can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. Given the widespread removal of beaver, determining the cumulative effects of these changes is a critical next step in restoring function in altered river networks.

  18. One carbon metabolism in SAR11 pelagic marine bacteria.

    Directory of Open Access Journals (Sweden)

    Jing Sun

    Full Text Available The SAR11 Alphaproteobacteria are the most abundant heterotrophs in the oceans and are believed to play a major role in mineralizing marine dissolved organic carbon. Their genomes are among the smallest known for free-living heterotrophic cells, raising questions about how they successfully utilize complex organic matter with a limited metabolic repertoire. Here we show that conserved genes in SAR11 subgroup Ia (Candidatus Pelagibacter ubique genomes encode pathways for the oxidation of a variety of one-carbon compounds and methyl functional groups from methylated compounds. These pathways were predicted to produce energy by tetrahydrofolate (THF-mediated oxidation, but not to support the net assimilation of biomass from C1 compounds. Measurements of cellular ATP content and the oxidation of (14C-labeled compounds to (14CO(2 indicated that methanol, formaldehyde, methylamine, and methyl groups from glycine betaine (GBT, trimethylamine (TMA, trimethylamine N-oxide (TMAO, and dimethylsulfoniopropionate (DMSP were oxidized by axenic cultures of the SAR11 strain Ca. P. ubique HTCC1062. Analyses of metagenomic data showed that genes for C1 metabolism occur at a high frequency in natural SAR11 populations. In short term incubations, natural communities of Sargasso Sea microbial plankton expressed a potential for the oxidation of (14C-labeled formate, formaldehyde, methanol and TMAO that was similar to cultured SAR11 cells and, like cultured SAR11 cells, incorporated a much larger percentage of pyruvate and glucose (27-35% than of C1 compounds (2-6% into biomass. Collectively, these genomic, cellular and environmental data show a surprising capacity for demethylation and C1 oxidation in SAR11 cultures and in natural microbial communities dominated by SAR11, and support the conclusion that C1 oxidation might be a significant conduit by which dissolved organic carbon is recycled to CO(2 in the upper ocean.

  19. Rerouting of carbon flux in a glycogen mutant of cyanobacteria assessed via isotopically non-stationary 13 C metabolic flux analysis.

    Science.gov (United States)

    Hendry, John I; Prasannan, Charulata; Ma, Fangfang; Möllers, K Benedikt; Jaiswal, Damini; Digmurti, Madhuri; Allen, Doug K; Frigaard, Niels-Ulrik; Dasgupta, Santanu; Wangikar, Pramod P

    2017-10-01

    Cyanobacteria, which constitute a quantitatively dominant phylum, have attracted attention in biofuel applications due to favorable physiological characteristics, high photosynthetic efficiency and amenability to genetic manipulations. However, quantitative aspects of cyanobacterial metabolism have received limited attention. In the present study, we have performed isotopically non-stationary 13 C metabolic flux analysis (INST- 13 C-MFA) to analyze rerouting of carbon in a glycogen synthase deficient mutant strain (glgA-I glgA-II) of the model cyanobacterium Synechococcus sp. PCC 7002. During balanced photoautotrophic growth, 10-20% of the fixed carbon is stored in the form of glycogen via a pathway that is conserved across the cyanobacterial phylum. Our results show that deletion of glycogen synthase gene orchestrates cascading effects on carbon distribution in various parts of the metabolic network. Carbon that was originally destined to be incorporated into glycogen gets partially diverted toward alternate storage molecules such as glucosylglycerol and sucrose. The rest is partitioned within the metabolic network, primarily via glycolysis and tricarboxylic acid cycle. A lowered flux toward carbohydrate synthesis and an altered distribution at the glucose-1-phosphate node indicate flexibility in the network. Further, reversibility of glycogen biosynthesis reactions points toward the presence of futile cycles. Similar redistribution of carbon was also predicted by Flux Balance Analysis. The results are significant to metabolic engineering efforts with cyanobacteria where fixed carbon needs to be re-routed to products of interest. Biotechnol. Bioeng. 2017;114: 2298-2308. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Choline and methionine differentially alter methyl carbon metabolism in bovine neonatal hepatocytes.

    Science.gov (United States)

    Chandler, Tawny L; White, Heather M

    2017-01-01

    Intersections in hepatic methyl group metabolism pathways highlights potential competition or compensation of methyl donors. The objective of this experiment was to examine the expression of genes related to methyl group transfer and lipid metabolism in response to increasing concentrations of choline chloride (CC) and DL-methionine (DLM) in primary neonatal hepatocytes that were or were not exposed to fatty acids (FA). Primary hepatocytes isolated from 4 neonatal Holstein calves were maintained as monolayer cultures for 24 h before treatment with CC (61, 128, 2028, and 4528 μmol/L) and DLM (16, 30, 100, 300 μmol/L), with or without a 1 mmol/L FA cocktail in a factorial arrangement. After 24 h of treatment, media was collected for quantification of reactive oxygen species (ROS) and very low-density lipoprotein (VLDL), and cell lysates were collected for quantification of gene expression. No interactions were detected between CC, DLM, or FA. Both CC and DLM decreased the expression of methionine adenosyltransferase 1A (MAT1A). Increasing CC did not alter betaine-homocysteine S-methyltranferase (BHMT) but did increase 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) and methylenetetrahydrofolate reductase (MTHFR) expression. Increasing DLM decreased expression of BHMT and MTR, but did not affect MTHFR. Expression of both phosphatidylethanolamine N-methyltransferase (PEMT) and microsomal triglyceride transfer protein (MTTP) were decreased by increasing CC and DLM, while carnitine palmitoyltransferase 1A (CPT1A) was unaffected by either. Treatment with FA decreased the expression of MAT1A, MTR, MTHFR and tended to decrease PEMT but did not affect BHMT and MTTP. Treatment with FA increased CPT1A expression. Increasing CC increased secretion of VLDL and decreased the accumulation of ROS in media. Within neonatal bovine hepatocytes, choline and methionine differentially regulate methyl carbon pathways and suggest that choline may play a critical role in

  1. Carbon monoxide is not responsible for the cigarette smokeinduced changes in the pulmonary metabolism of arachidonic acid and prostaglandin E2

    International Nuclear Information System (INIS)

    Maennistoe, J.; Puustinen, T.; Uotila, P.

    1985-01-01

    Cigarette smoke is known to interfere with the pulmonary metabolism of arachidomic acid and prostaglandin E 2 (PGE 2 ). We investigated the possible role of carbon monoxide in these cigarette smoke-infuced alterations. 4 C-Arachidonic acid (50 nmol) was indused into the pulmonary circulation of isolated perfused hamster lungs and the radioactive metabolites in the perfusion effluent, as well as the distribution of incorporated radioactive arachidonic acid within the lung lipids, were analysed. Carbon monoxide, added into the ventilatory air, had no effect on the oxidative metabolism of arachidonic acid or on the distribution of radioactive arachidonic acid within the lung. In addition, carbon monoxide had no effect on the metabolism of PGE 2 following infusion of 100 nmol of 14 C-PGE 2 into the rat pulmonary circulation. The present study suggests that carbon monoxide is not responsible for the cigarette smoke-induced changes in the pulmonary metabolism of arachidonic acid and PGE 2 . (author)

  2. Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress

    DEFF Research Database (Denmark)

    Zhu, Xian-Can; Song, Feng-Bin; Liu, Fulai

    2015-01-01

    Effects of the arbuscular mycorrhizal (AM) fungus Glomus tortuosum on carbon (C) and nitrogen (N) metabolism of Zea mays L. grown under low-temperature stress was investigated. Maize plants inoculated or not inoculated with AM fungus were grown in a growth chamber at 258C for 4 weeks...... temperature regimes. AM symbiosis modulated C metabolic enzymes, thereby inducing an accumulation of soluble sugars, which may have contributed to an increased tolerance to low temperature, and therefore higher Pn in maize plants....

  3. Direct monitoring by carbon-13 nuclear magnetic resonance spectroscopy of the metabolism and metabolic rate of 13C-labeled compounds in vivo.

    Science.gov (United States)

    Iida, K; Hidoh, O; Fukami, J; Kajiwara, M

    1991-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy has been used to observe the transformations of [1-13C]-D-glucose to [1,1'-13C2]-D-trehalose, and [3-13C]-L-alanine to [2-13C]-L-glutamic acid in the living body of Gryllodes sigillatus. [3-13C]-D-Alanine was not metabolized. The metabolic rate of [1-13C]-D-glucose was found to be altered by prior injection of boric acid.

  4. Partitioning of Intermediary Carbon Metabolism in Vesicular-Arbuscular Mycorrhizal Leek.

    Science.gov (United States)

    Shachar-Hill, Y.; Pfeffer, P. E.; Douds, D.; Osman, S. F.; Doner, L. W.; Ratcliffe, R. G.

    1995-05-01

    Vesicular-arbuscular mycorrhizal fungi are symbionts for a large variety of crop plants; however, the form in which they take up carbon from the host is not established. To trace the course of carbon metabolism, we have used nuclear magnetic resonance spectroscopy with [13C]glucose labeling in vivo and in extracts to examine leek (Allium porrum) roots colonized by Glomus etunicatum (and uncolonized controls) as well as germinating spores. These studies implicate glucose as a likely substrate for vesicular-arbuscular mycorrhizal fungi in the symbiotic state. Root feeding of 0.6 mM 1-[13C]glucose labeled only the fungal metabolites trehalose and glycogen. The time course of this labeling was dependent on the status of the host. Incubation with 50 mM 1-[13C]glucose caused labeling of sucrose (in addition to fungal metabolites) with twice as much labeling in uncolonized plants. There was no detectable scrambling of the label from C1 glucose to the C6 position of glucose moieties in trehalose or glycogen. Labeling of mannitol C1,6 in the colonized root tissue was much less than in axenically germinating spores. Thus, carbohydrate metabolism of host and fungus are significantly altered in the symbiotic state.

  5. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP

    Science.gov (United States)

    Ise, Takeshi; Litton, Creighton M.; Giardina, Christian P.; Ito, Akihiko

    2010-12-01

    Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long-lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning to leaves, stems, and roots varies consistently with GPP and that the ratio of net primary production (NPP) to GPP is conservative across environmental gradients. To examine influences of carbon partitioning schemes employed by global ecosystem models, we used this meta-analysis-based model and a satellite-based (MODIS) terrestrial GPP data set to estimate global woody NPP and equilibrium biomass, and then compared it to two process-based ecosystem models (Biome-BGC and VISIT) using the same GPP data set. We hypothesized that different carbon partitioning schemes would result in large differences in global estimates of woody NPP and equilibrium biomass. Woody NPP estimated by Biome-BGC and VISIT was 25% and 29% higher than the meta-analysis-based model for boreal forests, with smaller differences in temperate and tropics. Global equilibrium woody biomass, calculated from model-specific NPP estimates and a single set of tissue turnover rates, was 48 and 226 Pg C higher for Biome-BGC and VISIT compared to the meta-analysis-based model, reflecting differences in carbon partitioning to structural versus metabolically active tissues. In summary, we found that different carbon partitioning schemes resulted in large variations in estimates of global woody carbon flux and storage, indicating that stand-level controls on carbon partitioning are not yet accurately represented in ecosystem models.

  6. The metabolism and dosimetry of carbon-14 labelled diethylenetriaminepentaacetic acid (DTPA)

    International Nuclear Information System (INIS)

    Crawley, F.E.H.; Haines, J.W.

    1978-01-01

    Male rats were given carbon-14 labelled Ca-DTPA either by intravenous injection or by pulmonary intubation. The elimination of the carbon-14 by excretion in urine, faeces and breath was followed, Chromatographic examination of the urine showed that no metabolic degradation of the 14 C-DTPA had occurred. The distribution of activity between lung, kidneys, bone, muscle and GI tract was also followed. The data obtained have been used to assess the radiation dose to man from an intake of 14 C-DTPA on the assumption that the behaviour of 14 C-DTPA in man is the same as in the rat. The results are discussed. (U K.)

  7. An Integrative Approach to Energy, Carbon, and Redox Metabolism in the Cyanobacterium Synechocystis sp. PCC 6803. Special Report

    Energy Technology Data Exchange (ETDEWEB)

    Overbeek, R.

    2003-06-30

    The main objectives for the first year were to produce a detailed metabolic reconstruction of synechocystis sp. PCC 6803 especially in interrelated areas of photosynthesis, respiration, and central carbon metabolism to support a more complete understanding and modeling of this organism. Additionally, Integrated Genomics, Inc., provided detailed bioinformatic analysis of selected functional systems related to carbon and energy generation and utilization, and of the corresponding pathways, functional roles and individual genes to support wet lab experiments by collaborators.

  8. C-11-labeled octadecylamine, a potential agent for positron tomographic pulmonary metabolism studies

    International Nuclear Information System (INIS)

    Washburn, L.C.; Wallace, R.T.; Byrd, B.L.; Sun, T.T.; Coffey, J.L.; Hubner, K.F.

    1984-01-01

    C-11-Labeled straight-chain primary aliphatic amines are rapidly and selectively sequestered by lung endothelial cells, making these agents potentially useful for positron tomographic studies of the lung as a metabolic organ. However, because amines having straight chains containing 4 to 13 carbon atoms are rapidly catabolized in vivo with loss of radiolabel, quantitation of pulmonary concentration is difficult. The authors have studied the effect of structural changes on the uptake and retention of primary aliphatic amines in rat lung and found that the metabolic loss form the lung decreased with increasing length of the straight carbon chain. In fact, the lung concentration of octadecylamine, a straight-chain amine with 18 carbon atoms, was constant between 1 and 30 minutes after intravenous administration. This highly insoluble amine was solubilized using 3% aqueous human serum albumin. Unilateral, radiation-induced lung injury in the rat was used as a model to study the potential of C-11-labeled octadecylamine. Radiation-damaged (3000 and 5000 Rads) lungs had significantly lower 15-minute uptakes of the labeled amine than the corresponding nonirradiated lungs. However, at 8000 Rads the concentration in both lungs was greatly suppressed, indicating that the decrease in metabolism becomes systemic at high radiation doses. These results suggest that C-11-labeled octadecylamine is a potentially useful agent for quantitative evaluation of pulmonary metabolism by positron tomography

  9. Metabolism of N-methylformamide in mice: primary kinetic deuterium isotope effect and identification of S-(N-methylcarbamoyl)glutathione as a metabolite

    International Nuclear Information System (INIS)

    Threadgill, M.D.; Axworthy, D.B.; Baillie, T.A.; Farmer, P.B.; Farrow, K.C.; Gescher, A.; Kestell, P.; Pearson, P.G.; Shaw, A.J.

    1987-01-01

    S-(N-Methylcarbamoyl)glutathione has been identified by cesium ion liquid secondary ion mass spectrometry as a biliary metabolite in mice of the experimental antitumor agent and hepatotoxin N-methylformamide. Metabolism of N-methylformamide to urinary methylamine, urinary N-acetyl-S-(N-methylcarbamoyl)-cysteine and biliary S-(N-methylcarbamoyl)glutathione was found to be subject to large intermolecular primary kinetic isotope effects when hydrogen was replaced by deuterium in the formyl group (kH/kD = 5.5 +/- 0.2, 4.5 +/- 1.0 and 7 +/- 2, respectively), as shown by mass spectrometry of derivatives of these metabolites. These values indicate the existence of a common metabolic precursor for each of these metabolites. In particular, methylamine is shown not to arise from simple enzymatic hydrolysis of N-methylformamide but is associated with an oxidative process. Therefore, it is highly likely that N-methylformamide is oxidized and conjugated to form S-(N-methylcarbamoyl)glutathione which is metabolized further to N-acetyl-S-(N-methylcarbamoyl) cysteine. Either of these thiocarbamates could be hydrolyzed to give the parent thiol and the observed metabolic end products, methylamine and carbon dioxide. The presence of deuterium in the formyl moiety of N-methylformamide reduced markedly the hepatotoxicity of the compound, as shown by measurements of the activities of appropriate hepatic enzymes in plasma

  10. Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models

    Directory of Open Access Journals (Sweden)

    Hammami Ines

    2012-07-01

    Full Text Available Abstract Background The tumor microenvironment contains a vast array of pro- and anti-inflammatory cytokines that alter myelopoiesis and lead to the maturation of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs. Incubating bone marrow (BM precursors with a combination of granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-6 (IL-6 generated a tumor-infiltrating MDSC-like population that impaired anti-tumor specific T-cell functions. This in vitro experimental approach was used to simulate MDSC maturation, and the cellular metabolic response was then monitored. A complementary experimental model that inhibited L-arginine (L-Arg metabolizing enzymes in MSC-1 cells, an immortalized cell line derived from primary MDSCs, was used to study the metabolic events related to immunosuppression. Results Exposure of BM cells to GM-CSF and IL-6 activated, within 24 h, L-Arg metabolizing enzymes which are responsible for the MDSCs immunosuppressive potential. This was accompanied by an increased uptake of L-glutamine (L-Gln and glucose, the latter being metabolized by anaerobic glycolysis. The up-regulation of nutrient uptake lead to the accumulation of TCA cycle intermediates and lactate as well as the endogenous synthesis of L-Arg and the production of energy-rich nucleotides. Moreover, inhibition of L-Arg metabolism in MSC-1 cells down-regulated central carbon metabolism activity, including glycolysis, glutaminolysis and TCA cycle activity, and led to a deterioration of cell bioenergetic status. The simultaneous increase of cell specific concentrations of ATP and a decrease in ATP-to-ADP ratio in BM-derived MDSCs suggested cells were metabolically active during maturation. Moreover, AMP-activated protein kinase (AMPK was activated during MDSC maturation in GM-CSF and IL-6–treated cultures, as revealed by the continuous increase of AMP-to-ATP ratios and the phosphorylation of AMPK. Likewise, AMPK activity was

  11. Chemical constraints governing the origin of metabolism: the thermodynamic landscape of carbon group transformations under mild aqueous conditions

    Science.gov (United States)

    Weber, Arthur L.

    2002-01-01

    The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies (deltaG) were estimated for four types of reactions of biochemical importance carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed (1) that generally when carbon-carbon bond cleavage involves groups from different functional group classes (i.e., carboxylic acids, carbonyl groups, alcohols, and hydrocarbons), the transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) that the energy of carbon-carbon bond transformation is primarily determined by the functional group class of the group that changes oxidation state in the reaction (i.e., the functional group class of the group that donates the shared electron-pair during cleavage, or that accepts the incipient shared electron-pair during synthesis). In contrast, the energy of hydrogen transfer between carbon groups is determined by the functional group class of both the hydrogen-donor group and the hydrogen-acceptor group. From these and other observations we concluded that the chemistry involved in the origin of metabolism (and to a lesser degree modern metabolism) was strongly constrained by (1) the limited redox-based transformation energy of organic substrates that is readily dissipated in a few energetically favorable irreversible reactions; (2) the energy dominance of a few transformation half-reactions that determines whether carbon-carbon bond transformation (cleavage or synthesis) is energetically favorable (deltaG +3.5 kcal/mol); and (3) the dependence of carbon group transformation energy on the

  12. Abscisic acid as a factor in regulation of photosynthetic carbon metabolism of pea seedlings

    Directory of Open Access Journals (Sweden)

    Maria Faltynowicz

    2014-01-01

    Full Text Available The influence of abscisic acid (ABA on carbon metabolism and the activity of ribulosebisphosphate (RuBP and phosphoenolpyruvate (PEP carboxylases in 8-day-old pea seedlings was investigated. It was endeavoured to correlate the changes observed in metabolic processes with the endogenous ABA level. In plants treated with ABA incorporation of labeled carbon into sucrose, glucose, fructose and sugar phosphates was depressed, while 14C incorporation into starch, ribulose and malic acid was enhanced. The activity of RuBP carboxylase was considerably lowered, whereas that of PEP carboxylase was slightly increased. It is considered that inhibition of photosynthesis due to the action of ABA is caused to a great extent by the obstruction of the C-3 pathway and reduced activity of RuBP carboxylase, whereas (β-carboxylation was not blocked.

  13. Partitioning of One-Carbon Units in Folate and Methionine Metabolism Is Essential for Neural Tube Closure

    Directory of Open Access Journals (Sweden)

    Kit-Yi Leung

    2017-11-01

    Full Text Available Summary: Abnormal folate one-carbon metabolism (FOCM is implicated in neural tube defects (NTDs, severe malformations of the nervous system. MTHFR mediates unidirectional transfer of methyl groups from the folate cycle to the methionine cycle and, therefore, represents a key nexus in partitioning one-carbon units between FOCM functional outputs. Methionine cycle inhibitors prevent neural tube closure in mouse embryos. Similarly, the inability to use glycine as a one-carbon donor to the folate cycle causes NTDs in glycine decarboxylase (Gldc-deficient embryos. However, analysis of Mthfr-null mouse embryos shows that neither S-adenosylmethionine abundance nor neural tube closure depend on one-carbon units derived from embryonic or maternal folate cycles. Mthfr deletion or methionine treatment prevents NTDs in Gldc-null embryos by retention of one-carbon units within the folate cycle. Overall, neural tube closure depends on the activity of both the methionine and folate cycles, but transfer of one-carbon units between the cycles is not necessary. : Leung at al. find that embryonic neural tube closure depends both on the supply of one-carbon units to the folate cycle from glycine cleavage and on the methionine cycle. In contrast, transfer of one-carbon units from the folate cycle to the methionine cycle by MTHFR is dispensable. Keywords: one-carbon metabolism, folic acid, neural tube defects, spina bifida, glycine cleavage system, non-ketotic hyperglycinemia, eye, Mthfr, Gldc

  14. Metabolic cytometry: capillary electrophoresis with two-color fluorescence detection for the simultaneous study of two glycosphingolipid metabolic pathways in single primary neurons.

    Science.gov (United States)

    Essaka, David C; Prendergast, Jillian; Keithley, Richard B; Palcic, Monica M; Hindsgaul, Ole; Schnaar, Ronald L; Dovichi, Norman J

    2012-03-20

    Metabolic cytometry is a form of chemical cytometry wherein metabolic cascades are monitored in single cells. We report the first example of metabolic cytometry where two different metabolic pathways are simultaneously monitored. Glycolipid catabolism in primary rat cerebella neurons was probed by incubation with tetramethylrhodamine-labeled GM1 (GM1-TMR). Simultaneously, both catabolism and anabolism were probed by coincubation with BODIPY-FL labeled LacCer (LacCer-BODIPY-FL). In a metabolic cytometry experiment, single cells were incubated with substrate, washed, aspirated into a capillary, and lysed. The components were separated by capillary electrophoresis equipped with a two-spectral channel laser-induced fluorescence detector. One channel monitored fluorescence generated by the metabolic products produced from GM1-TMR and the other monitored the metabolic products produced from LacCer-BODIPY-FL. The metabolic products were identified by comparison with the mobility of a set of standards. The detection system produced at least 6 orders of magnitude dynamic range in each spectral channel with negligible spectral crosstalk. Detection limits were 1 zmol for BODIPY-FL and 500 ymol for tetramethylrhodamine standard solutions.

  15. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic

    DEFF Research Database (Denmark)

    Jonasdottir, Sigrun; Visser, Andre; Richardson, Katherine

    2015-01-01

    it is metabolized at a rate comparable to the carbon delivered by sinking detritus. This “lipid pump” has not been included in previous estimates of the deep-ocean carbon sequestration, which are based on either measurements of sinking fluxes of detritus, or estimates of new primary production. Unlike other...

  16. Photosynthetic carbon metabolism in the submerged aquatic angiosperm Scirpus subterminalis

    Energy Technology Data Exchange (ETDEWEB)

    Beer, S; Wetzel, R G

    1981-01-01

    Scirpus subterminalis Torr., a submerged angiosperm abundant in many hardwater lakes of the Great Lakes region, was investigated for various photosynthetic carbon fixation properties in relation to available inorganic carbon and levels of carbon fixing enzymes. Photosynthetic experiments were CO/sub 2/ and HCO/sub 3//sup -/ were supplied at various concentrations showed that Scirpus was able to utilize HCO/sub 3//sup -/ at those concentrations close to natural conditions. However, when CO/sub 2/ concentrations were increased above ambient, photosynthetic rates increased markedly. It was concluded that the photosynthetic potential of this plant in many natural situations may be limited by inorganic carbon uptake in the light. Phosphoenolpyruvate carboxylase (PEPcase)/ribulose-1,5-bisphosphate carboxylase (ruBPcase) ratios of the leaves varied between 0.5 and 0.9 depending on substrate concentration during assay. The significance of PEP-mediated carbon fixation of Scirpus (basically a C/sub 3/ plant) in the dark was investigated. Malate accumulated in the leaves during the dark period of a 24-h cycle and malate levels decreased significantly during the following light period. The accumulation was not due to transport of malate from the roots. Carbon uptake rates in the dark by the leaves of Scirpus were lower than malate accumulation rates. Therefore, part of the malate was likely derived from respired CO/sub 2/. Carbon uptake rates in the light were much higher than malate turnover rates. It was estimated that carbon fixation via malate could contribute up to 12% to net photosynthetic rates. The ecological significance of this type of metabolism in submerged aquatics is discussed.

  17. Analysis of carbon transport in the EBR-II and FFTF primary sodium systems

    International Nuclear Information System (INIS)

    Snyder, R.B.; Natesan, K.; Kassner, T.F.

    1976-01-01

    An analysis of the carburization-decarburization behavior of austenitic stainless steels in the primary heat-transport systems of the EBR-II and FFTF has been made that is based upon a kinetic model for the diffusion process and the surface area of steel in contact with flowing sodium at various temperatures in the two systems. The analysis was performed for operating conditions that result in sodium outlet temperatures of 474 and 566 0 C in the FFTF and 470 0 C in the EBR-II. If there was no external source of carbon to the system, i.e., other than the carbon initially present in the steel and the sodium, the dynamic-equilibrium carbon concentrations calculated for the FFTF primary sodium were approximately 0.025 and approximately 0.065 ppm for the 474 and 566 0 C outlet temperatures, respectively, and approximately 0.018 ppm for the EBR-II primary system. The analysis indicated that a carbon-source rate of approximately 250 g/y would be required to increase the carbon concentration of the EBR-II sodium to the measured range of approximately 0.16--0.19 ppm. An evaluation of possible carbon sources and the amount of carbonaceous material introduced into the reactor cover gas and sodium suggests that the magnitude of the calculated contamination rate is reasonable. For a 566 0 C outlet temperature, carbonaceous material would have to be introduced into the FFTF primary system at a rate approximately 4--6 times higher than in EBR-II to achieve the same carbon concentration in the sodium in the two systems. Since contamination rates of approximately 1500 g/y are unlikely, high-temperature fuel cladding in the FFTF should exhibit decarburization similar to that observed in laboratory loop systems, in contrast to the minimal compositional changes that result after exposure of Type 316 stainless steel to EBR-II sodium at temperatures between approximately 625 and 650 0 C

  18. Organic carbon fluxes in the Atlantic and the Southern Ocean: relationship to primary production compiled from satellite radiometer data

    Science.gov (United States)

    Fischer, G.; Ratmeyer, V.; Wefer, G.

    Fluxes of organic carbon normalised to a depth of 1000 m from 18 sites in the Atlantic and the Southern Ocean are presented, comprising nine biogeochemical provinces as defined by Longhurst et al. (1995. Journal of Plankton Research 17, 1245-1271). For comparison with primary production, we used a recent compilation of primary production values derived from CZCS data (Antoine et al., 1996. Global Biogeochemical Cycles 10, 57-69). In most cases, the seasonal patterns stood reasonably well in accordance with the carbon fluxes. Particularly, organic carbon flux records from two coastal sites off northwest and southwest Africa displayed a more distinct correlation to the primary production in sectors (1×1°) which are situated closer to the coastal environments. This was primarily caused by large upwelling filaments streaming far offshore, resulting in a cross-shelf carbon transport. With respect to primary production, organic carbon export to a water depth of 1000 m, and the fraction of primary production exported to a depth of 1000 m (export fraction=EF 1000), we were able to distinguish between: (1) the coastal environments with highest values (EF 1000=1.75-2.0%), (2) the eastern equatorial upwelling area with moderately high values (EF 1000=0.8-1.1%), (3) and the subtropical oligotrophic gyres that yielded lowest values (EF 1000=0.6%). Carbon export in the Southern Ocean was low to moderate, and the EF 1000 value seems to be quite low in general. Annual organic carbon fluxes were proportional to primary production, and the export fraction EF 1000 increased with primary production up to 350 gC m -2 yr-1. Latitudinal variations in primary production were reflected in the carbon flux pattern. A high temporal variability of primary production rates and a pronounced seasonality of carbon export were observed in the polar environments, in particular in coastal domains, although primary production (according to Antoine et al., 1996. Global Biogeochemical Cycles 10, 57

  19. Determinants of maternal pregnancy one-carbon metabolism and newborn human DNA methylation profiles

    NARCIS (Netherlands)

    N.H. van Mil (Nina); M.I. Bouwl-Both (Marieke I.); L. Stolk (Lisette); M.M.P.J. Verbiest (Michael); A. Hofman (Albert); V.W.V. Jaddoe (Vincent); F.C. Verhulst (Frank); P.H.C. Eilers (Paul); A.G. Uitterlinden (André); E.A.P. Steegers (Eric); H.W. Tiemeier (Henning); R.P.M. Steegers-Theunissen (Régine)

    2014-01-01

    textabstractMaternal one-carbon (1-C) metabolism provides methylgroups for fetal development and programing by DNA methylation as one of the underlying epigenetic mechanisms. We aimed to investigate maternal 1-C biomarkers, folic acid supplement use, and MTHFR C677T genotype as determinants of 1-C

  20. The Role of Diet in One-Carbon Metabolism and Epigenetics

    DEFF Research Database (Denmark)

    Lind, Mads Vendelbo

    Background: Dysregulation of one-carbon metabolism (OCM) is related to metabolic syndrome (MetS) through various mechanisms including epigenetics. Diet plays a central role in ensuring normal OCM regulation by supplying multiple nutrients. Foods such as whole grains and fish have been proposed...... acid (EPA) and docosahexaenoic acid (DHA) which might also play a role in OCM regulation and epigenetics. Aim: This PhD thesis investigates the role of diet in OCM regulation and the potential association between OCM and MetS. We further investigated whether a dietary intervention with high whole grain......-adenosylmethionine (SAM), s-adenosylhomocysteine (SAH) and Hcy, and diet. Associations between OCM metabolites and MetS features were also investigated. In an 8-week human cross-over intervention study we investigated whether a diet rich in whole grain compared to a diet rich in refined grain could affect OCM metabolites...

  1. Nutrition, One-Carbon Metabolism and Neural Tube Defects: A Review

    Directory of Open Access Journals (Sweden)

    Kelei Li

    2016-11-01

    Full Text Available Neural tube defects (NTDs are a group of severe congenital malformations, induced by the combined effects of genes and the environment. The most valuable finding so far has been the protective effect of folic acid supplementation against NTDs. However, many women do not take folic acid supplements until they are pregnant, which is too late to prevent NTDs effectively. Long-term intake of folic acid–fortified food is a good choice to solve this problem, and mandatory folic acid fortification should be further promoted, especially in Europe, Asia and Africa. Vitamin B2, vitamin B-6, vitamin B-12, choline, betaine and n-3 polyunsaturated fatty acids (PUFAs can also reduce the NTD risk by interacting with the one-carbon metabolism pathway. This suggest that multivitamin B combined with choline, betaine and n-3 PUFAs supplementation may have a better protective effect against NTDs than folic acid alone. Genetic polymorphisms involved in one-carbon metabolism are associated with NTD risk, and gene screening for women of childbearing age prior to pregnancy may help prevent NTDs induced by the risk allele. In addition, the consumption of alcohol, tea and coffee, and low intakes of fruit and vegetable are also associated with the increased risk of NTDs, and should be avoided by women of childbearing age.

  2. Primary carbon sources for juvenile penaeid shrimps in a mangrove ...

    African Journals Online (AJOL)

    Carbon and nitrogen stable isotope ratios were determined in a variety of primary producers (mangroves, epiphytes, phytoplankton and seagrasses), sediments and in five penaeid shrimp species (Penaeus (Fenneropenaeus) indicus, P. japonicus, P. semisulcatus, Metapenaeus monoceros and M. stebbingi), collected ...

  3. Differential Metabolism of a Two-Carbon Substrate by Members of the Paracoccidioides Genus

    Directory of Open Access Journals (Sweden)

    Lilian C. Baeza

    2017-11-01

    Full Text Available The genus Paracoccidioides comprises known fungal pathogens of humans and can be isolated from different infection sites. Metabolic peculiarities in different members of the Paracoccidioides led us to perform proteomic studies in the presence of the two-carbon molecule acetate, which predominates in the nutrient-poor environment of the phagosome. To investigate the expression rates of proteins of different members of Paracoccidioides, including one isolate of P. lutzii (Pb01 and three isolates of P. brasiliensis (Pb03, Pb339, and PbEPM83, using sodium acetate as a carbon source, proteins were quantified using label-free and data-independent liquid chromatography-mass spectrometry. Protein profiles of the isolates were statistically analyzed, revealing proteins that were differentially expressed when the fungus was cultivated in a non-preferential carbon source rather than glucose. A total of 1,160, 1,211, 1,280, and 1,462 proteins were reproducibly identified and relatively quantified in P. lutzii and the P. brasiliensis isolates Pb03, Pb339, and PbEPM83, respectively. Notably, 526, 435, 744, and 747 proteins were differentially expressed among P. lutzii and the P. brasiliensis isolates Pb03, Pb339, and PbEPM83, respectively, with a fold-change equal to or higher than 1.5. This analysis revealed that reorganization of metabolism occurred through the induction of proteins related to gluconeogenesis, glyoxylic/glyoxylate cycle, response to stress, and degradation of amino acids in the four isolates. The following differences were observed among the isolates: higher increases in the expression levels of proteins belonging to the TCA and respiratory chain in PbEPM83 and Pb01; increase in ethanol production in Pb01; utilization of cell wall components for gluconeogenesis in Pb03 and PbEPM83; and increased β-oxidation and methylcitrate cycle proteins in Pb01and PbEPM83. Proteomic profiles indicated that the four isolates reorganized their metabolism

  4. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... on glutamate metabolism in astrocytes was studied using primary cultures of these cells from mouse cerebral cortex during incubation in media containing 2.5 mM glucose and 100 µM [U-(13)C]glutamate. The metabolism of glutamate including a detailed analysis of its metabolic pathways involving the tricarboxylic...... skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  5. Reprogramming One-Carbon Metabolic Pathways To Decouple l-Serine Catabolism from Cell Growth in Corynebacterium glutamicum.

    Science.gov (United States)

    Zhang, Yun; Shang, Xiuling; Lai, Shujuan; Zhang, Yu; Hu, Qitiao; Chai, Xin; Wang, Bo; Liu, Shuwen; Wen, Tingyi

    2018-02-16

    l-Serine, the principal one-carbon source for DNA biosynthesis, is difficult for microorganisms to accumulate due to the coupling of l-serine catabolism and microbial growth. Here, we reprogrammed the one-carbon unit metabolic pathways in Corynebacterium glutamicum to decouple l-serine catabolism from cell growth. In silico model-based simulation showed a negative influence on glyA-encoding serine hydroxymethyltransferase flux with l-serine productivity. Attenuation of glyA transcription resulted in increased l-serine accumulation, and a decrease in purine pools, poor growth and longer cell shapes. The gcvTHP-encoded glycine cleavage (Gcv) system from Escherichia coli was introduced into C. glutamicum, allowing glycine-derived 13 CH 2 to be assimilated into intracellular purine synthesis, which resulted in an increased amount of one-carbon units. Gcv introduction not only restored cell viability and morphology but also increased l-serine accumulation. Moreover, comparative proteomic analysis indicated that abundance changes of the enzymes involved in one-carbon unit cycles might be responsible for maintaining one-carbon unit homeostasis. Reprogramming of the one-carbon metabolic pathways allowed cells to reach a comparable growth rate to accumulate 13.21 g/L l-serine by fed-batch fermentation in minimal medium. This novel strategy provides new insights into the regulation of cellular properties and essential metabolite accumulation by introducing an extrinsic pathway.

  6. Metabolism and risks from tritium and carbon-14 in the developing organism

    International Nuclear Information System (INIS)

    Gerber, G.B.; Kirchmann, R.; Hoek, J. van den

    1987-01-01

    In this review the risks are considered from tritium and carbon-14 to the developing organs of mammals. It mainly deals with H-3 but the conclusions are largely valid also for C-14. The metabolism and average tissue of THO as well as of organically bound tritium are discussed. Dosimetry of radiosensitive structures is also considered. 14 refs.; 2 figs.; 1 table

  7. Integrating tracer-based metabolomics data and metabolic fluxes in a linear fashion via Elementary Carbon Modes.

    Science.gov (United States)

    Pey, Jon; Rubio, Angel; Theodoropoulos, Constantinos; Cascante, Marta; Planes, Francisco J

    2012-07-01

    Constraints-based modeling is an emergent area in Systems Biology that includes an increasing set of methods for the analysis of metabolic networks. In order to refine its predictions, the development of novel methods integrating high-throughput experimental data is currently a key challenge in the field. In this paper, we present a novel set of constraints that integrate tracer-based metabolomics data from Isotope Labeling Experiments and metabolic fluxes in a linear fashion. These constraints are based on Elementary Carbon Modes (ECMs), a recently developed concept that generalizes Elementary Flux Modes at the carbon level. To illustrate the effect of our ECMs-based constraints, a Flux Variability Analysis approach was applied to a previously published metabolic network involving the main pathways in the metabolism of glucose. The addition of our ECMs-based constraints substantially reduced the under-determination resulting from a standard application of Flux Variability Analysis, which shows a clear progress over the state of the art. In addition, our approach is adjusted to deal with combinatorial explosion of ECMs in genome-scale metabolic networks. This extension was applied to infer the maximum biosynthetic capacity of non-essential amino acids in human metabolism. Finally, as linearity is the hallmark of our approach, its importance is discussed at a methodological, computational and theoretical level and illustrated with a practical application in the field of Isotope Labeling Experiments. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Inorganic carbon addition stimulates snow algae primary productivity

    Science.gov (United States)

    Hamilton, T. L.; Havig, J. R.

    2017-12-01

    Earth has experienced glacial/interglacial oscillations throughout its history. Today over 15 million square kilometers (5.8 million square miles) of Earth's land surface is covered in ice including glaciers, ice caps, and the ice sheets of Greenland and Antarctica, most of which are retreating as a consequence of increased atmospheric CO2. Glaciers are teeming with life and supraglacial snow and ice surfaces are often red due to blooms of photoautotrophic algae. Recent evidence suggests the red pigmentation, secondary carotenoids produced in part to thrive under high irradiation, lowers albedo and accelerates melt. However, there are relatively few studies that report the productivity of snow algae communities and the parameters that constrain their growth on snow and ice surfaces. Here, we demonstrate that snow algae primary productivity can be stimulated by the addition of inorganic carbon. We found an increase in light-dependent carbon assimilation in snow algae microcosms amended with increasing amounts of inorganic carbon. Our snow algae communities were dominated by typical cosmopolitan snow algae species recovered from Alpine and Arctic environments. The climate feedbacks necessary to enter and exit glacial/interglacial oscillations are poorly understood. Evidence and models agree that global Snowball events are accompanied by changes in atmospheric CO2 with increasing CO2 necessary for entering periods of interglacial time. Our results demonstrate a positive feedback between increased CO2 and snow algal productivity and presumably growth. With the recent call for bio-albedo effects to be considered in climate models, our results underscore the need for robust climate models to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO2.

  9. Biomarkers related to one-carbon metabolism as potential risk factors for distal colorectal adenomas

    NARCIS (Netherlands)

    Vogel, S. de; Schneede, J.; Ueland, P.M.; Vollset, S.E.; Meyer, K.; Fredriksen, A.; Midttun, O.; Bjorge, T.; Kampman, E.; Bretthauer, M.; Hoff, G.

    2011-01-01

    BACKGROUND: Efficient one-carbon metabolism, which requires adequate supply of methyl group donors and B-vitamins, may protect against colorectal carcinogenesis. However, plasma folate and vitamins B2 and B12 have inconsistently been associated with colorectal cancer risk, and there have been no

  10. Biomarkers Related to One-Carbon Metabolism as Potential Risk Factors for Distal Colorectal Adenomas

    NARCIS (Netherlands)

    Vogel, de S.; Schneede, J.; Ueland, P.M.; Vollset, S.E.; Meyer, K.; Fredriksen, A.; Midttun, O.; Bjorge, T.; Kampman, E.; Bretthauer, M.; Hoff, G.

    2011-01-01

    Background: Efficient one-carbon metabolism, which requires adequate supply of methyl group donors and B-vitamins, may protect against colorectal carcinogenesis. However, plasma folate and vitamins B2 and B12 have inconsistently been associated with colorectal cancer risk, and there have been no

  11. Hydroxyproline Metabolism and Oxalate Synthesis in Primary Hyperoxaluria.

    Science.gov (United States)

    Fargue, Sonia; Milliner, Dawn S; Knight, John; Olson, Julie B; Lowther, W Todd; Holmes, Ross P

    2018-06-01

    Background Endogenous oxalate synthesis contributes to calcium oxalate stone disease and is markedly increased in the inherited primary hyperoxaluria (PH) disorders. The incomplete knowledge regarding oxalate synthesis complicates discovery of new treatments. Hydroxyproline (Hyp) metabolism results in the formation of oxalate and glycolate. However, the relative contribution of Hyp metabolism to endogenous oxalate and glycolate synthesis is not known. Methods To define this contribution, we performed primed, continuous, intravenous infusions of the stable isotope [ 15 N, 13 C 5 ]-Hyp in nine healthy subjects and 19 individuals with PH and quantified the levels of urinary 13 C 2 -oxalate and 13 C 2 -glycolate formed using ion chromatography coupled to mass detection. Results The total urinary oxalate-to-creatinine ratio during the infusion was 73.1, 70.8, 47.0, and 10.6 mg oxalate/g creatinine in subjects with PH1, PH2, and PH3 and controls, respectively. Hyp metabolism accounted for 12.8, 32.9, and 14.8 mg oxalate/g creatinine in subjects with PH1, PH2, and PH3, respectively, compared with 1.6 mg oxalate/g creatinine in controls. The contribution of Hyp to urinary oxalate was 15% in controls and 18%, 47%, and 33% in subjects with PH1, PH2, and PH3, respectively. The contribution of Hyp to urinary glycolate was 57% in controls, 30% in subjects with PH1, and synthesis in individuals with PH2 and PH3. In patients with PH1, who have the highest urinary excretion of oxalate, the major sources of oxalate remain to be identified. Copyright © 2018 by the American Society of Nephrology.

  12. Contribution of extracellular glutamine as an anaplerotic substrate to neuronal metabolism: a re-evaluation by multinuclear NMR spectroscopy in primary cultured neurons.

    Science.gov (United States)

    Shokati, Touraj; Zwingmann, Claudia; Leibfritz, Dieter

    2005-10-01

    Multinuclear NMR spectroscopy is used to investigate the effect of glutamine on neuronal glucose metabolism. Primary neurons were incubated with [1-(13C)]glucose in the absence or presence of glutamine (2 mM) and/or NH4Cl (5 mM). After ammonia-treatment, the concentrations of high-energy phosphates decreased up to 84% of control, which was aggravated in glutamine-containing medium (up to 42% of control). These effects could not be attributed to changes in mitochondrial glucose oxidation. Withdrawal of glutamine decreased amino acid concentrations, e.g. of glutamate to 53%, but also considerably lessened the 13C enrichment in [4-(13C)]glutamate to 8.3% of control, and decreased the 13C-enrichment in acetyl-CoA entering the Krebs cycle (P neuronal glutamate stores, glutamate formation is mainly attributed to its de novo synthesis from glucose. Furthermore, mitochondrial glucose metabolism strongly depends on the supply of carbons from glutamine, indicating that exogenous glutamine is a well-suited substrate to replenish neuronal Krebs cycle intermediates.

  13. International Workshop on Carbon Cycling and Coral Reef Metabolism; Sangosho no tanso junkan ni kansuru kokusai workshop hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-16

    The paper described the International Workshop on Carbon Cycling and Coral Reef Metabolism which was held at Miyako-jima, Okinawa Pref. on October 17-24, 1995. In the workshop, researchers got together which are involved in marine chemistry, marine biology, coral ecology, and environmental science, and discussed the carbon cycling and metabolism of coral reef. Discussions were made on what the coral reef ecosystem is, and what the definition of a sink or a source for CO2 is. Also discussed were scales of how much time and space should be considered to make these issues clear. Further, it was proposed that it was necessary to investigate carbon balance of both the whole system and the components of the system and to keep track of mass transfer among neighboring components of the system. Seventeen presentations were given. The workshop obtained a definite consensus on carbon balance of the coral reef system. 123 refs., 39 figs., 9 tabs.

  14. Ecophysiology of terminal carbon metabolizing bacteria in anoxic sedimentary environments

    International Nuclear Information System (INIS)

    Phelps, T.J.

    1985-01-01

    Chemical, radiotracer, and microbiological experiments were used to understand the transformation of simple carbon compounds by anaerobic bacteria in diverse aquatic sediments and laboratory cultures. The mildly acidic sediments of Knack Lake (pH 6.2), displayed low rates of organic decomposition, and methane formation occurred almost exclusively from acetate. Low pH inhibited methanogenesis and organic decomposition. Fall turnover in Lake Mendota sediments was associated with dramatic changes in environmental parameters including: elevated concentrations of sulfate and carbon metabolites, increased rates of sulfate reduction, decreased levels of methanogenesis, increased ratio (by viable counts) of sulfate reducing to methanogenic bacteria, and higher 14 CO 2 / 14 C 4 + 14 CO 2 gas ratios produced during the biodegradation of 14 C-carbon substrates (e.g., acetate and methanol). Hydrogen consumption by sulfate reducers in Lake Mendota sediments and in co-cultures of Desulfovibrio vulgaris and Methanosarcina barkeri led to an alteration in the carbon and electron flow pathway resulting in increased CO 2 , sulfide production, and decreased methanogenesis. These data agreed with the environmental observations in Lake Mendota that high sulfate concentrations resulted in higher ratios of CO 2 /CH 4 produced from the degradation of organic matter. A new glycine-metabolizing acetogenic species was isolated and characterized from Knaack Lake which further extended the known diversity of anaerobic bacteria in nature

  15. Primary Metabolism during Biosynthesis of Secondary Wall Polymers of Protoxylem Vessel Elements1[OPEN

    Science.gov (United States)

    Morisaki, Keiko; Sawada, Yuji; Sano, Ryosuke; Yamamoto, Atsushi; Kurata, Tetsuya; Suzuki, Shiro; Matsuda, Mami; Hasunuma, Tomohisa; Hirai, Masami Yokota

    2016-01-01

    Xylem vessels, the water-conducting cells in vascular plants, undergo characteristic secondary wall deposition and programmed cell death. These processes are regulated by the VASCULAR-RELATED NAC-DOMAIN (VND) transcription factors. Here, to identify changes in metabolism that occur during protoxylem vessel element differentiation, we subjected tobacco (Nicotiana tabacum) BY-2 suspension culture cells carrying an inducible VND7 system to liquid chromatography-mass spectrometry-based wide-target metabolome analysis and transcriptome analysis. Time-course data for 128 metabolites showed dynamic changes in metabolites related to amino acid biosynthesis. The concentration of glyceraldehyde 3-phosphate, an important intermediate of the glycolysis pathway, immediately decreased in the initial stages of cell differentiation. As cell differentiation progressed, specific amino acids accumulated, including the shikimate-related amino acids and the translocatable nitrogen-rich amino acid arginine. Transcriptome data indicated that cell differentiation involved the active up-regulation of genes encoding the enzymes catalyzing fructose 6-phosphate biosynthesis from glyceraldehyde 3-phosphate, phosphoenolpyruvate biosynthesis from oxaloacetate, and phenylalanine biosynthesis, which includes shikimate pathway enzymes. Concomitantly, active changes in the amount of fructose 6-phosphate and phosphoenolpyruvate were detected during cell differentiation. Taken together, our results show that protoxylem vessel element differentiation is associated with changes in primary metabolism, which could facilitate the production of polysaccharides and lignin monomers and, thus, promote the formation of the secondary cell wall. Also, these metabolic shifts correlate with the active transcriptional regulation of specific enzyme genes. Therefore, our observations indicate that primary metabolism is actively regulated during protoxylem vessel element differentiation to alter the cell’s metabolic

  16. Seasonal Oxygen Dynamics in a Warm Temperate Estuary: Effects of Hydrologic Variability on Measurements of Primary Production, Respiration, and Net Metabolism

    Science.gov (United States)

    Seasonal responses in estuarine metabolism (primary production, respiration, and net metabolism) were examined using two complementary approaches. Total ecosystem metabolism rates were calculated from dissolved oxygen time series using Odum’s open water method. Water column rates...

  17. Ketone-Based Metabolic Therapy: Is Increased NAD+ a Primary Mechanism?

    Directory of Open Access Journals (Sweden)

    Marwa Elamin

    2017-11-01

    Full Text Available The ketogenic diet’s (KD anticonvulsant effects have been well-documented for nearly a century, including in randomized controlled trials. Some patients become seizure-free and some remain so after diet cessation. Many recent studies have explored its expanded therapeutic potential in diverse neurological disorders, yet no mechanism(s of action have been established. The diet’s high fat, low carbohydrate composition reduces glucose utilization and promotes the production of ketone bodies. Ketone bodies are a more efficient energy source than glucose and improve mitochondrial function and biogenesis. Cellular energy production depends on the metabolic coenzyme nicotinamide adenine dinucleotide (NAD, a marker for mitochondrial and cellular health. Furthermore, NAD activates downstream signaling pathways (such as the sirtuin enzymes associated with major benefits such as longevity and reduced inflammation; thus, increasing NAD is a coveted therapeutic endpoint. Based on differential NAD+ utilization during glucose- vs. ketone body-based acetyl-CoA generation for entry into the tricarboxylic cycle, we propose that a KD will increase the NAD+/NADH ratio. When rats were fed ad libitum KD, significant increases in hippocampal NAD+/NADH ratio and blood ketone bodies were detected already at 2 days and remained elevated at 3 weeks, indicating an early and persistent metabolic shift. Based on diverse published literature and these initial data we suggest that increased NAD during ketolytic metabolism may be a primary mechanism behind the beneficial effects of this metabolic therapy in a variety of brain disorders and in promoting health and longevity.

  18. Investigation of the microbial metabolism of carbon dioxide and hydrogen in the kangaroo foregut by stable isotope probing.

    Science.gov (United States)

    Godwin, Scott; Kang, Alicia; Gulino, Lisa-Maree; Manefield, Mike; Gutierrez-Zamora, Maria-Luisa; Kienzle, Marco; Ouwerkerk, Diane; Dawson, Kerri; Klieve, Athol V

    2014-09-01

    Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to investigate the organisms and biochemical pathways involved in the metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. Our results clearly demonstrate that the activity of bacterial reductive acetogens is a key factor in the reduced methane output of kangaroos. In in vitro fermentations, the microbial community of the kangaroo foregut produced very little methane, but produced a significantly greater proportion of acetate derived from carbon dioxide than the microbial community of the bovine rumen. A bacterial operational taxonomic unit closely related to the known reductive acetogen Blautia coccoides was found to be associated with carbon dioxide and hydrogen metabolism in the kangaroo foregut. Other bacterial taxa including members of the genera Prevotella, Oscillibacter and Streptococcus that have not previously been reported as containing hydrogenotrophic organisms were also significantly associated with metabolism of hydrogen and carbon dioxide in the kangaroo forestomach.

  19. Can metabolic tumor parameters on primary staging 18F-FDG PET/CT aid in risk stratification of primary central nervous system lymphomas for patient management as a prognostic model?

    Science.gov (United States)

    Okuyucu, K; Alagoz, E; Ince, S; Ozaydin, S; Arslan, N

    Primary central nervous system (CNS) lymphoma is an aggressive and fatal extranodal non-Hodgkin lymphoma jailed in CNS at initial diagnosis. Its prognosis is poor and the disease has a fatal outcome when compared with systemic non-Hodgkin lymphoma. A few baseline risk stratification scoring systems have been suggested to estimate the prognosis mainly based on serum lactate dehydrogenase level,age, Karnofsky performance score, involvement of deep brain structures and cerebrospinal fluid protein concentration. 18 F-FDG PET/CT has a high prognostic value with respect to overall survival and disease-free survival in many cancers and lymphomas. We aimed to investigate metabolic tumor indexes on primary staging 18 F-FDG PET/CT as prognostic markers in primary CNS lymphoma. Fourteen patients with primary CNS diffuse large B-cell lymphoma (stage i) were enrolled in this retrospective cohort study. Primary staging 18 F-FDG PET/CT was performed and quantitative parameters like maximum standardized uptake value, average standardized uptake value, metabolic tumor volume and total lesion glycolysis (TLG) were calculated for all patients before the treatment. Cox regression models were performed to determine their relation with survival time. In the evaluation of all potential risk factors impacting recurrence/metastases (age, sex, serum lactate dehydrogenase, involvement of deep brain structures, maximum standardized uptake value, average standardized uptake value, metabolic tumor volume, and TLG) with univariate analysis, TLG remained statistically significant (P=.02). Metabolic tumor parameters are useful in prognosis estimation of primary CNS lymphomas, especially TLG, which is the most important one and may play a role in patient management. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  20. In Vivo Loss of Function Screening Reveals Carbonic Anhydrase IX as a Key Modulator of Tumor Initiating Potential in Primary Pancreatic Tumors

    Directory of Open Access Journals (Sweden)

    Nabendu Pore

    2015-06-01

    Full Text Available Reprogramming of energy metabolism is one of the emerging hallmarks of cancer. Up-regulation of energy metabolism pathways fuels cell growth and division, a key characteristic of neoplastic disease, and can lead to dependency on specific metabolic pathways. Thus, targeting energy metabolism pathways might offer the opportunity for novel therapeutics. Here, we describe the application of a novel in vivo screening approach for the identification of genes involved in cancer metabolism using a patient-derived pancreatic xenograft model. Lentiviruses expressing short hairpin RNAs (shRNAs targeting 12 different cell surface protein transporters were separately transduced into the primary pancreatic tumor cells. Transduced cells were pooled and implanted into mice. Tumors were harvested at different times, and the frequency of each shRNA was determined as a measure of which ones prevented tumor growth. Several targets including carbonic anhydrase IX (CAIX, monocarboxylate transporter 4, and anionic amino acid transporter light chain, xc- system (xCT were identified in these studies and shown to be required for tumor initiation and growth. Interestingly, CAIX was overexpressed in the tumor initiating cell population. CAIX expression alone correlated with a highly tumorigenic subpopulation of cells. Furthermore, CAIX expression was essential for tumor initiation because shRNA knockdown eliminated the ability of cells to grow in vivo. To the best of our knowledge, this is the first parallel in vivo assessment of multiple novel oncology target genes using a patient-derived pancreatic tumor model.

  1. Adventitious Carbon on Primary Sample Containment Metal Surfaces

    Science.gov (United States)

    Calaway, M. J.; Fries, M. D.

    2015-01-01

    Future missions that return astromaterials with trace carbonaceous signatures will require strict protocols for reducing and controlling terrestrial carbon contamination. Adventitious carbon (AC) on primary sample containers and related hardware is an important source of that contamination. AC is a thin film layer or heterogeneously dispersed carbonaceous material that naturally accrues from the environment on the surface of atmospheric exposed metal parts. To test basic cleaning techniques for AC control, metal surfaces commonly used for flight hardware and curating astromaterials at JSC were cleaned using a basic cleaning protocol and characterized for AC residue. Two electropolished stainless steel 316L (SS- 316L) and two Al 6061 (Al-6061) test coupons (2.5 cm diameter by 0.3 cm thick) were subjected to precision cleaning in the JSC Genesis ISO class 4 cleanroom Precision Cleaning Laboratory. Afterwards, the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

  2. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis

    Science.gov (United States)

    Macavoy, S. E.; Jamil, T.; Macko, S. A.; Arneson, L. S.

    2003-12-01

    Stable isotope analysis is becoming an extensively used tool in animal ecology. The isotopes most commonly used for analysis in terrestrial systems are those of carbon and nitrogen, due to differential carbon fractionation in C3 and C4 plants, and the approximately 3‰ enrichment in 15N per trophic level. Although isotope signatures in animal tissues presumably reflect the local food web, analysis is often complicated by differential nutrient routing and fractionation by tissues, and by the possibility that large organisms are not in isotopic equilibrium with the foods available in their immediate environment. Additionally, the rate at which organisms incorporate the isotope signature of a food through both growth and metabolic tissue replacement is largely unknown. In this study we have assessed the rate of carbon and nitrogen isotopic turnover in liver, muscle and blood in mice following a diet change. By determining growth rates, we were able to determine the proportion of tissue turnover caused by growth versus that caused by metabolic tissue replacement. Growth was found to account for approximately 10% of observed tissue turnover in sexually mature mice (Mus musculus). Blood carbon was found to have the shortest half-life (16.9 days), followed by muscle (24.7 days). Liver carbon turnover was not as well described by the exponential decay equations as other tissues. However, substantial liver carbon turnover was observed by the 28th day after diet switch. Surprisingly, these tissues primarily reflect the carbon signature of the protein, rather than carbohydrate, source in their diet. The nitrogen signature in all tissues was enriched by 3 - 5‰ over their dietary protein source, depending on tissue type, and the isotopic turnover rates were comparable to those observed in carbon.

  3. Radio-metabolite analysis of carbon-11 biochemical partitioning to non-structural carbohydrates for integrated metabolism and transport studies.

    Science.gov (United States)

    Babst, Benjamin A; Karve, Abhijit A; Judt, Tatjana

    2013-06-01

    Metabolism and phloem transport of carbohydrates are interactive processes, yet each is often studied in isolation from the other. Carbon-11 ((11)C) has been successfully used to study transport and allocation processes dynamically over time. There is a need for techniques to determine metabolic partitioning of newly fixed carbon that are compatible with existing non-invasive (11)C-based methodologies for the study of phloem transport. In this report, we present methods using (11)C-labeled CO2 to trace carbon partitioning to the major non-structural carbohydrates in leaves-sucrose, glucose, fructose and starch. High-performance thin-layer chromatography (HPTLC) was adapted to provide multisample throughput, raising the possibility of measuring different tissues of the same individual plant, or for screening multiple plants. An additional advantage of HPTLC was that phosphor plate imaging of radioactivity had a much higher sensitivity and broader range of sensitivity than radio-HPLC detection, allowing measurement of (11)C partitioning to starch, which was previously not possible. Because of the high specific activity of (11)C and high sensitivity of detection, our method may have additional applications in the study of rapid metabolic responses to environmental changes that occur on a time scale of minutes. The use of this method in tandem with other (11)C assays for transport dynamics and whole-plant partitioning makes a powerful combination of tools to study carbohydrate metabolism and whole-plant transport as integrated processes.

  4. Fermentation of Xylose Causes Inefficient Metabolic State Due to Carbon/Energy Starvation and Reduced Glycolytic Flux in Recombinant Industrial Saccharomyces cerevisiae

    Science.gov (United States)

    Matsushika, Akinori; Nagashima, Atsushi; Goshima, Tetsuya; Hoshino, Tamotsu

    2013-01-01

    In the present study, comprehensive, quantitative metabolome analysis was carried out on the recombinant glucose/xylose-cofermenting S. cerevisiae strain MA-R4 during fermentation with different carbon sources, including glucose, xylose, or glucose/xylose mixtures. Capillary electrophoresis time-of-flight mass spectrometry was used to determine the intracellular pools of metabolites from the central carbon pathways, energy metabolism pathways, and the levels of twenty amino acids. When xylose instead of glucose was metabolized by MA-R4, glycolytic metabolites including 3- phosphoglycerate, 2- phosphoglycerate, phosphoenolpyruvate, and pyruvate were dramatically reduced, while conversely, most pentose phosphate pathway metabolites such as sedoheptulose 7- phosphate and ribulose 5-phosphate were greatly increased. These results suggest that the low metabolic activity of glycolysis and the pool of pentose phosphate pathway intermediates are potential limiting factors in xylose utilization. It was further demonstrated that during xylose fermentation, about half of the twenty amino acids declined, and the adenylate/guanylate energy charge was impacted due to markedly decreased adenosine triphosphate/adenosine monophosphate and guanosine triphosphate/guanosine monophosphate ratios, implying that the fermentation of xylose leads to an inefficient metabolic state where the biosynthetic capabilities and energy balance are severely impaired. In addition, fermentation with xylose alone drastically increased the level of citrate in the tricarboxylic acid cycle and increased the aromatic amino acids tryptophan and tyrosine, strongly supporting the view that carbon starvation was induced. Interestingly, fermentation with xylose alone also increased the synthesis of the polyamine spermidine and its precursor S-adenosylmethionine. Thus, differences in carbon substrates, including glucose and xylose in the fermentation medium, strongly influenced the dynamic metabolism of MA-R4

  5. Fasting ameliorates metabolism, immunity, and oxidative stress in carbon tetrachloride-intoxicated rats.

    Science.gov (United States)

    Sadek, Km; Saleh, Ea

    2014-12-01

    Fasting has been recently discovered to improve overall health, but its beneficial effects in the presence of hepatic insufficiency have not been proven. The influence of fasting on the metabolism, immunological aspects, and oxidative stress of 40 male carbon tetrachloride (CCl4)-intoxicated Wistar rats was investigated in the present study. The rats were divided into four groups, including a placebo group, CCl4-intoxicated rats, which were injected subcutaneously with 1.0 ml/kg of CCl4 solution, a fasting group, which was fasted 12 h/day for 30 days, and a fourth group, which was injected with CCl4 and fasted. The metabolism, immunity, and oxidative stress improved in CCl4-intoxicated rats fasted for 12 h/day for 30 days, as evidenced in significant increase (p fasting improved metabolism, immunity, and oxidative stress in CCl4-intoxicated rats. Thus, fasting during Ramadan is safe for patients with hepatic disorders, as the prophet Mohammed (S) said "Keep the fast, keep your health". © The Author(s) 2014.

  6. UV light selectively coinduces supply pathways from primary metabolism and flavonoid secondary product formation in parsley

    Science.gov (United States)

    Logemann, Elke; Tavernaro, Annette; Schulz, Wolfgang; Somssich, Imre E.; Hahlbrock, Klaus

    2000-01-01

    The UV light-induced synthesis of UV-protective flavonoids diverts substantial amounts of substrates from primary metabolism into secondary product formation and thus causes major perturbations of the cellular homeostasis. Results from this study show that the mRNAs encoding representative enzymes from various supply pathways are coinduced in UV-irradiated parsley cells (Petroselinum crispum) with two mRNAs of flavonoid glycoside biosynthesis, encoding phenylalanine ammonia-lyase and chalcone synthase. Strong induction was observed for mRNAs encoding glucose 6-phosphate dehydrogenase (carbohydrate metabolism, providing substrates for the shikimate pathway), 3-deoxyarabinoheptulosonate 7-phosphate synthase (shikimate pathway, yielding phenylalanine), and acyl-CoA oxidase (fatty acid degradation, yielding acetyl-CoA), and moderate induction for an mRNA encoding S-adenosyl-homocysteine hydrolase (activated methyl cycle, yielding S-adenosyl-methionine for B-ring methylation). Ten arbitrarily selected mRNAs representing various unrelated metabolic activities remained unaffected. Comparative analysis of acyl-CoA oxidase and chalcone synthase with respect to mRNA expression modes and gene promoter structure and function revealed close similarities. These results indicate a fine-tuned regulatory network integrating those functionally related pathways of primary and secondary metabolism that are specifically required for protective adaptation to UV irradiation. Although the response of parsley cells to UV light is considerably broader than previously assumed, it contrasts greatly with the extensive metabolic reprogramming observed previously in elicitor-treated or fungus-infected cells. PMID:10677554

  7. New Perspectives on Acetate and One-Carbon Metabolism in the Methanoarchaea

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, James [Pennsylvania State Univ., University Park, PA (United States)

    2017-03-20

    Carbonic anhydrases catalyze the reversible hydration of carbon dioxide to bicarbonate. Although widespread in prokaryotes of the domains Bacteria and Archaea, few have been investigated and the physiological functions are largely unknown. Carbonic anhydrases are of biotechnological interest for carbon dioxide capture and sequestration at point sources. Prokaryotes encode three independently evolved classes. The alpha-class is restricted to a few pathogens and the other two are uniformly distributed in phylogenetically and physiologically diverse species. Although wide-spread in prokaryotes, only three gamma-class enzymes have been biochemically characterized and the physiological functions have not been investigated. The gamma-class is prominent in anaerobic acetate-utilizing methane-producing species of the genus Methanosarcina that encode three subclasses. Enzymes from two of the subclasses, Cam and CamH from Methanosarcina thermophila, have been characterized and found to utilize iron in the active site which is the first example of an iron-containing carbonic anhydrase. No representative of the third subclass has been isolated, although this subclass constitutes the great majority of the β-class. This grant application proposed to characterize gamma-class carbonic anhydrases from diverse anaerobic prokaryotes from the domains Bacteria and Archaea to broaden the understanding of this enzyme. In particular, the three subclasses present the genetically tractable acetate-utilizing methanogen Methanosarcina acetivorans will be investigated to extend studies of acetate and one-carbon metabolism in this species. A genetic approach will be taken to ascertain the physiological functions. It is also proposed to delve deeper into the mechanism of Cam from M. thermophila, the archetype of the gamma-class, via a high resolution neutron structure and kinetic analysis of site-specific amino acid replacement variants. In the course of the investigation, goals were added to

  8. The Essential Role of Cholesterol Metabolism in the Intracellular Survival of Mycobacterium leprae Is Not Coupled to Central Carbon Metabolism and Energy Production.

    Science.gov (United States)

    Marques, Maria Angela M; Berrêdo-Pinho, Marcia; Rosa, Thabatta L S A; Pujari, Venugopal; Lemes, Robertha M R; Lery, Leticia M S; Silva, Carlos Adriano M; Guimarães, Ana Carolina R; Atella, Georgia C; Wheat, William H; Brennan, Patrick J; Crick, Dean C; Belisle, John T; Pessolani, Maria Cristina V

    2015-12-01

    Mycobacterium leprae induces the formation of lipid droplets, which are recruited to pathogen-containing phagosomes in infected macrophages and Schwann cells. Cholesterol is among the lipids with increased abundance in M. leprae-infected cells, and intracellular survival relies on cholesterol accumulation. The present study investigated the capacity of M. leprae to acquire and metabolize cholesterol. In silico analyses showed that oxidation of cholesterol to cholest-4-en-3-one (cholestenone), the first step of cholesterol degradation catalyzed by the enzyme 3β-hydroxysteroid dehydrogenase (3β-HSD), is apparently the only portion of the cholesterol catabolic pathway seen in Mycobacterium tuberculosis preserved by M. leprae. Incubation of bacteria with radiolabeled cholesterol confirmed the in silico predictions. Radiorespirometry and lipid analyses performed after incubating M. leprae with [4-(14)C]cholesterol or [26-(14)C]cholesterol showed the inability of this pathogen to metabolize the sterol rings or the side chain of cholesterol as a source of energy and carbon. However, the bacteria avidly incorporated cholesterol and, as expected, converted it to cholestenone both in vitro and in vivo. Our data indicate that M. leprae has lost the capacity to degrade and utilize cholesterol as a nutritional source but retains the enzyme responsible for its oxidation to cholestenone. Thus, the essential role of cholesterol metabolism in the intracellular survival of M. leprae is uncoupled from central carbon metabolism and energy production. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies. Our study focused on the obligate intracellular pathogen Mycobacterium leprae and its capacity to metabolize cholesterol. The data make an important contribution for those interested in understanding the

  9. (Carbon and hydrogen metabolism of green algae in light and dark)

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The focus of this project was the elucidation of anaerobic metabolism in ecuaryotic green algae, chlamydomonas reinhardii. Chlamydomonas is a versatile organism that can grow under disparate conditions such as fresh water lakes and sewage ponds. The cell an photoassimilate CO{sub 2} aerobically and anaerobically, the latter after adaptation'' to a hydrogen metabolism. It can recall the knallgas or oxyhydrogen reaction and utilize hydrogen the simplest of all reducing agents for the dark assimilation of CO{sub 2} by the photosynthetic carbon reduction cycle. The dark reduction with hydrogen lies on the border line between autotrophic and heterotrophic carbon assimilation. Both autotrophic and heterotrophic bacteria are known in which molecular hydrogen can replace either inorganic or organic hydrogen donors. Here the dark reduction of CO{sub 2} acquires a particular importance since it occurs in the same cell that carries on photoreduction and photosynthesis. We will demonstrate here that the alga chloroplast possesses a respiratory capacity. It seems likely that Chlamydomonas may have retained the chloroplastic respiratory pathway because of the selective advantage provided to the algae under a wide range of environmental conditions that the cells experience in nature. The ability to cycle electrons and poise the reduction level of the photosynthetic apparatus under aerobic and microaerobic conditions could allow more efficient CO{sub 2} fixation and enhanced growth under unfavorable conditions or survival under more severe conditions.

  10. Redesign of the Human Metabolic Simulator

    Science.gov (United States)

    Duffield, Bruce; Jeng, Frank; Lange, Kevin

    2004-01-01

    The National Aeronautics and Space Administration (NASA) is currently building a Human Metabolic Simulator (HMS) at the Johnson Space Center as part of the Advanced Life Support Air Revitalization Technology Evaluation Facility (ARTEF). The purpose of ARTEF is to evaluate Environmental Control and Life Support System Technologies for Advanced Missions. The HMS is needed to reproduce the primary metabolic effects of human respiration on an enclosed atmosphere when humans cannot be present and the impact of human presence on the system is required. A HMS was designed, built and successfully operated in 2000 but larger crew size requirements and the expense of upgrade of the current system necessitate redesign. This paper addresses the redesign. Several concepts were considered, ranging from chemical oxidation of a hydrocarbon like ethanol or ethyl acetate to carbon dioxide and water, oxidation of an iron-containing compound, or by using a fuel cell. For reasons of cost, simplicity, safety and other factors, the concept chosen includes: a molecular sieve packaged as an industrial oxygen concentrator to remove oxygen from the atmosphere, with direct carbon dioxide, water and heat injection. The water injection is done via heating water to steam with a heat exchanger and thermal effects are handled by directly adding heat to the air stream with a second heat exchanger. Both heat exchangers are supplied by a hot oil loop. The amount of oxygen removal, carbon dioxide addition, water addition and heat addition were calculated using metabolic profiles for respiration and heat, calculated using a series of empirical equations developed for International Space Station (ISS). Sketches of the Human Metabolic Simulator and the hot oil bath loop used to supply heat to the heat exchangers are included

  11. Arsenic methylation capacity in relation to nutrient intake and genetic polymorphisms in one-carbon metabolism.

    Science.gov (United States)

    Gamboa-Loira, Brenda; Hernández-Alcaraz, César; Gandolfi, A Jay; Cebrián, Mariano E; Burguete-García, Ana; García-Martínez, Angélica; López-Carrillo, Lizbeth

    2018-07-01

    Nutrients and genetic polymorphisms participating in one-carbon metabolism may explain interindividual differences in inorganic arsenic (iAs) methylation capacity, which in turn may account for variations in susceptibility to iAs-induced diseases. 1) To evaluate the association between polymorphisms in five one-carbon metabolism genes (FOLH1 c.223 T > C, MTHFD1 c.1958 G > A, MTHFR c.665 C > T, MTR c.2756 A > G, and MTRR c.66 A > G) and iAs methylation capacity; 2) To assess if previously reported associations between nutrient intake and iAs methylation capacity are modified by those polymorphisms. Women (n = 1027) exposed to iAs in Northern Mexico were interviewed. Blood and urine samples were collected. Nutrient dietary intake was estimated using a validated food frequency questionnaire. iAs methylation capacity was calculated from urinary iAs species (iAs, monomethylarsonic acid [MMA] and dimethylarsinic acid [DMA]) measured by high performance liquid chromatography (HPLC-ICP-MS). One polymorphism in each of the five genes evaluated was genotyped by allelic discrimination. Multivariable linear regression models were used to evaluate if genetic polymorphisms modified the associations between iAs methylation capacity parameters and nutrient intake. The median (min-max) concentration of total arsenic (TAs) was 20.2 (1.3-2776.0) µg/g creatinine in the study population. Significant interactions for iAs metabolism were only found with FOLH1 c.223 T > C polymorphism and vitamin B12 intake, so that CT and CC genotype carriers had significantly lower %iAs, and higher DMA/iAs with an increased vitamin B12 intake, as compared to carriers of wild-type TT. Differences in dietary nutrient intake and genetic variants in one-carbon metabolism may jointly influence iAs methylation capacity. Confirmation of these interactions in other populations is warranted. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Transcriptome-based analysis on carbon metabolism of Haematococcus pluvialis mutant under 15% CO2.

    Science.gov (United States)

    Li, Ke; Cheng, Jun; Lu, Hongxiang; Yang, Weijuan; Zhou, Junhu; Cen, Kefa

    2017-06-01

    To elucidate the mechanism underlying the enhanced growth rate in the Haematococcus pluvialis mutated with 60 Co-γ rays and domesticated with 15% CO 2 , transcriptome sequencing was conducted to clarify the carbon metabolic pathways of mutant cells. The CO 2 fixation rate of mutant cells increased to 2.57gL -1 d -1 under 15% CO 2 due to the enhanced photosynthesis, carbon fixation, glycolysis pathways. The upregulation of PetH, ATPF0A and PetJ related to photosynthetic electron transport, ATP synthase and NADPH generation promoted the photosynthesis. The upregulation of genes related to Calvin cycle and ppdK promoted carbon fixation in both C3 and C4 photosynthetic pathways. The reallocation of carbon was also enhanced under 15% CO 2 . The 19-, 14- and 3.5-fold upregulation of FBA, TPI and PK genes, respectively, remarkably promoted the glycolysis pathways. This accelerated the conversion of photosynthetic carbon to pyruvate, which was an essential precursor for astaxanthin and lipids biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Long term estimation of carbon dynamic and sequestration for Iranian agro-ecosystem: I- Net primary productivity and annual carbon input for common agricultural crops

    Directory of Open Access Journals (Sweden)

    M Nassiri Mahalati

    2016-05-01

    Full Text Available Evaluation of carbon input is one of the most important factors for estimating soil carbon changes and potential for carbon sequestration. To evaluate the net primary productivity (NPP and soil carbon input in agricultural eco-systems of Iran, data for yield, cultivated area, harvest index (HI and shoot /root ratio in different crops including: wheat, barley, maize, cotton, rice, alfalfa and chickpea were obtained for different provinces. Then, allocated carbon to different organs of plant were calculated based on carbon allocation coefficients and finally, the net primary productivity based on carbon (NPPc was calculated. The ratio of NPPc that was annually returned to soil was considered as carbon annual input. The results showed that the maximum amount of NPPc for wheat, barely and alfalfa were obtained in Khazari climate for rice, chickpea and cotton was achieved in warm-wet climate and for maize was gained in warm-dry climate. In all regions of Iran, chickpea had the lowest effect on NPPc and consequently on carbon sequestration. The highest amount of carbon input per unit area among studied crops and different regions were observed in Khazari region for alfalfa whereas, the lowest carbon input per unit area was relation to chickpea in cold region. The lowest gap between actual and potential of carbon sequestration was observed in alfalfa whereas wheat, rice and cotton showed the most gap by 0.4, 0.38 and 0.37, respectively.

  14. Dynamic Labeling Reveals Temporal Changes in Carbon Re-Allocation within the Central Metabolism of Developing Apple Fruit

    Directory of Open Access Journals (Sweden)

    Wasiye F. Beshir

    2017-10-01

    Full Text Available In recent years, the application of isotopically labeled substrates has received extensive attention in plant physiology. Measuring the propagation of the label through metabolic networks may provide information on carbon allocation in sink fruit during fruit development. In this research, gas chromatography coupled to mass spectrometry based metabolite profiling was used to characterize the changing metabolic pool sizes in developing apple fruit at five growth stages (30, 58, 93, 121, and 149 days after full bloom using 13C-isotope feeding experiments on hypanthium tissue discs. Following the feeding of [U-13C]glucose, the 13C-label was incorporated into the various metabolites to different degrees depending on incubation time, metabolic pathway activity, and growth stage. Evidence is presented that early in fruit development the utilization of the imported sugars was faster than in later developmental stages, likely to supply the energy and carbon skeletons required for cell division and fruit growth. The declined 13C-incorporation into various metabolites during growth and maturation can be associated with the reduced metabolic activity, as mirrored by the respiratory rate. Moreover, the concentration of fructose and sucrose increased during fruit development, whereas concentrations of most amino and organic acids and polyphenols declined. In general, this study showed that the imported compounds play a central role not only in carbohydrate metabolism, but also in the biosynthesis of amino acid and related protein synthesis and secondary metabolites at the early stage of fruit development.

  15. The depressed central carbon and energy metabolisms is associated to the acquisition of levofloxacin resistance in Vibrio alginolyticus.

    Science.gov (United States)

    Cheng, Zhi-Xue; Yang, Man-Jun; Peng, Bo; Peng, Xuan-Xian; Lin, Xiang-Min; Li, Hui

    2018-06-15

    The overuse and misuse of antibiotics lead to bacterial antibiotic resistance, challenging human health and intensive cultivation. It is especially required to understand for the mechanism of antibiotic resistance to control antibiotic-resistant pathogens. The present study characterized the differential proteome of levofloxacin-resistant Vibrio alginolyticus with the most advanced iTRAQ quantitative proteomics technology. A total of 160 proteins of differential abundance were identified, where 70 were decreased and 90 were increased. Further analysis demonstrated that crucial metabolic pathways like TCA cycle were significantly down-regulated. qRT-PCR analysis demonstrated the decreased gene expression of glycolysis/gluconeogenesis, the TCA cycle, and fatty acid biosynthesis. Moreover, Na(+)-NQR complex gene expression, membrane potential and the adenylate energy charge ratio were decreased, indicating that the decreased central carbon metabolism is associated to the acquisition of levofloxacin resistance. Therefore, the reduced central carbon and energy metabolisms form a characteristic feature as fitness costs of V. alginolyticus in resistance to levofloxacin. The overuse and misuse of antibiotics lead to bacterial antibiotic resistance, challenging human health and intensive cultivation. Understanding for the antibiotic resistance mechanisms is especially required to control these antibiotic-resistant pathogens. The present study characterized the differential proteome of levofloxacin-resistant Vibrio alginolyticus using the most advanced iTRAQ quantitative proteomics technology. A total of 160 differential abundance of proteins were identified with 70 decreases and 90 increases by liquid chromatography matrix assisted laser desorption ionization mass spectrometry. Most interestingly, crucial metabolic pathways such as the TCA cycle sharply fluctuated. This is the first report that the reduced central carbon and energy metabolisms form a characteristic feature

  16. Effects of physical characteristics of carbon black on metabolic regulation in mice

    International Nuclear Information System (INIS)

    Chuang, Hsiao-Chi; Hsiao, Ta-Chih; Lee, Chii-Hong; Chun-Te Lin, Justin; Chuang, Kai-Jen; Feng, Po-Hao; Cheng, Tsun-Jen

    2018-01-01

    Potential adverse effects of human exposure to carbon black (CB) have been reported, but limited knowledge regarding CB-regulated metabolism is currently available. To evaluate how physical parameters of CB influence metabolism, we investigated CB and diesel exhaust particles (DEPs) and attempted to relate various physical parameters, including the hydrodynamic diameter, zeta potential, and particle number concentrations, to lung energy metabolism in female BALB/c mice. A body weight increase was arrested by 3 months of exposure to CB of smaller-size fractions, which was negatively correlated with pyruvate in plasma. There were no significant differences in cytotoxic lactate dehydrogenase (LDH) or total protein in bronchoalveolar lavage fluid (BALF) after 3 months of CB exposure. However, we observed alterations in acetyl CoA and the NADP/NADPH ratio in lung tissues with CB exposure. Additionally, the NADP/NADPH ratio was associated with the zeta potential of CB. Mild peribronchiovascular and interstitial inflammation and multinucleated giant cells (macrophages) with a transparent and rhomboid appearance and containing foreign bodies were observed in lung sections. We suggest that physical characteristics of CB, such as the zeta potential, may disrupt metabolism after pulmonary exposure. These results, therefore, provide the first evidence of a link between pulmonary exposure to CB and metabolism. - Highlights: • We evaluated how physical parameters of CB influence metabolism in mice lungs. • Body weight was arrested by exposure to CB in mice. • CB-induced peribronchiovascular and interstitial inflammation in the lungs. • Disruption in functions of acetyl CoA and NADP/NADPH was observed in lungs. • NADP/NADPH ratio was associated with the zeta potentials of CB.

  17. Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography

    International Nuclear Information System (INIS)

    Brown, M.A.; Myears, D.W.; Bergmann, S.R.

    1988-01-01

    Noninvasive quantification of regional myocardial metabolism would be highly desirable to evaluate pathogenetic mechanisms of heart disease and their response to therapy. It was previously demonstrated that the metabolism of radiolabeled acetate, a readily utilized myocardial substrate predominantly metabolized to carbon dioxide (CO2) by way of the tricarboxylic acid cycle, provides a good index of oxidative metabolism in isolated perfused rabbit hearts because of tight coupling between the tricarboxylic acid cycle and oxidative phosphorylation. In the present study, in a prelude to human studies, the relation between myocardial clearance of carbon-11 (11C)-labeled acetate and myocardial oxygen consumption was characterized in eight intact dogs using positron emission tomography. Anesthetized dogs were studied during baseline conditions and again during either high or low work states induced pharmacologically. High myocardial extraction and rapid blood clearance of tracer yielded myocardial images of excellent quality. The turnover (clearance) of 11C radioactivity from the myocardium was biexponential with the mean half-time of the dominant rapid phase averaging 5.4 +/- 2.2, 2.8 +/- 1.3 and 11.1 +/- 1.3 min in control, high and low work load studies, respectively. No significant difference was found between the rate of clearance of 11C radioactivity from the myocardium measured noninvasively with positron emission tomography and the myocardial efflux of 11CO2 measured directly from the coronary sinus. The rate of clearance of the 11C radioactivity from the heart correlated closely with myocardial oxygen consumption (r = 0.90, p less than 0.001) as well as with the rate-pressure product (r = 0.95, p less than 0.001). Hence, the rate of oxidation of 11C-acetate can be determined noninvasively with positron emission tomography, providing a quantitative index of oxidative metabolism under diverse conditions

  18. Exogenous Classic Phytohormones Have Limited Regulatory Effects on Fructan and Primary Carbohydrate Metabolism in Perennial Ryegrass (Lolium perenne L.)

    Czech Academy of Sciences Publication Activity Database

    Gasperl, A.; Morvan-Bertrand, A.; Prud'homme, M. P.; van der Graaff, E.; Roitsch, Thomas

    2016-01-01

    Roč. 6, jan (2016), s. 1251 ISSN 1664-462X R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : enzymatic activity * fructan exohydrolase * fructan metabolism * fructosyltransferase * perennial ryegrass * phytohormones * primary carbohydrate metabolism Subject RIV: ED - Physiology Impact factor: 4.298, year: 2016

  19. Interspecies differences in metabolism of arsenic by cultured primary hepatocytes

    International Nuclear Information System (INIS)

    Drobna, Zuzana; Walton, Felecia S.; Harmon, Anne W.; Thomas, David J.; Styblo, Miroslav

    2010-01-01

    Biomethylation is the major pathway for the metabolism of inorganic arsenic (iAs) in many mammalian species, including the human. However, significant interspecies differences have been reported in the rate of in vivo metabolism of iAs and in yields of iAs metabolites found in urine. Liver is considered the primary site for the methylation of iAs and arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in this pathway. Thus, the As3mt-catalyzed methylation of iAs in the liver determines in part the rate and the pattern of iAs metabolism in various species. We examined kinetics and concentration-response patterns for iAs methylation by cultured primary hepatocytes derived from human, rat, mice, dog, rabbit, and rhesus monkey. Hepatocytes were exposed to [ 73 As]arsenite (iAs III ; 0.3, 0.9, 3.0, 9.0 or 30 nmol As/mg protein) for 24 h and radiolabeled metabolites were analyzed in cells and culture media. Hepatocytes from all six species methylated iAs III to methylarsenic (MAs) and dimethylarsenic (DMAs). Notably, dog, rat and monkey hepatocytes were considerably more efficient methylators of iAs III than mouse, rabbit or human hepatocytes. The low efficiency of mouse, rabbit and human hepatocytes to methylate iAs III was associated with inhibition of DMAs production by moderate concentrations of iAs III and with retention of iAs and MAs in cells. No significant correlations were found between the rate of iAs methylation and the thioredoxin reductase activity or glutathione concentration, two factors that modulate the activity of recombinant As3mt. No associations between the rates of iAs methylation and As3mt protein structures were found for the six species examined. Immunoblot analyses indicate that the superior arsenic methylation capacities of dog, rat and monkey hepatocytes examined in this study may be associated with a higher As3mt expression. However, factors other than As3mt expression may also contribute to the interspecies differences

  20. Metabolic alterations, HFE gene mutations and atherogenic lipoprotein modifications in patients with primary iron overload.

    Science.gov (United States)

    Meroño, Tomás; Brites, Fernando; Dauteuille, Carolane; Lhomme, Marie; Menafra, Martín; Arteaga, Alejandra; Castro, Marcelo; Saez, María Soledad; Ballerga, Esteban González; Sorroche, Patricia; Rey, Jorge; Lesnik, Philippe; Sordá, Juan Andrés; Chapman, M John; Kontush, Anatol; Daruich, Jorge

    2015-05-01

    Iron overload (IO) has been associated with glucose metabolism alterations and increased risk of cardiovascular disease (CVD). Primary IO is associated with mutations in the HFE gene. To which extent HFE gene mutations and metabolic alterations contribute to the presence of atherogenic lipoprotein modifications in primary IO remains undetermined. The present study aimed to assess small, dense low-density lipoprotein (LDL) levels, chemical composition of LDL and high-density lipoprotein (HDL) particles, and HDL functionality in IO patients. Eighteen male patients with primary IO and 16 sex- and age-matched controls were recruited. HFE mutations (C282Y, H63D and S65C), measures of insulin sensitivity and secretion (calculated from the oral glucose tolerance test), chemical composition and distribution profile of LDL and HDL subfractions (isolated by gradient density ultracentrifugation) and HDL functionality (as cholesterol efflux and antioxidative activity) were studied. IO patients compared with controls exhibited insulin resistance (HOMA-IR (homoeostasis model assessment-estimated insulin resistance): +93%, PHFE genotypes. C282Y homozygotes (n=7) presented a reduced β-cell function and insulin secretion compared with non-C282Y patients (n=11) (-58% and -73%, respectively, PHFE gene mutations are involved in the presence of atherogenic lipoprotein modifications in primary IO. To what extent such alterations could account for an increase in CVD risk remains to be determined.

  1. Cellular metabolic rates from primary dermal fibroblast cells isolated from birds of different body masses.

    Science.gov (United States)

    Jimenez, Ana Gabriela; Williams, Joseph B

    2014-10-01

    The rate of metabolism is the speed at which organisms use energy, an integration of energy transformations within the body; it governs biological processes that influence rates of growth and reproduction. Progress at understanding functional linkages between whole organism metabolic rate and underlying mechanisms that influence its magnitude has been slow despite the central role this issue plays in evolutionary and physiological ecology. Previous studies that have attempted to relate how cellular processes translate into whole-organism physiology have done so over a range of body masses of subjects. However, the data still remains controversial when observing metabolic rates at the cellular level. To bridge the gap between these ideas, we examined cellular metabolic rate of primary dermal fibroblasts isolated from 49 species of birds representing a 32,000-fold range in body masses to test the hypothesis that metabolic rate of cultured cells scales with body size. We used a Seahorse XF-96 Extracellular flux analyzer to measure cellular respiration in fibroblasts. Additionally, we measured fibroblast size and mitochondrial content. We found no significant correlation between cellular metabolic rate, cell size, or mitochondrial content and body mass. Additionally, there was a significant relationship between cellular basal metabolic rate and proton leak in these cells. We conclude that metabolic rate of cells isolated in culture does not scale with body mass, but cellular metabolic rate is correlated to growth rate in birds. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications

    Directory of Open Access Journals (Sweden)

    Blake Robert

    2008-12-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans is a major participant in consortia of microorganisms used for the industrial recovery of copper (bioleaching or biomining. It is a chemolithoautrophic, γ-proteobacterium using energy from the oxidation of iron- and sulfur-containing minerals for growth. It thrives at extremely low pH (pH 1–2 and fixes both carbon and nitrogen from the atmosphere. It solubilizes copper and other metals from rocks and plays an important role in nutrient and metal biogeochemical cycling in acid environments. The lack of a well-developed system for genetic manipulation has prevented thorough exploration of its physiology. Also, confusion has been caused by prior metabolic models constructed based upon the examination of multiple, and sometimes distantly related, strains of the microorganism. Results The genome of the type strain A. ferrooxidans ATCC 23270 was sequenced and annotated to identify general features and provide a framework for in silico metabolic reconstruction. Earlier models of iron and sulfur oxidation, biofilm formation, quorum sensing, inorganic ion uptake, and amino acid metabolism are confirmed and extended. Initial models are presented for central carbon metabolism, anaerobic metabolism (including sulfur reduction, hydrogen metabolism and nitrogen fixation, stress responses, DNA repair, and metal and toxic compound fluxes. Conclusion Bioinformatics analysis provides a valuable platform for gene discovery and functional prediction that helps explain the activity of A. ferrooxidans in industrial bioleaching and its role as a primary producer in acidic environments. An analysis of the genome of the type strain provides a coherent view of its gene content and metabolic potential.

  3. Generation and Validation of the iKp1289 Metabolic Model for Klebsiella pneumoniae KPPR1

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Christopher S.; Rotman, Ella; Lathem, Wyndham W.; Tyo, Keith E. J.; Hauser, Alan R.; Mandel, Mark J.

    2017-02-15

    Klebsiella pneumoniae has a reputation for causing a wide range of infectious conditions, with numerous highly virulent and antibiotic-resistant strains. Metabolic models have the potential to provide insights into the growth behavior, nutrient requirements, essential genes, and candidate drug targets in these strains. Here we develop a metabolic model for KPPR1, a highly virulent strain of K. pneumoniae. We apply a combination of Biolog phenotype data and fitness data to validate and refine our KPPR1 model. The final model displays a predictive accuracy of 75% in identifying potential carbon and nitrogen sources for K. pneumoniae and of 99% in predicting nonessential genes in rich media. We demonstrate how this model is useful in studying the differences in the metabolic capabilities of the low-virulence MGH 78578 strain and the highly virulent KPPR1 strain. For example, we demonstrate that these strains differ in carbohydrate metabolism, including the ability to metabolize dulcitol as a primary carbon source. Our model makes numerous other predictions for follow-up verification and analysis.

  4. Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica.

    Directory of Open Access Journals (Sweden)

    Maria J López-Sánchez

    2009-11-01

    Full Text Available Bacterial endosymbionts of insects play a central role in upgrading the diet of their hosts. In certain cases, such as aphids and tsetse flies, endosymbionts complement the metabolic capacity of hosts living on nutrient-deficient diets, while the bacteria harbored by omnivorous carpenter ants are involved in nitrogen recycling. In this study, we describe the genome sequence and inferred metabolism of Blattabacterium strain Bge, the primary Flavobacteria endosymbiont of the omnivorous German cockroach Blattella germanica. Through comparative genomics with other insect endosymbionts and free-living Flavobacteria we reveal that Blattabacterium strain Bge shares the same distribution of functional gene categories only with Blochmannia strains, the primary Gamma-Proteobacteria endosymbiont of carpenter ants. This is a remarkable example of evolutionary convergence during the symbiotic process, involving very distant phylogenetic bacterial taxa within hosts feeding on similar diets. Despite this similarity, different nitrogen economy strategies have emerged in each case. Both bacterial endosymbionts code for urease but display different metabolic functions: Blochmannia strains produce ammonia from dietary urea and then use it as a source of nitrogen, whereas Blattabacterium strain Bge codes for the complete urea cycle that, in combination with urease, produces ammonia as an end product. Not only does the cockroach endosymbiont play an essential role in nutrient supply to the host, but also in the catabolic use of amino acids and nitrogen excretion, as strongly suggested by the stoichiometric analysis of the inferred metabolic network. Here, we explain the metabolic reasons underlying the enigmatic return of cockroaches to the ancestral ammonotelic state.

  5. Evolutionary Convergence and Nitrogen Metabolism in Blattabacterium strain Bge, Primary Endosymbiont of the Cockroach Blattella germanica

    Science.gov (United States)

    López-Sánchez, Maria J.; Neef, Alexander; Peretó, Juli; Patiño-Navarrete, Rafael; Pignatelli, Miguel; Latorre, Amparo; Moya, Andrés

    2009-01-01

    Bacterial endosymbionts of insects play a central role in upgrading the diet of their hosts. In certain cases, such as aphids and tsetse flies, endosymbionts complement the metabolic capacity of hosts living on nutrient-deficient diets, while the bacteria harbored by omnivorous carpenter ants are involved in nitrogen recycling. In this study, we describe the genome sequence and inferred metabolism of Blattabacterium strain Bge, the primary Flavobacteria endosymbiont of the omnivorous German cockroach Blattella germanica. Through comparative genomics with other insect endosymbionts and free-living Flavobacteria we reveal that Blattabacterium strain Bge shares the same distribution of functional gene categories only with Blochmannia strains, the primary Gamma-Proteobacteria endosymbiont of carpenter ants. This is a remarkable example of evolutionary convergence during the symbiotic process, involving very distant phylogenetic bacterial taxa within hosts feeding on similar diets. Despite this similarity, different nitrogen economy strategies have emerged in each case. Both bacterial endosymbionts code for urease but display different metabolic functions: Blochmannia strains produce ammonia from dietary urea and then use it as a source of nitrogen, whereas Blattabacterium strain Bge codes for the complete urea cycle that, in combination with urease, produces ammonia as an end product. Not only does the cockroach endosymbiont play an essential role in nutrient supply to the host, but also in the catabolic use of amino acids and nitrogen excretion, as strongly suggested by the stoichiometric analysis of the inferred metabolic network. Here, we explain the metabolic reasons underlying the enigmatic return of cockroaches to the ancestral ammonotelic state. PMID:19911043

  6. Seagrass metabolism and carbon dynamics in a tropical coastal embayment.

    Science.gov (United States)

    Ganguly, Dipnarayan; Singh, Gurmeet; Ramachandran, Purvaja; Selvam, Arumughan Paneer; Banerjee, Kakolee; Ramachandran, Ramesh

    2017-10-01

    Net ecosystem metabolism and subsequent changes in environmental variables were studied seasonally in the seagrass-dominated Palk Bay, located along the southeast coast of India. The results showed that although the water column was typically net heterotrophic, the ecosystem as a whole displayed autotrophic characteristics. The mean net community production from the seagrass meadows was 99.31 ± 45.13 mM C m -2  d -1 , while the P/R ratio varied between 1.49 and 1.56. Oxygen produced through in situ photosynthesis, exhibited higher dependence over dissolved CO 2 and available light. Apportionment of carbon stores in biomass indicated that nearly three-fourths were available belowground compared to aboveground. However, the sediment horizon accumulated nearly 40 times more carbon than live biomass. The carbon storage capacities of the sediments and seagrass biomass were comparable with the global mean for seagrass meadows. The results of this study highlight the major role of seagrass meadows in modification of seawater chemistry. Though the seagrass meadows of Palk Bay are increasingly subject to human impacts, with coupled regulatory and management efforts focused on improved water quality and habitat conservation, these key coastal ecosystems will continue to be valuable for climate change mitigation, considering their vital role in C dynamics and interactions with the overlying water column.

  7. One-carbon metabolism, cognitive impairment and CSF measures of Alzheimer pathology: homocysteine and beyond.

    Science.gov (United States)

    Dayon, Loïc; Guiraud, Seu Ping; Corthésy, John; Da Silva, Laeticia; Migliavacca, Eugenia; Tautvydaitė, Domilė; Oikonomidi, Aikaterini; Moullet, Barbara; Henry, Hugues; Métairon, Sylviane; Marquis, Julien; Descombes, Patrick; Collino, Sebastiano; Martin, François-Pierre J; Montoliu, Ivan; Kussmann, Martin; Wojcik, Jérôme; Bowman, Gene L; Popp, Julius

    2017-06-17

    Hyperhomocysteinemia is a risk factor for cognitive decline and dementia, including Alzheimer disease (AD). Homocysteine (Hcy) is a sulfur-containing amino acid and metabolite of the methionine pathway. The interrelated methionine, purine, and thymidylate cycles constitute the one-carbon metabolism that plays a critical role in the synthesis of DNA, neurotransmitters, phospholipids, and myelin. In this study, we tested the hypothesis that one-carbon metabolites beyond Hcy are relevant to cognitive function and cerebrospinal fluid (CSF) measures of AD pathology in older adults. Cross-sectional analysis was performed on matched CSF and plasma collected from 120 older community-dwelling adults with (n = 72) or without (n = 48) cognitive impairment. Liquid chromatography-mass spectrometry was performed to quantify one-carbon metabolites and their cofactors. Least absolute shrinkage and selection operator (LASSO) regression was initially applied to clinical and biomarker measures that generate the highest diagnostic accuracy of a priori-defined cognitive impairment (Clinical Dementia Rating-based) and AD pathology (i.e., CSF tau phosphorylated at threonine 181 [p-tau181]/β-Amyloid 1-42 peptide chain [Aβ 1-42 ] >0.0779) to establish a reference benchmark. Two other LASSO-determined models were generated that included the one-carbon metabolites in CSF and then plasma. Correlations of CSF and plasma one-carbon metabolites with CSF amyloid and tau were explored. LASSO-determined models were stratified by apolipoprotein E (APOE) ε4 carrier status. The diagnostic accuracy of cognitive impairment for the reference model was 80.8% and included age, years of education, Aβ 1-42 , tau, and p-tau181. A model including CSF cystathionine, methionine, S-adenosyl-L-homocysteine (SAH), S-adenosylmethionine (SAM), serine, cysteine, and 5-methyltetrahydrofolate (5-MTHF) improved the diagnostic accuracy to 87.4%. A second model derived from plasma included cystathionine

  8. Understanding the interplay of carbon and nitrogen supply for ectoines production and metabolic overflow in high density cultures of Chromohalobacter salexigens.

    Science.gov (United States)

    Salar-García, María J; Bernal, Vicente; Pastor, José M; Salvador, Manuel; Argandoña, Montserrat; Nieto, Joaquín J; Vargas, Carmen; Cánovas, Manuel

    2017-02-08

    The halophilic bacterium Chromohalobacter salexigens has been proposed as promising cell factory for the production of the compatible solutes ectoine and hydroxyectoine. This bacterium has evolved metabolic adaptations to efficiently grow under high salt concentrations by accumulating ectoines as compatible solutes. However, metabolic overflow, which is a major drawback for the efficient conversion of biological feedstocks, occurs as a result of metabolic unbalances during growth and ectoines production. Optimal production of ectoines is conditioned by the interplay of carbon and nitrogen metabolisms. In this work, we set out to determine how nitrogen supply affects the production of ectoines. Chromohalobacter salexigens was challenged to grow in media with unbalanced carbon/nitrogen ratio. In C. salexigens, overflow metabolism and ectoines production are a function of medium composition. At low ammonium conditions, the growth rate decreased importantly, up to 80%. Shifts in overflow metabolism were observed when changing the C/N ratio in the culture medium. 13 C-NMR analysis of ectoines labelling revealed a high metabolic rigidity, with almost constant flux ratios in all conditions assayed. Unbalanced C/N ratio led to pyruvate accumulation, especially upon N-limitation. Analysis of an ect - mutant demonstrated the link between metabolic overflow and ectoine biosynthesis. Under non ectoine synthesizing conditions, glucose uptake and metabolic overflow decreased importantly. Finally, in fed-batch cultures, biomass yield was affected by the feeding scheme chosen. High growth (up to 42.4 g L -1 ) and volumetric ectoine yields (up to 4.21 g L -1 ) were obtained by minimizing metabolite overflow and nutrient accumulation in high density cultures in a low nitrogen fed-batch culture. Moreover, the yield coefficient calculated for the transformation of glucose into biomass was 30% higher in fed-batch than in the batch culture, demonstrating that the metabolic

  9. Robust metabolic responses to varied carbon sources in natural and laboratory strains of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Wayne A Van Voorhies

    Full Text Available Understanding factors that regulate the metabolism and growth of an organism is of fundamental biologic interest. This study compared the influence of two different carbon substrates, dextrose and galactose, on the metabolic and growth rates of the yeast Saccharomyces cerevisiae. Yeast metabolic and growth rates varied widely depending on the metabolic substrate supplied. The metabolic and growth rates of a yeast strain maintained under long-term laboratory conditions was compared to strain isolated from natural condition when grown on different substrates. Previous studies had determined that there are numerous genetic differences between these two strains. However, the overall metabolic and growth rates of a wild isolate of yeast was very similar to that of a strain that had been maintained under laboratory conditions for many decades. This indicates that, at in least this case, metabolism and growth appear to be well buffered against genetic differences. Metabolic rate and cell number did not co-vary in a simple linear manner. When grown in either dextrose or galactose, both strains showed a growth pattern in which the number of cells continued to increase well after the metabolic rate began a sharp decline. Previous studied have reported that O₂ consumption in S. cerevisiae grown in reduced dextrose levels were elevated compared to higher levels. Low dextrose levels have been proposed to induce caloric restriction and increase life span in yeast. However, there was no evidence that reduced levels of dextrose increased metabolic rates, measured by either O₂ consumption or CO₂ production, in the strains used in this study.

  10. Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism.

    Science.gov (United States)

    Adams, Henry D; Germino, Matthew J; Breshears, David D; Barron-Gafford, Greg A; Guardiola-Claramonte, Maite; Zou, Chris B; Huxman, Travis E

    2013-03-01

    Vegetation change is expected with global climate change, potentially altering ecosystem function and climate feedbacks. However, causes of plant mortality, which are central to vegetation change, are understudied, and physiological mechanisms remain unclear, particularly the roles of carbon metabolism and xylem function. We report analysis of foliar nonstructural carbohydrates (NSCs) and associated physiology from a previous experiment where earlier drought-induced mortality of Pinus edulis at elevated temperatures was associated with greater cumulative respiration. Here, we predicted faster NSC decline for warmed trees than for ambient-temperature trees. Foliar NSC in droughted trees declined by 30% through mortality and was lower than in watered controls. NSC decline resulted primarily from decreased sugar concentrations. Starch initially declined, and then increased above pre-drought concentrations before mortality. Although temperature did not affect NSC and sugar, starch concentrations ceased declining and increased earlier with higher temperatures. Reduced foliar NSC during lethal drought indicates a carbon metabolism role in mortality mechanism. Although carbohydrates were not completely exhausted at mortality, temperature differences in starch accumulation timing suggest that carbon metabolism changes are associated with time to death. Drought mortality appears to be related to temperature-dependent carbon dynamics concurrent with increasing hydraulic stress in P. edulis and potentially other similar species. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. Metabolic Pathways Involved in Carbon Dioxide Enhanced Heat Tolerance in Bermudagrass

    Directory of Open Access Journals (Sweden)

    Jingjin Yu

    2017-09-01

    Full Text Available Global climate changes involve elevated temperature and CO2 concentration, imposing significant impact on plant growth of various plant species. Elevated temperature exacerbates heat damages, but elevated CO2 has positive effects on promoting plant growth and heat tolerance. The objective of this study was to identify metabolic pathways affected by elevated CO2 conferring the improvement of heat tolerance in a C4 perennial grass species, bermudagrass (Cynodon dactylon Pers.. Plants were planted under either ambient CO2 concentration (400 μmol⋅mol-1 or elevated CO2 concentration (800 μmol⋅mol-1 and subjected to ambient temperature (30/25°C, day/night or heat stress (45/40°C, day/night. Elevated CO2 concentration suppressed heat-induced damages and improved heat tolerance in bermudagrass. The enhanced heat tolerance under elevated CO2 was attributed to some important metabolic pathways during which proteins and metabolites were up-regulated, including light reaction (ATP synthase subunit and photosystem I reaction center subunit and carbon fixation [(glyceraldehyde-3-phosphate dehydrogenase, GAPDH, fructose-bisphosphate aldolase, phosphoglycerate kinase, sedoheptulose-1,7-bisphosphatase and sugars of photosynthesis, glycolysis (GAPDH, glucose, fructose, and galactose and TCA cycle (pyruvic acid, malic acid and malate dehydrogenase of respiration, amino acid metabolism (aspartic acid, methionine, threonine, isoleucine, lysine, valine, alanine, and isoleucine as well as the GABA shunt (GABA, glutamic acid, alanine, proline and 5-oxoproline. The up-regulation of those metabolic processes by elevated CO2 could at least partially contribute to the improvement of heat tolerance in perennial grass species.

  12. Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in Amycolatopsis balhimycina

    DEFF Research Database (Denmark)

    Gallo, G.; Renzone, G.; Alduina, R.

    2010-01-01

    A differential proteomic analysis, based on 2-DE and MS procedures, was performed on Amycolatopsis balhimycina DSM5908, the actinomycete producing the vancomycin-like antibiotic balhimycin. A comparison of proteomic profiles before and during balhimycin production characterized differentially...... available over the World Wide Web as interactive web pages (http://www.unipa.it/ampuglia/Abal-proteome-maps). Functional clustering analysis revealed that differentially expressed proteins belong to functional groups involved in central carbon metabolism, amino acid metabolism and protein biosynthesis...... intermediates, were upregulated during antibiotic production. qRT-PCR analysis revealed that 8 out of 14 upregulated genes showed a positive correlation between changes at translational and transcriptional expression level. Furthermore, proteomic analysis of two nonproducing mutants, restricted to a sub...

  13. System-Level and Granger Network Analysis of Integrated Proteomic and Metabolomic Dynamics Identifies Key Points of Grape Berry Development at the Interface of Primary and Secondary Metabolism

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-06-01

    Full Text Available Grapevine is a fruit crop with worldwide economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. This ripening process and production processes define the wine quality. Thus, a thorough understanding of berry ripening is crucial for the prediction of wine quality. For a systemic analysis of grape berry development we applied mass spectrometry based platforms to analyse the metabolome and proteome of Early Campbell at 12 stages covering major developmental phases. Primary metabolites involved in central carbon metabolism, such as sugars, organic acids and amino acids together with various bioactive secondary metabolites like flavonols, flavan-3-ols and anthocyanins were annotated and quantified. At the same time, the proteomic analysis revealed the protein dynamics of the developing grape berries. Multivariate statistical analysis of the integrated metabolomic and proteomic dataset revealed the growth trajectory and corresponding metabolites and proteins contributing most to the specific developmental process. K-means clustering analysis revealed 12 highly specific clusters of co-regulated metabolites and proteins. Granger causality network analysis allowed for the identification of time-shift correlations between metabolite-metabolite, protein- protein and protein-metabolite pairs which is especially interesting for the understanding of developmental processes. The integration of metabolite and protein dynamics with their corresponding biochemical pathways revealed an energy-linked metabolism before veraison with high abundances of amino acids and accumulation of organic acids, followed by protein and secondary metabolite synthesis. Anthocyanins were strongly accumulated after veraison whereas other flavonoids were in higher abundance at early developmental stages and decreased during the grape berry developmental processes. A comparison of the anthocyanin profile of Early Campbell to other

  14. System-Level and Granger Network Analysis of Integrated Proteomic and Metabolomic Dynamics Identifies Key Points of Grape Berry Development at the Interface of Primary and Secondary Metabolism.

    Science.gov (United States)

    Wang, Lei; Sun, Xiaoliang; Weiszmann, Jakob; Weckwerth, Wolfram

    2017-01-01

    Grapevine is a fruit crop with worldwide economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. This ripening process and production processes define the wine quality. Thus, a thorough understanding of berry ripening is crucial for the prediction of wine quality. For a systemic analysis of grape berry development we applied mass spectrometry based platforms to analyse the metabolome and proteome of Early Campbell at 12 stages covering major developmental phases. Primary metabolites involved in central carbon metabolism, such as sugars, organic acids and amino acids together with various bioactive secondary metabolites like flavonols, flavan-3-ols and anthocyanins were annotated and quantified. At the same time, the proteomic analysis revealed the protein dynamics of the developing grape berries. Multivariate statistical analysis of the integrated metabolomic and proteomic dataset revealed the growth trajectory and corresponding metabolites and proteins contributing most to the specific developmental process. K-means clustering analysis revealed 12 highly specific clusters of co-regulated metabolites and proteins. Granger causality network analysis allowed for the identification of time-shift correlations between metabolite-metabolite, protein- protein and protein-metabolite pairs which is especially interesting for the understanding of developmental processes. The integration of metabolite and protein dynamics with their corresponding biochemical pathways revealed an energy-linked metabolism before veraison with high abundances of amino acids and accumulation of organic acids, followed by protein and secondary metabolite synthesis. Anthocyanins were strongly accumulated after veraison whereas other flavonoids were in higher abundance at early developmental stages and decreased during the grape berry developmental processes. A comparison of the anthocyanin profile of Early Campbell to other cultivars revealed

  15. A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism.

    Science.gov (United States)

    Bohler, Sacha; Bagard, Matthieu; Oufir, Mouhssin; Planchon, Sébastien; Hoffmann, Lucien; Jolivet, Yves; Hausman, Jean-François; Dizengremel, Pierre; Renaut, Jenny

    2007-05-01

    Tropospheric ozone pollution is described as having major negative effects on plants, compromising plant survival. Carbon metabolism is especially affected. In the present work, the effects of chronic ozone exposure were evaluated at the proteomic level in developing leaves of young poplar plants exposed to 120 ppb of ozone for 35 days. Soluble proteins (excluding intrinsic membrane proteins) were extracted from leaves after 3, 14 and 35 days of ozone exposure, as well as 10 days after a recovery period. Proteins (pI 4 to 7) were analyzed by 2-D DIGE experiments, followed by MALDI-TOF-TOF identification. Additional observations were obtained on growth, lesion formation, and leaf pigments analysis. Although treated plants showed large necrotic spots and chlorosis in mature leaves, growth decreased only slightly and plant height was not affected. The number of abscised leaves was higher in treated plants, but new leaf formation was not affected. A decrease in chlorophylls and lutein contents was recorded. A large number of proteins involved in carbon metabolism were identified. In particular, proteins associated with the Calvin cycle and electron transport in the chloroplast were down-regulated. In contrast, proteins associated with glucose catabolism increased in response to ozone exposure. Other identified enzymes are associated with protein folding, nitrogen metabolism and oxidoreductase activity.

  16. MeRy-B, a metabolomic database and knowledge base for exploring plant primary metabolism.

    Science.gov (United States)

    Deborde, Catherine; Jacob, Daniel

    2014-01-01

    Plant primary metabolites are organic compounds that are common to all or most plant species and are essential for plant growth, development, and reproduction. They are intermediates and products of metabolism involved in photosynthesis and other biosynthetic processes. Primary metabolites belong to different compound families, mainly carbohydrates, organic acids, amino acids, nucleotides, fatty acids, steroids, or lipids. Until recently, unlike the Human Metabolome Database ( http://www.hmdb.ca ) dedicated to human metabolism, there was no centralized database or repository dedicated exclusively to the plant kingdom that contained information on metabolites and their concentrations in a detailed experimental context. MeRy-B is the first platform for plant (1)H-NMR metabolomic profiles (MeRy-B, http://bit.ly/meryb ), designed to provide a knowledge base of curated plant profiles and metabolites obtained by NMR, together with the corresponding experimental and analytical metadata. MeRy-B contains lists of plant metabolites, mostly primary metabolites and unknown compounds, with information about experimental conditions, the factors studied, and metabolite concentrations for 19 different plant species (Arabidopsis, broccoli, daphne, grape, maize, barrel clover, melon, Ostreococcus tauri, palm date, palm tree, peach, pine tree, eucalyptus, plantain rice, strawberry, sugar beet, tomato, vanilla), compiled from more than 2,300 annotated NMR profiles for various organs or tissues deposited by 30 different private or public contributors in September 2013. Currently, about half of the data deposited in MeRy-B is publicly available. In this chapter, readers will be shown how to (1) navigate through and retrieve data of publicly available projects on MeRy-B website; (2) visualize lists of experimentally identified metabolites and their concentrations in all plant species present in MeRy-B; (3) get primary metabolite list for a particular plant species in MeRy-B; and for a

  17. Cyanobacterial carbon metabolism: Fluxome plasticity and oxygen dependence: Cyanobacterial Carbon Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Ni [Washington Univ., St. Louis, MO (United States); DeLorenzo, Drew M. [Washington Univ., St. Louis, MO (United States); He, Lian [Washington Univ., St. Louis, MO (United States); You, Le [Washington Univ., St. Louis, MO (United States); Immethun, Cheryl M. [Washington Univ., St. Louis, MO (United States); Wang, George [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Baidoo, Edward E. K. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hollinshead, Whitney [Washington Univ., St. Louis, MO (United States); Keasling, Jay D. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Technical Univ. of Denmark, Lyngby (Denmark); Moon, Tae Seok [Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130; Tang, Yinjie J. [Washington Univ., St. Louis, MO (United States)

    2017-03-30

    Synechocystis sp. strain PCC 6803 has been widely used as a photo-biorefinery chassis. Based on its genome annotation, this species contains a complete TCA cycle, an Embden-Meyerhof-Parnas pathway (EMPP), an oxidative pentose phosphate pathway (OPPP), and an Entner–Doudoroff pathway (EDP). To evaluate how Synechocystis 6803 catabolizes glucose under heterotrophic conditions, we performed 13C metabolic flux analysis, metabolite pool size analysis, gene knockouts, and heterologous expressions. The results revealed a cyclic mode of flux through the OPPP. Small, but non-zero, fluxes were observed through the TCA cycle and the malic shunt. Independent knockouts of 6-phosphogluconate dehydrogenase (gnd) and malic enzyme (me) corroborated these results, as neither mutant could grow under dark heterotrophic conditions. Our data also indicate that Synechocystis 6803 metabolism relies upon oxidative phosphorylation to generate ATP from NADPH under dark or insufficient light conditions. The pool sizes of intermediates in the TCA cycle, particularly acetyl-CoA, were found to be several fold lower in Synechocystis 6803 (compared to E. coli metabolite pool sizes), while its sugar phosphate intermediates were several-fold higher. Moreover, negligible flux was detected through the native, or heterologous, EDP in the wild type or Δgnd strains under heterotrophic conditions. Comparing photoautotrophic, photomixotrophic, and heterotrophic conditions, the Calvin cycle, OPPP, and EMPP in Synechocystis 6803 possess the ability to regulate their fluxes under various growth conditions (plastic), whereas its TCA cycle always maintains at low levels (rigid). This work also demonstrates how genetic profiles do not always reflect actual metabolic flux through native or heterologous pathways. Biotechnol. Bioeng. 2017;114: 1593–1602. © 2017 Wiley Periodicals, Inc.

  18. Carbon Disulfide (CS2) Interference in Glucose Metabolism from Unconventional Oil and Gas Extraction and Processing Emissions.

    Science.gov (United States)

    Rich, Alisa L; Patel, Jay T; Al-Angari, Samiah S

    2016-01-01

    Carbon disulfide (CS2) has been historically associated with the manufacturing of rayon, cellophane, and carbon tetrachloride production. This study is one of the first to identify elevated atmospheric levels of CS2 above national background levels and its mechanisms to dysregulate normal glucose metabolism. Interference in glucose metabolism can indirectly cause other complications (diabetes, neurodegenerative disease, and retinopathy), which may be preventable if proper precautions are taken. Rich et al found CS2 and 12 associated sulfide compounds present in the atmosphere in residential areas where unconventional shale oil and gas extraction and processing operations were occurring. Ambient atmospheric concentrations of CS2 ranged from 0.7 parts per billion by volume (ppbv) to 103 ppbv over a continuous 24-hour monitoring period. One-hour ambient atmospheric concentrations ranged from 3.4 ppbv to 504.6 ppbv. Using the U.S. Environmental Protection Agency Urban Air Toxic Monitoring Program study as a baseline comparison for atmospheric CS2 concentrations found in this study, it was determined that CS2 atmospheric levels were consistently elevated in areas where unconventional oil and gas extraction and processing occurred. The mechanisms by which CS2 interferes in normal glucose metabolism by dysregulation of the tryptophan metabolism pathway are presented in this study. The literature review found an increased potential for alteration of normal glucose metabolism in viscose rayon occupational workers exposed to CS2. Occupational workers in the energy extraction industry exposed to CS2 and other sulfide compounds may have an increased potential for glucose metabolism interference, which has been an indicator for diabetogenic effect and other related health impacts. The recommendation of this study is for implementation of regular monitoring of blood glucose levels in CS2-exposed populations as a preventative health measure.

  19. Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna; Sathre, Roger [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, 83125 Oestersund (Sweden)

    2010-02-15

    In this study the life cycle primary energy use and carbon dioxide (CO{sub 2}) emission of an eight-storey wood-framed apartment building are analyzed. All life cycle phases are included, including acquisition and processing of materials, on-site construction, building operation, demolition and materials disposal. The calculated primary energy use includes the entire energy system chains, and carbon flows are tracked including fossil fuel emissions, process emissions, carbon stocks in building materials, and avoided fossil emissions due to biofuel substitution. The results show that building operation uses the largest share of life cycle energy use, becoming increasingly dominant as the life span of the building increases. The type of heating system strongly influences the primary energy use and CO{sub 2} emission; a biomass-based system with cogeneration of district heat and electricity achieves low primary energy use and very low CO{sub 2} emissions. Using biomass residues from the wood products chain to substitute for fossil fuels significantly reduces net CO{sub 2} emission. Excluding household tap water and electricity, a negative life cycle net CO{sub 2} emission can be achieved due to the wood-based construction materials and biomass-based energy supply system. This study shows the importance of using a life cycle perspective when evaluating primary energy and climatic impacts of buildings. (author)

  20. A simple method for measuring fungal metabolic quotient and comparing carbon use efficiency of different isolates: Application to Mediterranean leaf litter fungi

    NARCIS (Netherlands)

    Pinzari, F.; Maggi, O.; Lunghini, D.; Di Lonardo, Paolo; Persiani, A. M.

    2017-01-01

    AbstractThe metabolic efficiency of different microbial groups in carbon source uses and single species storage efficiency is poorly characterised and not adequately represented in most biogeochemical models. It is proposed here a simple approach for an estimation of the metabolic quotient of fungal

  1. Increased iron availability resulting from increased CO2 enhances carbon and nitrogen metabolism in the economical marine red macroalga Pyropia haitanensis (Rhodophyta).

    Science.gov (United States)

    Chen, Binbin; Zou, Dinghui; Yang, Yufeng

    2017-04-01

    Ocean acidification caused by rising CO 2 is predicted to increase the concentrations of dissolved species of Fe(II) and Fe(III), leading to the enhanced photosynthetic carbon sequestration in some algal species. In this study, the carbon and nitrogen metabolism in responses to increased iron availability under two CO 2 levels (390 μL L -1 and 1000 μL L -1 ), were investigated in the maricultivated macroalga Pyropia haitanensis (Rhodophyta). The results showed that, elevated CO 2 increased soluble carbonhydrate (SC) contents, resulting from enhanced photosynthesis and photosynthetic pigment synthesis in this algae, but declined its soluble protein (SP) contents, resulting in increased ratio of SC/SP. This enhanced photosynthesis performance and carbon accumulation was more significant under iron enrichment condition in seawater, with higher iron uptake rate at high CO 2 level. As a key essential biogenic element for algae, Fe-replete functionally contributed to P. haitanensis photosynthesis. Increased SC fundamentally provided carbon skeletons for nitrogen assimilation. The significant increase of carbon and nitrogen assimilation finally contributed to enhanced growth in this alga. This was also intuitively reflected by respiration that provided energy for cellular metabolism and algal growth. We propose that, in the predicted scenario of rising atmospheric CO 2 , P. haitanensis is capable to adjust its physiology by increasing its carbon and nitrogen metabolism to acclimate the acidified seawater, at the background of global climate change and simultaneously increased iron concentration due to decreased pH levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos.

    Science.gov (United States)

    Alonso, Ana P; Goffman, Fernando D; Ohlrogge, John B; Shachar-Hill, Yair

    2007-10-01

    The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with [U-(14)C6]glucose or [U-(14)C5]glutamine and measuring their conversion to CO2, oil, protein and other biomass compounds. The average carbon conversion efficiency was 50%, which contrasts with a value of over 80% previously observed in Brassica napus embryos (Goffman et al., 2005), in which light and the RuBisCO bypass pathway allow more efficient conversion of hexose to oil. Labeling levels after incubating sunflower embryos with [U-(14)C4]malate indicated that some carbon from malate enters the plastidic compartment and contributes to oil synthesis. To test this and to map the underlying pattern of metabolic fluxes, separate experiments were carried out in which embryos were labeled to isotopic steady state using [1-(13)C1]glucose, [2-(13)C1]glucose, or [U-(13)C5]glutamine. The resultant labeling in sugars, starch, fatty acids and amino acids was analyzed by NMR and GC-MS. The fluxes through intermediary metabolism were then quantified by computer-aided modeling. The resulting flux map accounted well for the labeling data, was in good agreement with the observed carbon efficiency, and was further validated by testing for agreement with gas exchange measurements. The map shows that the influx of malate into oil is low and that flux through futile cycles (wasting ATP) is low, which contrasts with the high rates previously determined for growing root tips and heterotrophic cell cultures.

  3. Genome-wide meta-analysis of homocysteine and methionine metabolism identifies five one carbon metabolism loci and a novel association of ALDH1L1 with ischemic stroke

    Science.gov (United States)

    Circulating homocysteine levels (tHcy), a product of the folate one carbon metabolism pathway (FOCM) through the demethylation of methionine, are heritable and are associated with an increased risk of common diseases such as stroke, cardiovascular disease (CVD), cancer and dementia. The FOCM is the ...

  4. Metabolic commensalism and competition in a two-species microbial consortium

    DEFF Research Database (Denmark)

    Christensen, Bjarke Bak; Haagensen, Janus Anders Juul; Heydorn, Arne

    2002-01-01

    We analyzed metabolic interactions and the importance of specific structural relationships in a benzyl alcohol-degrading microbial consortium comprising two species, Pseudomonas putida strain R1 and Acinetobacter strain C6, both of which are able to utilize benzyl alcohol as their sole carbon...... alcohol, which apparently gives Acinetobacter strain C6 a growth advantage, probably because it converts benzyl alcohol to benzoate with a higher yield per time unit than P. putida R1. In biofilms, however, the organisms establish structured, surface-attached consortia, in which heterogeneous ecological...... niches develop, and under these conditions competition for the primary carbon source is not the only determinant of biomass and population structure....

  5. Enhanced photosynthetic capacity increases nitrogen metabolism through the coordinated regulation of carbon and nitrogen assimilation in Arabidopsis thaliana.

    Science.gov (United States)

    Otori, Kumi; Tanabe, Noriaki; Maruyama, Toshiki; Sato, Shigeru; Yanagisawa, Shuichi; Tamoi, Masahiro; Shigeoka, Shigeru

    2017-09-01

    Plant growth and productivity depend on interactions between the metabolism of carbon and nitrogen. The sensing ability of internal carbon and nitrogen metabolites (the C/N balance) enables plants to regulate metabolism and development. In order to investigate the effects of an enhanced photosynthetic capacity on the metabolism of carbon and nitrogen in photosynthetically active tissus (source leaves), we herein generated transgenic Arabidopsis thaliana plants (ApFS) that expressed cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in their chloroplasts. The phenotype of ApFS plants was indistinguishable from that of wild-type plants at the immature stage. However, as plants matured, the growth of ApFS plants was superior to that of wild-type plants. Starch levels were higher in ApFS plants than in wild-type plants at 2 and 5 weeks. Sucrose levels were also higher in ApFS plants than in wild-type plants, but only at 5 weeks. On the other hand, the contents of various free amino acids were lower in ApFS plants than in wild-type plants at 2 weeks, but were similar at 5 weeks. The total C/N ratio was the same in ApFS plants and wild-type plants, whereas nitrite levels increased in parallel with elevations in nitrate reductase activity at 5 weeks in ApFS plants. These results suggest that increases in the contents of photosynthetic intermediates at the early growth stage caused a temporary imbalance in the free-C/free-N ratio and, thus, the feedback inhibition of the expression of genes involved in the Calvin cycle and induction of the expression of those involved in nitrogen metabolism due to supply deficient free amino acids for maintenance of the C/N balance in source leaves of ApFS plants.

  6. Long-Term, Supplemental, One-Carbon Metabolism-Related Vitamin B Use in Relation to Lung Cancer Risk in the Vitamins and Lifestyle (VITAL) Cohort.

    Science.gov (United States)

    Brasky, Theodore M; White, Emily; Chen, Chi-Ling

    2017-10-20

    Purpose Inconsistent findings have been reported of a link between the use of one-carbon metabolism-related B vitamins and lung cancer risk. Because of the high prevalence of supplemental vitamin B use, any possible increased association warrants further investigation. We examined the association between long-term use of supplemental B vitamins on the one-carbon metabolism pathway and lung cancer risk in the Vitamins and Lifestyle (VITAL) cohort, which was designed specifically to look at supplement use relative to cancer risk. Methods A total of 77,118 participants of the VITAL cohort, 50 to 76 years of age, were recruited between October 2000 and December 2002 and included in this analysis. Incident, primary, invasive lung cancers (n = 808) were ascertained by prospectively linking the participants to a population-based cancer registry. The 10-year average daily dose from individual and multivitamin supplements were the exposures of primary interest. Results Use of supplemental vitamins B 6 , folate, and B 12 was not associated with lung cancer risk among women. In contrast, use of vitamin B 6 and B 12 from individual supplement sources, but not from multivitamins, was associated with a 30% to 40% increase in lung cancer risk among men. When the 10-year average supplement dose was evaluated, there was an almost two-fold increase in lung cancer risk among men in the highest categories of vitamin B 6 (> 20 mg/d; hazard ratio, 1.82; 95% CI, 1.25 to 2.65) and B 12 (> 55µg/d; hazard ratio, 1.98; 95% CI, 1.32 to 2.97) compared with nonusers. For vitamin B 6 and B 12 , the risk was even higher among men who were smoking at baseline. In addition, the B 6 and B 12 associations were apparent in all histologic types except adenocarcinoma, which is the type less related to smoking. Conclusion This sex- and source-specific association provides further evidence that vitamin B supplements are not chemopreventive for lung cancer and may be harmful.

  7. Genetic analysis of central carbon metabolism unveils an amino acid substitution that alters maize NAD-dependent isocitrate dehydrogenase activity.

    Directory of Open Access Journals (Sweden)

    Nengyi Zhang

    2010-04-01

    Full Text Available Central carbon metabolism (CCM is a fundamental component of life. The participating genes and enzymes are thought to be structurally and functionally conserved across and within species. Association mapping utilizes a rich history of mutation and recombination to achieve high resolution mapping. Therefore, applying association mapping in maize (Zea mays ssp. mays, the most diverse model crop species, to study the genetics of CCM is a particularly attractive system.We used a maize diversity panel to test the CCM functional conservation. We found heritable variation in enzyme activity for every enzyme tested. One of these enzymes was the NAD-dependent isocitrate dehydrogenase (IDH, E.C. 1.1.1.41, in which we identified a novel amino-acid substitution in a phylogenetically conserved site. Using candidate gene association mapping, we identified that this non-synonymous polymorphism was associated with IDH activity variation. The proposed mechanism for the IDH activity variation includes additional components regulating protein level. With the comparison of sequences from maize and teosinte (Zea mays ssp. Parviglumis, the maize wild ancestor, we found that some CCM genes had also been targeted for selection during maize domestication.Our results demonstrate the efficacy of association mapping for dissecting natural variation in primary metabolic pathways. The considerable genetic diversity observed in maize CCM genes underlies heritable phenotypic variation in enzyme activities and can be useful to identify putative functional sites.

  8. The relationship between the cerebral blood flow, oxygen consumption and glucose metabolism in primary degenerative dementia

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, Yasuo; Ichiya, Yuichi; Ichimiya, Atsushi; Sasaki, Masayuki; Akashi, Yuko; Yoshida, Tsuyoshi; Fukumura, Toshimitsu; Masada, Kouji [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1995-03-01

    The CBF, CMRO{sub 2} and CMRGlu were measured in patients with primary degenerative dementia including 5 patients with dementia of Alzheimer`s type and 4 patients with Pick`s disease, and then the correlation between the cerebral blood flow and energy metabolism was evaluated. The control subjects consisted of 5 age-matched normal volunteers. The CBF, CMRO{sub 2} and CMRGlu decreased in the bilateral frontal, temporal and parietal regions in the patients with Alzheimer`s dementia, while they decreased in the bilateral frontal and temporal regions in the patients with Pick`s disease. Both the CBF and CMRO{sub 2} were closely correlated with each other. However, the CMRGlu was more severely impaired than the CBF or CMRO{sub 2} in both pathological conditions. These results suggested that CMRGlu began to decrease before the reduction of the aerobic metabolism and thus measuring the CMRGlu is considered to be the most sensitive method for detecting abnormal regions in primary degenerative dementia. (author).

  9. The relationship between the cerebral blood flow, oxygen consumption and glucose metabolism in primary degenerative dementia

    International Nuclear Information System (INIS)

    Kuwabara, Yasuo; Ichiya, Yuichi; Ichimiya, Atsushi; Sasaki, Masayuki; Akashi, Yuko; Yoshida, Tsuyoshi; Fukumura, Toshimitsu; Masada, Kouji

    1995-01-01

    The CBF, CMRO 2 and CMRGlu were measured in patients with primary degenerative dementia including 5 patients with dementia of Alzheimer's type and 4 patients with Pick's disease, and then the correlation between the cerebral blood flow and energy metabolism was evaluated. The control subjects consisted of 5 age-matched normal volunteers. The CBF, CMRO 2 and CMRGlu decreased in the bilateral frontal, temporal and parietal regions in the patients with Alzheimer's dementia, while they decreased in the bilateral frontal and temporal regions in the patients with Pick's disease. Both the CBF and CMRO 2 were closely correlated with each other. However, the CMRGlu was more severely impaired than the CBF or CMRO 2 in both pathological conditions. These results suggested that CMRGlu began to decrease before the reduction of the aerobic metabolism and thus measuring the CMRGlu is considered to be the most sensitive method for detecting abnormal regions in primary degenerative dementia. (author)

  10. A deuterium and carbon nuclear magnetic resonance spectroscopic investigation of blood flow and carbohydrate metabolism

    International Nuclear Information System (INIS)

    Bosch, C.S.E.

    1988-01-01

    The purpose of this study is the development and application of nuclear magnetic resonance (NMR) spectroscopic techniques for this study of whole tissue metabolism, tissue perfusion and blood flow. The feasibility of spin imaging deuterium-enriched tissue water is demonstrated in cat brain in vivo and in situ. The potential application of D 2 O administration to deuterium-flow-imaging is considered. NMR investigations of hepatic carbohydrate metabolism were performed in rat liver in vivo and in situ. A coaxial, double-surface-coil, double-resonance probe was developed for carbon detection while decoupling neighboring proton scalar interactions ( 13 C-[ 1 H]) in hepatic tissue within the living animal. Hormonal and substrate regulation of hepatic glucose and glycogen metabolism was investigated by monitoring the metabolic fate of an administered c-dose of [1- 13 C]glucose. Label flux was directed primarily into newly-synthesized 13 C-labeled glycogen. A multiple resonance ( 1 H, 13 C, 31 P) liver perfusion probe was designed for complimentary carbohydrate metabolic studies in rat liver in vitro. A description of the 13 C-[ 1 H]/ 31 P NMR perfusion probe is given. The surgical technique used for liver excision and peripheral life-support apparatus required to maintain hepatic function are also detailed

  11. Effects of Pheretima Guillelmi Cultivation Time on Microbial Community Diversity and Characteristics of Carbon Metabolism in Vegetable Soil

    Directory of Open Access Journals (Sweden)

    ZHENG Xian-qing

    2015-12-01

    Full Text Available In order to study the effect of different biological tillage time (Pheretima guillelmi on soil microbial community metabolic functions in different soil depths, we set a location test in vegetable field at Chongming Island in Shanghai to analyze the changes of soil microbial community and carbon utilization abilities (Average well- color development, AWCD by using biolog eco-plate method. The three-year results showed that: Bio-tillage significantly improved microbial community activity, and with the increase of tillage years, biological tillage could make the average AWCD 3 to 7 times higher. The Simpson index and Shannon index of the biological tillage treatments were significantly higher than that of the control. The cumulative increase of 0~5 cm soil layer was 49 and 6.28 respectively, and the cumulative increase of 5~20 cm soil layer was 31 and 2.55 respectively. Earthworm bio-tillage significantly increased the soil microbial metabolic ability of 6 kinds of carbon sources, and increased the carbohydrate metabolism activity. In this study, earthworm bio-tillage is an effective way to increase the microbial activity of microbial soil.

  12. Endothelial dysfunction in normal and prediabetic rats with metabolic syndrome exposed by oral gavage to carbon black nanoparticles

    DEFF Research Database (Denmark)

    Folkmann, Janne Kjærsgaard; Vesterdal, Lise Kristine; Sheykhzade, Majid

    2012-01-01

    Exposure to nanosized particles may increase the risk of cardiovascular diseases by endothelial dysfunction, particularly in susceptible subjects with metabolic syndrome. We investigated vasomotor dysfunction in aorta from obese and lean Zucker rats after oral exposure to nanosized carbon black (...

  13. [Metabolic Syndrome as a marker of cardiovascular events in hypertensives in primary prevention].

    Science.gov (United States)

    Costa, José Antonio; Rodilla, Enrique; Cardona, Joaquín; González, Carmen; Pascual, José María

    2012-07-07

    The aim of this study was to assess the impact of metabolic syndrome (MS) as a predictor of cardiovascular events (CVE) in hypertensives in primary prevention. This retrospective study involved 2410 non-diabetic, hypertensive patients (52% women, 43% with MS), without previous CVE. The total follow-up was 13096 patient-years with a median of 4,5 years (IIQ; 2,2-7,3). Patients with metabolic syndrome did not have more risk of CVE (HR 1,19; CI 95%:0,89-1,58; p=0,292), 183 patients had a CVE, 88 in patients with MS (15,4; CI 95%:12,4-19,0 patients-years), and 95 in patients without MS (13,0; CI 95%:10,5-15,9 patients/years) (p=0,279). In a multivariate analysis corrected for other factors, only age (HR 1,08; CI 95%: 1,07-1,10; p=0,001), male gender (HR 1,77; CI 95%: 1,27-2,45; p=0,001), smoking (HR 2,95; CI 95%: 2,01-4,34; p=0,001) at the beginning, and values of systolic arterial pressure ≥160 mm Hg (HR 1,83; CI 95%: 1,17-2,89; p=0,009) and cholesterol-low density lipoproteins ≥160 mg/dl (HR 1,58; CI 95%: 1,05-2,38; p=0,029) during the follow-up, were associated with new CVE. In hypertensive non-diabetic patients in primary prevention the diagnosis of metabolic syndrome did not add any significant prediction about future CVE over the traditional risk factors. Systolic arterial pressure ≥160 mm Hg and cholesterol-low density lipoproteins ≥160 mg/dl, respectively, during the follow up were factors related to new CVE. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  14. Xenobiotic-Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by Toxcast Chemicals

    Science.gov (United States)

    Primary human hepatocyte cultures are useful in vitro model systems of human liver because when cultured under appropriate conditions the hepatocytes retain liver-like functionality such as metabolism, transport, and cell signaling. This model system was used to characterize the ...

  15. The metabolism and dosimetry of carbon-14 labelled compounds

    International Nuclear Information System (INIS)

    Crawley, F.E.H.

    1977-01-01

    The number of compounds labelled at high specific activity with carbon-14 has greatly increased over the last few years. There are limited biological data available to enable an assessment of the internal radiation dose and to identify the critical tissues after an intake of such compounds. The ICRP consider two Model Systems for deriving dose. Both Models assume a total elimination of the carbon-14 in the breath and only bone or whole body as critical tissues and are not representative of the majority of the compounds now available. A research programme has been established to study the rate of excretion and tissue distribution of selected carbon-14 labelled compounds in the rat after intravenous injection, pulmonary and gastric intubation and skin absorption. These metabolic data have been used to calculate the committed dose equivalent and maximum permissible annual intake (MPAI) for various tissues in man on the assumption that the experimental data obtained in the rat are true for man. To date potassium 14 C-cyanide and 14 C-methanol have been studied. The values for the MPAI's derived from the doses to individual tissues are more restrictive than values calculated from the whole body doses. The MPAI calculated from excretion data in terms of whole body dose is 31 mCi for 14 C-cyanide and 25 mCi for 14 C-methanol. However, the critical tissue for 14 C-cyanide is the stomach with an MPAI of 1.5 mCi based on a dose of 10.7 rem mCi -1 . This was an order of magnitude greater than the dose to any other region of the GI tract and 5 times that to the testis. The critical organs for 14 C-methanol are the testis (MPAI 2.5 mCi) for males and the ovaries (MPAI 6.2 mCi) for females

  16. Up-regulation of sucrose metabolizing enzymes in Oncidium goldiana grown under elevated carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Chang Run Li; Sun, W.Q.; Choy Sin Hew [National Univ. of Singapore. dept. of Biological Sciences (Singapore)

    2001-07-01

    Experiments were conducted in controlled growth chambers to evaluate how increase in CO{sub 2} concentration affected sucrose metabolizing enzymes, especially sucrose phosphate synthase (SPS; EC 2.4.1.14) and sucrose synthase (SS; EC 2.4.1.13), as well as carbon metabolism and partitioning in a tropical epiphytic orchid species (Oncidium goldiana). Response of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) to elevated CO{sub 2} was determined along with dry mass production, photosynthesis rate, chlorophyll content, total nitrogen and total soluble protein content. After 60 days of growth, there was a 80% and 150% increase in dry mass production in plants grown at 750 and 1100 {mu} l{sup -}1 CO{sub 2}, respectively, compared with those grown at ambient CO{sub 2} (about 370 {mu} l{sup -}1). A similar increase in photosynthesis rate was detected throughout the growth period when measured under growth CO{sub 2} conditions. Concomitantly, there was a decline in leaf Rubisco activity in plants in elevated CO{sub 2} after 10 days of growth. Over the growth period, leaf SPS and SS activities were up-regulated by an average of 20% and 40% for plants grown at 750 and 1100 {mu} l{sup -}1 CO{sub 2}, respectively. Leaf sucrose content and starch content were significantly higher throughout the growth period in plants grown at elevated CO{sub 2} than those at ambient CO{sub 2}. The partitioning of photosynthetically fixed carbon between sucrose and starch appeared to be unaffected by the 750 {mu} l{sup -}1 CO{sub 2} treatment, but it was favored into starch under the 1100 {mu} l{sup -}1 CO{sub 2} condition. The activities of SPS and SS in leaf extracts were closely associated with photosynthetic rates and with partitioning of carbon between starch and sucrose in leaves. The data are consistent with the hypothesis that the up-regulation of leaf SPS and SS might be an acclimation response to optimize the utilization and export of organic carbon with the

  17. Single nucleotide polymorphisms of one-carbon metabolism and cancers of the esophagus, stomach, and liver in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Shen-Chih Chang

    Full Text Available One-carbon metabolism (folate metabolism is considered important in carcinogenesis because of its involvement in DNA synthesis and biological methylation reactions. We investigated the associations of single nucleotide polymorphisms (SNPs in folate metabolic pathway and the risk of three GI cancers in a population-based case-control study in Taixing City, China, with 218 esophageal cancer cases, 206 stomach cancer cases, 204 liver cancer cases, and 415 healthy population controls. Study participants were interviewed with a standardized questionnaire, and blood samples were collected after the interviews. We genotyped SNPs of the MTHFR, MTR, MTRR, DNMT1, and ALDH2 genes, using PCR-RFLP, SNPlex, or TaqMan assays. To account for multiple comparisons and reduce the chances of false reports, we employed semi-Bayes (SB shrinkage analysis. After shrinkage and adjusting for potential confounding factors, we found positive associations between MTHFR rs1801133 and stomach cancer (any T versus C/C, SB odds-ratio [SBOR]: 1.79, 95% posterior limits: 1.18, 2.71 and liver cancer (SBOR: 1.51, 95% posterior limits: 0.98, 2.32. There was an inverse association between DNMT1 rs2228612 and esophageal cancer (any G versus A/A, SBOR: 0.60, 95% posterior limits: 0.39, 0.94. In addition, we detected potential heterogeneity across alcohol drinking status for ORs relating MTRR rs1801394 to esophageal (posterior homogeneity P = 0.005 and stomach cancer (posterior homogeneity P = 0.004, and ORs relating MTR rs1805087 to liver cancer (posterior homogeneity P = 0.021. Among non-alcohol drinkers, the variant allele (allele G of these two SNPs was inversely associated with the risk of these cancers; while a positive association was observed among ever-alcohol drinkers. Our results suggest that genetic polymorphisms related to one-carbon metabolism may be associated with cancers of the esophagus, stomach, and liver. Heterogeneity across alcohol consumption status of

  18. Isotopic labeling affects 1,25-dihydroxyvitamin D metabolism

    International Nuclear Information System (INIS)

    Halloran, B.P.; Bikle, D.D.; Castro, M.E.; Gee, E.

    1989-01-01

    Isotope substitution can change the biochemical properties of vitamin D. To determine the effect of substituting 3H for 1H on the metabolism of 1,25(OH)2D3, we measured the metabolic clearance rate and renal metabolism of unlabeled and 3H-labeled 1,25(OH)2D3. Substitution of 3H for 1H on carbons 26 and 27 [1,25(OH)2[26,27(n)-3H]D3] or on carbons 23 and 24 [1,25(OH)2[23,24(n)-3H]D3] reduced the in vivo metabolic clearance rate of 1,25(OH)2D3 by 36% and 37%, respectively, and reduced the in vitro renal catabolism of 1,25(OH)2D3 by 11% and 54%, respectively. Substitutions of 3H for 1H on carbons 23 and 24 as opposed to carbons 26 and 27 reduced conversion of [3H]1,25(OH)2D3 to [3H]1,24,25(OH)2D3 by 25% and to putative 24-oxo-1,23,25-dihydroxyvitamin D3 by 1600%. These results indicate that substitution of 3H for 1H on carbons 26 and 27 or on carbons 23 and 24 can reduce the metabolic clearance rate and in vitro metabolism of 1,25(OH)2D3 and quantitatively alter the pattern of metabolic products produced

  19. Contribution of carbon fixed by Rubisco and PEPC to phloem export in the Crassulacean acid metabolism plant Kalanchoe daigremontiana.

    Science.gov (United States)

    Wild, Birgit; Wanek, Wolfgang; Postl, Wolfgang; Richter, Andreas

    2010-03-01

    Crassulacean acid metabolism (CAM) plants exhibit a complex interplay between CO(2) fixation by phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco), and carbon demand for CAM maintenance and growth. This study investigated the flux of carbon from PEPC and direct Rubisco fixation to different leaf carbon pools and to phloem sap over the diurnal cycle. Concentrations and carbon isotope compositions of starch, soluble sugars, and organic acids were determined in leaves and phloem exudates of Kalanchoë daigremontiana Hamet et Perr., and related to CO(2) fixation by PEPC and Rubisco. Three types of leaf carbon pools could be distinguished. (i) Starch and malate pools were dominant and showed a pattern of reciprocal mobilization and accumulation (85/54 and 13/48 mg C g(-1) DW, respective, at the beginning/end of phase I). The carbon isotope composition of these pools was compatible with predominant PEPC fixation (delta(13)C values of -13 and -11 per thousand for starch and malate compared to -11 per thousand of PEPC fixed carbon). (ii) Isotopic composition (-17 per thousand and -14 per thousand) and concentration of glucose and fructose (2 and 3 mg C g(-1) DW, respectively) were not affected by diurnal metabolism, suggesting a low turnover. (iii) Sucrose (1-3 mg C g(-1) DW), in contrast, exhibited large diurnal changes in delta(13)C values (from -17 per thousand in the evening to -12 per thousand in the morning), which were not matched by net changes in sucrose concentration. This suggests a high sucrose turnover, fed by nocturnal starch degradation and direct Rubisco fixation during the day. A detailed dissection of the carbon fixation and mobilization pattern in K. daigremontiana revealed that direct fixation of Rubisco during the light accounted for 30% of phloem sucrose, but only 15% of fixed carbon, indicating that carbon from direct Rubisco fixation was preferentially used for leaf export.

  20. Genome-wide meta-analysis of homocysteine and methionine metabolism identifies five one carbon metabolism loci and a novel association of ALDH1L1 with ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Stephen R Williams

    2014-03-01

    Full Text Available Circulating homocysteine levels (tHcy, a product of the folate one carbon metabolism pathway (FOCM through the demethylation of methionine, are heritable and are associated with an increased risk of common diseases such as stroke, cardiovascular disease (CVD, cancer and dementia. The FOCM is the sole source of de novo methyl group synthesis, impacting many biological and epigenetic pathways. However, the genetic determinants of elevated tHcy (hyperhomocysteinemia, dysregulation of methionine metabolism and the underlying biological processes remain unclear. We conducted independent genome-wide association studies and a meta-analysis of methionine metabolism, characterized by post-methionine load test tHcy, in 2,710 participants from the Framingham Heart Study (FHS and 2,100 participants from the Vitamin Intervention for Stroke Prevention (VISP clinical trial, and then examined the association of the identified loci with incident stroke in FHS. Five genes in the FOCM pathway (GNMT [p = 1.60 × 10(-63], CBS [p = 3.15 × 10(-26], CPS1 [p = 9.10 × 10(-13], ALDH1L1 [p = 7.3 × 10(-13] and PSPH [p = 1.17 × 10(-16] were strongly associated with the difference between pre- and post-methionine load test tHcy levels (ΔPOST. Of these, one variant in the ALDH1L1 locus, rs2364368, was associated with incident ischemic stroke. Promoter analyses reveal genetic and epigenetic differences that may explain a direct effect on GNMT transcription and a downstream affect on methionine metabolism. Additionally, a genetic-score consisting of the five significant loci explains 13% of the variance of ΔPOST in FHS and 6% of the variance in VISP. Association between variants in FOCM genes with ΔPOST suggest novel mechanisms that lead to differences in methionine metabolism, and possibly the epigenome, impacting disease risk. These data emphasize the importance of a concerted effort to understand regulators of one carbon metabolism as potential therapeutic targets.

  1. The association between donor genetic variations in one-carbon metabolism pathway genes and hepatitis B recurrence after liver transplantation.

    Science.gov (United States)

    Lu, Di; Zhuo, Jianyong; Yang, Modan; Wang, Chao; Linhui, Pan; Xie, Haiyang; Xu, Xiao; Zheng, Shusen

    2018-04-05

    Hepatitis B recurrence adversely affects patients' survival after liver transplantation. This study aims to find association between donor gene variations of one carbon metabolism and post-transplant hepatitis B recurrence. This study enrolled 196 patients undergoing liver transplantation for HBV related end-stage liver diseases. We detected 11 single nucleotide polymorphisms (SNP) of 7 one-carbon metabolism pathway genes (including MTHFR, MTR, MTRR, ALDH1L1, GART, SHMT1 and CBS) in donor livers and analyzed their association with HBV reinfection after liver transplantation. Hepatitis B recurrence was observed in 19 of the 196 patients (9.7%) undergoing liver transplantation. Hepatitis B recurrence significantly affected post-transplant survival in the 196 patients (p = 0.018), and correlate with tumor recurrence in the subgroup of HCC patients (n = 99, p = 0.006). Among the 11 SNPs, donor liver mutation in rs1979277 (G > A) was adversely associated with post-transplant hepatitis B recurrence (p = 0.042). In the subgroup of HCC patients, survival analysis showed donor liver mutations in rs1801133 (G > A) and rs1979277 (G > A) were risk factors for hepatitis B recurrence (p B recurrence in non-HCC patients (n = 97, p > 0.05). Hepatitis B recurrence impaired post-transplant survival. Donor liver genetic variations in one-carbon metabolism pathway genes were significantly associated with post-transplant hepatitis B recurrence. Copyright © 2017. Published by Elsevier B.V.

  2. An integrative approach to energy, carbon, and redox metabolism in the cyanobacterium Synechocystis sp. PCC 6803

    Energy Technology Data Exchange (ETDEWEB)

    Overbeek, Ross; Fonstein, Veronika; Osterman, Andrei; Gerdes, Svetlana; Vassieva, Olga; Zagnitko, Olga; Rodionov, Dmitry

    2005-02-15

    covering energy, carbon, and redox metabolism in the Synechocystis sp. PCC 6803 and other cyanobacteria has been performed (Specific Aim 4). The main objectives for this year (adjusted to reflect a new, public domain, setting of the Project research team) were: Aim 1. To develop, test, and deploy a new open source system, the SEED, for integrating community-based annotation, and comparative analysis of all publicly available microbial genomes. Develop a comprehensive genomic database by integrating within SEED all publicly available complete and nearly complete genome sequences with special emphasis on genomes of cyanobacteria, phototrophic eukaryotes, and anoxygenic phototrophic bacteria--invaluable for comparative genomic studies of energy and carbon metabolism in Synechocystis sp. PCC 6803. Aim 2. To develop the SEED's biological content in the form of a collection of encoded Subsystems largely covering the conserved cellular machinery in prokaryotes (and central metabolic machinery in eukaryotes). Aim 3. To develop, utilizing core SEED technology, the CyanoSEED--a specialized WEB portal for community-based annotation, and comparative analysis of all publicly available cyanobacterial genomes. Encode the set of additional subsystems representing key metabolic transformations in cyanobacteria and other photoautotrophs. We envisioned this resource as complementary to other public access databases for comparative genomic analysis currently available to the cyanobacterial research community. Aim 4. Perform in-depth analysis of several subsystems covering energy, carbon, and redox metabolism in the Synechocystis sp. PCC 6803 and all other cyanobacteria with available genome sequences. Reveal inconsistencies and gaps in the current knowledge of these subsystems. Use functional and genome context analysis tools in CyanoSEED to predict, whenever possible, candidate genes for inferred functional roles. To disseminate freely these conjectures and predictions by publishing

  3. Long-Term Performance of Primary and Secondary Electroactive Biofilms Using Layered Corrugated Carbon Electrodes

    International Nuclear Information System (INIS)

    Baudler, André; Riedl, Sebastian; Schröder, Uwe

    2014-01-01

    The performance of primary and secondary electroactive biofilms grown on layered corrugated carbon (LCC) electrodes was studied over a period of several months. With an average projected current density of 6.7 mA cm −2 , the studied secondary electroactive biofilms outperformed the primary biofilms (3.0 mA cm −2 ) over the entire experimental period. At the same time, both, primary and secondary biofilms, exhibited a constant Coulomb efficiency of about 89%. The study further illustrates that three-dimensional electrodes such as LCC allow a sustained long-term performance without significant decrease in electrode performance.

  4. Long-Term Performance of Primary and Secondary Electroactive Biofilms Using Layered Corrugated Carbon Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Baudler, André; Riedl, Sebastian; Schröder, Uwe, E-mail: uwe.schroeder@tu-bs.de [Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Braunschweig (Germany)

    2014-07-30

    The performance of primary and secondary electroactive biofilms grown on layered corrugated carbon (LCC) electrodes was studied over a period of several months. With an average projected current density of 6.7 mA cm{sup −2}, the studied secondary electroactive biofilms outperformed the primary biofilms (3.0 mA cm{sup −2}) over the entire experimental period. At the same time, both, primary and secondary biofilms, exhibited a constant Coulomb efficiency of about 89%. The study further illustrates that three-dimensional electrodes such as LCC allow a sustained long-term performance without significant decrease in electrode performance.

  5. Insulin induces a shift in lipid and primary carbon metabolites in a model of fasting-induced insulin resistance

    Science.gov (United States)

    Olmstead, Keedrian I.; La Frano, Michael R.; Fahrmann, Johannes; Grapov, Dmitry; Viscarra, Jose A.; Newman, John W.; Fiehn, Oliver; Crocker, Daniel E.; Filipp, Fabian V.; Ortiz, Rudy M.

    2017-01-01

    Introduction Prolonged fasting in northern elephant seals (NES) is characterized by a reliance on lipid metabolism, conservation of protein, and reduced plasma insulin. During early fasting, glucose infusion previously reduced plasma free fatty acids (FFA); however, during late-fasting, it induced an atypical elevation in FFA despite comparable increases in insulin during both periods suggestive of a dynamic shift in tissue responsiveness to glucose-stimulated insulin secretion. Objective To better assess the contribution of insulin to this fasting-associated shift in substrate metabolism. Methods We compared the responses of plasma metabolites (amino acids (AA), FFA, endocannabinoids (EC), and primary carbon metabolites (PCM)) to an insulin infusion (65 mU/kg) in early- and late-fasted NES pups (n = 5/group). Plasma samples were collected prior to infusion (T0) and at 10, 30, 60, and 120 min post-infusion, and underwent untargeted and targeted metabolomics analyses utilizing a variety of GC-MS and LC-MS technologies. Results In early fasting, the majority (72%) of metabolite trajectories return to baseline levels within 2 h, but not in late fasting indicative of an increase in tissue sensitivity to insulin. In late-fasting, increases in FFA and ketone pools, coupled with decreases in AA and PCM, indicate a shift toward lipolysis, beta-oxidation, ketone metabolism, and decreased protein catabolism. Conversely, insulin increased PCM AUC in late fasting suggesting that gluconeogenic pathways are activated. Insulin also decreased FFA AUC between early and late fasting suggesting that insulin suppresses triglyceride hydrolysis. Conclusion Naturally adapted tolerance to prolonged fasting in these mammals is likely accomplished by suppressing insulin levels and activity, providing novel insight on the evolution of insulin during a condition of temporary, reversible insulin resistance. PMID:28757815

  6. Zooplankton biomass and metabolism through image analysis systems: from the development and testing of metabolic equations to the assessment of carbon fluxes

    OpenAIRE

    Garijo, Juan Carlos

    2016-01-01

    Programa de Doctorado en Oceanografía Zooplankton plays an important role in the biogeochemical cycles in the ocean. Due to their central position in the ocean’s food web, they recycle and redistribute energy and matter, not only at different levels of the trophic web, but also horizontally and vertically in the water column. Understanding the role of zooplankton in the biological pump and the ocean carbon cycle requires accurate estimates of community biomass and metabolism at large spati...

  7. Carbon Leakage in the Primary Aluminium Sector: What evidence after 6 1/2 years of the EU ETS? - Working Paper No. 2012-12

    International Nuclear Information System (INIS)

    Sartor, Oliver

    2012-02-01

    This paper provides an econometric analysis of the evidence of carbon leakage from the European primary aluminium industry during the first 6 1/2 years of the EU ETS. The findings suggest that while rising electricity prices have played a critical role in reducing the competitiveness of EU primary aluminium smelting in recent years, no evidence of carbon leakage can be detected so far. Other factors, including rising primary energy prices and changes in EU competition law regarding long term contracts, appear to be more important factors explaining the rise in net imports of primary aluminium and the gradual closure of a number of European primary smelters during the past 6 1/2 years. Our results suggest that the carbon leakage debate in this sector may therefore be better seen in terms of not accelerating the decline of the industry in Europe, rather than preventing it, and that any state-aid to the industry to prevent carbon leakage should therefore be applied accordingly. (author)

  8. Changes in bone sodium and carbonate in metabolic acidosis and alkalosis in the dog

    Science.gov (United States)

    Burnell, James M.

    1971-01-01

    Metabolic acidosis and alkalosis were produced in adult dogs over 5- to 10-day periods. Midtibial cortical bone was analyzed for calcium, sodium, phosphorus, and carbonate. In acidosis bone CO3/Ca decreased 9.5% and bone Na/Ca decreased 6.3%. In alkalosis bone CO3/Ca increased 3.1% and bone Na/Ca increased 3.0%. Previous attempts to account for changes in net acid balance by summation of extra- and intracellular acid-base changes have uniformly resulted in about 40-60% of acid gained or lost being “unaccounted for.” If it is assumed that changes in tibial cortex reflect changes in the entire skeletal system, changes in bone CO3= are sufficiently large to account for the “unaccounted for” acid change without postulating changes in cellular metabolic acid production. PMID:5540172

  9. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes

    NARCIS (Netherlands)

    Lulko, Andrzej T.; Buist, Girbe; Kok, Jan; Kuipers, Oscar P.

    2007-01-01

    The pleiotropic regulator of carbon metabolism in Grampositive bacteria, CcpA, regulates gene expression by binding to so-called cre elements, which are located either upstream or in promoter regions, or in open-reading frames. In this study we compared the transcriptomes of Bacillus subtilis 168

  10. Effects of a long-term lifestyle intervention program with Mediterranean diet and exercise for the management of patients with metabolic syndrome in a primary care setting.

    Science.gov (United States)

    Gomez-Huelgas, R; Jansen-Chaparro, S; Baca-Osorio, A J; Mancera-Romero, J; Tinahones, F J; Bernal-López, M R

    2015-06-01

    The impact of a lifestyle intervention (LSI) program for the long-term management of subjects with metabolic syndrome in a primary care setting is not known. This 3-year prospective controlled trial randomized adult subjects with metabolic syndrome to receive intensive LSI or to usual care in a community health centre in Malaga, Spain. LSI subjects received instruction on Mediterranean diet and a regular aerobic exercise program by their primary care professionals. Primary outcome included changes from baseline on different components of metabolic syndrome (abdominal circumference, blood pressure, HDL-cholesterol, fasting plasma glucose and triglycerides). Among the 2,492 subjects screened, 601 subjects with metabolic syndrome (24.1%) were randomized to LSI (n = 298) or to usual care (n = 303); of them, a 77% and a 58%, respectively, completed the study. At the end of the study period, LSI resulted in significant differences vs. usual care in abdominal circumference (-0.4 ± 6 cm vs. + 2.1 ± 6.7 cm, p metabolic syndrome. Copyright © 2015 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  11. Assessment of primary production in a eutrophic lake from carbon and nitrogen isotope ratios of a carnivorous fish

    International Nuclear Information System (INIS)

    Yoshioka, Takahito

    1991-01-01

    The carbon and nitrogen isotope ratios of Hypomesus transpacificus (a pond smelt) in a eutrophic lake, Lake Suwa, were measured from April to September in 1986 and 1987. The differences in the isotope ratios between these two years were observed. The stable isotopes were transferred from phytoplankton to zooplankton and pond smelt, associated with organic matters. Therefore, the difference in the isotope ratios in two years seemed to reflect the differences of the proceeding of primary production. It was suggested that the carbon and nitrogen isotope ratios of animal, whose trophic level is far from primary producer, can be the qualitative indicators for assessing the primary production in a lake ecosystem. (author)

  12. Vision Issues and Space Flight: Evaluation of One-Carbon Metabolism Polymorphisms

    Science.gov (United States)

    Smith, Scott M.; Gregory, Jesse F.; Zeisel, Steven; Ueland, Per; Gibson, C. R.; Mader, Thomas; Kinchen, Jason; Ploutz-Snyder, Robert; Zwart, Sara R.

    2015-01-01

    Intermediates of the one-carbon metabolic pathway are altered in astronauts who experience vision-related issues during and after space flight. Serum concentrations of homocysteine, cystathionine, 2-methylcitric acid, and methylmalonic acid were higher in astronauts with ophthalmic changes than in those without (Zwart et al., J Nutr, 2012). These differences existed before, during, and after flight. Potential confounding factors did not explain the differences. Genetic polymorphisms could contribute to these differences, and could help explain why crewmembers on the same mission do not all have ophthalmic issues, despite the same environmental factors (e.g., microgravity, exercise, diet). A follow-up study was conducted to evaluate 5 polymorphisms of enzymes in the one-carbon pathway, and to evaluate how these relate to vision and other ophthalmic changes after flight. Preliminary evaluations of the genetic data indicate that all of the crewmembers with the MTRR GG genotype had vision issues to one degree or another. However, not everyone who had vision issues had this genetic polymorphism, so the situation is more complex than the involvement of this single polymorphism. Metabolomic and further data analyses are underway to clarify these findings, but the preliminary assessments are promising.

  13. Nitrogen and carbon limitation of planktonic primary production and phytoplankton–bacterioplankton coupling in ponds on the McMurdo Ice Shelf, Antarctica

    International Nuclear Information System (INIS)

    Sorrell, Brian K; Safi, Karl; Hawes, Ian

    2013-01-01

    We compared planktonic primary and secondary production across twenty meltwater ponds on the surface of the McMurdo Ice Shelf in January 2007, including some ponds with basal brines created by meromictic stratification. Primary production ranged from 1.07 to 65.72 mgC m −3 h −1 in surface waters. In stratified ponds primary production was always more than ten times higher in basal brines than in the corresponding mixolimnion. Regression tree analysis (r 2 = 0.80) identified inorganic nitrogen (as NH 4 + ) as the main factor limiting planktonic primary production. However, there was also evidence of inorganic carbon co-limitation of photosynthesis in some of the more oligotrophic waters. Neither C nor N limited carbon fixation at [NH 4 –N] > 50 mg m −3 , with photoinhibition the factor most likely limiting photosynthesis under such conditions. Primary production was the only factor significantly correlated to bacterial production and the relationship (r 2 = 0.56) was non-linear. Nitrogen limitation and tight coupling of planktonic primary and bacterial production is surprising in these ponds, as all have large pools of dissolved organic carbon (1.2–260 g m −3 ) and organic nitrogen (all >130 mg m −3 ). The dissolved pools of organic carbon and nitrogen appear to be recalcitrant and bacterial production to be constrained by limited release of labile organics from phytoplankton. (letter)

  14. Respiration of new and old carbon in the surface ocean: Implications for estimates of global oceanic gross primary productivity

    Science.gov (United States)

    Carvalho, Matheus C.; Schulz, Kai G.; Eyre, Bradley D.

    2017-06-01

    New respiration (Rnew, of freshly fixated carbon) and old respiration (Rold, of storage carbon) were estimated for different regions of the global surface ocean using published data on simultaneous measurements of the following: (1) primary productivity using 14C (14PP); (2) gross primary productivity (GPP) based on 18O or O2; and (3) net community productivity (NCP) using O2. The ratio Rnew/GPP in 24 h incubations was typically between 0.1 and 0.3 regardless of depth and geographical area, demonstrating that values were almost constant regardless of large variations in temperature (0 to 27°C), irradiance (surface to 100 m deep), nutrients (nutrient-rich and nutrient-poor waters), and community composition (diatoms, flagellates, etc,). As such, between 10 and 30% of primary production in the surface ocean is respired in less than 24 h, and most respiration (between 55 and 75%) was of older carbon. Rnew was most likely associated with autotrophs, with minor contribution from heterotrophic bacteria. Patterns were less clear for Rold. Short 14C incubations are less affected by respiratory losses. Global oceanic GPP is estimated to be between 70 and 145 Gt C yr-1.Plain Language SummaryHere we present a comprehensive coverage of ocean new and old respiration. Our results show that nearly 20% of oceanic gross primary production is consumed in the first 24 h. However, most (about 60%) respiration is of older carbon fixed at least 24 h before its consumption. Rates of new respiration relative to gross primary production were remarkably constant for the entire ocean, which allowed a preliminary estimation of global primary productivity as between 70 and 145 gt C yr-1.

  15. Hepatoprotective effects of Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] on alcohol-damaged primary rat hepatocyte culture in vitro.

    Science.gov (United States)

    Jiang, Wenhua; Bian, Yuzhu; Wang, Zhenghui; Chang, Thomas Ming Swi

    2017-02-01

    We have prepared a novel nanobiotherapeutic, Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase], which not only transports both oxygen and carbon dioxide but also a therapeutic antioxidant. Our previous study in a severe sustained 90 min hemorrhagic shock rat model shows that it has a hepatoprotective effect. We investigate its hepatoprotective effect further in this present report using an alcohol-damaged primary hepatocyte culture model. Results show that it significantly reduced ethanol-induced AST release, lipid peroxidation, and ROS production in rat primary hepatocytes culture. It also significantly enhanced the viability of ethanol-treated hepatocytes. Thus, the result shows that Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] also has some hepatoprotective effects against alcohol-induced injury in in vitro rat primary hepatocytes cell culture. This collaborate our previous observation of its hepatoprotective effect in a severe sustained 90-min hemorrhagic shock rat model.

  16. Carbon and oxygen dynamics on the Louisiana continental shelf: role of water column primary production and respiration

    Science.gov (United States)

    We conducted a multi-year study of the Louisiana continental shelf (LCS) to better understand the linkages between water column net metabolism and the formation of hypoxia (dissolved oxygen respiration (R) and primary p...

  17. Sequential metabolism of secondary alkyl amines to metabolic-intermediate complexes: opposing roles for the secondary hydroxylamine and primary amine metabolites of desipramine, (s)-fluoxetine, and N-desmethyldiltiazem.

    Science.gov (United States)

    Hanson, Kelsey L; VandenBrink, Brooke M; Babu, Kantipudi N; Allen, Kyle E; Nelson, Wendel L; Kunze, Kent L

    2010-06-01

    Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine > primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d(3)-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation.

  18. Metabolic activation of carbon tetrachloride by the cervico-vaginal epithelium in rodents

    International Nuclear Information System (INIS)

    Brittebo, E.B.; Brandt, I.

    1989-01-01

    The metabolism and binding of 14 C-labelled carbon tetrachloride (CCl 4 ) in the genital tract of female adult or juvenile NMRI-mice and Sprague-Dawly rats (mainly in the pro-oestrous/oestrous stage) and an adult New Zealand rabbit were studied. A marked irreversible binding of radioactivity in the squamous cervico-vaginal epithelium of mice given intravenous injections of 14 C-CCl 4 was revealed by autoradiography of solvent-extracted tissue. The localization of binding in the mouse genital tract incubated with 14 C-CCl 4 under air was similar to that observed in vivo. Bound radioactivity was also present in the cylindrical epithelium of the rabbit vagina incubated with 14 C-CCl 4 in vitro. For a comparison, no preferential binding of radiolabelled diethylstilbestrol or ethinylestradiol was observed in the mouse cervico-vaginal epithelium. The level of irreversible binding to PMSG-primed (pregnant mare's serum gonadotrophin) vaginal epithelial 100 x g supernatants of mice and rats incubated with 14 C-CCl 4 under air was low. Addition of the reducing agent dithionite to the incubations increased the binding in the vaginal epithelium 20-fold. In juvenile mice and rats injected with 14 C-CCl 4 , the levels of metabolites in the epithelium were low, whereas PMSG-primed juvenile rats contained a higher level of metabolites. The results show that the cervico-vaginal epithelium can metabolically activate CCl 4 to reactive metabolites and suggest that the metabolism is under endocrine control. (author)

  19. Metabolic bone disease as a presenting manifestation of primary Sjögren′s syndrome: Three cases and review of literature

    Directory of Open Access Journals (Sweden)

    Deepak Khandelwal

    2011-01-01

    Full Text Available Primary Sjögren′s syndrome (pSS is a chronic autoimmune disease characterized by a progressive lymphocytic infiltration of the exocrine glands with varying degrees of systemic involvement. Chronic inflammation compromises the glands′ function that leads to dry symptoms in the mouth/eyes. Renal involvement is a well recognized extraglandular manifestation of pSS. Metabolic bone disease (MBD, however, rarely occurs as the primary manifestation of a renal tubule disorder due to pSS. To the best of our knowledge there are only 6 reported cases of metabolic bone disease as the primary manifestation of pSS to date. Four of these had distal renal tubular acidosis (RTA, and 2 had a combined picture of distal and proximal tubular dysfunction. We herein present our experience of 3 cases who presented to us with a clinical picture suggestive of MBD. While investigating these patients, we found evidence of RTA, which was found to be secondary to pSS.

  20. Failure of Chemotherapy in Hepatocellular Carcinoma Due to Impaired and Dysregulated Primary Liver Drug Metabolizing Enzymes and Drug Transport Proteins: What to Do?

    Science.gov (United States)

    Ul Islam, Salman; Ahmed, Muhammad Bilal; Shehzad, Adeeb; Ul-Islam, Mazhar; Lee, Young Sup

    2018-05-28

    Most of the drugs are metabolized in the liver by the action of drug metabolizing enzymes. In hepatocellular carcinoma (HCC), primary drug metabolizing enzymes are severely dysregulated, leading to failure of chemotherapy. Sorafenib is the only standard systemic drug available, but it still presents certain limitations, and much effort is required to understand who is responsive and who is refractory to the drug. Preventive and therapeutic approaches other than systemic chemotherapy include vaccination, chemoprevention, liver transplantation, surgical resection, and locoregional therapies. This review details the dysregulation of primary drug metabolizing enzymes and drug transport proteins of the liver in HCC and their influence on chemotherapeutic drugs. Furthermore, it emphasizes the adoption of safe alternative therapeutic strategies to chemotherapy. The future of HCC treatment should emphasize the understanding of resistance mechanisms and the finding of novel, safe, and efficacious therapeutic strategies, which will surely benefit patients affected by advanced HCC. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Carbon footprint of patient journeys through primary care: a mixed methods approach.

    Science.gov (United States)

    Andrews, Elizabeth; Pearson, David; Kelly, Charlotte; Stroud, Laura; Rivas Perez, Martin

    2013-09-01

    The NHS has a target of cutting its carbon dioxide (CO2) emissions by 80% below 1990 levels by 2050. Travel comprises 17% of the NHS carbon footprint. This carbon footprint represents the total CO2 emissions caused directly or indirectly by the NHS. Patient journeys have previously been planned largely without regard to the environmental impact. The potential contribution of 'avoidable' journeys in primary care is significant. To investigate the carbon footprint of patients travelling to and from a general practice surgery, the issues involved, and potential solutions for reducing patient travel. A mixed methods study in a medium-sized practice in Yorkshire. During March 2012, 306 patients completed a travel survey. GIS maps of patients' travel (modes and distances) were produced. Two focus groups (12 clinical and 13 non-clinical staff) were recorded, transcribed, and analysed using a thematic framework approach. The majority (61%) of patient journeys to and from the surgery were made by car or taxi; main reasons cited were 'convenience', 'time saving', and 'no alternative' for accessing the surgery. Using distances calculated via ArcGIS, the annual estimated CO2 equivalent carbon emissions for the practice totalled approximately 63 tonnes. Predominant themes from interviews related to issues with systems for booking appointments and repeat prescriptions; alternative travel modes; delivering health care; and solutions to reducing travel. The modes and distances of patient travel can be accurately determined and allow appropriate carbon emission calculations for GP practices. Although challenging, there is scope for identifying potential solutions (for example, modifying administration systems and promoting walking) to reduce 'avoidable' journeys and cut carbon emissions while maintaining access to health care.

  2. Comparison of the microhardness of primary and permanent teeth after immersion in two types of carbonated beverages.

    Science.gov (United States)

    Haghgou, Hamid R; Haghgoo, Roza; Asdollah, Fatemah Molla

    2016-01-01

    The consumption of carbonated beverages is one of the etiological factors that cause dental erosion. The purpose of this research was to compare changes in the microhardness of permanent and primary teeth after immersion in two types of carbonated beverages. This investigation was done on 30 healthy permanent molars and 30 healthy primary canines. Each group of primary and permanent teeth was subdivided into three groups of 10 teeth. The teeth was immersed in 40 ml of each of the three beverages for 5 min. One subgroup was immersed in water (as a control). The next was immersed in Lemon Delster and the last subgroup was immersed in Coca-Cola. The microhardness of enamel was measured using the Vickers method before and after immersion. Finally, the data was analyzed by paired t-test, one-way analysis of variance, and t-test. Microhardness reduction in the primary teeth was significant in both the Lemon Delster and Coca-Cola groups (P Coca-Cola and Lemon Delster caused a significant reduction of microhardness in tooth enamel. This reduction was greater in primary teeth than in permanent teeth, and was also greater after immersion in Coca-Cola than after immersion in Lemon Delster.

  3. Evaluation of Net Primary Productivity and Carbon Allocation to Different Parts of Corn in Different Tillage and Nutrient Management Systems

    Directory of Open Access Journals (Sweden)

    esmat mohammadi

    2017-09-01

    Full Text Available Evaluation of net primary productivity and carbon allocation to different organs of corn under nutrient management and tillage systems Introduction Agriculture operations produce 10 to 20 percent of greenhouse gases. As a result of conventional operations of agriculture, greenhouse gases have been increased (Osborne et al., 2010. Therefor it is necessary to notice to carbon sequestration to reduce greenhouse gases emissions. In photosynthesis process, plants absorb CO2 and large amounts of organic carbon accumulate in their organs. Biochar is produced of pyrolysis of organic compounds. Biochar is an appropriate compound for improved of soil properties and carbon sequestration (Whitman and Lehmann, 2009; Smith et al., 2010. Conservation tillage has become an important technology in sustainable agriculture due to its benefits. So the aim of this study was to evaluate the effect of nutrient management and tillage systems on net primary production and carbon allocation to different organs of corn in Shahrood. Material and methods This study was conducted at the Shahrood University of Technology research farm. Experiment was done as split plot in randomized complete block design with three replications. Tillage systems with two levels (conventional tillage and minimum tillage were as the main factor and nutrient management in seven levels including (control, chemical fertilizer, manure, biochar, chemical fertilizer + manure, chemical fertilizer + biochar, manure + biochar were considered as sub plot. At the time of maturity of corn, was sampled from its aboveground and belowground biomasses. Carbon content of shoot, seed and root was considered almost 45 percent of yield of each of these biomasses and carbon in root exudates almost 65 percent of carbon in the root. Statistical analysis of the data was performed using SAS program. Comparison of means was conducted with LSD test at the 5% level. Results and discussion Effect of nutrient management was

  4. Shell carbon isotope indicators of metabolic activity in the deep-sea mussel Bathymodiolus childressi

    Science.gov (United States)

    Riekenberg, P. M.; Carney, R. S.; Fry, B.

    2018-04-01

    The incorporation of metabolic carbon (Cm) into shells of mollusks has been used as an indicator of animal condition and availability of food resources in estuarine and freshwater settings. This study examines Cm in Bathymodiolus childressi, a marine cold seep mussel dependent on methanotrophic symbionts. As seeps develop, mature, and go quiescent, methane supply will vary and affect the amount of metabolic carbon deposited into the growing shell. B. childressi (n = 136) were live-collected from two seep sites over a 17 year period in the Northern Gulf of Mexico to investigate whether changes in Cm were detectable between sites and across years. Significant differences in Cm were observed between mussel populations at Brine Pool (15.4 ± 0.4%) and Bush Hill (10.3 ± 0.3%). Cm also changed significantly within each site across year (Bush Hill 1991: 12.2 ± 0.5%, 1992: 17.3 ± 0.8%) and decadal time scales (Brine Pool 1989: 15.5 ± 0.7%, 2006: 19.5 ± 0.7%). These findings agree with previous studies that found mussel condition was higher at Brine Pool and correlate well with a trophic mixing model that indicated significantly higher methane source utilization at the Brine Pool (65 ± 1.1%) than at Bush Hill (49 ± 1.6%). Further development of this method should allow for assessment of Cm in shell assemblages as an indicator of historical resource availability at both active and former cold seep sites.

  5. Micronutrients Involved in One-Carbon Metabolism and Risk of Breast Cancer Subtypes.

    Directory of Open Access Journals (Sweden)

    Ilaria Cancarini

    Full Text Available Vitamins involved in one-carbon metabolism are hypothesized to influence breast cancer (BC risk. However, epidemiologic studies that examined associations between B vitamin intake and BC risk have provided inconsistent results. We prospectively examined, in the Italian ORDET cohort, whether B vitamin consumption was associated with risk of BC and BC subtypes.After a mean follow-up of 16.5 years, 391 BCs were diagnosed among 10,786 cohort women. B vitamin intakes were estimated from food frequency questionnaires. Cox proportional hazard models adjusted for energy intake and confounders, estimated hazard ratios (HR with 95% confidence intervals (CIs for BC according to intake.RRs were 0.61 (95% CI 0.38-0.97 highest vs. lowest quartile; P trend 0.025 for thiamine; 0.48 (95% CI 0.32-0.71; P trend <0.001 for riboflavin; 0.59 (95% CI 0.39-0.90; P trend 0.008 for vitamin B6, and 0.65 (95% CI 0.44-0.95; P trend 0.021 for folate. As regards risk of BC subtypes, high riboflavin and folate were significantly associated with lower risk of estrogen receptor positive (ER+ and progesterone receptor positive (PR+ cancers, and high thiamine was associated with lower risk of ER-PR- cancers. High riboflavin was associated with lower risk of both HER2+ and HER2- cancers, high folate with lower risk of HER2- disease, and high thiamine with HER2+ disease.These findings support protective effects of thiamine and one-carbon metabolism vitamins (folate, riboflavin, and vitamin B6 against BC in general; while folate may also protect against ER+PR+ and HER2- disease; and thiamine against ER-PR-, and HER2+ disease.

  6. Correlating metabolic and anatomic responses of primary lung cancers to radiotherapy by combined F-18 FDG PET-CT imaging

    Directory of Open Access Journals (Sweden)

    Grills Inga

    2007-05-01

    Full Text Available Abstract Background To correlate the metabolic changes with size changes for tumor response by concomitant PET-CT evaluation of lung cancers after radiotherapy. Methods 36 patients were studied pre- and post-radiotherapy with18FDG PET-CT scans at a median interval of 71 days. All of the patients were followed clinically and radiographically after a mean period of 342 days for assessment of local control or failure rates. Change in size (sum of maximum orthogonal diameters was correlated with that of maximum standard uptake value (SUV of the primary lung cancer before and after conventional radiotherapy. Results There was a significant reduction in both SUV and size of the primary cancer after radiotherapy (p Conclusion Correlating and incorporating metabolic change by PET into size change by concomitant CT is more sensitive in assessing therapeutic response than CT alone.

  7. Metabolic Profiling of Primary and Secondary Biosynthetic Pathways in Angiosperms: Comparative Metabonomics and Applications of Hyphenated LC-NMR and LC-MS

    OpenAIRE

    Kaiser, Kayla Anne

    2012-01-01

    The goal of this dissertation was to advance plant metabolomics through optimization of biological experimental design, sampling and sample preparation, data acquisition and pre-processing, and multivariable data analysis. The analytical platform most employed for comparative metabonomics was nuclear magnetic resonance (NMR). Liquid-chromatography (LC) coupled to NMR and mass spectrometry (MS) extended metabolic profile coverage from primary into secondary metabolic pathways. Comparative p...

  8. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  9. Carbon and energy metabolism of atp mutants of Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Michelsen, Ole

    1992-01-01

    strain is not able to utilize the resulting proton motive force for ATP synthesis. Indeed, the ratio of ATP concentration to ADP concentration was decreased from 19 in the wild type to 7 in the atp mutant, and the membrane potential of the atp deletion strain was increased by 20%, confirming......The membrane-bound H+-ATPase plays a key role in free-energy transduction of biological systems. We report how the carbon and energy metabolism of Escherichia coli changes in response to deletion of the atp operon that encodes this enzyme. Compared with the isogenic wild-type strain, the growth...... rate and growth yield were decreased less than expected for a shift from oxidative phosphorylation to glycolysis alone as a source of ATP. Moreover, the respiration rate of a atp deletion strain was increased by 40% compared with the wild-type strain. This result is surprising, since the atp deletion...

  10. Metabolic features of the cell danger response.

    Science.gov (United States)

    Naviaux, Robert K

    2014-05-01

    The cell danger response (CDR) is the evolutionarily conserved metabolic response that protects cells and hosts from harm. It is triggered by encounters with chemical, physical, or biological threats that exceed the cellular capacity for homeostasis. The resulting metabolic mismatch between available resources and functional capacity produces a cascade of changes in cellular electron flow, oxygen consumption, redox, membrane fluidity, lipid dynamics, bioenergetics, carbon and sulfur resource allocation, protein folding and aggregation, vitamin availability, metal homeostasis, indole, pterin, 1-carbon and polyamine metabolism, and polymer formation. The first wave of danger signals consists of the release of metabolic intermediates like ATP and ADP, Krebs cycle intermediates, oxygen, and reactive oxygen species (ROS), and is sustained by purinergic signaling. After the danger has been eliminated or neutralized, a choreographed sequence of anti-inflammatory and regenerative pathways is activated to reverse the CDR and to heal. When the CDR persists abnormally, whole body metabolism and the gut microbiome are disturbed, the collective performance of multiple organ systems is impaired, behavior is changed, and chronic disease results. Metabolic memory of past stress encounters is stored in the form of altered mitochondrial and cellular macromolecule content, resulting in an increase in functional reserve capacity through a process known as mitocellular hormesis. The systemic form of the CDR, and its magnified form, the purinergic life-threat response (PLTR), are under direct control by ancient pathways in the brain that are ultimately coordinated by centers in the brainstem. Chemosensory integration of whole body metabolism occurs in the brainstem and is a prerequisite for normal brain, motor, vestibular, sensory, social, and speech development. An understanding of the CDR permits us to reframe old concepts of pathogenesis for a broad array of chronic, developmental

  11. Nonstructural leaf carbohydrates dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism

    Science.gov (United States)

    Adams, Henry D.; Germino, Matthew J.; Breshears, David D.; Barron-Gafford, Greg A.; Guardiola-Claramonte, Maite; Zou, Chris B.; Huxman, Travis E.

    2013-01-01

    * Vegetation change is expected with global climate change, potentially altering ecosystem function and climate feedbacks. However, causes of plant mortality, which are central to vegetation change, are understudied, and physiological mechanisms remain unclear, particularly the roles of carbon metabolism and xylem function.

  12. Frozen in Time? Microbial strategies for survival and carbon metabolism over geologic time in a Pleistocene permafrost chronosequence

    Science.gov (United States)

    Mackelprang, R.; Douglas, T. A.; Waldrop, M. P.

    2014-12-01

    Permafrost soils have received tremendous interest due to their importance as a global carbon store with the potential to be thawed over the coming centuries. Instead of being 'frozen in time,' permafrost contains active microbes. Most metagenomic studies have focused on Holocene aged permafrost. Here, we target Pleistocene aged ice and carbon rich permafrost (Yedoma), which can differ in carbon content and stage of decay. Our aim was to understand how microbes in the permafrost transform organic matter over geologic time and to identify physiological and biochemical adaptations that enable long-term survival. We used next-generation sequencing to characterize microbial communities along a permafrost age gradient. Samples were collected from the Cold Regions Research and Engineering Laboratory (CRREL) Permafrost Tunnel near Fox, AK, which penetrates a hillside providing access to permafrost ranging in age from 12 to 40 kyr. DNA was extracted directly from unthawed samples. 16S rRNA amplicon (16S) and shotgun metagenome sequencing revealed significant age-driven differences. First, microbial diversity declines with permafrost age, likely due to long-term exposure to environmental stresses and a reduction in metabolic resources. Second, we observed taxonomic differences among ages, with an increasing abundance of Firmicutes (endospore-formers) in older samples, suggesting that dormancy is a common survival strategy in older permafrost. Ordination of 16S and metagenome data revealed age-based clustering. Genes differing significantly between age categories included those involved in lipopolysaccharide assembly, cold-response, and carbon processing. These data point to the physiological adaptations to long-term frozen conditions and to the metabolic processes utilized in ancient permafrost. In fact, a gene common in older samples is involved in cadaverine production, which could potentially explain the putrefied smell of Pleistocene aged permafrost. Coupled with soil

  13. An alternate metabolic hypothesis for a binary mixture of trichloroethylene and carbon tetrachloride: application of physiologically based pharmacokinetic (PBPK) modeling in rats.

    Science.gov (United States)

    Carbon tetrachloride (CC4) and trichloroethylene (TCE) are hepatotoxic volatile organic compounds (VOCs) and environmental contaminants. Previous physiologically based pharmacokinetic (PBPK) models describe the kinetics ofindividual chemical disposition and metabolic clearance fo...

  14. Possible role for abscisic acid in regulation of photosynthetic and photorespiratory carbon metabolism in barley leaves

    International Nuclear Information System (INIS)

    Popova, L.P.; Tsonev, T.D.; Vaklinova, S.G.

    1987-01-01

    The influence of abscisic acid (ABA) on carbon metabolism, rate of photorespiration, and the activity of the photorespiratory enzymes ribulose bisphosphate oxygenase and glycolate oxidase in 7-day-old barley seedlings (Hordeum vulgare L. var. Alfa) was investigated. Plants treated with ABA had enhanced incorporation of labeled carbon from 14 CO 2 into glycolic acid, glycine, and serine, while 14 C incorporation into 3-phosphoglyceric acid and sugarphosphate esters was depressed. Parallel with this effect, treated plants showed a rise in activity of RuBP oxygenase and glycolic acid oxidase. The rate of photorespiration was increased twofold by ABA treatment at IO -6 molar while the CO 2 -compensation point increased 46% and stomatal resistance increased more than twofold over control plants

  15. System level analysis of cacao seed ripening reveals a sequential interplay of primary and secondary metabolism leading to polyphenol accumulation and preparation of stress resistance.

    Science.gov (United States)

    Wang, Lei; Nägele, Thomas; Doerfler, Hannes; Fragner, Lena; Chaturvedi, Palak; Nukarinen, Ella; Bellaire, Anke; Huber, Werner; Weiszmann, Jakob; Engelmeier, Doris; Ramsak, Ziva; Gruden, Kristina; Weckwerth, Wolfram

    2016-08-01

    Theobroma cacao and its popular product, chocolate, are attracting attention due to potential health benefits including antioxidative effects by polyphenols, anti-depressant effects by high serotonin levels, inhibition of platelet aggregation and prevention of obesity-dependent insulin resistance. The development of cacao seeds during fruit ripening is the most crucial process for the accumulation of these compounds. In this study, we analyzed the primary and the secondary metabolome as well as the proteome during Theobroma cacao cv. Forastero seed development by applying an integrative extraction protocol. The combination of multivariate statistics and mathematical modelling revealed a complex consecutive coordination of primary and secondary metabolism and corresponding pathways. Tricarboxylic acid (TCA) cycle and aromatic amino acid metabolism dominated during the early developmental stages (stages 1 and 2; cell division and expansion phase). This was accompanied with a significant shift of proteins from phenylpropanoid metabolism to flavonoid biosynthesis. At stage 3 (reserve accumulation phase), metabolism of sucrose switched from hydrolysis into raffinose synthesis. Lipids as well as proteins involved in lipid metabolism increased whereas amino acids and N-phenylpropenoyl amino acids decreased. Purine alkaloids, polyphenols, and raffinose as well as proteins involved in abiotic and biotic stress accumulated at stage 4 (maturation phase) endowing cacao seeds the characteristic astringent taste and resistance to stress. In summary, metabolic key points of cacao seed development comprise the sequential coordination of primary metabolites, phenylpropanoid, N-phenylpropenoyl amino acid, serotonin, lipid and polyphenol metabolism thereby covering the major compound classes involved in cacao aroma and health benefits. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  16. Preliminary examination of metabolic syndrome response to motivational interviewing for weight loss as compared to an attentional control and usual care in primary care for individuals with and without binge-eating disorder.

    Science.gov (United States)

    Barnes, Rachel D; Barber, Jessica A

    2017-08-01

    Motivational interviewing (MI) treatment for weight loss is being studied in primary care. The effect of such interventions on metabolic syndrome or binge eating disorder (BED), both highly related to excess weight, has not been examined in primary care. This study conducted secondary analyses from a randomized controlled trial to test the impact of MI for weight loss in primary care on metabolic syndrome. 74 adult participants with overweight/obesity recruited through primary care were randomized to 12weeks of either MI, an attentional control, or usual care. Participants completed measurements for metabolic syndrome at pre- and post-treatment. There were no statistically significant differences in metabolic syndrome rates at pre-, X 2 (2)=0.16, p=0.921, or post-, X 2 (2)=0.852, p=0.653 treatment. The rates in metabolic syndrome, however, decreased for MI (10.2%) and attentional control (13.8%) participants, but not for usual care. At baseline, metabolic syndrome rates did not differ significantly between participants with BED or without BED across treatments. At post-treatment, participants with BED were significantly more likely to meet criteria for metabolic syndrome than participants without BED, X 2 (1)=5.145, p=0.023, phi=0.273. Across treatments, metabolic syndrome remitted for almost a quarter of participants without BED (23.1%) but for 0% of those with BED. These preliminary results are based on a small sample and should be interpreted with caution, but they are the first to suggest that relatively low intensity MI weight loss interventions in primary care may decrease metabolic syndrome rates but not for individuals with BED. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Metabolism of carbon-14 labelled l-tryptophan, l-kynerenine and hydroxy-l-kynerenine in miners with scleroderma

    International Nuclear Information System (INIS)

    Hankes, L.V.; De Bruin, E.; Jansen, C.R.; Voster, L.; Schmaeler, M.

    1977-01-01

    Six South African white miners were studied with the 2-g l-tryptophan load test and tracer doses of L-tryptophan-7a-carbon-14, L-kynurenine-keto-carbon-14 and hydroxy-L-kynerenine-keto-carbon-14. The breath 14 CO 2 and 14 urinary metabolites were measured. When they were compared with a previous study of American women with scleroderma, similar 14 CO 2 and tryptophan metabolite excretion patterns were observed in the data from the miners. The labelled quinolinic acid excretion was more significantly elevated in the South African miners' urine than in the urine of the American women. The data from both studies suggest that some patients with scleroderma have an altered step in the tryptophan metabolic pathway after hydroxy-anthranilic acid. What relationship exists between the induction of pulmonary silicosis and the subsequent development of scleroderma, requires additional human studies

  18. Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering.

    Science.gov (United States)

    Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk

    2014-10-01

    Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. © 2014 American Society of Plant Biologists. All rights reserved.

  19. Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products

    Directory of Open Access Journals (Sweden)

    Volker Fritz Wendisch

    2012-10-01

    Full Text Available Corynebacterium glutamicum is well known as the amino acid-producing workhorse of fermentation industry, being used for multi-million-ton scale production of glutamate and lysine for more than 60 years. However, it is only recently that extensive research has focused on engineering it beyond the scope of amino acids. Meanwhile, a variety of corynebacterial strains allows access to alternative carbon sources and/or allows production of a wide range of industrially relevant compounds. Some of these efforts set new standards in terms of titers and productivities achieved whereas others represent a proof-of-principle. These achievements manifest the position of C. glutamicum as an important industrial microorganism with capabilities far beyond the traditional amino acid production. In this review we focus on the state of the art of metabolic engineering of C. glutamicum for utilization of alternative carbon sources, (e.g. coming from wastes and unprocessed sources, and construction of C. glutamicum strains for production of new products such as diamines, organic acids and alcohols.

  20. Aerial and underwater carbon metabolism of a Zostera noltii seagrass bed in the Banc d'Arguin, Mauritania

    NARCIS (Netherlands)

    Clavier, Jacques; Chauvaud, Laurent; Carlier, Antoine; Amice, Erwan; van der Geest, Matthijs; Labrosse, Pierre; Diagne, Ahmed; Hilya, Christian

    Community respiration and primary production were measured in a dense intertidal Zostera noltii bed on the Banc d’Arguin, Mauritania (West Africa) under aerial and submerged conditions. Metabolism was studied in situ in dark and transparent benthic chambers. CO2 fluxes in the air were measured over

  1. Hydrogen production and metabolic flux analysis of metabolically engineered Escherichia coli strains

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seohyoung; Seol, Eunhee; Park, Sunghoon [Department of Chemical and Biochemical Engineering, Pusan National University, Busan 609-735 (Korea); Oh, You-Kwan [Bioenergy Research Center, Korea Institute of Energy Research, Daejeon 305-543 (Korea); Wang, G.Y. [Department of Oceanography, University of Hawaii at Manoa Honolulu, HI 96822 (United States)

    2009-09-15

    Escherichia coli can produce H{sub 2} from glucose via formate hydrogen lyase (FHL). In order to improve the H{sub 2} production rate and yield, metabolically engineered E. coli strains, which included pathway alterations in their H{sub 2} production and central carbon metabolism, were developed and characterized by batch experiments and metabolic flux analysis. Deletion of hycA, a negative regulator for FHL, resulted in twofold increase of FHL activity. Deletion of two uptake hydrogenases (1 (hya) and hydrogenase 2 (hyb)) increased H{sub 2} production yield from 1.20 mol/mol glucose to 1.48 mol/mol glucose. Deletion of lactate dehydrogenase (ldhA) and fumarate reductase (frdAB) further improved the H{sub 2} yield; 1.80 mol/mol glucose under high H{sub 2} pressure or 2.11 mol/mol glucose under reduced H{sub 2} pressure. Several batch experiments at varying concentrations of glucose (2.5-10 g/L) and yeast extract (0.3 or 3.0 g/L) were conducted for the strain containing all these genetic alternations, and their carbon and energy balances were analyzed. The metabolic flux analysis revealed that deletion of ldhA and frdAB directed most of the carbons from glucose to the glycolytic pathway leading to H{sub 2} production by FHL, not to the pentose phosphate pathway. (author)

  2. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism

    Directory of Open Access Journals (Sweden)

    Laura ePaixão

    2015-10-01

    Full Text Available Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonised by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonisation to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc on this response at the transcriptional, physiological and metabolic levels. Galactose (Gal, N-acetylglucosamine (GlcNAc and mannose (Man affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo 13C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s was readily consumed and elicited a metabolic shift towards a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome. In central carbon metabolism (most represented category, Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence.

  3. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism.

    Science.gov (United States)

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G; Kuipers, Oscar P; Vinga, Susana; Neves, Ana R

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo (13)C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence.

  4. Inter-relationships between single carbon units' metabolism and resting energy expenditure in weight-losing patients with small cell lung cancer. Effects of methionine supply and chemotherapy

    DEFF Research Database (Denmark)

    Sengeløv, H; Hansen, O P; Simonsen, L

    1994-01-01

    The one-carbon unit metabolism was investigated in 8 weight-losing patients with small cell carcinoma of the lung (SCLC). At diagnosis, 6 of the 8 patients had elevated formiminoglutamic acid (FIGLU) excretion after a histidine load, suggesting a lack of one-carbon units. In accordance...

  5. CLINICAL AND IMMUNO-METABOLIC PECULIARITIES OF THE PRIMARY ATTACK OF ACUTE LYMPHOBLASTIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    Olga Valentinovna Smirnova

    2017-12-01

    Full Text Available The authors studied the characteristics of the clinical condition, cellular, humoral immunity and metabolism of lymphocytes in patients with acute lymphoblastic leukemia at the onset of the disease, with the primary attack. The disease usually begins with the combined symptoms appearance in the clinical picture. Fever, fatigue, decreased performance, dizziness, the accompanying infection process were recorded in most patients. Reduction of T-lymphocytes and a decrease in the ratio of CD4+ to CD8+ contributed to the debut appearance of ALL and T-cell immunodeficiency development. Changed metabolomics of energy, plastic processes in lymphocytes. The authors proposed an immunometabolic own concept of the disease.

  6. Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC) fluxes in seagrass populations.

    Science.gov (United States)

    Egea, Luis G; Jiménez-Ramos, Rocío; Hernández, Ignacio; Bouma, Tjeerd J; Brun, Fernando G

    2018-01-01

    Global change has been acknowledged as one of the main threats to the biosphere and its provision of ecosystem services, especially in marine ecosystems. Seagrasses play a critical ecological role in coastal ecosystems, but their responses to ocean acidification (OA) and climate change are not well understood. There have been previous studies focused on the effects of OA, but the outcome of interactions with co-factors predicted to alter during climate change still needs to be addressed. For example, the impact of higher CO2 and different hydrodynamic regimes on seagrass performance remains unknown. We studied the effects of OA under different current velocities on productivity of the seagrass Zostera noltei, using changes in dissolved oxygen as a proxy for the seagrass carbon metabolism, and release of dissolved organic carbon (DOC) in a four-week experiment using an open-water outdoor mesocosm. Under current pH conditions, increasing current velocity had a positive effect on productivity, but this depended on shoot density. However, this positive effect of current velocity disappeared under OA conditions. OA conditions led to a significant increase in gross production rate and respiration, suggesting that Z. noltei is carbon-limited under the current inorganic carbon concentration of seawater. In addition, an increase in non-structural carbohydrates was found, which may lead to better growing conditions and higher resilience in seagrasses subjected to environmental stress. Regarding DOC flux, a direct and positive relationship was found between current velocity and DOC release, both under current pH and OA conditions. We conclude that OA and high current velocity may lead to favourable growth scenarios for Z. noltei populations, increasing their productivity, non-structural carbohydrate concentrations and DOC release. Our results add new dimensions to predictions on how seagrass ecosystems will respond to climate change, with important implications for the

  7. Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC fluxes in seagrass populations.

    Directory of Open Access Journals (Sweden)

    Luis G Egea

    Full Text Available Global change has been acknowledged as one of the main threats to the biosphere and its provision of ecosystem services, especially in marine ecosystems. Seagrasses play a critical ecological role in coastal ecosystems, but their responses to ocean acidification (OA and climate change are not well understood. There have been previous studies focused on the effects of OA, but the outcome of interactions with co-factors predicted to alter during climate change still needs to be addressed. For example, the impact of higher CO2 and different hydrodynamic regimes on seagrass performance remains unknown. We studied the effects of OA under different current velocities on productivity of the seagrass Zostera noltei, using changes in dissolved oxygen as a proxy for the seagrass carbon metabolism, and release of dissolved organic carbon (DOC in a four-week experiment using an open-water outdoor mesocosm. Under current pH conditions, increasing current velocity had a positive effect on productivity, but this depended on shoot density. However, this positive effect of current velocity disappeared under OA conditions. OA conditions led to a significant increase in gross production rate and respiration, suggesting that Z. noltei is carbon-limited under the current inorganic carbon concentration of seawater. In addition, an increase in non-structural carbohydrates was found, which may lead to better growing conditions and higher resilience in seagrasses subjected to environmental stress. Regarding DOC flux, a direct and positive relationship was found between current velocity and DOC release, both under current pH and OA conditions. We conclude that OA and high current velocity may lead to favourable growth scenarios for Z. noltei populations, increasing their productivity, non-structural carbohydrate concentrations and DOC release. Our results add new dimensions to predictions on how seagrass ecosystems will respond to climate change, with important

  8. Inter-relationships between single carbon units' metabolism and resting energy expenditure in weight-losing patients with small cell lung cancer. Effects of methionine supply and chemotherapy

    DEFF Research Database (Denmark)

    Sengeløv, H; Hansen, O P; Simonsen, L

    1994-01-01

    The one-carbon unit metabolism was investigated in 8 weight-losing patients with small cell carcinoma of the lung (SCLC). At diagnosis, 6 of the 8 patients had elevated formiminoglutamic acid (FIGLU) excretion after a histidine load, suggesting a lack of one-carbon units. In accordance, a signifi...

  9. The coupling of cerebral blood flow and oxygen metabolism with brain activation is similar for simple and complex stimuli in human primary visual cortex.

    Science.gov (United States)

    Griffeth, Valerie E M; Simon, Aaron B; Buxton, Richard B

    2015-01-01

    Quantitative functional MRI (fMRI) experiments to measure blood flow and oxygen metabolism coupling in the brain typically rely on simple repetitive stimuli. Here we compared such stimuli with a more naturalistic stimulus. Previous work on the primary visual cortex showed that direct attentional modulation evokes a blood flow (CBF) response with a relatively large oxygen metabolism (CMRO2) response in comparison to an unattended stimulus, which evokes a much smaller metabolic response relative to the flow response. We hypothesized that a similar effect would be associated with a more engaging stimulus, and tested this by measuring the primary human visual cortex response to two contrast levels of a radial flickering checkerboard in comparison to the response to free viewing of brief movie clips. We did not find a significant difference in the blood flow-metabolism coupling (n=%ΔCBF/%ΔCMRO2) between the movie stimulus and the flickering checkerboards employing two different analysis methods: a standard analysis using the Davis model and a new analysis using a heuristic model dependent only on measured quantities. This finding suggests that in the primary visual cortex a naturalistic stimulus (in comparison to a simple repetitive stimulus) is either not sufficient to provoke a change in flow-metabolism coupling by attentional modulation as hypothesized, that the experimental design disrupted the cognitive processes underlying the response to a more natural stimulus, or that the technique used is not sensitive enough to detect a small difference. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Clinical utility of polymorphisms in one-carbon metabolism for breast cancer risk prediction

    Directory of Open Access Journals (Sweden)

    Shaik Mohammad Naushad

    2011-01-01

    Full Text Available This study addresses the issues in translating the laboratory derived data obtained during discovery phase of research to a clinical setting using a breast cancer model. Laboratory-based risk assessment indi-cated that a family history of breast cancer, reduced folate carrier 1 (RFC1 G80A, thymidylate synthase (TYMS 5’-UTR 28bp tandem repeat, methylene tetrahydrofolate reductase (MTHFR C677T and catecholamine-O-methyl transferase (COMT genetic polymorphisms in one-carbon metabolic pathway increase the risk for breast cancer. Glutamate carboxypeptidase II (GCPII C1561T and cytosolic serine hydroxymethyl transferase (cSHMT C1420T polymorphisms were found to decrease breast cancer risk. In order to test the clinical validity of this information in the risk prediction of breast cancer, data was stratified based on number of protective alleles into four categories and in each category sensitivity and 1-specificity values were obtained based on the distribution of number of risk alleles in cases and controls. Receiver operating characteristic (ROC curves were plotted and the area under ROC curve (C was used as a measure of discriminatory ability between cases and controls. In subjects without any protective allele, aberrations in one-carbon metabolism showed perfect prediction (C=0.93 while the predictability was lost in subjects with one protective allele (C=0.60. However, predictability increased steadily with increasing number of protective alleles (C=0.63 for 2 protective alleles and C=0.71 for 3 protective alleles. The cut-off point for discrimination was >4 alleles in all predictable combinations. Models of this kind can serve as valuable tools in translational re-search, especially in identifying high-risk individuals and reducing the disease risk either by life style modification or by medical intervention.

  11. Effect of Temperature on Precipitation Rate of Calcium Carbonate Produced through Microbial Metabolic Process of Bio Materials

    Directory of Open Access Journals (Sweden)

    Prima Yane Putri

    2016-09-01

    Full Text Available Concrete is the most widely used construction material in civil engineering. But plain concrete is a brittle material and has little resistance to cracking. The cracking in concrete promotes deterioration such as the corrosion of reinforcing rebar, therefore, repair in filling the crack is often carried out. Recently, repair methods using bio-based materials associated with microbial metabolic processes leading to precipitation of calcium carbonate have been intensively studied. In this study, influencing factors on the precipitation rate depending on the constituents of bio-based material comprising yeast, glucose and calcium acetate mixed in tris buffer solution was examined for improving the rate of initial reactions. In addition, effect of temperature change on the amount of calcium carbonate precipitation was also investigated. The precipitates were identified by X-ray diffraction. It was shown that the increase of temperature lead to a change on calcium carbonate precipitation and caused the pH decrease under 7.0.

  12. Systematically variable planktonic carbon metabolism along a land-to-lake gradient in a Great Lakes coastal zone.

    Science.gov (United States)

    Weinke, Anthony D; Kendall, Scott T; Kroll, Daniel J; Strickler, Eric A; Weinert, Maggie E; Holcomb, Thomas M; Defore, Angela A; Dila, Deborah K; Snider, Michael J; Gereaux, Leon C; Biddanda, Bopaiah A

    2014-11-01

    During the summers of 2002-2013, we measured rates of carbon metabolism in surface waters of six sites across a land-to-lake gradient from the upstream end of drowned river-mouth Muskegon Lake (ML) (freshwater estuary) to 19 km offshore in Lake Michigan (LM) (a Great Lake). Despite considerable inter-year variability, the average rates of gross production (GP), respiration (R) and net production (NP) across ML (604 ± 58, 222 ± 22 and 381 ± 52 µg C L -1 day -1 , respectively) decreased steeply in the furthest offshore LM site (22 ± 3, 55 ± 17 and -33 ± 15 µg C L -1 day -1 , respectively). Along this land-to-lake gradient, GP decreased by 96 ± 1%, whereas R only decreased by 75 ± 9%, variably influencing the carbon balance along this coastal zone. All ML sites were consistently net autotrophic (mean GP:R = 2.7), while the furthest offshore LM site was net heterotrophic (mean GP:R = 0.4). Our study suggests that pelagic waters of this Great Lakes coastal estuary are net carbon sinks that transition into net carbon sources offshore. Reactive and dynamic estuarine coastal zones everywhere may contribute similarly to regional and global carbon cycles.

  13. Metabolic engineering of cyanobacteria for the synthesis of commodity products

    NARCIS (Netherlands)

    Angermayr, S.A.; Gorchs Rovira, A.; Hellingwerf, K.J.

    2015-01-01

    Through metabolic engineering cyanobacteria can be employed in biotechnology. Combining the capacity for oxygenic photosynthesis and carbon fixation with an engineered metabolic pathway allows carbon-based product formation from CO2, light, and water directly. Such cyanobacterial 'cell factories'

  14. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants.

    Science.gov (United States)

    Vigani, Gianpiero; Bashir, Khurram; Ishimaru, Yasuhiro; Lehmann, Martin; Casiraghi, Fabio Marco; Nakanishi, Hiromi; Seki, Motoaki; Geigenberger, Peter; Zocchi, Graziano; Nishizawa, Naoko K

    2016-03-01

    Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Natural selection drove metabolic specialization of the chromatophore in Paulinella chromatophora.

    Science.gov (United States)

    Valadez-Cano, Cecilio; Olivares-Hernández, Roberto; Resendis-Antonio, Osbaldo; DeLuna, Alexander; Delaye, Luis

    2017-04-14

    Genome degradation of host-restricted mutualistic endosymbionts has been attributed to inactivating mutations and genetic drift while genes coding for host-relevant functions are conserved by purifying selection. Unlike their free-living relatives, the metabolism of mutualistic endosymbionts and endosymbiont-originated organelles is specialized in the production of metabolites which are released to the host. This specialization suggests that natural selection crafted these metabolic adaptations. In this work, we analyzed the evolution of the metabolism of the chromatophore of Paulinella chromatophora by in silico modeling. We asked whether genome reduction is driven by metabolic engineering strategies resulted from the interaction with the host. As its widely known, the loss of enzyme coding genes leads to metabolic network restructuring sometimes improving the production rates. In this case, the production rate of reduced-carbon in the metabolism of the chromatophore. We reconstructed the metabolic networks of the chromatophore of P. chromatophora CCAC 0185 and a close free-living relative, the cyanobacterium Synechococcus sp. WH 5701. We found that the evolution of free-living to host-restricted lifestyle rendered a fragile metabolic network where >80% of genes in the chromatophore are essential for metabolic functionality. Despite the lack of experimental information, the metabolic reconstruction of the chromatophore suggests that the host provides several metabolites to the endosymbiont. By using these metabolites as intracellular conditions, in silico simulations of genome evolution by gene lose recover with 77% accuracy the actual metabolic gene content of the chromatophore. Also, the metabolic model of the chromatophore allowed us to predict by flux balance analysis a maximum rate of reduced-carbon released by the endosymbiont to the host. By inspecting the central metabolism of the chromatophore and the free-living cyanobacteria we found that by

  16. Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants

    Directory of Open Access Journals (Sweden)

    Greg C. Vanlerberghe

    2013-03-01

    Full Text Available Alternative oxidase (AOX is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as “signaling organelles”, able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. This review also examines abiotic and biotic stresses in which AOX respiration has been critically evaluated, and considers the overall role of AOX in growth and stress tolerance.

  17. Effects of photoperiodism on the metabolism of carbon compounds and the migration of these products in tobacco

    International Nuclear Information System (INIS)

    Farineau, Jack

    1961-01-01

    This research thesis addressed the influence of photoperiodism on migrations. The author more particularly studied migrations of carbon-compound metabolism products by using a tobacco leaf in presence of "1"4CO_2, and which thus contained a high quantity of radioactive compounds. Some experiments were performed on short durations (few hours), and others on longer durations (15 days). As far as the first ones were concerned, the author studied the content of the petiole and of the terminal bud, and the first reactions of integration of carbon 14 compounds of the sap in the leaf. As far as the second type of experiments is concerned, the author measured the quantities of radioactive products migrating towards the terminal bud [fr

  18. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation

    Directory of Open Access Journals (Sweden)

    Lovley Derek R

    2010-11-01

    Full Text Available Abstract Background Geobacter sulfurreducens is capable of coupling the complete oxidation of organic compounds to iron reduction. The metabolic response of G. sulfurreducens towards variations in electron donors (acetate, hydrogen and acceptors (Fe(III, fumarate was investigated via 13C-based metabolic flux analysis. We examined the 13C-labeling patterns of proteinogenic amino acids obtained from G. sulfurreducens cultured with 13C-acetate. Results Using 13C-based metabolic flux analysis, we observed that donor and acceptor variations gave rise to differences in gluconeogenetic initiation, tricarboxylic acid cycle activity, and amino acid biosynthesis pathways. Culturing G. sulfurreducens cells with Fe(III as the electron acceptor and acetate as the electron donor resulted in pyruvate as the primary carbon source for gluconeogenesis. When fumarate was provided as the electron acceptor and acetate as the electron donor, the flux analysis suggested that fumarate served as both an electron acceptor and, in conjunction with acetate, a carbon source. Growth on fumarate and acetate resulted in the initiation of gluconeogenesis by phosphoenolpyruvate carboxykinase and a slightly elevated flux through the oxidative tricarboxylic acid cycle as compared to growth with Fe(III as the electron acceptor. In addition, the direction of net flux between acetyl-CoA and pyruvate was reversed during growth on fumarate relative to Fe(III, while growth in the presence of Fe(III and acetate which provided hydrogen as an electron donor, resulted in decreased flux through the tricarboxylic acid cycle. Conclusions We gained detailed insight into the metabolism of G. sulfurreducens cells under various electron donor/acceptor conditions using 13C-based metabolic flux analysis. Our results can be used for the development of G. sulfurreducens as a chassis for a variety of applications including bioremediation and renewable biofuel production.

  19. Influence of ozone pollution and climate variability on net primary productivity and carbon storage in China's grassland ecosystems from 1961 to 2000

    International Nuclear Information System (INIS)

    Ren Wei; Tian Hanqin; Chen Guangsheng; Liu Mingliang; Zhang Chi; Chappelka, Arthur H.; Pan Shufen

    2007-01-01

    Our simulations with the Dynamic Land Ecosystem Model (DLEM) indicate that the combined effect of ozone, climate, carbon dioxide and land use have caused China's grasslands to act as a weak carbon sink during 1961-2000. This combined effect on national grassland net primary productivity (NPP) and carbon storage was small, but changes in annual NPP and total carbon storage across China's grasslands showed substantial spatial variation, with the maximum total carbon uptake reduction of more than 400 g m -2 in some places of northeastern China. The grasslands in the central northeastern China were more sensitive and vulnerable to elevated ozone pollution than other regions. The combined effect excluding ozone could potentially lead to an increase of 14 Tg C in annual NPP and 0.11 Pg C in total carbon storage for the same time period. This implies that improvement in air quality could significantly increase productivity and carbon storage in China's grassland ecosystems. - Net primary productivity and carbon storage across China's grassland in the late half of the 20th century have been assessed by using the Dynamic Land Ecosystem Model

  20. Urban metabolism: A review of research methodologies

    International Nuclear Information System (INIS)

    Zhang, Yan

    2013-01-01

    Urban metabolism analysis has become an important tool for the study of urban ecosystems. The problems of large metabolic throughput, low metabolic efficiency, and disordered metabolic processes are a major cause of unhealthy urban systems. In this paper, I summarize the international research on urban metabolism, and describe the progress that has been made in terms of research methodologies. I also review the methods used in accounting for and evaluating material and energy flows in urban metabolic processes, simulation of these flows using a network model, and practical applications of these methods. Based on this review of the literature, I propose directions for future research, and particularly the need to study the urban carbon metabolism because of the modern context of global climate change. Moreover, I recommend more research on the optimal regulation of urban metabolic systems. Highlights: •Urban metabolic processes can be analyzed by regarding cities as superorganisms. •Urban metabolism methods include accounting, assessment, modeling, and regulation. •Research methodologies have improved greatly since this field began in 1965. •Future research should focus on carbon metabolism and optimal regulation. -- The author reviews research progress in the field of urban metabolism, and based on her literature review, proposes directions for future research

  1. How much primary coastal temperate rain forest should society retain? Carbon uptake, recreation and other values

    NARCIS (Netherlands)

    Kooten, van G.C.; Bulte, E.H.

    2000-01-01

    In this study, average and marginal approaches for determining optimal preservation of primary forests on British Columbia's coast are compared. When the market values from timber, mushrooms, etc., and nonmarket benefits (e.g., carbon sink, preservation values) of preserving old-growth forests are

  2. Inorganic Carbon and Oxygen Dynamics in a Marsh-dominated Estuary

    Science.gov (United States)

    Wang, S. R.; Di Iorio, D.; Cai, W. J.; Hopkinson, C.

    2017-12-01

    A free-water mass balance-based study was conducted to address the rate of metabolism and net carbon exchange for the tidal wetland and estuarine portion of the coastal ocean and the uncertainties associated with this approach were assessed. Open water diurnal O2 and dissolved inorganic carbon (DIC) were measured seasonally in a salt marsh-estuary in Georgia, U.S.A. with a focus on the marsh-estuary linkage associated with tidal flooding. We observed that the overall estuarine system was a net source of CO2 to the atmosphere and coastal ocean and a net sink for oceanic and atmospheric O2. Rates of metabolism were extremely high, with respiration (43 mol m-2 yr-1) greatly exceeding gross primary production (28 mol m-2 yr-1), such that the overall system was net heterotrophic. Metabolism measured with DIC were higher than with O2, which we attribute to high rates of anaerobic respiration and reduced sulfur storage in salt marsh sediments, and we assume substantial levels of anoxygenic photosynthesis. We found gas exchange from a flooded marsh is substantial, accounting for about 28% of total O2 and CO2 air-water exchange. A significant percentage of the overall estuarine aquatic metabolism is attributable to metabolism of marsh organisms during inundation. Our study suggests not rely on oceanographic stoichiometry to convert from O2to C based measurements when constructing C balances for the coastal ocean. We also suggest eddy covariance measurements of salt marsh net ecosystem exchange underestimate net ecosystem production as they do not account for lateral DIC exchange associated with marsh tidal inundation. With the increase of global temperature and sea level rise, salt marshes are likely to export more inorganic carbon to the atmosphere and the coastal ocean due to the decrease of solubility, the increase of aquatic and benthic metabolic activities and the longer marsh inundation.

  3. Seasonal and interannual patterns in primary production, respiration and net ecosystem metabolism in three estuaries in the northeast Gulf of Mexico

    Science.gov (United States)

    Measurements of primary production and respiration provide fundamental information about the trophic status of aquatic ecosystems, yet such measurements are logistically difficult and expensive to sustain as part of long-term monitoring programs. However, ecosystem metabolism par...

  4. Accumulation of Carotenoids and Metabolic Profiling in Different Cultivars of Tagetes Flowers

    Directory of Open Access Journals (Sweden)

    Yun Ji Park

    2017-02-01

    Full Text Available Species of Tagetes, which belong to the family Asteraceae show different characteristics including, bloom size, shape, and color; plant size; and leaf shape. In this study, we determined the differences in primary metabolites and carotenoid yields among six cultivars from two Tagetes species, T. erecta and T. patula. In total, we detected seven carotenoids in the examined cultivars: violaxanthin, lutein, zeaxanthin, α-carotene, β-carotene, 9-cis-β-carotene, and 13-cis-β-carotene. In all the cultivars, lutein was the most abundant carotenoid. Furthermore, the contents of each carotenoid in flowers varied depending on the cultivar. Principal component analysis (PCA facilitated metabolic discrimination between Tagetes cultivars, with the exception of Inca Yellow and Discovery Orange. Moreover, PCA and orthogonal projection to latent structure-discriminant analysis (OPLS-DA results provided a clear discrimination between T. erecta and T. patula. Primary metabolites, including xylose, citric acid, valine, glycine, and galactose were the main components facilitating separation of the species. Positive relationships were apparent between carbon-rich metabolites, including those of the TCA cycle and sugar metabolism, and carotenoids.

  5. Modeling the carbon isotope composition of bivalve shells (Invited)

    Science.gov (United States)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., 90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope fractionation

  6. Why devote an entire issue to the topic of how nutrients in one-carbon metabolism play roles in modern medicine?

    Science.gov (United States)

    The vitamins that serve as essential co-factors in one-carbon metabolism-B2, B6, B9 (folate), and B12-have had a long and storied history in the field of medicine over the past two centuries, as have related intermediary metabolites such as methionine, homocysteine, betaine and choline. The megalobl...

  7. Influence of Vitamin B Auxotrophy on Nitrogen Metabolism in Eukaryotic Phytoplankton

    Directory of Open Access Journals (Sweden)

    Erin M Bertrand

    2012-10-01

    Full Text Available While nitrogen availability is known to limit primary production in large parts of the ocean, vitamin starvation amongst eukaryotic phytoplankton is becoming increasingly recognized as an oceanographically relevant phenomenon. Cobalamin (B12 and thiamine (B1 auxotrophy are widespread throughout eukaryotic phytoplankton, with over 50% of cultured isolates requiring B12 and 20% requiring B1. The frequency of vitamin auxotrophy in harmful algal bloom species is even higher. Instances of colimitation between nitrogen and B vitamins have been observed in marine environments, and interactions between these nutrients have been shown to impact phytoplankton species composition. This review evaluates the potential for interactive effects of nitrogen and vitamin B12 and B1 starvation in eukaryotic phytoplankton. B12 plays essential roles in amino acid and one-carbon metabolism, while B1 is important for primary carbohydrate and amino acid metabolism and likely useful as an anti-oxidant. Here we will focus on three potential metabolic interconnections between vitamin, nitrogen and sulfur metabolism that may have ramifications for the role of vitamin and nitrogen scarcities in driving ocean productivity and species composition. These include: (1 B12, B1, and N starvation impacts on osmolyte and antioxidant production, (2 B12 and B1 starvation impacts on polyamine biosynthesis, and (3 influence of B12 and B1 starvation on the diatom urea cycle and amino acid recycling through impacts on the citric acid cycle. We evaluate evidence for these interconnections and identify oceanographic contexts in which each may impact rates of primary production and phytoplankton community composition. Major implications include that B12 and B1 deprivation may impair the ability of phytoplankton to recover from nitrogen starvation and that changes in vitamin and nitrogen availability may synergistically impact harmful algal bloom formation.

  8. Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Nanette R Boyle

    Full Text Available Despite the wealth of knowledge available for C. reinhardtii, the central metabolic fluxes of growth on acetate have not yet been determined. In this study, 13C-metabolic flux analysis (13C-MFA was used to determine and quantify the metabolic pathways of primary metabolism in C. reinhardtii cells grown under heterotrophic conditions with acetate as the sole carbon source. Isotopic labeling patterns of compartment specific biomass derived metabolites were used to calculate the fluxes. It was found that acetate is ligated with coenzyme A in the three subcellular compartments (cytosol, mitochondria and plastid included in the model. Two citrate synthases were found to potentially be involved in acetyl-coA metabolism; one localized in the mitochondria and the other acting outside the mitochondria. Labeling patterns demonstrate that Acetyl-coA synthesized in the plastid is directly incorporated in synthesis of fatty acids. Despite having a complete TCA cycle in the mitochondria, it was also found that a majority of the malate flux is shuttled to the cytosol and plastid where it is converted to oxaloacetate providing reducing equivalents to these compartments. When compared to predictions by flux balance analysis, fluxes measured with 13C-MFA were found to be suboptimal with respect to biomass yield; C. reinhardtii sacrifices biomass yield to produce ATP and reducing equivalents.

  9. Discharge modulates stream metabolism dependence on fine particulate organic carbon in a Mediterranean WWTP-influenced stream

    Science.gov (United States)

    Drummond, J. D.; Bernal, S.; Meredith, W.; Schumer, R.; Martí Roca, E.

    2017-12-01

    Waste water treatment plant (WWTP) effluents constitute point source inputs of fine sediment, nutrients, carbon, and microbes to stream ecosystems. A range of responses to these inputs may be observed in recipient streams, including increases in respiration rates, which augment CO2 emissions to the atmosphere. Yet, little is known about which fractions of organic carbon (OC) contribute the most to stream metabolism in WWTP-influenced streams. Fine particulate OC (POC) represents ca. 40% of the total mass of OC in river networks, and is generally more labile than dissolved OC. Therefore, POC inputs from WWTPs could contribute disproportionately to higher rates of heterotrophic metabolism by stream microbial communities. The aim of this study was to investigate the influence of POC inputs from a WWTP effluent on the metabolism of a Mediterranean stream over a wide range of hydrologic conditions. We hypothesized that POC inputs would have a positive effect on respiration rates, and that the response to POC availability would be larger during low flows when the dilution capacity of the recipient stream is negligible. We focused on the easily resuspended fine sediment near the sediment-water interface (top 3 cm), as this region is a known hot spot for biogeochemical processes. For one year, samples of resuspended sediment were collected bimonthly at 7 sites from 0 to 800 m downstream of the WWTP point source. We measured total POC, organic matter (OM) content (%), and the associated metabolic activity of the resuspended sediment using the resazurin-resorufin smart tracer system as a proxy for aerobic ecosystem respiration. Resuspended sediment showed no difference in total POC over the year, while the OM content increased with decreasing discharge. This result together with the decreasing trend of total POC observed downstream of the point source during autumn after a long dry period, suggests that the WWTP effluent was the main contributor to stream POC. Furthermore

  10. Carbonate system parameters of an algal-dominated reef along west Maui

    Science.gov (United States)

    Prouty, Nancy G.; Yates, Kimberly K.; Smiley, Nathan A.; Gallagher, Christopher; Cheriton, Olivia; Storlazzi, Curt

    2018-01-01

    Constraining coral reef metabolism and carbon chemistry dynamics are fundamental for understanding and predicting reef vulnerability to rising coastal CO2 concentrations and decreasing seawater pH. However, few studies exist along reefs occupying densely inhabited shorelines with known input from land-based sources of pollution. The shallow coral reefs off Kahekili, West Maui, are exposed to nutrient-enriched, low-pH submarine groundwater discharge (SGD) and are particularly vulnerable to the compounding stressors from land-based sources of pollution and lower seawater pH. To constrain the carbonate chemistry system, nutrients and carbonate chemistry were measured along the Kahekili reef flat every 4 h over a 6-d sampling period in March 2016. Abiotic process – primarily SGD fluxes – controlled the carbonate chemistry adjacent to the primary SGD vent site, with nutrient-laden freshwater decreasing pH levels and favoring undersaturated aragonite saturation (Ωarag) conditions. In contrast, diurnal variability in the carbonate chemistry at other sites along the reef flat was driven by reef community metabolism. Superimposed on the diurnal signal was a transition during the second sampling period to a surplus of total alkalinity (TA) and dissolved inorganic carbon (DIC) compared to ocean end-member TA and DIC measurements. A shift from net community production and calcification to net respiration and carbonate dissolution was identified. This transition occurred during a period of increased SGD-driven nutrient loading, lower wave height, and reduced current speeds. This detailed study of carbon chemistry dynamics highlights the need to incorporate local effects of nearshore oceanographic processes into predictions of coral reef vulnerability and resilience.

  11. PRIMARY PREVENTION OF DIABETES MELLITUS: CORRECTION OF EARLY DISORDERS OF GLUCOSE METABOLISM IN CARDIOLOGY PRACTICE

    Directory of Open Access Journals (Sweden)

    M. N. Mamedov

    2015-12-01

    Full Text Available Early glucose metabolism disorders (GMD are of interest in development of effective approaches to prevention of type 2 diabetes mellitus (DM. Data of international clinical trials shows that early GMD are an independent risk factor for cardiovascular disease. The possibilities of GMD prevention and early treatment are discussed. Antihyperglycemic medications classification, their mode of action and efficacy are presented from evidence-based medicine point of view. This data confirms that successful DM primary prevention at early stage of GMD reduces the risk of cardiovascular complications.

  12. GC-MS metabolic profiling of Cabernet Sauvignon and Merlot cultivars during grapevine berry development and network analysis reveals a stage- and cultivar-dependent connectivity of primary metabolites.

    Science.gov (United States)

    Cuadros-Inostroza, Alvaro; Ruíz-Lara, Simón; González, Enrique; Eckardt, Aenne; Willmitzer, Lothar; Peña-Cortés, Hugo

    Information about the total chemical composition of primary metabolites during grape berry development is scarce, as are comparative studies trying to understand to what extent metabolite modifications differ between cultivars during ripening. Thus, correlating the metabolic profiles with the changes occurring in berry development and ripening processes is essential to progress in their comprehension as well in the development of new approaches to improve fruit attributes. Here, the developmental metabolic profiling analysis across six stages from flowering to fully mature berries of two cultivars, Cabernet Sauvignon and Merlot, is reported at metabolite level. Based on a gas chromatography-mass spectrometry untargeted approach, 115 metabolites were identified and relative quantified in both cultivars. Sugars and amino acids levels show an opposite behaviour in both cultivars undergoing a highly coordinated shift of metabolite associated to primary metabolism during the stages involved in growth, development and ripening of berries. The changes are characteristic for each stage, the most pronounced ones occuring at fruit setting and pre-Veraison. They are associated to a reduction of the levels of metabolites present in the earlier corresponding stage, revealing a required catabolic activity of primary metabolites for grape berry developmental process. Network analysis revealed that the network connectivity of primary metabolites is stage- and cultivar-dependent, suggesting differences in metabolism regulation between both cultivars as the maturity process progresses. Furthermore, network analysis may represent an appropriate method to display the association between primary metabolites during berry developmental processes among different grapevine cultivars and for identifying potential biologically relevant metabolites.

  13. Carbon isotopic patterns of amino acids associated with various microbial metabolic pathways and physiological conditions

    Science.gov (United States)

    Wang, P. L.; Hsiao, K. T.; Lin, L. H.

    2017-12-01

    Amino acids represent one of the most important categories of biomolecule. Their abundance and isotopic patterns have been broadly used to address issues related to biochemical processes and elemental cycling in natural environments. Previous studies have shown that various carbon assimilative pathways of microorganisms (e.g. autotrophy, heterotrophy and acetotrophy) could be distinguished by carbon isotopic patterns of amino acids. However, the taxonomic and catabolic coverage are limited in previous examination. This study aims to uncover the carbon isotopic patterns of amino acids for microorganisms remaining uncharacterized but bearing biogeochemical and ecological significance in anoxic environments. To fulfill the purpose, two anaerobic strains were isolated from riverine wetland and mud volcano in Taiwan. One strain is a sulfate reducing bacterium (related to Desulfovibrio marrakechensis), which is capable of utilizing either H2 or lactate, and the other is a methanogen (related to Methanolobus profundi), which grows solely with methyl-group compounds. Carbon isotope analyses of amino acids were performed on cells grown in exponential and stationary phase. The isotopic patterns were similar for all examined cultures, showing successive 13C depletion along synthetic pathways. No significant difference was observed for the methanogen and lactate-utilizing sulfate reducer harvested in exponential and stationary phases. In contrast, the H2-utilizing sulfate reducer harvested in stationary phase depleted and enriched 13C in aspartic acid and glycine, respectively when compared with that harvested in exponential phase. Such variations might infer the change of carbon flux during synthesis of these two amino acids in the reverse TCA cycle. In addition, the discriminant function analysis for all available data from culture studies further attests the capability of using carbon isotope patterns of amino acids in identifying microbial metabolisms.

  14. Pathways of carbon and energy metabolism of the epibiotic community associated with the deep-sea hydrothermal vent shrimp Rimicaris exoculata.

    Science.gov (United States)

    Hügler, Michael; Petersen, Jillian M; Dubilier, Nicole; Imhoff, Johannes F; Sievert, Stefan M

    2011-01-07

    The shrimp Rimicaris exoculata dominates the faunal biomass at many deep-sea hydrothermal vent sites at the Mid-Atlantic Ridge. In its enlarged gill chamber it harbors a specialized epibiotic bacterial community for which a nutritional role has been proposed. We analyzed specimens from the Snake Pit hydrothermal vent field on the Mid-Atlantic Ridge by complementing a 16S rRNA gene survey with the analysis of genes involved in carbon, sulfur and hydrogen metabolism. In addition to Epsilon- and Gammaproteobacteria, the epibiotic community unexpectedly also consists of Deltaproteobacteria of a single phylotype, closely related to the genus Desulfocapsa. The association of these phylogenetic groups with the shrimp was confirmed by fluorescence in situ hybridization. Based on functional gene analyses, we hypothesize that the Gamma- and Epsilonproteobacteria are capable of autotrophic growth by oxidizing reduced sulfur compounds, and that the Deltaproteobacteria are also involved in sulfur metabolism. In addition, the detection of proteobacterial hydrogenases indicates the potential for hydrogen oxidation in these communities. Interestingly, the frequency of these phylotypes in 16S rRNA gene clone libraries from the mouthparts differ from that of the inner lining of the gill chamber, indicating potential functional compartmentalization. Our data show the specific association of autotrophic bacteria with Rimicaris exoculata from the Snake Pit hydrothermal vent field, and suggest that autotrophic carbon fixation is contributing to the productivity of the epibiotic community with the reductive tricarboxylic acid cycle as one important carbon fixation pathway. This has not been considered in previous studies of carbon fixation and stable carbon isotope composition of the shrimp and its epibionts. Furthermore, the co-occurrence of sulfur-oxidizing and sulfur-reducing epibionts raises the possibility that both may be involved in the syntrophic exchange of sulfur compounds

  15. New features on the environmental regulation of metabolism revealed by modeling the cellular proteomic adaptations induced by light, carbon and inorganic nitrogen in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Stéphanie Gérin

    2016-08-01

    Full Text Available Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate and inorganic nitrogen concentrations (nitrate and ammonium in the culture medium. Statistical design of experiments (DOE enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE. Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle and protein metabolism. The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview

  16. Obesity and its cardio-metabolic co-morbidities among adult Nigerians in a primary care clinic of a tertiary hospital in South-Eastern, Nigeria

    Directory of Open Access Journals (Sweden)

    Gabriel Uche Pascal Iloh

    2013-01-01

    Full Text Available Background: Obesity once thought the medical problem of affluent countries now exist in Nigeria and has been described as a time bomb for the future explosion in the frequency of cardio-metabolic diseases. The most deleterious health consequences of obesity are on the cardiovascular system and associated disorder of lipid and glucose homeostasis. Aim: This study was designed to determine the magnitude of obesity and its cardio-metabolic co-morbidities among adult Nigerians in a primary care clinic of a tertiary hospital South-Eastern, Nigeria. Materials and Methods: A cross-sectional study carried out on 2391 adult Nigerians who were assessed for obesity using body mass index (BMI criterion. 206 patients who had BMI ΃30kg/m 2 were screened for cardio-metabolic co-morbidities. The data collected included basic demographic variables, weight, height, blood pressure; fasting plasma glucose and lipid profile. Results: The prevalence of obesity was 8.6%. Grade I obesity (67.5% was the most common pattern; others included grade II obesity (23.3% and grade III obesity (9.2%. Hypertension (42.7% was the most common cardio-metabolic morbidity. Others included low HDL-cholesterol (22.8%, diabetes mellitus (15.1%, high triglyceride (12.6%, high total cholesterol (9.2%, and high LDL-cholesterol (6.8%. Conclusion: Obesity and its cardio-metabolic morbidities exist among the study population. Anthropometric determination of obesity and screening for its associated cardio-metabolic co-morbidities should constitute clinical targets for intervention in primary care clinics.

  17. Anaerobic carbon monoxide metabolism by Pleomorphomonas carboxyditropha sp. nov., a new mesophilic hydrogenogenic carboxydotroph.

    Science.gov (United States)

    Esquivel-Elizondo, Sofia; Maldonado, Juan; Krajmalnik-Brown, Rosa

    2018-06-01

    Carbon monoxide (CO)-metabolism and phenotypic and phylogenetic characterization of a novel anaerobic, mesophilic and hydrogenogenic carboxydotroph are reported. Strain SVCO-16 was isolated from anaerobic sludge and grows autotrophically and mixotrophically with CO. The genes cooS and cooF, coding for a CO dehydrogenase complex, and genes similar to hycE2, encoding a CO-induced hydrogenase, were present in its genome. The isolate produces H2 and CO2 from CO, and acetate and formate from organic substrates. Based on the 16S rRNA sequence, it is an Alphaproteobacterium most closely related to the genus Pleomorphomonas (98.9%-99.2% sequence identity). Comparison with other previously characterized Pleomorphomonas showed that P. diazotrophica and P. oryzae do not metabolize CO, and P. diazotrophica does not grow anaerobically with organic substrates. Average nucleotide identity values between strain SVCO-16 and P. diazotrophica, P. oryzae or P. koreensis were 86.66 ± 0.21%. These values are below the boundary to define species (95%-96%). Digital DNA-DNA hybridization estimates between strain SVCO-16 and reference strains were also below the 70% threshold for species delineation: 29.1%-34.5%. Based on the differences in CO metabolism, genome analyses and cellular fatty acid composition, the isolate should be classified into the genus Pleomorphomonas as a representative of a novel species, Pleomorphomonas carboxyditropha. The type strain of Pleomorphomonas carboxyditropha is SVCO-16T (strain deposit numbers, DSM 106132T and TSD-119T).

  18. [Frequency of the metabolic syndrome among overweight and obese patients in a primary health care facility in northern Mexico].

    Science.gov (United States)

    Zonana-Nacach, Abraham; Castillón-Chapa, Mario Arturo

    2006-01-01

    Assess the frequency of the metabolic syndrome (MS) among overweight and obese subjects attending a primary health care clinic in Tijuana, Baja California, Mexico. Male and female patients over 20 years of age attending a primary health care setting during April-Sept 2004 were selected to participate in the study. Metabolic syndrome was defined using the Adult Treatment Panel III criteria (NCEP III). Three-hundred twenty one patients with a mean age 47.9 years were assessed. The MS frequency was 44% for those patients without previous history of diabetes mellitus or hypertension (n = 281). The MS was present in 30% and 53% of overweight and obese patients respectively. Being an older male who had not been born in Baja California State were significantly associated with the presence of MS. The frequency of MS in a selected group of patients was common and higher than the national prevalence. The high frequency of MS in our study could be associated with a high prevalence of diabetes and obesity in the northwest population of Mexico.

  19. Effect of metabolic and respiratory acidosis on intracellular calcium in osteoblasts.

    Science.gov (United States)

    Frick, Kevin K; Bushinsky, David A

    2010-08-01

    In vivo, metabolic acidosis {decreased pH from decreased bicarbonate concentration ([HCO(3)(-)])} increases urine calcium (Ca) without increased intestinal Ca absorption, resulting in a loss of bone Ca. Conversely, respiratory acidosis [decreased pH from increased partial pressure of carbon dioxide (Pco(2))] does not appreciably alter Ca homeostasis. In cultured bone, chronic metabolic acidosis (Met) significantly increases cell-mediated net Ca efflux while isohydric respiratory acidosis (Resp) does not. The proton receptor, OGR1, appears critical for cell-mediated, metabolic acid-induced bone resorption. Perfusion of primary bone cells or OGR1-transfected Chinese hamster ovary (CHO) cells with Met induces transient peaks of intracellular Ca (Ca(i)). To determine whether Resp increases Ca(i), as does Met, we imaged Ca(i) in primary cultures of bone cells. pH for Met = 7.07 ([HCO(3)(-)] = 11.8 mM) and for Resp = 7.13 (Pco(2) = 88.4 mmHg) were similar and lower than neutral (7.41). Both Met and Resp induced a marked, transient increase in Ca(i) in individual bone cells; however, Met stimulated Ca(i) to a greater extent than Resp. We used OGR1-transfected CHO cells to determine whether OGR1 was responsible for the greater increase in Ca(i) in Met than Resp. Both Met and Resp induced a marked, transient increase in Ca(i) in OGR1-transfected CHO cells; however, in these cells Met was not different than Resp. Thus, the greater induction of Ca(i) by Met in primary bone cells is not a function of OGR1 alone, but must involve H(+) receptors other than OGR1, or pathways sensitive to Pco(2), HCO(3)(-), or total CO(2) that modify the effect of H(+) in primary bone cells.

  20. Novel 3D geometry and models of the lower regions of large trees for use in carbon accounting of primary forests.

    Science.gov (United States)

    Dean, Christopher; Kirkpatrick, Jamie B; Osborn, Jon; Doyle, Richard B; Fitzgerald, Nicholas B; Roxburgh, Stephen H

    2018-03-01

    There is high uncertainty in the contribution of land-use change to anthropogenic climate change, especially pertaining to below-ground carbon loss resulting from conversion of primary-to-secondary forest. Soil organic carbon (SOC) and coarse roots are concentrated close to tree trunks, a region usually unmeasured during soil carbon sampling. Soil carbon estimates and their variation with land-use change have not been correspondingly adjusted. Our aim was to deduce allometric equations that will allow improvement of SOC estimates and tree trunk carbon estimates, for primary forest stands that include large trees in rugged terrain. Terrestrial digital photography, photogrammetry and GIS software were used to produce 3D models of the buttresses, roots and humus mounds of large trees in primary forests dominated by Eucalyptus regnans in Tasmania. Models of 29, in situ eucalypts were made and analysed. 3D models of example eucalypt roots, logging debris, rainforest tree species, fallen trees, branches, root and trunk slices, and soil profiles were also derived. Measurements in 2D, from earlier work, of three buttress 'logs' were added to the data set. The 3D models had high spatial resolution. The modelling allowed checking and correction of field measurements. Tree anatomical detail was formulated, such as buttress shape, humus volume, root volume in the under-sampled zone and trunk hollow area. The allometric relationships developed link diameter at breast height and ground slope, to SOC and tree trunk carbon, the latter including a correction for senescence. These formulae can be applied to stand-level carbon accounting. The formulae allow the typically measured, inter-tree SOC to be corrected for not sampling near large trees. The 3D models developed are irreplaceable, being for increasingly rare, large trees, and they could be useful to other scientific endeavours.

  1. Non-stationary (13)C-metabolic flux ratio analysis.

    Science.gov (United States)

    Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola

    2013-12-01

    (13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media. © 2013 Wiley Periodicals, Inc.

  2. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration.

    Science.gov (United States)

    Ward, Collin P; Nalven, Sarah G; Crump, Byron C; Kling, George W; Cory, Rose M

    2017-10-03

    In sunlit waters, photochemical alteration of dissolved organic carbon (DOC) impacts the microbial respiration of DOC to CO 2 . This coupled photochemical and biological degradation of DOC is especially critical for carbon budgets in the Arctic, where thawing permafrost soils increase opportunities for DOC oxidation to CO 2 in surface waters, thereby reinforcing global warming. Here we show how and why sunlight exposure impacts microbial respiration of DOC draining permafrost soils. Sunlight significantly increases or decreases microbial respiration of DOC depending on whether photo-alteration produces or removes molecules that native microbial communities used prior to light exposure. Using high-resolution chemical and microbial approaches, we show that rates of DOC processing by microbes are likely governed by a combination of the abundance and lability of DOC exported from land to water and produced by photochemical processes, and the capacity and timescale that microbial communities have to adapt to metabolize photo-altered DOC.The role of dissolved organic carbon (DOC) photo-alteration in the microbial respiration of DOC to CO 2 is unclear. Here, the authors show that the impact of this mechanism depends on whether photo-alteration of DOC produces or removes molecules used by native microbial communities prior to light exposure.

  3. The emergence and early evolution of biological carbon-fixation.

    Science.gov (United States)

    Braakman, Rogier; Smith, Eric

    2012-01-01

    The fixation of CO₂ into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of CO₂ reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a "phylometabolic" tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology, making it more

  4. The emergence and early evolution of biological carbon-fixation.

    Directory of Open Access Journals (Sweden)

    Rogier Braakman

    Full Text Available The fixation of CO₂ into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of CO₂ reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a "phylometabolic" tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology

  5. [Isolation and identification of a lactate-utilizing, butyrate-producing bacterium and its primary metabolic characteristics].

    Science.gov (United States)

    Liu, Wei; Zhu, Wei-yun; Yao, Wen; Mao, Sheng-yong

    2007-06-01

    The distal mammalian gut harbors prodigiously abundant microbes, which provide unique metabolic traits to host. A lactate-utilizing, butyrate-producing bacterium, strain LB01, was isolated from adult swine feces by utilizing modified Hungate technique with rumen liquid-independent YCFA medium supplemented with lactate as the single carbon source. It was an obligate anaerobic, Gram positive bacterium, and could utilize glucose, fructose, maltose and lactate with a large amount of gas products. 16S rRNA sequence analysis revealed that it had the high similarity with members of the genus Megasphaera. The metabolic characteristics of strain LB01 was investigated by using in vitro fermentation system. Lactate at the concentration of 65 mmol/L in YCFA medium was rapidly consumed within 9 hours and was mainly converted to propionate and butyrate after 24h. As the level of acetate declined, the concentration of butyrate rose only in the presence of glucose, suggesting that butyrate could possibly be synthesized by the acetyl CoA: butyryl CoA transferase. When co-cultured with lactic acid bacteria strain K9, strain LB01 evidently reduced the concentration of lactate produced by strain K9 and decelerated the rapid pH drop, finally producing 12.11 mmol/L butyrate and 4.06 mmol/L propionate. The metabolic characteristics that strain LB01 efficiently converts toxic lactate and excessive acetate to butyrate can prevent lactate and acetate accumulation in the large intestine and maintain the slightly acidic environment of the large intestine, consequently revealing that stain LB01 could act as a potential probiotics.

  6. Cerebral blood flow, oxidative metabolism and cerebrovascular carbon dioxide reactivity in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten; Strauss, Gitte Irene; Thomsen, Gerda

    2002-01-01

    BACKGROUND: The optimal arterial carbon dioxide tension (P(a)CO(2)) in patients with acute bacterial meningitis (ABM) is unknown and controversial. The objective of this study was to measure global cerebral blood flow (CBF), cerebrovascular CO(2) reactivity (CO(2)R), and cerebral metabolic rates...... and hyperventilation with single-photon emission computed tomography (SPECT) (14 patients) and/or the Kety-Schmidt technique (KS) (11 patients and all controls). In KS studies, CMR was measured by multiplying the arterial to jugular venous concentration difference (a-v D) by CBF. RESULTS: CBF did not differ...

  7. Modulation of Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes by ToxCast Chemicals

    Science.gov (United States)

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  8. Carbonate system parameters of an algal-dominated reef along West Maui

    Science.gov (United States)

    Prouty, Nancy G.; Yates, Kimberly K.; Smiley, Nathan; Gallagher, Chris; Cheriton, Olivia; Storlazzi, Curt D.

    2018-04-01

    Constraining coral reef metabolism and carbon chemistry dynamics are fundamental for understanding and predicting reef vulnerability to rising coastal CO2 concentrations and decreasing seawater pH. However, few studies exist along reefs occupying densely inhabited shorelines with known input from land-based sources of pollution. The shallow coral reefs off Kahekili, West Maui, are exposed to nutrient-enriched, low-pH submarine groundwater discharge (SGD) and are particularly vulnerable to the compounding stressors from land-based sources of pollution and lower seawater pH. To constrain the carbonate chemistry system, nutrients and carbonate chemistry were measured along the Kahekili reef flat every 4 h over a 6-day sampling period in March 2016. Abiotic process - primarily SGD fluxes - controlled the carbonate chemistry adjacent to the primary SGD vent site, with nutrient-laden freshwater decreasing pH levels and favoring undersaturated aragonite saturation (Ωarag) conditions. In contrast, diurnal variability in the carbonate chemistry at other sites along the reef flat was driven by reef community metabolism. Superimposed on the diurnal signal was a transition during the second sampling period to a surplus of total alkalinity (TA) and dissolved inorganic carbon (DIC) compared to ocean endmember TA and DIC measurements. A shift from positive net community production and positive net community calcification to negative net community production and negative net community calcification was identified. This transition occurred during a period of increased SGD-driven nutrient loading, lower wave height, and reduced current speeds. This detailed study of carbon chemistry dynamics highlights the need to incorporate local effects of nearshore oceanographic processes into predictions of coral reef vulnerability and resilience.

  9. Primary fatty acid amide metabolism: conversion of fatty acids and an ethanolamine in N18TG2 and SCP cells1[S

    Science.gov (United States)

    Farrell, Emma K.; Chen, Yuden; Barazanji, Muna; Jeffries, Kristen A.; Cameroamortegui, Felipe; Merkler, David J.

    2012-01-01

    Primary fatty acid amides (PFAM) are important signaling molecules in the mammalian nervous system, binding to many drug receptors and demonstrating control over sleep, locomotion, angiogenesis, and many other processes. Oleamide is the best-studied of the primary fatty acid amides, whereas the other known PFAMs are significantly less studied. Herein, quantitative assays were used to examine the endogenous amounts of a panel of PFAMs, as well as the amounts produced after incubation of mouse neuroblastoma N18TG2 and sheep choroid plexus (SCP) cells with the corresponding fatty acids or N-tridecanoylethanolamine. Although five endogenous primary amides were discovered in the N18TG2 and SCP cells, a different pattern of relative amounts were found between the two cell lines. Higher amounts of primary amides were found in SCP cells, and the conversion of N-tridecanoylethanolamine to tridecanamide was observed in the two cell lines. The data reported here show that the N18TG2 and SCP cells are excellent model systems for the study of PFAM metabolism. Furthermore, the data support a role for the N-acylethanolamines as precursors for the PFAMs and provide valuable new kinetic results useful in modeling the metabolic flux through the pathways for PFAM biosynthesis and degradation. PMID:22095832

  10. Utilization of carbon 13-labelled stable isotopes for studying drug toxicity on cellular metabolism

    International Nuclear Information System (INIS)

    Herve, M.; Wietzerbin, J.; Tran-Dinh, S.

    1994-01-01

    A new approach for studying the effects of two drugs, amphotericine B (AMB), an anti-fungal antibiotic, and 2-deoxy-D-glucose (DG), on the glucose metabolism in brewer yeast cells (Saccharomyces cerevisiae), is presented; AMB interacts with the membrane sterols, inducing formation of pores through which ions and small molecules can pass. DG may enter in the cytosol, where it is phosphoryled by hexokinase into deoxy-D-glucose 6-phosphate (DG6P) which disappears very slowly. DG slows down the glycolysis process and induces the formation of new substances. This paper shows the advantages of utilizing carbon 13-labelled substrates combined to the NMR-13C and NMR-1H techniques. 6 figs., 5 refs

  11. A theoretical framework for whole-plant carbon assimilation efficiency based on metabolic scaling theory: a test case using Picea seedlings.

    Science.gov (United States)

    Wang, Zhiqiang; Ji, Mingfei; Deng, Jianming; Milne, Richard I; Ran, Jinzhi; Zhang, Qiang; Fan, Zhexuan; Zhang, Xiaowei; Li, Jiangtao; Huang, Heng; Cheng, Dongliang; Niklas, Karl J

    2015-06-01

    Simultaneous and accurate measurements of whole-plant instantaneous carbon-use efficiency (ICUE) and annual total carbon-use efficiency (TCUE) are difficult to make, especially for trees. One usually estimates ICUE based on the net photosynthetic rate or the assumed proportional relationship between growth efficiency and ICUE. However, thus far, protocols for easily estimating annual TCUE remain problematic. Here, we present a theoretical framework (based on the metabolic scaling theory) to predict whole-plant annual TCUE by directly measuring instantaneous net photosynthetic and respiratory rates. This framework makes four predictions, which were evaluated empirically using seedlings of nine Picea taxa: (i) the flux rates of CO(2) and energy will scale isometrically as a function of plant size, (ii) whole-plant net and gross photosynthetic rates and the net primary productivity will scale isometrically with respect to total leaf mass, (iii) these scaling relationships will be independent of ambient temperature and humidity fluctuations (as measured within an experimental chamber) regardless of the instantaneous net photosynthetic rate or dark respiratory rate, or overall growth rate and (iv) TCUE will scale isometrically with respect to instantaneous efficiency of carbon use (i.e., the latter can be used to predict the former) across diverse species. These predictions were experimentally verified. We also found that the ranking of the nine taxa based on net photosynthetic rates differed from ranking based on either ICUE or TCUE. In addition, the absolute values of ICUE and TCUE significantly differed among the nine taxa, with both ICUE and temperature-corrected ICUE being highest for Picea abies and lowest for Picea schrenkiana. Nevertheless, the data are consistent with the predictions of our general theoretical framework, which can be used to access annual carbon-use efficiency of different species at the level of an individual plant based on simple, direct

  12. Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: a gateway to carbon metabolism.

    Science.gov (United States)

    Matsuda, Yusuke; Hopkinson, Brian M; Nakajima, Kensuke; Dupont, Christopher L; Tsuji, Yoshinori

    2017-09-05

    discussed.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  13. Physical and Biological Controls on the Carbonate Chemistry of Coral Reef Waters: Effects of Metabolism, Wave Forcing, Sea Level, and Geomorphology

    Science.gov (United States)

    Falter, James L.; Lowe, Ryan J.; Zhang, Zhenlin; McCulloch, Malcolm

    2013-01-01

    We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO2, pH, and aragonite saturation state (Ωar) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO2, pH, and Ωar are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO2 relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO2 in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO2. PMID:23326411

  14. Physical and biological controls on the carbonate chemistry of coral reef waters: effects of metabolism, wave forcing, sea level, and geomorphology.

    Science.gov (United States)

    Falter, James L; Lowe, Ryan J; Zhang, Zhenlin; McCulloch, Malcolm

    2013-01-01

    We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO(2), pH, and aragonite saturation state (Ω(ar)) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO(2), pH, and Ω(ar) are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO(2) relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO(2) in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO(2).

  15. Observability of plant metabolic networks is reflected in the correlation of metabolic profiles

    DEFF Research Database (Denmark)

    Schwahn, Kevin; Küken, Anika; Kliebenstein, Daniel James

    2016-01-01

    to obtain information about the entire system. Yet, the extent to which the data profiles reflect the role of components in the observability of the system remains unexplored. Here we first identify the sensor metabolites in the model plant Arabidopsis (Arabidopsis thaliana) by employing state...... with in silico generated metabolic profiles from a medium-size kinetic model of plant central carbon metabolism. Altogether, due to the small number of identified sensors, our study implies that targeted metabolite analyses may provide the vast majority of relevant information about plant metabolic systems....

  16. Blocking hexose entry into glycolysis activates alternative metabolic conversion of these sugars and upregulates pentose metabolism in Aspergillus nidulans

    Energy Technology Data Exchange (ETDEWEB)

    Khosravi, Claire; Battaglia, Evy; Kun, Roland S.; Dalhuijsen, Sacha; Visser, Jaap; Aguilar-Pontes, Maria V.; Zhou, Miamiao; Heyman, Heino M.; Kim, Young-Mo; Baker, Scott E.; de Vries, Ronald P.

    2018-03-22

    Background: Plant biomass is the most abundant carbon source for many fungal species. In the biobased industry fungi are used to produce lignocellulolytic enzymes to degrade agricultural waste biomass. Here we evaluated if it would be possible to create an Aspergillus nidulans strain that releases but does not metabolize hexoses from plant biomass. For this purpose, metabolic mutants were generated that were impaired in glycolysis, by using hexokinase (hxkA) and glucokinase (glkA) negative strains. To prevent repression of enzyme production due to the hexose accumulation, strains were generated that combined these mutations with a deletion in creA, the repressor involved in regulating preferential use of different carbon catabolic pathways. Results: Phenotypic analysis revealed reduced growth for the hxkA1 glkA4 mutant on wheat bran. However, hexoses did not accumulate during growth of the mutants on wheat bran, suggesting that glucose metabolism is re-routed towards alternative carbon catabolic pathways. The creAΔ4 mutation in combination with preventing initial phosphorylation in glycolysis resulted in better growth than the hxkA/glkA mutant and an increased expression of pentose catabolic and pentose phosphate pathway genes. This indicates that the reduced ability to use hexoses as carbon sources created a shift towards the pentose fraction of wheat bran as a major carbon source to support growth. Conclusion: Blocking the direct entry of hexoses to glycolysis activates alternative metabolic conversion of these sugars in A. nidulans during growth on plant biomass, but also upregulates conversion of other sugars, such as pentoses.

  17. Exploring natural variation of photosynthetic, primary metabolism and growth parameters in a large panel of Capsicum chinense accessions.

    Science.gov (United States)

    Rosado-Souza, Laise; Scossa, Federico; Chaves, Izabel S; Kleessen, Sabrina; Salvador, Luiz F D; Milagre, Jocimar C; Finger, Fernando; Bhering, Leonardo L; Sulpice, Ronan; Araújo, Wagner L; Nikoloski, Zoran; Fernie, Alisdair R; Nunes-Nesi, Adriano

    2015-09-01

    Collectively, the results presented improve upon the utility of an important genetic resource and attest to a complex genetic basis for differences in both leaf metabolism and fruit morphology between natural populations. Diversity of accessions within the same species provides an alternative method to identify physiological and metabolic traits that have large effects on growth regulation, biomass and fruit production. Here, we investigated physiological and metabolic traits as well as parameters related to plant growth and fruit production of 49 phenotypically diverse pepper accessions of Capsicum chinense grown ex situ under controlled conditions. Although single-trait analysis identified up to seven distinct groups of accessions, working with the whole data set by multivariate analyses allowed the separation of the 49 accessions in three clusters. Using all 23 measured parameters and data from the geographic origin for these accessions, positive correlations between the combined phenotypes and geographic origin were observed, supporting a robust pattern of isolation-by-distance. In addition, we found that fruit set was positively correlated with photosynthesis-related parameters, which, however, do not explain alone the differences in accession susceptibility to fruit abortion. Our results demonstrated that, although the accessions belong to the same species, they exhibit considerable natural intraspecific variation with respect to physiological and metabolic parameters, presenting diverse adaptation mechanisms and being a highly interesting source of information for plant breeders. This study also represents the first study combining photosynthetic, primary metabolism and growth parameters for Capsicum to date.

  18. Integrated proteomics and metabolomics suggests symbiotic metabolism and multimodal regulation in a fungal-endobacterial system.

    Science.gov (United States)

    Li, Zhou; Yao, Qiuming; Dearth, Stephen P; Entler, Matthew R; Castro Gonzalez, Hector F; Uehling, Jessie K; Vilgalys, Rytas J; Hurst, Gregory B; Campagna, Shawn R; Labbé, Jessy L; Pan, Chongle

    2017-03-01

    Many plant-associated fungi host endosymbiotic endobacteria with reduced genomes. While endobacteria play important roles in these tri-partite plant-fungal-endobacterial systems, the active physiology of fungal endobacteria has not been characterized extensively by systems biology approaches. Here, we use integrated proteomics and metabolomics to characterize the relationship between the endobacterium Mycoavidus sp. and the root-associated fungus Mortierella elongata. In nitrogen-poor media, M. elongata had decreased growth but hosted a large and growing endobacterial population. The active endobacterium likely extracted malate from the fungal host as the primary carbon substrate for energy production and biosynthesis of phospho-sugars, nucleobases, peptidoglycan and some amino acids. The endobacterium obtained nitrogen by importing a variety of nitrogen-containing compounds. Further, nitrogen limitation significantly perturbed the carbon and nitrogen flows in the fungal metabolic network. M. elongata regulated many pathways by concordant changes on enzyme abundances, post-translational modifications, reactant concentrations and allosteric effectors. Such multimodal regulations may be a general mechanism for metabolic modulation. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Metabolite profile analysis reveals functional effects of 28-day vitamin B-6 restriction on one-carbon metabolism and tryptophan catabolic pathways in healthy men and women.

    Science.gov (United States)

    da Silva, Vanessa R; Rios-Avila, Luisa; Lamers, Yvonne; Ralat, Maria A; Midttun, Øivind; Quinlivan, Eoin P; Garrett, Timothy J; Coats, Bonnie; Shankar, Meena N; Percival, Susan S; Chi, Yueh-Yun; Muller, Keith E; Ueland, Per Magne; Stacpoole, Peter W; Gregory, Jesse F

    2013-11-01

    Suboptimal vitamin B-6 status, as reflected by low plasma pyridoxal 5'-phosphate (PLP) concentration, is associated with increased risk of vascular disease. PLP plays many roles, including in one-carbon metabolism for the acquisition and transfer of carbon units and in the transsulfuration pathway. PLP also serves as a coenzyme in the catabolism of tryptophan. We hypothesize that the pattern of these metabolites can provide information reflecting the functional impact of marginal vitamin B-6 deficiency. We report here the concentration of major constituents of one-carbon metabolic processes and the tryptophan catabolic pathway in plasma from 23 healthy men and women before and after a 28-d controlled dietary vitamin B-6 restriction (restriction yielded increased cystathionine (53% pre- and 76% postprandial; P restriction yielded lower kynurenic acid (22% pre- and 20% postprandial; P restriction and multilevel partial least squares-discriminant analysis supported this conclusion. Thus, plasma concentrations of creatine, cystathionine, kynurenic acid, and 3-hydroxykynurenine jointly reveal effects of vitamin B-6 restriction on the profiles of one-carbon and tryptophan metabolites and serve as biomarkers of functional effects of marginal vitamin B-6 deficiency.

  20. Physical Activity on Prescription (PAP), in patients with metabolic risk factors. A 6-month follow-up study in primary health care.

    Science.gov (United States)

    Lundqvist, Stefan; Börjesson, Mats; Larsson, Maria E H; Hagberg, Lars; Cider, Åsa

    2017-01-01

    There is strong evidence that inadequate physical activity (PA) leads to an increased risk of lifestyle-related diseases and premature mortality. Physical activity on prescription (PAP) is a method to increase the level of PA of patients in primary care, but needs further evaluation. The aim of this observational study was to explore the association between PAP-treatment and the PA level of patients with metabolic risk factors and the relationship between changes in the PA level and health outcomes at the 6 month follow-up. This study included 444 patients in primary care, aged 27-85 years (56% females), who were physically inactive with at least one component of metabolic syndrome. The PAP-treatment model included: individualized dialogue concerning PA, prescribed PA, and a structured follow-up. A total of 368 patients (83%) completed the 6 months of follow-up. Of these patients, 73% increased their PA level and 42% moved from an inadequate PA level to sufficient, according to public health recommendations. There were significant improvements (p≤ 0.05) in the following metabolic risk factors: body mass index, waist circumference, systolic blood pressure, fasting plasma glucose, cholesterol, and low density lipoprotein. There were also significant improvements regarding health-related quality of life, assessed by the Short Form 36, in: general health, vitality, social function, mental health, role limitation-physical/emotional, mental component summary, and physical component summary. Regression analysis showed a significant association between changes in the PA level and health outcomes. During the first 6-month period, the caregiver provided PAP support 1-2 times. This study indicates that an individual-based model of PAP-treatment has the potential to change people's PA behavior with improved metabolic risk factors and self-reported quality of life at the 6 month follow-up. Thus, PAP seems to be feasible in a clinical primary care practice, with minimum effort

  1. Physical Activity on Prescription (PAP, in patients with metabolic risk factors. A 6-month follow-up study in primary health care.

    Directory of Open Access Journals (Sweden)

    Stefan Lundqvist

    Full Text Available There is strong evidence that inadequate physical activity (PA leads to an increased risk of lifestyle-related diseases and premature mortality. Physical activity on prescription (PAP is a method to increase the level of PA of patients in primary care, but needs further evaluation. The aim of this observational study was to explore the association between PAP-treatment and the PA level of patients with metabolic risk factors and the relationship between changes in the PA level and health outcomes at the 6 month follow-up. This study included 444 patients in primary care, aged 27-85 years (56% females, who were physically inactive with at least one component of metabolic syndrome. The PAP-treatment model included: individualized dialogue concerning PA, prescribed PA, and a structured follow-up. A total of 368 patients (83% completed the 6 months of follow-up. Of these patients, 73% increased their PA level and 42% moved from an inadequate PA level to sufficient, according to public health recommendations. There were significant improvements (p≤ 0.05 in the following metabolic risk factors: body mass index, waist circumference, systolic blood pressure, fasting plasma glucose, cholesterol, and low density lipoprotein. There were also significant improvements regarding health-related quality of life, assessed by the Short Form 36, in: general health, vitality, social function, mental health, role limitation-physical/emotional, mental component summary, and physical component summary. Regression analysis showed a significant association between changes in the PA level and health outcomes. During the first 6-month period, the caregiver provided PAP support 1-2 times. This study indicates that an individual-based model of PAP-treatment has the potential to change people's PA behavior with improved metabolic risk factors and self-reported quality of life at the 6 month follow-up. Thus, PAP seems to be feasible in a clinical primary care practice, with

  2. The effect of zilpaterol hydrochloride supplementation on energy metabolism and nitrogen and carbon retention of steers fed at maintenance and fasting intake levels

    Science.gov (United States)

    An indirect calorimetry trial examined energy metabolism, apparent nutrient digestibility (appND), carbon retention (CR) and nitrogen retention (NR) of cattle supplemented with zilpaterol hydrochloride (Z). Beef steers (n=20; 463 ± 14 kg) blocked (n=5) by weight and source were individually fed and ...

  3. Chemical Remagnetization of Jurassic Carbonates and a Primary Paleolatitude of Lower Cretaceous Volcaniclastic Rocks of the Tibetan Himalaya

    Science.gov (United States)

    Huang, W.; Van Hinsbergen, D. J. J.; Dekkers, M. J.; Garzanti, E.; Dupont Nivet, G.; Lippert, P. C.; Li, X.; Maffione, M.; Langereis, C. G.; Hu, X.; Guo, Z.; Kapp, P. A.

    2014-12-01

    Paleolatitudes for the Tibetan Himalaya Zone based on paleomagnetic inclinations provide kinematic constraints of the passive northern Indian margin and the extent of 'Greater India' before the India-Asia collision. Here, we present a paleomagnetic investigation of the Jurassic (carbonates) to Lower Cretaceous (volcaniclastic rocks) Wölong section of the Tibetan Himalaya in the Everest region. The carbonates yield positive fold tests, suggesting that the remanent magnetizations have a pre-folding origin. However, detailed paleomagnetic analyses, rock magnetic tests, end-member modeling of acquisition curves of isothermal remanent magnetization, and petrographic studies reveal that the magnetic carrier of the Jurassic carbonates is authigenic magnetite, whereas the dominant magnetic carrier of the Lower Cretaceous volcaniclastic rocks is detrital magnetite. We conclude that the Jurassic carbonates were remagnetized, whereas the Lower Cretaceous volcaniclastics retain a primary remanence. We hypothesize that remagnetization of the Jurassic carbonates was probably caused by the oxidation of early diagenetic pyrite to magnetite within the time interval at ~86-84 Ma during the latest Cretaceous Normal Superchron and earliest deposition of Cretaceous oceanic red beds in the Tibetan Himalaya. The remagnetization of the limestones prevents determining the size of 'Greater India' during Jurassic time. Instead, a paleolatitude of the Tibetan Himalaya of 23.8±2.1° S at ~86-84 Ma is suggested. This value is lower than the expected paleolatitude of India from apparent polar wander path (APWP). The volcaniclastic rocks with the primary remanence, however, yielded a Lower Cretaceous paleolatitude of Tibetan Himalaya of 55.5±3° S, fitting well with the APWP of India.

  4. Metabolic response of Candida albicans to phenylethyl alcohol under hyphae-inducing conditions.

    Science.gov (United States)

    Han, Ting-Li; Tumanov, Sergey; Cannon, Richard D; Villas-Boas, Silas G

    2013-01-01

    Phenylethyl alcohol was one of the first quorum sensing molecules (QSMs) identified in C. albicans. This extracellular signalling molecule inhibits the hyphal formation of C. albicans at high cell density. Little is known, however, about the underlying mechanisms by which this QSM regulates the morphological switches of C. albicans. Therefore, we have applied metabolomics and isotope labelling experiments to investigate the metabolic changes that occur in C. albicans in response to phenylethyl alcohol under defined hyphae-inducing conditions. Our results showed a global upregulation of central carbon metabolism when hyphal development was suppressed by phenylethyl alcohol. By comparing the metabolic changes in response to phenylethyl alcohol to our previous metabolomic studies, we were able to short-list 7 metabolic pathways from central carbon metabolism that appear to be associated with C. albicans morphogenesis. Furthermore, isotope-labelling data showed that phenylethyl alcohol is indeed taken up and catabolised by yeast cells. Isotope-labelled carbon atoms were found in the majority of amino acids as well as in lactate and glyoxylate. However, isotope-labelled carbon atoms from phenylethyl alcohol accumulated mainly in the pyridine ring of NAD(+)/NADH and NADP(-/)NADPH molecules, showing that these nucleotides were the main products of phenylethyl alcohol catabolism. Interestingly, two metabolic pathways where these nucleotides play an important role, nitrogen metabolism and nicotinate/nicotinamide metabolism, were also short-listed through our previous metabolomics works as metabolic pathways likely to be closely associated with C. albicans morphogenesis.

  5. Dynamic Metabolic Footprinting Reveals the Key Components of Metabolic Network in Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Chumnanpuen, Pramote; Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    2014-01-01

    relies on analysis at a single time point. Using direct infusion-mass spectrometry (DI-MS), we could observe the dynamic metabolic footprinting in yeast S. cerevisiae BY4709 (wild type) cultured on 3 different C-sources (glucose, glycerol, and ethanol) and sampled along 10 time points with 5 biological...... replicates. In order to analyze the dynamic mass spectrometry data, we developed the novel analysis methods that allow us to perform correlation analysis to identify metabolites that significantly correlate over time during growth on the different carbon sources. Both positive and negative electrospray...... reconstructed an interaction map that provides information of how different metabolic pathways have correlated patterns during growth on the different carbon sources....

  6. Effect of carbon/nitrogen ratio on carbohydrate metabolism and light energy dissipation mechanisms in Arabidopsis thaliana.

    Science.gov (United States)

    Huarancca Reyes, Thais; Scartazza, Andrea; Lu, Yu; Yamaguchi, Junji; Guglielminetti, Lorenzo

    2016-08-01

    Carbon (C) and nitrogen (N) nutrient sources are essential elements for metabolism, and their availability must be tightly coordinated for the optimal growth and development in plants. Plants are able to sense and respond to different C/N conditions via specific partitioning of C and N sources and the regulation of a complex cellular metabolic activity. We studied how the interaction between C and N signaling could affect carbohydrate metabolism, soluble sugar levels, photochemical efficiency of photosystem II (PSII) and the ability to drive the excess energy in Arabidopsis seedlings under moderated and disrupted C/N-nutrient conditions. Invertase and sucrose synthase activities were markedly affected by C/N-nutrient status depending on the phosphorylation status, suggesting that these enzymes may necessarily be modulated by their direct phosphorylation or phosphorylation of proteins that form complex with them in response to C/N stress. In addition, the enzymatic activity of these enzymes was also correlated with the amount of sugars, which not only act as substrate but also as signaling compounds. Analysis of chlorophyll fluorescence in plants under disrupted C/N condition suggested a reduction of electron transport rate at PSII level associated with a higher capacity for non-radiative energy dissipation in comparison with plants under moderated C/N condition. In conclusion, the tight coordination between C and N not only affects the carbohydrates metabolism and their concentration within plant tissues, but also the partitioning of the excitation energy at PSII level between radiative (electron transport) and non-radiative (heat) dissipation pathways. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Engineering microbial fatty acid metabolism for biofuels and biochemicals

    DEFF Research Database (Denmark)

    Marella, Eko Roy; Holkenbrink, Carina; Siewers, Verena

    2017-01-01

    microbial catalysis. This review summarizes the recent advances in the engineering of microbial metabolism for production of fatty acid-derived products. We highlight the efforts in engineering the central carbon metabolism, redox metabolism, controlling the chain length of the products, and obtaining...

  8. Constraints on primary and secondary particulate carbon sources using chemical tracer and 14C methods during CalNex-Bakersfield

    Data.gov (United States)

    U.S. Environmental Protection Agency — The present study investigates primary and secondary sources of organic carbon for Bakersfield, CA, USA as part of the 2010 CalNex study. The method used here...

  9. Intracellular degradation of chemically functionalized carbon nanotubes using a long-term primary microglial culture model.

    Science.gov (United States)

    Bussy, Cyrill; Hadad, Caroline; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas

    2016-01-07

    Chemically functionalized carbon nanotubes (f-CNTs) have been used in proof-of-concept studies to alleviate debilitating neurological conditions. Previous in vivo observations in brain tissue have suggested that microglia - acting as resident macrophages of the brain - play a critical role in the internalization of f-CNTs and their partial in situ biodegradation following a stereotactic administration in the cortex. At the same time, several reports have indicated that immune cells such as neutrophils, eosinophils and even macrophages could participate in the processing of carbon nanomaterials via oxidation processes leading to degradation, with surface properties acting as modulators of CNT biodegradability. In this study we questioned whether degradability of f-CNTs within microglia could be modulated depending on the type of surface functionalization used. We investigated the kinetics of degradation of multi-walled carbon nanotubes (MWNTs) functionalized via different chemical strategies that were internalized within isolated primary microglia over three months. A cellular model of rat primary microglia that can be maintained in cell culture for a long period of time was first developed. The Raman structural signature of the internalized f-CNTs was then studied directly in cells over a period of up to three months, following a single exposure to a non-cytotoxic concentration of three different f-CNTs (carboxylated, aminated and both carboxylated and aminated). Structural modifications suggesting partial but continuous degradation were observed for all nanotubes irrespective of their surface functionalization. Carboxylation was shown to promote more pronounced structural changes inside microglia over the first two weeks of the study.

  10. Carbon partitioning in Arabidopsis thaliana is a dynamic process controlled by the plants metabolic status and its circadian clock

    Science.gov (United States)

    Kölling, Katharina; Thalmann, Matthias; Müller, Antonia; Jenny, Camilla; Zeeman, Samuel C

    2015-01-01

    Abstract Plant growth involves the coordinated distribution of carbon resources both towards structural components and towards storage compounds that assure a steady carbon supply over the complete diurnal cycle. We used 14CO2 labelling to track assimilated carbon in both source and sink tissues. Source tissues exhibit large variations in carbon allocation throughout the light period. The most prominent change was detected in partitioning towards starch, being low in the morning and more than double later in the day. Export into sink tissues showed reciprocal changes. Fewer and smaller changes in carbon allocation occurred in sink tissues where, in most respects, carbon was partitioned similarly, whether the sink leaf assimilated it through photosynthesis or imported it from source leaves. Mutants deficient in the production or remobilization of leaf starch exhibited major alterations in carbon allocation. Low-starch mutants that suffer from carbon starvation at night allocated much more carbon into neutral sugars and had higher rates of export than the wild type, partly because of the reduced allocation into starch, but also because of reduced allocation into structural components. Moreover, mutants deficient in the plant’s circadian system showed considerable changes in their carbon partitioning pattern suggesting control by the circadian clock. This work focusses on the temporal changes in the allocation and transport of photoassimilates within Arabidopsis rosettes, helping to fill a gap in our understanding of plant growth. Using short pulses of 14C-labelled carbon dioxide, we quantified how much carbon is used for growth and how much is stored as starch for use at night. In source leaves, partitioning is surprisingly dynamic during the day, even though photosynthesis is relatively constant, while in sink leaves, utilisation is more constant. Furthermore, by analysing metabolic mutants and clock mutants, and by manipulating the growth conditions, we show that

  11. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia.

    Directory of Open Access Journals (Sweden)

    Michael Berney

    Full Text Available Mycobacteria are a group of obligate aerobes that require oxygen for growth, but paradoxically have the ability to survive and metabolize under hypoxia. The mechanisms responsible for this metabolic plasticity are unknown. Here, we report on the adaptation of Mycobacterium smegmatis to slow growth rate and hypoxia using carbon-limited continuous culture. When M. smegmatis is switched from a 4.6 h to a 69 h doubling time at a constant oxygen saturation of 50%, the cells respond through the down regulation of respiratory chain components and the F1Fo-ATP synthase, consistent with the cells lower demand for energy at a reduced growth rate. This was paralleled by an up regulation of molecular machinery that allowed more efficient energy generation (i.e. Complex I and the use of alternative electron donors (e.g. hydrogenases and primary dehydrogenases to maintain the flow of reducing equivalents to the electron transport chain during conditions of severe energy limitation. A hydrogenase mutant showed a 40% reduction in growth yield highlighting the importance of this enzyme in adaptation to low energy supply. Slow growing cells at 50% oxygen saturation subjected to hypoxia (0.6% oxygen saturation responded by switching on oxygen scavenging cytochrome bd, proton-translocating cytochrome bc1-aa3 supercomplex, another putative hydrogenase, and by substituting NAD+-dependent enzymes with ferredoxin-dependent enzymes thus highlighting a new pattern of mycobacterial adaptation to hypoxia. The expression of ferredoxins and a hydrogenase provides a potential conduit for disposing of and transferring electrons in the absence of exogenous electron acceptors. The use of ferredoxin-dependent enzymes would allow the cell to maintain a high carbon flux through its central carbon metabolism independent of the NAD+/NADH ratio. These data demonstrate the remarkable metabolic plasticity of the mycobacterial cell and provide a new framework for understanding their

  12. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism

    Science.gov (United States)

    Shimizu, Kazuyuki

    2013-01-01

    It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation. PMID:25937963

  13. Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae

    Science.gov (United States)

    Cardinale, Bradley J.; Bier, Raven; Kwan, Courtney

    2012-08-01

    We examined how TiO2 nanoparticles ( nTiO2) impact the growth and metabolism of three species of freshwater green algae ( Scenedesmus quadricauda, Chlamydomonas moewusii, and Chlorella vulgaris) that are widespread throughout North America. We exposed laboratory cultures to five initial concentrations of nTiO2 (0, 50, 100, 200, and 300 ppm) and measured impacts on species population growth rates, as well as on metabolic rates of gross primary production (GPP) and respiration ( R). Population growth rates were consistently reduced by nTiO2, with reduction ranging from 11 to 27 % depending on the species. But the mechanisms of reduction differed among species. For Chlamydomonas, nTiO2 reduced both GPP and R, but effects on GPP were stronger. As a consequence, carbon was respired more quickly than it was fixed, leading to reduced growth. In contrast, nTiO2 stimulated both GPP and R in Chorella. But because R was stimulated to a greater extent than GPP, carbon loss again exceeded fixation, leading to reduced growth. For Scenedesmus, nTiO2 had no significant impact on R, but reduced GPP. This pattern also caused carbon loss to exceed fixation. Results suggest that nTiO2 may generally suppress the growth of pelagic algae, but these impacts are manifest through contrasting effects on species-specific metabolic functions. Because growth and metabolism of algae are fundamental to the functioning of ecosystems and the structure of aquatic food-webs, our study suggests nTiO2 has potential to alter important community and ecosystem properties of freshwater habitats.

  14. Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae

    International Nuclear Information System (INIS)

    Cardinale, Bradley J.; Bier, Raven; Kwan, Courtney

    2012-01-01

    We examined how TiO 2 nanoparticles (nTiO 2 ) impact the growth and metabolism of three species of freshwater green algae (Scenedesmus quadricauda, Chlamydomonas moewusii, and Chlorella vulgaris) that are widespread throughout North America. We exposed laboratory cultures to five initial concentrations of nTiO 2 (0, 50, 100, 200, and 300 ppm) and measured impacts on species population growth rates, as well as on metabolic rates of gross primary production (GPP) and respiration (R). Population growth rates were consistently reduced by nTiO 2 , with reduction ranging from 11 to 27 % depending on the species. But the mechanisms of reduction differed among species. For Chlamydomonas, nTiO 2 reduced both GPP and R, but effects on GPP were stronger. As a consequence, carbon was respired more quickly than it was fixed, leading to reduced growth. In contrast, nTiO 2 stimulated both GPP and R in Chorella. But because R was stimulated to a greater extent than GPP, carbon loss again exceeded fixation, leading to reduced growth. For Scenedesmus, nTiO 2 had no significant impact on R, but reduced GPP. This pattern also caused carbon loss to exceed fixation. Results suggest that nTiO 2 may generally suppress the growth of pelagic algae, but these impacts are manifest through contrasting effects on species-specific metabolic functions. Because growth and metabolism of algae are fundamental to the functioning of ecosystems and the structure of aquatic food-webs, our study suggests nTiO 2 has potential to alter important community and ecosystem properties of freshwater habitats.

  15. Metabolite Profile Analysis Reveals Functional Effects of 28-Day Vitamin B-6 Restriction on One-Carbon Metabolism and Tryptophan Catabolic Pathways in Healthy Men and Women123

    Science.gov (United States)

    da Silva, Vanessa R.; Rios-Avila, Luisa; Lamers, Yvonne; Ralat, Maria A.; Midttun, Øivind; Quinlivan, Eoin P.; Garrett, Timothy J.; Coats, Bonnie; Shankar, Meena N.; Percival, Susan S.; Chi, Yueh-Yun; Muller, Keith E.; Ueland, Per Magne; Stacpoole, Peter W.; Gregory, Jesse F.

    2013-01-01

    Suboptimal vitamin B-6 status, as reflected by low plasma pyridoxal 5′-phosphate (PLP) concentration, is associated with increased risk of vascular disease. PLP plays many roles, including in one-carbon metabolism for the acquisition and transfer of carbon units and in the transsulfuration pathway. PLP also serves as a coenzyme in the catabolism of tryptophan. We hypothesize that the pattern of these metabolites can provide information reflecting the functional impact of marginal vitamin B-6 deficiency. We report here the concentration of major constituents of one-carbon metabolic processes and the tryptophan catabolic pathway in plasma from 23 healthy men and women before and after a 28-d controlled dietary vitamin B-6 restriction (restriction yielded increased cystathionine (53% pre- and 76% postprandial; P restriction yielded lower kynurenic acid (22% pre- and 20% postprandial; P restriction and multilevel partial least squares-discriminant analysis supported this conclusion. Thus, plasma concentrations of creatine, cystathionine, kynurenic acid, and 3-hydroxykynurenine jointly reveal effects of vitamin B-6 restriction on the profiles of one-carbon and tryptophan metabolites and serve as biomarkers of functional effects of marginal vitamin B-6 deficiency. PMID:23966327

  16. Substrate metabolism in isolated rat jejunal epithelium. Analysis using 14C-radioisotopes

    International Nuclear Information System (INIS)

    Mallet, R.T.

    1986-01-01

    The jejunal epithelium absorbs nutrients from the intestinal lumen and is therefore the initial site for metabolism of these compounds. The purpose of this investigation is to analyze substrate metabolism in a preparation of jejunal epithelium relatively free of other tissues. Novel radioisotopic labelling techniques allow quantitation of substrate metabolism in the TCA cycle, Embden-Meyerhof (glycolytic) pathway, and hexose monophosphate shunt. For example, ratios of 14 CO 2 production from pairs of 14 C-pyruvate, and 14 C-succinate radioisotopes (CO 2 ratios) indicate the probability of TCA cycle intermediate efflux to generate compounds other than CO 2 . With (2,3- 14 C)succinate as tracer, the ratio of 14 C in carbon 4 + 5 versus carbon 2 + 3 of citrate, the citrate labelling ratio, equals the probability of TCA intermediate flux to the acetyl CoA-derived portion of citrate versus flux to the oxaloacetate-derived portion. The principal metabolic substrates for the jejunal epithelium are glucose and glutamine. CO 2 ratios indicate that glutamine uptake and metabolism is partially Na + -independent, and is saturable, with a half-maximal rate at physiological plasma glutamine concentrations. Glucose metabolism in the jejunal epithelium proceeds almost entirely via the Embden-Meyerhof pathway. Conversion of substrates to multi-carbon products in this tissue allows partial conservation of reduced carbon for further utilization in other tissues. In summary, metabolic modeling based on 14 C labelling ratios is a potentially valuable technique for analysis of metabolic flux patterns in cell preparations

  17. How drought severity constrains gross primary production(GPP) and its partitioning among carbon pools in a Quercus ilex coppice?

    Science.gov (United States)

    Rambal, S.; Lempereur, M.; Limousin, J. M.; Martin-StPaul, N. K.; Ourcival, J. M.; Rodríguez-Calcerrada, J.

    2014-12-01

    The partitioning of photosynthates toward biomass compartments plays a crucial role in the carbon (C) sink function of forests. Few studies have examined how carbon is allocated toward plant compartments in drought-prone forests. We analyzed the fate of gross primary production (GPP) in relation to yearly water deficit in an old evergreen Mediterranean Quercus ilex coppice severely affected by water limitations. Carbon fluxes between the ecosystem and the atmosphere were measured with an eddy covariance flux tower running continuously since 2001. Discrete measurements of litterfall, stem growth and fAPAR allowed us to derive annual productions of leaves, wood, flowers and acorns, and an isometric relationship between stem and belowground biomass has been used to estimate perennial belowground growth. By combining eddy covariance fluxes with annual net primary productions (NPP), we managed to close a C budget and derive values of autotrophic, heterotrophic respirations and carbon-use efficiency (CUE; the ratio between NPP and GPP). Average values of yearly net ecosystem production (NEP), GPP and Reco were 282, 1259 and 977 g C m-2. The corresponding aboveground net primary production (ANPP) components were 142.5, 26.4 and 69.6 g C m-2 for leaves, reproductive effort (flowers and fruits) and stems, respectively. NEP, GPP and Reco were affected by annual water deficit. Partitioning to the different plant compartments was also impacted by drought, with a hierarchy of responses going from the most affected - the stem growth - to the least affected - the leaf production. The average CUE was 0.40, which is well in the range for Mediterranean-type forest ecosystems. CUE tended to decrease less drastically in response to drought than GPP and NPP did, probably due to drought acclimation of autotrophic respiration. Overall, our results provide a baseline for modeling the inter-annual variations of carbon fluxes and allocation in this widespread Mediterranean ecosystem, and

  18. The Absorption of Light in Lakes: Negative Impact of Dissolved Organic Carbon on Primary Productivity

    OpenAIRE

    Thrane, Jan-Erik; Hessen, Dag O.; Andersen, Tom

    2014-01-01

    Colored dissolved organic matter (CDOM) absorbs a substantial fraction of photosynthetically active radiation (PAR) in boreal lakes. However, few studies have systematically estimated how this light absorption influences pelagic primary productivity. In this study, 75 boreal lakes spanning wide and orthogonal gradients in dissolved organic carbon (DOC) and total phosphorus (TP) were sampled during a synoptic survey. We measured absorption spectra of phytoplankton pigments, CDOM, and non-algal...

  19. alpha-Ketoglutarate application in hemodialysis patients improves amino acid metabolism.

    Science.gov (United States)

    Riedel, E; Nündel, M; Hampl, H

    1996-01-01

    In hemodialysis patients, free amino acids and alpha-ketoacids in plasma were determined by fluorescence HPLC to assess the effect of alpha-ketoglutarate administration in combination with the phosphate binder calcium carbonate on the amino acid metabolism. During 1 year of therapy in parallel to inorganic phosphate, urea in plasma decreased significantly, histidine, arginine and proline as well as branched chain alpha-ketoacids, in particular alpha-ketoisocaproate, a regulator of protein metabolism, increased. Thus, administration of alpha-ketoglutarate with calcium carbonate effectively improves amino acid metabolism in hemodialysis patients as it decreases hyperphosphatemia.

  20. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast.

    Science.gov (United States)

    Nakatsukasa, Kunio; Okumura, Fumihiko; Kamura, Takumi

    2015-01-01

    Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.

  1. Latitudinal gradients in degradation of marine dissolved organic carbon

    DEFF Research Database (Denmark)

    Arnosti, Carol; Steen, Andrew; Ziervogel, Kai

    2011-01-01

    unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide information......Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely...... about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76 ºS to 79 ºN to hydrolyze a range of high...

  2. Carbon cycling and exports over diel and flood-recovery timescales in a subtropical rainforest headwater stream

    Energy Technology Data Exchange (ETDEWEB)

    Looman, Arún, E-mail: arun.looman@scu.edu.au [National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales (Australia); School of Environment, Science, and Engineering, Southern Cross University, Lismore, New South Wales (Australia); Santos, Isaac R.; Tait, Douglas R.; Webb, Jackie R. [National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales (Australia); School of Environment, Science, and Engineering, Southern Cross University, Lismore, New South Wales (Australia); Sullivan, Caroline A.; Maher, Damien T. [School of Environment, Science, and Engineering, Southern Cross University, Lismore, New South Wales (Australia)

    2016-04-15

    Catchment headwaters comprise the majority of all stream length globally, however, carbon (C) dynamics in these systems remains poorly understood. We combined continuous measurements of pCO{sub 2} and radon ({sup 222}Rn, a natural groundwater tracer) with discrete sampling for particulate organic, dissolved organic and inorganic carbon (POC, DOC, and DIC) to assess the short-term carbon dynamics of a pristine subtropical headwater stream in Australia, over contrasting hydrologic regimes of drought, flash-flooding and recovery. Observations over 23 days revealed a shift from carbon losses dominated by CO{sub 2} outgassing under conditions of low flow (66.4 ± 0.4% of carbon export) to downstream exports of carbon during the flood (87.8 ± 9.7% of carbon export). DOC was the dominant form of downstream exports throughout the study (DOC:DIC:POC = 0.82:0.05:0.13). The broadest diel variability among variables occurred during the drought phase, with diel variability up to 662 μatm d{sup −1} (or 27 μM [CO{sub 2}*] d{sup −1}), 17 μM d{sup −1} and 268 Bq m{sup −3} d{sup −1} for pCO{sub 2}, dissolved oxygen and {sup 222}Rn, respectively. Diel dynamics indicated multiple interrelated drivers of stream water chemistry including groundwater seepage and in-stream metabolism. The catchment exported terrestrial carbon throughout the field campaign, with a mean net stream flux of 4.7 ± 7.8 mmol C m{sup −2} (catchment area) d{sup −1} which is equivalent to 1.4 ± 2.3% of the estimated local terrestrial net primary production. Our observations highlight the importance of accounting for hydrological extremes when assessing the carbon budgets and ecosystem metabolism of headwater streams, and provide a first estimate of aquatic carbon exports from a pristine Australian subtropical rainforest. - Highlights: • First carbon export estimates of a pristine Australian subtropical headwater catchment. • Metabolism and hydrology were drivers of aquatic carbon flux.

  3. Carbon cycling and exports over diel and flood-recovery timescales in a subtropical rainforest headwater stream

    International Nuclear Information System (INIS)

    Looman, Arún; Santos, Isaac R.; Tait, Douglas R.; Webb, Jackie R.; Sullivan, Caroline A.; Maher, Damien T.

    2016-01-01

    Catchment headwaters comprise the majority of all stream length globally, however, carbon (C) dynamics in these systems remains poorly understood. We combined continuous measurements of pCO_2 and radon ("2"2"2Rn, a natural groundwater tracer) with discrete sampling for particulate organic, dissolved organic and inorganic carbon (POC, DOC, and DIC) to assess the short-term carbon dynamics of a pristine subtropical headwater stream in Australia, over contrasting hydrologic regimes of drought, flash-flooding and recovery. Observations over 23 days revealed a shift from carbon losses dominated by CO_2 outgassing under conditions of low flow (66.4 ± 0.4% of carbon export) to downstream exports of carbon during the flood (87.8 ± 9.7% of carbon export). DOC was the dominant form of downstream exports throughout the study (DOC:DIC:POC = 0.82:0.05:0.13). The broadest diel variability among variables occurred during the drought phase, with diel variability up to 662 μatm d"−"1 (or 27 μM [CO_2*] d"−"1), 17 μM d"−"1 and 268 Bq m"−"3 d"−"1 for pCO_2, dissolved oxygen and "2"2"2Rn, respectively. Diel dynamics indicated multiple interrelated drivers of stream water chemistry including groundwater seepage and in-stream metabolism. The catchment exported terrestrial carbon throughout the field campaign, with a mean net stream flux of 4.7 ± 7.8 mmol C m"−"2 (catchment area) d"−"1 which is equivalent to 1.4 ± 2.3% of the estimated local terrestrial net primary production. Our observations highlight the importance of accounting for hydrological extremes when assessing the carbon budgets and ecosystem metabolism of headwater streams, and provide a first estimate of aquatic carbon exports from a pristine Australian subtropical rainforest. - Highlights: • First carbon export estimates of a pristine Australian subtropical headwater catchment. • Metabolism and hydrology were drivers of aquatic carbon flux. • Catchment exports ranged between 1.1 and 18.6 mmol C m

  4. Contrasting Inherent Optical Properties and Carbon Metabolism Between Five Northeastern (USA) Estuary-plume Systems

    Science.gov (United States)

    Vandemark, Doug; Salisbury, Joe; Hunt, Chris; McGillis, Wade R.

    2004-01-01

    We have recently developed the ability to rapidly assess Surface inherent optical properties (IOP), oxygen concentration and pCO2 in estuarine-plume systems using flow-through instrumentation. During the summer of 2004, several estuarine-plume systems were surveyed which include the Pleasant (ME), Penobscot (ME), Kennebec-Androscoggin (ME), Merrimack (NH-MA) and Hudson (NY). Continuous measurements of surface chlorophyll and colored dissolved organic carbon (CDOM) fluorescence, beam attenuation, temperature, salinity, oxygen and pC02 were taken at each system along a salinity gradient from fresh water to near oceanic endmembers. CTD and IOP profiles were also taken at predetermined surface salinity intervals. These were accompanied by discrete determinations of chlorophyll (HPLC and fluorometric), total suspended solids (TSS), dissolved organic carbon (DOC) and alkalinity. IOP data were calibrated using chlorophyll, DOC and TSS data to enable the retrieval of these constituents from IOP data. Considerable differences in the data sets were observed between systems. These ranged from the DOC-enriched, strongly heterotrophic Pleasant River System to the high-chlorophyll autotrophic Merrimack River System. Using pCO2 and oxygen saturation measurements as proxies for water column metabolism, distinct relationships were found between trophic status and inherent optical properties. The nature of these relationships varies between systems and is likely a function of watershed and estuarine attributes including carbon and nutrient loading, in-situ production and related autochthonous inputs of DOC and alkalinity. Our results suggest that IOP data may contain significant information about the trophic status of estuarine and plume systems.

  5. Gene-diet-interactions in folate-mediated one-carbon metabolism modify colon cancer risk.

    Science.gov (United States)

    Liu, Amy Y; Scherer, Dominique; Poole, Elizabeth; Potter, John D; Curtin, Karen; Makar, Karen; Slattery, Martha L; Caan, Bette J; Ulrich, Cornelia M

    2013-04-01

    The importance of folate-mediated one-carbon metabolism (FOCM) in colorectal carcinogenesis is emphasized by observations that high dietary folate intake is associated with decreased risk of colon cancer (CC) and its precursors. Additionally, polymorphisms in FOCM-related genes have been repeatedly associated with risk, supporting a causal relationship between folate and colorectal carcinogenesis. We investigated ten candidate polymorphisms with defined or probable functional impact in eight FOCM-related genes (SHMT1, DHFR, DNMT1, MTHFD1, MTHFR, MTRR, TCN2, and TDG) in 1609 CC cases and 1974 controls for association with CC risk and for interaction with dietary factors. No polymorphism was statistically significantly associated with overall risk of CC. However, statistically significant interactions modifying CC risk were observed for DNMT1 I311V with dietary folate, methionine, vitamin B2 , and vitamin B12 intake and for MTRR I22M with dietary folate, a predefined one-carbon dietary pattern, and vitamin B6 intake. We observed statistically significant gene-diet interactions with five additional polymorphisms. Our results provide evidence that FOCM-related dietary intakes modify the association between CC risk and FOCM allelic variants. These findings add to observations showing that folate-related gene-nutrient interactions play an important role in modifying the risk of CC. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in Petunia hybrida.

    Science.gov (United States)

    Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza

    2014-01-01

    To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.

  7. A comparative study of methanol as a supplementary carbon source for enhancing denitrification in primary and secondary anoxic zones.

    Science.gov (United States)

    Ginige, Maneesha P; Bowyer, Jocelyn C; Foley, Leah; Keller, Jürg; Yuan, Zhiguo

    2009-04-01

    A comparative study on the use of methanol as a supplementary carbon source to enhance denitrification in primary and secondary anoxic zones is reported. Three lab-scale sequencing batch reactors (SBR) were operated to achieve nitrogen and carbon removal from domestic wastewater. Methanol was added to the primary anoxic period of the first SBR, and to the secondary anoxic period of the second SBR. No methanol was added to the third SBR, which served as a control. The extent of improvement on the denitrification performance was found to be dependent on the reactor configuration. Addition to the secondary anoxic period is more effective when very low effluent nitrate levels are to be achieved and hence requires a relatively large amount of methanol. Adding a small amount of methanol to the secondary anoxic period may cause nitrite accumulation, which does not improve overall nitrogen removal. In the latter case, methanol should be added to the primary anoxic period. The addition of methanol can also improve biological phosphorus removal by creating anaerobic conditions and increasing the availability of organic carbon in wastewater for polyphosphate accumulating organisms. This potentially provides a cost-effective approach to phosphorus removal from wastewater with a low carbon content. New fluorescence in situ hybridisation (FISH) probes targeting methanol-utilising denitrifiers were designed using stable isotope probing. Microbial structure analysis of the sludges using the new and existing FISH probes clearly showed that the addition of methanol stimulated the growth of specific methanol-utilizing denitrifiers, which improved the capability of sludge to use methanol and ethanol for denitrification, but reduced its capability to use wastewater COD for denitrification. Unlike acetate, long-term application of methanol has no negative impact on the settling properties of the sludge.

  8. Influence of plankton metabolism and mixing depth on CO2 dynamics in an Amazon floodplain lake.

    Science.gov (United States)

    Amaral, João Henrique F; Borges, Alberto V; Melack, John M; Sarmento, Hugo; Barbosa, Pedro M; Kasper, Daniele; de Melo, Michaela L; De Fex-Wolf, Daniela; da Silva, Jonismar S; Forsberg, Bruce R

    2018-07-15

    We investigated plankton metabolism and its influence on carbon dioxide (CO 2 ) dynamics in a central Amazon floodplain lake (Janauacá, 3°23' S, 60°18' W) from September 2015 to May 2016, including a period with exceptional drought. We made diel measurements of CO 2 emissions to the atmosphere with floating chambers and depth profiles of temperature and CO 2 partial pressure (pCO 2 ) at two sites with differing wind exposure and proximity to vegetated habitats. Dissolved oxygen (DO) concentrations were monitored continuously during day and night in clear and dark chambers with autonomous optical sensors to evaluate plankton metabolism. Overnight community respiration (CR), and gross primary production (GPP) rates were higher in clear chambers and positively correlated with chlorophyll-a (Chl-a). CO 2 air-water fluxes varied over 24-h periods with changes in thermal structure and metabolism. Most net daily CO 2 fluxes during low water and mid-rising water at the wind exposed site were into the lake as a result of high rates of photosynthesis. All other measurements indicated net daily release to the atmosphere. Average GPP rates (6.8gCm -2 d -1 ) were high compared with other studies in Amazon floodplain lakes. The growth of herbaceous plants on exposed sediment during an exceptional drought led to large carbon inputs when these areas were flooded, enhancing CR, pCO 2 , and CO 2 fluxes. During the period when the submerged herbaceous vegetation decayed phytoplankton abundance increased and photosynthetic uptake of CO 2 occurred. While planktonic metabolism was often autotrophic (GPP:CR>1), CO 2 out-gassing occurred during most periods investigated indicating other inputs of carbon such as sediments or soils and wetland plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Marine sequestration of carbon in bacterial metabolites.

    Science.gov (United States)

    Lechtenfeld, Oliver J; Hertkorn, Norbert; Shen, Yuan; Witt, Matthias; Benner, Ronald

    2015-03-31

    Linking microbial metabolomics and carbon sequestration in the ocean via refractory organic molecules has been hampered by the chemical complexity of dissolved organic matter (DOM). Here, using bioassay experiments and ultra-high resolution metabolic profiling, we demonstrate that marine bacteria rapidly utilize simple organic molecules and produce exometabolites of remarkable molecular and structural diversity. Bacterial DOM is similar in chemical composition and structural complexity to naturally occurring DOM in sea water. An appreciable fraction of bacterial DOM has molecular and structural properties that are consistent with those of refractory molecules in the ocean, indicating a dominant role for bacteria in shaping the refractory nature of marine DOM. The rapid production of chemically complex and persistent molecules from simple biochemicals demonstrates a positive feedback between primary production and refractory DOM formation. It appears that carbon sequestration in diverse and structurally complex dissolved molecules that persist in the environment is largely driven by bacteria.

  10. Effects of TiO{sub 2} nanoparticles on the growth and metabolism of three species of freshwater algae

    Energy Technology Data Exchange (ETDEWEB)

    Cardinale, Bradley J., E-mail: bradcard@umich.edu [University of Michigan, School of Natural Resources and Environment (United States); Bier, Raven [Duke University, Department of Biology (United States); Kwan, Courtney [Evolution and Marine Biology, University of California, Department of Ecology (United States)

    2012-08-15

    We examined how TiO{sub 2} nanoparticles (nTiO{sub 2}) impact the growth and metabolism of three species of freshwater green algae (Scenedesmus quadricauda, Chlamydomonas moewusii, and Chlorella vulgaris) that are widespread throughout North America. We exposed laboratory cultures to five initial concentrations of nTiO{sub 2} (0, 50, 100, 200, and 300 ppm) and measured impacts on species population growth rates, as well as on metabolic rates of gross primary production (GPP) and respiration (R). Population growth rates were consistently reduced by nTiO{sub 2}, with reduction ranging from 11 to 27 % depending on the species. But the mechanisms of reduction differed among species. For Chlamydomonas, nTiO{sub 2} reduced both GPP and R, but effects on GPP were stronger. As a consequence, carbon was respired more quickly than it was fixed, leading to reduced growth. In contrast, nTiO{sub 2} stimulated both GPP and R in Chorella. But because R was stimulated to a greater extent than GPP, carbon loss again exceeded fixation, leading to reduced growth. For Scenedesmus, nTiO{sub 2} had no significant impact on R, but reduced GPP. This pattern also caused carbon loss to exceed fixation. Results suggest that nTiO{sub 2} may generally suppress the growth of pelagic algae, but these impacts are manifest through contrasting effects on species-specific metabolic functions. Because growth and metabolism of algae are fundamental to the functioning of ecosystems and the structure of aquatic food-webs, our study suggests nTiO{sub 2} has potential to alter important community and ecosystem properties of freshwater habitats.

  11. Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean.

    Science.gov (United States)

    Baghel, Lokesh; Kataria, Sunita; Guruprasad, Kadur Narayan

    2016-10-01

    The effectiveness of magnetopriming was assessed for alleviation of salt-induced adverse effects on soybean growth. Soybean seeds were pre-treated with static magnetic field (SMF) of 200 mT for 1 h to evaluate the effect of magnetopriming on growth, carbon and nitrogen metabolism, and yield of soybean plants under different salinity levels (0, 25, and 50 mM NaCl). The adverse effect of NaCl-induced salt stress was found on growth, yield, and various physiological attributes of soybeans. Results indicate that SMF pre-treatment significantly increased plant growth attributes, number of root nodules, nodules, fresh weight, biomass accumulation, and photosynthetic performance under both non-saline and saline conditions as compared to untreated seeds. Polyphasic chlorophyll a fluorescence (OJIP) transients from magnetically treated plants gave a higher fluorescence yield at J-I-P phase. Nitrate reductase activity, PIABS , photosynthetic pigments, and net rate of photosynthesis were also higher in plants that emerged from SMF pre-treated seeds as compared to untreated seeds. Leghemoglobin content and hemechrome content in root nodules were also increased by SMF pre-treatment. Thus pre-sowing exposure of seeds to SMF enhanced carbon and nitrogen metabolism and improved the yield of soybeans in terms of number of pods, number of seeds, and seed weight under saline as well as non-saline conditions. Consequently, SMF pre-treatment effectively mitigated adverse effects of NaCl on soybeans. It indicates that magnetopriming of dry soybean seeds can be effectively used as a pre-sowing treatment for alleviating salinity stress. Bioelectromagnetics. 37:455-470, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Maintenance metabolism and carbon fluxes in Bacillus species

    Directory of Open Access Journals (Sweden)

    Decasper Seraina

    2008-06-01

    Full Text Available Abstract Background Selection of an appropriate host organism is crucial for the economic success of biotechnological processes. A generally important selection criterion is a low maintenance energy metabolism to reduce non-productive consumption of substrate. We here investigated, whether various bacilli that are closely related to Bacillus subtilis are potential riboflavin production hosts with low maintenance metabolism. Results While B. subtilis exhibited indeed the highest maintenance energy coefficient, B. licheniformis and B. amyloliquefaciens exhibited only statistically insignificantly reduced maintenance metabolism. Both B. pumilus and B. subtilis (natto exhibited irregular growth patterns under glucose limitation such that the maintenance metabolism could not be determined. The sole exception with significantly reduced maintenance energy requirements was the B. licheniformis strain T380B. The frequently used spo0A mutation significantly increased the maintenance metabolism of B. subtilis. At the level of 13C-detected intracellular fluxes, all investigated bacilli exhibited a significant flux through the pentose phosphate pathway, a prerequisite for efficient riboflavin production. Different from all other species, B. subtilis featured high respiratory tricarboxylic acid cycle fluxes in batch and chemostat cultures. In particular under glucose-limited conditions, this led to significant excess formation of NADPH of B. subtilis, while anabolic consumption was rather balanced with catabolic NADPH formation in the other bacilli. Conclusion Despite its successful commercial production of riboflavin, B. subtilis does not seem to be the optimal cell factory from a bioenergetic point of view. The best choice of the investigated strains is the sporulation-deficient B. licheniformis T380B strain. Beside a low maintenance energy coefficient, this strain grows robustly under different conditions and exhibits only moderate acetate overflow, hence

  13. Metabolism of androstenone, 17β-estradiol and dihydrotestosterone in primary cultured pig hepatocytes and the role of 3β-hydroxysteroid dehydrogenase in this process.

    Directory of Open Access Journals (Sweden)

    Gang Chen

    Full Text Available Steroids metabolism plays an important role in mammals and contributes to quality of pig meat. The main objective of this study was to identify metabolites of androstenone, 17β-estradiol and dihydrotestosterone using primary cultured pig hepatocytes as a model system. The role of 3β-hydroxysteroid dehydrogenase (3βHSD in regulation of steroid metabolism was also validated using trilostane, a specific 3βHSD inhibitor. Steroid glucuronide conjugated metabolites were detected by liquid chromatography time of flight mass spectrometry (LC-TOF-MS. 3βHSD enzyme was essential for metabolism of androstenone to 5α-androst-16-en-3β-ol, which then formed androstenone glucuronide conjugate. Metabolism of 17β-estradiol was accompanied by formation of glucuronide-conjugated estrone and glucuronide-conjugated estradiol. The ratio of the two metabolites was around 5:1. 3βHSD enzyme was not involved in 17β-estradiol metabolism. 5α-Dihydrotestosterone-17β-glucuronide was identified as a dihydrotestosterone metabolite, and this metabolism was related to 3βHSD enzyme activity as demonstrated by inhibition study.

  14. Greenhouse gas footprint and the carbon flow associated with different solid waste management strategy for urban metabolism in Bangladesh.

    Science.gov (United States)

    Islam, K M Nazmul

    2017-02-15

    Greenhouse gas (GHG) emissions from municipal solid waste (MSW) and associated climate change consequences are gripping attention globally, while MSW management as a vital subsystem of urban metabolism significantly influences the urban carbon cycles. This study evaluates the GHG emissions and carbon flow of existing and proposed MSW management in Bangladesh through scenario analysis, including landfill with landfill gas (LFG) recovery, waste to energy (WtE), and material recovery facility (MRF). The analysis indicates that, scenario H 2 and H 5 emitted net GHGs -152.20kg CO 2 eq. and -140.32kg CO 2 eq., respectively, in comparison with 420.88kg CO 2 eq. of scenario H 1 for managing per ton of wastes during the reference year 2015. The annual horizontal carbon flux of the waste input was 319Gg and 158Gg during 2015 in Dhaka and Chittagong, respectively. An integrated strategy of managing the wastes in the urban areas of Bangladesh involving WtE incineration plant and LFG recovery to generate electricity as well as MRF could reverse back 209.46Gg carbon and 422.29Gg carbon to the Chittagong and Dhaka urban system, respectively. This study provides valuable insights for the MSW policy framework and revamp of existing MSW management practices with regards to reduction of GHGs emissions from the waste sector in Bangladesh. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Metabolism and disposition of ethylene carbonate in male Fischer 344 rats

    International Nuclear Information System (INIS)

    Hanley, T.R. Jr.; Schumann, A.M.; Langvardt, P.W.; Rusek, T.F.; Watanabe, P.G.

    1989-01-01

    Ethylene carbonate (EC) has a toxicity profile which resembles that of ethylene glycol (EG). To determine whether the toxicity of EC could be explained on the basis of its metabolism to EG, male Fischer 344 rats were given 200 mg/kg of uniformly labeled [ 14 C]EC in water by gavage and the disposition of the radiolabel was then followed for 72 hr. EC was rapidly metabolized, with approximately 57 and 27% of the administered dose eliminated in the expired air as 14CO2 and in the urine, respectively; the remainder was found in the carcass. Separation of the urinary metabolites using liquid chromatography revealed a single radioactive peak. This metabolite was unequivocally identified as ethylene glycol via gas chromatography-mass spectrometry with the aid of 13C enrichment of the EC dose. Measurement of whole blood levels of EC and EG in rats given 200 mg/kg of EC by gavage revealed blood levels of EG approximately 100-fold higher than the levels of EC in these same animals, with a half-life of EG in blood of 2 hr, indicating rapid conversion of EC to EG. In a separate group of animals administered an equimolar dose of [ 14 C]EG (141 mg/kg), approximately 37% of the dose was expired as 14 CO 2 and 42% was excreted in the urine as parent compound. When expressed on the basis of the ethanediol moiety, the disposition of EC was identical to that of EG. In view of the rapid and extensive biotransformation of EC to EG and the similarity of the existing (though limited) toxicity data base of EC compared to EG, utilization of the extensive EG systemic toxicity data base for assessing the safety of EC appears justified

  16. Adaptive metabolic response to 4 weeks of sugar-sweetened beverage consumption in healthy, lightly active individuals and chronic high glucose availability in primary human myotubes.

    Science.gov (United States)

    Sartor, Francesco; Jackson, Matthew J; Squillace, Cesare; Shepherd, Anthony; Moore, Jonathan P; Ayer, Donald E; Kubis, Hans-Peter

    2013-04-01

    Chronic sugar-sweetened beverage (SSB) consumption is associated with obesity and type 2 diabetes mellitus (T2DM). Hyperglycaemia contributes to metabolic alterations observed in T2DM, such as reduced oxidative capacity and elevated glycolytic and lipogenic enzyme expressions in skeletal muscle tissue. We aimed to investigate the metabolic alterations induced by SSB supplementation in healthy individuals and to compare these with the effects of chronic hyperglycaemia on primary muscle cell cultures. Lightly active, healthy, lean subjects (n = 11) with sporadic soft drink consumption underwent a 4-week SSB supplementation (140 ± 15 g/day, ~2 g glucose/kg body weight/day, glucose syrup). Before and after the intervention, body composition, respiratory exchange ratio (RER), insulin sensitivity, muscle metabolic gene and protein expression were assessed. Adaptive responses to hyperglycaemia (7 days, 15 mM) were tested in primary human myotubes. SSB supplementation increased fat mass (+1.0 kg, P < 0.05), fasting RER (+0.12, P < 0.05), fasting glucose (+0.3 mmol/L, P < 0.05) and muscle GAPDH mRNA expressions (+0.94 AU, P < 0.05). PGC1α mRNA was reduced (-0.20 AU, P < 0.05). Trends were found for insulin resistance (+0.16 mU/L, P = 0.09), and MondoA protein levels (+1.58 AU, P = 0.08). Primary myotubes showed elevations in GAPDH, ACC, MondoA and TXNIP protein expressions (P < 0.05). Four weeks of SSB supplementation in healthy individuals shifted substrate metabolism towards carbohydrates, increasing glycolytic and lipogenic gene expression and reducing mitochondrial markers. Glucose-sensing protein MondoA might contribute to this shift, although further in vivo evidence is needed to corroborate this.

  17. Lack of change in glucose metabolism in eszopiclone-treated primary insomnia patients

    Directory of Open Access Journals (Sweden)

    Buxton OM

    2017-07-01

    Full Text Available Orfeu M Buxton,1-4 Milena K Pavlova,1,5 Shawn P O’Connor,1 Wei Wang,1,2 John W Winkelman1,6 1Division of Sleep Medicine, Harvard Medical School, 2Department of Medicine, Brigham and Women’s Hospital, 3Department of Social and Behavioral Sciences, Harvard School of Public Health, Boston, MA, 4Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, 5Department of Neurology, Brigham and Women’s Hospital, 6Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA Study objectives: Primary insomnia (PI may increase diabetes risk. We tested the hypothesis that the effects of PI on glucose metabolism could be improved by 2 months of pharmacological treatment.Methods: Adult men and women meeting clinical criteria for PI were studied (n=20, body mass index 25.1±2.7 kg/m2, age 39.7±7.9 in a randomized, double-blind, placebo-controlled clinical trial. The study consisted of two 1-day inpatient admissions to a General Clinical Research Center separated by 2 months of at-home treatment with 3 mg eszopiclone or placebo. During inpatient admissions, each subject underwent two intravenous glucose tolerance tests (IVGTTs pre- and post-treatment. Diet was controlled for micro- and macro-nutrient content and calories on the day prior to pre- and post-treatment IVGTTs. Subjects were randomized following completion of the initial IVGTT to take either placebo or eszopiclone 30 min prior to bedtime at home for 2 months.Results: Two-month eszopiclone treatment did not change insulin sensitivity, glucose tolerance, or any of the sleep measures significantly, compared with placebo. Changes in glycated hemoglobin (HbA1c, clinical measure of glycemic control were correlated with changes in diary-reported total sleep time in the eszopiclone group (r=0.66, p=0.0360, and in the combined groups’ data (r=0.55, p=0.0125. Changes in polysomnography-measured wake after sleep onset, a hallmark of PI, were positively related

  18. Carbonic Anhydrase Enhanced Carbon Capture: Kinetic Measurements and Pilot Plant Trials

    DEFF Research Database (Denmark)

    Gladis, Arne; Deslauriers, Maria Gundersen; Fosbøl, Philip Loldrup

    In this study the effect of carbonic anhydrase addition on the absorption of CO2 was investigated in a wetted wall column apparatus. Four different solvents: MEA (a primary amine), AMP (a sterically hindered primary amine), MDEA (a tertiary amine) and K2CO3 a carbonate salt solution were tested...

  19. Ecological network analysis for a low-carbon and high-tech industrial park.

    Science.gov (United States)

    Lu, Yi; Su, Meirong; Liu, Gengyuan; Chen, Bin; Zhou, Shiyi; Jiang, Meiming

    2012-01-01

    Industrial sector is one of the indispensable contributors in global warming. Even if the occurrence of ecoindustrial parks (EIPs) seems to be a good improvement in saving ecological crises, there is still a lack of definitional clarity and in-depth researches on low-carbon industrial parks. In order to reveal the processes of carbon metabolism in a low-carbon high-tech industrial park, we selected Beijing Development Area (BDA) International Business Park in Beijing, China as case study, establishing a seven-compartment- model low-carbon metabolic network based on the methodology of Ecological Network Analysis (ENA). Integrating the Network Utility Analysis (NUA), Network Control Analysis (NCA), and system-wide indicators, we compartmentalized system sectors into ecological structure and analyzed dependence and control degree based on carbon metabolism. The results suggest that indirect flows reveal more mutuality and exploitation relation between system compartments and they are prone to positive sides for the stability of the whole system. The ecological structure develops well as an approximate pyramidal structure, and the carbon metabolism of BDA proves self-mutualistic and sustainable. Construction and waste management were found to be two active sectors impacting carbon metabolism, which was mainly regulated by internal and external environment.

  20. Metabolic adjustment upon repetitive substrate perturbations using dynamic

    NARCIS (Netherlands)

    Suarez Mendez, C.A.; Ras, C.; Wahl, S.A.

    2017-01-01

    Background: Natural and industrial environments are dynamic with respect to substrate availability and other conditions like temperature and pH. Especially, metabolism is strongly affected by changes in the extracellular space. Here we study the dynamic flux of central carbon metabolism and

  1. Photoperiod length paces the temporal orchestration of cell cycle and carbon-nitrogen metabolism in Crocosphaera watsonii.

    Science.gov (United States)

    Dron, Anthony; Rabouille, Sophie; Claquin, Pascal; Talec, Amélie; Raimbault, Virginie; Sciandra, Antoine

    2013-12-01

    We analysed the effect of photoperiod length (PPL) (16:8 and 8:16 h of light-dark regime, named long and short PPL, respectively) on the temporal orchestration of the two antagonistic, carbon and nitrogen acquisitions in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii strain WH8501 growing diazotrophically. Carbon and nitrogen metabolism were monitored at high frequency, and their patterns were compared with the cell cycle progression. The oxygen-sensitive N2 fixation process occurred mainly during the dark period, where photosynthesis cannot take place, inducing a light-dark cycle of cellular C : N ratio. Examination of circadian patterns in the cell cycle revealed that cell division occurred during the midlight period, (8 h and 4 h into the light in the long and short PPL conditions, respectively), thus timely separated from the energy-intensive diazotrophic process. Results consistently show a nearly 5 h time lag between the end of cell division and the onset of N2 fixation. Shorter PPLs affected DNA compaction of C. watsonii cells and also led to a decrease in the cell division rate. Therefore, PPL paces the growth of C. watsonii: a long PPL enhances cell division while a short PPL favours somatic growth (biomass production) with higher carbon and nitrogen cell contents. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Generation of nitric oxide from nitrite by carbonic anhydrase: a possible link between metabolic activity and vasodilation

    DEFF Research Database (Denmark)

    Aamand, Rasmus; Dalsgaard, Thomas; Jensen, Frank Bo

    2009-01-01

    In catalyzing the reversible hydration of CO2 to bicarbonate and protons, the ubiquitous enzyme carbonic anhydrase (CA) plays a crucial role in CO2 transport, in acid-base balance, and in linking local acidosis to O2 unloading from hemoglobin. Considering the structural similarity between...... bicarbonate and nitrite, we hypothesized that CA uses nitrite as a substrate to produce the potent vasodilator nitric oxide (NO) to increase local blood flow to metabolically active tissues. Here we show that CA readily reacts with nitrite to generate NO, particularly at low pH, and that the NO produced...

  3. Metabolic regulation in the facultative methylotroph arthrobacter P1

    NARCIS (Netherlands)

    1985-01-01

    Many microorganisms are able to utilize C1 compounds, i.e. compounds which do not contain carbon-carbon bonds, as carbon- and energy sources for growth. In order to synthesize cell constituents from these C1 compounds special metabolic pathways are employed by such organisms. Although a great deal

  4. Effectiveness of programmes as part of primary prevention demonstrated on the example of cardiovascular diseases and the metabolic syndrome.

    Science.gov (United States)

    Korczak, Dieter; Dietl, Markus; Steinhauser, Gerlinde

    2011-04-01

    The HTA-report (HTA = Health Technology Assessment) deals with the primary prevention of cardiovascular diseases and diabetes mellitus type 2. In 2009 approximately 356,000 people died in Germany due to cardiovascular diseases. According to estimations about 6.3 million people are suffering from diabetes mellitus type 2. The interventions that are subsidized by the public health insurance are mainly focused on sufficient physical activities, healthy nutrition, stress management and the reduction of the consumption of addictive drugs and luxury food. Which lifestyle-related measures and/or programmes for primary prevention of cardiovascular diseases and of the metabolic syndrome are effective? To what extent will the health status be improved by these offers? To what extent will existing health resources and skills be strengthened by these offers? Are there any differences regarding the effectiveness among the interventions with respect to different settings or subgroups? Which lifestyle-related interventions and/or programmes for primary prevention of cardiovascular diseases and of the metabolic syndrome are sustainable and cost-effective? Which outcome parameters are in the view of the contributors decisive for the evaluation of the effectiveness? In the view of the contributor are there different values between the outcome parameters? In the view of the payers and other actors are there different values between the outcome parameters? Which ethical and juridical factors have to be considered? Which social and/or socio-economic parameters influence the use of the services and effectiveness? A systematic literature research is done in 35 databases. For the period 2005 to 2010, reviews, epidemiological and clinical studies as well as economical evaluations which deal with primary prevention programmes regarding cardiovascular diseases or the metabolic syndrome are included. 44 publications meet the inclusion criteria. These studies confirm the effectiveness of the

  5. Effectiveness of programmes as part of primary prevention demonstrated on the example of cardiovascular diseases and the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Korczak, Dieter

    2011-01-01

    Full Text Available Background: The HTA-report (HTA = Health Technology Assessment deals with the primary prevention of cardiovascular diseases and diabetes mellitus type 2. In 2009 approximately 356,000 people died in Germany due to cardiovascular diseases. According to estimations about 6.3 million people are suffering from diabetes mellitus type 2. The interventions that are subsidized by the public health insurance are mainly focused on sufficient physical activities, healthy nutrition, stress management and the reduction of the consumption of addictive drugs and luxury food. Objectives: Which lifestyle-related measures and/or programmes for primary prevention of cardiovascular diseases and of the metabolic syndrome are effective? To what extent will the health status be improved by these offers? To what extent will existing health resources and skills be strengthened by these offers? Are there any differences regarding the effectiveness among the interventions with respect to different settings or subgroups? Which lifestyle-related interventions and/or programmes for primary prevention of cardiovascular diseases and of the metabolic syndrome are sustainable and cost-effective? Which outcome parameters are in the view of the contributors decisive for the evaluation of the effectiveness? In the view of the contributor are there different values between the outcome parameters? In the view of the payers and other actors are there different values between the outcome parameters? Which ethical and juridical factors have to be considered? Which social and/or socio-economic parameters influence the use of the services and effectiveness? Methods: A systematic literature research is done in 35 databases. For the period 2005 to 2010, reviews, epidemiological and clinical studies as well as economical evaluations which deal with primary prevention programmes regarding cardiovascular diseases or the metabolic syndrome are included. Results: 44 publications meet the

  6. Metabolic engineering with plants for a sustainable biobased economy.

    Science.gov (United States)

    Yoon, Jong Moon; Zhao, Le; Shanks, Jacqueline V

    2013-01-01

    Plants are bona fide sustainable organisms because they accumulate carbon and synthesize beneficial metabolites from photosynthesis. To meet the challenges to food security and health threatened by increasing population growth and depletion of nonrenewable natural resources, recent metabolic engineering efforts have shifted from single pathways to holistic approaches with multiple genes owing to integration of omics technologies. Successful engineering of plants results in the high yield of biomass components for primary food sources and biofuel feedstocks, pharmaceuticals, and platform chemicals through synthetic biology and systems biology strategies. Further discovery of undefined biosynthesis pathways in plants, integrative analysis of discrete omics data, and diversified process developments for production of platform chemicals are essential to overcome the hurdles for sustainable production of value-added biomolecules from plants.

  7. Effect of metabolic alkalosis on respiratory function in patients with chronic obstructive lung disease.

    Science.gov (United States)

    Bear, R.; Goldstein, M.; Phillipson, E.; Ho, M.; Hammeke, M.; Feldman, R.; Handelsman, S.; Halperin, M.

    1977-01-01

    Eleven instances of a mixed acid-base disorder consisting of chronic respiratory acidosis and metabolic alkalosis were recognized in eight patients with chronic obstructive lung disease and carbon dioxide retention. Correction of the metabolic alkalosis led to substantial improvement in blood gas values and clinical symptoms. Patients with mixed chronic respiratory acidosis and metabolic alkalosis constitute a common subgroup of patients with chronic obstructive lung disease and carbon dioxide retention; these patients benefit from correction of the metabolic alkalosis. PMID:21028

  8. Linking carbon and nitrogen metabolism to depth distribution of submersed macrophytes using high ammonium dosing tests and a lake survey.

    Science.gov (United States)

    Yuan, Guixiang; Cao, Te; Fu, Hui; Ni, Leyi; Zhang, Xiaolin; Li, Wei; Song, Xin; Xie, Ping; Jeppesen, Erik

    2013-12-01

    Strategies of carbon (C) and nitrogen (N) utilisation are among the factors determining plant distribution. It has been argued that submersed macrophytes adapted to lower light environments are more efficient in maintaining C metabolic homeostasis due to their conservative C strategy and ability to balance C shortage. We studied how depth distributions of 12 submersed macrophytes in Lake Erhai, China, were linked to their C-N metabolic strategies when facing acute [Formula: see text] dosing.[Formula: see text] dosing changed C-N metabolism significantly by decreasing the soluble carbohydrate (SC) content and increasing the [Formula: see text]-N and free amino acid (FAA) content of plant tissues.The proportional changes in SC contents in the leaves and FAA contents in the stems induced by [Formula: see text] dosing were closely correlated (positive for SC and negative for FAA) with the colonising water depths of the plants in Lake Erhai, the plants adapted to lower light regimes being more efficient in maintaining SC and FAA homeostasis.These results indicate that conservative carbohydrate metabolism of submersed macrophytes allowed the plants to colonise greater water depths in eutrophic lakes, where low light availability in the water column diminishes carbohydrate production by the plants.

  9. Constraining genome-scale models to represent the bow tie structure of metabolism for 13C metabolic flux analysis

    DEFF Research Database (Denmark)

    Backman, Tyler W.H.; Ando, David; Singh, Jahnavi

    2018-01-01

    for a minimum of fluxes into core metabolism to satisfy these experimental constraints. Together, these methods accelerate and automate the identification of a biologically reasonable set of core reactions for use with 13C MFA or 2S- 13C MFA, as well as provide for a substantially lower set of flux bounds......Determination of internal metabolic fluxes is crucial for fundamental and applied biology because they map how carbon and electrons flow through metabolism to enable cell function. 13C Metabolic Flux Analysis (13C MFA) and Two-Scale 13C Metabolic Flux Analysis (2S-13C MFA) are two techniques used...

  10. The logics of metabolic regulation in bacteria challenges biosensor-based metabolic engineering

    Directory of Open Access Journals (Sweden)

    Matthieu Jules

    2017-12-01

    Full Text Available Synthetic Biology (SB aims at the rational design and engineering of novel biological functions and systems. By facilitating the engineering of living organisms, SB promises to facilitate the development of many new applications for health, biomanufacturing, and the environment. Over the last decade, SB promoted the construction of libraries of components enabling the fine-tuning of genetic circuits expression and the development of novel genome engineering methodologies for many organisms of interest. SB thus opened new perspectives in the field of metabolic engineering, which was until then mainly limited to (overproducing naturally synthesized metabolic compounds. To engineer efficient cell factories, it is key to precisely reroute cellular resources from the central carbon metabolism (CCM to the synthetic circuitry. This task is however difficult as there is still significant lack of knowledge regarding both the function of several metabolic components and the regulation of the CCM fluxes for many industrially important bacteria. Pyruvate is a pivotal metabolite at the heart of the CCM and a key precursor for the synthesis of several commodity compounds and fine chemicals. Numerous bacterial species can also use it as a carbon source when present in the environment but bacterial, pyruvate-specific uptake systems were to be discovered. This is an issue for metabolic engineering as one can imagine to make use of pyruvate transport systems to replenish synthetic metabolic pathways towards the synthesis of chemicals of interest. Here we describe a recent study (MBio 8(5: e00976-17, which identified and characterized a pyruvate transport system in the Gram-positive (G+ve bacterium Bacillus subtilis, a well-established biotechnological workhorse for the production of enzymes, fine chemicals and antibiotics. This study also revealed that the activity of the two-component system (TCS responsible for its induction is retro-inhibited by the level of

  11. Comprehensive Transcriptome Analysis Unravels the Existence of Crucial Genes Regulating Primary Metabolism during Adventitious Root Formation in Petunia hybrida

    Science.gov (United States)

    Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza

    2014-01-01

    To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase. PMID:24978694

  12. Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in Petunia hybrida.

    Directory of Open Access Journals (Sweden)

    Amirhossein Ahkami

    Full Text Available To identify specific genes determining the initiation and formation of adventitious roots (AR, a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115 was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.

  13. Long-term culture and expansion of primary human hepatocytes

    NARCIS (Netherlands)

    Levy, G.; Bomze, D.; Heinz, S.; Ramachandran, S.D.; Noerenberg, A.; Cohen, M.; Shibolet, O.; Sklan, E.; Braspenning, J.C.; Nahmias, Y.

    2015-01-01

    Hepatocytes have a critical role in metabolism, but their study is limited by the inability to expand primary hepatocytes in vitro while maintaining proliferative capacity and metabolic function. Here we describe the oncostatin M (OSM)-dependent expansion of primary human hepatocytes by low

  14. Dissolved organic carbon concentration controls benthic primary production: results from in situ chambers in north-temperate lakes

    Science.gov (United States)

    Godwin, Sean C.; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.

    2014-01-01

    We evaluated several potential drivers of primary production by benthic algae (periphyton) in north-temperate lakes. We used continuous dissolved oxygen measurements from in situ benthic chambers to quantify primary production by periphyton at multiple depths across 11 lakes encompassing a broad range of dissolved organic carbon (DOC) and total phosphorous (TP) concentrations. Light-use efficiency (primary production per unit incident light) was inversely related to average light availability (% of surface light) in 7 of the 11 study lakes, indicating that benthic algal assemblages exhibit photoadaptation, likely through physiological or compositional changes. DOC alone explained 86% of the variability in log-transformed whole-lake benthic production rates. TP was not an important driver of benthic production via its effects on nutrient and light availability. This result is contrary to studies in other systems, but may be common in relatively pristine north-temperate lakes. Our simple empirical model may allow for the prediction of whole-lake benthic primary production from easily obtained measurements of DOC concentration.

  15. Selective Grafting of Primary Amines onto Carbon Nanotubes via Free-Radical Treatment in Microwave Plasma Post-Discharge

    Directory of Open Access Journals (Sweden)

    Philippe Dubois

    2012-01-01

    Full Text Available A novel strategy to graft functional groups at the surface of carbon nanotubes (CNTs is discussed. Aiming at grafting nitrogen containing groups, and more specifically primary amine covalent functionalization, CNTs were exposed under atomic nitrogen flow arising from an Ar + N2 microwave plasma. The primary amine functions were identified and quantified through chemical derivatization with 4-(trifluoromethylbenzaldehyde and characterized through X-ray photoelectron spectroscopy. The increase of the selectivity in the primary amines grafting onto CNTs, up to 66.7% for treatment of CNT powder, was performed via the reduction of post-treatment oxygen contamination and the addition of hydrogen in the experimental set-up, more particularly in the plasma post-discharge chamber. The analyses of nitrogenated and primary amine functions grafting on the CNT surface suggest that atomic nitrogen (N• and reduced nitrogen species (NH• and NH2• react preferentially with defect sites of CNTs and, then, only atomic nitrogen continues to react on the CNT surface, creating defects.

  16. Carbon and phosphorus regulating bacterial metabolism in oligotrophic boreal lakes

    DEFF Research Database (Denmark)

    Vidal, L. O.; Graneli, W.; Daniel, C. B.

    2011-01-01

    This study focused on how phosphorus and carbon control pelagic bacteria in lakes over a gradient of dissolved organic carbon (DOC from 6.7 to 29.5 mg C L(-1)) and phosphorus (P-tot from 5 to 19 mu g L(-1)). Five oligotrophic lakes in southern Sweden were sampled in late autumn. Phosphate...... carbon mineralization in this kind of system during autumn is conditioned by the combined availability of labile carbon and phosphorus, with the assimilated carbon mainly transformed to inorganic carbon in respiration, contributing to CO(2) supersaturation in these systems....

  17. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    Science.gov (United States)

    Duarte, Carlos M.

    2017-01-01

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain hidden in representations of the global carbon budget. Despite being confined to a narrow belt around the shoreline of the world's oceans, where they cover less than 7 million km2, vegetated coastal habitats support about 1 to 10 % of the global marine net primary production and generate a large organic carbon surplus of about 40 % of their net primary production (NPP), which is either buried in sediments within these habitats or exported away. Large, 10-fold uncertainties in the area covered by vegetated coastal habitats, along with variability about carbon flux estimates, result in a 10-fold bracket around the estimates of their contribution to organic carbon sequestration in sediments and the deep sea from 73 to 866 Tg C yr-1, representing between 3 % and 1/3 of oceanic CO2 uptake. Up to 1/2 of this carbon sequestration occurs in sink reservoirs (sediments or the deep sea) beyond these habitats. The organic carbon exported that does not reach depositional sites subsidizes the metabolism of heterotrophic organisms. In addition to a significant contribution to organic carbon production and sequestration, vegetated coastal habitats contribute as much to carbonate accumulation as coral reefs do. While globally relevant, the magnitude of global carbon fluxes supported by salt-marsh, mangrove, seagrass and macroalgal habitats is declining due to rapid habitat loss, contributing to loss of CO2 sequestration, storage capacity and carbon subsidies. Incorporating the carbon fluxes' vegetated coastal habitats' support into depictions of the carbon budget of the global ocean and its perturbations will improve current representations of the carbon budget of the global ocean.

  18. Rivers of Carbon: Carbon Fluxes in a Watershed Context

    Science.gov (United States)

    Wohl, E.; Tom, B.; Hovius, N.

    2017-12-01

    Research within the past decade has identified the roles of diverse terrestrial processes in mobilizing terrestrial carbon from bedrock, soil, and vegetation and in redistributing this carbon among the atmosphere, biota, geosphere, and oceans. Rivers are central to carbon redistribution, serving as the primary initial receptor of mobilized terrestrial carbon, as well as governing the proportions of carbon sequestered within sediment, transported to oceans, or released to the atmosphere. We use a riverine carbon budget to examine how key questions regarding carbon dynamics can be addressed across diverse spatial and temporal scales from sub-meter areas over a few hours on a single gravel bar to thousands of square kilometers over millions of years across an entire large river network. The portion of the budget applying to the active channel(s) takes the form of ,in which Cs is organic carbon storage over time t. Inputs are surface and subsurface fluxes from uplands (CIupl) and the floodplain (CIfp), including fossil, soil, and biospheric organic carbon; surface and subsurface fluxes of carbon dioxide to the channel (CICO2); and net primary productivity in the channel (CINPP). Outputs occur via respiration within the channel and carbon dioxide emissions (COgas) and fluxes of dissolved and particulate organic carbon to the floodplain and downstream portions of the river network (COriver). The analogous budget for the floodplain portion of a river corridor is .

  19. Drug metabolism in birds

    Science.gov (United States)

    Pan, Huo Ping; Fouts, James R.

    1979-01-01

    Papers published over 100 years since the beginning of the scientific study of drug metabolism in birds were reviewed. Birds were found to be able to accomplish more than 20 general biotransformation reactions in both functionalization and conjugation. Chickens were the primary subject of study but over 30 species of birds were used. Large species differences in drug metabolism exist between birds and mammals as well as between various birds, these differences were mostly quantitative. Qualitative differences were rare. On the whole, drug metabolism studies in birds have been neglected as compared with similar studies on insects and mammals. The uniqueness of birds and the advantages of using birds in drug metabolism studies are discussed. Possible future studies of drug metabolism in birds are recommended.

  20. Metabolic Evidence of Diminished Lipid Oxidation in Women With Polycystic Ovary Syndrome

    Science.gov (United States)

    Whigham, Leah D.; Butz, Daniel E.; Dashti, Hesam; Tonelli, Marco; Johnson, LuAnn K.; Cook, Mark E.; Porter, Warren P.; Eghbalnia, Hamid R.; Markley, John L.; Lindheim, Steven R.; Schoeller, Dale A.; Abbott, David H.; Assadi-Porter, Fariba M.

    2014-01-01

    Polycystic ovary syndrome (PCOS), a common female endocrinopathy, is a complex metabolic syndrome of enhanced weight gain. The goal of this pilot study was to evaluate metabolic differences between normal (n=10) and PCOS (n=10) women via breath carbon isotope ratio, urinary nitrogen and nuclear magnetic resonance (NMR)-determined serum metabolites. Breath carbon stable isotopes measured by cavity ring down spectroscopy (CRDS) indicated diminished (pglucose tolerance test showed that a transient elevation in blood glucose levels decreased circulating levels of lipid, glucose and amino acid metabolic intermediates (acetone, 2-oxocaporate, 2-aminobutyrate, pyruvate, formate, and sarcosine) in PCOS women, whereas the 2 h glucose challenge led to increases in the same intermediates in normal women. These pilot data suggest that PCOS-related inflexibility in fasting-related switching between lipid and carbohydrate/protein utilization for carbon metabolism may contribute to enhanced weight gain. PMID:24765590

  1. Impacts of temperature on primary productivity and respiration in naturally structured macroalgal assemblages.

    Directory of Open Access Journals (Sweden)

    Leigh W Tait

    Full Text Available Rising global temperatures caused by human-mediated change has already triggered significant responses in organismal physiology, distribution and ecosystem functioning. Although the effects of rising temperature on the physiology of individual organisms are well understood, the effect on community-wide processes has remained elusive. The fixation of carbon via primary productivity is an essential ecosystem function and any shifts in the balance of primary productivity and respiration could alter the carbon balance of ecosystems. Here we show through a series of tests that respiration of naturally structured algal assemblages in southern New Zealand greatly increases with rising temperature, with implications for net primary productivity (NPP. The NPP of in situ macroalgal assemblages was minimally affected by natural temperature variation, possibly through photo-acclimation or temperature acclimation responses, but respiration rates and compensating irradiance were negatively affected. However, laboratory experiments testing the impacts of rising temperature on several photosynthetic parameters showed a decline in NPP, increasing respiration rates and increasing compensating irradiance. The respiration Q10 of laboratory assemblages (the difference in metabolic rates over 10°C averaged 2.9 compared to a Q10 of 2 often seen in other autotrophs. However, gross primary productivity (GPP Q10 averaged 2, indicating that respiration was more severely affected by rising temperature. Furthermore, combined high irradiance and high temperature caused photoinhibition in the laboratory, and resulted in 50% lower NPP at high irradiance. Our study shows that communities may be more severely affected by rising global temperatures than would be expected by responses of individual species. In particular, enhanced respiration rates and rising compensation points have the potential to greatly affect the carbon balance of macroalgal assemblages through declines in

  2. Carbon catabolite regulation in Streptomyces: new insights and lessons learned.

    Science.gov (United States)

    Romero-Rodríguez, Alba; Rocha, Diana; Ruiz-Villafán, Beatriz; Guzmán-Trampe, Silvia; Maldonado-Carmona, Nidia; Vázquez-Hernández, Melissa; Zelarayán, Augusto; Rodríguez-Sanoja, Romina; Sánchez, Sergio

    2017-09-01

    One of the most significant control mechanisms of the physiological processes in the genus Streptomyces is carbon catabolite repression (CCR). This mechanism controls the expression of genes involved in the uptake and utilization of alternative carbon sources in Streptomyces and is mostly independent of the phosphoenolpyruvate phosphotransferase system (PTS). CCR also affects morphological differentiation and the synthesis of secondary metabolites, although not all secondary metabolite genes are equally sensitive to the control by the carbon source. Even when the outcome effect of CCR in bacteria is the same, their essential mechanisms can be rather different. Although usually, glucose elicits this phenomenon, other rapidly metabolized carbon sources can also cause CCR. Multiple efforts have been put through to the understanding of the mechanism of CCR in this genus. However, a reasonable mechanism to explain the nature of this process in Streptomyces does not yet exist. Several examples of primary and secondary metabolites subject to CCR will be examined in this review. Additionally, recent advances in the metabolites and protein factors involved in the Streptomyces CCR, as well as their mechanisms will be described and discussed in this review.

  3. Light-dark (12:12) cycle of carbon and nitrogen metabolism in Crocosphaera watsonii WH8501: relation to the cell cycle.

    Science.gov (United States)

    Dron, Anthony; Rabouille, Sophie; Claquin, Pascal; Le Roy, Bertrand; Talec, Amélie; Sciandra, Antoine

    2012-04-01

    This study provides with original data sets on the physiology of the unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501, maintained in continuous culture in conditions of obligate diazotrophy. Cultures were exposed to a 12:12 light-dark regime, representative of what they experience in nature and where growth is expected to be balanced. Nitrogen and carbon metabolism were monitored at high frequency and their dynamics was compared with the cell cycle. Results reveal a daily cycle in the physiological and biochemical parameters, tightly constrained by the timely decoupled processes of N(2) fixation and carbon acquisition. The cell division rate increased concomitantly to carbon accumulation and peaked 6 h into the light. The carbon content reached a maximum at the end of the light phase. N(2) fixation occurred mostly during the dark period and peaked between 9 and 10 h into the night, while DNA synthesis, reflected by DNA fluorescence, increased until the end of the night. Consequently, cells in G1- and S-phases present a marked decrease in their C:N ratio. Nitrogen acquisition through N(2) fixation exceeded 1.3- to 3-fold the nitrogen requirements for growth, suggesting that important amounts of nitrogen are excreted even under conditions supposed to favour balanced, carbon and nitrogen acquisitions. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Constraining Genome-Scale Models to Represent the Bow Tie Structure of Metabolism for 13C Metabolic Flux Analysis

    Directory of Open Access Journals (Sweden)

    Tyler W. H. Backman

    2018-01-01

    Full Text Available Determination of internal metabolic fluxes is crucial for fundamental and applied biology because they map how carbon and electrons flow through metabolism to enable cell function. 13 C Metabolic Flux Analysis ( 13 C MFA and Two-Scale 13 C Metabolic Flux Analysis (2S- 13 C MFA are two techniques used to determine such fluxes. Both operate on the simplifying approximation that metabolic flux from peripheral metabolism into central “core” carbon metabolism is minimal, and can be omitted when modeling isotopic labeling in core metabolism. The validity of this “two-scale” or “bow tie” approximation is supported both by the ability to accurately model experimental isotopic labeling data, and by experimentally verified metabolic engineering predictions using these methods. However, the boundaries of core metabolism that satisfy this approximation can vary across species, and across cell culture conditions. Here, we present a set of algorithms that (1 systematically calculate flux bounds for any specified “core” of a genome-scale model so as to satisfy the bow tie approximation and (2 automatically identify an updated set of core reactions that can satisfy this approximation more efficiently. First, we leverage linear programming to simultaneously identify the lowest fluxes from peripheral metabolism into core metabolism compatible with the observed growth rate and extracellular metabolite exchange fluxes. Second, we use Simulated Annealing to identify an updated set of core reactions that allow for a minimum of fluxes into core metabolism to satisfy these experimental constraints. Together, these methods accelerate and automate the identification of a biologically reasonable set of core reactions for use with 13 C MFA or 2S- 13 C MFA, as well as provide for a substantially lower set of flux bounds for fluxes into the core as compared with previous methods. We provide an open source Python implementation of these algorithms at https://github.com/JBEI/limitfluxtocore.

  5. High-Density Lipoprotein Reduction Differentially Modulates to Classical and Nonclassical Monocyte Subpopulations in Metabolic Syndrome Patients and in LPS-Stimulated Primary Human Monocytes In Vitro

    Science.gov (United States)

    Grün, Johanna L.; Manjarrez-Reyna, Aaron N.; Gómez-Arauz, Angélica Y.; Leon-Cabrera, Sonia; Bueno-Hernández, Nallely; Islas-Andrade, Sergio

    2018-01-01

    The effect of metabolic syndrome on human monocyte subpopulations has not yet been studied. Our main goal was to examine monocyte subpopulations in metabolic syndrome patients, while also identifying the risk factors that could directly influence these cells. Eighty-six subjects were divided into metabolic syndrome patients and controls. Monocyte subpopulations were quantified by flow cytometry, and interleukin- (IL-) 1β secretion levels were measured by ELISA. Primary human monocytes were cultured in low or elevated concentrations of high-density lipoprotein (HDL) and stimulated with lipopolysaccharide (LPS). The nonclassical monocyte (NCM) percentage was significantly increased in metabolic syndrome patients as compared to controls, whereas classical monocytes (CM) were reduced. Among all metabolic syndrome risk factors, HDL reduction exhibited the most important correlation with monocyte subpopulations and then was studied in vitro. Low HDL concentration reduced the CM percentage, whereas it increased the NCM percentage and IL-1β secretion in LPS-treated monocytes. The LPS effect was abolished when monocytes were cultured in elevated HDL concentrations. Concurring with in vitro results, IL-1β serum values significantly increased in metabolic syndrome patients with low HDL levels as compared to metabolic syndrome patients without HDL reduction. Our data demonstrate that HDL directly modulates monocyte subpopulations in metabolic syndrome. PMID:29850624

  6. High-Density Lipoprotein Reduction Differentially Modulates to Classical and Nonclassical Monocyte Subpopulations in Metabolic Syndrome Patients and in LPS-Stimulated Primary Human Monocytes In Vitro

    Directory of Open Access Journals (Sweden)

    Johanna L. Grün

    2018-01-01

    Full Text Available The effect of metabolic syndrome on human monocyte subpopulations has not yet been studied. Our main goal was to examine monocyte subpopulations in metabolic syndrome patients, while also identifying the risk factors that could directly influence these cells. Eighty-six subjects were divided into metabolic syndrome patients and controls. Monocyte subpopulations were quantified by flow cytometry, and interleukin- (IL- 1β secretion levels were measured by ELISA. Primary human monocytes were cultured in low or elevated concentrations of high-density lipoprotein (HDL and stimulated with lipopolysaccharide (LPS. The nonclassical monocyte (NCM percentage was significantly increased in metabolic syndrome patients as compared to controls, whereas classical monocytes (CM were reduced. Among all metabolic syndrome risk factors, HDL reduction exhibited the most important correlation with monocyte subpopulations and then was studied in vitro. Low HDL concentration reduced the CM percentage, whereas it increased the NCM percentage and IL-1β secretion in LPS-treated monocytes. The LPS effect was abolished when monocytes were cultured in elevated HDL concentrations. Concurring with in vitro results, IL-1β serum values significantly increased in metabolic syndrome patients with low HDL levels as compared to metabolic syndrome patients without HDL reduction. Our data demonstrate that HDL directly modulates monocyte subpopulations in metabolic syndrome.

  7. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP

    Science.gov (United States)

    Takeshi Ise; Creighton M. Litton; Christian P. Giardina; Akihiko Ito

    2010-01-01

    Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long�]lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning...

  8. A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production.

    Science.gov (United States)

    Baroukh, Caroline; Muñoz-Tamayo, Rafael; Steyer, Jean-Philippe; Bernard, Olivier

    2015-07-01

    The most promising and yet challenging application of microalgae and cyanobacteria is the production of renewable energy: biodiesel from microalgae triacylglycerols and bioethanol from cyanobacteria carbohydrates. A thorough understanding of microalgal and cyanobacterial metabolism is necessary to master and optimize biofuel production yields. To this end, systems biology and metabolic modeling have proven to be very efficient tools if supported by an accurate knowledge of the metabolic network. However, unlike heterotrophic microorganisms that utilize the same substrate for energy and as carbon source, microalgae and cyanobacteria require light for energy and inorganic carbon (CO2 or bicarbonate) as carbon source. This double specificity, together with the complex mechanisms of light capture, makes the representation of metabolic network nonstandard. Here, we review the existing metabolic networks of photoautotrophic microalgae and cyanobacteria. We highlight how these networks have been useful for gaining insight on photoautotrophic metabolism. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. A bottom-up approach to urban metabolism: the perspective of BRIDGE

    Science.gov (United States)

    Chrysoulakis, N.; Borrego, C.; San Josè, R.; Grimmond, S. B.; Jones, M. B.; Magliulo, V.; Klostermann, J.; Santamouris, M.

    2011-12-01

    Urban metabolism considers a city as a system and usually distinguishes between energy and material flows as its components. "Metabolic" studies are usually top-down approaches that assess the inputs and outputs of food, water, energy, and pollutants from a city, or that compare the changing metabolic process of several cities. In contrast, bottom-up approaches are based on quantitative estimates of urban metabolism components at local to regional scales. Such approaches consider the urban metabolism as the 3D exchange and transformation of energy and matter between a city and its environment. The city is considered as a system and the physical flows between this system and its environment are quantitatively estimated. The transformation of landscapes from primarily agricultural and forest uses to urbanized landscapes can greatly modify energy and material exchanges and it is, therefore, an important aspect of an urban area. Here we focus on the exchanges and transformation of energy, water, carbon and pollutants. Recent advances in bio-physical sciences have led to new methods and models to estimate local scale energy, water, carbon and pollutant fluxes. However, there is often poor communication of new knowledge and its implications to end-users, such as planners, architects and engineers. The FP7 Project BRIDGE (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism) aims at bridging this gap and at illustrating the advantages of considering environmental issues in urban planning. BRIDGE does not perform a complete life cycle analysis or calculate whole system urban metabolism, but rather focuses on specific metabolism components (energy, water, carbon and pollutants). Its main goal is the development of a Decision Suport System (DSS) with the potential to select planning actions which better fit the goal of changing the metabolism of urban systems towards sustainability. BRIDGE evaluates how planning alternatives can modify the physical

  10. A CASE OF METABOLIC SYNDROME

    OpenAIRE

    Khoo Ee Ming; Rabia Khatoon

    2006-01-01

    This case report illustrates a 40-year-old woman who presented with chest discomfort that was subsequently diagnosed to have metabolic syndrome. Metabolic syndrome is a common condition associated with increased cardiovascular morbidity and mortality. As primary care providers, we should be detect this condition early, intervene and prevent appropriately before complications occur.

  11. Carbon isotope composition of intermediates of the starch-malate sequence and level of the crassulacean acid metabolism in leaves of Kalanchoe blossfeldiana Tom Thumb.

    Science.gov (United States)

    Deleens, E; Garnier-Dardart, J; Queiroz, O

    1979-09-01

    Isotype analyses were performed on biochemical fractions isolated from leaves of Kalanchoe blossfeldiana Tom Thumb. during aging under long days or short days. Irrespective of the age or photoperiodic conditions, the intermediates of the starch-malate sequence (starch, phosphorylated compounds and organic acids) have a level of (13)C higher than that of soluble sugars, cellulose and hemicellulose. In short days, the activity of the crassulacean acid metabolism pathway is predominant as compared to that of C3 pathway: leaves accumulate organic acids, rich in (13)C. In long days, the activity of the crassulacean acid metabolism pathway increases as the leaves age, remaining, however, relatively low as compared to that of C3 pathway: leaves accumulate soluble sugars, poor in (13)C. After photoperiodic change (long days→short days), isotopic modifications of starch and organic acids suggest evidence for a lag phase in the establishment of the crassulacean acid metabolism pathway specific to short days. The relative proportions of carbon from a C3-origin (RuBPC acitivity as strong discriminating step, isotope discrimination in vivo=20‰) or C4-origin (PEPC activity as weak discriminating step, isotope discrimination in vivo=4‰) present in the biochemical fractions were calculated from their δ(13)C values. Under long days, 30 to 70% versus 80 to 100% under short days, of the carbon of the intermediates linked to the starch-malate sequence, or CAM pathway (starch, phosphorylated compounds and organic acids), have a C4-origin. Products connected to the C3 pathway (free sugars, cellulose, hemicellulose) have 0 to 50% of their carbon, arising from reuptake of the C4 from malate, under long days versus 30 to 70% under short days.

  12. The importance of (early) folate status to primary and secondary coronary artery disease prevention

    NARCIS (Netherlands)

    Muskiet, FAJ

    2005-01-01

    Folate, methionine, betaine, choline, zinc and Vitamins B-12, B-6 and B-2 are involved in one-carbon metabolism, which includes S-adenosylmethionine (SAM) substrated methylation. Inadequate enzyme activities and imbalances of substrates and cofactors in one-carbon metabolism, together referred to as

  13. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-01-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  14. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-05-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  15. Metabolite profiling approach reveals the interface of primary and secondary metabolism in colored cauliflowers (Brassica oleracea L. ssp. botrytis).

    Science.gov (United States)

    Park, Soo-Yun; Lim, Sun-Hyung; Ha, Sun-Hwa; Yeo, Yunsoo; Park, Woo Tae; Kwon, Do Yeon; Park, Sang Un; Kim, Jae Kwang

    2013-07-17

    In the present study, carotenoids, anthocyanins, and phenolic acids of cauliflowers ( Brassica oleracea L. ssp. botrytis) with various colored florets (white, yellow, green, and purple) were characterized to determine their phytochemical diversity. Additionally, 48 metabolites comprising amino acids, organic acids, sugars, and sugar alcohols were identified using gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). Carotenoid content was considerably higher in green cauliflower; anthocyanins were detected only in purple cauliflower. Phenolic acids were higher in both green and purple cauliflower. Results of partial least-squares discriminant, Pearson correlation, and hierarchical clustering analyses showed that green cauliflower is distinct on the basis of the high levels of amino acids and clusters derived from common or closely related biochemical pathways. These results suggest that GC-TOFMS-based metabolite profiling, combined with chemometrics, is a useful tool for determining phenotypic variation and identifying metabolic networks connecting primary and secondary metabolism.

  16. Protective Effect of Edaravone against Carbon Monoxide Induced Apoptosis in Rat Primary Cultured Astrocytes

    Directory of Open Access Journals (Sweden)

    Xiaodan Xu

    2017-01-01

    Full Text Available Objective. To observe the protective effect of edaravone (Eda on astrocytes after prolonged exposure to carbon monoxide (CO and further to investigate the potential mechanisms of Eda against CO-induced apoptosis. Methods. The rat primary cultured astrocytes were cultured in vitro and exposed to 1% CO for 24 h after being cultured with different concentrations of Eda. MTT assay was used to detect the cytotoxicity of CO. Flow cytometry was used to detect the apoptosis rate, membrane potential of mitochondria, and ROS level. The mRNA and protein expressions of Bcl-2, Bax, and caspase-3 were assessed by real-time PCR and Western blotting analysis, respectively. Results. Eda can significantly suppress cytotoxicity of CO, and it can significantly increase membrane potential of mitochondria and Bcl-2 expressions and significantly suppress the apoptosis rate, ROS level, Bax, and caspase-3 expressions. Conclusion. Eda protects against CO-induced apoptosis in rat primary cultured astrocytes through decreasing ROS production and subsequently inhibiting mitochondrial apoptosis pathway.

  17. Feasible metabolisms in high pH springs of the Philippines.

    Science.gov (United States)

    Cardace, Dawn; Meyer-Dombard, D'Arcy R; Woycheese, Kristin M; Arcilla, Carlo A

    2015-01-01

    A field campaign targeting high pH, H2-, and CH4-emitting serpentinite-associated springs in the Zambales and Palawan Ophiolites of the Philippines was conducted in 2012-2013, and enabled description of several springs sourced in altered pillow basalts, gabbros, and peridotites. We combine field observations of pH, temperature, conductivity, dissolved oxygen, and oxidation-reduction potential with analyses of major ions, dissolved inorganic carbon, dissolved organic carbon, and dissolved gas phases in order to model the activities of selected phases important to microbial metabolism, and to rank feasible metabolic reactions based on energy yield. We document changing geochemical inventories in these springs between sampling years, and examine how the environment supports or prevents the function of certain microbial metabolisms. In all, this geochemistry-based assessment of feasible metabolisms indicates methane cycling, hydrogen oxidation, some iron and sulfur metabolisms, and ammonia oxidation are feasible reactions in this continental site of serpentinization.

  18. Metabolic Evidence of Diminished Lipid Oxidation in Women With Polycystic Ovary Syndrome

    OpenAIRE

    Whigham, Leah D.; Butz, Daniel E.; Dashti, Hesam; Tonelli, Marco; Johnson, LuAnn K.; Cook, Mark E.; Porter, Warren P.; Eghbalnia, Hamid R.; Markley, John L.; Lindheim, Steven R.; Schoeller, Dale A.; Abbott, David H.; Assadi-Porter, Fariba M.

    2014-01-01

    Polycystic ovary syndrome (PCOS), a common female endocrinopathy, is a complex metabolic syndrome of enhanced weight gain. The goal of this pilot study was to evaluate metabolic differences between normal (n=10) and PCOS (n=10) women via breath carbon isotope ratio, urinary nitrogen and nuclear magnetic resonance (NMR)-determined serum metabolites. Breath carbon stable isotopes measured by cavity ring down spectroscopy (CRDS) indicated diminished (p

  19. The Impact of Variable Phytoplankton Stoichiometry on Projections of Primary Production, Food Quality, and Carbon Uptake in the Global Ocean

    Science.gov (United States)

    Kwiatkowski, Lester; Aumont, Olivier; Bopp, Laurent; Ciais, Philippe

    2018-04-01

    Ocean biogeochemical models are integral components of Earth system models used to project the evolution of the ocean carbon sink, as well as potential changes in the physical and chemical environment of marine ecosystems. In such models the stoichiometry of phytoplankton C:N:P is typically fixed at the Redfield ratio. The observed stoichiometry of phytoplankton, however, has been shown to considerably vary from Redfield values due to plasticity in the expression of phytoplankton cell structures with different elemental compositions. The intrinsic structure of fixed C:N:P models therefore has the potential to bias projections of the marine response to climate change. We assess the importance of variable stoichiometry on 21st century projections of net primary production, food quality, and ocean carbon uptake using the recently developed Pelagic Interactions Scheme for Carbon and Ecosystem Studies Quota (PISCES-QUOTA) ocean biogeochemistry model. The model simulates variable phytoplankton C:N:P stoichiometry and was run under historical and business-as-usual scenario forcing from 1850 to 2100. PISCES-QUOTA projects similar 21st century global net primary production decline (7.7%) to current generation fixed stoichiometry models. Global phytoplankton N and P content or food quality is projected to decline by 1.2% and 6.4% over the 21st century, respectively. The largest reductions in food quality are in the oligotrophic subtropical gyres and Arctic Ocean where declines by the end of the century can exceed 20%. Using the change in the carbon export efficiency in PISCES-QUOTA, we estimate that fixed stoichiometry models may be underestimating 21st century cumulative ocean carbon uptake by 0.5-3.5% (2.0-15.1 PgC).

  20. Final report, Feedback limitations of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sharkey, Thomas D.

    1999-07-22

    Final report of research on carbon metabolism of photosynthesis. The feedback from carbon metabolism to primary photosynthetic processes is summarized, and a comprehensive list of published scientific papers is provided.

  1. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    Science.gov (United States)

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  2. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    Directory of Open Access Journals (Sweden)

    Randhir K Bharti

    Full Text Available A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO. The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC, however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  3. The primary results for the mixed carbon material used for high flux steady-state tokamak operation in China

    International Nuclear Information System (INIS)

    Guo, Q.G.; Li, J.G.; Zhai, G.T.; Liu, L.; Song, J.R.; Zhang, L.F.; He, Y.X.; Chen, J.L.

    2001-01-01

    Several types of carbon mixed materials have been developed in China to be used for high flux steady-state tokamak operation. Performance evaluation of these materials is necessary to determine their applicability as PFCs for high flux steady state. This paper describes the primary results of carbon mixed materials and the effects of dopants on properties are primarily discussed. Test results reveal that bulk boronized graphite has excellent physical and mechanical properties while their thermal conductivity is no more than 73 W/m K due to the formation of a uniform boron-carbon solid solution. In case of multi-element doped graphite, titanium dopant or a decreased boron content is favorable to enhance thermal conductivity. A kind of doped graphite has been developed with thermal conductivity as high as 278 W/m K by optimizing the compositions. Correlations among compositions, microstructure and properties of such doped graphite are discussed

  4. Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles.

    Science.gov (United States)

    Hu, Xiangang; Ouyang, Shaohu; Mu, Li; An, Jing; Zhou, Qixing

    2015-09-15

    Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl single-walled carbon nanotubes (C-SWCNT) was compared. The results showed that cell division of Chlorella vulgaris was promoted at 24 h and then inhibited at 96 h after nanomaterial exposure. At 96 h, GO and C-SWCNT inhibited the rates of cell division by 0.08-15% and 0.8-28.3%, respectively. Both GO and C-SWCNT covered the cell surface, but the uptake percentage of C-SWCNT was 2-fold higher than that of GO. C-SWCNT induced stronger plasmolysis and mitochondrial membrane potential loss and decreased the cell viability to a greater extent than GO. Moreover, C-SWCNT-exposed cells exhibited more starch grains and lysosome formation and higher reactive oxygen species (ROS) levels than GO-exposed cells. Metabolomics analysis revealed significant differences in the metabolic profiles among the control, C-SWCNT and GO groups. The metabolisms of alkanes, lysine, octadecadienoic acid and valine was associated with ROS and could be considered as new biomarkers of ROS. The nanotoxicological mechanisms involved the inhibition of fatty acid, amino acid and small molecule acid metabolisms. These findings provide new insights into the effects of GO and C-SWCNT on cellular responses.

  5. Rivastigmine lowers Aβ and increases sAPPα levels, which parallel elevated synaptic markers and metabolic activity in degenerating primary rat neurons.

    Directory of Open Access Journals (Sweden)

    Jason A Bailey

    Full Text Available Overproduction of amyloid-β (Aβ protein in the brain has been hypothesized as the primary toxic insult that, via numerous mechanisms, produces cognitive deficits in Alzheimer's disease (AD. Cholinesterase inhibition is a primary strategy for treatment of AD, and specific compounds of this class have previously been demonstrated to influence Aβ precursor protein (APP processing and Aβ production. However, little information is available on the effects of rivastigmine, a dual acetylcholinesterase and butyrylcholinesterase inhibitor, on APP processing. As this drug is currently used to treat AD, characterization of its various activities is important to optimize its clinical utility. We have previously shown that rivastigmine can preserve or enhance neuronal and synaptic terminal markers in degenerating primary embryonic cerebrocortical cultures. Given previous reports on the effects of APP and Aβ on synapses, regulation of APP processing represents a plausible mechanism for the synaptic effects of rivastigmine. To test this hypothesis, we treated degenerating primary cultures with rivastigmine and measured secreted APP (sAPP and Aβ. Rivastigmine treatment increased metabolic activity in these cultured cells, and elevated APP secretion. Analysis of the two major forms of APP secreted by these cultures, attributed to neurons or glia based on molecular weight showed that rivastigmine treatment significantly increased neuronal relative to glial secreted APP. Furthermore, rivastigmine treatment increased α-secretase cleaved sAPPα and decreased Aβ secretion, suggesting a therapeutic mechanism wherein rivastigmine alters the relative activities of the secretase pathways. Assessment of sAPP levels in rodent CSF following once daily rivastigmine administration for 21 days confirmed that elevated levels of APP in cell culture translated in vivo. Taken together, rivastigmine treatment enhances neuronal sAPP and shifts APP processing toward the

  6. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures

    Science.gov (United States)

    2012-01-01

    Background The methylotrophic yeast Pichia pastoris has emerged as one of the most promising yeast hosts for the production of heterologous proteins. Mixed feeds of methanol and a multicarbon source instead of methanol as sole carbon source have been shown to improve product productivities and alleviate metabolic burden derived from protein production. Nevertheless, systematic quantitative studies on the relationships between the central metabolism and recombinant protein production in P. pastoris are still rather limited, particularly when growing this yeast on mixed carbon sources, thus hampering future metabolic network engineering strategies for improved protein production. Results The metabolic flux distribution in the central metabolism of P. pastoris growing on a mixed feed of glucose and methanol was analyzed by Metabolic Flux Analysis (MFA) using 13C-NMR-derived constraints. For this purpose, we defined new flux ratios for methanol assimilation pathways in P. pastoris cells growing on glucose:methanol mixtures. By using this experimental approach, the metabolic burden caused by the overexpression and secretion of a Rhizopus oryzae lipase (Rol) in P. pastoris was further analyzed. This protein has been previously shown to trigger the unfolded protein response in P. pastoris. A series of 13C-tracer experiments were performed on aerobic chemostat cultivations with a control and two different Rol producing strains growing at a dilution rate of 0.09 h−1 using a glucose:methanol 80:20 (w/w) mix as carbon source. The MFA performed in this study reveals a significant redistristribution of carbon fluxes in the central carbon metabolism when comparing the two recombinant strains vs the control strain, reflected in increased glycolytic, TCA cycle and NADH regeneration fluxes, as well as higher methanol dissimilation rates. Conclusions Overall, a further 13C-based MFA development to characterise the central metabolism of methylotrophic yeasts when growing on mixed

  7. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures

    Directory of Open Access Journals (Sweden)

    Jordà Joel

    2012-05-01

    Full Text Available Abstract Background The methylotrophic yeast Pichia pastoris has emerged as one of the most promising yeast hosts for the production of heterologous proteins. Mixed feeds of methanol and a multicarbon source instead of methanol as sole carbon source have been shown to improve product productivities and alleviate metabolic burden derived from protein production. Nevertheless, systematic quantitative studies on the relationships between the central metabolism and recombinant protein production in P. pastoris are still rather limited, particularly when growing this yeast on mixed carbon sources, thus hampering future metabolic network engineering strategies for improved protein production. Results The metabolic flux distribution in the central metabolism of P. pastoris growing on a mixed feed of glucose and methanol was analyzed by Metabolic Flux Analysis (MFA using 13C-NMR-derived constraints. For this purpose, we defined new flux ratios for methanol assimilation pathways in P. pastoris cells growing on glucose:methanol mixtures. By using this experimental approach, the metabolic burden caused by the overexpression and secretion of a Rhizopus oryzae lipase (Rol in P. pastoris was further analyzed. This protein has been previously shown to trigger the unfolded protein response in P. pastoris. A series of 13C-tracer experiments were performed on aerobic chemostat cultivations with a control and two different Rol producing strains growing at a dilution rate of 0.09 h−1 using a glucose:methanol 80:20 (w/w mix as carbon source. The MFA performed in this study reveals a significant redistristribution of carbon fluxes in the central carbon metabolism when comparing the two recombinant strains vs the control strain, reflected in increased glycolytic, TCA cycle and NADH regeneration fluxes, as well as higher methanol dissimilation rates. Conclusions Overall, a further 13C-based MFA development to characterise the central metabolism of methylotrophic

  8. Absorption, tissue distribution, excretion, and metabolism of clothianidin in rats.

    Science.gov (United States)

    Yokota, Tokunori; Mikata, Kazuki; Nagasaki, Hiromi; Ohta, Kazunari

    2003-11-19

    Absorption, distribution, excretion, and metabolism of clothianidin [(E)-1-(2-chloro-1,3-thiazol-5-ylmethyl)-3-methyl-2-nitroguanidine] were investigated after a single oral administration of [nitroimino-(14)C]- or [thiazolyl-2-(14)C]clothianidin to male and female rats at a dose of 5 mg/kg of body weight (bw) (low dose) or 250 mg/kg of bw (high dose). The maximum concentration of carbon-14 in blood occurred 2 h after administration of the low oral dose for both labeled clothianidins, and then the concentration of carbon-14 in blood decreased with a half-life of 2.9-4.0 h. The orally administered carbon-14 was rapidly and extensively distributed to all tissues and organs within 2 h after administration, especially to the kidney and liver, but was rapidly and almost completely eliminated from all tissues and organs with no evidence of accumulation. The orally administered carbon-14 was almost completely excreted into urine and feces within 2 days after administration, and approximately 90% of the administered dose was excreted via urine. The major compound in excreta was clothianidin, accounting for >60% of the administered dose. The major metabolic reactions of clothianidin in rats were oxidative demethylation to form N-(2-chlorothiazol-5-ylmethyl)-N'-nitroguanidine and the cleavage of the carbon-nitrogen bond between the thiazolylmethyl moiety and the nitroguanidine moiety. The part of the molecule containing the nitroguanidine moiety was transformed mainly to N-methyl-N'-nitroguanidine, whereas the thiazol moiety was further metabolized to 2-(methylthio)thiazole-5-carboxylic acid. With the exception of the transiently delayed excretion of carbon-14 at the high-dose level, the rates of biokinetics, excretion, distribution, and metabolism of clothianidin were not markedly influenced by dose level and sex.

  9. FDG metabolism and uptake versus blood flow in women with untreated primary breast cancers

    International Nuclear Information System (INIS)

    Zasadny, Kenneth R.; Tatsumi, Mitsuaki; Wahl, Richard L.

    2003-01-01

    The aim of this study was to determine the relationship between tumor blood flow and glucose utilization in women with untreated primary breast carcinomas. Noninvasive determinations of blood flow and glucose utilization with positron emission tomography (PET) were performed in 101 regions of tumor from nine women with untreated primary breast carcinoma. [ 15 O]H 2 O PET scans of tumor blood flow were compared with fluorine-18 fluoro-2-deoxy-D-glucose (FDG) PET scans of tumor glucose metabolism. Modeling of multiple parameters was undertaken and flow and glucose utilization compared. Mean whole-tumor blood flow was 14.9 ml dl -1 min -1 , but ranged from 7.6 to 29.2 ml dl -1 min -1 . Mean whole-tumor standardized uptake value corrected for lean body mass, SUV-lean (50-60 min), was 2.32±0.19 while mean K i was 1.2 ml dl -1 min -1 for FDG. SUV-lean and blood flow were strongly correlated (r=0.82, P=0.007) as were K 1 for FDG and flow (r=0.84, P=0.004). In these women with untreated breast cancers, FDG uptake (SUV-lean) and tumor blood flow are strongly correlated. The slope of FDG uptake versus blood flow appears higher at low flow rates, suggesting the possible presence of areas of tumor hypoxia. (orig.)

  10. Noninvasive imaging of brain oxygen metabolism in children with primary nocturnal enuresis during natural sleep.

    Science.gov (United States)

    Yu, Bing; Huang, Mingzhu; Zhang, Xu; Ma, Hongwei; Peng, Miao; Guo, Qiyong

    2017-05-01

    A series of studies have revealed that nocturnal enuresis is closely related to hypoxia in children with primary nocturnal enuresis (PNE). However, brain oxygen metabolism of PNE children has not been investigated before. The purpose of this study was to investigate changes in whole-brain cerebral metabolic rate of oxygen (CMRO 2 ), cerebral blood flow (CBF), and oxygen extraction fraction (OEF) in children suffering from PNE. We used the newly developed T2-relaxation-under-spin-tagging (TRUST) magnetic resonance imaging technique. Neurological evaluation, structural imaging, phase-contrast, and the TRUST imaging method were applied in children with PNE (n = 37) and healthy age- and sex-matched control volunteers (n = 39) during natural sleep to assess whole-brain CMRO 2 , CBF, OEF, and arousal from sleep scores. Results showed that whole-brain CMRO 2 and OEF values of PNE children were higher in controls, while there was no significant difference in CBF. Consequently, OEF levels of PNE children were increased to maintain oxygen supply. The elevation of OEF was positively correlated with the difficulty of arousal. Our results provide the first evidence that high oxygen consumption and high OEF values could make PNE children more susceptible to hypoxia, which may induce cumulative arousal deficits and make them more prone to nocturnal enuresis. Hum Brain Mapp 38:2532-2539, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. [1-14C]Glycolate metabolism and serine biosynthesis in soybean plants

    International Nuclear Information System (INIS)

    Calmes, J.; Viala, G.; Latche, J.C.; Cavalie, G.

    1977-01-01

    [1- 14 C]Glycolate metabolism was examined in leafy shoots of soybean plants (Glycine max (L.) Merr., var. Adepta). Only small amounts of 14 C were incorporated into evolved carbon dioxide and glucidic compounds. Free and protein glycine was labelled but higher levels of radioactivity were found in free serine. Changes in the distribution of 14 C with time showed that metabolic conversion glycollate → glycine → serine occurred very early and serine biosynthesis was more important in the shoot than in the leaves. Carbon dioxide labelling was always slight compared to serine labelling. These data suggest strong relations between glycollate and nitrogen metabolism

  12. The Kane Experimental Forest carbon inventory: Carbon reporting with FVS

    Science.gov (United States)

    Coeli Hoover

    2008-01-01

    As the number of state and regional climate change agreements grows, so does the need to assess the carbon implications of planned forest management actions. At the operational level, producing detailed stock estimates for the primary carbon pools becomes time-consuming and cumbersome. Carbon reporting functionality has been fully integrated within the Forest...

  13. Metabolite secretion in microorganisms: the theory of metabolic overflow put to the test

    DEFF Research Database (Denmark)

    Pinu, Farhana R.; Granucci, Ninna; Daniell, James

    2018-01-01

    Introduction Microbial cells secrete many metabolites during growth, including important intermediates of the central carbon metabolism. This has not been taken into account by researchers when modeling microbial metabolism for metabolic engineering and systems biology studies. Materials and Meth...

  14. Co-Adsorption of Ammonia and Formaldehyde on Regenerable Carbon Sorbents for the Primary Life Support System (PLSS)

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique S.

    2016-01-01

    Results are presented on the development of a reversible carbon sorbent for trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is deemed non-regenerable, while the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. Data on concurrent sorption and desorption of ammonia and formaldehyde, which are major TCs of concern, are presented in this paper. A carbon sorbent was fabricated by dry impregnation of a reticulated carbon-foam support with polyvinylidene chloride, followed by carbonization and thermal oxidation in air. Sorbent performance was tested for ammonia and formaldehyde sorption and vacuum regeneration, with and without water present in the gas stream. It was found that humidity in the gas phase enhanced ammonia-sorption capacity by a factor larger than two. Co-adsorption of ammonia and formaldehyde in the presence of water resulted in strong formaldehyde sorption (to the point that it was difficult to saturate the sorbent on the time scales used in this study). In the absence of humidity, adsorption of formaldehyde on the carbon surface was found to impair ammonia sorption in subsequent runs; in the presence of water, however, both ammonia and formaldehyde could be efficiently removed from the gas phase by the sorbent. The efficiency of vacuum regeneration could be enhanced by gentle heating to temperatures below 60 deg.

  15. The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions

    Science.gov (United States)

    Adler, Philipp; Frey, Lasse Jannis; Berger, Antje; Bolten, Christoph Josef; Hansen, Carl Erik

    2014-01-01

    Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present. PMID:24837393

  16. Nitrogen and carbon limitation of planktonic primary production and phytoplankton-bacterioplankton coupling in ponds on the McMurdo Ice Shelf, Antarctica

    DEFF Research Database (Denmark)

    Sorrell, B.K.; Hawes, I.; Safi, K.

    2013-01-01

    The nature of nutrient limitation and coupling of planktonic primary and secondary production were investigated in meltwater ponds of the Ross Ice Shelf, Antarctica, using regression tree analysis and multiple regression. Phytoplankton were primaril N-limited but inorganic carbon apparently co...

  17. DL-7-azatryptophan and citrulline metabolism in the cyanobacterium Anabaena sp. strain 1F

    International Nuclear Information System (INIS)

    Chen, C.H.; Van Baalen, C.; Tabita, F.R.

    1987-01-01

    An alternative route for the primary assimilation of ammonia proceeds via glutamine synthetase-carbamyl phosphate synthetase and its inherent glutaminase activity in Anabaena sp. strain 1F, a marine filamentous, heterocystous cyanobacterium. Evidence for the presence of this possible alternative route to glutamate was provided by the use of amino acid analogs as specific enzyme inhibitors, enzymological studies, and radioistopic labeling experiments. The amino acid pool patterns of continuous cultures of Anabaena sp. strain 1F were markedly influenced by the nitrogen source. A relatively high concentration of glutamate was maintained in the amino acid pools of all cultures irrespective of the nitrogen source, reflecting the central role of glutamate in nitrogen metabolism. The addition of 1.0 microM azaserine increased the intracellular pools of glutamate and glutamine. All attempts to detect any enzymatic activity for glutamate synthase by measuring the formation of L-[ 14 C]glutamate from 2-keto-[1- 14 C]glutarate and glutamine failed. The addition of 10 microM DL-7-azatryptophan caused a transient accumulation of intracellular citrulline and alanine which was not affected by the presence of chloramphenicol. The in vitro activity of carbamyl phosphate synthetase and glutaminase increased severalfold in the presence of azatryptophan. Results from radioisotopic labeling experiments with [ 14 C]bicarbonate and L-[1- 14 C]ornithine also indicated that citrulline was formed via carbamyl phosphate synthetase and ornithine transcarbamylase. In addition to its effects on nitrogen metabolism, azatryptophan also affected carbon metabolism by inhibiting photosynthetic carbon assimilation and photosynthetic oxygen evolution

  18. Metabolic reduction of phenylpropanoid compounds in primary leaves of rye (Secale cereale L.) leads to increased UV-B sensitivity of photosynthesis

    International Nuclear Information System (INIS)

    Reuber, S.; Leitsch, J.; Krause, G.H.; Weissenböck, G.

    1993-01-01

    The present study was undertaken in order to investigate the suitability of certain markers for UV plant response. In addition, we attempted to link the internal tissue distribution of specific UV-absorbing compounds to profiles of radiation gradients within intact primary rye leaves (Secale cereale L. cv. Kustro). Etiolated rye seedlings irradiated with low visible light (LL) and/or UV radiation were used to study enzyme activities of the two key enzymes, phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS), together with the tissue-specific accumulation of soluble phenylpropanoid products. Plants grown under relatively high visible light (HL) with or without supplementary UV-B radiation were used for further characterization. Apparent quantum yield and fluorescence quenching parameters were monitored to assess potential physiological changes due to UV-B exposure in HL-grown seedlings. A quartz fibreoptic microprobe was used to characterize the internal UV-B gradient of the leaf. The response of the phenylpropanoid metabolism to UV radiation was similar in primary leaves of both etiolated and HL-treated green plants. The epidermis-specific flavonoids together with CHS activity turned out to be suitable markers for assessing the effect of UV on the phenolic metabolism. The functional role of phenylpropanoid compounds was strongly implicated in protecting rye from UV-B radiation

  19. P-Ser-HPr-a link between carbon metabolism and the virulence of some pathogenic bacteria

    DEFF Research Database (Denmark)

    Mijakovic, Ivan

    2005-01-01

    HPr kinase/phosphorylase phosphorylates HPr, a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system, at serine-46. P-Ser-HPr is the central regulator of carbon metabolism in Gram-positive bacteria, but also plays a role in virulence development of certain...... pathogens. In Listeria monocytogenes, several virulence genes, which depend on the transcription activator PrfA, are repressed by glucose, fructose, etc., in a catabolite repressor (CcpA)-independent mechanism. However, the catabolite co-repressor P-Ser-HPr was found to inhibit the activity of Prf...... is preceded by an operator site, which serves as target for the CcpA/P-Ser-HPr complex. Numerous Gram-negative pathogens also contain hprK, which is often organised in an operon with transcription regulators necessary for the development of virulence, indicating that in these organisms P-Ser-HPr also plays...

  20. Microbial Development and Metabolic Engineering | Bioenergy | NREL

    Science.gov (United States)

    Diversity Our genetically engineered microbes utilize a variety of feedstock including cellulose, xylan , syngas, simple sugars, organic acids, and carbon dioxide (CO2). We have modified the metabolic pathways

  1. DRUM: a new framework for metabolic modeling under non-balanced growth. Application to the carbon metabolism of unicellular microalgae.

    Science.gov (United States)

    Baroukh, Caroline; Muñoz-Tamayo, Rafael; Steyer, Jean-Philippe; Bernard, Olivier

    2014-01-01

    Metabolic modeling is a powerful tool to understand, predict and optimize bioprocesses, particularly when they imply intracellular molecules of interest. Unfortunately, the use of metabolic models for time varying metabolic fluxes is hampered by the lack of experimental data required to define and calibrate the kinetic reaction rates of the metabolic pathways. For this reason, metabolic models are often used under the balanced growth hypothesis. However, for some processes such as the photoautotrophic metabolism of microalgae, the balanced-growth assumption appears to be unreasonable because of the synchronization of their circadian cycle on the daily light. Yet, understanding microalgae metabolism is necessary to optimize the production yield of bioprocesses based on this microorganism, as for example production of third-generation biofuels. In this paper, we propose DRUM, a new dynamic metabolic modeling framework that handles the non-balanced growth condition and hence accumulation of intracellular metabolites. The first stage of the approach consists in splitting the metabolic network into sub-networks describing reactions which are spatially close, and which are assumed to satisfy balanced growth condition. The left metabolites interconnecting the sub-networks behave dynamically. Then, thanks to Elementary Flux Mode analysis, each sub-network is reduced to macroscopic reactions, for which simple kinetics are assumed. Finally, an Ordinary Differential Equation system is obtained to describe substrate consumption, biomass production, products excretion and accumulation of some internal metabolites. DRUM was applied to the accumulation of lipids and carbohydrates of the microalgae Tisochrysis lutea under day/night cycles. The resulting model describes accurately experimental data obtained in day/night conditions. It efficiently predicts the accumulation and consumption of lipids and carbohydrates.

  2. DRUM: a new framework for metabolic modeling under non-balanced growth. Application to the carbon metabolism of unicellular microalgae.

    Directory of Open Access Journals (Sweden)

    Caroline Baroukh

    Full Text Available Metabolic modeling is a powerful tool to understand, predict and optimize bioprocesses, particularly when they imply intracellular molecules of interest. Unfortunately, the use of metabolic models for time varying metabolic fluxes is hampered by the lack of experimental data required to define and calibrate the kinetic reaction rates of the metabolic pathways. For this reason, metabolic models are often used under the balanced growth hypothesis. However, for some processes such as the photoautotrophic metabolism of microalgae, the balanced-growth assumption appears to be unreasonable because of the synchronization of their circadian cycle on the daily light. Yet, understanding microalgae metabolism is necessary to optimize the production yield of bioprocesses based on this microorganism, as for example production of third-generation biofuels. In this paper, we propose DRUM, a new dynamic metabolic modeling framework that handles the non-balanced growth condition and hence accumulation of intracellular metabolites. The first stage of the approach consists in splitting the metabolic network into sub-networks describing reactions which are spatially close, and which are assumed to satisfy balanced growth condition. The left metabolites interconnecting the sub-networks behave dynamically. Then, thanks to Elementary Flux Mode analysis, each sub-network is reduced to macroscopic reactions, for which simple kinetics are assumed. Finally, an Ordinary Differential Equation system is obtained to describe substrate consumption, biomass production, products excretion and accumulation of some internal metabolites. DRUM was applied to the accumulation of lipids and carbohydrates of the microalgae Tisochrysis lutea under day/night cycles. The resulting model describes accurately experimental data obtained in day/night conditions. It efficiently predicts the accumulation and consumption of lipids and carbohydrates.

  3. Citrate metabolism and its complications in non-massive blood transfusions: association with decompensated metabolic alkalosis+respiratory acidosis and serum electrolyte levels.

    Science.gov (United States)

    Bıçakçı, Zafer; Olcay, Lale

    2014-06-01

    Metabolic alkalosis, which is a non-massive blood transfusion complication, is not reported in the literature although metabolic alkalosis dependent on citrate metabolism is reported to be a massive blood transfusion complication. The aim of this study was to investigate the effect of elevated carbon dioxide production due to citrate metabolism and serum electrolyte imbalance in patients who received frequent non-massive blood transfusions. Fifteen inpatients who were diagnosed with different conditions and who received frequent blood transfusions (10-30 ml/kg/day) were prospectively evaluated. Patients who had initial metabolic alkalosis (bicarbonate>26 mmol/l), who needed at least one intensive blood transfusion in one-to-three days for a period of at least 15 days, and whose total transfusion amount did not fit the massive blood transfusion definition (alkalosis+respiratory acidosis developed as a result of citrate metabolism. There was a positive correlation between cumulative amount of citrate and the use of fresh frozen plasma, venous blood pH, ionized calcium, serum-blood gas sodium and mortality, whereas there was a negative correlation between cumulative amount of citrate and serum calcium levels, serum phosphorus levels and amount of urine chloride. In non-massive, but frequent blood transfusions, elevated carbon dioxide production due to citrate metabolism causes intracellular acidosis. As a result of intracellular acidosis compensation, decompensated metabolic alkalosis+respiratory acidosis and electrolyte imbalance may develop. This situation may contribute to the increase in mortality. In conclusion, it should be noted that non-massive, but frequent blood transfusions may result in certain complications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Lisosan G, a powder of grain, does not interfere with the drug metabolizing enzymes and has a protective role on carbon tetrachloride-induced hepatotoxicity.

    Science.gov (United States)

    Longo, Vincenzo; Chirulli, Vera; Gervasi, Pier Giovanni; Nencioni, Simona; Pellegrini, Michela

    2007-08-01

    Lisosan G is a powder of grain registered as an alimentary integrator. The treatment of rats for 4 days with 0.5 g Lisosan G/kg had no effect on various drug metabolizing enzymes. Experiments in vitro showed that Lisosan G had radical scavenger activity. A confirmation of the antioxidative property of Lisosan G was also confirmed when it was administered in vivo to carbon tetrachloride (CCl(4))-intoxicated rats. The toxicity caused by CCl(4)-treatment of rats was restored to the control levels when the rats were given Lisosan G for 4 days before CCl(4). Lisosan G thus does not interfere with drug metabolizing system but has antioxidant properties and protects against CCl(4)-induced hepatotoxicity.

  5. Effects of Conservation Tillage on Topsoil Microbial Metabolic Characteristics and Organic Carbon within Aggregates under a Rice (Oryza sativa L.) –Wheat (Triticum aestivum L.) Cropping System in Central China

    Science.gov (United States)

    Liu, Tian-Qi; Cao, Cou-Gui; Li, Cheng-Fang

    2016-01-01

    Investigating microbial metabolic characteristics and soil organic carbon (SOC) within aggregates and their relationships under conservation tillage may be useful in revealing the mechanism of SOC sequestration in conservation tillage systems. However, limited studies have been conducted to investigate the relationship between SOC and microbial metabolic characteristics within aggregate fractions under conservation tillage. We hypothesized that close relationships can exist between SOC and microbial metabolic characteristics within aggregates under conservation tillage. In this study, a field experiment was conducted from June 2011 to June 2013 following a split-plot design of a randomized complete block with tillage practices [conventional intensive tillage (CT) and no tillage (NT)] as main plots and straw returning methods [preceding crop residue returning (S, 2100−2500 kg C ha−1) and removal (NS, 0 kg C ha-1)] as subplots with three replications. The objective of this study was to reveal the effects of tillage practices and residue-returning methods on topsoil microbial metabolic characteristics and organic carbon (SOC) fractions within aggregates and their relationships under a rice–wheat cropping system in central China. Microbial metabolic characteristics investigated using the Biolog system was examined within two aggregate fractions (>0.25 and 0.25 aggregate, and 0.25 mm aggregate (11.3%), and 0.25 mm aggregate, and 0.25 mm aggregate, and tillage (NT and S) increased microbial metabolic activities and Shannon index in >0.25 and directly improved SOC by promoting DOC in >0.25 mm aggregate in the upper (0−5 cm) soil layer under conservation tillage systems, as well as directly and indirectly by promoting DOC and MBC in tillage increased SOC in aggregates in the topsoil by improving microbial metabolic activities. PMID:26731654

  6. Carbon-ion radiotherapy for locally advanced primary or postoperative recurrent epithelial carcinoma of the lacrimal gland

    International Nuclear Information System (INIS)

    Mizoguchi, Nobutaka; Tsuji, Hiroshi; Toyama, Shingo; Kamada, Tadashi; Tsujii, Hirohiko; Nakayama, Yuko; Mizota, Atsushi; Ohnishi, Yoshitaka

    2015-01-01

    Purpose: To evaluate the applicability of carbon ion beams for the treatment of carcinoma of the lacrimal gland with regard to normal tissue morbidity and local tumor control. Methods and materials: Between April 2002 and January 2011, 21 patients with locally advanced primary epithelial carcinoma of the lacrimal gland were enrolled in a Phase I/II clinical trial of carbon-ion radiotherapy (CIRT) at the National Institute of Radiological Sciences. Acute radiation toxicity was the primary endpoint of this dose-escalation study and the late toxicity, local control, and overall survival were additionally evaluated as secondary endpoints. Of the 21 subjects enrolled, all patients were followed for more than 6 months and analyzed. Results: The radiation dose was increased from the initial dose of 48.0 Gy equivalents (GyE)/12 fractions at 10% increments up to 52.8 GyE. Of the 21 patients, five received a total dose of 48.0 GyE, and 16 received a total dose of 52.8 GyE. No patient developed grade 3 or higher skin toxicity. As late ocular/visual toxicity, three patients had grade 3 retinopathy and seven patients lost their vision. Among the 10 patients treated until May 2005, five patients had local recurrence, three of whom had marginal recurrence. Therefore, the margin for the CTV (clinical target volume) was set to a range according to the orbital exenteration since June 2005. After the application of the extended margin, no local recurrence has been observed. The three-year overall survival and local control rates were 82.2% and 79.0%, respectively. Conclusion: CIRT can be applied for primary epithelial carcinoma of the lacrimal gland, with a borderline acceptable morbidity and sufficient antitumor effect when an extended margin is adopted

  7. Carbonate-silicate cycle models of the long-term carbon cycle, carbonate accumulation in the oceans, and climate

    International Nuclear Information System (INIS)

    Caldeira, K.G.

    1991-01-01

    Several models of the long-term carbon cycle, incorporating models of the carbonate-silicate cycle, were developed and utilized to investigate issues relating to global climate and the causes and consequences of changes in calcium carbonate accumulation in the oceans. Model results indicate that the marked mid-Cretaceous (120 Ma) global warming could be explained by increased rates of release of carbon dioxide from subduction-zone metamorphism and mid-ocean-ridges, in conjunction with paleogeographic factors. Since the mid-Cretaceous, the primary setting for calcium carbonate accumulation in the oceans has shifted from shallow-water to deep-water environments. Model results suggest that this shift could have major consequences for the carbonate-silicate cycle and climate, and lead to significant increases in the flux of metamorphic carbon dioxide to the atmosphere. Increases in pelagic carbonate productivity, and decreases in tropical shallow-water area available for neritic carbonate accumulation, have both been proposed as the primary cause of this shift. Two lines of evidence developed here (one involving a statistical analysis of Tertiary carbonate-accumulation and oxygen-isotope data, and another based on modeling the carbonate-silicate cycle and ocean chemistry) suggest that a decrease in tropical shallow-water area was more important than increased pelagic productivity in explaining this shift. Model investigations of changes in ocean chemistry at the Cretaceous/Tertiary (K/T) boundary (66 Ma) indicate that variations in deep-water carbonate productivity may affect shallow-water carbonate accumulation rates through a mechanism involving surface-water carbonate-ion concentration. In the aftermath of the K/T boundary event, deep-water carbonate production and accumulation were significantly reduced as a result of the extinction of calcareous plankton

  8. Inorganic carbon availability in benthic diatom communities: photosynthesis and migration.

    Science.gov (United States)

    Marques da Silva, Jorge; Cruz, Sónia; Cartaxana, Paulo

    2017-09-05

    Diatom-dominated microphytobenthos (MPB) is the main primary producer of many intertidal and shallow subtidal environments, being therefore of critical importance to estuarine and coastal food webs. Owing to tidal cycles, intertidal MPB diatoms are subjected to environmental conditions far more variable than the ones experienced by pelagic diatoms (e.g. light, temperature, salinity, desiccation and nutrient availability). Nevertheless, benthic diatoms evolved adaptation mechanisms to these harsh conditions, including the capacity to move within steep physical and chemical gradients, allowing them to perform photosynthesis efficiently. In this contribution, we will review present knowledge on the effects of dissolved inorganic carbon (DIC) availability on photosynthesis and productivity of diatom-dominated MPB. We present evidence of carbon limitation of photosynthesis in benthic diatom mats and highly productive MPB natural communities. Furthermore, we hypothesize that active vertical migration of epipelic motile diatoms could overcome local depletion of DIC in the photic layer, providing the cells alternately with light and inorganic carbon supply. The few available longer-term experiments on the effects of inorganic carbon enrichment on the productivity of diatom-dominated MPB have yielded inconsistent results. Therefore, further studies are needed to properly assess the response of MPB communities to increased CO 2 and ocean acidification related to climate change.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  9. Understanding Regulation of Metabolism through Feasibility Analysis

    Science.gov (United States)

    Nikerel, Emrah; Berkhout, Jan; Hu, Fengyuan; Teusink, Bas; Reinders, Marcel J. T.; de Ridder, Dick

    2012-01-01

    Understanding cellular regulation of metabolism is a major challenge in systems biology. Thus far, the main assumption was that enzyme levels are key regulators in metabolic networks. However, regulation analysis recently showed that metabolism is rarely controlled via enzyme levels only, but through non-obvious combinations of hierarchical (gene and enzyme levels) and metabolic regulation (mass action and allosteric interaction). Quantitative analyses relating changes in metabolic fluxes to changes in transcript or protein levels have revealed a remarkable lack of understanding of the regulation of these networks. We study metabolic regulation via feasibility analysis (FA). Inspired by the constraint-based approach of Flux Balance Analysis, FA incorporates a model describing kinetic interactions between molecules. We enlarge the portfolio of objectives for the cell by defining three main physiologically relevant objectives for the cell: function, robustness and temporal responsiveness. We postulate that the cell assumes one or a combination of these objectives and search for enzyme levels necessary to achieve this. We call the subspace of feasible enzyme levels the feasible enzyme space. Once this space is constructed, we can study how different objectives may (if possible) be combined, or evaluate the conditions at which the cells are faced with a trade-off among those. We apply FA to the experimental scenario of long-term carbon limited chemostat cultivation of yeast cells, studying how metabolism evolves optimally. Cells employ a mixed strategy composed of increasing enzyme levels for glucose uptake and hexokinase and decreasing levels of the remaining enzymes. This trade-off renders the cells specialized in this low-carbon flux state to compete for the available glucose and get rid of over-overcapacity. Overall, we show that FA is a powerful tool for systems biologists to study regulation of metabolism, interpret experimental data and evaluate hypotheses. PMID

  10. Impacts of 2°C global warming on primary production and soil carbon storage capacity at pan-European level

    Directory of Open Access Journals (Sweden)

    Abdulla Sakalli

    2017-08-01

    Full Text Available Atmospheric CO2 has been dramatically increasing since beginning of the industrial time (i.e. 1860, being one of the main driver for climate change at regional and global level. The change in CO2 concentration in the atmosphere, together with that of temperature, precipitation and/or so radiation, can influence the biogeochemical cycles in all ecosystems. In this study, we investigate the combined effect of CO2 concentration and six climate variables on carbon uptake, i.e., gross primary production (GPP and carbon storage, i.e, soil carbon (SoilC in terrestrial biosphere by using the Community Land Model (CLM vers. 4.5 and evaluate the model’s results against available observation data. We also analysed the change in carbon uptake and storage under a 2°C global mean warming. Results show that the model performed reasonably well for GPP and SoilC at pan-European scale. We also found a positive correlation between GPP, precipitation and surface wind, and a negative correlation between GPP and surface downwelling longwave radiation (rlds. Under a 2°C global warming, GPP and SoilC show an increase, an average, of about 20%, and 5% at pan-European scale, respectively. However, our results indicate that CLM4.5 may need improvements particularly in carbon-nitrogen interaction and carbon accumulation in soil.

  11. Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models

    Directory of Open Access Journals (Sweden)

    B. Schneider

    2008-04-01

    Full Text Available Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP and export production (EP of particulate organic carbon (POC. Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation. Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006 with stronger stratification (higher sea surface temperature; SST being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL also reproduces the inverse relationship between stratification (SST and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.

  12. Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot

    Directory of Open Access Journals (Sweden)

    Alejandro eBecerra-Moreno

    2015-10-01

    Full Text Available Abstract: The application of postharvest abiotic stresses is an effective strategy to activate the primary and secondary metabolism of plants inducing the accumulation of antioxidant phenolic compounds. In the present study, the effect of water stress applied alone and in combination with wounding stress on the activation of primary (shikimic acid and secondary (phenylpropanoid metabolic pathways related with the accumulation of phenolic compound in plants was evaluated. Carrot (Daucus carota was used as model system for this study, and the effect of abiotic stresses was evaluated at the gene expression level and on the accumulation of metabolites. As control of the study, whole carrots were stored under the same conditions. Results demonstrated that water stress activated the primary and secondary metabolism of carrots, favoring the lignification process. Likewise, wounding stress induced higher activation of the primary and secondary metabolism of carrots as compared to water stress alone, leading to higher accumulation of shikimic acid, phenolic compounds and lignin. Additional water stress applied on wounded carrots exerted a synergistic effect on the wound-response at the gene expression level. For instance, when wounded carrots were treated with water stress, the tissue showed 20- and 14-fold increases in the relative expression of 3-deoxy-D-arabino-heptulosanate synthase and phenylalanine ammonia-lyase genes, respectively. However, since lignification was increased, lower accumulation of phenolic compounds was detected. Indicatively, at 48 h of storage, wounded carrots treated with water stress showed ~31% lower levels of phenolic compounds and ~23% higher lignin content as compared with wounded controls. In the present study, it was demonstrated that water stress is one of the pivotal mechanism of the wound-response in carrot. Results allowed the elucidation of strategies to induce the accumulation of specific primary or secondary

  13. Something Old, Something New: Conserved Enzymes and the Evolution of Novelty in Plant Specialized Metabolism1

    Science.gov (United States)

    Moghe, Gaurav D.; Last, Robert L.

    2015-01-01

    Plants produce hundreds of thousands of small molecules known as specialized metabolites, many of which are of economic and ecological importance. This remarkable variety is a consequence of the diversity and rapid evolution of specialized metabolic pathways. These novel biosynthetic pathways originate via gene duplication or by functional divergence of existing genes, and they subsequently evolve through selection and/or drift. Studies over the past two decades revealed that diverse specialized metabolic pathways have resulted from the incorporation of primary metabolic enzymes. We discuss examples of enzyme recruitment from primary metabolism and the variety of paths taken by duplicated primary metabolic enzymes toward integration into specialized metabolism. These examples provide insight into processes by which plant specialized metabolic pathways evolve and suggest approaches to discover enzymes of previously uncharacterized metabolic networks. PMID:26276843

  14. Folic acid, one-carbon metabolism & childhood cancer

    Directory of Open Access Journals (Sweden)

    Nirmalya Roy Moulik

    2017-01-01

    Full Text Available Folate has been studied in relation to many diseases, especially cancer. Although it has been postulated to exert a dual effect on development of cancer, its role remains to be clearly defined. Its effect on cancer is the result of gene-nutrient interaction between the genes in folate metabolic pathway and dietary folate availability; mutations in genes of folate metabolism have been shown to alter individual susceptibility to certain childhood cancers as well as response to cancer chemotherapy. Although mandatory fortification of food items with folate has been initiated in some countries, many countries are yet to adopt this due to concerns about undesired adverse effects of high folate levels on health, especially cancer. However, initial reports suggest that folate fortification has led to reduction in incidence of certain childhood cancers such as neuroblastoma, wilms tumour and leukaemias. Despite studies showing folate depletion during antifolate chemotherapy and higher toxicity of chemotherapy in folate-depleted individuals, folate supplementation during cancer chemotherapy is not routinely recommended. Studies investigating the precise effect of folate supplementation during chemotherapy on both short- and long-term outcomes of cancer are needed to arrive at a consensus guideline.

  15. Carbon budgets for two Portuguese estuaries: implications for the management and conservation of coastal waters

    Directory of Open Access Journals (Sweden)

    Ana P. Oliveira

    2014-07-01

    The results presented illustrate that Tagus and Sado estuaries represent an important land/ocean boundary for carbon transformation and emission, and confirm the anthropogenic pressure that these estuaries are subject to. Carbon budgets vary markedly within and between these two estuaries reflecting the human pressure. Anthropogenic inputs, autochthonous carbon production and primary production are indicated as the main responsible for the carbon production within the estuaries. Both estuaries export carbon to the ocean and to the atmosphere. The inorganic carbon faction has a major role in the carbon budget, enriching the ocean in carbon dioxide, contributing this for the greenhouse effect. Our understanding of organic and inorganic carbon fluxes in Tagus and Sado estuaries is vital for an efficient protection and preservation of such ecosystems being helpful in limit human-caused damage and in restoring damaged estuarine/coastal ecosystems. In addition, the economic impact of the carbon fluxes to the atmosphere, estimated as €375,000 per year, creates the appropriate incentives to reduce emissions and shift them to higher-value uses. Suggesting, therefore, a coastal management re-oriented towards a more adaptive approach through the use of carbon market-based policies. This study is a contribution to the integration of coastal and global carbon cycles. However, additional efforts are required to fully merge other components subsystems, such as salt marshes, with these budgets. Moreover, a fully comprehension of the community metabolism in these estuaries will greatly improve this integration.

  16. Metabolic derangements in IUGR neonates detected at birth using ...

    African Journals Online (AJOL)

    M.A. Abd El-Wahed

    infancy and the metabolic syndrome during adulthood [4,5]. These consequences ... were obtained from parents or caregivers after explanation of the study purpose ... metabolism, primary bile acid biosynthesis, lysine degradation, pyrimidine ...

  17. ¹³C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation.

    Directory of Open Access Journals (Sweden)

    Dany J V Beste

    2011-07-01

    Full Text Available Mycobacterium tuberculosis requires the enzyme isocitrate lyase (ICL for growth and virulence in vivo. The demonstration that M. tuberculosis also requires ICL for survival during nutrient starvation and has a role during steady state growth in a glycerol limited chemostat indicates a function for this enzyme which extends beyond fat metabolism. As isocitrate lyase is a potential drug target elucidating the role of this enzyme is of importance; however, the role of isocitrate lyase has never been investigated at the level of in vivo fluxes. Here we show that deletion of one of the two icl genes impairs the replication of Mycobacterium bovis BCG at slow growth rate in a carbon limited chemostat. In order to further understand the role of isocitrate lyase in the central metabolism of mycobacteria the effect of growth rate on the in vivo fluxes was studied for the first time using ¹³C-metabolic flux analysis (MFA. Tracer experiments were performed with steady state chemostat cultures of BCG or M. tuberculosis supplied with ¹³C labeled glycerol or sodium bicarbonate. Through measurements of the ¹³C isotopomer labeling patterns in protein-derived amino acids and enzymatic activity assays we have identified the activity of a novel pathway for pyruvate dissimilation. We named this the GAS pathway because it utilizes the Glyoxylate shunt and Anapleurotic reactions for oxidation of pyruvate, and Succinyl CoA synthetase for the generation of succinyl CoA combined with a very low flux through the succinate--oxaloacetate segment of the tricarboxylic acid cycle. We confirm that M. tuberculosis can fix carbon from CO₂ into biomass. As the human host is abundant in CO₂ this finding requires further investigation in vivo as CO₂ fixation may provide a point of vulnerability that could be targeted with novel drugs. This study also provides a platform for further studies into the metabolism of M. tuberculosis using ¹³C-MFA.

  18. Homocysteine metabolism and risk of schizophrenia

    NARCIS (Netherlands)

    Muntjewerff, J.W.

    2006-01-01

    The one-carbon cycle hypothesis initiated research of schizophrenia risk in relation to sensitive markers of aberrant homocysteine metabolism, such as B-vitamin concentrations, plasma total homocysteine (tHcy) concentrations, and genetic determinants. We observed decreased plasma and elevated RBC

  19. Metabolic effects of an AT1-receptor blockade combined with HCTZ in cardiac risk patients: a non interventional study in primary care

    Directory of Open Access Journals (Sweden)

    Schönrock Eleonore

    2008-11-01

    Full Text Available Abstract Background The reduction of blood pressure alone does not eliminate the increased risk of arterial hypertension. Whilst concomitant metabolic risk factors have been shown to be responsible, the available pharmacotherapy has differential effects on these metabolic risk factors. For example, diuretics and betablockers worsen glucose metabolism, hence the starting point of the current subanalysis of the CHILI (Candesartan in patients with HIgher cardiovascuLar rIsk study was the assumption that an angiotensin receptor blocker may counterbalance the metabolic effects of a low dose diuretic in patients with several metabolic risk factors. Methods The present study was performed as a non-interventional observational study in Germany. Patients with previously uncontrolled hypertension with at least one further risk factor in which physicians deemed a treatment with 16 mg Candesartan/12.5 mg HCTZ to be necessary were included. The risk factors were calculated in patient subgroups with diabetes, the metabolic syndrome (MetSyn and neither condition (control. The risk of cardiovascular mortality within the next 10 years was calculated using the SCORE algorithm of the ESC. Results Between August 2006 and February 2007 a total of 3,787 patients were included into the non-interventional trial. Patients were 62.2 ± 11.3 years old, 48.1% were female, 97.5% had at least one additional risk factor. Blood pressure was reduced by -27.2/-13.4 mmHg with only minor non significant variations between patient groups. Waist circumference was reduced (P Conclusion The present study demonstrates that a 16 mg candesartan/12.5 mg HCTZ based treatment results in a pronounced blood pressure reduction and was associated with a favourable change in metabolic risk factors such as HDL cholesterol, triglycerides and blood glucose. These data indicate that metabolic effects observed in clinical trials like ALPINE, SCOPE or CHARM can also be observed in an unselected

  20. Precipitation and Carbon-Water Coupling Jointly Control the Interannual Variability of Global Land Gross Primary Production

    Science.gov (United States)

    Zhang, Yao; Xiao, Xiangming; Guanter, Luis; Zhou, Sha; Ciais, Philippe; Joiner, Joanna; Sitch, Stephen; Wu, Xiaocui; Nabel, Julian; Dong, Jinwei; hide

    2016-01-01

    Carbon uptake by terrestrial ecosystems is increasing along with the rising of atmospheric CO2 concentration. Embedded in this trend, recent studies suggested that the interannual variability (IAV) of global carbon fluxes may be dominated by semi-arid ecosystems, but the underlying mechanisms of this high variability in these specific regions are not well known. Here we derive an ensemble of gross primary production (GPP) estimates using the average of three data-driven models and eleven process-based models. These models are weighted by their spatial representativeness of the satellite-based solar-induced chlorophyll fluorescence (SIF). We then use this weighted GPP ensemble to investigate the GPP variability for different aridity regimes. We show that semi-arid regions contribute to 57% of the detrended IAV of global GPP. Moreover, in regions with higher GPP variability, GPP fluctuations are mostly controlled by precipitation and strongly coupled with evapotranspiration (ET). This higher GPP IAV in semi-arid regions is co-limited by supply (precipitation)-induced ET variability and GPP-ET coupling strength. Our results demonstrate the importance of semi-arid regions to the global terrestrial carbon cycle and posit that there will be larger GPP and ET variations in the future with changes in precipitation patterns and dryland expansion.

  1. Impact of folic acid intake during pregnancy on genomic imprinting of IGF2/H19 and 1-carbon metabolism.

    Science.gov (United States)

    Tserga, Aggeliki; Binder, Alexandra M; Michels, Karin B

    2017-12-01

    Folic acid is an essential component of 1-carbon metabolism, which generates methyl groups for DNA methylation. Disruption of genomic imprinting leads to biallelic expression which may affect disease susceptibility possibly reflected in high levels of S -adenosyl-homocysteine (SAH) and low levels of S -adenosyl-methionine (SAM). We investigated the association between folic acid supplementation during pregnancy and loss of imprinting (LOI) of IGF2 and H19 genes in placentas and cord blood of 90 mother-child dyads in association with the methylenetetrahydrofolate reductase ( MTHFR ) genotype. Pyrosequencing was used to evaluate deviation from monoallelic expression among 47 placentas heterozygous for H19 and 37 placentas and cord blood tissues heterozygous for IGF2 and H19 methylation levels of 48 placentas. We detected relaxation of imprinting (ROI) and LOI of H19 in placentas not associated with differences in methylation levels of the H19ICR. Placentas retained monoallelic allele-specific gene expression of IGF2 , but 32.4% of cord blood samples displayed LOI of IGF2 and 10.8% showed ROI. High SAH levels were significantly associated with low H19 methylation. An interesting positive association between SAM/SAH ratio and high H19 methylation levels was detected among infants with low B 12 levels. Our data suggest profound differences in regulation of imprinting in placenta and cord blood; a lack of correlation of the methylome, transcriptome, and proteome; and a complex regulatory feedback network between free methyl groups and genomic imprinting at birth.-Tserga, A., Binder, A. M., Michels, K. B. Impact of folic acid intake during pregnancy on genomic imprinting of IGF2/H19 and 1-carbon metabolism. © FASEB.

  2. Nitrogen Addition Exacerbates the Negative Effects of Low Temperature Stress on Carbon and Nitrogen Metabolism in Moss

    Directory of Open Access Journals (Sweden)

    Bin-Yang Liu

    2017-08-01

    Full Text Available Global environmental changes are leading to an increase in localized abnormally low temperatures and increasing nitrogen (N deposition is a phenomenon recognized worldwide. Both low temperature stress (LTS and excess N induce oxidative stress in plants, and excess N also reduces their resistance to LTS. Mosses are primitive plants that are generally more sensitive to alterations in environmental factors than vascular species. To study the combined effects of N deposition and LTS on carbon (C and N metabolism in moss, two moss species, Pogonatum cirratum subsp. fuscatum, and Hypnum plumaeforme, exposed to various concentrations of nitrate (KNO3 or ammonium (NH4Cl, were treated with or without LTS. C/N metabolism indices were then monitored, both immediately after the stress and after a short recovery period (10 days. LTS decreased the photosystem II (PSII performance index and inhibited non-cyclic photophosphorylation, ribulose-1,5-bisphosphate carboxylase, and glutamine synthetase activities, indicating damage to PSII and reductions in C/N assimilation in these mosses. LTS did not affect cyclic photophosphorylation, sucrose synthase, sucrose-phosphate synthase, and NADP-isocitrate dehydrogenase activities, suggesting a certain level of energy and C skeleton generation were maintained in the mosses to combat LTS; however, LTS inhibited the activity of glycolate oxidase. As predicted, N supply increased the sensitivity of the mosses to LTS, resulting in greater damage to PSII and a sharper decrease in C/N assimilation. After the recovery period, the performance of PSII and C/N metabolism, which were inhibited by LTS increased significantly, and were generally higher than those of control samples not exposed to LTS, suggesting overcompensation effects; however, N application reduced the extent of compensation effects. Both C and N metabolism exhibited stronger compensation effects in H. plumaeforme than in P. cirratum subsp. fuscatum. The

  3. The metabolic response of Candida albicans to farnesol under hyphae-inducing conditions.

    Science.gov (United States)

    Han, Ting-Li; Cannon, Richard D; Villas-Bôas, Silas G

    2012-12-01

    Farnesol is a quorum-sensing molecule (QSM) produced, and sensed, by the polymorphic fungus, Candida albicans. This cell-to-cell communication molecule is known to suppress the hyphal formation of C. albicans at high cell density. Despite many studies investigating the signalling mechanisms by which QSMs influence the morphogenesis of C. albicans, the downstream metabolic effect of these signalling pathways in response to farnesol-mediated morphogenesis remains obscure. Here, we have used metabolomics to investigate the metabolic response of C. albicans upon exposure to farnesol under hyphae-inducing conditions. We have found a general up-regulation of central carbon metabolic pathways when hyphal formation was suppressed by farnesol evidenced by a considerably larger number of central carbon metabolic intermediates detected under this condition at an overall lower intracellular level. By combining the metabolic profiles from farnesol-exposed cells with previous metabolomics data for C. albicans undergoing morphogenesis, we have identified several metabolic pathways that are likely to be associated with the morphogenetic process of C. albicans, as well as metabolic pathways such as those involved in lipid metabolism that appeared to be specifically affected by farnesol. Therefore, our results provide important new insights into the metabolic role of farnesol in C. albicans metabolism. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism

    Science.gov (United States)

    Price, Alex; Pearson, Victoria K.; Schwenzer, Susanne P.; Miot, Jennyfer; Olsson-Francis, Karen

    2018-01-01

    This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1–3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate

  5. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism

    Directory of Open Access Journals (Sweden)

    Alex Price

    2018-03-01

    Full Text Available This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1–3.7 Ga match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with

  6. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism.

    Science.gov (United States)

    Price, Alex; Pearson, Victoria K; Schwenzer, Susanne P; Miot, Jennyfer; Olsson-Francis, Karen

    2018-01-01

    This work considers the hypothetical viability of microbial nitrate-dependent Fe 2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe 2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe 2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1-3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe 2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate

  7. Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling

    Directory of Open Access Journals (Sweden)

    Sriram Chandrasekaran

    2017-12-01

    Full Text Available Summary: Metabolism is an emerging stem cell hallmark tied to cell fate, pluripotency, and self-renewal, yet systems-level understanding of stem cell metabolism has been limited by the lack of genome-scale network models. Here, we develop a systems approach to integrate time-course metabolomics data with a computational model of metabolism to analyze the metabolic state of naive and primed murine pluripotent stem cells. Using this approach, we find that one-carbon metabolism involving phosphoglycerate dehydrogenase, folate synthesis, and nucleotide synthesis is a key pathway that differs between the two states, resulting in differential sensitivity to anti-folates. The model also predicts that the pluripotency factor Lin28 regulates this one-carbon metabolic pathway, which we validate using metabolomics data from Lin28-deficient cells. Moreover, we identify and validate metabolic reactions related to S-adenosyl-methionine production that can differentially impact histone methylation in naive and primed cells. Our network-based approach provides a framework for characterizing metabolic changes influencing pluripotency and cell fate. : Chandrasekaran et al. use computational modeling, metabolomics, and metabolic inhibitors to discover metabolic differences between various pluripotent stem cell states and infer their impact on stem cell fate decisions. Keywords: systems biology, stem cell biology, metabolism, genome-scale modeling, pluripotency, histone methylation, naive (ground state, primed state, cell fate, metabolic network

  8. Metabolism of chlorofluorocarbons and polybrominated compounds by Pseudomonas putida G786(pHG-2) via an engineered metabolic pathway.

    OpenAIRE

    Hur, H G; Sadowsky, M J; Wackett, L P

    1994-01-01

    The recombinant bacterium Pseudomonas putida G786(pHG-2) metabolizes pentachloroethane to glyoxylate and carbon dioxide, using cytochrome P-450CAM and toluene dioxygenase to catalyze consecutive reductive and oxidative dehalogenation reactions (L.P. Wackett, M.J. Sadowsky, L.N. Newman, H.-G. Hur, and S. Li, Nature [London] 368:627-629, 1994). The present study investigated metabolism of brominated and chlorofluorocarbon compounds by the recombinant strain. Under anaerobic conditions, P. putid...

  9. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria

    Science.gov (United States)

    Kanno, Masahiro; Carroll, Austin L.; Atsumi, Shota

    2017-03-01

    Cyanobacteria have attracted much attention as hosts to recycle CO2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO2 and glucose, and produces 12.6 g l-1 of 2,3-butanediol with a rate of 1.1 g l-1 d-1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.

  10. Feasible Metabolic Schema Associated with High pH Springs in the Philippines

    Directory of Open Access Journals (Sweden)

    DAWN eCARDACE

    2015-02-01

    Full Text Available A field campaign targeting high pH springs in the Zambales and Palawan Ophiolites of the Philippines was conducted in 2012-2013, and enabled description of several springs sourced in altered pillow basalts, gabbros, and peridotites. We combine field observations of pH, temperature, conductivity, dissolved oxygen, and oxidation-reduction potential with analyses of major ions, dissolved inorganic carbon, dissolved organic carbon, and dissolved gas phases in order to model the activities of selected phases important to microbial metabolism, and to evaluate feasible metabolic reactions based on energy yield. We document changing geochemical inventories in these springs, and examine how the environment supports or prevents the function of certain microbial metabolisms.

  11. Risk of Visual Impairment and Intracranial Hypertension After Space Flight: Evaluation of the Role of Polymorphism of Enzymes Involved in One-Carbon Metabolism

    Science.gov (United States)

    Smith, S. M.; Gregory, J. F.; Zeisel, G. H.; Gibson, C. R.; Mader, T. H.; Kinchen, J.; Ueland, P.; Ploutz-Snyder, R.; Heer, M.; Zwart, S. R.

    2016-01-01

    Data from the Nutritional Status Assessment protocol provided biochemical evidence that the one-carbon metabolic pathway may be altered in individuals experiencing vision-related issues during and after space flight (1, 2). Briefly, serum concentrations of homocysteine, cystathionine, 2-methylcitric acid, and methylmalonic acid were significantly (P<0.001) higher (25-45%) in astronauts with ophthalmic changes than in those without such changes (1). These differences existed before, during, and after flight. Serum folate was lower (P<0.01) during flight in individuals with ophthalmic changes. Preflight serum concentrations of cystathionine and 2-methylcitric acid, and mean in-flight serum folate, were significantly (P<0.05) correlated with postflight changes in refraction (1). A follow-up study was conducted to evaluate a small number of known polymorphisms of enzymes in the one-carbon pathway, and to evaluate how these relate to vision and other medical aspects of the eye. Specifically, we investigated 5 polymorphisms in MTRR, MTHFR, SHMT, and CBS genes and their association with ophthalmic changes after flight in 49 astronauts. The number of G alleles of MTRR 66 and C alleles of SHMT1 1420 both contributed to the odds of visual disturbances (3). Block regression showed that B-vitamin status at landing and genetics were significant predictors for many of the ophthalmic outcomes studied (3). In conclusion, we document an association between MTRR 66 and SHMT1 1420 polymorphisms and space flightinduced vision changes. These data document that individuals with an altered 1-carbon metabolic pathway may be predisposed to anatomic and/or physiologic changes that render them susceptible to ophthalmic damage during space flight.

  12. Helicobacter pylori seropositivity's association with markers of iron, 1-carbon metabolism, and antioxidant status among US adults: a structural equations modeling approach.

    Directory of Open Access Journals (Sweden)

    May A Beydoun

    Full Text Available We tested a model in which Helicobacter pylori seropositivity (Hps predicted iron status, which in turn acted as a predictor for markers of 1-C metabolism that were then allowed to predict antioxidant status.National Health and Nutrition Examination Surveys (NHANES 1999-2000 cross-sectional data among adults aged 20-85 y were analyzed (n = 3,055. Markers of Hps, iron status (serum ferritin and transferrin saturation (TS; 1-C metabolism (serum folate (FOLserum, B-12, total homocysteine (tHcy, methylmalonic acid (MMA and antioxidant status (vitamins A and E were entered into a structural equations model (SEM.Predictors of Hps included older age, lower education and income, racial/ethnic groups (lowest among Non-Hispanic Whites, and lifetime cigarette smoking. SEM modeling indicated that Hps had a direct inverse relationship with iron status (combining serum ferritin and TS which in turn was positively related to 1-C metabolites (higher serum folate, B-12 or lower tHcy/MMA that were positively associated with antioxidant status (combining serum vitamins A and E. Another pathway that was found bypassed 1-C metabolites (Hps → Iron_st → Antiox. The sum of all indirect effects from Hps combining both pathways and the other indirect pathways in the model (Hps → Iron_st → OneCarbon; Hps →OneCarbon →Antiox was estimated at β = -0.006±0.003, p<0.05.In sum, of the total effect of H. pylori seropositivity on antioxidant status, two significant indirect pathways through Iron status and 1-Carbon metabolites were found. Randomized controlled trials should be conducted to uncover the concomitant causal effect of H. pylori eradication on improving iron status, folate, B-12 and antioxidant status among H. pylori seropositive individuals.

  13. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Directory of Open Access Journals (Sweden)

    Roze Ludmila V

    2010-08-01

    Full Text Available Abstract Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine; we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1 Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2 VeA coordinates the

  14. Engineering microorganisms to increase ethanol production by metabolic redirection

    Science.gov (United States)

    Deng, Yu; Olson, Daniel G.; van Dijken, Johannes Pieter; Shaw, IV, Arthur J.; Argyros, Aaron; Barrett, Trisha; Caiazza, Nicky; Herring, Christopher D.; Rogers, Stephen R.; Agbogbo, Frank

    2017-10-31

    The present invention provides for the manipulation of carbon flux in a recombinant host cell to increase the formation of desirable products. The invention relates to cellulose-digesting organisms that have been genetically modified to allow the production of ethanol at a high yield by redirecting carbon flux at key steps of central metabolism.

  15. Effect of saccharin on metabolic cooperation between human fibroblasts

    International Nuclear Information System (INIS)

    Mosser, D.D.; Bols, N.C.

    1983-01-01

    Autoradiography was used to study the effect of saccharin on metabolic cooperation between human diploid fibroblasts. When the donors, HGPRT+ cells, and recipients, HGPRT- cells, were plated together in the presence of saccharin, all the interactions that developed in 4 and 24 h were positive for metabolic cooperation. When saccharin was added after donor cells and recipient cells had made contact, the proportion of interactions that were positive for metabolic cooperation was unchanged but the number of grains over primary recipients was reduced. However, in donor cells saccharin caused a reduction in [ 3 H]hypoxanthine incorporation into both acid-soluble and acid-insoluble fractions, although the relative distribution of radioactivity between these two fractions and between the phosphorylated and non-phosphorylated derivatives of [ 3 H]hypoxanthine was unchanged. Metabolic cooperation was studied under conditions in which the number of grains over the nuclei of both the primary recipient and the primary recipient's donor could be counted. The change in the number of grains over these two cell types in response to saccharin was compared and found to be the same. Thus in normal human fibroblasts saccharin does not appear to affect metabolic cooperation, which is a measure of cell-to-cell communication

  16. Carbons and carbon supported catalysts in hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, Edward

    2009-07-01

    This book is a comprehensive summary of recent research in the field and covers all areas of carbons and carbon materials. The potential application of carbon supports, particularly those of carbon black (CB) and activated carbon (AC) in hydroprocessing catalysis are covered. Novel carbon materials such as carbon fibers and carbon nano tubes (CNT) are also covered, including the more recent developments in the use of fullerenes in hydroprocessing applications. Although the primary focus of this book is on carbons and carbon supported catalysts, it also identifies the difference in the effect of carbon supports compared with the oxidic supports, particularly that of the Al{sub 2}O{sub 3}. The difference in catalyst activity and stability was estimated using both model compounds and real feeds under variable conditions. The conditions applied during the preparation of carbon supported catalysts are also comprehensively covered and include various methods of pretreatment of carbon supports to enhance catalyst performance. The model compounds results consistently show higher hydrodesulfurization and hydrodeoxygenation activities of carbon supported catalysts than that of the Al{sub 2}O{sub 3} supported catalysts. Also, the deactivation of the former catalysts by coke deposition was much less evident. Chapter 6.3.1.3 is on carbon-supported catalysts: coal-derived liquids.

  17. Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China’s forest ecosystems

    Science.gov (United States)

    Wei Ren; Hanqin Tian; Bo Tao; Art Chappelka; Ge Sun; et al

    2011-01-01

    Aim We investigated how ozone pollution and climate change/variability have interactively affected net primary productivity (NPP) and net carbon exchange (NCE) across China’s forest ecosystem in the past half century. Location Continental China. Methods Using the dynamic land ecosystem model (DLEM) in conjunction with 10-km-resolution gridded historical data sets (...

  18. Metabolic engineering tools in model cyanobacteria.

    Science.gov (United States)

    Carroll, Austin L; Case, Anna E; Zhang, Angela; Atsumi, Shota

    2018-03-26

    Developing sustainable routes for producing chemicals and fuels is one of the most important challenges in metabolic engineering. Photoautotrophic hosts are particularly attractive because of their potential to utilize light as an energy source and CO 2 as a carbon substrate through photosynthesis. Cyanobacteria are unicellular organisms capable of photosynthesis and CO 2 fixation. While engineering in heterotrophs, such as Escherichia coli, has result in a plethora of tools for strain development and hosts capable of producing valuable chemicals efficiently, these techniques are not always directly transferable to cyanobacteria. However, recent efforts have led to an increase in the scope and scale of chemicals that cyanobacteria can produce. Adaptations of important metabolic engineering tools have also been optimized to function in photoautotrophic hosts, which include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9, 13 C Metabolic Flux Analysis (MFA), and Genome-Scale Modeling (GSM). This review explores innovations in cyanobacterial metabolic engineering, and highlights how photoautotrophic metabolism has shaped their development. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation

    DEFF Research Database (Denmark)

    Bourke, Michael F.; Marriott, Philip J.; Glud, Ronnie N.

    2017-01-01

    Permeable sediments are common across continental shelves and are critical contributors to marine biogeochemical cycling. Organic matter in permeable sediments is dominated by microalgae, which as eukaryotes have different anaerobic metabolic pathways to prokaryotes such as bacteria and archaea....... Here we present analyses of flow-through reactor experiments showing that dissolved inorganic carbon is produced predominantly as a result of anaerobic eukaryotic metabolic activity. In our experiments, anaerobic production of dissolved inorganic carbon was consistently accompanied by large dissolved H....../hydrogenase pathway of fermentative eukaryotic H2 production, suggesting that pathway as the source of H2 and dissolved inorganic carbon production. Metabolomic analysis showed large increases in lipid production at the onset of anoxia, consistent with documented pathways of anoxic dark fermentation in microalgae...

  20. Is litter decomposition 'primed' by primary producer-release of labile carbon in terrestrial and aquatic experimental systems?

    Science.gov (United States)

    Soares, A. Margarida P. M.; Kritzberg, Emma S.; Rousk, Johannes

    2015-04-01

    It is possible that recalcitrant organic matter (ROM) can be 'activated' by inputs of labile organic matter (LOM) through the priming effect (PE). Investigating the PE is of major importance to fully understand the microbial use of ROM and its role on carbon (C) and nutrient cycling in both aquatic and terrestrial ecosystems. In aquatic ecosystems it is thought that the PE is triggered by periphytic algae release of LOM. Analogously, in terrestrial systems it is hypothesized that the LOM released in plant rhizospheres, or from the green crusts on the surface of agricultural soils, stimulate the activity and growth of ROM decomposers. Most previous studies on PE have utilised pulse additions of single substrates at high concentrations. However, to achieve an assessment of the true importance of the PE, it is important to simulate a realistic delivery of LOM. We investigated, in a series of 2-week laboratory experiments, how primary producer (PP)-release of LOM influence litter degradation in terrestrial and aquatic experimental systems. We used soil (terrestrial) and pond water (aquatic) microbial communities to which litter was added under light and dark conditions. In addition, glucose was added at PP delivery rates in dark treatments to test if the putative PE in light systems could be reproduced. We observed an initial peak of bacterial growth rate followed by an overall decrease over time with no treatment differences. In light treatments, periphytic algae growth and increased fungal production was stimulated when bacterial growth declined. In contrast, both fungal growth and algal production were negligible in dark treatments. This reveals a direct positive influence of photosynthesis on fungal growth. To investigate if PP LOM supplements, and the associated fungal growth, translate into a modulated litter decomposition, we are using stable isotopes to track the use of litter and algal-derived carbon by determining the δ13C in produced CO2. Fungi and bacteria

  1. Culture medium pH influence on Gluconacetobacter physiology: Cellulose production rate and yield enhancement in presence of multiple carbon sources.

    Science.gov (United States)

    Yassine, Fatima; Bassil, Nathalie; Flouty, Roula; Chokr, Ali; Samrani, Antoine El; Boiteux, Gisèle; Tahchi, Mario El

    2016-08-01

    Gluconacetobacter genera are valued for bacterial cellulose (BC) and acetic acid production. BC is produced at optimal yields in classical microbiological media that are expensive for a large scale of production. In addition, BC usage for industrial purposes is limited due to low conversion rate into cellulose and to long incubation duration. In this paper, Gluconacetobacter isolated from apple vinegar was kinetically studied to evaluate cellulose production in presence of different carbon sources. Acetic and citric acid effect on Gluconacetobacter metabolism is clarified. It was shown that Gluconacetobacter uses glucose as a primary carbon source for cells growth and products formation. Acetic acid employment as a co-carbon source in Hestrin Schramm medium showed an increase of 17% in BC yield with a moderate decrease in the crystallite size of the resulting polymer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Two-Scale 13C Metabolic Flux Analysis for Metabolic Engineering.

    Science.gov (United States)

    Ando, David; Garcia Martin, Hector

    2018-01-01

    Accelerating the Design-Build-Test-Learn (DBTL) cycle in synthetic biology is critical to achieving rapid and facile bioengineering of organisms for the production of, e.g., biofuels and other chemicals. The Learn phase involves using data obtained from the Test phase to inform the next Design phase. As part of the Learn phase, mathematical models of metabolic fluxes give a mechanistic level of comprehension to cellular metabolism, isolating the principle drivers of metabolic behavior from the peripheral ones, and directing future experimental designs and engineering methodologies. Furthermore, the measurement of intracellular metabolic fluxes is specifically noteworthy as providing a rapid and easy-to-understand picture of how carbon and energy flow throughout the cell. Here, we present a detailed guide to performing metabolic flux analysis in the Learn phase of the DBTL cycle, where we show how one can take the isotope labeling data from a 13 C labeling experiment and immediately turn it into a determination of cellular fluxes that points in the direction of genetic engineering strategies that will advance the metabolic engineering process.For our modeling purposes we use the Joint BioEnergy Institute (JBEI) Quantitative Metabolic Modeling (jQMM) library, which provides an open-source, python-based framework for modeling internal metabolic fluxes and making actionable predictions on how to modify cellular metabolism for specific bioengineering goals. It presents a complete toolbox for performing different types of flux analysis such as Flux Balance Analysis, 13 C Metabolic Flux Analysis, and it introduces the capability to use 13 C labeling experimental data to constrain comprehensive genome-scale models through a technique called two-scale 13 C Metabolic Flux Analysis (2S- 13 C MFA) [1]. In addition to several other capabilities, the jQMM is also able to predict the effects of knockouts using the MoMA and ROOM methodologies. The use of the jQMM library is

  3. Carbon cycling and calcification in hypersaline microbial mats

    OpenAIRE

    Ludwig, Rebecca

    2004-01-01

    Phototrophic microbial mats are laminated aggregations of microorganisms that thrive in extreme and oligotrophic environments. Primary production rates by oxygenic phototrophs are extremely high. Primary producers supply heterotrophic mat members with organic carbon, which in turn regenerate CO2 needed for autotrophic carbon fixation. Another potential source of CO2 is calcification, which is known to shift the carbonate equilibrium towards CO2. This thesis investigated the carbon cycle of mi...

  4. Interdisciplinary Pathways for Urban Metabolism Research

    Science.gov (United States)

    Newell, J. P.

    2011-12-01

    With its rapid rise as a metaphor to express coupled natural-human systems in cities, the concept of urban metabolism is evolving into a series of relatively distinct research frameworks amongst various disciplines, with varying definitions, theories, models, and emphases. In industrial ecology, housed primarily within the disciplinary domain of engineering, urban metabolism research has focused on quantifying material and energy flows into, within, and out of cities, using methodologies such as material flow analysis and life cycle assessment. In the field of urban ecology, which is strongly influenced by ecology and urban planning, research focus has been placed on understanding and modeling the complex patterns and processes of human-ecological systems within urban areas. Finally, in political ecology, closely aligned with human geography and anthropology, scholars theorize about the interwoven knots of social and natural processes, material flows, and spatial structures that form the urban metabolism. This paper offers three potential interdisciplinary urban metabolism research tracks that might integrate elements of these three "ecologies," thereby bridging engineering and the social and physical sciences. First, it presents the idea of infrastructure ecology, which explores the complex, emergent interdependencies between gray (water and wastewater, transportation, etc) and green (e.g. parks, greenways) infrastructure systems, as nested within a broader socio-economic context. For cities to be sustainable and resilient over time-space, the theory follows, these is a need to understand and redesign these infrastructure linkages. Second, there is the concept of an urban-scale carbon metabolism model which integrates consumption-based material flow analysis (including goods, water, and materials), with the carbon sink and source dynamics of the built environment (e.g. buildings, etc) and urban ecosystems. Finally, there is the political ecology of the material

  5. Community-based primary prevention programs decrease the rate of metabolic syndrome among socioeconomically disadvantaged women.

    Science.gov (United States)

    Gilstrap, Lauren Gray; Malhotra, Rajeev; Peltier-Saxe, Donna; Slicas, Donna; Pineda, Eliana; Culhane-Hermann, Catherine; Cook, Nakela; Fernandez-Golarz, Carina; Wood, Malissa

    2013-04-01

    Metabolic Syndrome (MetSyn) is one of the strongest predictors of type 2 diabetes (DM2) and cardiovascular disease (CVD). It is associated with a 4- to 10-fold increased risk of DM2 and a 2- to 3-fold increased risk of CVD. Low income and minority women have some of the highest rates of MetSyn. This study examines the effect of a unique, community based, primary prevention program on the rates of MetSyn and health habits. Sixty-four low income and minority women were enrolled in the HAPPY (Health Awareness and Primary Prevention in Your neighborhood) Heart Program in an eastern suburb of Boston. Over these 2 years, patients were evaluated by an interdisciplinary medical team: their primary physician, cardiologist, nutritionist, physical therapist, and health coach. The rate of MetSyn was measured at baseline, year 1, and year 2. Comparisons were made either using the paired t test for normally distributed variables or the Wilcoxon Sign test for non-normal variables. The rate of MetSyn fell from 64.7% at baseline to 34.9% at year 1 (p=0.01) and 28.2% at year 2 (p<0.001). This was driven by increases in high-density lipoprotein (HDL-C) (p<0.001) and decreases in blood pressure (p=0.05). Fasting blood glucose trended down, but the hemoglobin A1c (HbA1c) reached significance (decreasing from 6 to 5.8, p<0.01). Nutrition and exercise habits trended toward improvement. There were significant decreases in anxiety (p<0.001), depression (p=0.006) and stress (p=0.002). This lifestyle intervention program is effective at decreasing MetSyn in a socioeconomically disadvantaged, largely minority, female population. This program also decreases anxiety, stress, and depression among participants.

  6. The effects of lead on the gaseous exchange and photosynthetic carbon metabolism of pea seedlings

    Directory of Open Access Journals (Sweden)

    Jerzy W. Poskuta

    2014-01-01

    Full Text Available Roots of whole 3 week-old pea seedlings (Pisum sativum L. var. "Bordi" were immersed for 24 h in solutions of lead chloride at Pb copcentrations of 200, 400, 800,12000 mg dm3. Accumulation of lead in roots was independent of the Pb concentration, whereas the accumulation of Pb in shoots was an almost linear function of the concentration of this element in the root medium. This treatment caused Pb concentration-dependent inhibition of apparent photosynthesis (APS, photorespiration (PR, 14CO2 uptake, stomatal opening and transpiration of shoots and also germination of seeds. The most sensitive to Pb contamination was CO2 exchange, then transpiration and to a lesser degree germination of seeds. Lead caused a considerable alteration of photosynthetic and photorespiratory carbon metabolism, restricted the 14C-labeling of: phosphoglycerate, ribose+ribulose, sucrose, glycolate and glycine+serine. Under conditions of C02 uptake limited by lead, an enhancement of the 14C-labeling of malate+citrate, alanine and glucose was observed.

  7. An Examination of the Carbon Isotope Effects Associated with Amino Acid Biosynthesis

    Science.gov (United States)

    Scott, James H.; O'Brien, Diane M.; Emerson, David; Sun, Henry; McDonald, Gene D.; Salgado, Antonio; Fogel, Marilyn L.

    2006-12-01

    Stable carbon isotope ratios (δ13C) were determined for alanine, proline, phenylalanine, valine, leucine, isoleucine, aspartate (aspartic acid and asparagine), glutamate (glutamic acid and glutamine), lysine, serine, glycine, and threonine from metabolically diverse microorganisms. The microorganisms examined included fermenting bacteria, organotrophic, chemolithotrophic, phototrophic, methylotrophic, methanogenic, acetogenic, acetotrophic, and naturally occurring cryptoendolithic communities from the Dry Valleys of Antarctica. Here we demonstrated that reactions involved in amino acid biosynthesis can be used to distinguish amino acids formed by life from those formed by nonbiological processes. The unique patterns of δ13C imprinted by life on amino acids produced a biological bias. We also showed that, by applying discriminant function analysis to the δ13C value of a pool of amino acids formed by biological activity, it was possible to identify key aspects of intermediary carbon metabolism in the microbial world. In fact, microorganisms examined in this study could be placed within one of three metabolic groups: (1) heterotrophs that grow by oxidizing compounds containing three or more carbon-to-carbon bonds (fermenters and organotrophs), (2) autotrophs that grow by taking up carbon dioxide (chemolitotrophs and phototrophs), and (3) acetoclastic microbes that grow by assimilation of formaldehyde or acetate (methylotrophs, methanogens, acetogens, and acetotrophs). Furthermore, we demonstrated that cryptoendolithic communities from Antarctica grouped most closely with the autotrophs, which indicates that the dominant metabolic pathways in these communities are likely those utilized for CO2 fixation. We propose that this technique can be used to determine the dominant metabolic types in a community and reveal the overall flow of carbon in a complex ecosystem.

  8. The Crc/CrcZ-CrcY global regulatory system helps the integration of gluconeogenic and glycolytic metabolism in Pseudomonas putida.

    Science.gov (United States)

    La Rosa, Ruggero; Nogales, Juan; Rojo, Fernando

    2015-09-01

    In metabolically versatile bacteria, carbon catabolite repression (CCR) facilitates the preferential assimilation of the most efficient carbon sources, improving growth rates and fitness. In Pseudomonas putida, the Crc and Hfq proteins and the CrcZ and CrcY small RNAs, which are believed to antagonize Crc/Hfq, are key players in CCR. Unlike that seen in other bacterial species, succinate and glucose elicit weak CCR in this bacterium. In the present work, metabolic, transcriptomic and constraint-based metabolic flux analyses were combined to clarify whether P. putida prefers succinate or glucose, and to identify the role of the Crc protein in the metabolism of these compounds. When provided simultaneously, succinate was consumed faster than glucose, although both compounds were metabolized. CrcZ and CrcY levels were lower when both substrates were present than when only one was provided, suggesting a role for Crc in coordinating metabolism of these compounds. Flux distribution analysis suggested that, when both substrates are present, Crc works to organize a metabolism in which carbon compounds flow in opposite directions: from glucose to pyruvate, and from succinate to pyruvate. Thus, our results support that Crc not only favours the assimilation of preferred compounds, but balances carbon fluxes, optimizing metabolism and growth. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Vitamins B2 and B6 and Genetic Polymorphisms Related to One-Carbon Metabolism as Risk Factors for Gastric Adenocarcinoma in the European Prospective Investigation into Cancer and Nutrition

    NARCIS (Netherlands)

    Eussen, Simone J. P. M.; Vollset, Stein Emil; Hustad, Steinar; Midttun, Oivind; Meyer, Klaus; Fredriksen, Ase; Ueland, Per Magne; Jenab, Mazda; Slimani, Nadia; Ferrari, Pietro; Agudo, Antonio; Sala, Nuria; Capella, Gabriel; Del Giudice, Giuseppe; Palli, Domenico; Boeing, Heiner; Weikert, Cornelia; Bueno-de-Mesquita, H. Bas; Buechner, Frederike L.; Carneiro, Fatima; Berrino, Franco; Vineis, Paolo; Tumino, Rosario; Panico, Salvatore; Berglund, Goran; Manjer, Jonas; Stenling, Roger; Hallmans, Goeran; Martinez, Carmen; Arrizola, Larraitz; Barricarte, Aurelio; Navarro, Carmen; Rodriguez, Laudina; Bingham, Sheila; Linseisen, Jakob; Kaaks, Rudolf; Overvad, Kim; Tjonneland, Anne; Peeters, Petra H. M.; Numans, Mattijs E.; Clavel-Chapelon, Francoise; Boutron-Ruault, Marie-Christine; Morois, Sophie; Trichopoulou, Antonia; Lund, Eiliv; Plebani, Mario; Riboli, Elio; Gonzalez, Carlos A.

    B vitamins and polymorphisms in genes coding for enzymes involved in one-carbon metabolism may affect DNA synthesis and methylation and thereby be implicated in carcinogenesis. Previous data on vitamins B2 and B6 and genetic polymorphisms other than those involving MTHFR as risk factors for gastric

  10. The Glycerate and Phosphorylated Pathways of Serine Synthesis in Plants: The Branches of Plant Glycolysis Linking Carbon and Nitrogen Metabolism.

    Science.gov (United States)

    Igamberdiev, Abir U; Kleczkowski, Leszek A

    2018-01-01

    Serine metabolism in plants has been studied mostly in relation to photorespiration where serine is formed from two molecules of glycine. However, two other pathways of serine formation operate in plants and represent the branches of glycolysis diverging at the level of 3-phosphoglyceric acid. One branch (the glycerate - serine pathway) is initiated in the cytosol and involves glycerate formation from 3-phosphoglycerate, while the other (the phosphorylated serine pathway) operates in plastids and forms phosphohydroxypyruvate as an intermediate. Serine formed in these pathways becomes a precursor of glycine, formate and glycolate accumulating in stress conditions. The pathways can be linked to GABA shunt via transamination reactions and via participation of the same reductase for both glyoxylate and succinic semialdehyde. In this review paper we present a hypothesis of the regulation of redox balance in stressed plant cells via participation of the reactions associated with glycerate and phosphorylated serine pathways. We consider these pathways as important processes linking carbon and nitrogen metabolism and maintaining cellular redox and energy levels in stress conditions.

  11. Metabolism of lipids in Epidermophyton floccosum

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, A; Khuller, G K [Post-Graduate Inst. of Medical Education and Research, Chandigarh (India)

    1981-03-01

    Metabolism of major lipids in E. floccosum was studied with /sup 14/C-acetate as a precursor. Among the phosphatides, phosphatidylcholine exhibited the maximum rate of synthesis and degradation, followed by phosphatidylethanolamine and phosphatidylserine. These phospholipids appear to exist in two pools, one metabolically more active than the other. In neutral lipids, maximum uptake was observed in triglycerides, followed by free fatty acids, diglycerides and monoglycerides. However, on chase of the labelled lipids, a continuous synthesis of all neutral lipid fractions was observed suggesting a recycling of the labelled carbon.

  12. Metabolic flux analysis of Cyanothece sp. ATCC 51142 under mixotrophic conditions.

    Science.gov (United States)

    Alagesan, Swathi; Gaudana, Sandeep B; Sinha, Avinash; Wangikar, Pramod P

    2013-11-01

    Cyanobacteria are a group of photosynthetic prokaryotes capable of utilizing solar energy to fix atmospheric carbon dioxide to biomass. Despite several "proof of principle" studies, low product yield is an impediment in commercialization of cyanobacteria-derived biofuels. Estimation of intracellular reaction rates by (13)C metabolic flux analysis ((13)C-MFA) would be a step toward enhancing biofuel yield via metabolic engineering. We report (13)C-MFA for Cyanothece sp. ATCC 51142, a unicellular nitrogen-fixing cyanobacterium, known for enhanced hydrogen yield under mixotrophic conditions. Rates of reactions in the central carbon metabolism under nitrogen-fixing and -non-fixing conditions were estimated by monitoring the competitive incorporation of (12)C and (13)C from unlabeled CO2 and uniformly labeled glycerol, respectively, into terminal metabolites such as amino acids. The observed labeling patterns suggest mixotrophic growth under both the conditions, with a larger fraction of unlabeled carbon in nitrate-sufficient cultures asserting a greater contribution of carbon fixation by photosynthesis and an anaplerotic pathway. Indeed, flux analysis complements the higher growth observed under nitrate-sufficient conditions. On the other hand, the flux through the oxidative pentose phosphate pathway and tricarboxylic acid cycle was greater in nitrate-deficient conditions, possibly to supply the precursors and reducing equivalents needed for nitrogen fixation. In addition, an enhanced flux through fructose-6-phosphate phosphoketolase possibly suggests the organism's preferred mode under nitrogen-fixing conditions. The (13)C-MFA results complement the reported predictions by flux balance analysis and provide quantitative insight into the organism's distinct metabolic features under nitrogen-fixing and -non-fixing conditions.

  13. Dysregulated metabolism contributes to oncogenesis

    Science.gov (United States)

    Hirschey, Matthew D.; DeBerardinis, Ralph J.; Diehl, Anna Mae E.; Drew, Janice E.; Frezza, Christian; Green, Michelle F.; Jones, Lee W.; Ko, Young H.; Le, Anne; Lea, Michael A.; Locasale, Jason W.; Longo, Valter D.; Lyssiotis, Costas A.; McDonnell, Eoin; Mehrmohamadi, Mahya; Michelotti, Gregory; Muralidhar, Vinayak; Murphy, Michael P.; Pedersen, Peter L.; Poore, Brad; Raffaghello, Lizzia; Rathmell, Jeffrey C.; Sivanand, Sharanya; Vander Heiden, Matthew G.; Wellen, Kathryn E.

    2015-01-01

    Cancer is a disease characterized by unrestrained cellular proliferation. In order to sustain growth, cancer cells undergo a complex metabolic rearrangement characterized by changes in metabolic pathways involved in energy production and biosynthetic processes. The relevance of the metabolic transformation of cancer cells has been recently included in the updated version of the review “Hallmarks of Cancer”, where the dysregulation of cellular metabolism was included as an emerging hallmark. While several lines of evidence suggest that metabolic rewiring is orchestrated by the concerted action of oncogenes and tumor suppressor genes, in some circumstances altered metabolism can play a primary role in oncogenesis. Recently, mutations of cytosolic and mitochondrial enzymes involved in key metabolic pathways have been associated with hereditary and sporadic forms of cancer. Together, these results suggest that aberrant metabolism, once seen just as an epiphenomenon of oncogenic reprogramming, plays a key role in oncogenesis with the power to control both genetic and epigenetic events in cells. In this review, we discuss the relationship between metabolism and cancer, as part of a larger effort to identify a broad-spectrum of therapeutic approaches. We focus on major alterations in nutrient metabolism and the emerging link between metabolism and epigenetics. Finally, we discuss potential strategies to manipulate metabolism in cancer and tradeoffs that should be considered. More research on the suite of metabolic alterations in cancer holds the potential to discover novel approaches to treat it. PMID:26454069

  14. Plankton community respiration, net ecosystem metabolism, and oxygen dynamics on the Louisiana continental shelf: Implications for hypoxia

    Science.gov (United States)

    Murrell, Michael C.; Stanley, Roman S.; Lehrter, John C.; Hagy, James D.

    2013-01-01

    We conducted a multi-year study of the Louisiana continental shelf (LCS) to better understand the linkages between water column metabolism and the formation of hypoxia (dissolved oxygen Continental Shelf Research, 29: 1861-1872) to estimate net water column metabolism. There was consistent evidence of net heterotrophy, particularly in western transects, and in deeper waters (>40 m depth), indicating a net organic carbon deficit on the LCS. We offer a simple scale argument to suggest that riverine and inshore coastal waters may be significant sources of organic carbon to account for this deficit. This study provided unprecedented, continental shelf scale coverage of heterotrophic metabolism, which is useful for constraining models of oxygen, carbon, and nutrient dynamics along the LCS.

  15. Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis.

    Science.gov (United States)

    Ponnudurai, Ruby; Kleiner, Manuel; Sayavedra, Lizbeth; Petersen, Jillian M; Moche, Martin; Otto, Andreas; Becher, Dörte; Takeuchi, Takeshi; Satoh, Noriyuki; Dubilier, Nicole; Schweder, Thomas; Markert, Stephanie

    2017-02-01

    The hydrothermal vent mussel Bathymodiolus azoricus lives in an intimate symbiosis with two types of chemosynthetic Gammaproteobacteria in its gills: a sulfur oxidizer and a methane oxidizer. Despite numerous investigations over the last decades, the degree of interdependence between the three symbiotic partners, their individual metabolic contributions, as well as the mechanism of carbon transfer from the symbionts to the host are poorly understood. We used a combination of proteomics and genomics to investigate the physiology and metabolism of the individual symbiotic partners. Our study revealed that key metabolic functions are most likely accomplished jointly by B. azoricus and its symbionts: (1) CO 2 is pre-concentrated by the host for carbon fixation by the sulfur-oxidizing symbiont, and (2) the host replenishes essential biosynthetic TCA cycle intermediates for the sulfur-oxidizing symbiont. In return (3), the sulfur oxidizer may compensate for the host's putative deficiency in amino acid and cofactor biosynthesis. We also identified numerous 'symbiosis-specific' host proteins by comparing symbiont-containing and symbiont-free host tissues and symbiont fractions. These proteins included a large complement of host digestive enzymes in the gill that are likely involved in symbiont digestion and carbon transfer from the symbionts to the host.

  16. The nutritional status of Methanosarcina acetivorans regulates glycogen metabolism and gluconeogenesis and glycolysis fluxes.

    Science.gov (United States)

    Santiago-Martínez, Michel Geovanni; Encalada, Rusely; Lira-Silva, Elizabeth; Pineda, Erika; Gallardo-Pérez, Juan Carlos; Reyes-García, Marco Antonio; Saavedra, Emma; Moreno-Sánchez, Rafael; Marín-Hernández, Alvaro; Jasso-Chávez, Ricardo

    2016-05-01

    Gluconeogenesis is an essential pathway in methanogens because they are unable to use exogenous hexoses as carbon source for cell growth. With the aim of understanding the regulatory mechanisms of central carbon metabolism in Methanosarcina acetivorans, the present study investigated gene expression, the activities and metabolic regulation of key enzymes, metabolite contents and fluxes of gluconeogenesis, as well as glycolysis and glycogen synthesis/degradation pathways. Cells were grown with methanol as a carbon source. Key enzymes were kinetically characterized at physiological pH/temperature. Active consumption of methanol during exponential cell growth correlated with significant methanogenesis, gluconeogenic flux and steady glycogen synthesis. After methanol exhaustion, cells reached the stationary growth phase, which correlated with the rise in glycogen consumption and glycolytic flux, decreased methanogenesis, negligible acetate production and an absence of gluconeogenesis. Elevated activities of carbon monoxide dehydrogenase/acetyl-CoA synthetase complex and pyruvate: ferredoxin oxidoreductase suggested the generation of acetyl-CoA and pyruvate for glycogen synthesis. In the early stationary growth phase, the transcript contents and activities of pyruvate phosphate dikinase, fructose 1,6-bisphosphatase and glycogen synthase decreased, whereas those of glycogen phosphorylase, ADP-phosphofructokinase and pyruvate kinase increased. Therefore, glycogen and gluconeogenic metabolites were synthesized when an external carbon source was provided. Once such a carbon source became depleted, glycolysis and methanogenesis fed by glycogen degradation provided the ATP supply. Weak inhibition of key enzymes by metabolites suggested that the pathways evaluated were mainly transcriptionally regulated. Because glycogen metabolism and glycolysis/gluconeogenesis are not present in all methanogens, the overall data suggest that glycogen storage might represent an environmental

  17. Determination of primary combustion source organic carbon-to-elemental carbon (OC / EC ratio using ambient OC and EC measurements: secondary OC-EC correlation minimization method

    Directory of Open Access Journals (Sweden)

    C. Wu

    2016-05-01

    Full Text Available Elemental carbon (EC has been widely used as a tracer to track the portion of co-emitted primary organic carbon (OC and, by extension, to estimate secondary OC (SOC from ambient observations of EC and OC. Key to this EC tracer method is to determine an appropriate OC / EC ratio that represents primary combustion emission sources (i.e., (OC / ECpri at the observation site. The conventional approaches include regressing OC against EC within a fixed percentile of the lowest (OC / EC ratio data (usually 5–20 % or relying on a subset of sampling days with low photochemical activity and dominated by local emissions. The drawback of these approaches is rooted in its empirical nature, i.e., a lack of clear quantitative criteria in the selection of data subsets for the (OC / ECpri determination. We examine here a method that derives (OC / ECpri through calculating a hypothetical set of (OC / ECpri and SOC followed by seeking the minimum of the coefficient of correlation (R2 between SOC and EC. The hypothetical (OC / ECpri that generates the minimum R2(SOC,EC then represents the actual (OC / ECpri ratio if variations of EC and SOC are independent and (OC / ECpri is relatively constant in the study period. This Minimum R Squared (MRS method has a clear quantitative criterion for the (OC / ECpri calculation. This work uses numerically simulated data to evaluate the accuracy of SOC estimation by the MRS method and to compare with two commonly used methods: minimum OC / EC (OC / ECmin and OC / EC percentile (OC / EC10 %. Log-normally distributed EC and OC concentrations with known proportion of SOC are numerically produced through a pseudorandom number generator. Three scenarios are considered, including a single primary source, two independent primary sources, and two correlated primary sources. The MRS method consistently yields the most accurate SOC estimation. Unbiased SOC estimation by OC

  18. Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific

    Science.gov (United States)

    Schuback, Nina; Flecken, Mirkko; Maldonado, Maria T.; Tortell, Philippe D.

    2016-02-01

    Active chlorophyll a fluorescence approaches, including fast repetition rate fluorometry (FRRF), have the potential to provide estimates of phytoplankton primary productivity at an unprecedented spatial and temporal resolution. FRRF-derived productivity rates are based on estimates of charge separation in reaction center II (ETRRCII), which must be converted into ecologically relevant units of carbon fixation. Understanding sources of variability in the coupling of ETRRCII and carbon fixation provides physiological insight into phytoplankton photosynthesis and is critical for the application of FRRF as a primary productivity measurement tool. In the present study, we simultaneously measured phytoplankton carbon fixation and ETRRCII in the iron-limited NE subarctic Pacific over the course of a diurnal cycle. We show that rates of ETRRCII are closely tied to the diurnal cycle in light availability, whereas rates of carbon fixation appear to be influenced by endogenous changes in metabolic energy allocation under iron-limited conditions. Unsynchronized diurnal oscillations of the two rates led to 3.5-fold changes in the conversion factor between ETRRCII and carbon fixation (Kc / nPSII). Consequently, diurnal variability in phytoplankton carbon fixation cannot be adequately captured with FRRF approaches if a constant conversion factor is applied. Utilizing several auxiliary photophysiological measurements, we observed that a high conversion factor is associated with conditions of excess light and correlates with the increased expression of non-photochemical quenching (NPQ) in the pigment antenna, as derived from FRRF measurements. The observed correlation between NPQ and Kc / nPSII requires further validation but has the potential to improve estimates of phytoplankton carbon fixation rates from FRRF measurements alone.

  19. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism.

    Science.gov (United States)

    van der Meulen, Sjoerd B; de Jong, Anne; Kok, Jan

    2016-01-01

    RNA sequencing has revolutionized genome-wide transcriptome analyses, and the identification of non-coding regulatory RNAs in bacteria has thus increased concurrently. Here we reveal the transcriptome map of the lactic acid bacterial paradigm Lactococcus lactis MG1363 by employing differential RNA sequencing (dRNA-seq) and a combination of manual and automated transcriptome mining. This resulted in a high-resolution genome annotation of L. lactis and the identification of 60 cis-encoded antisense RNAs (asRNAs), 186 trans-encoded putative regulatory RNAs (sRNAs) and 134 novel small ORFs. Based on the putative targets of asRNAs, a novel classification is proposed. Several transcription factor DNA binding motifs were identified in the promoter sequences of (a)sRNAs, providing insight in the interplay between lactococcal regulatory RNAs and transcription factors. The presence and lengths of 14 putative sRNAs were experimentally confirmed by differential Northern hybridization, including the abundant RNA 6S that is differentially expressed depending on the available carbon source. For another sRNA, LLMGnc_147, functional analysis revealed that it is involved in carbon uptake and metabolism. L. lactis contains 13% leaderless mRNAs (lmRNAs) that, from an analysis of overrepresentation in GO classes, seem predominantly involved in nucleotide metabolism and DNA/RNA binding. Moreover, an A-rich sequence motif immediately following the start codon was uncovered, which could provide novel insight in the translation of lmRNAs. Altogether, this first experimental genome-wide assessment of the transcriptome landscape of L. lactis and subsequent sRNA studies provide an extensive basis for the investigation of regulatory RNAs in L. lactis and related lactococcal species.

  20. Monitoring in situ biodegradation of hydrocarbons by using stable carbon isotopes

    International Nuclear Information System (INIS)

    Aggarwal, P.K.; Hinchee, R.E.

    1991-01-01

    Spilled or leaked nonhalogenated petroleum hydrocarbons in the soil can generally be metabolized by indigenous, aerobic bacteria. In situ biological degradation of hydrocarbons may be accelerated by supplying inorganic nutrients and/or oxygen. Approaches to monitoring and verifying enhanced in situ biodegradation have included measurements of changes over time in the (a) concentration of hydrocarbons, (b) temperature, (c) number of hydrocarbon-degrading microorganisms, (d) ratio of fast-degrading hydrocarbons (e.g., pristanes or phytanes), and (e) metabolic intermediates. Measurements of oxygen consumption over time and elevated carbon dioxide concentrations in soil gas also have been used as indicators of hydrocarbon degradation. An alternative approach that may help substantiate biodegradation is to measure stable carbon isotope ratios in soil gas CO 2 . Stable carbon isotope ratio analysis is inexpensive and commercially available at many laboratories. Carbon dioxide produced by hydrocarbon degradation may be distinguished from that produced by other processes based on the carbon isotopic compositions characteristic of the source material and/or fractionation accompanying microbial metabolism. Here the authors demonstrate the applicability of the stable isotope technique for monitoring enhanced. aerobic biodegradation of hydrocarbons using data from three locations in the United States

  1. Pathways and bioenergetics of anaerobic carbon monoxide fermentation

    NARCIS (Netherlands)

    Diender, Martijn; Stams, Fons; Machado de Sousa, Diana

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the

  2. Primary hyperoxaluria: spectrum of clinical and imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Sara B.; Levin, Terry L. [Children' s Hospital of Montefiore Medical Center, Division of Pediatric Radiology, Department of Radiology, Bronx, NY (United States); Waltuch, Temima; Kaskel, Frederick [Children' s Hospital at Montefiore Medical Center, Division of Pediatric Nephrology, Bronx, NY (United States); Bivin, William [Allegheny General Hospital, Department of Pathology, Pittsburgh, PA (United States)

    2017-01-15

    Primary hyperoxaluria is a rare autosomal recessive inborn error of metabolism with three known subtypes. In primary hyperoxaluria type 1, the most common of the subtypes, a deficiency in the hepatic enzymes responsible for the metabolism of glycoxylate to glycine, leads to excessive levels of glyoxylate, which is converted to oxalate. The resultant elevation in serum and urinary oxalate that characterizes primary hyperoxaluria leads to calcium oxalate crystal deposition in multiple organ systems (oxalosis). We review the genetics, pathogenesis, variable clinical presentation and course of this disease as well as its treatment. Emphasis is placed on the characteristic imaging findings before and after definitive treatment with combined liver and renal transplantation. (orig.)

  3. Acute nutritional ketosis: implications for exercise performance and metabolism

    Science.gov (United States)

    2014-01-01

    Ketone bodies acetoacetate (AcAc) and D-β-hydroxybutyrate (βHB) may provide an alternative carbon source to fuel exercise when delivered acutely in nutritional form. The metabolic actions of ketone bodies are based on sound evolutionary principles to prolong survival during caloric deprivation. By harnessing the potential of these metabolic actions during exercise, athletic performance could be influenced, providing a useful model for the application of ketosis in therapeutic conditions. This article examines the energetic implications of ketone body utilisation with particular reference to exercise metabolism and substrate energetics. PMID:25379174

  4. Integration of C1 and C2 Metabolism in Trees

    OpenAIRE

    Jardine, Kolby J.; Fernandes de Souza, Vinicius; Oikawa, Patty; Higuchi, Niro; Bill, Markus; Porras, Rachel; Niinemets, Ülo; Chambers, Jeffrey Q.

    2017-01-01

    C1 metabolism in plants is known to be involved in photorespiration, nitrogen and amino acid metabolism, as well as methylation and biosynthesis of metabolites and biopolymers. Although the flux of carbon through the C1 pathway is thought to be large, its intermediates are difficult to measure and relatively little is known about this potentially ubiquitous pathway. In this study, we evaluated the C1 pathway and its integration with the central metabolism using aqueous solutions of 13C-labele...

  5. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    Science.gov (United States)

    McConnaughey, Ted A.; Burdett, Jim; Whelan, Joseph F.; Paull, Charles K.

    1997-02-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO 2/O 2 ratios appear to be the major controlling variable. Atmospheric CO 2/O 2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO 2 in the course of obtaining 0 2. Tissue CO 2 therefore, does not isotopically equilibrate with environmental CO 2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO 2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO 2 uptake is several times faster than respiratory CO 2 release. Photosynthesis, therefore, affects skeletal δ13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects.

  6. Population diversification in a yeast metabolic program promotes anticipation of environmental shifts.

    Directory of Open Access Journals (Sweden)

    Ophelia S Venturelli

    2015-01-01

    Full Text Available Delineating the strategies by which cells contend with combinatorial changing environments is crucial for understanding cellular regulatory organization. When presented with two carbon sources, microorganisms first consume the carbon substrate that supports the highest growth rate (e.g., glucose and then switch to the secondary carbon source (e.g., galactose, a paradigm known as the Monod model. Sequential sugar utilization has been attributed to transcriptional repression of the secondary metabolic pathway, followed by activation of this pathway upon depletion of the preferred carbon source. In this work, we demonstrate that although Saccharomyces cerevisiae cells consume glucose before galactose, the galactose regulatory pathway is activated in a fraction of the cell population hours before glucose is fully consumed. This early activation reduces the time required for the population to transition between the two metabolic programs and provides a fitness advantage that might be crucial in competitive environments.

  7. Quantitative Tools for Dissection of Hydrogen-Producing Metabolic Networks-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D.; Dismukes, G.Charles.; Rabitz, Herschel A.; Amador-Noguez, Daniel

    2012-10-19

    During this project we have pioneered the development of integrated experimental-computational technologies for the quantitative dissection of metabolism in hydrogen and biofuel producing microorganisms (i.e. C. acetobutylicum and various cyanobacteria species). The application of these new methodologies resulted in many significant advances in the understanding of the metabolic networks and metabolism of these organisms, and has provided new strategies to enhance their hydrogen or biofuel producing capabilities. As an example, using mass spectrometry, isotope tracers, and quantitative flux-modeling we mapped the metabolic network structure in C. acetobutylicum. This resulted in a comprehensive and quantitative understanding of central carbon metabolism that could not have been obtained using genomic data alone. We discovered that biofuel production in this bacterium, which only occurs during stationary phase, requires a global remodeling of central metabolism (involving large changes in metabolite concentrations and fluxes) that has the effect of redirecting resources (carbon and reducing power) from biomass production into solvent production. This new holistic, quantitative understanding of metabolism is now being used as the basis for metabolic engineering strategies to improve solvent production in this bacterium. In another example, making use of newly developed technologies for monitoring hydrogen and NAD(P)H levels in vivo, we dissected the metabolic pathways for photobiological hydrogen production by cyanobacteria Cyanothece sp. This investigation led to the identification of multiple targets for improving hydrogen production. Importantly, the quantitative tools and approaches that we have developed are broadly applicable and we are now using them to investigate other important biofuel producers, such as cellulolytic bacteria.

  8. Metabolic cost of incubation in the Laysan albatross and Bonin petrel.

    Science.gov (United States)

    Grant, G S; Whittow, G C

    1983-01-01

    1. Oxygen consumption and carbon dioxide production were measured in resting and incubating Laysan albatrosses and Bonin petrels on Midway Atoll in the north central Pacific Ocean. 2. Incubation metabolism within the thermal neutral zone is less than or equal to resting metabolism in the albatross and petrel. 3. The respiratory quotients (0.64-0.72) during the long fasts indicate fat metabolism. 4. The estimated fractional water content of the albatross and petrel do not change during incubation fasts because water loss is balanced by metabolic water production.

  9. Long-term monitoring reveals carbon-nitrogen metabolism key to microcystin production in eutrophic lakes

    Directory of Open Access Journals (Sweden)

    Lucas J Beversdorf

    2015-05-01

    Full Text Available The environmental drivers contributing to cyanobacterial dominance in aquatic systems have been extensively studied. However, understanding of toxic versus non-toxic cyanobacterial population dynamics and the mechanisms regulating cyanotoxin production remain elusive, both physiologically and ecologically. One reason is the disconnect between laboratory and field-based studies. Here, we combined three years of temporal data, including microcystin (MC concentrations, 16 years of long-term ecological research, and 10 years of molecular data to investigate the potential factors leading to the selection of toxic Microcystis and MC production. Our analysis revealed that nitrogen (N speciation and inorganic carbon (C availability might be important drivers of Microcystis population dynamics and that an imbalance in cellular C: N ratios may trigger MC production. More specifically, precipitous declines in ammonium concentrations lead to a transitional period of N stress, even in the presence of high nitrate concentrations, that we call the toxic phase. Following the toxic phase, temperature and cyanobacterial abundance remained elevated but MC concentrations drastically declined. Increases in ammonium due to lake turnover may have led to down regulation of MC synthesis or a shift in the community from toxic to non-toxic species. While total phosphorus (P to total N ratios were relatively low over the time-series, MC concentrations were highest when total N to total P ratios were also highest. Similarly, high C: N ratios were also strongly correlated to the toxic phase. We propose a metabolic model that corroborates molecular studies and reflects our ecological observations that C and N metabolism may regulate MC production physiologically and ecologically. In particular, we hypothesize that an imbalance between 2-oxoglutarate and ammonium in the cell regulates MC synthesis in the environment.

  10. Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products.

    Science.gov (United States)

    Riedel, Sebastian L; Lu, Jingnan; Stahl, Ulf; Brigham, Christopher J

    2014-02-01

    Lipid and fatty acid metabolism has been well studied in model microbial organisms like Escherichia coli and Bacillus subtilis. The major precursor of fatty acid biosynthesis is also the major product of fatty acid degradation (β-oxidation), acetyl-CoA, which is a key metabolite for all organisms. Controlling carbon flux to fatty acid biosynthesis and from β-oxidation allows for the biosynthesis of natural products of biotechnological importance. Ralstonia eutropha can utilize acetyl-CoA from fatty acid metabolism to produce intracellular polyhydroxyalkanoate (PHA). R. eutropha can also be engineered to utilize fatty acid metabolism intermediates to produce different PHA precursors. Metabolism of lipids and fatty acids can be rerouted to convert carbon into other value-added compounds like biofuels. This review discusses the lipid and fatty acid metabolic pathways in R. eutropha and how they can be used to construct reagents for the biosynthesis of products of industrial importance. Specifically, how the use of lipids or fatty acids as the sole carbon source in R. eutropha cultures adds value to these biotechnological products will be discussed here.

  11. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications.

    Science.gov (United States)

    Löbs, Ann-Kathrin; Schwartz, Cory; Wheeldon, Ian

    2017-09-01

    Microbial production of chemicals and proteins from biomass-derived and waste sugar streams is a rapidly growing area of research and development. While the model yeast Saccharomyces cerevisia e is an excellent host for the conversion of glucose to ethanol, production of other chemicals from alternative substrates often requires extensive strain engineering. To avoid complex and intensive engineering of S. cerevisiae, other yeasts are often selected as hosts for bioprocessing based on their natural capacity to produce a desired product: for example, the efficient production and secretion of proteins, lipids, and primary metabolites that have value as commodity chemicals. Even when using yeasts with beneficial native phenotypes, metabolic engineering to increase yield, titer, and production rate is essential. The non-conventional yeasts Kluyveromyces lactis, K. marxianus, Scheffersomyces stipitis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris have been developed as eukaryotic hosts because of their desirable phenotypes, including thermotolerance, assimilation of diverse carbon sources, and high protein secretion. However, advanced metabolic engineering in these yeasts has been limited. This review outlines the challenges of using non-conventional yeasts for strain and pathway engineering, and discusses the developed solutions to these problems and the resulting applications in industrial biotechnology.

  12. Carbon isotopes in mollusk shell carbonates

    Science.gov (United States)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  13. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments.

    Science.gov (United States)

    Keil, Richard

    2017-01-03

    Carbon preservation in marine sediments, supplemented by that in large lakes, is the primary mechanism that moves carbon from the active surficial carbon cycle to the slower geologic carbon cycle. Preservation rates are low relative to the rates at which carbon moves between surface pools, which has led to the preservation term largely being ignored when evaluating anthropogenic forcing of the global carbon cycle. However, a variety of anthropogenic drivers-including ocean warming, deoxygenation, and acidification, as well as human-induced changes in sediment delivery to the ocean and mixing and irrigation of continental margin sediments-all work to decrease the already small carbon preservation term. These drivers affect the cycling of both carbonate and organic carbon in the ocean. The overall effect of anthropogenic forcing in the modern ocean is to decrease delivery of carbon to sediments, increase sedimentary dissolution and remineralization, and subsequently decrease overall carbon preservation.

  14. Pathways and bioenergetics of anaerobic carbon monoxide fermentation.

    OpenAIRE

    Martijn eDiender; Alfons J.M. Stams; Alfons J.M. Stams; Diana Z. Sousa

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis and acetogenesis, ...

  15. Bosch Reactor Development for High Percentage Oxygen Recovery from Carbon Dioxide

    Science.gov (United States)

    Howard, David; Abney, Morgan

    2015-01-01

    This next Generation Life Support Project entails the development and demonstration of Bosch reaction technologies to improve oxygen recovery from metabolically generated oxygen and/or space environments. A primary focus was placed on alternate carbon formation reactor concepts to improve useful catalyst life for space vehicle applications, and make use of in situ catalyst resources for non-terrestrial surface missions. Current state-of-the-art oxygen recovery systems onboard the International Space Station are able to effectively recover approximately 45 percent of the oxygen consumed by humans and exhausted in the form of carbon dioxide (CO2). Excess CO2 is vented overboard and the oxygen contained in the molecules is lost. For long-duration missions beyond the reaches of Earth for resupply, it will be necessary to recover greater amounts of constituents such as oxygen that are necessary for sustaining life. Bosch technologies theoretically recover 100 percent of the oxygen from CO2, producing pure carbon as the sole waste product. Challenges with this technology revolve around the carbon product fouling catalyst materials, drastically limiting catalyst life. This project successfully demonstrated techniques to extend catalyst surface area exposure times to improve catalyst life for vehicle applications, and demonstrated the use of Martian and lunar regolith as viable catalyst Bosch Reactor Development for High Percentage Oxygen Recovery From Carbon Dioxide materials for surface missions. The Bosch process generates carbon nanotube formation within the regolith, which has been shown to improve mechanical properties of building materials. Production of bricks from post reaction regolith for building and radiation shielding applications were also explored.

  16. Metabolic engineering in methanotrophic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kalyuzhnaya, MG; Puri, AW; Lidstrom, ME

    2015-05-01

    Methane, as natural gas or biogas, is the least expensive source of carbon for (bio)chemical synthesis. Scalable biological upgrading of this simple alkane to chemicals and fuels can bring new sustainable solutions to a number of industries with large environmental footprints, such as natural gas/petroleum production, landfills, wastewater treatment, and livestock. Microbial biocatalysis with methane as a feedstock has been pursued off and on for almost a half century, with little enduring success. Today, biological engineering and systems biology provide new opportunities for metabolic system modulation and give new optimism to the concept of a methane-based bio-industry. Here we present an overview of the most recent advances pertaining to metabolic engineering of microbial methane utilization. Some ideas concerning metabolic improvements for production of acetyl-CoA and pyruvate, two main precursors for bioconversion, are presented. We also discuss main gaps in the current knowledge of aerobic methane utilization, which must be solved in order to release the full potential of methane-based biosystems. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Microbial Metabolism in Serpentinite Fluids

    Science.gov (United States)

    Crespo-Medina, M.; Brazelton, W. J.; Twing, K. I.; Kubo, M.; Hoehler, T. M.; Schrenk, M. O.

    2013-12-01

    Serpentinization is the process in which ultramafic rocks, characteristic of the upper mantle, react with water liberating mantle carbon and reducing power to potenially support chemosynthetic microbial communities. These communities may be important mediators of carbon and energy exchange between the deep Earth and the surface biosphere. Our work focuses on the Coast Range Ophiolite Microbial Observatory (CROMO) in Northern California where subsurface fluids are accessible through a series of wells. Preliminary analyses indicate that the highly basic fluids (pH 9-12) have low microbial diversity, but there is limited knowledge about the metabolic capabilities of these communties. Metagenomic data from similar serpentine environments [1] have identified Betaproteobacteria belonging to the order Burkholderiales and Gram-positive bacteria from the order Clostridiales as key components of the serpentine microbiome. In an effort to better characterize the microbial community, metabolism, and geochemistry at CROMO, fluids from two representative wells (N08B and CSWold) were sampled during recent field campaigns. Geochemical characterization of the fluids includes measurements of dissolved gases (H2, CO, CH4), dissolved inorganic and organic carbon, volatile fatty acids, and nutrients. The wells selected can be differentiated in that N08B had higher pH (10-11), lower dissolved oxygen, and cell counts ranging from 105-106 cells mL-1 of fluid, with an abundance of the betaproteobacterium Hydrogenophaga. In contrast, fluids from CSWold have slightly lower pH (9-9.5), DO, and conductivity, as well as higher TDN and TDP. CSWold fluid is also characterized for having lower cell counts (~103 cells mL-1) and an abundance of Dethiobacter, a taxon within the phylum Clostridiales. Microcosm experiments were conducted with the purpose of monitoring carbon fixation, methanotrophy and metabolism of small organic compounds, such as acetate and formate, while tracing changes in fluid

  18. Impact of 4 different definitions used for the assessment of the prevalence of the Metabolic Syndrome in primary healthcare:The German Metabolic and Cardiovascular Risk Project (GEMCAS

    Directory of Open Access Journals (Sweden)

    Wasem Jürgen

    2007-09-01

    Full Text Available Abstract Background The metabolic syndrome (MetSyn places individuals at increased risk for type 2 diabetes and cardiovascular disease. Prevalence rates of the population of the MetSyn are still scarce. Moreover, the impact of different definitions of the MetSyn on the prevalence is unclear. Aim here is to assess the prevalence of the MetSyn in primary health care and to investigate the impact of four different definitions of the MetSyn on the determined prevalence with regard to age, gender and socio-economic status. Methods The German-wide cross-sectional study was conducted during two weeks in October 2005 in 1.511 randomly selected general practices. Blood samples were analyzed, blood pressure and waist circumference assessed, data on lifestyle, medication, chronic disorders, and socio-demographic characteristics collected. MetSyn prevalence was estimated according to the definitions of NCEP ATP III (2001, AHA/NHLBI (2004, 2005, and IDF (2005. Descriptive statistics and prevalence rate ratios using the PROG GENMOD procedure, were calculated. Cohen's kappa was used as measure for interreliability between the different prevalence estimates. Results Data of 35,869 patients (age range: 18–99, women 61.1% were included. The prevalence was lowest using the NCEP ATP III- (all: 19.8%, men 22.7%, women: 18.0%, highest according to the IDF-definition (32.7%, 40.3%, 28.0%. The increase in prevalence with recent definitions was more pronounced for men than for women, and was particularly high for men and women aged 60–79 years. The IDF-definition resulted in a higher prevalence especially in those with the highest educational status. Agreement (kappa between the NCEP ATP III- and IDF-definition was 0.68 (men 0.61, women 0.74, between the updated the AHA/NHLBI- (2005 and IDF-definition 0.85 (men 0.79, women 0.89. Conclusion The prevalence of metabolic syndrome is associated with age, gender, and educational status and increases considerably with each

  19. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources.

    Science.gov (United States)

    Wendisch, Volker F; Brito, Luciana Fernandes; Gil Lopez, Marina; Hennig, Guido; Pfeifenschneider, Johannes; Sgobba, Elvira; Veldmann, Kareen H

    2016-09-20

    Most biotechnological processes are based on glucose that is either present in molasses or generated from starch by enzymatic hydrolysis. At the very high, million-ton scale production volumes, for instance for fermentative production of the biofuel ethanol or of commodity chemicals such as organic acids and amino acids, competing uses of carbon sources e.g. in human and animal nutrition have to be taken into account. Thus, the biotechnological production hosts E. coli, C. glutamicum, pseudomonads, bacilli and Baker's yeast used in these large scale processes have been engineered for efficient utilization of alternative carbon sources. This flexible feedstock concept is central to the use of non-glucose second and third generation feedstocks in the emerging bioeconomy. The metabolic engineering efforts to broaden the substrate scope of E. coli, C. glutamicum, pseudomonads, B. subtilis and yeasts to include non-native carbon sources will be reviewed. Strategies to enable simultaneous consumption of mixtures of native and non-native carbon sources present in biomass hydrolysates will be summarized and a perspective on how to further increase feedstock flexibility for the realization of biorefinery processes will be given. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effect of vermicompost on some physiological attributes involved in carbon and nitrogen metabolism as well as nutrient status in leaves of tobacco (nicotiana tabacum L.)

    International Nuclear Information System (INIS)

    Qin, C.; Zheng, P.; Akram, N.A.

    2016-01-01

    A pot experiment was carried out to examine the influence of vermicompost application on some key enzymes and metabolites involved in carbon (C) and nitrogen (N) metabolism as well as nutrient status in the leaves of tobacco (Nicotiana tabacum L.). Two types of vermicompost with two application rates were used in this study. Regardless of application rate, both types of vermicompost significantly increased total N, phosphorus (P) and potassium (K) contents in the leaves. They also caused enhancements in contents of total soluble carbohydrates, reducing sugars, starch and total organic C as well as amylase and invertase activities involved in C metabolism, contents of soluble protein and nicotine in N metabolism in the leaves. With an increase in application rate, each vermicompost type had an increasing effect on almost all measured parameters except nitrate reductase activity. Regardless of vermicompost type, the high rate (50%) of application showed the best effects compared with controls. The effects of V1 type vermicompost were superior to those of V2 at the same application rate. Therefore, the above effects might appear to be dependent on both type and dose. Vermicompost could be considered as an effective organic matter for attaining improved plant nutrition as well as C and N metabolism. (author)

  1. Newly-fixed carbon preferentially flows through starch in the unicellular alga Rhodella

    International Nuclear Information System (INIS)

    Kroen, W.K.; Ramus, J.S.

    1989-01-01

    Cells of the unicellular red alga Rhodella reticulata produce copious amounts of anionic extracellular polysaccharides. Previous experiments, comparing growing and non-growing cells, showed little difference in the pattern of initial 14 C partitioning, with a high percentage of label in starch. Short labelling periods, followed by chasing in unlabelled medium, showed rapid movement of carbon through the starch pool within the first 6 hrs, with an accompanying increase in both the protein and mucilage fractions. The overall pattern of carbon metabolism appears fixed throughout growth of the cells, with total carbon input changing with changing growth phase. As starch is extrachloroplastic in the red algae, input of fixed carbon directly into the starch pool may serve as a routing mechanism to direct subsequent carbon metabolism within the cell

  2. Yields of primary products from chloroethylenes in air under electron beam irradiation

    International Nuclear Information System (INIS)

    Hakoda, Teruyuki; Hashimoto, Shoji; Kojima, Takuji

    2003-01-01

    The quantitative analysis of toxic primary irradiation products was carried out for the development of the purification technology of chloroethylenes/air mixtures using an electron beam (EB). Degradation of chloroethylenes in humid air proceeded through the formation of primary products retaining a carbon-carbon (C-C) bond such as chloroacetyl chlorides and chloroacetyl aldehyde as well as that of primary products of COCl 2 and HCOCl through C-C bond cleavage. Chloroethylenes having one carbon bonded to two Cl atoms was decomposed into the primary products retaining a C-C bond prior to breaking a C-C bond. The number of Cl atoms of a chloroethylene molecule enhanced the formation ratio of primary products retaining a C-C bond. On the other hand, chloroethylene having two carbons bonded to one Cl atom was degraded thought the scission of a C-C bond predominantly C-C bond maintenance. (author)

  3. Monte Carlo simulation of electron depth distribution and backscattering for carbon films deposited on aluminium as a function of incidence angle and primary energy

    Science.gov (United States)

    Dapor, Maurizio

    2005-01-01

    Carbon films are deposited on various substrates (polymers, polyester fabrics, polyester yarns, metal alloys) both for experimental and technological motivations (medical devices, biocompatible coatings, food package and so on). Computational studies of the penetration of electron beams in supported thin film of carbon are very useful in order to compare the simulated results with analytical techniques data (obtained by scanning electron microscopy and/or Auger electron spectroscopy) and investigate the film characteristics. In the present paper, the few keV electron depth distribution and backscattering coefficient for the special case of film of carbon deposited on aluminium are investigated, by a Monte Carlo simulation, as a function of the incidence angle and primary electron energy. The simulated results can be used as a way to evaluate the carbon film thickness by a set of measurements of the backscattering coefficient.

  4. Impaired mitochondrial metabolism and protein synthesis in streptozotocin diabetic rat hepatocytes

    International Nuclear Information System (INIS)

    Memon, R.A.; Bessman, S.P.; Mohan, C.

    1990-01-01

    Isolated hepatocytes prepared from control, streptozotocin diabetic rats were incubated at 30 degrees C in Krebs-Henseleit bicarbonate buffer, pH 7.4, containing 0.5 mM concentration of each of the 20 natural amino acids. Effect of insulin on the oxidation of 2,3- 14 C and 1,4- 14 C succinate (suc) carbons and their incorporation into hepatocyte protein, lipid and various metabolic intermediates was studied. Mitochondrial oxidation of suc carbons and their incorporation into protein and lipid was significantly lower in diabetic and insulin treated diabetic rats. Diabetic rats failed to exhibit any significant insulin effect on the oxidation of either 2,3 or 1,4- 14 C suc carbons. Amphibolic channeling of 2,3- 14 C suc carbons into amino acids was significantly reduced in hepatocytes of diabetic rats, however, more of these carbons were diverted into the gluconeogenesis pathway. Diabetes caused a far greater decrease in the oxidation of 2,3- 14 C suc carbons as compared to 1,4- 14 C suc. Based on an earlier report that insulin stimulates only the intramitochondrial Krebs cycle reactions, the authors conclude that the diminished level of anabolic activities in the diabetic rat hepatocytes is due to the subsequent reduction in amphibolic channeling of metabolic intermediates

  5. Seasonal variability of primary production in a fjord ecosystem of the Chilean Patagonia: Implications for the transfer of carbon within pelagic food webs

    Science.gov (United States)

    Montero, Paulina; Daneri, Giovanni; González, Humberto E.; Iriarte, Jose Luis; Tapia, Fabián J.; Lizárraga, Lorena; Sanchez, Nicolas; Pizarro, Oscar

    2011-03-01

    We characterized the seasonal cycle of productivity in Reloncaví Fjord (41°30'S), Chilean Patagonia. Seasonal surveys that included measurements of gross primary production, community respiration, bacterioplankton secondary production, and sedimentation rates along the fjord were combined with continuous records of water-column temperature variability and wind forcing, as well as satellite-derived data on regional patterns of wind stress, sea surface temperatures, and surface chlorophyll concentrations. The hydrography and perhaps fjord productivity respond to the timing and intensity of wind forcing over a larger region. Seasonal changes in the direction and intensity of winds, along with a late-winter improvement in light conditions, may determine the timing of phytoplankton blooms and potentially modulate productivity cycles in the region. Depth-integrated gross primary production estimates were higher (0.4-3.8 g C m -2 d -1) in the productive season (October, February, and May), and lower (0.1-0.2 g C m -2 d -1) in the non-productive season (August). These seasonal changes were also reflected in community respiration and bacterioplankton production rates, which ranged, respectively, from 0.3 to 4.8 g C m -2 d -1 and 0.05 to 0.4 g C m -2 d -1 during the productive and non-productive seasons and from 0.05 to 0.6 g C m -2 d -1 and 0.05 to 0.2 g C m -2 d -1 during the same two periods. We found a strong, significant correlation between gross primary production and community respiration (Spearman, r=0.95; p100%, suggesting the use of allochthonous carbon sources by bacterioplankton when the levels of gross primary production are low. Low primary production rates were associated with a greater contribution of small cells to autotrophic biomass, highlighting the importance of small-sized plankton and bacteria for carbon cycling and fluxes during the less productive winter months. Fecal pellet sedimentation was minimal during this period, also suggesting that most of

  6. Principles of Carbon Catabolite Repression in the Rice Blast Fungus: Tps1, Nmr1-3, and a MATE–Family Pump Regulate Glucose Metabolism during Infection

    Science.gov (United States)

    Hartline, David; Quispe, Cristian F.; Madayiputhiya, Nandakumar; Wilson, Richard A.

    2012-01-01

    Understanding the genetic pathways that regulate how pathogenic fungi respond to their environment is paramount to developing effective mitigation strategies against disease. Carbon catabolite repression (CCR) is a global regulatory mechanism found in a wide range of microbial organisms that ensures the preferential utilization of glucose over less favourable carbon sources, but little is known about the components of CCR in filamentous fungi. Here we report three new mediators of CCR in the devastating rice blast fungus Magnaporthe oryzae: the sugar sensor Tps1, the Nmr1-3 inhibitor proteins, and the multidrug and toxin extrusion (MATE)–family pump, Mdt1. Using simple plate tests coupled with transcriptional analysis, we show that Tps1, in response to glucose-6-phosphate sensing, triggers CCR via the inactivation of Nmr1-3. In addition, by dissecting the CCR pathway using Agrobacterium tumefaciens-mediated mutagenesis, we also show that Mdt1 is an additional and previously unknown regulator of glucose metabolism. Mdt1 regulates glucose assimilation downstream of Tps1 and is necessary for nutrient utilization, sporulation, and pathogenicity. This is the first functional characterization of a MATE–family protein in filamentous fungi and the first description of a MATE protein in genetic regulation or plant pathogenicity. Perturbing CCR in Δtps1 and MDT1 disruption strains thus results in physiological defects that impact pathogenesis, possibly through the early expression of cell wall–degrading enzymes. Taken together, the importance of discovering three new regulators of carbon metabolism lies in understanding how M. oryzae and other pathogenic fungi respond to nutrient availability and control development during infection. PMID:22570632

  7. Isotope label-aided mass spectrometry reveals the influence of environmental factors on metabolism in single eggs of fruit fly.

    Directory of Open Access Journals (Sweden)

    Te-Wei Tseng

    Full Text Available In order to investigate the influence of light/dark cycle on the biosynthesis of metabolites during oogenesis, here we demonstrate a simple experimental protocol which combines in-vivo isotopic labeling of primary metabolites with mass spectrometric analysis of single eggs of fruit fly (Drosophila melanogaster. First, fruit flies were adapted to light/dark cycle using artificial white light. Second, female flies were incubated with an isotopically labeled sugar ((13C(6-glucose for 12 h--either during the circadian day or the circadian night, at light or at dark. Third, eggs were obtained from the incubated female flies, and analyzed individually by matrix-assisted laser desorption/ionization (MALDI mass spectrometry (MS: this yielded information about the extent of labeling with carbon-13. Since the incorporation of carbon-13 to uridine diphosphate glucose (UDP-glucose in fruit fly eggs is very fast, the labeling of this metabolite was used as an indicator of the biosynthesis of metabolites flies/eggs during 12-h periods, which correspond to circadian day or circadian night. The results reveal that once the flies adapted to the 12-h-light/12-h-dark cycle, the incorporation of carbon-13 to UDP-glucose present in fruit fly eggs was not markedly altered by an acute perturbation to this cycle. This effect may be due to a relationship between biosynthesis of primary metabolites in developing eggs and an alteration to the intake of the labeled substrate - possibly related to the change of the feeding habit. Overall, the study shows the possibility of using MALDI-MS in conjunction with isotopic labeling of small metazoans to unravel the influence of environmental cues on primary metabolism.

  8. Martin Gibbs (1922-2006): Pioneer of (14)C research, sugar metabolism & photosynthesis; vigilant Editor-in-Chief of Plant Physiology; sage Educator; and humanistic Mentor.

    Science.gov (United States)

    Black, Clanton C

    2008-01-01

    The very personal touch of Professor Martin Gibbs as a worldwide advocate for photosynthesis and plant physiology was lost with his death in July 2006. Widely known for his engaging humorous personality and his humanitarian lifestyle, Martin Gibbs excelled as a strong international science diplomat; like a personal science family patriarch encouraging science and plant scientists around the world. Immediately after World War II he was a pioneer at the Brookhaven National Laboratory in the use of (14)C to elucidate carbon flow in metabolism and particularly carbon pathways in photosynthesis. His leadership on carbon metabolism and photosynthesis extended for four decades of working in collaboration with a host of students and colleagues. In 1962, he was selected as the Editor-in-Chief of Plant Physiology. That appointment initiated 3 decades of strong directional influences by Gibbs on plant research and photosynthesis. Plant Physiology became and remains a premier source of new knowledge about the vital and primary roles of plants in earth's environmental history and the energetics of our green-blue planet. His leadership and charismatic humanitarian character became the quintessence of excellence worldwide. Martin Gibbs was in every sense the personification of a model mentor not only for scientists but also shown in devotion to family. Here we pay tribute and honor to an exemplary humanistic mentor, Martin Gibbs.

  9. Analysis of carbon and nitrogen co-metabolism in yeast by ultrahigh-resolution mass spectrometry applying 13C- and 15N-labeled substrates simultaneously

    International Nuclear Information System (INIS)

    Blank, Lars M.; Desphande, Rahul R.; Schmid, Andreas; Hayen, Heiko

    2012-01-01

    Alternative metabolic pathways inside a cell can be deduced using stable isotopically labeled substrates. One prerequisite is accurate measurement of the labeling pattern of targeted metabolites. Experiments are generally limited to the use of single-element isotopes, mainly 13 C. Here, we demonstrate the application of direct infusion nanospray, ultrahigh-resolution Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) for metabolic studies using differently labeled elemental isotopes simultaneously - i.e., 13 C and 15 N - in amino acids of a total protein hydrolysate. The optimized strategy for the analysis of metabolism by a hybrid linear ion trap-FTICR-MS comprises the collection of multiple adjacent selected ion monitoring scans. By limiting both the width of the mass range and the number of ions entering the ICR cell with automated gain control, sensitive measurements of isotopologue distribution were possible without compromising mass accuracy and isotope intensity mapping. The required mass-resolving power of more than 60,000 is only achievable on a routine basis by FTICR and Orbitrap mass spectrometers. Evaluation of the method was carried out by comparison of the experimental data to the natural isotope abundances of selected amino acids and by comparison to GC/MS results obtained from a labeling experiment with 13 C-labeled glucose. The developed method was used to shed light on the complexity of the yeast Saccharomyces cerevisiae carbon-nitrogen co-metabolism by administering both 13 C-labeled glucose and 15 N-labeled alanine. The results indicate that not only glutamate but also alanine acts as an amino donor during alanine and valine synthesis. Metabolic studies using FTICR-MS can exploit new possibilities by the use of multiple-labeled elemental isotopes. (orig.)

  10. 2004 Molecular Basis of Microbial One-Carbon Metabolism Gordon Conference - August 1-6, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Joseph A. Krzycki

    2005-09-15

    The Gordon Research Conference (GRC) on 2004 Molecular Basis of Microbial One-Carbon Metabolism Gordon Conference - August 1-6, 2004 was held at Mount Holyoke College, South Hadley, MA from August 1-6, 2004. The Conference was well-attended with 117 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, 'free time' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.

  11. Microarray and bioinformatic analyses suggest models for carbon metabolism in the autotroph Acidithiobacillus ferrooxidans

    Energy Technology Data Exchange (ETDEWEB)

    C. Appia-ayme; R. Quatrini; Y. Denis; F. Denizot; S. Silver; F. Roberto; F. Veloso; J. Valdes; J. P. Cardenas; M. Esparza; O. Orellana; E. Jedlicki; V. Bonnefoy; D. Holmes

    2006-09-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic bacterium that uses iron or sulfur as an energy and electron source. Bioinformatic analysis was used to identify putative genes and potential metabolic pathways involved in CO2 fixation, 2P-glycolate detoxification, carboxysome formation and glycogen utilization in At. ferrooxidans. Microarray transcript profiling was carried out to compare the relative expression of the predicted genes of these pathways when the microorganism was grown in the presence of iron versus sulfur. Several gene expression patterns were confirmed by real-time PCR. Genes for each of the above predicted pathways were found to be organized into discrete clusters. Clusters exhibited differential gene expression depending on the presence of iron or sulfur in the medium. Concordance of gene expression within each cluster, suggested that they are operons Most notably, clusters of genes predicted to be involved in CO2 fixation, carboxysome formation, 2P-glycolate detoxification and glycogen biosynthesis were up-regulated in sulfur medium, whereas genes involved in glycogen utilization were preferentially expressed in iron medium. These results can be explained in terms of models of gene regulation that suggest how A. ferrooxidans can adjust its central carbon management to respond to changing environmental conditions.

  12. Reconstruction of the central carbon metabolism of Aspergillus niger

    DEFF Research Database (Denmark)

    David, Helga; Åkesson, Mats Fredrik; Nielsen, Jens

    2003-01-01

    database for annotation of genes identified in future genome sequencing projects on aspergilli. Based on the metabolic reconstruction, a stoichiometric model was set up that includes 284 metabolites and 335 reactions, of which 268 represent biochemical conversions and 67 represent transport processes...

  13. [Calcium and bone metabolism across women's life stages. Bone metabolism of women in primary amenorrhea.

    Science.gov (United States)

    Higuchi, Tsuyoshi

    For development of the bone during adolescence, the increased estrogen plays an important role especially in young women as well as GH/IGF-Ⅰ system. Although primary amenorrhea can be caused by various pathological factors, almost of cases have a dysfunction of estrogen secretory systems. For Turner syndrome, which is well-known disease with primary amenorrhea,it is generally recommended that the estrogen therapy is started at adolescence and gradually increased up to adult dose level. Recently studies about the adequate dose of estrogen and the adequate age of adult dose in Turner syndrome revealed that intervention with adult dose of estrogen is required as soon as possible for gaining better bone mineral. In the point of view for bone fragility at the future, early diagnosis and adequate intervention for primary amenorrhea is important.

  14. Erosion of soil organic carbon: implications for carbon sequestration

    Science.gov (United States)

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  15. A Systems Model for Ursodeoxycholic Acid Metabolism in Healthy and Patients With Primary Biliary Cirrhosis.

    Science.gov (United States)

    Zuo, P; Dobbins, R L; O'Connor-Semmes, R L; Young, M A

    2016-08-01

    A systems model was developed to describe the metabolism and disposition of ursodeoxycholic acid (UDCA) and its conjugates in healthy subjects based on pharmacokinetic (PK) data from published studies in order to study the distribution of oral UDCA and potential interactions influencing therapeutic effects upon interruption of its enterohepatic recirculation. The base model was empirically adapted to patients with primary biliary cirrhosis (PBC) based on current understanding of disease pathophysiology and clinical measurements. Simulations were performed for patients with PBC under two competing hypotheses: one for inhibition of ileal absorption of both UDCA and conjugates and the other only of conjugates. The simulations predicted distinctly different bile acid distribution patterns in plasma and bile. The UDCA model adapted to patients with PBC provides a platform to investigate a complex therapeutic drug interaction among UDCA, UDCA conjugates, and inhibition of ileal bile acid transport in this rare disease population. © 2016 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  16. Metabolic distress in lipid & one carbon metabolic pathway through low vitamin B-12: a population based study from North India.

    Science.gov (United States)

    Saraswathy, Kallur Nava; Joshi, Shipra; Yadav, Suniti; Garg, Priyanka Rani

    2018-04-25

    population is vulnerable to severe under-nutrition due to the association of vitamin B-12 with HDL, leading to metabolic disturbance in both the pathways; lipid and one carbon metabolic pathway. Co-factors such as ethnicity, cultural practices, and lifestyle & dietary habits must be considered while making public health policies to control diseases.

  17. The phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2)-dependent Tup1 conversion (PIPTC) regulates metabolic reprogramming from glycolysis to gluconeogenesis.

    Science.gov (United States)

    Han, Bong-Kwan; Emr, Scott D

    2013-07-12

    Glucose/carbon metabolism is a fundamental cellular process in living cells. In response to varying environments, eukaryotic cells reprogram their glucose/carbon metabolism between aerobic or anaerobic glycolysis, oxidative phosphorylation, and/or gluconeogenesis. The distinct type of glucose/carbon metabolism that a cell carries out has significant effects on the cell's proliferation and differentiation. However, it is poorly understood how the reprogramming of glucose/carbon metabolism is regulated. Here, we report a novel endosomal PI(3,5)P2 lipid-dependent regulatory mechanism that is required for metabolic reprogramming from glycolysis to gluconeogenesis in Saccharomyces cerevisiae. Certain gluconeogenesis genes, such as FBP1 (encoding fructose-1,6-bisphosphatase 1) and ICL1 (encoding isocitrate lyase 1) are under control of the Mig1 repressor and Cyc8-Tup1 corepressor complex. We previously identified the PI(3,5)P2-dependent Tup1 conversion (PIPTC), a mechanism to convert Cyc8-Tup1 corepressor to Cti6-Cyc8-Tup1 coactivator. We demonstrate that the PIPTC plays a critical role for transcriptional activation of FBP1 and ICL1. Furthermore, without the PIPTC, the Cat8 and Sip4 transcriptional activators cannot be efficiently recruited to the promoters of FBP1 and ICL1, suggesting a key role for the PIPTC in remodulating the chromatin architecture at the promoters. Our findings expand our understanding of the regulatory mechanisms for metabolic reprogramming in eukaryotes to include key regulation steps outside the nucleus. Given that Tup1 and the metabolic enzymes that control PI(3,5)P2 are highly conserved among eukaryotes, our findings may provide important insights toward understanding glucose/carbon metabolic reprogramming in other eukaryotes, including humans.

  18. 13C Metabolic Flux Analysis for systematic metabolic engineering of S. cerevisiae for overproduction of fatty acids.

    Directory of Open Access Journals (Sweden)

    Amit Ghosh

    2016-10-01

    Full Text Available Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here we used flux-based modeling approaches to improve yields of fatty acids in S. cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Y. lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for down-regulation in terms of acetyl-CoA consumption. These genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg L of free fatty acids. With the addition of ATP citrate lyase and down-regulation of malate synthase the engineered strain produced 26 per cent more free fatty acids. Further increases in free fatty acid production of 33 per cent were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by 70 per cent.

  19. Metabolic reprogramming during neuronal differentiation.

    Science.gov (United States)

    Agostini, M; Romeo, F; Inoue, S; Niklison-Chirou, M V; Elia, A J; Dinsdale, D; Morone, N; Knight, R A; Mak, T W; Melino, G

    2016-09-01

    Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate-glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K-Akt-mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation.

  20. Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris

    Science.gov (United States)

    Crombie, Andrew T.; Murrell, J. Colin

    2014-06-01

    The climate-active gas methane is generated both by biological processes and by thermogenic decomposition of fossil organic material, which forms methane and short-chain alkanes, principally ethane, propane and butane. In addition to natural sources, environments are exposed to anthropogenic inputs of all these gases from oil and gas extraction and distribution. The gases provide carbon and/or energy for a diverse range of microorganisms that can metabolize them in both anoxic and oxic zones. Aerobic methanotrophs, which can assimilate methane, have been considered to be entirely distinct from utilizers of short-chain alkanes, and studies of environments exposed to mixtures of methane and multi-carbon alkanes have assumed that disparate groups of microorganisms are responsible for the metabolism of these gases. Here we describe the mechanism by which a single bacterial strain, Methylocella silvestris, can use methane or propane as a carbon and energy source, documenting a methanotroph that can utilize a short-chain alkane as an alternative to methane. Furthermore, during growth on a mixture of these gases, efficient consumption of both gases occurred at the same time. Two soluble di-iron centre monooxygenase (SDIMO) gene clusters were identified and were found to be differentially expressed during bacterial growth on these gases, although both were required for efficient propane utilization. This report of a methanotroph expressing an additional SDIMO that seems to be uniquely involved in short-chain alkane metabolism suggests that such metabolic flexibility may be important in many environments where methane and short-chain alkanes co-occur.