WorldWideScience

Sample records for previously proposed phylogenies

  1. Sacrococcygeal pilonidal disease: analysis of previously proposed risk factors

    Directory of Open Access Journals (Sweden)

    Ali Harlak

    2010-01-01

    Full Text Available PURPOSE: Sacrococcygeal pilonidal disease is a source of one of the most common surgical problems among young adults. While male gender, obesity, occupations requiring sitting, deep natal clefts, excessive body hair, poor body hygiene and excessive sweating are described as the main risk factors for this disease, most of these need to be verified with a clinical trial. The present study aimed to evaluate the value and effect of these factors on pilonidal disease. METHOD: Previously proposed main risk factors were evaluated in a prospective case control study that included 587 patients with pilonidal disease and 2,780 healthy control patients. RESULTS: Stiffness of body hair, number of baths and time spent seated per day were the three most predictive risk factors. Adjusted odds ratios were 9.23, 6.33 and 4.03, respectively (p<0.001. With an adjusted odds ratio of 1.3 (p<.001, body mass index was another risk factor. Family history was not statistically different between the groups and there was no specific occupation associated with the disease. CONCLUSIONS: Hairy people who sit down for more than six hours a day and those who take a bath two or less times per week are at a 219-fold increased risk for sacrococcygeal pilonidal disease than those without these risk factors. For people with a great deal of hair, there is a greater need for them to clean their intergluteal sulcus. People who engage in work that requires sitting in a seat for long periods of time should choose more comfortable seats and should also try to stand whenever possible.

  2. Mitochondrial DNA haplogroup phylogeny of the dog: Proposal for a cladistic nomenclature.

    Science.gov (United States)

    Fregel, Rosa; Suárez, Nicolás M; Betancor, Eva; González, Ana M; Cabrera, Vicente M; Pestano, José

    2015-05-01

    Canis lupus familiaris mitochondrial DNA analysis has increased in recent years, not only for the purpose of deciphering dog domestication but also for forensic genetic studies or breed characterization. The resultant accumulation of data has increased the need for a normalized and phylogenetic-based nomenclature like those provided for human maternal lineages. Although a standardized classification has been proposed, haplotype names within clades have been assigned gradually without considering the evolutionary history of dog mtDNA. Moreover, this classification is based only on the D-loop region, proven to be insufficient for phylogenetic purposes due to its high number of recurrent mutations and the lack of relevant information present in the coding region. In this study, we design 1) a refined mtDNA cladistic nomenclature from a phylogenetic tree based on complete sequences, classifying dog maternal lineages into haplogroups defined by specific diagnostic mutations, and 2) a coding region SNP analysis that allows a more accurate classification into haplogroups when combined with D-loop sequencing, thus improving the phylogenetic information obtained in dog mitochondrial DNA studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Molecular phylogeny of two unusual brown algae, Phaeostrophion irregulare and Platysiphon glacialis, proposal of the Stschapoviales ord. nov. and Platysiphonaceae fam. nov., and a re-examination of divergence times for brown algal orders.

    Science.gov (United States)

    Kawai, Hiroshi; Hanyuda, Takeaki; Draisma, Stefano G A; Wilce, Robert T; Andersen, Robert A

    2015-10-01

    The molecular phylogeny of brown algae was examined using concatenated DNA sequences of seven chloroplast and mitochondrial genes (atpB, psaA, psaB, psbA, psbC, rbcL, and cox1). The study was carried out mostly from unialgal cultures; we included Phaeostrophion irregulare and Platysiphon glacialis because their ordinal taxonomic positions were unclear. Overall, the molecular phylogeny agreed with previously published studies, however, Platysiphon clustered with Halosiphon and Stschapovia and was paraphyletic with the Tilopteridales. Platysiphon resembled Stschapovia in showing remarkable morphological changes between young and mature thalli. Platysiphon, Halosiphon and Stschapovia also shared parenchymatous, terete, erect thalli with assimilatory filaments in whorls or on the distal end. Based on these results, we proposed a new order Stschapoviales and a new family Platysiphonaceae. We proposed to include Phaeostrophion in the Sphacelariales, and we emended the order to include this foliose member. Finally, using basal taxa not included in earlier studies, the origin and divergence times for brown algae were re-investigated. Results showed that the Phaeophyceae branched from Schizocladiophyceae ~260 Ma during the Permian Period. The early diverging brown algae had isomorphic life histories, whereas the derived taxa with heteromorphic life histories evolved 155-110 Ma when they branched from the basal taxa. Based on these results, we propose that the development of heteromorphic life histories and their success in the temperate and cold-water regions was induced by the development of the remarkable seasonality caused by the breakup of Pangaea. Most brown algal orders had diverged by roughly 60 Ma, around the last mass extinction event during the Cretaceous Period, and therefore a drastic climate change might have triggered the divergence of brown algae. © 2015 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological

  4. The phylogeny of amphibian metamorphosis.

    Science.gov (United States)

    Reiss, John O

    2002-01-01

    Frogs have one of the most extreme metamorphoses among vertebrates. How did this metamorphosis evolve? By combining the methods previously proposed by Mabee and Humphries (1993) and Velhagen (1997), I develop a phylogenetic method suited for rigorous analysis of this question. In a preliminary analysis using 12 transformation sequence characters and 36 associated event sequence characters, all drawn from the osteology of the skull, the evolution of metamorphosis is traced on an assumed phylogeny. This phylogeny has lissamphibians (frogs, salamanders, and caecilians) monophyletic, with frogs the sister group of salamanders. Successive outgroups used are temnospondyls and discosauriscids, both of which are fossil groups for which ontogenetic data are available. In the reconstruction of character evolution, an unambiguous change (synapomorphy) along the branch leading to lissamphibians is a delay in the lengthening of the maxilla until metamorphosis, in accordance with my previous suggestion (Reiss, 1996). However, widening of the interpterygoid vacuity does not appear as a synapomophy of lissamphibians, due to variation in the character states in the outgroups. From a more theoretical perspective, the reconstructed evolution of amphibian metamorphosis involves examples of heterochrony, through the shift of ancestral premetamorphic events to the metamorphic period, caenogenesis, through the origin of new larval features, and terminal addition, through the origin of new adult features. Other changes don't readily fit these categories. This preliminary study provides evidence that metamorphic changes in frogs arose as further modifications of changes unique to lissamphibians, as well as a new method by which such questions can be examined.

  5. Chromosomal phylogeny of Lagothrix, Brachyteles, and Cacajao.

    Science.gov (United States)

    Viegas Péquignot, E; Koiffmann, C P; Dutrillaux, B

    1985-01-01

    Based on a comparison of the karyotypes of two Plathyrrhini species, Cacajao melanocephalus (Pitheciinae) and Brachyteles arachnoides (Atelinae), with those of two previously studied species, Lagothrix lagothrica (Atelinae) and C calvus rubicundus (Pitheciinae), it appears that the two Cacajao species have undergone the same number of chromosome rearrangements since they diverged from their common ancestor and that the karyotype of Brachyteles is ancestral to that of Lagothrix. The chromosomal phylogeny of these four species is proposed. A Y-autosome translocation is present in the karyotypes of the two Cacajao species.

  6. Molecular phylogeny of the genus Taenia (Cestoda: Taeniidae): proposals for the resurrection of Hydatigera Lamarck, 1816 and the creation of a new genus Versteria.

    Science.gov (United States)

    Nakao, Minoru; Lavikainen, Antti; Iwaki, Takashi; Haukisalmi, Voitto; Konyaev, Sergey; Oku, Yuzaburo; Okamoto, Munehiro; Ito, Akira

    2013-05-01

    The cestode family Taeniidae generally consists of two valid genera, Taenia and Echinococcus. The genus Echinococcus is monophyletic due to a remarkable similarity in morphology, features of development and genetic makeup. By contrast, Taenia is a highly diverse group formerly made up of different genera. Recent molecular phylogenetic analyses strongly suggest the paraphyly of Taenia. To clarify the genetic relationships among the representative members of Taenia, molecular phylogenies were constructed using nuclear and mitochondrial genes. The nuclear phylogenetic trees of 18S ribosomal DNA and concatenated exon regions of protein-coding genes (phosphoenolpyruvate carboxykinase and DNA polymerase delta) demonstrated that both Taenia mustelae and a clade formed by Taenia parva, Taenia krepkogorski and Taenia taeniaeformis are only distantly related to the other members of Taenia. Similar topologies were recovered in mitochondrial genomic analyses using 12 complete protein-coding genes. A sister relationship between T. mustelae and Echinococcus spp. was supported, especially in protein-coding gene trees inferred from both nuclear and mitochondrial data sets. Based on these results, we propose the resurrection of Hydatigera Lamarck, 1816 for T. parva, T. krepkogorski and T. taeniaeformis and the creation of a new genus, Versteria, for T. mustelae. Due to obvious morphological and ecological similarities, Taenia brachyacantha is also included in Versteria gen. nov., although molecular evidence is not available. Taenia taeniaeformis has been historically regarded as a single species but the present data clearly demonstrate that it consists of two cryptic species. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  7. Incorporating indel information into phylogeny estimation for rapidly emerging pathogens

    Directory of Open Access Journals (Sweden)

    Suchard Marc A

    2007-03-01

    Full Text Available Abstract Background Phylogenies of rapidly evolving pathogens can be difficult to resolve because of the small number of substitutions that accumulate in the short times since divergence. To improve resolution of such phylogenies we propose using insertion and deletion (indel information in addition to substitution information. We accomplish this through joint estimation of alignment and phylogeny in a Bayesian framework, drawing inference using Markov chain Monte Carlo. Joint estimation of alignment and phylogeny sidesteps biases that stem from conditioning on a single alignment by taking into account the ensemble of near-optimal alignments. Results We introduce a novel Markov chain transition kernel that improves computational efficiency by proposing non-local topology rearrangements and by block sampling alignment and topology parameters. In addition, we extend our previous indel model to increase biological realism by placing indels preferentially on longer branches. We demonstrate the ability of indel information to increase phylogenetic resolution in examples drawn from within-host viral sequence samples. We also demonstrate the importance of taking alignment uncertainty into account when using such information. Finally, we show that codon-based substitution models can significantly affect alignment quality and phylogenetic inference by unrealistically forcing indels to begin and end between codons. Conclusion These results indicate that indel information can improve phylogenetic resolution of recently diverged pathogens and that alignment uncertainty should be considered in such analyses.

  8. The phylogeny of Orussidae (Insecta: Hymenoptera) revisited

    DEFF Research Database (Denmark)

    Vilhelmsen, Lars

    2007-01-01

    The phylogeny of the parasitic wasp family Orussidae is analyzed with a slightly expanded version of a previously published data set. The basal splitting events in the family between two fossil taxa and the extant members are not unambiguously resolved. Intergeneric relationships in general...... are poorly supported and change under different analytical conditions. This corroborates earlier fi ndings regarding the phylogeny of the family. A resumé of the evolutionary history of the Orussidae is provided. Leptorussus madagascarensis sp.n. is described. Udgivelsesdato: 7/12...

  9. Bacterial phylogeny structures soil resistomes across habitats

    Science.gov (United States)

    Forsberg, Kevin J.; Patel, Sanket; Gibson, Molly K.; Lauber, Christian L.; Knight, Rob; Fierer, Noah; Dantas, Gautam

    2014-05-01

    Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil, including genes identical to those in human pathogens. Despite the apparent overlap between soil and clinical resistomes, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown. General metagenome functions often correlate with the underlying structure of bacterial communities. However, ARGs are proposed to be highly mobile, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2,895 ARGs we discovered were mostly new, and represent all major resistance mechanisms. We demonstrate that distinct soil types harbour distinct resistomes, and that the addition of nitrogen fertilizer strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements (genes responsible for horizontal gene transfer between bacteria such as transposases and integrases) syntenic with ARGs were rare in soil by comparison with sequenced pathogens, suggesting that ARGs may not transfer between soil bacteria as readily as is observed between human pathogens. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny.

  10. Plastome phylogeny and early diversification of Brassicaceae.

    Science.gov (United States)

    Guo, Xinyi; Liu, Jianquan; Hao, Guoqian; Zhang, Lei; Mao, Kangshan; Wang, Xiaojuan; Zhang, Dan; Ma, Tao; Hu, Quanjun; Al-Shehbaz, Ihsan A; Koch, Marcus A

    2017-02-16

    The family Brassicaceae encompasses diverse species, many of which have high scientific and economic importance. Early diversifications and phylogenetic relationships between major lineages or clades remain unclear. Here we re-investigate Brassicaceae phylogeny with complete plastomes from 51 species representing all four lineages or 5 of 6 major clades (A, B, C, E and F) as identified in earlier studies. Bayesian and maximum likelihood phylogenetic analyses using a partitioned supermatrix of 77 protein coding genes resulted in nearly identical tree topologies exemplified by highly supported relationships between clades. All four lineages were well identified and interrelationships between them were resolved. The previously defined Clade C was found to be paraphyletic (the genus Megadenia formed a separate lineage), while the remaining clades were monophyletic. Clade E (lineage III) was sister to clades B + C rather than to all core Brassicaceae (clades A + B + C or lineages I + II), as suggested by a previous transcriptome study. Molecular dating based on plastome phylogeny supported the origin of major lineages or clades between late Oligocene and early Miocene, and the following radiative diversification across the family took place within a short timescale. In addition, gene losses in the plastomes occurred multiple times during the evolutionary diversification of the family. Plastome phylogeny illustrates the early diversification of cruciferous species. This phylogeny will facilitate our further understanding of evolution and adaptation of numerous species in the model family Brassicaceae.

  11. The phylogeny of Arthrotardigrada

    DEFF Research Database (Denmark)

    Hansen, Jesper Guldberg

    2011-01-01

    The order Arthrotardigrada, or water bears, constitutes a small group of 160 species of marine, microscopical invertebrates, within the phylum Tardigrada. Although the position of tardigrades in the Animal Kingdom has received much attention focusing on the metazoan phylogeny, the phylogenetic...

  12. Fossils and decapod phylogeny

    NARCIS (Netherlands)

    Schram, Frederick R.; Dixon, Christopher

    2003-01-01

    An expanded series of morphological characters developed for a cladistic analysis of extant decapods has yielded a new hypothesis for the phylogeny of the group. Application of this database to selected fossil genera produces some interesting results and demonstrates the feasibility of treating

  13. Building a Twig Phylogeny

    Science.gov (United States)

    Flinn, Kathryn M.

    2015-01-01

    In this classroom activity, students build a phylogeny for woody plant species based on the morphology of their twigs. Using any available twigs, students can practice the process of cladistics to test evolutionary hypotheses for real organisms. They identify homologous characters, determine polarity through outgroup comparison, and construct a…

  14. Phylogeny of the Paracalanidae Giesbrecht, 1888 (Crustacea: Copepoda: Calanoida).

    Science.gov (United States)

    Cornils, Astrid; Blanco-Bercial, Leocadio

    2013-12-01

    The Paracalanidae are ecologically-important marine planktonic copepods that occur in the epipelagic zone in temperate and tropical waters. They are often the dominant taxon - in terms of biomass and abundance - in continental shelf regions. As primary consumers, they form a vital link in the pelagic food web between primary producers and higher trophic levels. Despite the ecological importance of the taxon, evolutionary and systematic relationships within the family remain largely unknown. A multigene phylogeny including 24 species, including representatives for all seven genera, was determined based on two nuclear genes, small-subunit (18S) ribosomal RNA and Histone 3 (H3) and one mitochondrial gene, cytochrome c oxidase subunit I (COI). The molecular phylogeny was well supported by Maximum likelihood and Bayesian inference analysis; all genera were found to be monophyletic, except for Paracalanus, which was separated into two distinct clades: the Paracalanus aculeatus group and Paracalanus parvus group. The molecular phylogeny also confirmed previous findings that Mecynocera and Calocalanus are genera of the family Paracalanidae. For comparison, a morphological phylogeny was created for 35 paracalanid species based on 54 morphological characters derived from published descriptions. The morphological phylogeny did not resolve all genera as monophyletic and bootstrap support was not strong. Molecular and morphological phylogenies were not congruent in the positioning of Bestiolina and the Paracalanus species groups, possibly due to the lack of sufficient phylogenetically-informative morphological characters. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Multilocus resolution of Mugilidae phylogeny (Teleostei: Mugiliformes): Implications for the family's taxonomy.

    Science.gov (United States)

    Xia, Rong; Durand, Jean-Dominique; Fu, Cuizhang

    2016-03-01

    The interrelationships among mugilids (Mugiliformes: Mugilidae) remain highly debated. Using a mitochondrial gene-based phylogeny as criterion, a revised classification with 25 genera in the Mugilidae has recently been proposed. However, phylogenetic relationships of major mitochondrial lineages remain unresolved and to gain a general acceptance the classification requires confirmation based on multilocus evidence and diagnostic morphological characters. Here, we construct a species-tree using twelve nuclear and three mitochondrial loci and infer the evolution of 71 morphological characters. Our multilocus phylogeny does not agree with previous morphology-based hypotheses for the relationships within Mugilidae, confirms the revised classification with 25 genera and further resolves their phylogenetic relationships. Using the well-resolved multilocus phylogeny as the criterion, we reclassify Mugilidae genera into three new subfamilies (Myxinae, Rhinomugilinae, and Cheloninae) and one new, recombined, subfamily (Mugilinae). The Rhinomugilinae subfamily is further divided into four tribes. The revised classification of Mugilidae is supported by morpho-anatomical synapomorphies or a combination of characters. These characters are used to erect a key to the subfamilies and genera. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Genera of euophryine jumping spiders (Araneae: Salticidae), with a combined molecular-morphological phylogeny.

    Science.gov (United States)

    Zhang, Junxia; Maddison, Wayne P

    2015-03-27

    Morphological traits of euophryine jumping spiders were studied to clarify generic limits in the Euophryinae and to permit phylogenetic classification of genera lacking molecular data. One hundred and eight genera are recognized within the subfamily. Euophryine generic groups and the delimitation of some genera are reviewed in detail. In order to explore the effect of adding formal morphological data to previous molecular phylogenetic studies, and to find morphological synapomorphies, eighty-two morphological characters were scored for 203 euophryine species and seven outgroup species. The morphological dataset does not perform as well as the molecular dataset (genes 28S, Actin 5C; 16S-ND1, COI) in resolving the phylogeny of Euophryinae, probably because of frequent convergence and reversal. The formal morphological data were mapped on the phylogeny in order to seek synapomorphies, in hopes of extending the phylogeny to include taxa for which molecular data are not available. Because of homoplasy, few globally-applicable morphological synapomorphies for euophryine clades were found. However, synapomorphies that are unique locally in subclades still help to delimit euophryine generic groups and genera. The following synonyms of euophryine genera are proposed: Maeotella with Anasaitis; Dinattus with Corythalia; Paradecta with Compsodecta; Cobanus, Chloridusa and Wallaba with Sidusa; Tariona with Mopiopia; Nebridia with Amphidraus; Asaphobelis and Siloca with Coryphasia; Ocnotelus with Semnolius; Palpelius with Pristobaeus; Junxattus with Laufeia; Donoessus with Colyttus; Nicylla, Pselcis and Thianitara with Thiania. The new genus Saphrys is erected for misplaced species from southern South America.

  17. Whole genome phylogenies for multiple Drosophila species

    Directory of Open Access Journals (Sweden)

    Seetharam Arun

    2012-12-01

    Full Text Available Abstract Background Reconstructing the evolutionary history of organisms using traditional phylogenetic methods may suffer from inaccurate sequence alignment. An alternative approach, particularly effective when whole genome sequences are available, is to employ methods that don’t use explicit sequence alignments. We extend a novel phylogenetic method based on Singular Value Decomposition (SVD to reconstruct the phylogeny of 12 sequenced Drosophila species. SVD analysis provides accurate comparisons for a high fraction of sequences within whole genomes without the prior identification of orthologs or homologous sites. With this method all protein sequences are converted to peptide frequency vectors within a matrix that is decomposed to provide simplified vector representations for each protein of the genome in a reduced dimensional space. These vectors are summed together to provide a vector representation for each species, and the angle between these vectors provides distance measures that are used to construct species trees. Results An unfiltered whole genome analysis (193,622 predicted proteins strongly supports the currently accepted phylogeny for 12 Drosophila species at higher dimensions except for the generally accepted but difficult to discern sister relationship between D. erecta and D. yakuba. Also, in accordance with previous studies, many sequences appear to support alternative phylogenies. In this case, we observed grouping of D. erecta with D. sechellia when approximately 55% to 95% of the proteins were removed using a filter based on projection values or by reducing resolution by using fewer dimensions. Similar results were obtained when just the melanogaster subgroup was analyzed. Conclusions These results indicate that using our novel phylogenetic method, it is possible to consult and interpret all predicted protein sequences within multiple whole genomes to produce accurate phylogenetic estimations of relatedness between

  18. Bomb-Pulse Chlorine-36 At The Proposed Yucca Mountain Repository Horizon: An Investigation Of Previous Conflicting Results And Collection Of New Data

    International Nuclear Information System (INIS)

    J. Cizdziel

    2006-01-01

    Previous studies by scientists at Los Alamos National Laboratory (LANL) found elevated ratios of chlorine-36 to total chloride ( 36 Cl/Cl) in samples of rock collected from the Exploratory Studies Facility (ESF) and the Enhanced Characterization of the Repository Block (ECRB) at Yucca Mountain as the tunnels were excavated. The data were interpreted as an indication that fluids containing 'bomb-pulse' 36 Cl reached the repository horizon in the ∼50 years since the peak period of above-ground nuclear testing. Moreover, the data support the concept that so-called fast pathways for infiltration not only exist but are active, possibly through a combination of porous media, faults and/or other geologic features. Due to the significance of 36 Cl data to conceptual models of unsaturated zone flow and transport, the United States Geological Survey (USGS) was requested by the Department of Energy (DOE) to design and implement a study to validate the LANL findings. The USGS chose to drill new boreholes at select locations across zones where bomb-pulse ratios had previously been identified. The drill cores were analyzed at Lawrence Livermore National Laboratory (LLNL) for 36 Cl/Cl using both active and passive leaches, with the USGS/LLNL concluding that the active leach extracted too much rock-Cl and the passive leach did not show bomb-pulse ratios. Because consensus was not reached between the USGS/LLNL and LANL on several fundamental points, including the conceptual strategy for sampling, interpretation and use of tritium ( 3 H) data, and the importance and interpretation of blanks, in addition to the presence or absence of bomb-pulse 36 Cl, an evaluation by an independent entity, the University of Nevada, Las Vegas (UNLV), using new samples was initiated. This report is the result of that study. The overall objectives of the UNLV study were to investigate the source or sources of the conflicting results from the previous validation study, and to obtain additional data to

  19. A mixed integer linear programming model to reconstruct phylogenies from single nucleotide polymorphism haplotypes under the maximum parsimony criterion

    Science.gov (United States)

    2013-01-01

    Background Phylogeny estimation from aligned haplotype sequences has attracted more and more attention in the recent years due to its importance in analysis of many fine-scale genetic data. Its application fields range from medical research, to drug discovery, to epidemiology, to population dynamics. The literature on molecular phylogenetics proposes a number of criteria for selecting a phylogeny from among plausible alternatives. Usually, such criteria can be expressed by means of objective functions, and the phylogenies that optimize them are referred to as optimal. One of the most important estimation criteria is the parsimony which states that the optimal phylogeny T∗for a set H of n haplotype sequences over a common set of variable loci is the one that satisfies the following requirements: (i) it has the shortest length and (ii) it is such that, for each pair of distinct haplotypes hi,hj∈H, the sum of the edge weights belonging to the path from hi to hj in T∗ is not smaller than the observed number of changes between hi and hj. Finding the most parsimonious phylogeny for H involves solving an optimization problem, called the Most Parsimonious Phylogeny Estimation Problem (MPPEP), which is NP-hard in many of its versions. Results In this article we investigate a recent version of the MPPEP that arises when input data consist of single nucleotide polymorphism haplotypes extracted from a population of individuals on a common genomic region. Specifically, we explore the prospects for improving on the implicit enumeration strategy of implicit enumeration strategy used in previous work using a novel problem formulation and a series of strengthening valid inequalities and preliminary symmetry breaking constraints to more precisely bound the solution space and accelerate implicit enumeration of possible optimal phylogenies. We present the basic formulation and then introduce a series of provable valid constraints to reduce the solution space. We then prove

  20. A large phylogeny of turtles (Testudines) using molecular data

    NARCIS (Netherlands)

    Guillon, J.-M.; Guéry, L.; Hulin, V.; Girondot, M.

    2012-01-01

    Turtles (Testudines) form a monophyletic group with a highly distinctive body plan. The taxonomy and phylogeny of turtles are still under discussion, at least for some clades. Whereas in most previous studies, only a few species or genera were considered, we here use an extensive compilation of DNA

  1. Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales)

    Science.gov (United States)

    D. Jean Lodge; Mahajabeen Padamsee; P. Brandon Matheny; M. Catherine Aime; Sharon A. Cantrell; David Boertmann; Alexander Kovalenko; Alfredo Vizzini; Bryn T.M. Dentinger; Paul M. Kirk; A. Martin Ainsworth; Jean-Marc Moncalvo; Rytas Vilgalys; Ellen Larsson; Robert Lucking; Gareth W. Griffith; Matthew E. Smith; Lorilei L. Norvell; Dennis E. Desjardin; Scott A. Redhead; Clark L. Ovrebo; Edgar B. Lickey; Enrico Ercole; Karen W. Hughes; Regis Courtecuisse; Anthony Young; Manfred Binder; Andrew M. Minnis; Daniel L. Lindner; Beatriz Ortiz-Santana; John Haight; Thomas Laessoe; Timothy J. Baroni; Jozsef Geml; Tsutomu Hattori

    2013-01-01

    Molecular phylogenies using 1–4 gene regions and information on ecology, morphology and pigment chemistry were used in a partial revision of the agaric family Hygrophoraceae. The phylogenetically supported genera we recognize here in the Hygrophoraceae based on these and previous analyses are: Acantholichen, Ampulloclitocybe, Arrhenia, Cantharellula, Cantharocybe,...

  2. Molecular phylogeny and evolutionary history of Moricandia DC (Brassicaceae

    Directory of Open Access Journals (Sweden)

    Francisco Perfectti

    2017-10-01

    Full Text Available Background The phylogeny of tribe Brassiceae (Brassicaceae has not yet been resolved because of its complex evolutionary history. This tribe comprises economically relevant species, including the genus Moricandia DC. This genus is currently distributed in North Africa, Middle East, Central Asia and Southern Europe, where it is associated with arid and semi-arid environments. Although some species of Moricandia have been used in several phylogenetic studies, the phylogeny of this genus is not well established. Methods Here we present a phylogenetic analysis of the genus Moricandia using a nuclear (the internal transcribed spacers of the ribosomal DNA and two plastidial regions (parts of the NADH dehydrogenase subunit F gene and the trnT-trnF region. We also included in the analyses members of their sister genus Rytidocarpus and from the close genus Eruca. Results The phylogenetic analyses showed a clear and robust phylogeny of the genus Moricandia. The Bayesian inference tree was concordant with the maximum likelihood and timing trees, with the plastidial and nuclear trees showing only minor discrepancies. The genus Moricandia appears to be formed by two main lineages: the Iberian clade including three species, and the African clade including the four species inhabiting the Southern Mediterranean regions plus M. arvensis. Discussion We dated the main evolutionary events of this genus, showing that the origin of the Iberian clade probably occurred after a range expansion during the Messinian period, between 7.25 and 5.33 Ma. In that period, an extensive African-Iberian floral and faunal interchange occurred due to the existence of land bridges between Africa and Europa in what is, at present-days, the Strait of Gibraltar. We have demonstrated that a Spanish population previously ascribed to Rytidocarpus moricandioides is indeed a Moricandia species, and we propose to name it as M. rytidocarpoides sp. nov. In addition, in all the phylogenetic

  3. On simulated annealing phase transitions in phylogeny reconstruction.

    Science.gov (United States)

    Strobl, Maximilian A R; Barker, Daniel

    2016-08-01

    Phylogeny reconstruction with global criteria is NP-complete or NP-hard, hence in general requires a heuristic search. We investigate the powerful, physically inspired, general-purpose heuristic simulated annealing, applied to phylogeny reconstruction. Simulated annealing mimics the physical process of annealing, where a liquid is gently cooled to form a crystal. During the search, periods of elevated specific heat occur, analogous to physical phase transitions. These simulated annealing phase transitions play a crucial role in the outcome of the search. Nevertheless, they have received comparably little attention, for phylogeny or other optimisation problems. We analyse simulated annealing phase transitions during searches for the optimal phylogenetic tree for 34 real-world multiple alignments. In the same way in which melting temperatures differ between materials, we observe distinct specific heat profiles for each input file. We propose this reflects differences in the search landscape and can serve as a measure for problem difficulty and for suitability of the algorithm's parameters. We discuss application in algorithmic optimisation and as a diagnostic to assess parameterisation before computationally costly, large phylogeny reconstructions are launched. Whilst the focus here lies on phylogeny reconstruction under maximum parsimony, it is plausible that our results are more widely applicable to optimisation procedures in science and industry. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Ethnobotany, Phylogeny, and 'Omics' for Human Health and Food Security.

    Science.gov (United States)

    Garnatje, Teresa; Peñuelas, Josep; Vallès, Joan

    2017-03-01

    Here, we propose a new term, 'ethnobotanical convergence', to refer to the similar uses for plants included in the same node of a phylogeny. This phylogenetic approach, together with the 'omics' revolution, shows how combining modern technologies with traditional ethnobotanical knowledge could be used to identify potential new applications of plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches

    Directory of Open Access Journals (Sweden)

    Beaulieu Jeremy M

    2009-02-01

    Full Text Available Abstract Background Biology has increasingly recognized the necessity to build and utilize larger phylogenies to address broad evolutionary questions. Large phylogenies have facilitated the discovery of differential rates of molecular evolution between trees and herbs. They have helped us understand the diversification patterns of mammals as well as the patterns of seed evolution. In addition to these broad evolutionary questions there is increasing awareness of the importance of large phylogenies for addressing conservation issues such as biodiversity hotspots and response to global change. Two major classes of methods have been employed to accomplish the large tree-building task: supertrees and supermatrices. Although these methods are continually being developed, they have yet to be made fully accessible to comparative biologists making extremely large trees rare. Results Here we describe and demonstrate a modified supermatrix method termed mega-phylogeny that uses databased sequences as well as taxonomic hierarchies to make extremely large trees with denser matrices than supermatrices. The two major challenges facing large-scale supermatrix phylogenetics are assembling large data matrices from databases and reconstructing trees from those datasets. The mega-phylogeny approach addresses the former as the latter is accomplished by employing recently developed methods that have greatly reduced the run time of large phylogeny construction. We present an algorithm that requires relatively little human intervention. The implemented algorithm is demonstrated with a dataset and phylogeny for Asterales (within Campanulidae containing 4954 species and 12,033 sites and an rbcL matrix for green plants (Viridiplantae with 13,533 species and 1,401 sites. Conclusion By examining much larger phylogenies, patterns emerge that were otherwise unseen. The phylogeny of Viridiplantae successfully reconstructs major relationships of vascular plants that previously

  6. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches.

    Science.gov (United States)

    Smith, Stephen A; Beaulieu, Jeremy M; Donoghue, Michael J

    2009-02-11

    Biology has increasingly recognized the necessity to build and utilize larger phylogenies to address broad evolutionary questions. Large phylogenies have facilitated the discovery of differential rates of molecular evolution between trees and herbs. They have helped us understand the diversification patterns of mammals as well as the patterns of seed evolution. In addition to these broad evolutionary questions there is increasing awareness of the importance of large phylogenies for addressing conservation issues such as biodiversity hotspots and response to global change. Two major classes of methods have been employed to accomplish the large tree-building task: supertrees and supermatrices. Although these methods are continually being developed, they have yet to be made fully accessible to comparative biologists making extremely large trees rare. Here we describe and demonstrate a modified supermatrix method termed mega-phylogeny that uses databased sequences as well as taxonomic hierarchies to make extremely large trees with denser matrices than supermatrices. The two major challenges facing large-scale supermatrix phylogenetics are assembling large data matrices from databases and reconstructing trees from those datasets. The mega-phylogeny approach addresses the former as the latter is accomplished by employing recently developed methods that have greatly reduced the run time of large phylogeny construction. We present an algorithm that requires relatively little human intervention. The implemented algorithm is demonstrated with a dataset and phylogeny for Asterales (within Campanulidae) containing 4954 species and 12,033 sites and an rbcL matrix for green plants (Viridiplantae) with 13,533 species and 1,401 sites. By examining much larger phylogenies, patterns emerge that were otherwise unseen. The phylogeny of Viridiplantae successfully reconstructs major relationships of vascular plants that previously required many more genes. These demonstrations

  7. RAD-seq derived genome-wide nuclear markers resolve the phylogeny of tunas

    KAUST Repository

    Dí az-Arce, Natalia; Arrizabalaga, Haritz; Murua, Hilario; Irigoien, Xabier; Rodrí guez-Ezpeleta, Naiara

    2016-01-01

    conservation and management strategies for these species. Previous attempts based on mitochondrial and nuclear markers were unsuccessful in inferring a congruent and reliable phylogeny, probably due to mitochondrial introgression events and lack of enough

  8. Asian horses deepen the MSY phylogeny.

    Science.gov (United States)

    Felkel, S; Vogl, C; Rigler, D; Jagannathan, V; Leeb, T; Fries, R; Neuditschko, M; Rieder, S; Velie, B; Lindgren, G; Rubin, C-J; Schlötterer, C; Rattei, T; Brem, G; Wallner, B

    2018-02-01

    Humans have shaped the population history of the horse ever since domestication about 5500 years ago. Comparative analyses of the Y chromosome can illuminate the paternal origin of modern horse breeds. This may also reveal different breeding strategies that led to the formation of extant breeds. Recently, a horse Y-chromosomal phylogeny of modern horses based on 1.46 Mb of the male-specific Y (MSY) was generated. We extended this dataset with 52 samples from five European, two American and seven Asian breeds. As in the previous study, almost all modern European horses fall into a crown group, connected via a few autochthonous Northern European lineages to the outgroup, the Przewalski's Horse. In total, we now distinguish 42 MSY haplotypes determined by 158 variants within domestic horses. Asian horses show much higher diversity than previously found in European breeds. The Asian breeds also introduce a deep split to the phylogeny, preliminarily dated to 5527 ± 872 years. We conclude that the deep splitting Asian Y haplotypes are remnants of a far more diverse ancient horse population, whose haplotypes were lost in other lineages. © 2018 Stichting International Foundation for Animal Genetics.

  9. Rooting phylogenies using gene duplications: an empirical example from the bees (Apoidea).

    Science.gov (United States)

    Brady, Seán G; Litman, Jessica R; Danforth, Bryan N

    2011-09-01

    The placement of the root node in a phylogeny is fundamental to characterizing evolutionary relationships. The root node of bee phylogeny remains unclear despite considerable previous attention. In order to test alternative hypotheses for the location of the root node in bees, we used the F1 and F2 paralogs of elongation factor 1-alpha (EF-1α) to compare the tree topologies that result when using outgroup versus paralogous rooting. Fifty-two taxa representing each of the seven bee families were sequenced for both copies of EF-1α. Two datasets were analyzed. In the first (the "concatenated" dataset), the F1 and F2 copies for each species were concatenated and the tree was rooted using appropriate outgroups (sphecid and crabronid wasps). In the second dataset (the "duplicated" dataset), the F1 and F2 copies were aligned to each another and each copy for all taxa were treated as separate terminals. In this dataset, the root was placed between the F1 and F2 copies (e.g., paralog rooting). Bayesian analyses demonstrate that the outgroup rooting approach outperforms paralog rooting, recovering deeper clades and showing stronger support for groups well established by both morphological and other molecular data. Sequence characteristics of the two copies were compared at the amino acid level, but little evidence was found to suggest that one copy is more functionally conserved. Although neither approach yields an unambiguous root to the tree, both approaches strongly indicate that the root of bee phylogeny does not fall near Colletidae, as has been previously proposed. We discuss paralog rooting as a general strategy and why this approach performs relatively poorly with our particular dataset. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. The shape of mammalian phylogeny

    DEFF Research Database (Denmark)

    Purvis, Andy; Fritz, Susanne A; Rodríguez, Jesús

    2011-01-01

    an assemblage, ecoregion or larger area always tends to be more unbalanced than expected from the phylogeny of species at the next more inclusive spatial scale. We conclude with a verbal model of mammalian macroevolution, which emphasizes the importance to diversification of accessing new regions...

  11. The mitogenomic phylogeny of the Elasmobranchii (Chondrichthyes).

    Science.gov (United States)

    Amaral, Cesar R L; Pereira, Filipe; Silva, Dayse A; Amorim, António; de Carvalho, Elizeu F

    2017-09-20

    Here we present a mitogenomic perspective on the evolution of sharks and rays, being a first glance on the complete mitochondrial history of such an old and diversified group of vertebrates. The Elasmobranchii is a diverse subclass of Chondrichthyes, or cartilaginous fish, with about 1200 species of ocean- and freshwater-dwelling fishes spread all over the world's seas, including some of the ocean's largest fishes. The group dates back about 400 million years near the Devonian-Silurian boundary, being nowadays represented by several derivative lineages, mainly related to Mesozoic forms. Although considered of ecological, commercial and conservation importance, the phylogeny of this old group is poorly studied and still under debate. Here we apply a molecular systematic approach on 82 complete mitochondrial genomes to investigate the phylogeny of the Elasmobranchii. By using maximum likelihood (ML) and Bayesian analyses, we found a clear separation within the shark clade between the Galeomorphii and the Squalomorphii, as well as sister taxa relationships between the Carcharhiniformes and the Lamniformes. Moreover, we found that Pristoidei clusters within the Rhinobatoidei, having been recovered as the sister taxon of the Rhinobatos genus in a clade which also includes the basal Zapteryx. Our results also reject the Hypnosqualea hypothesis, which proposes that the Batoidea should be placed within the Selachii.

  12. Molecular phylogeny of tribe Rhipsalideae (Cactaceae) and taxonomic implications for Schlumbergera and Hatiora.

    Science.gov (United States)

    Calvente, Alice; Zappi, Daniela C; Forest, Félix; Lohmann, Lúcia G

    2011-03-01

    Tribe Rhipsalideae is composed of unusual epiphytic or lithophytic cacti that inhabit humid tropical and subtropical forests. Members of this tribe present a reduced vegetative body, a specialized adventitious root system, usually spineless areoles and flowers and fruits reduced in size. Despite the debate surrounding the classification of Rhipsalideae, no studies have ever attempted to reconstruct phylogenetic relationships among its members or to test the monophyly of its genera using DNA sequence data; all classifications formerly proposed for this tribe have only employed morphological data. In this study, we reconstruct the phylogeny of Rhipsalideae using plastid (trnQ-rps16, rpl32-trnL, psbA-trnH) and nuclear (ITS) markers to evaluate the classifications previously proposed for the group. We also examine morphological features traditionally used to delimit genera within Rhipsalideae in light of the resulting phylogenetic trees. In total new sequences for 35 species of Rhipsalideae were produced (out of 55; 63%). The molecular phylogeny obtained comprises four main clades supporting the recognition of genera Lepismium, Rhipsalis, Hatiora and Schlumbergera. The evidence gathered indicate that a broader genus Schlumbergera, including Hatiora subg. Rhipsalidopsis, should be recognized. Consistent morphological characters rather than homoplastic features are used in order to establish a more coherent and practical classification for the group. Nomenclatural changes and a key for the identification of the genera currently included in Rhipsalideae are provided. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Gross morphology betrays phylogeny

    DEFF Research Database (Denmark)

    Alström, Per; Fjeldså, Jon; Fregin, Silke

    2011-01-01

    .). Superficial morphological similarity to cisticolid warblers has previously clouded the species true relationship. Detailed morphology, such as facial bristles and claw and footpad structure, also supports a closer relationship to Cettiidae and some other non-cisticolid warblers....

  14. A supermatrix phylogeny of corvoid passerine birds (Aves: Corvides).

    Science.gov (United States)

    Jønsson, Knud Andreas; Fabre, Pierre-Henri; Kennedy, Jonathan D; Holt, Ben G; Borregaard, Michael K; Rahbek, Carsten; Fjeldså, Jon

    2016-01-01

    The Corvides (previously referred to as the core Corvoidea) are a morphologically diverse clade of passerine birds comprising nearly 800 species. The group originated some 30 million years ago in the proto-Papuan archipelago, to the north of Australia, from where lineages have dispersed and colonized all of the world's major continental and insular landmasses (except Antarctica). During the last decade multiple species-level phylogenies have been generated for individual corvoid families and more recently the inter-familial relationships have been resolved, based on phylogenetic analyses using multiple nuclear loci. In the current study we analyse eight nuclear and four mitochondrial loci to generate a dated phylogeny for the majority of corvoid species. This phylogeny includes 667 out of 780 species (85.5%), 141 out of 143 genera (98.6%) and all 31 currently recognized families, thus providing a baseline for comprehensive macroecological, macroevolutionary and biogeographical analyses. Using this phylogeny we assess the temporal consistency of the current taxonomic classification of families and genera. By adopting an approach that enforces temporal consistency by causing the fewest possible taxonomic changes to currently recognized families and genera, we find the current familial classification to be largely temporally consistent, whereas that of genera is not. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Using MOEA with Redistribution and Consensus Branches to Infer Phylogenies.

    Science.gov (United States)

    Min, Xiaoping; Zhang, Mouzhao; Yuan, Sisi; Ge, Shengxiang; Liu, Xiangrong; Zeng, Xiangxiang; Xia, Ningshao

    2017-12-26

    In recent years, to infer phylogenies, which are NP-hard problems, more and more research has focused on using metaheuristics. Maximum Parsimony and Maximum Likelihood are two effective ways to conduct inference. Based on these methods, which can also be considered as the optimal criteria for phylogenies, various kinds of multi-objective metaheuristics have been used to reconstruct phylogenies. However, combining these two time-consuming methods results in those multi-objective metaheuristics being slower than a single objective. Therefore, we propose a novel, multi-objective optimization algorithm, MOEA-RC, to accelerate the processes of rebuilding phylogenies using structural information of elites in current populations. We compare MOEA-RC with two representative multi-objective algorithms, MOEA/D and NAGA-II, and a non-consensus version of MOEA-RC on three real-world datasets. The result is, within a given number of iterations, MOEA-RC achieves better solutions than the other algorithms.

  16. Higher-level molecular phylogeny of the water mites (Acariformes: Prostigmata: Parasitengonina: Hydrachnidiae).

    Science.gov (United States)

    Dabert, Miroslawa; Proctor, Heather; Dabert, Jacek

    2016-08-01

    With nearly 6000 named species, water mites (Hydrachnidiae) represent the largest group of arachnids to have invaded and extensively diversified in freshwater habitats. Water mites together with three other lineages (the terrestrial Erythraiae and Trombidiae, and aquatic Stygothrombiae), make up the hyporder Parasitengonina, which is characterized by having parasitic larvae and predatory nymphs and adults. Relationships between the Hydrachnidiae and other members of the Parasitengonina are unclear, as are relationships among the major lineages of water mites. Monophyly of water mites has been asserted, with the possible exception of the morphologically distinctive Hydrovolzioidea. Here we infer the phylogeny of water mites using multiple molecular markers and including representatives of all superfamilies of Hydrachnidiae and of almost all other Parasitengonina. Our results support a monophyletic Parasitengonina including Trombidiae, Stygothrombiae, and Hydrachnidiae. A monophyletic Hydrachnidiae, including Hydrovolzioidea, is strongly supported. Terrestrial Parasitengonina do not form a monophyletic sister group to water mites. Stygothrombiae is close to water mites but is not nested within this clade. Water mites appear to be derived from ancestors close to Stygothrombiae or the erythraoid group Calyptostomatoidea; however, this relationship is not clear because of extremely short branches in this part of the parasitengonine tree. We recovered with strong support all commonly accepted water mite superfamilies except for Hydryphantoidea, which is clearly paraphyletic. Our data support the previously proposed clades Protohydrachnidia (Hydrovolzioidea and Eylaoidea), Euhydrachnidia (all remaining superfamilies), and the euhydrachnid subclade Neohydrachnidia (Lebertioidea, Hydrachnoidea, Hygrobatoidea, and Arrenuroidea). We found that larval leg structure and locomotory behavior are strongly congruent with the molecular phylogeny. Other morphological and behavioral

  17. A plastid phylogeny and character evolution of the Old World fern genus Pyrrosia (Polypodiaceae) with the description of a new genus: Hovenkampia (Polypodiaceae).

    Science.gov (United States)

    Zhou, Xin-Mao; Zhang, Liang; Chen, Cheng-Wei; Li, Chun-Xiang; Huang, Yao-Moan; Chen, De-Kui; Lu, Ngan Thi; Cicuzza, Daniele; Knapp, Ralf; Luong, Thien Tam; Nitta, Joel H; Gao, Xin-Fen; Zhang, Li-Bing

    2017-09-01

    The Old World fern genus Pyrrosia (Polypodiaceae) offers a rare system in ferns to study morphological evolution because almost all species of this genus are well studied for their morphology, anatomy, and spore features, and various hypotheses have been proposed in terms of the phylogeny and evolution in this genus. However, the molecular phylogeny of the genus lags behind. The monophyly of the genus has been uncertain and a modern phylogenetic study of the genus based on molecular data has been lacking. In the present study, DNA sequences of five plastid markers of 220 accessions of Polypodiaceae representing two species of Drymoglossum, 14 species of Platycerium, 50 species of Pyrrosia, and the only species of Saxiglossum (subfamily Platycerioideae), and 12 species of other Polypodiaceae representing the remaining four subfamilies are used to infer a phylogeny of the genus. Major results and conclusions of this study include: (1) Pyrrosia as currently circumscribed is paraphyletic in relation to Platycerium and can be divided into two genera: Pyrrosia s.s. and Hovenkampia (gen. nov.), with Hovenkampia and Platycerium forming a strongly supported clade sister to Pyrrosia s.s.; (2) Subfamily Platycerioideae should contain three genera only, Hovenkampia, Platycerium, and Pyrrosia s.s.; (3) Based on the molecular phylogeny, macromorphology, anatomical features, and spore morphology, four major clades in the genus are identified and three of the four are further resolved into four, four, and six subclades, respectively; (4) Three species, P. angustissima, P. foveolata, and P. mannii, not assigned to any groups by Hovenkamp (1986) because of their unusual morphology, each form monospecific clades; (5) Drymoglossum is not monophyletic and those species previously assigned to this genus are resolved in two different subclades; (6) Saxiglossum is resolved as the first lineage in the Niphopsis clade; and (7) The evolution of ten major morphological characters in the

  18. Coloration mechanisms and phylogeny of Morpho butterflies.

    Science.gov (United States)

    Giraldo, M A; Yoshioka, S; Liu, C; Stavenga, D G

    2016-12-15

    Morpho butterflies are universally admired for their iridescent blue coloration, which is due to nanostructured wing scales. We performed a comparative study on the coloration of 16 Morpho species, investigating the morphological, spectral and spatial scattering properties of the differently organized wing scales. In numerous previous studies, the bright blue Morpho coloration has been fully attributed to the multi-layered ridges of the cover scales' upper laminae, but we found that the lower laminae of the cover and ground scales play an important additional role, by acting as optical thin film reflectors. We conclude that Morpho coloration is a subtle combination of overlapping pigmented and/or unpigmented scales, multilayer systems, optical thin films and sometimes undulated scale surfaces. Based on the scales' architecture and their organization, five main groups can be distinguished within the genus Morpho, largely agreeing with the accepted phylogeny. © 2016. Published by The Company of Biologists Ltd.

  19. High-Performance Phylogeny Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Tiffani L. Williams

    2004-11-10

    Under the Alfred P. Sloan Fellowship in Computational Biology, I have been afforded the opportunity to study phylogenetics--one of the most important and exciting disciplines in computational biology. A phylogeny depicts an evolutionary relationship among a set of organisms (or taxa). Typically, a phylogeny is represented by a binary tree, where modern organisms are placed at the leaves and ancestral organisms occupy internal nodes, with the edges of the tree denoting evolutionary relationships. The task of phylogenetics is to infer this tree from observations upon present-day organisms. Reconstructing phylogenies is a major component of modern research programs in many areas of biology and medicine, but it is enormously expensive. The most commonly used techniques attempt to solve NP-hard problems such as maximum likelihood and maximum parsimony, typically by bounded searches through an exponentially-sized tree-space. For example, there are over 13 billion possible trees for 13 organisms. Phylogenetic heuristics that quickly analyze large amounts of data accurately will revolutionize the biological field. This final report highlights my activities in phylogenetics during the two-year postdoctoral period at the University of New Mexico under Prof. Bernard Moret. Specifically, this report reports my scientific, community and professional activities as an Alfred P. Sloan Postdoctoral Fellow in Computational Biology.

  20. Archaebacterial phylogeny: perspectives on the urkingdoms

    Science.gov (United States)

    Woese, C. R.; Olsen, G. J.

    1986-01-01

    Comparisons of complete 16S ribosomal RNA sequences have been used to confirm, refine and extend earlier concepts of archaebacterial phylogeny. The archaebacteria fall naturally into two major branches or divisions, I--the sulfur-dependent thermophilic archaebacteria, and II--the methanogenic archaebacteria and their relatives. Division I comprises a relatively closely related and phenotypically homogeneous collection of thermophilic sulfur-dependent species--encompassing the genera Sulfolobus, Thermoproteus, Pyrodictium and Desulfurococcus. The organisms of Division II, however, form a less compact grouping phylogenetically, and are also more diverse in phenotype. All three of the (major) methanogen groups are found in Division II, as are the extreme halophiles and two types of thermoacidophiles, Thermoplasma acidophilum and Thermococcus celer. This last species branches sufficiently deeply in the Division II line that it might be considered to represent a separate, third Division. However, both the extreme halophiles and Tp. acidophilum branch within the cluster of methanogens. The extreme halophiles are specifically related to the Methanomicrobiales, to the exclusion of both the Methanococcales and the Methanobacteriales. Tp. acidophilum is peripherally related to the halophile-Methanomicrobiales group. By 16S rRNA sequence measure the archaebacteria constitute a phylogenetically coherent grouping (clade), which excludes both the eubacteria and the eukaryotes--a conclusion that is supported by other sequence evidence as well. Alternative proposals for archaebacterial phylogeny, not based upon sequence evidence, are discussed and evaluated. In particular, proposals to rename (reclassify) various subgroups of the archaebacteria as new kingdoms are found wanting, for both their lack of proper experimental support and the taxonomic confusion they introduce.

  1. Phylogeny of Gracilariaceae (Rhodophyta): evidence from plastid and mitochondrial nucleotide sequences.

    Science.gov (United States)

    Lyra, Goia de M; Costa, Emmanuelle da S; de Jesus, Priscila B; de Matos, João Carlos G; Caires, Taiara A; Oliveira, Mariana C; Oliveira, Eurico C; Xi, Zhenxiang; Nunes, José Marcos de C; Davis, Charles C

    2015-04-01

    Gracilariaceae are mostly pantropical red algae and include ~230 species in seven genera. Infrafamilial classification of the group has long been based on reproductive characters, but previous phylogenies have shown that traditionally circumscribed groups are not monophyletic. We performed phylogenetic analyses using two plastid (universal plastid amplicon and rbcL) and one mitochondrial (cox1) loci from a greatly expanded number of taxa to better assess generic relationships and understand patterns of character distributions. Our analyses produce the most well-supported phylogeny of the family to date, and indicate that key characteristics of spermatangia and cystocarp type do not delineate genera as commonly suggested. Our results further indicate that Hydropuntia is not monophyletic. Given their morphological overlap with closely related members of Gracilaria, we propose that Hydropuntia be synonymized with the former. Our results additionally expand the known ranges of several Gracilariaceae species to include Brazil. Lastly, we demonstrate that the recently described Gracilaria yoneshigueana should be synonymized as G. domingensis based on morphological and molecular characters. These results demonstrate the utility of DNA barcoding for understanding poorly known and fragmentary materials of cryptic red algae. © 2015 Phycological Society of America.

  2. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution.

    Science.gov (United States)

    Bond, Jason E; Garrison, Nicole L; Hamilton, Chris A; Godwin, Rebecca L; Hedin, Marshal; Agnarsson, Ingi

    2014-08-04

    Spiders represent an ancient predatory lineage known for their extraordinary biomaterials, including venoms and silks. These adaptations make spiders key arthropod predators in most terrestrial ecosystems. Despite ecological, biomedical, and biomaterial importance, relationships among major spider lineages remain unresolved or poorly supported. Current working hypotheses for a spider "backbone" phylogeny are largely based on morphological evidence, as most molecular markers currently employed are generally inadequate for resolving deeper-level relationships. We present here a phylogenomic analysis of spiders including taxa representing all major spider lineages. Our robust phylogenetic hypothesis recovers some fundamental and uncontroversial spider clades, but rejects the prevailing paradigm of a monophyletic Orbiculariae, the most diverse lineage, containing orb-weaving spiders. Based on our results, the orb web either evolved much earlier than previously hypothesized and is ancestral for a majority of spiders or else it has multiple independent origins, as hypothesized by precladistic authors. Cribellate deinopoid orb weavers that use mechanically adhesive silk are more closely related to a diverse clade of mostly webless spiders than to the araneoid orb-weaving spiders that use adhesive droplet silks. The fundamental shift in our understanding of spider phylogeny proposed here has broad implications for interpreting the evolution of spiders, their remarkable biomaterials, and a key extended phenotype--the spider web. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Taxonomic and phytogeographic implications from ITS phylogeny in Berberis (Berberidaceae).

    Science.gov (United States)

    Kim, Young-Dong; Kim, Sung-Hee; Landrum, Leslie R

    2004-06-01

    A phylogeny based on the internal transcribed spacer (ITS) sequences from 79 taxa representing much of the diversity of Berberis L. (four major groups and 22 sections) was constructed for the first time. The phylogeny was basically congruent with the previous classification schemes at higher taxonomic levels, such as groups and subgroups. A notable exception is the non-monophyly of the group Occidentales of compound-leaved Berberis (previously separated as Mahonia). At lower levels, however, most of previous sections and subsections were not evident especially in simple-leaved Berberis. Possible relationship between section Horridae (group Occidentales) and the simple-leaved Berberis clade implies paraphyly of the compound-leaved Berberis. A well-known South America-Old World (mainly Asia) disjunctive distribution pattern of the simple-leaved Berberis is explained by a vicariance event occurring in the Cretaceous period. The ITS phylogeny also suggests that a possible connection between the Asian and South American groups through the North American species ( Berberis canadensis or B. fendleri) is highly unlikely.

  4. Estimating Age-Dependent Extinction: Contrasting Evidence from Fossils and Phylogenies.

    Science.gov (United States)

    Hagen, Oskar; Andermann, Tobias; Quental, Tiago B; Antonelli, Alexandre; Silvestro, Daniele

    2018-05-01

    The estimation of diversification rates is one of the most vividly debated topics in modern systematics, with considerable controversy surrounding the power of phylogenetic and fossil-based approaches in estimating extinction. Van Valen's seminal work from 1973 proposed the "Law of constant extinction," which states that the probability of extinction of taxa is not dependent on their age. This assumption of age-independent extinction has prevailed for decades with its assessment based on survivorship curves, which, however, do not directly account for the incompleteness of the fossil record, and have rarely been applied at the species level. Here, we present a Bayesian framework to estimate extinction rates from the fossil record accounting for age-dependent extinction (ADE). Our approach, unlike previous implementations, explicitly models unobserved species and accounts for the effects of fossil preservation on the observed longevity of sampled lineages. We assess the performance and robustness of our method through extensive simulations and apply it to a fossil data set of terrestrial Carnivora spanning the past 40 myr. We find strong evidence of ADE, as we detect the extinction rate to be highest in young species and declining with increasing species age. For comparison, we apply a recently developed analogous ADE model to a dated phylogeny of extant Carnivora. Although the phylogeny-based analysis also infers ADE, it indicates that the extinction rate, instead, increases with increasing taxon age. The estimated mean species longevity also differs substantially, with the fossil-based analyses estimating 2.0 myr, in contrast to 9.8 myr derived from the phylogeny-based inference. Scrutinizing these discrepancies, we find that both fossil and phylogeny-based ADE models are prone to high error rates when speciation and extinction rates increase or decrease through time. However, analyses of simulated and empirical data show that fossil-based inferences are more

  5. Phylogeny of the sea hares in the aplysia clade based on mitochondrial DNA sequence data

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Monica; Collins, Timothy; Walsh, Patrick J.

    2004-02-20

    Sea hare species within the Aplysia clade are distributed worldwide. Their phylogenetic and biogeographic relationships are, however, still poorly known. New molecular evidence is presented from a portion of the mitochondrial cytochrome oxidase c subunit 1 gene (cox1) that improves our understanding of the phylogeny of the group. Based on these data a preliminary discussion of the present distribution of sea hares in a biogeographic context is put forward. Our findings are consistent with only some aspects of the current taxonomy and nomenclatural changes are proposed. The first, is the use of a rank free classification for the different Aplysia clades and subclades as opposed to previously used genus and subgenus affiliations. The second, is the suggestion that Aplysia brasiliana (Rang, 1828) is a junior synonym of Aplysia fasciata (Poiret, 1789). The third, is the elimination of Neaplysia since its only member is confirmed to be part of the large Varria clade.

  6. Insights into the phylogeny or arylamine N-acetyltransferases in fungi.

    Science.gov (United States)

    Martins, Marta; Dairou, Julien; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Silar, Philippe

    2010-08-01

    Previous studies have shown that Eumycetes fungi can acylate arylamine thanks to arylamine N-acetyltransferases, xenobiotic-metabolizing enzymes also found in animals and bacteria. In this article, we present the results of mining 96 available fungal genome sequences for arylamine N-acetyltransferase genes and propose their phylogeny. The filamentous Pezizomycotina are shown to possess many putative N-acetyltransferases, whilst these are often lacking in other fungal groups. The evolution of the N-acetyltransferases is best explained by the presence of at least one gene in the opisthokont ancestor of the fungi and animal kingdoms, followed by recurrent gene losses and gene duplications. A possible horizontal gene transfer event may have occurred from bacteria to the basidiomycetous yeast Malassezia globosa.

  7. Phylogeny and subgeneric taxonomy of Aspergillus

    DEFF Research Database (Denmark)

    Peterson, S.W.; Varga, Janos; Frisvad, Jens Christian

    2008-01-01

    The phylogeny of the genus Aspergillus and its teleomorphs is discussed based on multilocus sequence data. DNA sequence analysis was used to formulate a nucleotide sequence framework of the genus and to analyze character changes in relationship to the phylogeny hypothesized from the DNA sequence...

  8. Diversification rates, host plant shifts and an updated molecular phylogeny of Andean Eois moths (Lepidoptera: Geometridae.

    Directory of Open Access Journals (Sweden)

    Patrick Strutzenberger

    Full Text Available Eois is one of the best-investigated genera of tropical moths. Its close association with Piper plants has inspired numerous studies on life histories, phylogeny and evolutionary biology. This study provides an updated view on phylogeny, host plant use and temporal patterns of speciation in Eois. Using sequence data (2776 bp from one mitochondrial (COI and one nuclear gene (Ef1-alpha for 221 Eois species, we confirm and reinforce previous findings regarding temporal patterns of diversification. Deep diversification within Andean Eois took place in the Miocene followed by a sustained high rate of diversification until the Pleistocene when a pronounced slowdown of speciation is evident. In South America, Eois diversification is very likely to be primarily driven by the Andean uplift which occurred concurrently with the entire evolutionary history of Eois. A massively expanded dataset enabled an in-depth look into the phylogenetic signal contained in host plant usage. This revealed several independent shifts from Piper to other host plant genera and families. Seven shifts to Peperomia, the sister genus of Piper were detected, indicating that the shift to Peperomia was an easy one compared to the singular shifts to the Chloranthaceae, Siparunaceae and the Piperacean genus Manekia. The potential for close co-evolution of Eois with Piper host plants is therefore bound to be limited to smaller subsets within Neotropical Eois instead of a frequently proposed genus-wide co-evolutionary scenario. In regards to Eois systematics we confirm the monophyly of Neotropical Eois in relation to their Old World counterparts. A tentative biogeographical hypothesis is presented suggesting that Eois originated in tropical Asia and subsequently colonized the Neotropics and Africa. Within Neotropical Eois we were able to identify the existence of six clades not recognized in previous studies and confirm and reinforce the monophyly of all 9 previously delimited

  9. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny

    Science.gov (United States)

    Marr, Henry S.; Tarigo, Jaime L.; Cohn, Leah A.; Bird, David M.; Scholl, Elizabeth H.; Levy, Michael G.; Wiegmann, Brian M.; Birkenheuer, Adam J.

    2016-01-01

    The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon) are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi) with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis) and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae) while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward understanding the

  10. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny.

    Directory of Open Access Journals (Sweden)

    Megan E Schreeg

    Full Text Available The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward

  11. Enzyme phylogenies as markers for the oxidation state of the environment: the case of respiratory arsenate reductase and related enzymes.

    Science.gov (United States)

    Duval, Simon; Ducluzeau, Anne-Lise; Nitschke, Wolfgang; Schoepp-Cothenet, Barbara

    2008-07-16

    Phylogenies of certain bioenergetic enzymes have proved to be useful tools for deducing evolutionary ancestry of bioenergetic pathways and their relationship to geochemical parameters of the environment. Our previous phylogenetic analysis of arsenite oxidase, the molybdopterin enzyme responsible for the biological oxidation of arsenite to arsenate, indicated its probable emergence prior to the Archaea/Bacteria split more than 3 billion years ago, in line with the geochemical fact that arsenite was present in biological habitats on the early Earth. Respiratory arsenate reductase (Arr), another molybdopterin enzyme involved in microbial arsenic metabolism, serves as terminal oxidase, and is thus situated at the opposite end of bioenergetic electron transfer chains as compared to arsenite oxidase. The evolutionary history of the Arr-enzyme has not been studied in detail so far. We performed a genomic search of genes related to arrA coding for the molybdopterin subunit. The multiple alignment of the retrieved sequences served to reconstruct a neighbor-joining phylogeny of Arr and closely related enzymes. Our analysis confirmed the previously proposed proximity of Arr to the cluster of polysulfide/thiosulfate reductases but also unravels a hitherto unrecognized clade even more closely related to Arr. The obtained phylogeny strongly suggests that Arr originated after the Bacteria/Archaea divergence in the domain Bacteria, and was subsequently laterally distributed within this domain. It further more indicates that, as a result of accumulation of arsenate in the environment, an enzyme related to polysulfide reductase and not to arsenite oxidase has evolved into Arr. These findings are paleogeochemically rationalized by the fact that the accumulation of arsenate over arsenite required the increase in oxidation state of the environment brought about by oxygenic photosynthesis.

  12. Molecular phylogeny and character evolution in terete-stemmed Andean opuntias (Cactaceae-Opuntioideae).

    Science.gov (United States)

    Ritz, C M; Reiker, J; Charles, G; Hoxey, P; Hunt, D; Lowry, M; Stuppy, W; Taylor, N

    2012-11-01

    The cacti of tribe Tephrocacteae (Cactaceae-Opuntioideae) are adapted to diverse climatic conditions over a wide area of the southern Andes and adjacent lowlands. They exhibit a range of life forms from geophytes and cushion-plants to dwarf shrubs, shrubs or small trees. To confirm or challenge previous morphology-based classifications and molecular phylogenies, we sampled DNA sequences from the chloroplast trnK/matK region and the nuclear low copy gene phyC and compared the resulting phylogenies with previous data gathered from nuclear ribosomal DNA sequences. The here presented chloroplast and nuclear low copy gene phylogenies were mutually congruent and broadly coincident with the classification based on gross morphology and seed micro-morphology and anatomy. Reconstruction of hypothetical ancestral character states suggested that geophytes and cushion-forming species probably evolved several times from dwarf shrubby precursors. We also traced an increase of embryo size at the expense of the nucellus-derived storage tissue during the evolution of the Tephrocacteae, which is thought to be an evolutionary advantage because nutrients are then more rapidly accessible for the germinating embryo. In contrast to these highly concordant phylogenies, nuclear ribosomal DNA data sampled by a previous study yielded conflicting phylogenetic signals. Secondary structure predictions of ribosomal transcribed spacers suggested that this phylogeny is strongly influenced by the inclusion of paralogous sequence probably arisen by genome duplication during the evolution of this plant group. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Mitogenomic perspectives on the origin and phylogeny of living amphibians.

    Science.gov (United States)

    Zhang, Peng; Zhou, Hui; Chen, Yue-Qin; Liu, Yi-Fei; Qu, Liang-Hu

    2005-06-01

    Establishing the relationships among modern amphibians (lissamphibians) and their ancient relatives is necessary for our understanding of early tetrapod evolution. However, the phylogeny is still intractable because of the highly specialized anatomy and poor fossil record of lissamphibians. Paleobiologists are still not sure whether lissamphibians are monophyletic or polyphyletic, and which ancient group (temnospondyls or lepospondyls) is most closely related to them. In an attempt to address these problems, eight mitochondrial genomes of living amphibians were determined and compared with previously published amphibian sequences. A comprehensive molecular phylogenetic analysis of nucleotide sequences yields a highly resolved tree congruent with the traditional hypotheses (Batrachia). By using a molecular clock-independent approach for inferring dating information from molecular phylogenies, we present here the first molecular timescale for lissamphibian evolution, which suggests that lissamphibians first emerged about 330 million years ago. By observing the fit between molecular and fossil times, we suggest that the temnospondyl-origin hypothesis for lissamphibians is more credible than other hypotheses. Moreover, under this timescale, the potential geographic origins of the main living amphibian groups are discussed: (i) advanced frogs (neobatrachians) may possess an Africa-India origin; (ii) salamanders may have originated in east Asia; (iii) the tropic forest of the Triassic Pangaea may be the place of origin for the ancient caecilians. An accurate phylogeny with divergence times can be also helpful to direct the search for "missing" fossils, and can benefit comparative studies of amphibian evolution.

  14. Shortest triplet clustering: reconstructing large phylogenies using representative sets

    Directory of Open Access Journals (Sweden)

    Sy Vinh Le

    2005-04-01

    Full Text Available Abstract Background Understanding the evolutionary relationships among species based on their genetic information is one of the primary objectives in phylogenetic analysis. Reconstructing phylogenies for large data sets is still a challenging task in Bioinformatics. Results We propose a new distance-based clustering method, the shortest triplet clustering algorithm (STC, to reconstruct phylogenies. The main idea is the introduction of a natural definition of so-called k-representative sets. Based on k-representative sets, shortest triplets are reconstructed and serve as building blocks for the STC algorithm to agglomerate sequences for tree reconstruction in O(n2 time for n sequences. Simulations show that STC gives better topological accuracy than other tested methods that also build a first starting tree. STC appears as a very good method to start the tree reconstruction. However, all tested methods give similar results if balanced nearest neighbor interchange (BNNI is applied as a post-processing step. BNNI leads to an improvement in all instances. The program is available at http://www.bi.uni-duesseldorf.de/software/stc/. Conclusion The results demonstrate that the new approach efficiently reconstructs phylogenies for large data sets. We found that BNNI boosts the topological accuracy of all methods including STC, therefore, one should use BNNI as a post-processing step to get better topological accuracy.

  15. RAD-seq derived genome-wide nuclear markers resolve the phylogeny of tunas

    KAUST Repository

    Díaz-Arce, Natalia

    2016-06-07

    Although species from the genus Thunnus include some of the most commercially important and most severely overexploited fishes, the phylogeny of this genus is still unresolved, hampering evolutionary and traceability studies that could help improve conservation and management strategies for these species. Previous attempts based on mitochondrial and nuclear markers were unsuccessful in inferring a congruent and reliable phylogeny, probably due to mitochondrial introgression events and lack of enough phylogenetically informative markers. Here we infer the first genome-wide nuclear marker-based phylogeny of tunas using restriction site associated DNA sequencing (RAD-seq) data. Our results, derived from phylogenomic inferences obtained from 128 nucleotide matrices constructed using alternative data assembly procedures, support a single Thunnus evolutionary history that challenges previous assumptions based on morphological and molecular data.

  16. Molecular phylogeny of Ranunculaceae based on internal ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... evidence regarding the systematic classification of Ranunculaceae plants, we used molecular ... Ranunculaceae is a family of flowering plants known as ... and in the analysis of the evolutionary rate for lower level phylogeny ...

  17. Phylogeny based discovery of regulatory elements

    Directory of Open Access Journals (Sweden)

    Cohen Barak A

    2006-05-01

    Full Text Available Abstract Background Algorithms that locate evolutionarily conserved sequences have become powerful tools for finding functional DNA elements, including transcription factor binding sites; however, most methods do not take advantage of an explicit model for the constrained evolution of functional DNA sequences. Results We developed a probabilistic framework that combines an HKY85 model, which assigns probabilities to different base substitutions between species, and weight matrix models of transcription factor binding sites, which describe the probabilities of observing particular nucleotides at specific positions in the binding site. The method incorporates the phylogenies of the species under consideration and takes into account the position specific variation of transcription factor binding sites. Using our framework we assessed the suitability of alignments of genomic sequences from commonly used species as substrates for comparative genomic approaches to regulatory motif finding. We then applied this technique to Saccharomyces cerevisiae and related species by examining all possible six base pair DNA sequences (hexamers and identifying sequences that are conserved in a significant number of promoters. By combining similar conserved hexamers we reconstructed known cis-regulatory motifs and made predictions of previously unidentified motifs. We tested one prediction experimentally, finding it to be a regulatory element involved in the transcriptional response to glucose. Conclusion The experimental validation of a regulatory element prediction missed by other large-scale motif finding studies demonstrates that our approach is a useful addition to the current suite of tools for finding regulatory motifs.

  18. A Mitogenomic Phylogeny of Living Primates

    Science.gov (United States)

    Finstermeier, Knut; Zinner, Dietmar; Brameier, Markus; Meyer, Matthias; Kreuz, Eva; Hofreiter, Michael; Roos, Christian

    2013-01-01

    Primates, the mammalian order including our own species, comprise 480 species in 78 genera. Thus, they represent the third largest of the 18 orders of eutherian mammals. Although recent phylogenetic studies on primates are increasingly built on molecular datasets, most of these studies have focused on taxonomic subgroups within the order. Complete mitochondrial (mt) genomes have proven to be extremely useful in deciphering within-order relationships even up to deep nodes. Using 454 sequencing, we sequenced 32 new complete mt genomes adding 20 previously not represented genera to the phylogenetic reconstruction of the primate tree. With 13 new sequences, the number of complete mt genomes within the parvorder Platyrrhini was widely extended, resulting in a largely resolved branching pattern among New World monkey families. We added 10 new Strepsirrhini mt genomes to the 15 previously available ones, thus almost doubling the number of mt genomes within this clade. Our data allow precise date estimates of all nodes and offer new insights into primate evolution. One major result is a relatively young date for the most recent common ancestor of all living primates which was estimated to 66-69 million years ago, suggesting that the divergence of extant primates started close to the K/T-boundary. Although some relationships remain unclear, the large number of mt genomes used allowed us to reconstruct a robust primate phylogeny which is largely in agreement with previous publications. Finally, we show that mt genomes are a useful tool for resolving primate phylogenetic relationships on various taxonomic levels. PMID:23874967

  19. Bootstrapping phylogenies inferred from rearrangement data

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2012-08-01

    Full Text Available Abstract Background Large-scale sequencing of genomes has enabled the inference of phylogenies based on the evolution of genomic architecture, under such events as rearrangements, duplications, and losses. Many evolutionary models and associated algorithms have been designed over the last few years and have found use in comparative genomics and phylogenetic inference. However, the assessment of phylogenies built from such data has not been properly addressed to date. The standard method used in sequence-based phylogenetic inference is the bootstrap, but it relies on a large number of homologous characters that can be resampled; yet in the case of rearrangements, the entire genome is a single character. Alternatives such as the jackknife suffer from the same problem, while likelihood tests cannot be applied in the absence of well established probabilistic models. Results We present a new approach to the assessment of distance-based phylogenetic inference from whole-genome data; our approach combines features of the jackknife and the bootstrap and remains nonparametric. For each feature of our method, we give an equivalent feature in the sequence-based framework; we also present the results of extensive experimental testing, in both sequence-based and genome-based frameworks. Through the feature-by-feature comparison and the experimental results, we show that our bootstrapping approach is on par with the classic phylogenetic bootstrap used in sequence-based reconstruction, and we establish the clear superiority of the classic bootstrap for sequence data and of our corresponding new approach for rearrangement data over proposed variants. Finally, we test our approach on a small dataset of mammalian genomes, verifying that the support values match current thinking about the respective branches. Conclusions Our method is the first to provide a standard of assessment to match that of the classic phylogenetic bootstrap for aligned sequences. Its

  20. Bootstrapping phylogenies inferred from rearrangement data.

    Science.gov (United States)

    Lin, Yu; Rajan, Vaibhav; Moret, Bernard Me

    2012-08-29

    Large-scale sequencing of genomes has enabled the inference of phylogenies based on the evolution of genomic architecture, under such events as rearrangements, duplications, and losses. Many evolutionary models and associated algorithms have been designed over the last few years and have found use in comparative genomics and phylogenetic inference. However, the assessment of phylogenies built from such data has not been properly addressed to date. The standard method used in sequence-based phylogenetic inference is the bootstrap, but it relies on a large number of homologous characters that can be resampled; yet in the case of rearrangements, the entire genome is a single character. Alternatives such as the jackknife suffer from the same problem, while likelihood tests cannot be applied in the absence of well established probabilistic models. We present a new approach to the assessment of distance-based phylogenetic inference from whole-genome data; our approach combines features of the jackknife and the bootstrap and remains nonparametric. For each feature of our method, we give an equivalent feature in the sequence-based framework; we also present the results of extensive experimental testing, in both sequence-based and genome-based frameworks. Through the feature-by-feature comparison and the experimental results, we show that our bootstrapping approach is on par with the classic phylogenetic bootstrap used in sequence-based reconstruction, and we establish the clear superiority of the classic bootstrap for sequence data and of our corresponding new approach for rearrangement data over proposed variants. Finally, we test our approach on a small dataset of mammalian genomes, verifying that the support values match current thinking about the respective branches. Our method is the first to provide a standard of assessment to match that of the classic phylogenetic bootstrap for aligned sequences. Its support values follow a similar scale and its receiver

  1. MLVA Typing of Streptococcus pneumoniae Isolates with Emphasis on Serotypes 14, 9N and 9V: Comparison of Previously Described Panels and Proposal of a Novel 7 VNTR Loci-Based Simplified Scheme.

    Science.gov (United States)

    Costa, Natália S; Pinto, Tatiana C A; Merquior, Vânia L C; Castro, Luciana F S; da Rocha, Filomena S P; Morais, Jaqueline M; Peralta, José M; Teixeira, Lúcia M

    2016-01-01

    Streptococcus pneumoniae remains as an important cause of community-acquired bacterial infections, and the nasopharynx of asymptomatic carriers is the major reservoir of this microorganism. Pneumococcal strains of serotype 14 and serogroup 9 are among the most frequently isolated from both asymptomatic carriers and patients with invasive disease living in Brazil. Internationally disseminated clones belonging to such serotypes have been associated with the emergence and spread of antimicrobial resistance in our setting, highlighting the need for epidemiological tracking of these isolates. In this scenario, Multiple Loci VNTR Analysis (MLVA) has emerged as an alternative tool for the molecular characterization of pneumococci, in addition to more traditional techniques such as Multi-Locus Sequence Typing (MLST) and Pulsed-Field Gel Electrophoresis (PFGE). In the present study, 18 VNTR loci, as well as other previously described reduced MLVA panels (7 VNTR loci), were evaluated as tools to characterize pneumococcal strains of serotypes 14, 9N and 9V belonging to international and regional clones isolated in Brazil. The 18 VNTR loci panel was highly congruent with MLST and PFGE, being also useful for indicating the genetic relationship with international clones and for discriminating among strains with indistinguishable STs and PFGE profiles. Analysis of the results also allowed deducing a novel shorter 7 VNTR loci panel, keeping a high discriminatory power for isolates of the serotypes investigated and a high congruence level with MLST and PFGE. The newly proposed simplified panel was then evaluated for typing pneumococcal strains of other commonly isolated serotypes. The results indicate that MLVA is a faster and easier to perform, reliable approach for the molecular characterization of S. pneumoniae isolates, with potential for cost-effective application, especially in resource-limited countries.

  2. Molecular phylogeny of Duvenhage virus

    Directory of Open Access Journals (Sweden)

    Louis H. Nel

    2011-11-01

    Full Text Available The Duvenhage virus (DUVV constitutes one of the 11 species in the Lyssavirus genus and causes fatal rabies encephalitis. The virus is associated with insectivorous bat species and three human cases have been reported, all of which were linked to contact with bats. Few of these isolates have been studied and thus little is known about the phylogeny and epidemiology of this lyssavirus. Until 2007, when an isolate was made from the East African country of Kenya, all isolations of this virus had been from southern Africa. This discovery led to many questions regarding the spread and diversity of this lyssavirus. Phylogenetic analysis indicated that the DUVV isolates constitute two different lineages, in which the southern African isolates group together to form one lineage and the more recent isolate from Kenya constitutes a new, second lineage. We found that the new isolate has a genetic variation that has not yet been seen for DUVV. Not only is our lack of knowledge regarding the geographical distribution of this uniquely African virus emphasised, but we have also demonstrated the potential diversity within this genotype.

  3. Phylogeny of Selaginellaceae: There is value in morphology after all!

    Science.gov (United States)

    Weststrand, Stina; Korall, Petra

    2016-12-01

    The cosmopolitan lycophyte family Selaginellaceae, dating back to the Late Devonian-Early Carboniferous, is notorious for its many species with a seemingly undifferentiated gross morphology. This morphological stasis has for a long time hampered our understanding of the evolutionary history of the single genus Selaginella. Here we present a large-scale phylogenetic analysis of Selaginella, and based on the resulting phylogeny, we discuss morphological evolution in the group. We sampled about one-third of the approximately 750 recognized Selaginella species. Evolutionary relationships were inferred from both chloroplast (rbcL) and single-copy nuclear gene data (pgiC and SQD1) using a Bayesian inference approach. The morphology of the group was studied and important features mapped onto the phylogeny. We present an overall well-supported phylogeny of Selaginella, and the phylogenetic positions of some previously problematic taxa (i.e., S. sinensis and allies) are now resolved with strong support. We show that even though the evolution of most morphological characters involves reversals and/or parallelisms, several characters are phylogenetically informative. Seven major clades are identified, which each can be uniquely diagnosed by a suite of morphological features. There is value in morphology after all! Our hypothesis of the evolutionary relationships of Selaginella is well founded based on DNA sequence data, as well as morphology, and is in line with previous findings. It will serve as a firm basis for further studies on Selaginella with respect to, e.g., the poorly known alpha taxonomy, as well as evolutionary questions such as historical biogeographic reconstructions. © 2016 Weststrand and Korall. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY 4.0).

  4. Molecular phylogeny and timing of diversification in Alpine Rhithrogena (Ephemeroptera: Heptageniidae).

    Science.gov (United States)

    Vuataz, Laurent; Rutschmann, Sereina; Monaghan, Michael T; Sartori, Michel

    2016-09-21

    supports a previously proposed headwater origin hypothesis for aquatic insects.

  5. Phylogeny, character evolution, and biogeography of Cuscuta (dodders; Convolvulaceae) inferred from coding plastid and nuclear sequences.

    Science.gov (United States)

    García, Miguel A; Costea, Mihai; Kuzmina, Maria; Stefanović, Saša

    2014-04-01

    The parasitic genus Cuscuta, containing some 200 species circumscribed traditionally in three subgenera, is nearly cosmopolitan, occurring in a wide range of habitats and hosts. Previous molecular studies, on subgenera Grammica and Cuscuta, delimited major clades within these groups. However, the sequences used were unalignable among subgenera, preventing the phylogenetic comparison across the genus. We conducted a broad phylogenetic study using rbcL and nrLSU sequences covering the morphological, physiological, and geographical diversity of Cuscuta. We used parsimony methods to reconstruct ancestral states for taxonomically important characters. Biogeographical inferences were obtained using statistical and Bayesian approaches. Four well-supported major clades are resolved. Two of them correspond to subgenera Monogynella and Grammica. Subgenus Cuscuta is paraphyletic, with section Pachystigma sister to subgenus Grammica. Previously described cases of strongly supported discordance between plastid and nuclear phylogenies, interpreted as reticulation events, are confirmed here and three new cases are detected. Dehiscent fruits and globose stigmas are inferred as ancestral character states, whereas the ancestral style number is ambiguous. Biogeographical reconstructions suggest an Old World origin for the genus and subsequent spread to the Americas as a consequence of one long-distance dispersal. Hybridization may play an important yet underestimated role in the evolution of Cuscuta. Our results disagree with scenarios of evolution (polarity) previously proposed for several taxonomically important morphological characters, and with their usage and significance. While several cases of long-distance dispersal are inferred, vicariance or dispersal to adjacent areas emerges as the dominant biogeographical pattern.

  6. Molecular phylogeny of Eriocaulon (Eriocaulaceae)

    DEFF Research Database (Denmark)

    Ito, Yu; Tanaka, Norio; Barfod, Anders

    Eriocaulon is a genus of about 400 species of monocotyledonous flowering plants in the family Eriocaulaceae. The genus is widely distributed in the world, with the centers of diversity in tropical regions, such as tropical Asia and tropical Africa. A previous molecular phylogeny implied an Africa...... the genus. In this talk, we provide preliminary results of our molecular phylogenetic analysis of the genus aiming to i) assess the biogeographic origin, ii) explore phylogenetic origins of submerged species, and iii) address the evolutionary role of polyploids.......Eriocaulon is a genus of about 400 species of monocotyledonous flowering plants in the family Eriocaulaceae. The genus is widely distributed in the world, with the centers of diversity in tropical regions, such as tropical Asia and tropical Africa. A previous molecular phylogeny implied an African...... origin for Eriocaulon as a sister relationship between the genus and an African endemic one was recovered. The species of Eriocaulon primarily grow in wetlands while some inhabit shallow rivers and streams with an apparent adaptive morphology of elongated submerged stems. Polyploidy is known from...

  7. Juvenile morphology in baleen whale phylogeny.

    Science.gov (United States)

    Tsai, Cheng-Hsiu; Fordyce, R Ewan

    2014-09-01

    Phylogenetic reconstructions are sensitive to the influence of ontogeny on morphology. Here, we use foetal/neonatal specimens of known species of living baleen whales (Cetacea: Mysticeti) to show how juvenile morphology of extant species affects phylogenetic placement of the species. In one clade (sei whale, Balaenopteridae), the juvenile is distant from the usual phylogenetic position of adults, but in the other clade (pygmy right whale, Cetotheriidae), the juvenile is close to the adult. Different heterochronic processes at work in the studied species have different influences on juvenile morphology and on phylogenetic placement. This study helps to understand the relationship between evolutionary processes and phylogenetic patterns in baleen whale evolution and, more in general, between phylogeny and ontogeny; likewise, this study provides a proxy how to interpret the phylogeny when fossils that are immature individuals are included. Juvenile individuals in the peramorphic acceleration clades would produce misleading phylogenies, whereas juvenile individuals in the paedomorphic neoteny clades should still provide reliable phylogenetic signals.

  8. Laparoscopy After Previous Laparotomy

    Directory of Open Access Journals (Sweden)

    Zulfo Godinjak

    2006-11-01

    Full Text Available Following the abdominal surgery, extensive adhesions often occur and they can cause difficulties during laparoscopic operations. However, previous laparotomy is not considered to be a contraindication for laparoscopy. The aim of this study is to present that an insertion of Veres needle in the region of umbilicus is a safe method for creating a pneumoperitoneum for laparoscopic operations after previous laparotomy. In the last three years, we have performed 144 laparoscopic operations in patients that previously underwent one or two laparotomies. Pathology of digestive system, genital organs, Cesarean Section or abdominal war injuries were the most common causes of previouslaparotomy. During those operations or during entering into abdominal cavity we have not experienced any complications, while in 7 patients we performed conversion to laparotomy following the diagnostic laparoscopy. In all patients an insertion of Veres needle and trocar insertion in the umbilical region was performed, namely a technique of closed laparoscopy. Not even in one patient adhesions in the region of umbilicus were found, and no abdominal organs were injured.

  9. Phylogeny, rate variation, and genome size evolution of Pelargonium (Geraniaceae).

    Science.gov (United States)

    Weng, Mao-Lun; Ruhlman, Tracey A; Gibby, Mary; Jansen, Robert K

    2012-09-01

    The phylogeny of 58 Pelargonium species was estimated using five plastid markers (rbcL, matK, ndhF, rpoC1, trnL-F) and one mitochondrial gene (nad5). The results confirmed the monophyly of three major clades and four subclades within Pelargonium but also indicate the need to revise some sectional classifications. This phylogeny was used to examine karyotype evolution in the genus: plotting chromosome sizes, numbers and 2C-values indicates that genome size is significantly correlated with chromosome size but not number. Accelerated rates of nucleotide substitution have been previously detected in both plastid and mitochondrial genes in Pelargonium, but sparse taxon sampling did not enable identification of the phylogenetic distribution of these elevated rates. Using the multigene phylogeny as a constraint, we investigated lineage- and locus-specific heterogeneity of substitution rates in Pelargonium for an expanded number of taxa and demonstrated that both plastid and mitochondrial genes have had accelerated substitution rates but with markedly disparate patterns. In the plastid, the exons of rpoC1 have significantly accelerated substitution rates compared to its intron and the acceleration was mainly due to nonsynonymous substitutions. In contrast, the mitochondrial gene, nad5, experienced substantial acceleration of synonymous substitution rates in three internal branches of Pelargonium, but this acceleration ceased in all terminal branches. Several lineages also have dN/dS ratios significantly greater than one for rpoC1, indicating that positive selection is acting on this gene, whereas the accelerated synonymous substitutions in the mitochondrial gene are the result of elevated mutation rates. Published by Elsevier Inc.

  10. Ribosomal RNA: a key to phylogeny

    Science.gov (United States)

    Olsen, G. J.; Woese, C. R.

    1993-01-01

    As molecular phylogeny increasingly shapes our understanding of organismal relationships, no molecule has been applied to more questions than have ribosomal RNAs. We review this role of the rRNAs and some of the insights that have been gained from them. We also offer some of the practical considerations in extracting the phylogenetic information from the sequences. Finally, we stress the importance of comparing results from multiple molecules, both as a method for testing the overall reliability of the organismal phylogeny and as a method for more broadly exploring the history of the genome.

  11. Molecular data and phylogeny of family

    International Nuclear Information System (INIS)

    Shinwari, Z.K.; Shinwari, S.

    2010-01-01

    Family Smilacaceae's higher order taxonomy remained disputed for many years. It was treated as an order 'Smilacales' and was also placed under Liliales by several taxonomists. Even some considered as part of family Liliacaeae. In present paper, we investigated the family's higher order phylogeny and also compared its rbcL gene sequence data with related taxa to elucidate its phylogeny. The data suggests that its family stature is beyond dispute because of its advanced karyotype, woody climbing habit and DNA sequence data. The data suggest that Smilacaceae may be a sister group of order Liliales and it forms a clear clade with the order. (author)

  12. Phylogeny Inference of Closely Related Bacterial Genomes: Combining the Features of Both Overlapping Genes and Collinear Genomic Regions

    Science.gov (United States)

    Zhang, Yan-Cong; Lin, Kui

    2015-01-01

    Overlapping genes (OGs) represent one type of widespread genomic feature in bacterial genomes and have been used as rare genomic markers in phylogeny inference of closely related bacterial species. However, the inference may experience a decrease in performance for phylogenomic analysis of too closely or too distantly related genomes. Another drawback of OGs as phylogenetic markers is that they usually take little account of the effects of genomic rearrangement on the similarity estimation, such as intra-chromosome/genome translocations, horizontal gene transfer, and gene losses. To explore such effects on the accuracy of phylogeny reconstruction, we combine phylogenetic signals of OGs with collinear genomic regions, here called locally collinear blocks (LCBs). By putting these together, we refine our previous metric of pairwise similarity between two closely related bacterial genomes. As a case study, we used this new method to reconstruct the phylogenies of 88 Enterobacteriale genomes of the class Gammaproteobacteria. Our results demonstrated that the topological accuracy of the inferred phylogeny was improved when both OGs and LCBs were simultaneously considered, suggesting that combining these two phylogenetic markers may reduce, to some extent, the influence of gene loss on phylogeny inference. Such phylogenomic studies, we believe, will help us to explore a more effective approach to increasing the robustness of phylogeny reconstruction of closely related bacterial organisms. PMID:26715828

  13. Molecular phylogeny of Ranunculaceae based on internal ...

    African Journals Online (AJOL)

    The botanical family Ranunculaceae contains important medicinal plants. To obtain new evolutionary evidence regarding the systematic classification of Ranunculaceae plants, we used molecular phylogenies to test relationships based on the internal transcribed spacer region. The results of phylogenetic analysis of 92 ...

  14. Book review: Insect morphology and phylogeny

    Directory of Open Access Journals (Sweden)

    Susanne Randolf

    2014-05-01

    Full Text Available Beutel RG, Friedrich F, Ge S-Q, Yang X-K (2014 Insect Morphology and Phylogeny: A textbook for students of entomology. De Gruyter, Berlin/Boston, 516 pp., softcover. ISBN 978-3-11-026263-6.

  15. Bayesian inference of the metazoan phylogeny

    DEFF Research Database (Denmark)

    Glenner, Henrik; Hansen, Anders J; Sørensen, Martin V

    2004-01-01

    Metazoan phylogeny remains one of evolutionary biology's major unsolved problems. Molecular and morphological data, as well as different analytical approaches, have produced highly conflicting results due to homoplasy resulting from more than 570 million years of evolution. To date, parsimony has...

  16. Primate diversification inferred from phylogenies and fossils.

    Science.gov (United States)

    Herrera, James P

    2017-12-01

    Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ∼600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ∼34 Ma, but also elevated extinction ∼10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  17. A Molecular Phylogeny of Hemiptera Inferred from Mitochondrial Genome Sequences

    Science.gov (United States)

    Song, Nan; Liang, Ai-Ping; Bu, Cui-Ping

    2012-01-01

    Classically, Hemiptera is comprised of two suborders: Homoptera and Heteroptera. Homoptera includes Cicadomorpha, Fulgoromorpha and Sternorrhyncha. However, according to previous molecular phylogenetic studies based on 18S rDNA, Fulgoromorpha has a closer relationship to Heteroptera than to other hemipterans, leaving Homoptera as paraphyletic. Therefore, the position of Fulgoromorpha is important for studying phylogenetic structure of Hemiptera. We inferred the evolutionary affiliations of twenty-five superfamilies of Hemiptera using mitochondrial protein-coding genes and rRNAs. We sequenced three mitogenomes, from Pyrops candelaria, Lycorma delicatula and Ricania marginalis, representing two additional families in Fulgoromorpha. Pyrops and Lycorma are representatives of an additional major family Fulgoridae in Fulgoromorpha, whereas Ricania is a second representative of the highly derived clade Ricaniidae. The organization and size of these mitogenomes are similar to those of the sequenced fulgoroid species. Our consensus phylogeny of Hemiptera largely supported the relationships (((Fulgoromorpha,Sternorrhyncha),Cicadomorpha),Heteroptera), and thus supported the classic phylogeny of Hemiptera. Selection of optimal evolutionary models (exclusion and inclusion of two rRNA genes or of third codon positions of protein-coding genes) demonstrated that rapidly evolving and saturated sites should be removed from the analyses. PMID:23144967

  18. A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences.

    Directory of Open Access Journals (Sweden)

    Nan Song

    Full Text Available Classically, Hemiptera is comprised of two suborders: Homoptera and Heteroptera. Homoptera includes Cicadomorpha, Fulgoromorpha and Sternorrhyncha. However, according to previous molecular phylogenetic studies based on 18S rDNA, Fulgoromorpha has a closer relationship to Heteroptera than to other hemipterans, leaving Homoptera as paraphyletic. Therefore, the position of Fulgoromorpha is important for studying phylogenetic structure of Hemiptera. We inferred the evolutionary affiliations of twenty-five superfamilies of Hemiptera using mitochondrial protein-coding genes and rRNAs. We sequenced three mitogenomes, from Pyrops candelaria, Lycorma delicatula and Ricania marginalis, representing two additional families in Fulgoromorpha. Pyrops and Lycorma are representatives of an additional major family Fulgoridae in Fulgoromorpha, whereas Ricania is a second representative of the highly derived clade Ricaniidae. The organization and size of these mitogenomes are similar to those of the sequenced fulgoroid species. Our consensus phylogeny of Hemiptera largely supported the relationships (((Fulgoromorpha,Sternorrhyncha,Cicadomorpha,Heteroptera, and thus supported the classic phylogeny of Hemiptera. Selection of optimal evolutionary models (exclusion and inclusion of two rRNA genes or of third codon positions of protein-coding genes demonstrated that rapidly evolving and saturated sites should be removed from the analyses.

  19. Phylogeny and Systematics of Leptomyxid Amoebae (Amoebozoa, Tubulinea, Leptomyxida).

    Science.gov (United States)

    Smirnov, Alexey; Nassonova, Elena; Geisen, Stefan; Bonkowski, Michael; Kudryavtsev, Alexander; Berney, Cedric; Glotova, Anna; Bondarenko, Natalya; Dyková, Iva; Mrva, Martin; Fahrni, Jose; Pawlowski, Jan

    2017-04-01

    We describe four new species of Flabellula, Leptomyxa and Rhizamoeba and publish new SSU rRNA gene and actin gene sequences of leptomyxids. Using these data we provide the most comprehensive SSU phylogeny of leptomyxids to date. Based on the analyses of morphological data and results of the SSU rRNA gene phylogeny we suggest changes in the systematics of the order Leptomyxida (Amoebozoa: Lobosa: Tubulinea). We propose to merge the genera Flabellula and Paraflabellula (the genus Flabellula remains valid by priority rule). The genus Rhizamoeba is evidently polyphyletic in all phylogenetic trees; we suggest retaining the generic name Rhizamoeba for the group unifying R. saxonica, R.matisi n. sp. and R. polyura, the latter remains the type species of the genus Rhizamoeba. Based on molecular and morphological evidence we move all remaining Rhizamoeba species to the genus Leptomyxa. New family Rhizamoebidae is established here in order to avoid paraphyly of the family Leptomyxidae. With the suggested changes both molecular and morphological systems of the order Leptomyxida are now fully congruent to each other. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. A six-gene phylogeny provides new insights into choanoflagellate evolution.

    Science.gov (United States)

    Carr, Martin; Richter, Daniel J; Fozouni, Parinaz; Smith, Timothy J; Jeuck, Alexandra; Leadbeater, Barry S C; Nitsche, Frank

    2017-02-01

    Recent studies have shown that molecular phylogenies of the choanoflagellates (Class Choanoflagellatea) are in disagreement with their traditional taxonomy, based on morphology, and that Choanoflagellatea requires considerable taxonomic revision. Furthermore, phylogenies suggest that the morphological and ecological evolution of the group is more complex than has previously been recognized. Here we address the taxonomy of the major choanoflagellate order Craspedida, by erecting four new genera. The new genera are shown to be morphologically, ecologically and phylogenetically distinct from other choanoflagellate taxa. Furthermore, we name five novel craspedid species, as well as formally describe ten species that have been shown to be either misidentified or require taxonomic revision. Our revised phylogeny, including 18 new species and sequence data for two additional genes, provides insights into the morphological and ecological evolution of the choanoflagellates. We examine the distribution within choanoflagellates of these two additional genes, EF-1A and EFL, closely related translation GTPases which are required for protein synthesis. Mapping the presence and absence of these genes onto the phylogeny highlights multiple events of gene loss within the choanoflagellates. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. A configuration space of homologous proteins conserving mutual information and allowing a phylogeny inference based on pair-wise Z-score probabilities.

    Science.gov (United States)

    Bastien, Olivier; Ortet, Philippe; Roy, Sylvaine; Maréchal, Eric

    2005-03-10

    Popular methods to reconstruct molecular phylogenies are based on multiple sequence alignments, in which addition or removal of data may change the resulting tree topology. We have sought a representation of homologous proteins that would conserve the information of pair-wise sequence alignments, respect probabilistic properties of Z-scores (Monte Carlo methods applied to pair-wise comparisons) and be the basis for a novel method of consistent and stable phylogenetic reconstruction. We have built up a spatial representation of protein sequences using concepts from particle physics (configuration space) and respecting a frame of constraints deduced from pair-wise alignment score properties in information theory. The obtained configuration space of homologous proteins (CSHP) allows the representation of real and shuffled sequences, and thereupon an expression of the TULIP theorem for Z-score probabilities. Based on the CSHP, we propose a phylogeny reconstruction using Z-scores. Deduced trees, called TULIP trees, are consistent with multiple-alignment based trees. Furthermore, the TULIP tree reconstruction method provides a solution for some previously reported incongruent results, such as the apicomplexan enolase phylogeny. The CSHP is a unified model that conserves mutual information between proteins in the way physical models conserve energy. Applications include the reconstruction of evolutionary consistent and robust trees, the topology of which is based on a spatial representation that is not reordered after addition or removal of sequences. The CSHP and its assigned phylogenetic topology, provide a powerful and easily updated representation for massive pair-wise genome comparisons based on Z-score computations.

  2. A configuration space of homologous proteins conserving mutual information and allowing a phylogeny inference based on pair-wise Z-score probabilities

    Directory of Open Access Journals (Sweden)

    Maréchal Eric

    2005-03-01

    Full Text Available Abstract Background Popular methods to reconstruct molecular phylogenies are based on multiple sequence alignments, in which addition or removal of data may change the resulting tree topology. We have sought a representation of homologous proteins that would conserve the information of pair-wise sequence alignments, respect probabilistic properties of Z-scores (Monte Carlo methods applied to pair-wise comparisons and be the basis for a novel method of consistent and stable phylogenetic reconstruction. Results We have built up a spatial representation of protein sequences using concepts from particle physics (configuration space and respecting a frame of constraints deduced from pair-wise alignment score properties in information theory. The obtained configuration space of homologous proteins (CSHP allows the representation of real and shuffled sequences, and thereupon an expression of the TULIP theorem for Z-score probabilities. Based on the CSHP, we propose a phylogeny reconstruction using Z-scores. Deduced trees, called TULIP trees, are consistent with multiple-alignment based trees. Furthermore, the TULIP tree reconstruction method provides a solution for some previously reported incongruent results, such as the apicomplexan enolase phylogeny. Conclusion The CSHP is a unified model that conserves mutual information between proteins in the way physical models conserve energy. Applications include the reconstruction of evolutionary consistent and robust trees, the topology of which is based on a spatial representation that is not reordered after addition or removal of sequences. The CSHP and its assigned phylogenetic topology, provide a powerful and easily updated representation for massive pair-wise genome comparisons based on Z-score computations.

  3. The first multi-gene phylogeny of the Macrostomorpha sheds light on the evolution of sexual and asexual reproduction in basal Platyhelminthes.

    Science.gov (United States)

    Janssen, Toon; Vizoso, Dita B; Schulte, Gregor; Littlewood, D Timothy J; Waeschenbach, Andrea; Schärer, Lukas

    2015-11-01

    The Macrostomorpha-an early branching and species-rich clade of free-living flatworms-is attracting interest because it contains Macrostomum lignano, a versatile model organism increasingly used in evolutionary, developmental, and molecular biology. We elucidate the macrostomorphan molecular phylogeny inferred from both nuclear (18S and 28S rDNA) and mitochondrial (16S rDNA and COI) marker genes from 40 representatives. Although our phylogeny does not recover the Macrostomorpha as a statistically supported monophyletic grouping, it (i) confirms many taxa previously proposed based on morphological evidence, (ii) permits the first placement of many families and genera, and (iii) reveals a number of unexpected placements. Specifically, Myozona and Bradynectes are outside the three classic families (Macrostomidae, Microstomidae and Dolichomacrostomidae) and the asexually fissioning Myomacrostomum belongs to a new subfamily, the Myozonariinae nov. subfam. (Dolichomacrostomidae), rather than diverging early. While this represents the first evidence for asexuality among the Dolichomacrostomidae, we show that fissioning also occurs in another Myozonariinae, Myozonaria fissipara nov. sp. Together with the placement of the (also fissioning) Microstomidae, namely as the sister taxon of Dolichomacrostomidae, this suggests that fissioning is not basal within the Macrostomorpha, but rather restricted to the new taxon Dolichomicrostomida (Dolichomacrostomidae+Microstomidae). Furthermore, our phylogeny allows new insights into the evolution of the reproductive system, as ancestral state reconstructions reveal convergent evolution of gonads, and male and female genitalia. Finally, the convergent evolution of sperm storage organs in the female genitalia appears to be linked to the widespread occurrence of hypodermic insemination among the Macrostomorpha. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Why do morphological phylogenies vary in quality? An investigation based on the comparative history of lizard clades.

    Science.gov (United States)

    Arnold, E N

    1990-05-22

    . Examination of the robust and explicit phylogeny of the semaphore geckoes (Pristurus) suggests that its quality does stem from a variety of environmental factors. The group has progressed along an ecological continuum, passing through a series of increasingly severe niches that appear to have elicited many morphological changes. The fact that niches are progressively filled reduces the likelihood of species reinvading a previous one with related character reversal. Because the niches of advanced Pristurus are virtually unique within the Gekkonidae the morphological changes produced are also very rare and therefore easy to polarize. Ecological changes on the main stem of the phylogeny are abrupt and associated character states consequently well differentiated.(ABSTRACT TRUNCATED AT 400 WORDS)

  5. Eumalacostracan phylogeny and total evidence: limitations of the usual suspects

    Directory of Open Access Journals (Sweden)

    Ferla Matteo P

    2009-01-01

    Full Text Available Abstract Background The phylogeny of Eumalacostraca (Crustacea remains elusive, despite over a century of interest. Recent morphological and molecular phylogenies appear highly incongruent, but this has not been assessed quantitatively. Moreover, 18S rRNA trees show striking branch length differences between species, accompanied by a conspicuous clustering of taxa with similar branch lengths. Surprisingly, previous research found no rate heterogeneity. Hitherto, no phylogenetic analysis of all major eumalacostracan taxa (orders has either combined evidence from multiple loci, or combined molecular and morphological evidence. Results We combined evidence from four nuclear ribosomal and mitochondrial loci (18S rRNA, 28S rRNA, 16S rRNA, and cytochrome c oxidase subunit I with a newly synthesized morphological dataset. We tested the homogeneity of data partitions, both in terms of character congruence and the topological congruence of inferred trees. We also performed Bayesian and parsimony analyses on separate and combined partitions, and tested the contribution of each partition. We tested for potential long-branch attraction (LBA using taxon deletion experiments, and with relative rate tests. Additionally we searched for molecular polytomies (spurious clades. Lastly, we investigated the phylogenetic stability of taxa, and assessed their impact on inferred relationships over the whole tree. We detected significant conflict between data partitions, especially between morphology and molecules. We found significant rate heterogeneity between species for both the 18S rRNA and combined datasets, introducing the possibility of LBA. As a test case, we showed that LBA probably affected the position of Spelaeogriphacea in the combined molecular evidence analysis. We also demonstrated that several clades, including the previously reported and surprising clade of Amphipoda plus Spelaeogriphacea, are 'supported' by zero length branches. Furthermore we showed

  6. Phylogeny and comparative genome analysis of a Basidiomycete fungi

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert W.; Salamov, Asaf; Grigoriev, Igor; Hibbett, David

    2011-03-14

    Fungi of the phylum Basidiomycota, make up some 37percent of the described fungi, and are important from the perspectives of forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, plant pathogenic rusts and smuts, and some human pathogens. To better understand these important fungi, we have undertaken a comparative genomic analysis of the Basidiomycetes with available sequenced genomes. We report a phylogeny that sheds light on previously unclear evolutionary relationships among the Basidiomycetes. We also define a `core proteome? based on protein families conserved in all Basidiomycetes. We identify key expansions and contractions in protein families that may be responsible for the degradation of plant biomass such as cellulose, hemicellulose, and lignin. Finally, we speculate as to the genomic changes that drove such expansions and contractions.

  7. A molecular phylogeny of living primates.

    Science.gov (United States)

    Perelman, Polina; Johnson, Warren E; Roos, Christian; Seuánez, Hector N; Horvath, Julie E; Moreira, Miguel A M; Kessing, Bailey; Pontius, Joan; Roelke, Melody; Rumpler, Yves; Schneider, Maria Paula C; Silva, Artur; O'Brien, Stephen J; Pecon-Slattery, Jill

    2011-03-01

    Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (~8 Mb) from 186 primates representing 61 (~90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species.

  8. A Molecular Phylogeny of Living Primates

    Science.gov (United States)

    Perelman, Polina; Johnson, Warren E.; Roos, Christian; Seuánez, Hector N.; Horvath, Julie E.; Moreira, Miguel A. M.; Kessing, Bailey; Pontius, Joan; Roelke, Melody; Rumpler, Yves; Schneider, Maria Paula C.; Silva, Artur; O'Brien, Stephen J.; Pecon-Slattery, Jill

    2011-01-01

    Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (∼8 Mb) from 186 primates representing 61 (∼90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species. PMID:21436896

  9. A molecular phylogeny of living primates.

    Directory of Open Access Journals (Sweden)

    Polina Perelman

    2011-03-01

    Full Text Available Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (~8 Mb from 186 primates representing 61 (~90% of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species.

  10. A reassessment of the phylogeny and circumscription of Zaluzianskya (Scrophulariaceae).

    Science.gov (United States)

    Archibald, Jenny K; Cook, Jacqueline; Anderson, Bruce; Johnson, Steven D; Mort, Mark E

    2017-07-01

    The genus Zaluzianskya (Scrophulariaceae s.s.) encompasses a diversity of floral and ecological traits. However, this diversity, as described by the current taxonomic circumscription of Zaluzianskya, is an underestimate. We present molecular data suggesting that this genus requires expansion via incorporation of species from other genera and recognition of unnamed cryptic species. This study advances prior molecular phylogenies of the southern African genus through the addition of DNA regions and 51 populations that had not previously been sampled in a published phylogeny. A total of 82 species of Zaluzianskya and related genera are included, adding 48 to those previously sampled. Results are presented from analyses of five DNA regions, including nuclear ITS and four rapidly evolving chloroplast regions (trnL-trnF, rpl16, rps16, and trnS-trnfM). Our primary finding is that the genus Phyllopodium is polyphyletic as currently circumscribed, with some species placed within Zaluzianskya and others grouping with Polycarena, indicating the need for further phylogenetic work on these genera. Preliminary support for the incorporation of Reyemia into Zaluzianskya is reinforced here by the first molecular analysis to include both species of Reyemia and a strong sampling of species across Zaluzianskya and major clades of tribe Limoselleae. The two disjunct, tropical African species of Zaluzianskya are also confirmed as members of this genus. Finally, a broad sampling of 21 populations of Z. microsiphon establishes their phylogenetic division into two to five separate lineages. Hybridization, coevolution, and cryptic speciation may each play a role in the evolution of Z. microsiphon. Further resolution within a clade comprising sections Nycterinia and Macrocalyx is needed to better understand their relationships. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Phylogeny of Gobioidei and the origin of European gobies

    Directory of Open Access Journals (Sweden)

    Ainhoa Agorreta

    2015-11-01

    Full Text Available The percomorph order Gobioidei comprises over 2200 species worldwide distributed that occupy most freshwater, brackish and marine environments, and show a spectacular variety in morphology, ecology, and behaviour. However, phylogenetic relationships among many gobioid groups still remain poorly understood. Such is the case of Gobiidae, a rapidly radiating lineage that encompass an unusually high diversity of species (nearly 2000, including the largely endemic European species whose origin and ancestry remain uncertain. The resolution and accuracy of previous molecular phylogenetic studies has been limited due to the use of only a few (generally mitochondrial molecular markers and/or the absence of representatives of several key lineages. Our study (built on Agorreta et al. 2013 is the first to include multiple nuclear and mitochondrial genes for nearly 300 terminal taxa representing the vast diversity of gobioid lineages. We have used this information to reconstruct a robust phylogeny of Gobioidei, and we are now investigating the historical biogeography and diversification times of European gobies with a time-calibrated molecular phylogeny. Robustness of the inferred phylogenetic trees is significantly higher than that of previous studies, hence providing the most compelling molecular phylogenetic hypotheses for Gobioidei thus far. The family Eleotrididae branches off the gobioid tree after the Rhyacichthyidae + Odontobutidae clade followed by the Butidae as the sister-group of the Gobiidae. Several monophyletic groups are identified within the two major Gobiidae subclades, the gobionelline-like and the gobiine-like gobiids. The European gobies cluster in three distinct lineages (Pomatoschistus-, Aphia-, and Gobius-lineages, each with different affinities with gobiids from the Indo-Pacific and perhaps the New World. Our ongoing more-detailed study on European gobies will reveal whether their origin is related to vicariant events linked to the

  12. Phylogeny of horse chromosome 5q in the genus Equus and centromere repositioning.

    Science.gov (United States)

    Piras, F M; Nergadze, S G; Poletto, V; Cerutti, F; Ryder, O A; Leeb, T; Raimondi, E; Giulotto, E

    2009-01-01

    Horses, asses and zebras belong to the genus Equus and are the only extant species of the family Equidae in the order Perissodactyla. In a previous work we demonstrated that a key factor in the rapid karyotypic evolution of this genus was evolutionary centromere repositioning, that is, the shift of the centromeric function to a new position without alteration of the order of markers along the chromosome. In search of previously undiscovered evolutionarily new centromeres, we traced the phylogeny of horse chromosome 5, analyzing the order of BAC markers, derived from a horse genomic library, in 7 Equus species (E. caballus, E. hemionus onager, E. kiang, E. asinus, E. grevyi, E. burchelli and E. zebra hartmannae). This analysis showed that repositioned centromeres are present in E. asinus (domestic donkey, EAS) chromosome 16 and in E. burchelli (Burchell's zebra, EBU) chromosome 17, confirming that centromere repositioning is a strikingly frequent phenomenon in this genus. The observation that the neocentromeres in EAS16 and EBU17 are in the same chromosomal position suggests that they may derive from the same event and therefore, E. asinus and E. burchelli may be more closely related than previously proposed; alternatively, 2 centromere repositioning events, involving the same chromosomal region, may have occurred independently in different lineages, pointing to the possible existence of hot spots for neocentromere formation. Our comparative analysis also showed that, while E. caballus chromosome 5 seems to represent the ancestral configuration, centric fission followed by independent fusion events gave rise to 3 different submetacentric chromosomes in other Equus lineages. (c) 2009 S. Karger AG, Basel.

  13. Phylogeny and character evolution in the bee-assassins (Insecta: Heteroptera: Reduviidae).

    Science.gov (United States)

    Forero, D; Berniker, L; Weirauch, C

    2013-01-01

    Apiomerus, the charismatic bee-assassins (>108 spp.), belong to the New World resin bugs in the harpactorine tribe Apiomerini (12 extant genera) that is characterized by a novel predation strategy, resin trap predation. Apiomerini also exhibit striking genitalic diversity that has shaped subgeneric classifications within the genus Apiomerus and females of some species of Apiomerus are known to engage in unique maternal care behaviors. The lack of a phylogenetic framework currently hinders evolutionary interpretations of genitalic morphology and maternal care. We here present a molecular phylogeny based on 4, 477 bp of six ribosomal and protein coding genes and 95 terminal taxa using parsimony and maximum likelihood approaches as a way of addressing these shortcomings. Apiomerini are monophyletic, with Heniartes being the sistergroup to all remaining taxa that form the monophyletic Manicocoris (Calliclopius, Manicocoris, Micrauchenus, and Ponerobia) and Apiomerus (Agriocoris, Apiomerus, and Sphodrolestes) clades. Previously proposed subgeneric groups are polyphyletic, but several proposed species groups are recovered as monophyletic. Ancestral state reconstruction of the metatibial comb indicates that this structure evolved in the ancestor of all Apiomerini where it was present in males and in females; it became strongly sexually dimorphic (better developed in females than in males) in the Apiomerus clade (Apiomerus + Agriocoris + Sphodrolestes). Genitalic features reveal a pattern of homoplasy, but frequently are nonetheless useful to diagnose supraspecific groups within Apiomerus. The complex genitalia found within Apiomerus are derived for that clade. We conclude that, using the metatibial comb as a proxy, maternal care is relatively common in the tribe Apiomerini and propose that it likely evolved at the base of the Apiomerus clade if not at the base of Apiomerini. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Replicate phylogenies and post-glacial range expansion of the pitcher-plant mosquito, Wyeomyia smithii, in North America.

    Directory of Open Access Journals (Sweden)

    Clayton Merz

    Full Text Available Herein we tested the repeatability of phylogenetic inference based on high throughput sequencing by increased taxon sampling using our previously published techniques in the pitcher-plant mosquito, Wyeomyia smithii in North America. We sampled 25 natural populations drawn from different localities nearby 21 previous collection localities and used these new data to construct a second, independent phylogeny, expressly to test the reproducibility of phylogenetic patterns. Comparison of trees between the two data sets based on both maximum parsimony and maximum likelihood with Bayesian posterior probabilities showed close correspondence in the grouping of the most southern populations into clear clades. However, discrepancies emerged, particularly in the middle of W. smithii's current range near the previous maximum extent of the Laurentide Ice Sheet, especially concerning the most recent common ancestor to mountain and northern populations. Combining all 46 populations from both studies into a single maximum parsimony tree and taking into account the post-glacial historical biogeography of associated flora provided an improved picture of W. smithii's range expansion in North America. In a more general sense, we propose that extensive taxon sampling, especially in areas of known geological disruption is key to a comprehensive approach to phylogenetics that leads to biologically meaningful phylogenetic inference.

  15. Negative information for building phylogenies.

    Science.gov (United States)

    Chairungsee, Supaporn; Crochemore, Maxime

    2013-08-01

    An absent word (also called a forbidden word or an unword in other contexts) in a sequence is a segment that does not appear in the given sequence. It is a minimal absent word if all its proper factors occur in the given sequence. In this article, we review the concept of minimal absent words, which includes the notion of shortest absent words but is much stronger. We present an efficient method for computing the minimal absent words of bounded length for DNA sequence using a Trie of bounded depth, representing bounded length factors. This method outputs the whole set of minimal absent words and furthermore our technique provides a linear-time algorithm with less memory usage than previous solutions. We also present an approach to distinguish sequences of different organisms using their minimal absent words. Our solution applies a length-weighted index to discriminate sequences and the results show that we can build phylogenetic tree based on the patent collected information.

  16. Studies in Phylogeny. I. On the relation of Taxonomy, Phylogeny and Biogeography

    NARCIS (Netherlands)

    Lam, H.J.

    1938-01-01

    Taxonomy is static, its symbols are therefore two-dimensional, representing 1. differences or resemblances and 2. diversity (eventually are also area). Phylogeny is dynamic and its symbols are three-dimensional, representing 1. Time, 2. differences or resemblances and 3. diversity (eventually also

  17. Algorithms For Phylogeny Reconstruction In a New Mathematical Model

    NARCIS (Netherlands)

    Lenzini, Gabriele; Marianelli, Silvia

    1997-01-01

    The evolutionary history of a set of species is represented by a tree called phylogenetic tree or phylogeny. Its structure depends on precise biological assumptions about the evolution of species. Problems related to phylogeny reconstruction (i.e., finding a tree representation of information

  18. Explaining evolution via constrained persistent perfect phylogeny

    Science.gov (United States)

    2014-01-01

    Background The perfect phylogeny is an often used model in phylogenetics since it provides an efficient basic procedure for representing the evolution of genomic binary characters in several frameworks, such as for example in haplotype inference. The model, which is conceptually the simplest, is based on the infinite sites assumption, that is no character can mutate more than once in the whole tree. A main open problem regarding the model is finding generalizations that retain the computational tractability of the original model but are more flexible in modeling biological data when the infinite site assumption is violated because of e.g. back mutations. A special case of back mutations that has been considered in the study of the evolution of protein domains (where a domain is acquired and then lost) is persistency, that is the fact that a character is allowed to return back to the ancestral state. In this model characters can be gained and lost at most once. In this paper we consider the computational problem of explaining binary data by the Persistent Perfect Phylogeny model (referred as PPP) and for this purpose we investigate the problem of reconstructing an evolution where some constraints are imposed on the paths of the tree. Results We define a natural generalization of the PPP problem obtained by requiring that for some pairs (character, species), neither the species nor any of its ancestors can have the character. In other words, some characters cannot be persistent for some species. This new problem is called Constrained PPP (CPPP). Based on a graph formulation of the CPPP problem, we are able to provide a polynomial time solution for the CPPP problem for matrices whose conflict graph has no edges. Using this result, we develop a parameterized algorithm for solving the CPPP problem where the parameter is the number of characters. Conclusions A preliminary experimental analysis shows that the constrained persistent perfect phylogeny model allows to

  19. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes

    Science.gov (United States)

    2013-01-01

    Background The extant squamates (>9400 known species of lizards and snakes) are one of the most diverse and conspicuous radiations of terrestrial vertebrates, but no studies have attempted to reconstruct a phylogeny for the group with large-scale taxon sampling. Such an estimate is invaluable for comparative evolutionary studies, and to address their classification. Here, we present the first large-scale phylogenetic estimate for Squamata. Results The estimated phylogeny contains 4161 species, representing all currently recognized families and subfamilies. The analysis is based on up to 12896 base pairs of sequence data per species (average = 2497 bp) from 12 genes, including seven nuclear loci (BDNF, c-mos, NT3, PDC, R35, RAG-1, and RAG-2), and five mitochondrial genes (12S, 16S, cytochrome b, ND2, and ND4). The tree provides important confirmation for recent estimates of higher-level squamate phylogeny based on molecular data (but with more limited taxon sampling), estimates that are very different from previous morphology-based hypotheses. The tree also includes many relationships that differ from previous molecular estimates and many that differ from traditional taxonomy. Conclusions We present a new large-scale phylogeny of squamate reptiles that should be a valuable resource for future comparative studies. We also present a revised classification of squamates at the family and subfamily level to bring the taxonomy more in line with the new phylogenetic hypothesis. This classification includes new, resurrected, and modified subfamilies within gymnophthalmid and scincid lizards, and boid, colubrid, and lamprophiid snakes. PMID:23627680

  20. Phylogeny and species traits predict bird detectability

    Science.gov (United States)

    Solymos, Peter; Matsuoka, Steven M.; Stralberg, Diana; Barker, Nicole K. S.; Bayne, Erin M.

    2018-01-01

    Avian acoustic communication has resulted from evolutionary pressures and ecological constraints. We therefore expect that auditory detectability in birds might be predictable by species traits and phylogenetic relatedness. We evaluated the relationship between phylogeny, species traits, and field‐based estimates of the two processes that determine species detectability (singing rate and detection distance) for 141 bird species breeding in boreal North America. We used phylogenetic mixed models and cross‐validation to compare the relative merits of using trait data only, phylogeny only, or the combination of both to predict detectability. We found a strong phylogenetic signal in both singing rates and detection distances; however the strength of phylogenetic effects was less than expected under Brownian motion evolution. The evolution of behavioural traits that determine singing rates was found to be more labile, leaving more room for species to evolve independently, whereas detection distance was mostly determined by anatomy (i.e. body size) and thus the laws of physics. Our findings can help in disentangling how complex ecological and evolutionary mechanisms have shaped different aspects of detectability in boreal birds. Such information can greatly inform single‐ and multi‐species models but more work is required to better understand how to best correct possible biases in phylogenetic diversity and other community metrics.

  1. A supertree approach to shorebird phylogeny

    Directory of Open Access Journals (Sweden)

    Thomas Gavin H

    2004-08-01

    Full Text Available Abstract Background Order Charadriiformes (shorebirds is an ideal model group in which to study a wide range of behavioural, ecological and macroevolutionary processes across species. However, comparative studies depend on phylogeny to control for the effects of shared evolutionary history. Although numerous hypotheses have been presented for subsets of the Charadriiformes none to date include all recognised species. Here we use the matrix representation with parsimony method to produce the first fully inclusive supertree of Charadriiformes. We also provide preliminary estimates of ages for all nodes in the tree. Results Three main lineages are revealed: i the plovers and allies; ii the gulls and allies; and iii the sandpipers and allies. The relative position of these clades is unresolved in the strict consensus tree but a 50% majority-rule consensus tree indicates that the sandpiper clade is sister group to the gulls and allies whilst the plover group is placed at the base of the tree. The overall topology is highly consistent with recent molecular hypotheses of shorebird phylogeny. Conclusion The supertree hypothesis presented herein is (to our knowledge the only complete phylogenetic hypothesis of all extant shorebirds. Despite concerns over the robustness of supertrees (see Discussion, we believe that it provides a valuable framework for testing numerous evolutionary hypotheses relating to the diversity of behaviour, ecology and life-history of the Charadriiformes.

  2. Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot.

    Directory of Open Access Journals (Sweden)

    W John Kress

    2010-11-01

    Full Text Available Species number, functional traits, and phylogenetic history all contribute to characterizing the biological diversity in plant communities. The phylogenetic component of diversity has been particularly difficult to quantify in species-rich tropical tree assemblages. The compilation of previously published (and often incomplete data on evolutionary relationships of species into a composite phylogeny of the taxa in a forest, through such programs as Phylomatic, has proven useful in building community phylogenies although often of limited resolution. Recently, DNA barcodes have been used to construct a robust community phylogeny for nearly 300 tree species in a forest dynamics plot in Panama using a supermatrix method. In that study sequence data from three barcode loci were used to generate a well-resolved species-level phylogeny.Here we expand upon this earlier investigation and present results on the use of a phylogenetic constraint tree to generate a community phylogeny for a diverse, tropical forest dynamics plot in Puerto Rico. This enhanced method of phylogenetic reconstruction insures the congruence of the barcode phylogeny with broadly accepted hypotheses on the phylogeny of flowering plants (i.e., APG III regardless of the number and taxonomic breadth of the taxa sampled. We also compare maximum parsimony versus maximum likelihood estimates of community phylogenetic relationships as well as evaluate the effectiveness of one- versus two- versus three-gene barcodes in resolving community evolutionary history.As first demonstrated in the Panamanian forest dynamics plot, the results for the Puerto Rican plot illustrate that highly resolved phylogenies derived from DNA barcode sequence data combined with a constraint tree based on APG III are particularly useful in comparative analysis of phylogenetic diversity and will enhance research on the interface between community ecology and evolution.

  3. Genomes-based phylogeny of the genus Xanthomonas

    Directory of Open Access Journals (Sweden)

    Rodriguez-R Luis M

    2012-03-01

    Full Text Available Abstract Background The genus Xanthomonas comprises several plant pathogenic bacteria affecting a wide range of hosts. Despite the economic, industrial and biological importance of Xanthomonas, the classification and phylogenetic relationships within the genus are still under active debate. Some of the relationships between pathovars and species have not been thoroughly clarified, with old pathovars becoming new species. A change in the genus name has been recently suggested for Xanthomonas albilineans, an early branching species currently located in this genus, but a thorough phylogenomic reconstruction would aid in solving these and other discrepancies in this genus. Results Here we report the results of the genome-wide analysis of DNA sequences from 989 orthologous groups from 17 Xanthomonas spp. genomes available to date, representing all major lineages within the genus. The phylogenetic and computational analyses used in this study have been automated in a Perl package designated Unus, which provides a framework for phylogenomic analyses which can be applied to other datasets at the genomic level. Unus can also be easily incorporated into other phylogenomic pipelines. Conclusions Our phylogeny agrees with previous phylogenetic topologies on the genus, but revealed that the genomes of Xanthomonas citri and Xanthomonas fuscans belong to the same species, and that of Xanthomonas albilineans is basal to the joint clade of Xanthomonas and Xylella fastidiosa. Genome reduction was identified in the species Xanthomonas vasicola in addition to the previously identified reduction in Xanthomonas albilineans. Lateral gene transfer was also observed in two gene clusters.

  4. Complex phylogenetic placement of ilex species (aquifoliaceae): a case study of molecular phylogeny

    International Nuclear Information System (INIS)

    Yi, F.; Sun, L.; Xiao, P.G.; Hao, D.C.

    2017-01-01

    To investigate the phylogenetic relationships among Ilex species distributed in China, we analyzed two alignments including 4,698 characters corresponding to six plastid sequences (matK, rbcL, atpB-rbcL, trnL-F, psbA-trnH, and rpl32-trnL) and 1,748 characters corresponding to two nuclear sequences (ITS and nepGS). Using different partitioning strategies and approaches (i.e., Bayesian inference, maximum likelihood, and maximum parsimony) for phylogeny reconstruction, different topologies and clade supports were determined. A total of 18 Ilex species was divided into two major groups (group I and II) in both plastid and nuclear phylogenies with some incongruences. Potential hybridization events may account, in part, for those phylogenetic uncertainties. The analyses, together with previously identified sequences, indicated that all 18 species were recovered within Eurasia or Asia/North America groups based on plastid data. Meanwhile, the species in group II in the nuclear phylogeny were placed in the Aquifolium clade, as inferred from traditional classification, whereas the species in group I belonged to several other clades. The divergence time of most of the 18 Ilex species was estimated to be not more than 10 million years ago. Based on the results of this study, we concluded that paleogeographical events and past climate changes during the same period might have played important roles in these diversifications. (author)

  5. Dated tribe-wide whole chloroplast genome phylogeny indicates recurrent hybridizations within Triticeae.

    Science.gov (United States)

    Bernhardt, Nadine; Brassac, Jonathan; Kilian, Benjamin; Blattner, Frank R

    2017-06-16

    Triticeae, the tribe of wheat grasses, harbours the cereals barley, rye and wheat and their wild relatives. Although economically important, relationships within the tribe are still not understood. We analysed the phylogeny of chloroplast lineages among nearly all monogenomic Triticeae taxa and polyploid wheat species aiming at a deeper understanding of the tribe's evolution. We used on- and off-target reads of a target-enrichment experiment followed by Illumina sequencing. The read data was used to assemble the plastid locus ndhF for 194 individuals and the whole chloroplast genome for 183 individuals, representing 53 Triticeae species and 15 genera. We conducted Bayesian and multispecies coalescent analyses to infer relationships and estimate divergence times of the taxa. We present the most comprehensive dated Triticeae chloroplast phylogeny and review previous hypotheses in the framework of our results. Monophyly of Triticeae chloroplasts could not be confirmed, as either Bromus or Psathyrostachys captured a chloroplast from a lineage closely related to a Bromus-Triticeae ancestor. The most recent common ancestor of Triticeae occurred approximately between ten and 19 million years ago. The comparison of the chloroplast phylogeny with available nuclear data in several cases revealed incongruences indicating past hybridizations. Recent events of chloroplast capture were detected as individuals grouped apart from con-specific accessions in otherwise monopyhletic groups.

  6. Supermatrix phylogeny and biogeography of the Australasian Meliphagides radiation (Aves: Passeriformes).

    Science.gov (United States)

    Marki, Petter Z; Jønsson, Knud A; Irestedt, Martin; Nguyen, Jacqueline M T; Rahbek, Carsten; Fjeldså, Jon

    2017-02-01

    With nearly 300 species, the infraorder Meliphagides represents one of the largest and most conspicuous Australasian bird radiations. Although the group has been the focus of a number of recent phylogenetic studies, a comprehensive species-level phylogenetic hypothesis is still lacking. This has impeded the assessment of broad-scale evolutionary, biogeographic and ecological hypotheses. In the present study, we use a supermatrix approach including five mitochondrial and four nuclear markers to infer a time-calibrated phylogeny of the Meliphagides. Our phylogeny, which includes 286 of the 289 (99%) currently recognized species, is largely congruent with previous estimates. However, the addition of 60 newly sequenced species reveals some novel relationships. Our biogeographic analyses suggest an Australian origin for the group in the early Oligocene (31.3Mya, 95% HPD 25.2-38.2Mya). In addition, we find that dispersal events out of Australia have been numerous and frequent, particularly to New Guinea, which has also been the source of multiple back-colonizations to the Australian mainland. The phylogeny provides an important framework for studying a wide variety of macroecological and macroevolutionary themes, including character evolution, origin and timing of diversification, biogeographic patterns and species responses to climate change. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Molecular phylogeny of the highly diversified catfish subfamily Loricariinae (Siluriformes, Loricariidae) reveals incongruences with morphological classification.

    Science.gov (United States)

    Covain, Raphaël; Fisch-Muller, Sonia; Oliveira, Claudio; Mol, Jan H; Montoya-Burgos, Juan I; Dray, Stéphane

    2016-01-01

    The Loricariinae belong to the Neotropical mailed catfish family Loricariidae, the most species-rich catfish family. Among loricariids, members of the Loricariinae are united by a long and flattened caudal peduncle and the absence of an adipose fin. Despite numerous studies of the Loricariidae, there is no comprehensive phylogeny of this morphologically highly diversified subfamily. To fill this gap, we present a molecular phylogeny of this group, including 350 representatives, based on the analysis of mitochondrial and nuclear genes (8426 positions). The resulting phylogeny indicates that Loricariinae are distributed into two sister tribes: Harttiini and Loricariini. The Harttiini tribe, as classically defined, constitutes a paraphyletic assemblage and is here restricted to the three genera Harttia, Cteniloricaria, and Harttiella. Two subtribes are distinguished within Loricariini: Farlowellina and Loricariina. Within Farlowellina, the nominal genus formed a paraphyletic group, as did Sturisoma and Sturisomatichthys. Within Loricariina, Loricaria, Crossoloricaria, and Apistoloricaria are also paraphyletic. To solve these issues, and given the lack of clear morphological diagnostic features, we propose here to synonymize several genera (Quiritixys with Harttia; East Andean members of Crossoloricaria, and Apistoloricaria with Rhadinoloricaria; Ixinandria, Hemiloricaria, Fonchiiichthys, and Leliella with Rineloricaria), to restrict others (Crossoloricaria, and Sturisomatichthys to the West Andean members, and Sturisoma to the East Andean species), and to revalidate the genus Proloricaria. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Phylogeny mandalas for illustrating the Tree of Life.

    Science.gov (United States)

    Hasegawa, Masami

    2017-12-01

    A circular phylogeny with photos or drawings of species is named a phylogeny mandala. This is one of the ways for illustrating the Tree of Life, and is suitable to show visually how the biodiversity has developed in the course of evolution as clarified by the molecular phylogenetics. To demonstrate the recent progress of molecular phylogenetics, six phylogeny mandalas for various taxonomic groups of life were presented; i.e., (1) Eukaryota, (2) Metazoa, (3) Hexapoda, (4) Tetrapoda, (5) Eutheria, and (6) Primates. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Pan-genome and phylogeny of Bacillus cereus sensu lato.

    Science.gov (United States)

    Bazinet, Adam L

    2017-08-02

    produced phylogenies that were largely concordant with each other and with previous studies. Phylogenetic support as measured by bootstrap probabilities increased markedly when all suitable pan-genome data was included in phylogenetic analyses, as opposed to when only core genes were used. Bayesian population genetic analysis recommended subdividing the three major clades of B. cereus s. l. into nine clusters. Taxa sharing common traits and species designations exhibited varying degrees of phylogenetic clustering. All phylogenetic analyses recapitulated two previously used classification systems, and taxa were consistently assigned to the same major clade and group. By including accessory genes from the pan-genome in the phylogenetic analyses, I produced an exceptionally well-supported phylogeny of 114 complete B. cereus s. l. genomes. The best-performing methods were used to produce a phylogeny of all 498 publicly available B. cereus s. l. genomes, which was in turn used to compare three different classification systems and to test the monophyly status of various B. cereus s. l. species. The majority of the methodology used in this study is generic and could be leveraged to produce pan-genome estimates and similarly robust phylogenetic hypotheses for other bacterial groups.

  10. From gene trees to organismal phylogeny in prokaryotes: the case of the gamma-Proteobacteria.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Lerat

    2003-10-01

    Full Text Available The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT may thwart this goal by preventing the establishment of organismal relationships based on individual gene phylogenies. The group for which cases of LGT are most frequently documented and for which the greatest density of complete genome sequences is available is the gamma-Proteobacteria, an ecologically diverse and ancient group including free-living species as well as pathogens and intracellular symbionts of plants and animals. We propose an approach to multigene phylogeny using complete genomes and apply it to the case of the gamma-Proteobacteria. We first applied stringent criteria to identify a set of likely gene orthologs and then tested the compatibilities of the resulting protein alignments with several phylogenetic hypotheses. Our results demonstrate phylogenetic concordance among virtually all (203 of 205 of the selected gene families, with each of the exceptions consistent with a single LGT event. The concatenated sequences of the concordant families yield a fully resolved phylogeny. This topology also received strong support in analyses aimed at excluding effects of heterogeneity in nucleotide base composition across lineages. Our analysis indicates that single-copy orthologous genes are resistant to horizontal transfer, even in ancient bacterial groups subject to high rates of LGT. This gene set can be identified and used to yield robust hypotheses for organismal phylogenies, thus establishing a foundation for reconstructing the evolutionary transitions, such as gene transfer, that underlie diversity in genome content and organization.

  11. Haemoprotozoa: Making biological sense of molecular phylogenies

    Directory of Open Access Journals (Sweden)

    Peter O'Donoghue

    2017-12-01

    Full Text Available A range of protistan parasites occur in the blood of vertebrates and are transmitted by haematophagous invertebrate vectors. Some 48 genera are recognized in bood primarily on the basis of parasite morphology and host specificity; including extracellular kinetoplastids (trypanosomatids and intracellular apicomplexa (haemogregarines, haemococcidia, haemosporidia and piroplasms. Gene sequences are available for a growing number of species and molecular phylogenies often link parasite and host or vector evolution. This review endeavours to reconcile molecular clades with biological characters. Four major trypanosomatid clades have been associated with site of development in the vector: salivarian or stercorarian for Trypanosoma, and supra- or peri-pylorian for Leishmania. Four haemogregarine clades have been associated with acarine vectors (Hepatozoon A and B, Karyolysus, Hemolivia and another two with leeches (Dactylosoma, Haemogregarina sensu stricto. Two haemococcidian clades (Lankesterella, Schellackia using leeches and mosquitoes (as paratenic hosts! were paraphyletic with monoxenous enteric coccidia. Two major haemosporidian clades have been associated with mosquito vectors (Plasmodium from mammals, Plasmodium from birds and lizards, two with midges (Hepatocystis from bats, Parahaemoproteus from birds and two with louse-flies and black-flies (Haemoproteus and Leucocytozoon from birds. Three major piroplasm clades were recognized: one associated with transovarian transmission in ticks (Babesia sensu stricto; one with pre-erythrocytic schizogony in vertebrates (Theileria/Cytauxzoon; and one with neither (Babesia sensu lato. Broad comparative studies with allied groups suggest that trypanosomatids and haemogregarines evolved first in aquatic and then terrestrial environments, as evidenced by extant lineages in invertebrates and their radiation in vertebrates. In contrast, haemosporidia and haemococcidia are thought to have evolved first in

  12. Towards improving searches for optimal phylogenies.

    Science.gov (United States)

    Ford, Eric; St John, Katherine; Wheeler, Ward C

    2015-01-01

    Finding the optimal evolutionary history for a set of taxa is a challenging computational problem, even when restricting possible solutions to be "tree-like" and focusing on the maximum-parsimony optimality criterion. This has led to much work on using heuristic tree searches to find approximate solutions. We present an approach for finding exact optimal solutions that employs and complements the current heuristic methods for finding optimal trees. Given a set of taxa and a set of aligned sequences of characters, there may be subsets of characters that are compatible, and for each such subset there is an associated (possibly partially resolved) phylogeny with edges corresponding to each character state change. These perfect phylogenies serve as anchor trees for our constrained search space. We show that, for sequences with compatible sites, the parsimony score of any tree [Formula: see text] is at least the parsimony score of the anchor trees plus the number of inferred changes between [Formula: see text] and the anchor trees. As the maximum-parsimony optimality score is additive, the sum of the lower bounds on compatible character partitions provides a lower bound on the complete alignment of characters. This yields a region in the space of trees within which the best tree is guaranteed to be found; limiting the search for the optimal tree to this region can significantly reduce the number of trees that must be examined in a search of the space of trees. We analyze this method empirically using four different biological data sets as well as surveying 400 data sets from the TreeBASE repository, demonstrating the effectiveness of our technique in reducing the number of steps in exact heuristic searches for trees under the maximum-parsimony optimality criterion. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Molecular phylogeny of extant Holothuroidea (Echinodermata).

    Science.gov (United States)

    Miller, Allison K; Kerr, Alexander M; Paulay, Gustav; Reich, Mike; Wilson, Nerida G; Carvajal, Jose I; Rouse, Greg W

    2017-06-01

    Sea cucumbers (Holothuroidea) are a morphologically diverse, ecologically important, and economically valued clade of echinoderms; however, the understanding of the overall systematics of the group remains controversial. Here, we present a phylogeny of extant Holothuroidea assessed with maximum parsimony, maximum likelihood, and Bayesian approaches using approximately 4.3kb of mt- (COI, 16S, 12S) and nDNA (H3, 18S, 28S) sequences from 82 holothuroid terminals representing 23 of the 27 widely-accepted family-ranked taxa. Currently five holothuroid taxa of ordinal rank are accepted. We find that three of the five orders are non-monophyletic, and we revise the taxonomy of the groups accordingly. Apodida is sister to the rest of Holothuroidea, here considered Actinopoda. Within Actinopoda, Elasipodida in part is sister to the remaining Actinopoda. This latter clade, comprising holothuroids with respiratory trees, is now called Pneumonophora. The traditional Aspidochirotida is paraphyletic, with representatives from three orders (Molpadida, Dendrochirotida, and Elasipodida in part) nested within. Therefore, we discontinue the use of Aspidochirotida and instead erect Holothuriida as the sister group to the remaining Pneumonophora, here termed Neoholothuriida. We found four well-supported major clades in Neoholothuriida: Dendrochirotida, Molpadida and two new clades, Synallactida and Persiculida. The mapping of traditionally-used morphological characters in holothuroid systematics onto the phylogeny revealed marked homoplasy in most characters demonstrating that further taxonomic revision of Holothuroidea is required. Two time-tree analyses, one based on calibrations for uncontroversial crown group dates for Eleutherozoa, Echinozoa and Holothuroidea and another using these calibrations plus four more from within Holothuroidea, showed major discrepancies, suggesting that fossils of Holothuroidea may need reassessment in terms of placing these forms with existing crown

  14. Molecular Phylogeny of the Astrophorida (Porifera, Demospongiae p) Reveals an Unexpected High Level of Spicule Homoplasy

    Science.gov (United States)

    Cárdenas, Paco; Xavier, Joana R.; Reveillaud, Julie; Schander, Christoffer; Rapp, Hans Tore

    2011-01-01

    Background The Astrophorida (Porifera, Demospongiae p) is geographically and bathymetrically widely distributed. Systema Porifera currently includes five families in this order: Ancorinidae, Calthropellidae, Geodiidae, Pachastrellidae and Thrombidae. To date, molecular phylogenetic studies including Astrophorida species are scarce and offer limited sampling. Phylogenetic relationships within this order are therefore for the most part unknown and hypotheses based on morphology largely untested. Astrophorida taxa have very diverse spicule sets that make them a model of choice to investigate spicule evolution. Methodology/Principal Findings With a sampling of 153 specimens (9 families, 29 genera, 89 species) covering the deep- and shallow-waters worldwide, this work presents the first comprehensive molecular phylogeny of the Astrophorida, using a cytochrome c oxidase subunit I (COI) gene partial sequence and the 5′ end terminal part of the 28S rDNA gene (C1-D2 domains). The resulting tree suggested that i) the Astrophorida included some lithistid families and some Alectonidae species, ii) the sub-orders Euastrophorida and Streptosclerophorida were both polyphyletic, iii) the Geodiidae, the Ancorinidae and the Pachastrellidae were not monophyletic, iv) the Calthropellidae was part of the Geodiidae clade (Calthropella at least), and finally that v) many genera were polyphyletic (Ecionemia, Erylus, Poecillastra, Penares, Rhabdastrella, Stelletta and Vulcanella). Conclusion The Astrophorida is a larger order than previously considered, comprising ca. 820 species. Based on these results, we propose new classifications for the Astrophorida using both the classical rank-based nomenclature (i.e., Linnaean classification) and the phylogenetic nomenclature following the PhyloCode, independent of taxonomic rank. A key to the Astrophorida families, sub-families and genera incertae sedis is also included. Incongruences between our molecular tree and the current classification

  15. Phylogeny and taxonomy of the Inonotus linteus complex

    Czech Academy of Sciences Publication Activity Database

    Tian, X.-M.; Yu, H.-Y.; Zhou, L.-W.; Decock, C.; Vlasák, Josef; Dai, Y.C.

    2013-01-01

    Roč. 58, č. 1 (2013), s. 159-169 ISSN 1560-2745 Institutional support: RVO:60077344 Keywords : Hymenochaetaceae * Phellinus * Phylogeny * ITS Subject RIV: EF - Botanics Impact factor: 6.938, year: 2013

  16. Phylogeny and Species Diversity of Gulf of California Oysters

    Data.gov (United States)

    U.S. Environmental Protection Agency — Dataset of DNA sequence data from two mitochondrial loci (COI and 16S) used to infer the phylogeny of oysters in the genus Ostrea along the Pacific coast of North...

  17. Gene structure, phylogeny and expression profile of the sucrose ...

    Indian Academy of Sciences (India)

    Gene structure, phylogeny and expression profile of the sucrose synthase gene family in .... 24, 701–713. Bate N. and Twell D. 1998 Functional architecture of a late pollen .... Manzara T. and Gruissem W. 1988 Organization and expression.

  18. Bayesian phylogeny analysis via stochastic approximation Monte Carlo

    KAUST Repository

    Cheon, Sooyoung; Liang, Faming

    2009-01-01

    in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method

  19. The phylogeny of the social wasp subfamily Polistinae: evidence from microsatellite flanking sequences, mitochondrial COI sequence, and morphological characters

    Directory of Open Access Journals (Sweden)

    Strassmann Joan E

    2004-03-01

    Full Text Available Abstract Background Social wasps in the subfamily Polistinae (Hymenoptera: Vespidae have been important in studies of the evolution of sociality, kin selection, and within colony conflicts of interest. These studies have generally been conducted within species, because a resolved phylogeny among species is lacking. We used nuclear DNA microsatellite flanking sequences, mitochondrial COI sequence, and morphological characters to generate a phylogeny for the Polistinae (Hymenoptera using 69 species. Results Our phylogeny is largely concordant with previous phylogenies at higher levels, and is more resolved at the species level. Our results support the monophyly of the New World subgenera of Polistini, while the Old World subgenera are a paraphyletic group. All genera for which we had more than one exemplar were supported as monophyletic except Polybia which is not resolved, and may be paraphyletic. Conclusion The combination of DNA sequences from flanks of microsatellite repeats with mtCOI sequences and morphological characters proved to be useful characters establishing relationships among the different subgenera and species of the Polistini. This is the first detailed hypothesis for the species of this important group.

  20. Phylogeny of the Acanthocephala based on morphological characters.

    Science.gov (United States)

    Monks, S

    2001-02-01

    Only four previous studies of relationships among acanthocephalans have included cladistic analyses, and knowledge of the phylogeny of the group has not kept pace with that of other taxa. The purpose of this study is to provide a more comprehensive analysis of the phylogenetic relationships among members of the phylum Acanthocephala using morphological characters. The most appropriate outgroups are those that share a common early cell-cleavage pattern (polar placement of centrioles), such as the Rotifera, rather than the Priapulida (meridional placement of centrioles) to provide character polarity based on common ancestry rather than a general similarity likely due to convergence of body shapes. The phylogeny of 22 species of the Acanthocephala was evaluated based on 138 binary and multistate characters derived from comparative morphological and ontogenetic studies. Three assumptions of cement gland structure were tested: (i) the plesiomorphic type of cement glands in the Rotifera, as the sister group, is undetermined; (ii) non-syncytial cement glands are plesiomorphic; and (iii) syncytial cement glands are plesiomorphic. The results were used to test an early move of Tegorhynchus pectinarius to Koronacantha and to evaluate the relationship between Tegorhynchus and Illiosentis. Analysis of the data-set for each of these assumptions of cement gland structure produced the same single most parsimonious tree topology. Using Assumptions i and ii for the cement glands, the trees were the same length (length = 404 steps, CI = 0.545, CIX = 0.517, HI = 0.455, HIX = 0.483, RI = 0.670, RC = 0.365). Using Assumption iii, the tree was three steps longer (length = 408 steps, CI = 0.539, CIX = 0.512, HI = 0.461, HIX = 0.488, RI = 0.665, RC = 0.359). The tree indicates that the Palaeacanthocephala and Eoacanthocephala both are monophyletic and are sister taxa. The members of the Archiacanthocephala are basal to the other two clades, but do not themselves form a clade. The results

  1. A comprehensive molecular phylogeny for the hornbills (Aves: Bucerotidae).

    Science.gov (United States)

    Gonzalez, Juan-Carlos T; Sheldon, Ben C; Collar, Nigel J; Tobias, Joseph A

    2013-05-01

    The hornbills comprise a group of morphologically and behaviorally distinct Palaeotropical bird species that feature prominently in studies of ecology and conservation biology. Although the monophyly of hornbills is well established, previous phylogenetic hypotheses were based solely on mtDNA and limited sampling of species diversity. We used parsimony, maximum likelihood and Bayesian methods to reconstruct relationships among all 61 extant hornbill species, based on nuclear and mtDNA gene sequences extracted largely from historical samples. The resulting phylogenetic trees closely match vocal variation across the family but conflict with current taxonomic treatments. In particular, they highlight a new arrangement for the six major clades of hornbills and reveal that three groups traditionally treated as genera (Tockus, Aceros, Penelopides) are non-monophyletic. In addition, two other genera (Anthracoceros, Ocyceros) were non-monophyletic in the mtDNA gene tree. Our findings resolve some longstanding problems in hornbill systematics, including the placement of 'Penelopides exharatus' (embedded in Aceros) and 'Tockus hartlaubi' (sister to Tropicranus albocristatus). We also confirm that an Asiatic lineage (Berenicornis) is sister to a trio of Afrotropical genera (Tropicranus [including 'Tockus hartlaubi'], Ceratogymna, Bycanistes). We present a summary phylogeny as a robust basis for further studies of hornbill ecology, evolution and historical biogeography. Copyright © 2013. Published by Elsevier Inc.

  2. Improving Phylogeny Reconstruction at the Strain Level Using Peptidome Datasets.

    Directory of Open Access Journals (Sweden)

    Aitor Blanco-Míguez

    2016-12-01

    Full Text Available Typical bacterial strain differentiation methods are often challenged by high genetic similarity between strains. To address this problem, we introduce a novel in silico peptide fingerprinting method based on conventional wet-lab protocols that enables the identification of potential strain-specific peptides. These can be further investigated using in vitro approaches, laying a foundation for the development of biomarker detection and application-specific methods. This novel method aims at reducing large amounts of comparative peptide data to binary matrices while maintaining a high phylogenetic resolution. The underlying case study concerns the Bacillus cereus group, namely the differentiation of Bacillus thuringiensis, Bacillus anthracis and Bacillus cereus strains. Results show that trees based on cytoplasmic and extracellular peptidomes are only marginally in conflict with those based on whole proteomes, as inferred by the established Genome-BLAST Distance Phylogeny (GBDP method. Hence, these results indicate that the two approaches can most likely be used complementarily even in other organismal groups. The obtained results confirm previous reports about the misclassification of many strains within the B. cereus group. Moreover, our method was able to separate the B. anthracis strains with high resolution, similarly to the GBDP results as benchmarked via Bayesian inference and both Maximum Likelihood and Maximum Parsimony. In addition to the presented phylogenomic applications, whole-peptide fingerprinting might also become a valuable complementary technique to digital DNA-DNA hybridization, notably for bacterial classification at the species and subspecies level in the future.

  3. Improving Phylogeny Reconstruction at the Strain Level Using Peptidome Datasets.

    Science.gov (United States)

    Blanco-Míguez, Aitor; Meier-Kolthoff, Jan P; Gutiérrez-Jácome, Alberto; Göker, Markus; Fdez-Riverola, Florentino; Sánchez, Borja; Lourenço, Anália

    2016-12-01

    Typical bacterial strain differentiation methods are often challenged by high genetic similarity between strains. To address this problem, we introduce a novel in silico peptide fingerprinting method based on conventional wet-lab protocols that enables the identification of potential strain-specific peptides. These can be further investigated using in vitro approaches, laying a foundation for the development of biomarker detection and application-specific methods. This novel method aims at reducing large amounts of comparative peptide data to binary matrices while maintaining a high phylogenetic resolution. The underlying case study concerns the Bacillus cereus group, namely the differentiation of Bacillus thuringiensis, Bacillus anthracis and Bacillus cereus strains. Results show that trees based on cytoplasmic and extracellular peptidomes are only marginally in conflict with those based on whole proteomes, as inferred by the established Genome-BLAST Distance Phylogeny (GBDP) method. Hence, these results indicate that the two approaches can most likely be used complementarily even in other organismal groups. The obtained results confirm previous reports about the misclassification of many strains within the B. cereus group. Moreover, our method was able to separate the B. anthracis strains with high resolution, similarly to the GBDP results as benchmarked via Bayesian inference and both Maximum Likelihood and Maximum Parsimony. In addition to the presented phylogenomic applications, whole-peptide fingerprinting might also become a valuable complementary technique to digital DNA-DNA hybridization, notably for bacterial classification at the species and subspecies level in the future.

  4. Arthropod phylogeny based on eight molecular loci and morphology

    Science.gov (United States)

    Giribet, G.; Edgecombe, G. D.; Wheeler, W. C.

    2001-01-01

    The interrelationships of major clades within the Arthropoda remain one of the most contentious issues in systematics, which has traditionally been the domain of morphologists. A growing body of DNA sequences and other types of molecular data has revitalized study of arthropod phylogeny and has inspired new considerations of character evolution. Novel hypotheses such as a crustacean-hexapod affinity were based on analyses of single or few genes and limited taxon sampling, but have received recent support from mitochondrial gene order, and eye and brain ultrastructure and neurogenesis. Here we assess relationships within Arthropoda based on a synthesis of all well sampled molecular loci together with a comprehensive data set of morphological, developmental, ultrastructural and gene-order characters. The molecular data include sequences of three nuclear ribosomal genes, three nuclear protein-coding genes, and two mitochondrial genes (one protein coding, one ribosomal). We devised new optimization procedures and constructed a parallel computer cluster with 256 central processing units to analyse molecular data on a scale not previously possible. The optimal 'total evidence' cladogram supports the crustacean-hexapod clade, recognizes pycnogonids as sister to other euarthropods, and indicates monophyly of Myriapoda and Mandibulata.

  5. Molecular phylogeny and morphological change in the Psittacula parakeets

    OpenAIRE

    Groombridge, Jim J.; Jones, Carl G.; Nichols, Richard A.; Carlton, Mark; Bruford, Michael W.

    2004-01-01

    We reconstruct a phylogeny of the African and Asian Psittacula parakeets using approximately 800 bp of mitochondrial cytochrome b sequence to examine their evolutionary relationships in reference to their head plumage and major morphological tail innovations. Our phylogeny identifies three groups, whose distinctiveness is also apparent from their possession of three different head plumage characters: a neck ring, a distinctive colouration of the head, and a 'moustache'-shaped pattern that ext...

  6. Effects of phylogeny, leaf traits, and the altitudinal distribution of host plants on herbivore assemblages on congeneric Acer species.

    Science.gov (United States)

    Nakadai, Ryosuke; Murakami, Masashi; Hirao, Toshihide

    2014-08-01

    Historical, niche-based, and stochastic processes have been proposed as the mechanisms that drive community assembly. In plant-herbivore systems, these processes can correspond to phylogeny, leaf traits, and the distribution of host plants, respectively. Although patterns of herbivore assemblages among plant species have been repeatedly examined, the effects of these factors among co-occurring congeneric host plant species have rarely been studied. Our aim was to reveal the process of community assembly for herbivores by investigating the effects of phylogeny, leaf traits, and the altitudinal distribution of closely related host plants of the genus Acer. We sampled leaf functional traits for 30 Acer species in Japan. Using a newly constructed phylogeny, we determined that three of the six measured leaf traits (leaf thickness, C/N ratio, and condensed tannin content) showed a phylogenetic signal. In a field study, we sampled herbivore communities on 14 Acer species within an elevation gradient and examined relationships between herbivore assemblages and host plants. We found that herbivore assemblages were significantly correlated with phylogeny, leaf traits, phylogenetic signals, and the altitudinal distribution of host plants. Our results indicate that the interaction between historical and current ecological processes shapes herbivore community assemblages.

  7. Phylogeny and Biogeography of Cyanobacteria and Their Produced Toxins

    Directory of Open Access Journals (Sweden)

    Agostinho Antunes

    2013-11-01

    Full Text Available Phylogeny is an evolutionary reconstruction of the past relationships of DNA or protein sequences and it can further be used as a tool to assess population structuring, genetic diversity and biogeographic patterns. In the microbial world, the concept that everything is everywhere is widely accepted. However, it is much debated whether microbes are easily dispersed globally or whether they, like many macro-organisms, have historical biogeographies. Biogeography can be defined as the science that documents the spatial and temporal distribution of a given taxa in the environment at local, regional and continental scales. Speciation, extinction and dispersal are proposed to explain the generation of biogeographic patterns. Cyanobacteria are a diverse group of microorganisms that inhabit a wide range of ecological niches and are well known for their toxic secondary metabolite production. Knowledge of the evolution and dispersal of these microorganisms is still limited, and further research to understand such topics is imperative. Here, we provide a compilation of the most relevant information regarding these issues to better understand the present state of the art as a platform for future studies, and we highlight examples of both phylogenetic and biogeographic studies in non-symbiotic cyanobacteria and cyanotoxins.

  8. Phylogeny and Biogeography of Cyanobacteria and Their Produced Toxins

    Science.gov (United States)

    Moreira, Cristiana; Vasconcelos, Vitor; Antunes, Agostinho

    2013-01-01

    Phylogeny is an evolutionary reconstruction of the past relationships of DNA or protein sequences and it can further be used as a tool to assess population structuring, genetic diversity and biogeographic patterns. In the microbial world, the concept that everything is everywhere is widely accepted. However, it is much debated whether microbes are easily dispersed globally or whether they, like many macro-organisms, have historical biogeographies. Biogeography can be defined as the science that documents the spatial and temporal distribution of a given taxa in the environment at local, regional and continental scales. Speciation, extinction and dispersal are proposed to explain the generation of biogeographic patterns. Cyanobacteria are a diverse group of microorganisms that inhabit a wide range of ecological niches and are well known for their toxic secondary metabolite production. Knowledge of the evolution and dispersal of these microorganisms is still limited, and further research to understand such topics is imperative. Here, we provide a compilation of the most relevant information regarding these issues to better understand the present state of the art as a platform for future studies, and we highlight examples of both phylogenetic and biogeographic studies in non-symbiotic cyanobacteria and cyanotoxins. PMID:24189276

  9. The rRNA evolution and procaryotic phylogeny

    Science.gov (United States)

    Fox, G. E.

    1986-01-01

    Studies of ribosomal RNA primary structure allow reconstruction of phylogenetic trees for prokaryotic organisms. Such studies reveal major dichotomy among the bacteria that separates them into eubacteria and archaebacteria. Both groupings are further segmented into several major divisions. The results obtained from 5S rRNA sequences are essentially the same as those obtained with the 16S rRNA data. In the case of Gram negative bacteria the ribosomal RNA sequencing results can also be directly compared with hybridization studies and cytochrome c sequencing studies. There is again excellent agreement among the several methods. It seems likely then that the overall picture of microbial phylogeny that is emerging from the RNA sequence studies is a good approximation of the true history of these organisms. The RNA data allow examination of the evolutionary process in a semi-quantitative way. The secondary structures of these RNAs are largely established. As a result it is possible to recognize examples of local structural evolution. Evolutionary pathways accounting for these events can be proposed and their probability can be assessed.

  10. Direct maximum parsimony phylogeny reconstruction from genotype data.

    Science.gov (United States)

    Sridhar, Srinath; Lam, Fumei; Blelloch, Guy E; Ravi, R; Schwartz, Russell

    2007-12-05

    Maximum parsimony phylogenetic tree reconstruction from genetic variation data is a fundamental problem in computational genetics with many practical applications in population genetics, whole genome analysis, and the search for genetic predictors of disease. Efficient methods are available for reconstruction of maximum parsimony trees from haplotype data, but such data are difficult to determine directly for autosomal DNA. Data more commonly is available in the form of genotypes, which consist of conflated combinations of pairs of haplotypes from homologous chromosomes. Currently, there are no general algorithms for the direct reconstruction of maximum parsimony phylogenies from genotype data. Hence phylogenetic applications for autosomal data must therefore rely on other methods for first computationally inferring haplotypes from genotypes. In this work, we develop the first practical method for computing maximum parsimony phylogenies directly from genotype data. We show that the standard practice of first inferring haplotypes from genotypes and then reconstructing a phylogeny on the haplotypes often substantially overestimates phylogeny size. As an immediate application, our method can be used to determine the minimum number of mutations required to explain a given set of observed genotypes. Phylogeny reconstruction directly from unphased data is computationally feasible for moderate-sized problem instances and can lead to substantially more accurate tree size inferences than the standard practice of treating phasing and phylogeny construction as two separate analysis stages. The difference between the approaches is particularly important for downstream applications that require a lower-bound on the number of mutations that the genetic region has undergone.

  11. Toward a Tree-of-Life for the boas and pythons: multilocus species-level phylogeny with unprecedented taxon sampling.

    Science.gov (United States)

    Graham Reynolds, R; Niemiller, Matthew L; Revell, Liam J

    2014-02-01

    Snakes in the families Boidae and Pythonidae constitute some of the most spectacular reptiles and comprise an enormous diversity of morphology, behavior, and ecology. While many species of boas and pythons are familiar, taxonomy and evolutionary relationships within these families remain contentious and fluid. A major effort in evolutionary and conservation biology is to assemble a comprehensive Tree-of-Life, or a macro-scale phylogenetic hypothesis, for all known life on Earth. No previously published study has produced a species-level molecular phylogeny for more than 61% of boa species or 65% of python species. Using both novel and previously published sequence data, we have produced a species-level phylogeny for 84.5% of boid species and 82.5% of pythonid species, contextualized within a larger phylogeny of henophidian snakes. We obtained new sequence data for three boid, one pythonid, and two tropidophiid taxa which have never previously been included in a molecular study, in addition to generating novel sequences for seven genes across an additional 12 taxa. We compiled an 11-gene dataset for 127 taxa, consisting of the mitochondrial genes CYTB, 12S, and 16S, and the nuclear genes bdnf, bmp2, c-mos, gpr35, rag1, ntf3, odc, and slc30a1, totaling up to 7561 base pairs per taxon. We analyzed this dataset using both maximum likelihood and Bayesian inference and recovered a well-supported phylogeny for these species. We found significant evidence of discordance between taxonomy and evolutionary relationships in the genera Tropidophis, Morelia, Liasis, and Leiopython, and we found support for elevating two previously suggested boid species. We suggest a revised taxonomy for the boas (13 genera, 58 species) and pythons (8 genera, 40 species), review relationships between our study and the many other molecular phylogenetic studies of henophidian snakes, and present a taxonomic database and alignment which may be easily used and built upon by other researchers

  12. A Framework for Studying Emotions Across Phylogeny

    Science.gov (United States)

    Anderson, David J.; Adolphs, Ralph

    2014-01-01

    Since the 19th century, there has been disagreement over the fundamental question of whether “emotions” are cause or consequence of their associated behaviors. This question of causation is most directly addressable in genetically tractable model organisms, including invertebrates such as Drosophila. Yet there is ongoing debate about whether such species even have “emotions,” since emotions are typically defined with reference to human behavior and neuroanatomy. Here we argue that emotional behaviors are a class of behaviors that express internal emotion states. These emotion states exhibit certain general functional and adaptive properties that apply across any specific human emotions like fear or anger, as well as across phylogeny. These general properties, which can be thought of as “emotion primitives”, can be modeled and studied in evolutionarily distant model organisms, allowing functional dissection of their mechanistic bases, and tests of their causal relationships to behavior. More generally, our approach aims not only at better integration of such studies in model organisms with studies of emotion in humans, but also suggests a revision of how emotion should be operationalized within psychology and psychiatry. PMID:24679535

  13. Phylogeny and evolutionary history of the silkworm.

    Science.gov (United States)

    Sun, Wei; Yu, Hongsong; Shen, Yihong; Banno, Yutaka; Xiang, Zhonghuai; Zhang, Ze

    2012-06-01

    The silkworm, Bombyx mori, played an important role in the old Silk Road that connected ancient Asia and Europe. However, to date, there have been few studies of the origins and domestication of this species using molecular methods. In this study, DNA sequences of mitochondrial and nuclear loci were used to infer the phylogeny and evolutionary history of the domesticated silkworm and its relatives. All of the phylogenetic analyses indicated a close relationship between the domesticated silkworm and the Chinese wild silkworm. Domestication was estimated to have occurred about 4100 years ago (ya), and the radiation of the different geographic strains of B. mori about 2000 ya. The Chinese wild silkworm and the Japanese wild silkworm split about 23600 ya. These estimates are in good agreement with the fossil evidence and historical records. In addition, we show that the domesticated silkworm experienced a population expansion around 1000 ya. The divergence times and the population dynamics of silkworms presented in this study will be useful for studies of lepidopteran phylogenetics, in the genetic analysis of domestic animals, and for understanding the spread of human civilizations.

  14. A transcriptome approach to ecdysozoan phylogeny.

    Science.gov (United States)

    Borner, Janus; Rehm, Peter; Schill, Ralph O; Ebersberger, Ingo; Burmester, Thorsten

    2014-11-01

    The monophyly of Ecdysozoa, which comprise molting phyla, has received strong support from several lines of evidence. However, the internal relationships of Ecdysozoa are still contended. We generated expressed sequence tags from a priapulid (penis worm), a kinorhynch (mud dragon), a tardigrade (water bear) and five chelicerate taxa by 454 transcriptome sequencing. A multigene alignment was assembled from 63 taxa, which comprised after matrix optimization 24,249 amino acid positions with high data density (2.6% gaps, 19.1% missing data). Phylogenetic analyses employing various models support the monophyly of Ecdysozoa. A clade combining Priapulida and Kinorhyncha (i.e. Scalidophora) was recovered as the earliest branch among Ecdysozoa. We conclude that Cycloneuralia, a taxon erected to combine Priapulida, Kinorhyncha and Nematoda (and others), are paraphyletic. Rather Arthropoda (including Onychophora) are allied with Nematoda and Tardigrada. Within Arthropoda, we found strong support for most clades, including monophyletic Mandibulata and Pancrustacea. The phylogeny within the Euchelicerata remained largely unresolved. There is conflicting evidence on the position of tardigrades: While Bayesian and maximum likelihood analyses of only slowly evolving genes recovered Tardigrada as a sister group to Arthropoda, analyses of the full data set, and of subsets containing genes evolving at fast and intermediate rates identified a clade of Tardigrada and Nematoda. Notably, the latter topology is also supported by the analyses of indel patterns. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Blastocystis phylogeny among various isolates from humans to insects.

    Science.gov (United States)

    Yoshikawa, Hisao; Koyama, Yukiko; Tsuchiya, Erika; Takami, Kazutoshi

    2016-12-01

    Blastocystis is a common unicellular eukaryotic parasite found not only in humans, but also in various kinds of animal species worldwide. Since Blastocystis isolates are morphologically indistinguishable, many molecular biological approaches have been applied to classify these isolates. The complete or partial sequences of the small subunit rRNA gene (SSU rDNA) are mainly used for comparisons and phylogenetic analyses among Blastocystis isolates. However, various lengths of the partial SSU rDNA sequence have been used for phylogenetic inference among genetically different isolates. Based on the complete SSU rDNA sequences, consensus terminology of nine subtypes (STs) of Blastocystis sp. that were supported by phylogenetically monophyletic nine clades was proposed in 2007. Thereafter, eight additional kinds of STs comprising non-human mammalian Blastocystis isolates have been reported based on the phylogeny of SSU rDNA sequences, while STs 11 and 12 were only proposed on the base of partial sequences. Although many sequence data from mammalian and avian Blastocystis are registered in GenBank, only limited data on SSU rDNA are available for poikilotherm-derived Blastocystis isolates. Therefore, the phylogenetic positions of the reptilian/amphibian Blastocystis clades are unstable. The phylogenetic inference of various STs comprising mammalian and/or avian Blastocystis isolates was verified herein based on comparisons between partial and complete SSU rDNA sequences, and the phylogenetic positions of reptilian and amphibian Blastocystis isolates were also investigated using 14 new Blastocystis isolates from reptiles with all known isolates from other reptilians, amphibians, and insects registered in GenBank. Copyright © 2016. Published by Elsevier Ireland Ltd.

  16. The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits

    Science.gov (United States)

    C.L. Schoch; G.-H. Sung; F. Lopez-Giraldez

    2009-01-01

    We present a six-gene, 420-species maximum-likelihood phylogeny of Ascomycota, the largest phylum of fungi. This analysis is the most taxonomically complete to date with species sampled from all 15 currently circumscribed classes. A number of superclass-level nodes that have previously evaded resolution and were unnamed in classifications of the fungi are resolved for...

  17. Phylogeny and Divergence Times of Lemurs Inferred with Recent and Ancient Fossils in the Tree.

    Science.gov (United States)

    Herrera, James P; Dávalos, Liliana M

    2016-09-01

    Paleontological and neontological systematics seek to answer evolutionary questions with different data sets. Phylogenies inferred for combined extant and extinct taxa provide novel insights into the evolutionary history of life. Primates have an extensive, diverse fossil record and molecular data for living and extinct taxa are rapidly becoming available. We used two models to infer the phylogeny and divergence times for living and fossil primates, the tip-dating (TD) and fossilized birth-death process (FBD). We collected new morphological data, especially on the living and extinct endemic lemurs of Madagascar. We combined the morphological data with published DNA sequences to infer near-complete (88% of lemurs) time-calibrated phylogenies. The results suggest that primates originated around the Cretaceous-Tertiary boundary, slightly earlier than indicated by the fossil record and later than previously inferred from molecular data alone. We infer novel relationships among extinct lemurs, and strong support for relationships that were previously unresolved. Dates inferred with TD were significantly older than those inferred with FBD, most likely related to an assumption of a uniform branching process in the TD compared with a birth-death process assumed in the FBD. This is the first study to combine morphological and DNA sequence data from extinct and extant primates to infer evolutionary relationships and divergence times, and our results shed new light on the tempo of lemur evolution and the efficacy of combined phylogenetic analyses. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. A new phylogeny and environmental DNA insight into paramyxids: an increasingly important but enigmatic clade of protistan parasites of marine invertebrates.

    Science.gov (United States)

    Ward, Georgia M; Bennett, Martyn; Bateman, Kelly; Stentiford, Grant D; Kerr, Rose; Feist, Stephen W; Williams, Suzanne T; Berney, Cedric; Bass, David

    2016-09-01

    Paramyxida is an order of rhizarian protists that parasitise marine molluscs, annelids and crustaceans. They include notifiable pathogens (Marteilia spp.) of bivalves and other taxa of economic significance for shellfish production. The diversity of paramyxids is poorly known, particularly outside of commercially important hosts, and their phylogenetic position is unclear due to their extremely divergent 18S rDNA sequences. However, novel paramyxean lineages are increasingly being detected in a wide range of invertebrate hosts, and interest in the group is growing, marked by the first 'Paramyxean Working Group' Meeting held in Spain in February 2015. We review the diversity, host affiliations, and geographical ranges of all known paramyxids, present a comprehensive phylogeny of the order and clarify its taxonomy. Our phylogenetic analyses confirm the separate status of four genera: Paramarteilia, Marteilioides, Paramyxa and Marteilia. Further, as including M. granula in Marteilia would make the genus paraphyletic we suggest transferring this species to a new genus, Eomarteilia. We present sequence data for Paramyxa nephtys comb. n., a parasite of polychaete worms, providing morphological data for a clade of otherwise environmental sequences, sister to Marteilioides. Light and electron microscopy analyses show strong similarities with both Paramyxa and Paramyxoides, and we further discuss the validity of those two genera. We provide histological and electron microscopic data for Paramarteilia orchestiae, the type species of that genus originally described from the amphipod Orchestia; in situ hybridisation shows that Paramarteilia also infects crab species. We present, to our knowledge, the first known results of a paramyxid-specific environmental DNA survey of environmental (filtered water, sediment, etc.) and organismally-derived samples, revealing new lineages and showing that paramyxids are associated with a wider range of hosts and habitat types than previously

  19. Phylogeny of Cirsium spp. in North America: Host Specificity Does Not Follow Phylogeny

    Directory of Open Access Journals (Sweden)

    Tracey A. Bodo Slotta

    2012-10-01

    Full Text Available Weedy invasive Cirsium spp. are widespread in temperate regions of North America and some of their biological control agents have attacked native Cirsium spp. A phylogenetic tree was developed from DNA sequences for the internal transcribed spacer and external transcribed spacer regions from native and non-native Great Plains Cirsium spp. and other thistles to determine if host specificity follows phylogeny. The monophyly of Cirsium spp. and Carduus within the tribe Cardinae was confirmed with native North American and European lineages of the Cirsium spp. examined. We did not detect interspecific hybridization between the introduced invasive and the native North American Cirsium spp. Selected host-biological control agent interactions were mapped onto the phylogenic tree derived by maximum likelihood analysis to examine the co-occurrence of known hosts with biological control agents. Within Cirsium-Cardueae, the insect biological control agents do not associate with host phylogenetic lines. Thus, more comprehensive testing of species in host-specificity trials, rather than relying on a single representative of a given clade may be necessary; because the assumption that host-specificity follows phylogeny does not necessarily hold. Since the assumption does not always hold, it will also be important to evaluate ecological factors to provide better cues for host specificity.

  20. Phylogeny and host-plant relationships of the Australian Myrtaceae leafmining moth genus Pectinivalva (Lepidoptera, Nepticulidae), with new subgenera and species

    NARCIS (Netherlands)

    Hoare, R.J.B.; Nieukerken, van E.J.

    2013-01-01

    The phylogeny of the mainly Australian nepticulid genus Pectinivalva Scoble, 1983 is investigated on the basis of morphology, and a division into three monophyletic subgenera is proposed on the basis of these results. These subgenera (Pectinivalva, Casanovula Hoare, subgen. n. and Menurella Hoare,

  1. Evolution of electric communication signals in the South American ghost knifefishes (Gymnotiformes: Apteronotidae): A phylogenetic comparative study using a sequence-based phylogeny.

    Science.gov (United States)

    Smith, Adam R; Proffitt, Melissa R; Ho, Winnie W; Mullaney, Claire B; Maldonado-Ocampo, Javier A; Lovejoy, Nathan R; Alves-Gomes, José A; Smith, G Troy

    2016-10-01

    The electric communication signals of weakly electric ghost knifefishes (Gymnotiformes: Apteronotidae) provide a valuable model system for understanding the evolution and physiology of behavior. Apteronotids produce continuous wave-type electric organ discharges (EODs) that are used for electrolocation and communication. The frequency and waveform of EODs, as well as the structure of transient EOD modulations (chirps), vary substantially across species. Understanding how these signals have evolved, however, has been hampered by the lack of a well-supported phylogeny for this family. We constructed a molecular phylogeny for the Apteronotidae by using sequence data from three genes (cytochrome c oxidase subunit 1, recombination activating gene 2, and cytochrome oxidase B) in 32 species representing 13 apteronotid genera. This phylogeny and an extensive database of apteronotid signals allowed us to examine signal evolution by using ancestral state reconstruction (ASR) and phylogenetic generalized least squares (PGLS) models. Our molecular phylogeny largely agrees with another recent sequence-based phylogeny and identified five robust apteronotid clades: (i) Sternarchorhamphus+Orthosternarchus, (ii) Adontosternarchus, (iii) Apteronotus+Parapteronotus, (iv) Sternarchorhynchus, and (v) a large clade including Porotergus, 'Apteronotus', Compsaraia, Sternarchogiton, Sternarchella, and Magosternarchus. We analyzed novel chirp recordings from two apteronotid species (Orthosternarchus tamandua and Sternarchorhynchus mormyrus), and combined data from these species with that from previously recorded species in our phylogenetic analyses. Some signal parameters in O. tamandua were plesiomorphic (e.g., low frequency EODs and chirps with little frequency modulation that nevertheless interrupt the EOD), suggesting that ultra-high frequency EODs and "big" chirps evolved after apteronotids diverged from other gymnotiforms. In contrast to previous studies, our PGLS analyses using the

  2. Molecular phylogeny of Pompilinae (Hymenoptera: Pompilidae): Evidence for rapid diversification and host shifts in spider wasps.

    Science.gov (United States)

    Rodriguez, Juanita; Pitts, James P; Florez, Jaime A; Bond, Jason E; von Dohlen, Carol D

    2016-01-01

    Pompilinae is one of the largest subfamilies of spider wasps (Pompilidae). Most pompilines are generalist spider predators at the family level, but some taxa exhibit ecological specificity (i.e., to spider-host guild). Here we present the first molecular phylogenetic analysis of Pompilinae, toward the aim of evaluating the monophyly of tribes and genera. We further test whether changes in the rate of diversification are associated with host-guild shifts. Molecular data were collected from five nuclear loci (28S, EF1-F2, LWRh, Wg, Pol2) for 76 taxa in 39 genera. Data were analyzed using maximum likelihood (ML) and Bayesian inference (BI). The phylogenetic results were compared with previous hypotheses of subfamilial and tribal classification, as well as generic relationships in the subfamily. The classification of Pompilus and Agenioideus is also discussed. A Bayesian relaxed molecular clock analysis was used to examine divergence times. Diversification rate-shift tests accounted for taxon-sampling bias using ML and BI approaches. Ancestral host family and host guild were reconstructed using MP and ML methods. Ancestral host guild for all Pompilinae, for the ancestor at the node where a diversification rate-shift was detected, and two more nodes back in time was inferred using BI. In the resulting phylogenies, Aporini was the only previously proposed monophyletic tribe. Several genera (e.g., Pompilus, Microphadnus and Schistonyx) are also not monophyletic. Dating analyses produced a well-supported chronogram consistent with topologies from BI and ML results. The BI ancestral host-use reconstruction inferred the use of spiders belonging to the guild "other hunters" (frequenting the ground and vegetation) as the ancestral state for Pompilinae. This guild had the highest probability for the ML reconstruction and was equivocal for the MP reconstruction; various switching events to other guilds occurred throughout the evolution of the group. The diversification of

  3. Phylogeny of culturable cyanobacteria from Brazilian mangroves.

    Science.gov (United States)

    Silva, Caroline Souza Pamplona; Genuário, Diego Bonaldo; Vaz, Marcelo Gomes Marçal Vieira; Fiore, Marli Fátima

    2014-03-01

    The cyanobacterial community from Brazilian mangrove ecosystems was examined using a culture-dependent method. Fifty cyanobacterial strains were isolated from soil, water and periphytic samples collected from Cardoso Island and Bertioga mangroves using specific cyanobacterial culture media. Unicellular, homocytous and heterocytous morphotypes were recovered, representing five orders, seven families and eight genera (Synechococcus, Cyanobium, Cyanobacterium, Chlorogloea, Leptolyngbya, Phormidium, Nostoc and Microchaete). All of these novel mangrove strains had their 16S rRNA gene sequenced and BLAST analysis revealed sequence identities ranging from 92.5 to 99.7% when they were compared with other strains available in GenBank. The results showed a high variability of the 16S rRNA gene sequences among the genotypes that was not associated with the morphologies observed. Phylogenetic analyses showed several branches formed exclusively by some of these novel 16S rRNA gene sequences. BLAST and phylogeny analyses allowed for the identification of Nodosilinea and Oxynema strains, genera already known to exhibit poor morphological diacritic traits. In addition, several Nostoc and Leptolyngbya morphotypes of the mangrove strains may represent new generic entities, as they were distantly affiliated with true genera clades. The presence of non-ribosomal peptide synthetase, polyketide synthase, microcystin and saxitoxin genes were detected in 20.5%, 100%, 37.5% and 33.3%, respectively, of the 44 tested isolates. A total of 134 organic extracts obtained from 44 strains were tested against microorganisms, and 26% of the extracts showed some antimicrobial activity. This is the first polyphasic study of cultured cyanobacteria from Brazilian mangrove ecosystems using morphological, genetic and biological approaches. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. The reticulating phylogeny of island biogeography theory.

    Science.gov (United States)

    Lomolino, Mark V; Brown, James H

    2009-12-01

    Biogeographers study all patterns in the geographic variation of life, from the spatial variation in genetic and physiological characteristics of cells and individuals, to the diversity and dynamics of biological communities among continental biotas or across oceanic archipelagoes. The field of island biogeography, in particular, has provided some genuinely transformative insights for the biological sciences, especially ecology and evolutionary biology. Our purpose here is to review the historical development of island biogeography theory during the 20th century by identifying the common threads that run through four sets of contributions made during this period, including those by Eugene Gordon Munroe (1948, 1953), Edward O. Wilson (1959, 1961), Frank W. Preston (1962a,b), and the seminal collaborations between Wilson and Robert H. MacArthur (1963, 1967), which revolutionized the field and served as its paradigm for nearly four decades. This epistemological account not only reviews the intriguing history of island theory, but it also includes fundamental lessons for advancing science through transformative integrations. Indeed, as is likely the case with many disciplines, island theory advanced not as a simple accumulation of facts and an orderly succession of theories and paradigms, but rather in fits and starts through a reticulating phylogeny of ideas and alternating periods of specialization and reintegration. We conclude this review with a summary of the salient features of this scientific revolution in the contest of Kuhn's structure, which strongly influenced theoretical advances during this period, and we then describe some of the fundamental assumptions and tenets of an emerging reintegration of island biogeography theory.

  5. Inference of Large Phylogenies Using Neighbour-Joining

    DEFF Research Database (Denmark)

    Simonsen, Martin; Mailund, Thomas; Pedersen, Christian Nørgaard Storm

    2011-01-01

    The neighbour-joining method is a widely used method for phylogenetic reconstruction which scales to thousands of taxa. However, advances in sequencing technology have made data sets with more than 10,000 related taxa widely available. Inference of such large phylogenies takes hours or days using...... the Neighbour-Joining method on a normal desktop computer because of the O(n^3) running time. RapidNJ is a search heuristic which reduce the running time of the Neighbour-Joining method significantly but at the cost of an increased memory consumption making inference of large phylogenies infeasible. We present...... two extensions for RapidNJ which reduce the memory requirements and \\makebox{allows} phylogenies with more than 50,000 taxa to be inferred efficiently on a desktop computer. Furthermore, an improved version of the search heuristic is presented which reduces the running time of RapidNJ on many data...

  6. Bayesian phylogeny analysis via stochastic approximation Monte Carlo

    KAUST Repository

    Cheon, Sooyoung

    2009-11-01

    Monte Carlo methods have received much attention in the recent literature of phylogeny analysis. However, the conventional Markov chain Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, tend to get trapped in a local mode in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method is compared with two popular Bayesian phylogeny software, BAMBE and MrBayes, on simulated and real datasets. The numerical results indicate that our method outperforms BAMBE and MrBayes. Among the three methods, SAMC produces the consensus trees which have the highest similarity to the true trees, and the model parameter estimates which have the smallest mean square errors, but costs the least CPU time. © 2009 Elsevier Inc. All rights reserved.

  7. DNA barcoding and phylogeny of Calidris and Tringa (Aves: Scolopacidae).

    Science.gov (United States)

    Huang, Zuhao; Tu, Feiyun

    2017-07-01

    The avian genera Calidris and Tringa are the largest of the widespread family of Scolopacidae. The phylogeny of members of the two genera is still a matter of controversial. Mitochondrial cytochrome c oxidase subunit I (COI) can serve as a fast and accurate marker for the identification and phylogeny of animal species. In this study, we analyzed the COI barcodes of thirty-one species of the two genera. All the species had distinct COI sequences. Two hundred and twenty-one variable sites were identified. Kimura two-parameter distances were calculated between barcodes. Neighbor-joining and maximum likelihood methods were used to construct phylogenetic trees. All the species could be discriminated by their distinct clades in the phylogenetic trees. The phylogenetic trees grouped all the species of Calidris and Tringa into different monophyletic clade, respectively. COI data showed a well-supported phylogeny for Calidris and Tringa species.

  8. Previously unknown species of Aspergillus.

    Science.gov (United States)

    Gautier, M; Normand, A-C; Ranque, S

    2016-08-01

    The use of multi-locus DNA sequence analysis has led to the description of previously unknown 'cryptic' Aspergillus species, whereas classical morphology-based identification of Aspergillus remains limited to the section or species-complex level. The current literature highlights two main features concerning these 'cryptic' Aspergillus species. First, the prevalence of such species in clinical samples is relatively high compared with emergent filamentous fungal taxa such as Mucorales, Scedosporium or Fusarium. Second, it is clearly important to identify these species in the clinical laboratory because of the high frequency of antifungal drug-resistant isolates of such Aspergillus species. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been shown to enable the identification of filamentous fungi with an accuracy similar to that of DNA sequence-based methods. As MALDI-TOF MS is well suited to the routine clinical laboratory workflow, it facilitates the identification of these 'cryptic' Aspergillus species at the routine mycology bench. The rapid establishment of enhanced filamentous fungi identification facilities will lead to a better understanding of the epidemiology and clinical importance of these emerging Aspergillus species. Based on routine MALDI-TOF MS-based identification results, we provide original insights into the key interpretation issues of a positive Aspergillus culture from a clinical sample. Which ubiquitous species that are frequently isolated from air samples are rarely involved in human invasive disease? Can both the species and the type of biological sample indicate Aspergillus carriage, colonization or infection in a patient? Highly accurate routine filamentous fungi identification is central to enhance the understanding of these previously unknown Aspergillus species, with a vital impact on further improved patient care. Copyright © 2016 European Society of Clinical Microbiology and

  9. Direct maximum parsimony phylogeny reconstruction from genotype data

    Directory of Open Access Journals (Sweden)

    Ravi R

    2007-12-01

    Full Text Available Abstract Background Maximum parsimony phylogenetic tree reconstruction from genetic variation data is a fundamental problem in computational genetics with many practical applications in population genetics, whole genome analysis, and the search for genetic predictors of disease. Efficient methods are available for reconstruction of maximum parsimony trees from haplotype data, but such data are difficult to determine directly for autosomal DNA. Data more commonly is available in the form of genotypes, which consist of conflated combinations of pairs of haplotypes from homologous chromosomes. Currently, there are no general algorithms for the direct reconstruction of maximum parsimony phylogenies from genotype data. Hence phylogenetic applications for autosomal data must therefore rely on other methods for first computationally inferring haplotypes from genotypes. Results In this work, we develop the first practical method for computing maximum parsimony phylogenies directly from genotype data. We show that the standard practice of first inferring haplotypes from genotypes and then reconstructing a phylogeny on the haplotypes often substantially overestimates phylogeny size. As an immediate application, our method can be used to determine the minimum number of mutations required to explain a given set of observed genotypes. Conclusion Phylogeny reconstruction directly from unphased data is computationally feasible for moderate-sized problem instances and can lead to substantially more accurate tree size inferences than the standard practice of treating phasing and phylogeny construction as two separate analysis stages. The difference between the approaches is particularly important for downstream applications that require a lower-bound on the number of mutations that the genetic region has undergone.

  10. Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae.

    Science.gov (United States)

    Chen, Ling-Yun; Chen, Jin-Ming; Gituru, Robert Wahiti; Wang, Qing-Feng

    2012-03-10

    Hydrocharitaceae is a fully aquatic monocot family, consists of 18 genera with approximately 120 species. The family includes both fresh and marine aquatics and exhibits great diversity in form and habit including annual and perennial life histories; submersed, partially submersed and floating leaf habits and linear to orbicular leaf shapes. The family has a cosmopolitan distribution and is well represented in the Tertiary fossil record in Europe. At present, the historical biogeography of the family is not well understood and the generic relationships remain controversial. In this study we investigated the phylogeny and biogeography of Hydrocharitaceae by integrating fossils and DNA sequences from eight genes. We also conducted ancestral state reconstruction for three morphological characters. Phylogenetic analyses produced a phylogeny with most branches strongly supported by bootstrap values greater than 95 and Bayesian posterior probability values of 1.0. Stratiotes is the first diverging lineage with the remaining genera in two clades, one clade consists of Lagarosiphon, Ottelia, Blyxa, Apalanthe, Elodea and Egeria; and the other consists of Hydrocharis-Limnobium, Thalassia, Enhalus, Halophila, Najas, Hydrilla, Vallisneria, Nechamandra and Maidenia. Biogeographic analyses (DIVA, Mesquite) and divergence time estimates (BEAST) resolved the most recent common ancestor of Hydrocharitaceae as being in Asia during the Late Cretaceous and Palaeocene (54.7-72.6 Ma). Dispersals (including long-distance dispersal and migrations through Tethys seaway and land bridges) probably played major roles in the intercontinental distribution of this family. Ancestral state reconstruction suggested that in Hydrocharitaceae evolution of dioecy is bidirectional, viz., from dioecy to hermaphroditism, and from hermaphroditism to dioecy, and that the aerial-submerged leaf habit and short-linear leaf shape are the ancestral states. Our study has shed light on the previously controversial

  11. A multilocus molecular phylogeny of combtooth blennies (Percomorpha: Blennioidei: Blenniidae): Multiple invasions of intertidal habitats

    KAUST Repository

    Hundt, Peter J.

    2014-01-01

    The combtooth blennies (f. Blenniidae) is a diverse family of primarily marine fishes with approximately 387 species that inhabit subtidal, intertidal, supralittoral habitats in tropical and warm temperate regions throughout the world. The Blenniidae has typically been divided into six groups based on morphological characters: Blenniini, Nemophini, Omobranchini, Phenablenniini, Parablenniini, and Salariini. There is, however, considerable debate over the validity of these groups and their relationships. Since little is known about the relationships in this group, other aspects of their evolutionary history, such as habitat evolution and remain unexplored. Herein, we use Bayesian and maximum likelihood analyses of four nuclear loci (ENC1, myh6, ptr, and tbr1) from 102 species, representing 41 genera, to resolve the phylogeny of the Blenniidae, determine the validity of the previously recognized groupings, and explore the evolution of habitat association using ancestral state reconstruction. Bayesian and maximum likelihood analyses of the resulting 3100. bp of DNA sequence produced nearly identical topologies, and identified many well-supported clades. Of these clades, Nemophini was the only traditionally recognized group strongly supported as monophyletic. This highly resolved and thoroughly sampled blenniid phylogeny provides strong evidence that the traditional rank-based classification does not adequately delimit monophyletic groups with the Blenniidae. This phylogeny redefines the taxonomy of the group and supports the use of 13 unranked clades for the classification of blenniids. Ancestral state reconstructions identified four independent invasions of intertidal habitats within the Blenniidae, and subsequent invasions into supralittoral and freshwater habitats from these groups. The independent invasions of intertidal habitats are likely to have played an important role in the evolutionary history of blennies. © 2013 Elsevier Inc.

  12. Phylogenomic Resolution of the Phylogeny of Laurasiatherian Mammals: Exploring Phylogenetic Signals within Coding and Noncoding Sequences.

    Science.gov (United States)

    Chen, Meng-Yun; Liang, Dan; Zhang, Peng

    2017-08-01

    The interordinal relationships of Laurasiatherian mammals are currently one of the most controversial questions in mammalian phylogenetics. Previous studies mainly relied on coding sequences (CDS) and seldom used noncoding sequences. Here, by data mining public genome data, we compiled an intron data set of 3,638 genes (all introns from a protein-coding gene are considered as a gene) (19,055,073 bp) and a CDS data set of 10,259 genes (20,994,285 bp), covering all major lineages of Laurasiatheria (except Pholidota). We found that the intron data contained stronger and more congruent phylogenetic signals than the CDS data. In agreement with this observation, concatenation and species-tree analyses of the intron data set yielded well-resolved and identical phylogenies, whereas the CDS data set produced weakly supported and incongruent results. Further analyses showed that the phylogeny inferred from the intron data is highly robust to data subsampling and change in outgroup, but the CDS data produced unstable results under the same conditions. Interestingly, gene tree statistical results showed that the most frequently observed gene tree topologies for the CDS and intron data are identical, suggesting that the major phylogenetic signal within the CDS data is actually congruent with that within the intron data. Our final result of Laurasiatheria phylogeny is (Eulipotyphla,((Chiroptera, Perissodactyla),(Carnivora, Cetartiodactyla))), favoring a close relationship between Chiroptera and Perissodactyla. Our study 1) provides a well-supported phylogenetic framework for Laurasiatheria, representing a step towards ending the long-standing "hard" polytomy and 2) argues that intron within genome data is a promising data resource for resolving rapid radiation events across the tree of life. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Molecular phylogeny of Anopheles hyrcanus group (Diptera: Culicidae) based on mtDNA COI.

    Science.gov (United States)

    Fang, Yuan; Shi, Wen-Qi; Zhang, Yi

    2017-05-08

    The Anopheles hyrcanus group, which includes at least 25 species, is widely distributed in the Oriental and Palearctic regions. Some group members have been incriminated as vectors of malaria and other mosquito-borne diseases. It is difficult to identify Hyrcanus Group members by morphological features. Thus, molecular phylogeny has been proposed as an important complementary method to traditional morphological taxonomy. Based on the GenBank database and our original study data, we used 466 mitochondrial DNA COI sequences belonging to 18 species to reconstruct the molecular phylogeny of the Hyrcanus Group across its worldwide geographic range. The results are as follows. 1) The average conspecific K2P divergence was 0.008 (range 0.002-0.017), whereas sequence divergence between congroup species averaged 0.064 (range 0.026-0.108). 2) The topology of COI tree of the Hyrcanus Group was generally consistent with classical morphological taxonomy in terms of species classification, but disagreed in subgroup division. In the COI tree, the group was divided into at least three main clusters. The first cluster contained An. nimpe; the second was composed of the Nigerrimus Subgroup and An. argyropus; and the third cluster was comprised of the Lesteri Subgroup and other unassociated species. 3) Phylogenetic analysis of COI indicated that ancient hybridizations probably occurred among the three closely related species, An. sinensis, An. belenrae, and An. kleini. 4) The results supported An. paraliae as a probable synonym of An. lesteri, and it was possible that An. pseudopictus and An. hyrcanus were the same species, as evident from their extremely low interspecific genetic divergence (0.020 and 0.007, respectively) and their phylogenetic positions. In summary, we reconstructed the molecular phylogeny and analysed genetic divergence of the Hyrcanus Group using mitochondrial COI sequences. Our results suggest that in the future of malaria surveillance, we should not only pay

  14. Data partitions, Bayesian analysis and phylogeny of the zygomycetous fungal family Mortierellaceae, inferred from nuclear ribosomal DNA sequences.

    Directory of Open Access Journals (Sweden)

    Tamás Petkovits

    Full Text Available Although the fungal order Mortierellales constitutes one of the largest classical groups of Zygomycota, its phylogeny is poorly understood and no modern taxonomic revision is currently available. In the present study, 90 type and reference strains were used to infer a comprehensive phylogeny of Mortierellales from the sequence data of the complete ITS region and the LSU and SSU genes with a special attention to the monophyly of the genus Mortierella. Out of 15 alternative partitioning strategies compared on the basis of Bayes factors, the one with the highest number of partitions was found optimal (with mixture models yielding the best likelihood and tree length values, implying a higher complexity of evolutionary patterns in the ribosomal genes than generally recognized. Modeling the ITS1, 5.8S, and ITS2, loci separately improved model fit significantly as compared to treating all as one and the same partition. Further, within-partition mixture models suggests that not only the SSU, LSU and ITS regions evolve under qualitatively and/or quantitatively different constraints, but that significant heterogeneity can be found within these loci also. The phylogenetic analysis indicated that the genus Mortierella is paraphyletic with respect to the genera Dissophora, Gamsiella and Lobosporangium and the resulting phylogeny contradict previous, morphology-based sectional classification of Mortierella. Based on tree structure and phenotypic traits, we recognize 12 major clades, for which we attempt to summarize phenotypic similarities. M. longicollis is closely related to the outgroup taxon Rhizopus oryzae, suggesting that it belongs to the Mucorales. Our results demonstrate that traits used in previous classifications of the Mortierellales are highly homoplastic and that the Mortierellales is in a need of a reclassification, where new, phylogenetically informative phenotypic traits should be identified, with molecular phylogenies playing a decisive role.

  15. Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data

    Science.gov (United States)

    Giribet, Gonzalo; Edgecombe, Gregory D.; Wheeler, Ward C.; Babbitt, Courtney

    2002-01-01

    The ordinal level phylogeny of the Arachnida and the suprafamilial level phylogeny of the Opiliones were studied on the basis of a combined analysis of 253 morphological characters, the complete sequence of the 18S rRNA gene, and the D3 region of the 28S rRNA gene. Molecular data were collected for 63 terminal taxa. Morphological data were collected for 35 exemplar taxa of Opiliones, but groundplans were applied to some of the remaining chelicerate groups. Six extinct terminals, including Paleozoic scorpions, are scored for morphological characters. The data were analyzed using strict parsimony for the morphological data matrix and via direct optimization for the molecular and combined data matrices. A sensitivity analysis of 15 parameter sets was undertaken, and character congruence was used as the optimality criterion to choose among competing hypotheses. The results obtained are unstable for the high-level chelicerate relationships (except for Tetrapulmonata, Pedipalpi, and Camarostomata), and the sister group of the Opiliones is not clearly established, although the monophyly of Dromopoda is supported under many parameter sets. However, the internal phylogeny of the Opiliones is robust to parameter choice and allows the discarding of previous hypotheses of opilionid phylogeny such as the "Cyphopalpatores" or "Palpatores." The topology obtained is congruent with the previous hypothesis of "Palpatores" paraphyly as follows: (Cyphophthalmi (Eupnoi (Dyspnoi + Laniatores))). Resolution within the Eupnoi, Dyspnoi, and Laniatores (the latter two united as Dyspnolaniatores nov.) is also stable to the superfamily level, permitting a new classification system for the Opiliones. c2002 The Willi Hennig Society.

  16. Morphology and phylogeny of Triadinium polyedricum (Pouchet) Dodge (Dinophyceae) from Korean coastal waters

    Science.gov (United States)

    Shin, Hyeon Ho; Li, Zhun; Kim, Eun Song; Youn, Joo Yeon; Jeon, Seul Gi; Oh, Seok Jin; Lim, Weol-Ae

    2016-12-01

    To identify features that can be used to differentiate Triadinium polyedricum from other related species, such as Fukuyoa paulensis and Alexandrium species, the detailed morphology and phylogeny of T. polyedricum collected from Korean coastal waters were investigated. The cells had a plate formula of Po, 3', 7″, 5‴, 1p and 2″″, which is consistent with morphological descriptions in previous reports. Large subunit ribosomal DNA sequences also revealed that T. polyedricum from Korean coastal waters is identical to previously recorded isolates. T. polyedricum is morphologically characterized by a ventral pore in the 1″ plate that is comparable to F. paulensis and Alexandrium species. This result indicates that the location and presence of this ventral pore seems suitable for differentiating T. polyedricum from other related species.

  17. Ontogeny and Phylogeny from an Epigenetic Point of View.

    Science.gov (United States)

    Lovtrup, Soren

    1984-01-01

    The correlation between ontogeny and phylogeny is analyzed through the discussion of four theories on the reality, history, epigenetic, and ecological aspects of the mechanism of evolution. Also discussed are historical and creative aspects of evolution and three epigenetic mechanisms instantiated in the case of the amphibian embryo. (Author/RH)

  18. Molecular phylogeny of Neotropical monogeneans (Platyhelminthes: Monogenea) from catfishes (Siluriformes)

    Czech Academy of Sciences Publication Activity Database

    Mendoza-Palmero, Carlos Alonso; Blasco-Costa, I.; Scholz, Tomáš

    2015-01-01

    Roč. 8, MAR 18 2015 (2015), s. 164 ISSN 1756-3305 R&D Projects: GA ČR GBP505/12/G112 Institutional support: RVO:60077344 Keywords : Phylogeny * Monogenea * Dactylogyridae * Neotropical region * Diversity * Siluriformes * 28S rRNA Subject RIV: EG - Zoology Impact factor: 3.234, year: 2015

  19. A molecular phylogeny of selected species of genus Prunus L ...

    African Journals Online (AJOL)

    (Syn. Prunus amygdalus) and Prunus cornuta (Wall. ex. Royle) Steudel. These are indigenous to Pakistan. In the ITS strict consensus results for example, the clade consisting of Laurocerasus, Padus and Cerasus subgenera are sister to the rest of the clades in the phylogenetic tree. Key words: Phylogeny, Prunus, Pakistan, ...

  20. Molecular phylogeny and evolution of mosquito parasitic Microsporidia (Microsporidia: Amblyosporidae)

    Czech Academy of Sciences Publication Activity Database

    Vossbrinck, C. R.; Andreadis, T.; Vávra, Jiří; Becnel, J. J.

    2004-01-01

    Roč. 51, č. 1 (2004), s. 88-95 ISSN 1066-5234 Institutional research plan: CEZ:AV0Z6022909 Keywords : Microsporidia * molecular phylogeny * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.403, year: 2004

  1. Mitogenomic phylogeny, diversification, and biogeography of South American spiny rats

    DEFF Research Database (Denmark)

    Fabre, Pierre-Henri; Upham, Nathan S.; Emmons, Louise H.

    2017-01-01

    Echimyidae is one of the most speciose and ecologically diverse rodent families in the world, occupying a wide range of habitats in the Neotropics. However, a resolved phylogeny at the genus-level is still lacking for these 22 genera of South American spiny rats, including the coypu (Myocastorina...... Atlantic and Amazonian Forests and (2) the Northern uplift of the Andes....

  2. The genus Gloriosa (Colchicaceae) : ethnobotany, phylogeny and taxonomy

    NARCIS (Netherlands)

    Maroyi, A.

    2012-01-01

    This thesis focuses on the ethnobotany, phylogeny and taxonomy of the genus Gloriosa L. over its distributional range. Some Gloriosa species are known to have economic and commercial value, but the genus is also well known for its complex alpha taxonomy. An appropriate taxonomy for this group is of

  3. Phylogeny and adaptation shape the teeth of insular mice.

    Science.gov (United States)

    Ledevin, Ronan; Chevret, Pascale; Ganem, Guila; Britton-Davidian, Janice; Hardouin, Emilie A; Chapuis, Jean-Louis; Pisanu, Benoit; da Luz Mathias, Maria; Schlager, Stefan; Auffray, Jean-Christophe; Renaud, Sabrina

    2016-02-10

    By accompanying human travels since prehistorical times, the house mouse dispersed widely throughout the world, and colonized many islands. The origin of the travellers determined the phylogenetic source of the insular mice, which encountered diverse ecological and environmental conditions on the various islands. Insular mice are thus an exceptional model to disentangle the relative role of phylogeny, ecology and climate in evolution. Molar shape is known to vary according to phylogeny and to respond to adaptation. Using for the first time a three-dimensional geometric morphometric approach, compared with a classical two-dimensional quantification, the relative effects of size variation, phylogeny, climate and ecology were investigated on molar shape diversity across a variety of islands. Phylogeny emerged as the factor of prime importance in shaping the molar. Changes in competition level, mostly driven by the presence or absence of the wood mouse on the different islands, appeared as the second most important effect. Climate and size differences accounted for slight shape variation. This evidences a balanced role of random differentiation related to history of colonization, and of adaptation possibly related to resource exploitation. © 2016 The Author(s).

  4. Phylogeny of not-yet-cultured spirochetes from termite guts

    DEFF Research Database (Denmark)

    Paster, B.J.; Dewhirst, F.E.; Cooke, S.M.

    1996-01-01

    Comparisons of 16S rDNA sequences were used to determine the phylogeny of not-yet-cultured spirochetes from hindguts of the African higher termite, Nasutitermes lujae (Wasmann). The 16S rRNA genes were amplified directly from spirochete-rich hindguts by using universal primers, and the amplified...

  5. A molecular approach to arthrotardigrade phylogeny (Heterotardigrada, Tardigrada)

    DEFF Research Database (Denmark)

    Fujimoto, Shinta; Jørgensen, Aslak; Hansen, Jesper Guldberg

    2017-01-01

    The marine order Arthrotardigrada (class Heterotardigrada, phylum Tardigrada) is known for its conspicuously high morphological diversity and has been traditionally recognized as the most ancestral group within the phylum. Despite its potential importance in understanding the evolution of the phy...... of the inferred phylogeny....

  6. Correlating molecular phylogeny with venom apparatus occurrence in Panamic auger snails (Terebridae.

    Directory of Open Access Journals (Sweden)

    Mandë Holford

    2009-11-01

    Full Text Available Central to the discovery of neuroactive compounds produced by predatory marine snails of the superfamily Conoidea (cone snails, terebrids, and turrids is identifying those species with a venom apparatus. Previous analyses of western Pacific terebrid specimens has shown that some Terebridae groups have secondarily lost their venom apparatus. In order to efficiently characterize terebrid toxins, it is essential to devise a key for identifying which species have a venom apparatus. The findings presented here integrate molecular phylogeny and the evolution of character traits to infer the presence or absence of the venom apparatus in the Terebridae. Using a combined dataset of 156 western and 33 eastern Pacific terebrid samples, a phylogenetic tree was constructed based on analyses of 16S, COI and 12S mitochondrial genes. The 33 eastern Pacific specimens analyzed represent four different species: Acus strigatus, Terebra argyosia, T. ornata, and T. cf. formosa. Anatomical analysis was congruent with molecular characters, confirming that species included in the clade Acus do not have a venom apparatus, while those in the clade Terebra do. Discovery of the association between terebrid molecular phylogeny and the occurrence of a venom apparatus provides a useful tool for effectively identifying the terebrid lineages that may be investigated for novel pharmacological active neurotoxins, enhancing conservation of this important resource, while providing supplementary information towards understanding terebrid evolutionary diversification.

  7. Slowdowns in diversification rates from real phylogenies may not be real.

    Science.gov (United States)

    Cusimano, Natalie; Renner, Susanne S

    2010-07-01

    Studies of diversification patterns often find a slowing in lineage accumulation toward the present. This seemingly pervasive pattern of rate downturns has been taken as evidence for adaptive radiations, density-dependent regulation, and metacommunity species interactions. The significance of rate downturns is evaluated with statistical tests (the gamma statistic and Monte Carlo constant rates (MCCR) test; birth-death likelihood models and Akaike Information Criterion [AIC] scores) that rely on null distributions, which assume that the included species are a random sample of the entire clade. Sampling in real phylogenies, however, often is nonrandom because systematists try to include early-diverging species or representatives of previous intrataxon classifications. We studied the effects of biased sampling, structured sampling, and random sampling by experimentally pruning simulated trees (60 and 150 species) as well as a completely sampled empirical tree (58 species) and then applying the gamma statistic/MCCR test and birth-death likelihood models/AIC scores to assess rate changes. For trees with random species sampling, the true model (i.e., the one fitting the complete phylogenies) could be inferred in most cases. Oversampling deep nodes, however, strongly biases inferences toward downturns, with simulations of structured and biased sampling suggesting that this occurs when sampling percentages drop below 80%. The magnitude of the effect and the sensitivity of diversification rate models is such that a useful rule of thumb may be not to infer rate downturns from real trees unless they have >80% species sampling.

  8. A mitogenomic re-evaluation of the bdelloid phylogeny and relationships among the Syndermata.

    Directory of Open Access Journals (Sweden)

    Erica Lasek-Nesselquist

    Full Text Available Molecular and morphological data regarding the relationships among the three classes of Rotifera (Bdelloidea, Seisonidea, and Monogononta and the phylum Acanthocephala are inconclusive. In particular, Bdelloidea lacks molecular-based phylogenetic appraisal. I obtained coding sequences from the mitochondrial genomes of twelve bdelloids and two monogononts to explore the molecular phylogeny of Bdelloidea and provide insight into the relationships among lineages of Syndermata (Rotifera + Acanthocephala. With additional sequences taken from previously published mitochondrial genomes, the total dataset included nine species of bdelloids, three species of monogononts, and two species of acanthocephalans. A supermatrix of these 10-12 mitochondrial proteins consistently recovered a bdelloid phylogeny that questions the validity of a generally accepted classification scheme despite different methods of inference and various parameter adjustments. Specifically, results showed that neither the family Philodinidae nor the order Philodinida are monophyletic as currently defined. The application of a similar analytical strategy to assess syndermate relationships recovered either a tree with Bdelloidea and Monogononta as sister taxa (Eurotatoria or Bdelloidea and Acanthocephala as sister taxa (Lemniscea. Both outgroup choice and method of inference affected the topological outcome emphasizing the need for sequences from more closely related outgroups and more sophisticated methods of analysis that can account for the complexity of the data.

  9. A molecular phylogeny of Amazona: implications for Neotropical parrot biogeography, taxonomy, and conservation.

    Science.gov (United States)

    Russello, Michael A; Amato, George

    2004-02-01

    Amazon parrots (Genus Amazona) are among the most recognizable and imperiled of all birds. Several hypotheses regarding the evolutionary history of Amazona are investigated using a combined phylogenetic analysis of DNA sequence data from six partitions including mitochondrial (COI, 12S, and 16S) and nuclear (beta-fibint7, RP40, and TROP) regions. The results demonstrate that Amazona is not monophyletic with respect to the placement of the Yellow-faced parrot (Amazona xanthops), as first implied by. In addition, the analysis corroborates previous studies suggesting a Neotropical short-tailed parrot genus as sister to Amazona. At a finer level, the phylogeny resolves the Greater Antillean endemic species as constituting a monophyletic group, including the Central American Amazona albifrons, while further revealing a paraphyletic history for the extant Amazon species of the Lesser Antilles. The reconstructed phylogeny provides further insights into the mainland sources of the Antillean Amazona, reveals areas of taxonomic uncertainty within the genus, and presents historical information that may be included in conservation priority-setting for Amazon parrots.

  10. Mammals on the EDGE: conservation priorities based on threat and phylogeny.

    Directory of Open Access Journals (Sweden)

    Nick J B Isaac

    2007-03-01

    Full Text Available Conservation priority setting based on phylogenetic diversity has frequently been proposed but rarely implemented. Here, we define a simple index that measures the contribution made by different species to phylogenetic diversity and show how the index might contribute towards species-based conservation priorities. We describe procedures to control for missing species, incomplete phylogenetic resolution and uncertainty in node ages that make it possible to apply the method in poorly known clades. We also show that the index is independent of clade size in phylogenies of more than 100 species, indicating that scores from unrelated taxonomic groups are likely to be comparable. Similar scores are returned under two different species concepts, suggesting that the index is robust to taxonomic changes. The approach is applied to a near-complete species-level phylogeny of the Mammalia to generate a global priority list incorporating both phylogenetic diversity and extinction risk. The 100 highest-ranking species represent a high proportion of total mammalian diversity and include many species not usually recognised as conservation priorities. Many species that are both evolutionarily distinct and globally endangered (EDGE species do not benefit from existing conservation projects or protected areas. The results suggest that global conservation priorities may have to be reassessed in order to prevent a disproportionately large amount of mammalian evolutionary history becoming extinct in the near future.

  11. Molecular phylogeny of the lionfish genera Dendrochirus and Pterois (Scorpaenidae, Pteroinae) based on mitochondrial DNA sequences.

    Science.gov (United States)

    Kochzius, Marc; Söller, Rainer; Khalaf, Maroof A; Blohm, Dietmar

    2003-09-01

    This study investigates the molecular phylogeny of seven lionfishes of the genera Dendrochirus and Pterois. MP, ML, and NJ phylogenetic analysis based on 964 bp of partial mitochondrial DNA sequences (cytochrome b and 16S rDNA) revealed two main clades: (1) "Pterois" clade (Pterois miles and Pterois volitans), and (2) "Pteropterus-Dendrochirus" clade (remainder of the sampled species). The position of Dendrochirus brachypterus either basal to the main clades or in the "Pteropterus-Dendrochirus" clade cannot be resolved. However, the molecular phylogeny did not support the current separation of the genera Pterois and Dendrochirus. The siblings P. miles and P. volitans are clearly separated and our results support the proposed allopatric or parapatric distribution in the Indian and Pacific Ocean. However, the present analysis cannot reveal if P. miles and P. volitans are separate species or two populations of a single species, because the observed separation in different clades can be either explained by speciation or lineage sorting. Molecular clock estimates for the siblings P. miles and P. volitans suggest a divergence time of 2.4-8.3 mya, which coincide with geological events that created vicariance between populations of the Indian and Pacific Ocean.

  12. A Molecular Phylogeny of the Lichen Genus Lecidella Focusing on Species from Mainland China.

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    Full Text Available The phylogeny of Lecidella species is studied, based on a 7-locus data set using ML and Bayesian analyses. Phylogenetic relationships among 43 individuals representing 11 Lecidella species, mainly from mainland China, were included in the analyses and phenotypical characters studied and mapped onto the phylogeny. The Lecidella species fall into three major clades, which are proposed here as three informal groups-Lecidella stigmatea group, L. elaeochroma group and L. enteroleucella group, each of them strongly supported. Our phylogenetic analyses support traditional species delimitation based on morphological and chemical traits in most but not all cases. Individuals considered as belonging to the same species based on phenotypic characters were found to be paraphyletic, indicating that cryptic species might be hidden under these names (e.g. L. carpathica and L. effugiens. Potentially undescribed species were found within the phenotypically circumscribed species L. elaeochroma and L. stigmatea. Additional sampling across a broader taxonomic and geographic scale will be crucial to fully resolving the taxonomy in this cosmopolitan genus.

  13. Resolution of deep nodes yields an improved backbone phylogeny and a new basal lineage to study early evolution of Asteraceae.

    Science.gov (United States)

    Panero, Jose L; Freire, Susana E; Ariza Espinar, Luis; Crozier, Bonnie S; Barboza, Gloria E; Cantero, Juan J

    2014-11-01

    A backbone phylogeny that fully resolves all subfamily and deeper nodes of Asteraceae was constructed using 14 chloroplast DNA loci. The recently named genus Famatinanthus was found to be sister to the Mutisioideae-Asteroideae clade that represents more than 99% of Asteraceae and was found to have the two chloroplast inversions present in all Asteraceae except the nine genera of Barnadesioideae. A monotypic subfamily Famatinanthoideae and tribe Famatinantheae are named herein as new. Relationships among the basal lineages of the family were resolved with strong support in the Bayesian analysis as (Barnadesioideae (Famatinanthoideae (Mutisioideae (Stifftioideae (Wunderlichioideae-Asteroideae))))). Ancestral state reconstruction of ten morphological characters at the root node of the Asteraceae showed that the ancestral sunflower would have had a woody habit, alternate leaves, solitary capitulescences, epaleate receptacles, smooth styles, smooth to microechinate pollen surface sculpturing, white to yellow corollas, and insect-mediated pollination. Herbaceous habit, echinate pollen surface, pubescent styles, and cymose capitulescences were reconstructed for backbone nodes of the phylogeny corresponding to clades that evolved shortly after Asteraceae dispersed out of South America. No support was found for discoid capitula, multiseriate involucres or bird pollination as the ancestral character condition for any node. Using this more resolved phylogenetic tree, the recently described Raiguenrayun cura+Mutisiapollis telleriae fossil should be associated to a more derived node than previously suggested when time calibrating phylogenies of Asteraceae. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Phylogeny and systematics of the brake fern genus Pteris (Pteridaceae) based on molecular (plastid and nuclear) and morphological evidence.

    Science.gov (United States)

    Zhang, Liang; Zhang, Li-Bing

    2018-01-01

    The brake fern genus Pteris belongs to Pteridaceae subfamily Pteridoideae. It is one of the largest fern genera and has been estimated to contain 200-250 species distributed on all continents except Antarctica. Previous studies were either based on plastid data only or based on both plastid and nuclear data but the sampling was small. In addition, an infrageneric classification of Pteris based on morphological and molecular evidence has not been available yet. In the present study, based on molecular data of eight plastid markers and one nuclear marker (gapCp) of 256 accessions representing ca. 178 species of Pteris, we reconstruct a global phylogeny of Pteris. The 15 major clades identified earlier are recovered here and we further identified a new major clade. Our nuclear phylogeny recovered 11 of these 16 major clades, seven of which are strongly supported. The inclusion of Schizostege in Pteris is confirmed for the first time. Based on the newly reconstructed phylogeny and evidence from morphology, distribution and/or ecology, we classify Pteris into three subgenera: P. subg. Pteris, P. subg. Campteria, and P. subg. Platyzoma. The former two are further divided into three and 12 sections, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Mammals from ‘down under’: a multi-gene species-level phylogeny of marsupial mammals (Mammalia, Metatheria

    Directory of Open Access Journals (Sweden)

    Laura J. May-Collado

    2015-02-01

    Full Text Available Marsupials or metatherians are a group of mammals that are distinct in giving birth to young at early stages of development and in having a prolonged investment in lactation. The group consists of nearly 350 extant species, including kangaroos, koala, possums, and their relatives. Marsupials are an old lineage thought to have diverged from early therian mammals some 160 million years ago in the Jurassic, and have a remarkable evolutionary and biogeographical history, with extant species restricted to the Americas, mostly South America, and to Australasia. Although the group has been the subject of decades of phylogenetic research, the marsupial tree of life remains controversial, with most studies focusing on only a fraction of the species diversity within the infraclass. Here we present the first Methaterian species-level phylogeny to include 80% of the extant marsupial species and five nuclear and five mitochondrial markers obtained from Genbank and a recently published retroposon matrix. Our primary goal is to provide a summary phylogeny that will serve as a tool for comparative research. We evaluate the extent to which the phylogeny recovers current phylogenetic knowledge based on the recovery of “benchmark clades” from prior studies—unambiguously supported key clades and undisputed traditional taxonomic groups. The Bayesian phylogenetic analyses recovered nearly all benchmark clades but failed to find support for the suborder Phalagiformes. The most significant difference with previous published topologies is the support for Australidelphia as a group containing Microbiotheriidae, nested within American marsupials. However, a likelihood ratio test shows that alternative topologies with monophyletic Australidelphia and Ameridelphia are not significantly different than the preferred tree. Although further data are needed to solidify understanding of Methateria phylogeny, the new phylogenetic hypothesis provided here offers a well

  16. Innovative Bayesian and Parsimony Phylogeny of Dung Beetles (Coleoptera, Scarabaeidae, Scarabaeinae) Enhanced by Ontology-Based Partitioning of Morphological Characters

    Science.gov (United States)

    Tarasov, Sergei; Génier, François

    2015-01-01

    Scarabaeine dung beetles are the dominant dung feeding group of insects and are widely used as model organisms in conservation, ecology and developmental biology. Due to the conflicts among 13 recently published phylogenies dealing with the higher-level relationships of dung beetles, the phylogeny of this lineage remains largely unresolved. In this study, we conduct rigorous phylogenetic analyses of dung beetles, based on an unprecedented taxon sample (110 taxa) and detailed investigation of morphology (205 characters). We provide the description of morphology and thoroughly illustrate the used characters. Along with parsimony, traditionally used in the analysis of morphological data, we also apply the Bayesian method with a novel approach that uses anatomy ontology for matrix partitioning. This approach allows for heterogeneity in evolutionary rates among characters from different anatomical regions. Anatomy ontology generates a number of parameter-partition schemes which we compare using Bayes factor. We also test the effect of inclusion of autapomorphies in the morphological analysis, which hitherto has not been examined. Generally, schemes with more parameters were favored in the Bayesian comparison suggesting that characters located on different body regions evolve at different rates and that partitioning of the data matrix using anatomy ontology is reasonable; however, trees from the parsimony and all the Bayesian analyses were quite consistent. The hypothesized phylogeny reveals many novel clades and provides additional support for some clades recovered in previous analyses. Our results provide a solid basis for a new classification of dung beetles, in which the taxonomic limits of the tribes Dichotomiini, Deltochilini and Coprini are restricted and many new tribes must be described. Based on the consistency of the phylogeny with biogeography, we speculate that dung beetles may have originated in the Mesozoic contrary to the traditional view pointing to a

  17. Brassicales phylogeny inferred from 72 plastid genes

    NARCIS (Netherlands)

    Edger, Patrick P.; Hall, Jocelyn C.; Harkess, Alex; Tang, Michelle; Coombs, Jill; Mohammadin, Setareh; Schranz, Eric; Xiong, Zhiyong; Leebens-Mack, James; Meyers, Blake C.; Sytsma, Kenneth J.; Koch, Marcus A.; Al-Shehbaz, Ihsan A.; Pires, J.C.

    2018-01-01

    PREMISE OF THE STUDY: Previous phylogenetic studies employing molecular markers have yielded various insights into the evolutionary history across Brassicales, but many relationships between families remain poorly supported or unresolved. A recent phylotranscriptomic approach utilizing 1155 nuclear

  18. Birth-death prior on phylogeny and speed dating

    Directory of Open Access Journals (Sweden)

    Sennblad Bengt

    2008-03-01

    Full Text Available Abstract Background In recent years there has been a trend of leaving the strict molecular clock in order to infer dating of speciations and other evolutionary events. Explicit modeling of substitution rates and divergence times makes formulation of informative prior distributions for branch lengths possible. Models with birth-death priors on tree branching and auto-correlated or iid substitution rates among lineages have been proposed, enabling simultaneous inference of substitution rates and divergence times. This problem has, however, mainly been analysed in the Markov chain Monte Carlo (MCMC framework, an approach requiring computation times of hours or days when applied to large phylogenies. Results We demonstrate that a hill-climbing maximum a posteriori (MAP adaptation of the MCMC scheme results in considerable gain in computational efficiency. We demonstrate also that a novel dynamic programming (DP algorithm for branch length factorization, useful both in the hill-climbing and in the MCMC setting, further reduces computation time. For the problem of inferring rates and times parameters on a fixed tree, we perform simulations, comparisons between hill-climbing and MCMC on a plant rbcL gene dataset, and dating analysis on an animal mtDNA dataset, showing that our methodology enables efficient, highly accurate analysis of very large trees. Datasets requiring a computation time of several days with MCMC can with our MAP algorithm be accurately analysed in less than a minute. From the results of our example analyses, we conclude that our methodology generally avoids getting trapped early in local optima. For the cases where this nevertheless can be a problem, for instance when we in addition to the parameters also infer the tree topology, we show that the problem can be evaded by using a simulated-annealing like (SAL method in which we favour tree swaps early in the inference while biasing our focus towards rate and time parameter changes

  19. Phylogeny with introgression in Habronattus jumping spiders (Araneae: Salticidae).

    Science.gov (United States)

    Leduc-Robert, Geneviève; Maddison, Wayne P

    2018-02-22

    Habronattus is a diverse clade of jumping spiders with complex courtship displays and repeated evolution of Y chromosomes. A well-resolved species phylogeny would provide an important framework to study these traits, but has not yet been achieved, in part because the few genes available in past studies gave conflicting signals. Such discordant gene trees could be the result of incomplete lineage sorting (ILS) in recently diverged parts of the phylogeny, but there are indications that introgression could be a source of conflict. To infer Habronattus phylogeny and investigate the cause of gene tree discordance, we assembled transcriptomes for 34 Habronattus species and 2 outgroups. The concatenated 2.41 Mb of nuclear data (1877 loci) resolved phylogeny by Maximum Likelihood (ML) with high bootstrap support (95-100%) at most nodes, with some uncertainty surrounding the relationships of H. icenoglei, H. cambridgei, H. oregonensis, and Pellenes canadensis. Species tree analyses by ASTRAL and SVDQuartets gave almost completely congruent results. Several nodes in the ML phylogeny from 12.33 kb of mitochondrial data are incongruent with the nuclear phylogeny and indicate possible mitochondrial introgression: the internal relationships of the americanus and the coecatus groups, the relationship between the altanus, decorus, banksi, and americanus group, and between H. clypeatus and the coecatus group. To determine the relative contributions of ILS and introgression, we analyzed gene tree discordance for nuclear loci longer than 1 kb using Bayesian Concordance Analysis (BCA) for the americanus group (679 loci) and the VCCR clade (viridipes/clypeatus/coecatus/roberti groups) (517 loci) and found signals of introgression in both. Finally, we tested specifically for introgression in the concatenated nuclear matrix with Patterson's D statistics and D FOIL . We found nuclear introgression resulting in substantial admixture between americanus group species, between H. roberti

  20. Phylogeny of the gymnosperm genus Cycas L. (Cycadaceae) as inferred from plastid and nuclear loci based on a large-scale sampling: Evolutionary relationships and taxonomical implications.

    Science.gov (United States)

    Liu, Jian; Zhang, Shouzhou; Nagalingum, Nathalie S; Chiang, Yu-Chung; Lindstrom, Anders J; Gong, Xun

    2018-05-18

    The gymnosperm genus Cycas is the sole member of Cycadaceae, and is the largest genus of extant cycads. There are about 115 accepted Cycas species mainly distributed in the paleotropics. Based on morphology, the genus has been divided into six sections and eight subsections, but this taxonomy has not yet been tested in a molecular phylogenetic framework. Although the monophyly of Cycas is broadly accepted, the intrageneric relationships inferred from previous molecular phylogenetic analyses are unclear due to insufficient sampling or uninformative DNA sequence data. In this study, we reconstructed a phylogeny of Cycas using four chloroplast intergenic spacers and seven low-copy nuclear genes and sampling 90% of extant Cycas species. The maximum likelihood and Bayesian inference phylogenies suggest: (1) matrices of either concatenated cpDNA markers or of concatenated nDNA lack sufficient informative sites to resolve the phylogeny alone, however, the phylogeny from the combined cpDNA-nDNA dataset suggests the genus can be roughly divided into 13 clades and six sections that are in agreement with the current classification of the genus; (2) although with partial support, a clade combining sections Panzhihuaenses + Asiorientales is resolved as the earliest diverging branch; (3) section Stangerioides is not monophyletic because the species resolve as a grade; (4) section Indosinenses is not monophyletic as it includes Cycas macrocarpa and C. pranburiensis from section Cycas; (5) section Cycas is the most derived group and its subgroups correspond with geography. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach.

    Science.gov (United States)

    Faurby, Søren; Svenning, Jens-Christian

    2015-03-01

    Across large clades, two problems are generally encountered in the estimation of species-level phylogenies: (a) the number of taxa involved is generally so high that computation-intensive approaches cannot readily be utilized and (b) even for clades that have received intense study (e.g., mammals), attention has been centered on relatively few selected species, and most taxa must therefore be positioned on the basis of very limited genetic data. Here, we describe a new heuristic-hierarchical Bayesian approach and use it to construct a species-level phylogeny for all extant and late Quaternary extinct mammals. In this approach, species with large quantities of genetic data are placed nearly freely in the mammalian phylogeny according to these data, whereas the placement of species with lower quantities of data is performed with steadily stricter restrictions for decreasing data quantities. The advantages of the proposed method include (a) an improved ability to incorporate phylogenetic uncertainty in downstream analyses based on the resulting phylogeny, (b) a reduced potential for long-branch attraction or other types of errors that place low-data taxa far from their true position, while maintaining minimal restrictions for better-studied taxa, and (c) likely improved placement of low-data taxa due to the use of closer outgroups. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Phylogenies support out-of-equilibrium models of biodiversity.

    Science.gov (United States)

    Manceau, Marc; Lambert, Amaury; Morlon, Hélène

    2015-04-01

    There is a long tradition in ecology of studying models of biodiversity at equilibrium. These models, including the influential Neutral Theory of Biodiversity, have been successful at predicting major macroecological patterns, such as species abundance distributions. But they have failed to predict macroevolutionary patterns, such as those captured in phylogenetic trees. Here, we develop a model of biodiversity in which all individuals have identical demographic rates, metacommunity size is allowed to vary stochastically according to population dynamics, and speciation arises naturally from the accumulation of point mutations. We show that this model generates phylogenies matching those observed in nature if the metacommunity is out of equilibrium. We develop a likelihood inference framework that allows fitting our model to empirical phylogenies, and apply this framework to various mammalian families. Our results corroborate the hypothesis that biodiversity dynamics are out of equilibrium. © 2015 John Wiley & Sons Ltd/CNRS.

  3. Whole genome association mapping by incompatibilities and local perfect phylogenies

    DEFF Research Database (Denmark)

    Mailund, Thomas; Besenbacher, Søren; Schierup, Mikkel Heide

    2006-01-01

    around each marker that is compatible with a single phylogenetic tree. This perfect phylogenetic tree is treated as a decision tree for determining disease status, and scored by its accuracy as a decision tree. The rationale for this is that the perfect phylogeny near a disease affecting mutation should...... a fast method for accurate localisation of disease causing variants in high density case-control association mapping experiments with large numbers of cases and controls. The method searches for significant clustering of case chromosomes in the "perfect" phylogenetic tree defined by the largest region...... provide more information about the affected/unaffected classification than random trees. If regions of compatibility contain few markers, due to e.g. large marker spacing, the algorithm can allow the inclusion of incompatibility markers in order to enlarge the regions prior to estimating their phylogeny...

  4. Live phylogeny with polytomies: Finding the most compact parsimonious trees.

    Science.gov (United States)

    Papamichail, D; Huang, A; Kennedy, E; Ott, J-L; Miller, A; Papamichail, G

    2017-08-01

    Construction of phylogenetic trees has traditionally focused on binary trees where all species appear on leaves, a problem for which numerous efficient solutions have been developed. Certain application domains though, such as viral evolution and transmission, paleontology, linguistics, and phylogenetic stemmatics, often require phylogeny inference that involves placing input species on ancestral tree nodes (live phylogeny), and polytomies. These requirements, despite their prevalence, lead to computationally harder algorithmic solutions and have been sparsely examined in the literature to date. In this article we prove some unique properties of most parsimonious live phylogenetic trees with polytomies, and their mapping to traditional binary phylogenetic trees. We show that our problem reduces to finding the most compact parsimonious tree for n species, and describe a novel efficient algorithm to find such trees without resorting to exhaustive enumeration of all possible tree topologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Molecular phylogeny and morphological change in the Psittacula parakeets.

    Science.gov (United States)

    Groombridge, Jim J; Jones, Carl G; Nichols, Richard A; Carlton, Mark; Bruford, Michael W

    2004-04-01

    We reconstruct a phylogeny of the African and Asian Psittacula parakeets using approximately 800bp of mitochondrial cytochrome b sequence to examine their evolutionary relationships in reference to their head plumage and major morphological tail innovations. Our phylogeny identifies three groups, whose distinctiveness is also apparent from their possession of three different head plumage characters: a neck ring, a distinctive colouration of the head, and a 'moustache'-shaped pattern that extends from the chin to the cheek. We examine the extent of sexual dimorphism in tail length across the phylogeny and reveal large differences between closely related forms. We apply a range of published avian cytochrome b substitution rates to our data, as an alternative to internal calibration of a molecular clock arising from incomplete paleontological information. An ancestral Psittacula form appears to have evolved during the late Miocene-early Pliocene (3.4-9.7MYA), a time when regional geological processes on the Asian continent may have promoted subsequent diversity at the species level, and many forms diverged relatively early on in the evolutionary history of Psittacula (between 2.5 and 7.7MYA). However, others, such as the derbyan and moustached parakeets, diverged as recently as 0.2MYA. Our phylogeny also suggests that the echo parakeet from Mauritius diverged from the Indian ringneck parakeet as opposed to the African ringneck, and may have done so relatively recently. The molecular results indicate support for a southwards radiation from India across the Indian Ocean to Mauritius, where the arrival-date of the echo parakeet appears consistent with the island's volcanic formation.

  6. A multi-gene phylogeny of Chlorophyllum (Agaricaceae, Basidiomycota: new species, new combination and infrageneric classification

    Directory of Open Access Journals (Sweden)

    Zai-Wei Ge

    2018-03-01

    Full Text Available Taxonomic and phylogenetic studies of Chlorophyllum were carried out on the basis of morphological differences and molecular phylogenetic analyses. Based on the phylogeny inferred from the internal transcribed spacer (ITS, the partial large subunit nuclear ribosomal DNA (nrLSU, the second largest subunit of RNA polymerase II (rpb2 and translation elongation factor 1-α (tef1 sequences, six well-supported clades and 17 phylogenetic species are recognised. Within this phylogenetic framework and considering the diagnostic morphological characters, two new species, C. africanum and C. palaeotropicum, are described. In addition, a new infrageneric classification of Chlorophyllum is proposed, in which the genus is divided into six sections. One new combination is also made. This study provides a robust basis for a more detailed investigation of diversity and biogeography of Chlorophyllum.

  7. Comprehensive molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera: Geometridae.

    Directory of Open Access Journals (Sweden)

    Pasi Sihvonen

    Full Text Available BACKGROUND: The moth family Geometridae (inchworms or loopers, with approximately 23,000 described species, is the second most diverse family of the Lepidoptera. Apart from a few recent attempts based on morphology and molecular studies, the phylogeny of these moths has remained largely uninvestigated. METHODOLOGY/PRINCIPAL FINDINGS: We performed a rigorous and extensive molecular analysis of eight genes to examine the geometrid affinities in a global context, including a search for its potential sister-taxa. Our maximum likelihood analyses included 164 taxa distributed worldwide, of which 150 belong to the Geometridae. The selected taxa represent all previously recognized subfamilies and nearly 90% of recognized tribes, and originate from all over world. We found the Geometridae to be monophyletic with the Sematuridae+Epicopeiidae clade potentially being its sister-taxon. We found all previously recognized subfamilies to be monophyletic, with a few taxa misplaced, except the Oenochrominae+Desmobathrinae complex that is a polyphyletic assemblage of taxa and the Orthostixinae, which was positioned within the Ennominae. The Sterrhinae and Larentiinae were found to be sister to the remaining taxa, followed by Archiearinae, the polyphyletic assemblage of Oenochrominae+Desmobathrinae moths, Geometrinae and Ennominae. CONCLUSIONS/SIGNIFICANCE: Our study provides the first comprehensive phylogeny of the Geometridae in a global context. Our results generally agree with the other, more restricted studies, suggesting that the general phylogenetic patterns of the Geometridae are now well-established. Generally the subfamilies, many tribes, and assemblages of tribes were well supported but their interrelationships were often weakly supported by our data. The Eumeleini were particularly difficult to place in the current system, and several tribes were found to be para- or polyphyletic.

  8. Host phylogeny determines viral persistence and replication in novel hosts.

    Directory of Open Access Journals (Sweden)

    Ben Longdon

    2011-09-01

    Full Text Available Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts.

  9. Phylogeny, diet, and cranial integration in australodelphian marsupials.

    Directory of Open Access Journals (Sweden)

    Anjali Goswami

    2007-10-01

    Full Text Available Studies of morphological integration provide valuable information on the correlated evolution of traits and its relationship to long-term patterns of morphological evolution. Thus far, studies of morphological integration in mammals have focused on placentals and have demonstrated that similarity in integration is broadly correlated with phylogenetic distance and dietary similarity. Detailed studies have also demonstrated a significant correlation between developmental relationships among structures and adult morphological integration. However, these studies have not yet been applied to marsupial taxa, which differ greatly from placentals in reproductive strategy and cranial development and could provide the diversity necessary to assess the relationships among phylogeny, ecology, development, and cranial integration. This study presents analyses of morphological integration in 20 species of australodelphian marsupials, and shows that phylogeny is significantly correlated with similarity of morphological integration in most clades. Size-related correlations have a significant affect on results, particularly in Peramelia, which shows a striking decrease in similarity of integration among species when size is removed. Diet is not significantly correlated with similarity of integration in any marsupial clade. These results show that marsupials differ markedly from placental mammals in the relationships of cranial integration, phylogeny, and diet, which may be related to the accelerated development of the masticatory apparatus in marsupials.

  10. Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    Science.gov (United States)

    Longdon, Ben; Hadfield, Jarrod D.; Webster, Claire L.

    2011-01-01

    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts. PMID:21966271

  11. Phylogenetic analysis of pelecaniformes (aves based on osteological data: implications for waterbird phylogeny and fossil calibration studies.

    Directory of Open Access Journals (Sweden)

    Nathan D Smith

    2010-10-01

    Full Text Available Debate regarding the monophyly and relationships of the avian order Pelecaniformes represents a classic example of discord between morphological and molecular estimates of phylogeny. This lack of consensus hampers interpretation of the group's fossil record, which has major implications for understanding patterns of character evolution (e.g., the evolution of wing-propelled diving and temporal diversification (e.g., the origins of modern families. Relationships of the Pelecaniformes were inferred through parsimony analyses of an osteological dataset encompassing 59 taxa and 464 characters. The relationships of the Plotopteridae, an extinct family of wing-propelled divers, and several other fossil pelecaniforms (Limnofregata, Prophaethon, Lithoptila, ?Borvocarbo stoeffelensis were also assessed. The antiquity of these taxa and their purported status as stem members of extant families makes them valuable for studies of higher-level avian diversification.Pelecaniform monophyly is not recovered, with Phaethontidae recovered as distantly related to all other pelecaniforms, which are supported as a monophyletic Steganopodes. Some anatomical partitions of the dataset possess different phylogenetic signals, and partitioned analyses reveal that these discrepancies are localized outside of Steganopodes, and primarily due to a few labile taxa. The Plotopteridae are recovered as the sister taxon to Phalacrocoracoidea, and the relationships of other fossil pelecaniforms representing key calibration points are well supported, including Limnofregata (sister taxon to Fregatidae, Prophaethon and Lithoptila (successive sister taxa to Phaethontidae, and ?Borvocarbo stoeffelensis (sister taxon to Phalacrocoracidae. These relationships are invariant when 'backbone' constraints based on recent avian phylogenies are imposed.Relationships of extant pelecaniforms inferred from morphology are more congruent with molecular phylogenies than previously assumed, though

  12. Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages

    OpenAIRE

    Karol, Kenneth G; Arumuganathan, Kathiravetpillai; Boore, Jeffrey L; Duffy, Aaron M; Everett, Karin DE; Hall, John D; Hansen, S Kellon; Kuehl, Jennifer V; Mandoli, Dina F; Mishler, Brent D; Olmstead, Richard G; Renzaglia, Karen S; Wolf, Paul G

    2010-01-01

    Abstract Background Despite considerable progress in our understanding of land plant phylogeny, several nodes in the green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset of major land plant clades. Here we examine early land plant evolution using complete plastome sequences including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of land plants and their plastomes, we examined...

  13. Automated words stability and languages phylogeny

    OpenAIRE

    Petroni, Filippo; Serva, Maurizio

    2009-01-01

    The idea of measuring distance between languages seems to have its roots in the work of the French explorer Dumont D'Urville (D'Urville 1832). He collected comparative words lists of various languages during his voyages aboard the Astrolabe from 1826 to1829 and, in his work about the geographical division of the Pacific, he proposed a method to measure the degree of relation among languages. The method used by modern glottochronology, developed by Morris Swadesh in the 1950s (Swadesh 1952), m...

  14. A Species-Level Phylogeny of Extant Snakes with Description of a New Colubrid Subfamily and Genus.

    Science.gov (United States)

    Figueroa, Alex; McKelvy, Alexander D; Grismer, L Lee; Bell, Charles D; Lailvaux, Simon P

    2016-01-01

    With over 3,500 species encompassing a diverse range of morphologies and ecologies, snakes make up 36% of squamate diversity. Despite several attempts at estimating higher-level snake relationships and numerous assessments of generic- or species-level phylogenies, a large-scale species-level phylogeny solely focusing on snakes has not been completed. Here, we provide the largest-yet estimate of the snake tree of life using maximum likelihood on a supermatrix of 1745 taxa (1652 snake species + 7 outgroup taxa) and 9,523 base pairs from 10 loci (5 nuclear, 5 mitochondrial), including previously unsequenced genera (2) and species (61). Increased taxon sampling resulted in a phylogeny with a new higher-level topology and corroborate many lower-level relationships, strengthened by high nodal support values (> 85%) down to the species level (73.69% of nodes). Although the majority of families and subfamilies were strongly supported as monophyletic with > 88% support values, some families and numerous genera were paraphyletic, primarily due to limited taxon and loci sampling leading to a sparse supermatrix and minimal sequence overlap between some closely-related taxa. With all rogue taxa and incertae sedis species eliminated, higher-level relationships and support values remained relatively unchanged, except in five problematic clades. Our analyses resulted in new topologies at higher- and lower-levels; resolved several previous topological issues; established novel paraphyletic affiliations; designated a new subfamily, Ahaetuliinae, for the genera Ahaetulla, Chrysopelea, Dendrelaphis, and Dryophiops; and appointed Hemerophis (Coluber) zebrinus to a new genus, Mopanveldophis. Although we provide insight into some distinguished problematic nodes, at the deeper phylogenetic scale, resolution of these nodes may require sampling of more slowly-evolving nuclear genes.

  15. A Species-Level Phylogeny of Extant Snakes with Description of a New Colubrid Subfamily and Genus

    Science.gov (United States)

    McKelvy, Alexander D.; Grismer, L. Lee; Bell, Charles D.; Lailvaux, Simon P.

    2016-01-01

    Background With over 3,500 species encompassing a diverse range of morphologies and ecologies, snakes make up 36% of squamate diversity. Despite several attempts at estimating higher-level snake relationships and numerous assessments of generic- or species-level phylogenies, a large-scale species-level phylogeny solely focusing on snakes has not been completed. Here, we provide the largest-yet estimate of the snake tree of life using maximum likelihood on a supermatrix of 1745 taxa (1652 snake species + 7 outgroup taxa) and 9,523 base pairs from 10 loci (5 nuclear, 5 mitochondrial), including previously unsequenced genera (2) and species (61). Results Increased taxon sampling resulted in a phylogeny with a new higher-level topology and corroborate many lower-level relationships, strengthened by high nodal support values (> 85%) down to the species level (73.69% of nodes). Although the majority of families and subfamilies were strongly supported as monophyletic with > 88% support values, some families and numerous genera were paraphyletic, primarily due to limited taxon and loci sampling leading to a sparse supermatrix and minimal sequence overlap between some closely-related taxa. With all rogue taxa and incertae sedis species eliminated, higher-level relationships and support values remained relatively unchanged, except in five problematic clades. Conclusion Our analyses resulted in new topologies at higher- and lower-levels; resolved several previous topological issues; established novel paraphyletic affiliations; designated a new subfamily, Ahaetuliinae, for the genera Ahaetulla, Chrysopelea, Dendrelaphis, and Dryophiops; and appointed Hemerophis (Coluber) zebrinus to a new genus, Mopanveldophis. Although we provide insight into some distinguished problematic nodes, at the deeper phylogenetic scale, resolution of these nodes may require sampling of more slowly-evolving nuclear genes. PMID:27603205

  16. Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae

    Directory of Open Access Journals (Sweden)

    Chen Ling-Yun

    2012-03-01

    Our study has shed light on the previously controversial generic phylogeny of Hydrocharitaceae. The study has resolved the historical biogeography of this family and supported dispersal as the most likely explanation for the intercontinental distribution. We have also provided valuable information for understanding the evolution of breeding system and leaf phenotype in aquatic monocots.

  17. Phylogeny is a powerful tool for predicting plant biomass responses to nitrogen enrichment.

    Science.gov (United States)

    Wooliver, Rachel C; Marion, Zachary H; Peterson, Christopher R; Potts, Brad M; Senior, John K; Bailey, Joseph K; Schweitzer, Jennifer A

    2017-08-01

    Increasing rates of anthropogenic nitrogen (N) enrichment to soils often lead to the dominance of nitrophilic plant species and reduce plant diversity in natural ecosystems. Yet, we lack a framework to predict which species will be winners or losers in soil N enrichment scenarios, a framework that current literature suggests should integrate plant phylogeny, functional tradeoffs, and nutrient co-limitation. Using a controlled fertilization experiment, we quantified biomass responses to N enrichment for 23 forest tree species within the genus Eucalyptus that are native to Tasmania, Australia. Based on previous work with these species' responses to global change factors and theory on the evolution of plant resource-use strategies, we hypothesized that (1) growth responses to N enrichment are phylogenetically structured, (2) species with more resource-acquisitive functional traits have greater growth responses to N enrichment, and (3) phosphorus (P) limits growth responses to N enrichment differentially across species, wherein P enrichment increases growth responses to N enrichment more in some species than others. We built a hierarchical Bayesian model estimating effects of functional traits (specific leaf area, specific stem density, and specific root length) and P fertilization on species' biomass responses to N, which we then compared between lineages to determine whether phylogeny explains variation in responses to N. In concordance with literature on N limitation, a majority of species responded strongly and positively to N enrichment. Mean responses ranged three-fold, from 6.21 (E. pulchella) to 16.87 (E. delegatensis) percent increases in biomass per g N·m -2 ·yr -1 added. We identified a strong difference in responses to N between two phylogenetic lineages in the Eucalyptus subgenus Symphyomyrtus, suggesting that shared ancestry explains variation in N limitation. However, our model indicated that after controlling for phylogenetic non

  18. Pulling the sting out of nettle systematics - A comprehensive phylogeny of the genus Urtica L. (Urticaceae).

    Science.gov (United States)

    Grosse-Veldmann, Bernadette; Nürk, Nicolai M; Smissen, Rob; Breitwieser, Ilse; Quandt, Dietmar; Weigend, Maximilian

    2016-09-01

    The genus Urtica L. is subcosmopolitan, found on all continents (except Antarctica) and most extratropical islands and ranges from Alaska to Patagonia, Spitzbergen to the Cape and Camtschatka to the subantarctic islands. However, throughout its geographical range morphologically nearly indistinguishable species are found alongside morphologically quite disparate species, with the overall diversity of morphological characters extremely limited. The systematics of Urtica have puzzled scientists for the past 200years and no single comprehensive attempt at understanding infrageneric relationships has been published in the past, nor are species delimitations unequivocally established. We here provide the first comprehensive phylogeny of the genus including 61 of the 63 species recognized, represented by 144 ingroup accessions and 14 outgroup taxa. The markers ITS1-5.8S-ITS2, psbA-trnH intergenic spacer, trnL-trnF and trnS-trnG are used. The phylogeny is well resolved. The eastern Asian Zhengyia shennongensis T. Deng, D.G. Zhang & H. Sun is retrieved as sister to Urtica. Within Urtica, a clade comprising the western Eurasian species U. pilulifera L. and U. neubaueri Chrtek is sister to all other species of the genus. The phylogenetic analyses retrieve numerous well-supported clades, suggesting previously unsuspected relationships and implying that classically used taxonomic characters such as leaf morphology and growth habit are highly homoplasious. Species delimitation is problematical, and several accessions assigned to Urtica dioica L. (as subspecies) are retrieved in widely different places in the phylogeny. The genus seems to have undergone numerous dispersal-establishment events both between continents and onto different islands. Three recent species radiations are inferred, one in America centered in the Andes, one in New Zealand, and one in northern Eurasia which includes Urtica dioica s.str. sensu Henning et al. (2014). The present study provides the basis of a

  19. Phylogeny, ecology, and heart position in snakes.

    Science.gov (United States)

    Gartner, Gabriel E A; Hicks, James W; Manzani, Paulo R; Andrade, Denis V; Abe, Augusto S; Wang, Tobias; Secor, Stephen M; Garland, Theodore

    2010-01-01

    The cardiovascular system of all animals is affected by gravitational pressure gradients, the intensity of which varies according to organismic features, behavior, and habitat occupied. A previous nonphylogenetic analysis of heart position in snakes-which often assume vertical postures-found the heart located 15%-25% of total body length from the head in terrestrial and arboreal species but 25%-45% in aquatic species. It was hypothesized that a more anterior heart in arboreal species served to reduce the hydrostatic blood pressure when these animals adopt vertical postures during climbing, whereas an anterior heart position would not be needed in aquatic habitats, where the effects of gravity are less pronounced. We analyzed a new data set of 155 species from five major families of Alethinophidia (one of the two major branches of snakes, the other being blind snakes, Scolecophidia) using both conventional and phylogenetically based statistical methods. General linear models regressing log(10) snout-heart position on log(10) snout-vent length (SVL), as well as dummy variables coding for habitat and/or clade, were compared using likelihood ratio tests and the Akaike Information Criterion. Heart distance to the tip of the snout scaled isometrically with SVL. In all instances, phylogenetic models that incorporated transformation of the branch lengths under an Ornstein-Uhlenbeck model of evolution (to mimic stabilizing selection) better fit the data as compared with their nonphylogenetic counterparts. The best-fit model predicting snake heart position included aspects of both habitat and clade and indicated that arboreal snakes in our study tend to have hearts placed more posteriorly, opposite the trend identified in previous studies. Phylogenetic signal in relative heart position was apparent both within and among clades. Our results suggest that overcoming gravitational pressure gradients in snakes most likely involves the combined action of several cardiovascular and

  20. Phylogeny and biogeography of Maclura (Moraceae) and the origin of an anachronistic fruit.

    Science.gov (United States)

    Gardner, Elliot M; Sarraf, Paya; Williams, Evelyn W; Zerega, Nyree J C

    2017-12-01

    be most likely responsible for the present distribution of Maclura, as crown divergence post-dated the separation of Africa and South America. We propose revised sectional delimitations based on the phylogeny. This study represents a complete phylogenetic and biogeographic analysis of this globally distributed genus and provides a basis for future work, including a taxonomic revision. Copyright © 2017. Published by Elsevier Inc.

  1. Out of Borneo: biogeography, phylogeny and divergence date estimates of Artocarpus (Moraceae).

    Science.gov (United States)

    Williams, Evelyn W; Gardner, Elliot M; Harris, Robert; Chaveerach, Arunrat; Pereira, Joan T; Zerega, Nyree J C

    2017-03-01

    The breadfruit genus ( Artocarpus , Moraceae) includes valuable underutilized fruit tree crops with a centre of diversity in Southeast Asia. It belongs to the monophyletic tribe Artocarpeae, whose only other members include two small neotropical genera. This study aimed to reconstruct the phylogeny, estimate divergence dates and infer ancestral ranges of Artocarpeae, especially Artocarpus , to better understand spatial and temporal evolutionary relationships and dispersal patterns in a geologically complex region. To investigate the phylogeny and biogeography of Artocarpeae, this study used Bayesian and maximum likelihood approaches to analyze DNA sequences from six plastid and two nuclear regions from 75% of Artocarpus species, both neotropical Artocarpeae genera, and members of all other Moraceae tribes. Six fossil-based calibrations within the Moraceae family were used to infer divergence times. Ancestral areas and estimated dispersal events were also inferred. Artocarpeae, Artocarpus and four monophyletic Artocarpus subgenera were well supported. A late Cretaceous origin of the Artocarpeae tribe in the Americas is inferred, followed by Eocene radiation of Artocarpus in Asia, with the greatest diversification occurring during the Miocene. Borneo is reconstructed as the ancestral range of Artocarpus , with dozens of independent in situ diversification events inferred there, as well as dispersal events to other regions of Southeast Asia. Dispersal pathways of Artocarpus and its ancestors are proposed. Borneo was central in the diversification of the genus Artocarpus and probably served as the centre from which species dispersed and diversified in several directions. The greatest amount of diversification is inferred to have occurred during the Miocene, when sea levels fluctuated and land connections frequently existed between Borneo, mainland Asia, Sumatra and Java. Many species found in these areas have extant overlapping ranges, suggesting that sympatric

  2. Phylogeny of Mycobacterium tuberculosis Beijing strains constructed from polymorphisms in genes involved in DNA replication, recombination and repair.

    Science.gov (United States)

    Mestre, Olga; Luo, Tao; Dos Vultos, Tiago; Kremer, Kristin; Murray, Alan; Namouchi, Amine; Jackson, Céline; Rauzier, Jean; Bifani, Pablo; Warren, Rob; Rasolofo, Voahangy; Mei, Jian; Gao, Qian; Gicquel, Brigitte

    2011-01-20

    The Beijing family is a successful group of M. tuberculosis strains, often associated with drug resistance and widely distributed throughout the world. Polymorphic genetic markers have been used to type particular M. tuberculosis strains. We recently identified a group of polymorphic DNA repair replication and recombination (3R) genes. It was shown that evolution of M. tuberculosis complex strains can be studied using 3R SNPs and a high-resolution tool for strain discrimination was developed. Here we investigated the genetic diversity and propose a phylogeny for Beijing strains by analyzing polymorphisms in 3R genes. A group of 3R genes was sequenced in a collection of Beijing strains from different geographic origins. Sequence analysis and comparison with the ones of non-Beijing strains identified several SNPs. These SNPs were used to type a larger collection of Beijing strains and allowed identification of 26 different sequence types for which a phylogeny was constructed. Phylogenetic relationships established by sequence types were in agreement with evolutionary pathways suggested by other genetic markers, such as Large Sequence Polymorphisms (LSPs). A recent Beijing genotype (Bmyc10), which included 60% of strains from distinct parts of the world, appeared to be predominant. We found SNPs in 3R genes associated with the Beijing family, which enabled discrimination of different groups and the proposal of a phylogeny. The Beijing family can be divided into different groups characterized by particular genetic polymorphisms that may reflect pathogenic features. These SNPs are new, potential genetic markers that may contribute to better understand the success of the Beijing family.

  3. Phylogeny of Mycobacterium tuberculosis Beijing strains constructed from polymorphisms in genes involved in DNA replication, recombination and repair.

    Directory of Open Access Journals (Sweden)

    Olga Mestre

    2011-01-01

    Full Text Available The Beijing family is a successful group of M. tuberculosis strains, often associated with drug resistance and widely distributed throughout the world. Polymorphic genetic markers have been used to type particular M. tuberculosis strains. We recently identified a group of polymorphic DNA repair replication and recombination (3R genes. It was shown that evolution of M. tuberculosis complex strains can be studied using 3R SNPs and a high-resolution tool for strain discrimination was developed. Here we investigated the genetic diversity and propose a phylogeny for Beijing strains by analyzing polymorphisms in 3R genes.A group of 3R genes was sequenced in a collection of Beijing strains from different geographic origins. Sequence analysis and comparison with the ones of non-Beijing strains identified several SNPs. These SNPs were used to type a larger collection of Beijing strains and allowed identification of 26 different sequence types for which a phylogeny was constructed. Phylogenetic relationships established by sequence types were in agreement with evolutionary pathways suggested by other genetic markers, such as Large Sequence Polymorphisms (LSPs. A recent Beijing genotype (Bmyc10, which included 60% of strains from distinct parts of the world, appeared to be predominant.We found SNPs in 3R genes associated with the Beijing family, which enabled discrimination of different groups and the proposal of a phylogeny. The Beijing family can be divided into different groups characterized by particular genetic polymorphisms that may reflect pathogenic features. These SNPs are new, potential genetic markers that may contribute to better understand the success of the Beijing family.

  4. Mitochondrial phylogeny of the Chrysisignita (Hymenoptera: Chrysididae) species group based on simultaneous Bayesian alignment and phylogeny reconstruction.

    Science.gov (United States)

    Soon, Villu; Saarma, Urmas

    2011-07-01

    The ignita species group within the genus Chrysis includes over 100 cuckoo wasp species, which all lead a parasitic lifestyle and exhibit very similar morphology. The lack of robust, diagnostic morphological characters has hindered phylogenetic reconstructions and contributed to frequent misidentification and inconsistent interpretations of species in this group. Therefore, molecular phylogenetic analysis is the most suitable approach for resolving the phylogeny and taxonomy of this group. We present a well-resolved phylogeny of the Chrysis ignita species group based on mitochondrial sequence data from 41 ingroup and six outgroup taxa. Although our emphasis was on European taxa, we included samples from most of the distribution range of the C. ignita species group to test for monophyly. We used a continuous mitochondrial DNA sequence consisting of 16S rRNA, tRNA(Val), 12S rRNA and ND4. The location of the ND4 gene at the 3' end of this continuous sequence, following 12S rRNA, represents a novel mitochondrial gene arrangement for insects. Due to difficulties in aligning rRNA genes, two different Bayesian approaches were employed to reconstruct phylogeny: (1) using a reduced data matrix including only those positions that could be aligned with confidence; or (2) using the full sequence dataset while estimating alignment and phylogeny simultaneously. In addition maximum-parsimony and maximum-likelihood analyses were performed to test the robustness of the Bayesian approaches. Although all approaches yielded trees with similar topology, considerably more nodes were resolved with analyses using the full data matrix. Phylogenetic analysis supported the monophyly of the C. ignita species group and divided its species into well-supported clades. The resultant phylogeny was only partly in accordance with published subgroupings based on morphology. Our results suggest that several taxa currently treated as subspecies or names treated as synonyms may in fact constitute

  5. Underestimation of Severity of Previous Whiplash Injuries

    Science.gov (United States)

    Naqui, SZH; Lovell, SJ; Lovell, ME

    2008-01-01

    INTRODUCTION We noted a report that more significant symptoms may be expressed after second whiplash injuries by a suggested cumulative effect, including degeneration. We wondered if patients were underestimating the severity of their earlier injury. PATIENTS AND METHODS We studied recent medicolegal reports, to assess subjects with a second whiplash injury. They had been asked whether their earlier injury was worse, the same or lesser in severity. RESULTS From the study cohort, 101 patients (87%) felt that they had fully recovered from their first injury and 15 (13%) had not. Seventy-six subjects considered their first injury of lesser severity, 24 worse and 16 the same. Of the 24 that felt the violence of their first accident was worse, only 8 had worse symptoms, and 16 felt their symptoms were mainly the same or less than their symptoms from their second injury. Statistical analysis of the data revealed that the proportion of those claiming a difference who said the previous injury was lesser was 76% (95% CI 66–84%). The observed proportion with a lesser injury was considerably higher than the 50% anticipated. CONCLUSIONS We feel that subjects may underestimate the severity of an earlier injury and associated symptoms. Reasons for this may include secondary gain rather than any proposed cumulative effect. PMID:18201501

  6. Phylogeny and biogeography of hawkmoths (Lepidoptera: Sphingidae: evidence from five nuclear genes.

    Directory of Open Access Journals (Sweden)

    Akito Y Kawahara

    2009-05-01

    Full Text Available The 1400 species of hawkmoths (Lepidoptera: Sphingidae comprise one of most conspicuous and well-studied groups of insects, and provide model systems for diverse biological disciplines. However, a robust phylogenetic framework for the family is currently lacking. Morphology is unable to confidently determine relationships among most groups. As a major step toward understanding relationships of this model group, we have undertaken the first large-scale molecular phylogenetic analysis of hawkmoths representing all subfamilies, tribes and subtribes.The data set consisted of 131 sphingid species and 6793 bp of sequence from five protein-coding nuclear genes. Maximum likelihood and parsimony analyses provided strong support for more than two-thirds of all nodes, including strong signal for or against nearly all of the fifteen current subfamily, tribal and sub-tribal groupings. Monophyly was strongly supported for some of these, including Macroglossinae, Sphinginae, Acherontiini, Ambulycini, Philampelini, Choerocampina, and Hemarina. Other groupings proved para- or polyphyletic, and will need significant redefinition; these include Smerinthinae, Smerinthini, Sphingini, Sphingulini, Dilophonotini, Dilophonotina, Macroglossini, and Macroglossina. The basal divergence, strongly supported, is between Macroglossinae and Smerinthinae+Sphinginae. All genes contribute significantly to the signal from the combined data set, and there is little conflict between genes. Ancestral state reconstruction reveals multiple separate origins of New World and Old World radiations.Our study provides the first comprehensive phylogeny of one of the most conspicuous and well-studied insects. The molecular phylogeny challenges current concepts of Sphingidae based on morphology, and provides a foundation for a new classification. While there are multiple independent origins of New World and Old World radiations, we conclude that broad-scale geographic distribution in hawkmoths

  7. Phylogeny and source climate impact seed dormancy and germination of restoration-relevant forb species.

    Science.gov (United States)

    Seglias, Alexandra E; Williams, Evelyn; Bilge, Arman; Kramer, Andrea T

    2018-01-01

    For many species and seed sources used in restoration activities, specific seed germination requirements are often unknown. Because seed dormancy and germination traits can be constrained by phylogenetic history, related species are often assumed to have similar traits. However, significant variation in these traits is also present within species as a result of adaptation to local climatic conditions. A growing number of studies have attempted to disentangle how phylogeny and climate influence seed dormancy and germination traits, but they have focused primarily on species-level effects, ignoring potential population-level variation. We examined the relationships between phylogeny, climate, and seed dormancy and germination traits for 24 populations of eight native, restoration-relevant forb species found in a wide range of climatic conditions in the Southwest United States. The seeds were exposed to eight temperature and stratification length regimes designed to mimic regional climatic conditions. Phylogenetic relatedness, overall climatic conditions, and temperature conditions at the site were all significantly correlated with final germination response, with significant among-population variation in germination response across incubation treatments for seven of our eight study species. Notably, germination during stratification was significantly predicted by precipitation seasonality and differed significantly among populations for seven species. While previous studies have not examined germination during stratification as a potential trait influencing overall germination response, our results suggest that this trait should be included in germination studies as well as seed sourcing decisions. Results of this study deepen our understanding of the relationships between source climate, species identity, and germination, leading to improved seed sourcing decisions for restorations.

  8. Dated Plant Phylogenies Resolve Neogene Climate and Landscape Evolution in the Cape Floristic Region.

    Directory of Open Access Journals (Sweden)

    Vera Hoffmann

    Full Text Available In the context of molecularly-dated phylogenies, inferences informed by ancestral habitat reconstruction can yield valuable insights into the origins of biomes, palaeoenvironments and landforms. In this paper, we use dated phylogenies of 12 plant clades from the Cape Floristic Region (CFR in southern Africa to test hypotheses of Neogene climatic and geomorphic evolution. Our combined dataset for the CFR strengthens and refines previous palaeoenvironmental reconstructions based on a sparse, mostly offshore fossil record. Our reconstructions show remarkable consistency across all 12 clades with regard to both the types of environments identified as ancestral, and the timing of shifts to alternative conditions. They reveal that Early Miocene land surfaces of the CFR were wetter than at present and were dominated by quartzitic substrata. These conditions continue to characterize the higher-elevation settings of the Cape Fold Belt, where they have fostered the persistence of ancient fynbos lineages. The Middle Miocene (13-17 Ma saw the development of perennial to weakly-seasonal arid conditions, with the strongly seasonal rainfall regime of the west coast arising ~6.5-8 Ma. Although the Late Miocene may have seen some exposure of the underlying shale substrata, the present-day substrate diversity of the CFR lowlands was shaped by Pliocene-Pleistocene events. Particularly important was renewed erosion, following the post-African II uplift episode, and the reworking of sediments on the coastal platform as a consequence of marine transgressions and tectonic uplift. These changes facilitated adaptive radiations in some, but not all, lineages studied.

  9. Phylogeny of the plant genus Pachypodium (Apocynaceae

    Directory of Open Access Journals (Sweden)

    Dylan O. Burge

    2013-04-01

    Full Text Available Background. The genus Pachypodium contains 21 species of succulent, generally spinescent shrubs and trees found in southern Africa and Madagascar. Pachypodium has diversified mostly into arid and semi-arid habitats of Madagascar, and has been cited as an example of a plant group that links the highly diverse arid-adapted floras of Africa and Madagascar. However, a lack of knowledge about phylogenetic relationships within the genus has prevented testing of this and other hypotheses about the group.Methodology/Principal Findings. We use DNA sequence data from the nuclear ribosomal ITS and chloroplast trnL-F region for all 21 Pachypodium species to reconstruct evolutionary relationships within the genus. We compare phylogenetic results to previous taxonomic classifications and geography. Results support three infrageneric taxa from the most recent classification of Pachypodium, and suggest that a group of African species (P. namaquanum, P. succulentum and P. bispinosum may deserve taxonomic recognition as an infrageneric taxon. However, our results do not resolve relationships among major African and Malagasy lineages of the genus.Conclusions/Significance. We present the first molecular phylogenetic analysis of Pachypodium. Our work has revealed five distinct lineages, most of which correspond to groups recognized in past taxonomic classifications. Our work also suggests that there is a complex biogeographic relationship between Pachypodium of Africa and Madagascar.

  10. Multilocus phylogeny and statistical biogeography clarify the evolutionary history of major lineages of turtles.

    Science.gov (United States)

    Pereira, Anieli G; Sterli, Juliana; Moreira, Filipe R R; Schrago, Carlos G

    2017-08-01

    Despite their complex evolutionary history and the rich fossil record, the higher level phylogeny and historical biogeography of living turtles have not been investigated in a comprehensive and statistical framework. To tackle these issues, we assembled a large molecular dataset, maximizing both taxonomic and gene sampling. As different models provide alternative biogeographical scenarios, we have explicitly tested such hypotheses in order to reconstruct a robust biogeographical history of Testudines. We scanned publicly available databases for nucleotide sequences and composed a dataset comprising 13 loci for 294 living species of Testudines, which accounts for all living genera and 85% of their extant species diversity. Phylogenetic relationships and species divergence times were estimated using a thorough evaluation of fossil information as calibration priors. We then carried out the analysis of historical biogeography of Testudines in a fully statistical framework. Our study recovered the first large-scale phylogeny of turtles with well-supported relationships following the topology proposed by phylogenomic works. Our dating result consistently indicated that the origin of the main clades, Pleurodira and Cryptodira, occurred in the early Jurassic. The phylogenetic and historical biogeographical inferences permitted us to clarify how geological events affected the evolutionary dynamics of crown turtles. For instance, our analyses support the hypothesis that the breakup of Pangaea would have driven the divergence between the cryptodiran and pleurodiran lineages. The reticulated pattern in the ancestral distribution of the cryptodiran lineage suggests a complex biogeographic history for the clade, which was supposedly related to the complex paleogeographic history of Laurasia. On the other hand, the biogeographical history of Pleurodira indicated a tight correlation with the paleogeography of the Gondwanan landmasses. Copyright © 2017 Elsevier Inc. All rights

  11. Genus-level taxonomic changes implied by the mitochondrial phylogeny of grey mullets (Teleostei: Mugilidae).

    Science.gov (United States)

    Durand, Jean-Dominique; Chen, Wei-Jen; Shen, Kang-Ning; Fu, Cuizhang; Borsa, Philippe

    2012-01-01

    A comprehensive mitochondrial phylogeny of the family Mugilidae (Durand et al., Mol. Phylogenet. Evol. 64 (2012) 73-92) demonstrated the polyphyly or paraphyly of a proportion of the 20 genera in the family. Based on these results, here we propose a revised classification with 25 genera, including 15 genera currently recognized as valid (Agonostomus, Aldrichetta, Cestraeus, Chaenomugil, Chelon, Crenimugil, Ellochelon, Joturus, Mugil, Myxus, Neomyxus, Oedalechilus, Rhinomugil, Sicamugil and Trachystoma), 7 resurrected genera [Dajaus (for Agonostomus monticola), Gracilimugil (for Liza argentea), Minimugil (for Sicamugil cascasia), Osteomugil (for several species currently under Moolgarda and Valamugil, including M. cunnesius, M. engeli, M. perusii, and V. robustus), Planiliza (for Indo-Pacific Chelon spp., Indo-Pacific Liza spp., and Paramugil parmatus), Plicomugil (for Oedalechilus labiosus), and Squalomugil (for Rhinomugil nasutus)] and 3 new genera: Neochelon gen. nov. (for Liza falcipinnis), Parachelon gen. nov. (for L. grandisquamis) and Pseudomyxus gen. nov. (for Myxus capensis). Genus Chelon was shown to include exclusively Chelon spp. and Liza spp. from the Atlantic and the Mediterranean, and Liza spp. species endemic to eastern southern Africa. Genus Crenimugil should now include C. crenilabis, Moolgarda seheli and V. buchanani. Genus names Liza, Moolgarda, Paramugil, Valamugil and Xenomugil should be abandoned because they are no longer valid. Further genetic evidence is required to confirm or infirm the validity of the genus Paracrenimugil Senou 1988. The mitochondrial phylogeny of the 25 genera from the present revision is the following: [(Sicamugil, (Minimugil, Rhinomugil)); Trachystoma; ((Myxus, Neomyxus), (Cestraeus, Chaenomugil, (Agonostomus, Dajaus, Joturus), Mugil)); (Aldrichetta, Gracilimugil); Neochelon gen. nov.; (Pseudomyxus gen. nov., (Chelon, Oedalechilus, Planiliza, Parachelon gen. nov.)); ((Squalomugil, (Ellochelon, Plicomugil)), (Crenimugil

  12. Phylogeny and taxonomy of the scab and spot anthracnose fungus Elsinoë (Myriangiales, Dothideomycetes).

    Science.gov (United States)

    Fan, X L; Barreto, R W; Groenewald, J Z; Bezerra, J D P; Pereira, O L; Cheewangkoon, R; Mostert, L; Tian, C M; Crous, P W

    2017-06-01

    Species of Elsinoë are phytopathogens causing scab and spot anthracnose on many plants, including some economically important crops such as avocado, citrus, grapevines, and ornamentals such as poinsettias, field crops and woody hosts. Disease symptoms are often easily recognisable, and referred to as signature-bearing diseases, for the cork-like appearance of older infected tissues with scab-like appearance. In some Elsinoë -host associations the resulting symptoms are better described as spot anthracnose. Additionally the infected plants may also show mild to severe distortions of infected organs. Isolation of Elsinoë in pure culture can be very challenging and examination of specimens collected in the field is often frustrating because of the lack of fertile structures. Current criteria for species recognition and host specificity in Elsinoë are unclear due to overlapping morphological characteristics, and the lack of molecular and pathogenicity data. In the present study we revised the taxonomy of Elsinoë based on DNA sequence and morphological data derived from 119 isolates, representing 67 host genera from 17 countries, including 64 ex-type cultures. Combined analyses of ITS, LSU, rpb2 and TEF1-α DNA sequence data were used to reconstruct the backbone phylogeny of the genus Elsinoë . Based on the single nomenclature for fungi, 26 new combinations are proposed in Elsinoë for species that were originally described in Sphaceloma . A total of 13 species are epitypified with notes on their taxonomy and phylogeny. A further eight new species are introduced, leading to a total of 75 Elsinoë species supported by molecular data in the present study. For the most part species of Elsinoë appear to be host specific, although the majority of the species treated are known only from a few isolates, and further collections and pathogenicity studies will be required to reconfirm this conclusion.

  13. Phylogeny and taxonomy of the scab and spot anthracnose fungus Elsinoë (Myriangiales, Dothideomycetes

    Directory of Open Access Journals (Sweden)

    X.L. Fan

    2017-06-01

    Full Text Available Species of Elsinoë are phytopathogens causing scab and spot anthracnose on many plants, including some economically important crops such as avocado, citrus, grapevines, and ornamentals such as poinsettias, field crops and woody hosts. Disease symptoms are often easily recognisable, and referred to as signature-bearing diseases, for the cork-like appearance of older infected tissues with scab-like appearance. In some Elsinoë-host associations the resulting symptoms are better described as spot anthracnose. Additionally the infected plants may also show mild to severe distortions of infected organs. Isolation of Elsinoë in pure culture can be very challenging and examination of specimens collected in the field is often frustrating because of the lack of fertile structures. Current criteria for species recognition and host specificity in Elsinoë are unclear due to overlapping morphological characteristics, and the lack of molecular and pathogenicity data. In the present study we revised the taxonomy of Elsinoë based on DNA sequence and morphological data derived from 119 isolates, representing 67 host genera from 17 countries, including 64 ex-type cultures. Combined analyses of ITS, LSU, rpb2 and TEF1-α DNA sequence data were used to reconstruct the backbone phylogeny of the genus Elsinoë. Based on the single nomenclature for fungi, 26 new combinations are proposed in Elsinoë for species that were originally described in Sphaceloma. A total of 13 species are epitypified with notes on their taxonomy and phylogeny. A further eight new species are introduced, leading to a total of 75 Elsinoë species supported by molecular data in the present study. For the most part species of Elsinoë appear to be host specific, although the majority of the species treated are known only from a few isolates, and further collections and pathogenicity studies will be required to reconfirm this conclusion.

  14. Phylogeny of Neotropical Cercosaura (Squamata: Gymnophthalmidae) lizards.

    Science.gov (United States)

    Torres-Carvajal, Omar; Lobos, Simón E; Venegas, Pablo J

    2015-12-01

    Among Neotropical lizards, the geographically widespread gymnophthalmid Cercosaura as currently defined includes lowland and highland taxa from Panama to Argentina, with some species occurring in the northern Andes. In this study we analyze three mitochondrial (12S, 16S, ND4) and one nuclear (c-mos) gene using Bayesian methods to clarify the phylogenetic relationships among most species of Cercosaura based on a well-supported phylogenetic hypothesis that also includes a large sample of other taxa within Cercosaurini. The phylogenetic tree obtained in this paper shows that Cercosaura as currently defined is not monophyletic. Two species from the northern Andes (C. dicra and C. vertebralis) are nested within Pholidobolus, which has been formerly recognized as a major radiation along the Andes of Ecuador and Colombia. Therefore, Cercosaura has probably not diversified in the northern Andes, although the phylogenetic position of C. hypnoides from the Andes of Colombia remains unknown. Tree topology and genetic distances support both recognition of C. ocellata bassleri as a distinct species, C. bassleri, and recognition of C. argula and C. oshaughnessyi as two different species. In the interest of promoting clarity and precision regarding the names of clades of gymnophthalmid lizards, we propose a phylogenetic definition of Cercosaura. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Recapitulating phylogenies using k-mers: from trees to networks.

    Science.gov (United States)

    Bernard, Guillaume; Ragan, Mark A; Chan, Cheong Xin

    2016-01-01

    Ernst Haeckel based his landmark Tree of Life on the supposed ontogenic recapitulation of phylogeny, i.e. that successive embryonic stages during the development of an organism re-trace the morphological forms of its ancestors over the course of evolution. Much of this idea has since been discredited. Today, phylogenies are often based on families of molecular sequences. The standard approach starts with a multiple sequence alignment, in which the sequences are arranged relative to each other in a way that maximises a measure of similarity position-by-position along their entire length. A tree (or sometimes a network) is then inferred. Rigorous multiple sequence alignment is computationally demanding, and evolutionary processes that shape the genomes of many microbes (bacteria, archaea and some morphologically simple eukaryotes) can add further complications. In particular, recombination, genome rearrangement and lateral genetic transfer undermine the assumptions that underlie multiple sequence alignment, and imply that a tree-like structure may be too simplistic. Here, using genome sequences of 143 bacterial and archaeal genomes, we construct a network of phylogenetic relatedness based on the number of shared k -mers (subsequences at fixed length k ). Our findings suggest that the network captures not only key aspects of microbial genome evolution as inferred from a tree, but also features that are not treelike. The method is highly scalable, allowing for investigation of genome evolution across a large number of genomes. Instead of using specific regions or sequences from genome sequences, or indeed Haeckel's idea of ontogeny, we argue that genome phylogenies can be inferred using k -mers from whole-genome sequences. Representing these networks dynamically allows biological questions of interest to be formulated and addressed quickly and in a visually intuitive manner.

  16. Detection, phylogeny and population dynamics of syntrophic propionate - oxidizing bacteria in anaerobic granular sludge

    NARCIS (Netherlands)

    Harmsen, H.J.M.

    1996-01-01


    The research described this thesis concerns the diversity and phylogeny of syntrophic propionate-oxidizing bacteria and their ecology in granular sludge, from which they were obtained. 16S rRNA was used as a molecular marker to study both the phylogeny and the ecology of these bacteria.

  17. The co phylogeny reconstruction problem is NP-complete.

    Science.gov (United States)

    Ovadia, Y; Fielder, D; Conow, C; Libeskind-Hadas, R

    2011-01-01

    The co phylogeny reconstruction problem is that of finding minimum cost explanations of differences between historical associations. The problem arises in parasitology, molecular systematics, and biogeography. Existing software tools for this problem either have worst-case exponential time or use heuristics that do not guarantee optimal solutions. To date, no polynomial time optimal algorithms have been found for this problem. In this article, we prove that the problem is NP-complete, suggesting that future research on algorithms for this problem should seek better polynomial-time approximation algorithms and heuristics rather than optimal solutions.

  18. Molecular phylogeny of Chrysomya albiceps and C. rufifacies (Diptera: Calliphoridae).

    Science.gov (United States)

    Wells, J D; Sperling, F A

    1999-05-01

    Mitochondrial DNA was used to infer the phylogeny and genetic divergences of Chrysomya albiceps (Wiedemann) and C. rufifacies (Maquart) specimens from widely separated localities in the Old and New World. Analyses based on a 2.3-kb region including the genes for cytochrome oxidase subunits I and II indicated that the 2 species were separate monophyletic lineages that have been separated for > 1 million years. Analysis of DNA, in the form of either sequence or restriction fragment-length polymorphism (RFLP) data, will permit the identification of problematic specimens.

  19. Adipokinetic hormones provide inference for the phylogeny of Odonata

    Czech Academy of Sciences Publication Activity Database

    Gäde, G.; Šimek, Petr; Fescemyer, H. W.

    2011-01-01

    Roč. 57, č. 1 (2011), s. 174-178 ISSN 0022-1910 R&D Projects: GA ČR GA203/09/2014 Grant - others:University of Cape Town for a Block grant(ZA) IFR 2008071500048; National Research Foundation, Pretoria(ZA) FA 2007021300002; USDA, ARS Specific Cooperative Agreement(US) 58-6402-5-066; US National Science Foundation(US) EF-0412651 Institutional research plan: CEZ:AV0Z50070508 Keywords : phylogeny of Odonata * Libellulidae * Corduliidae Subject RIV: ED - Physiology Impact factor: 2.236, year: 2011

  20. Mixed heterolobosean and novel gregarine lineage genes from culture ATCC 50646: Long-branch artefacts, not lateral gene transfer, distort α-tubulin phylogeny.

    Science.gov (United States)

    Cavalier-Smith, Thomas

    2015-04-01

    Contradictory and confusing results can arise if sequenced 'monoprotist' samples really contain DNA of very different species. Eukaryote-wide phylogenetic analyses using five genes from the amoeboflagellate culture ATCC 50646 previously implied it was an undescribed percolozoan related to percolatean flagellates (Stephanopogon, Percolomonas). Contrastingly, three phylogenetic analyses of 18S rRNA alone, did not place it within Percolozoa, but as an isolated deep-branching excavate. I resolve that contradiction by sequence phylogenies for all five genes individually, using up to 652 taxa. Its 18S rRNA sequence (GQ377652) is near-identical to one from stained-glass windows, somewhat more distant from one from cooling-tower water, all three related to terrestrial actinocephalid gregarines Hoplorhynchus and Pyxinia. All four protein-gene sequences (Hsp90; α-tubulin; β-tubulin; actin) are from an amoeboflagellate heterolobosean percolozoan, not especially deeply branching. Contrary to previous conclusions from trees combining protein and rRNA sequences or rDNA trees including Eozoa only, this culture does not represent a major novel deep-branching eukaryote lineage distinct from Heterolobosea, and thus lacks special significance for deep eukaryote phylogeny, though the rDNA sequence is important for gregarine phylogeny. α-Tubulin trees for over 250 eukaryotes refute earlier suggestions of lateral gene transfer within eukaryotes, being largely congruent with morphology and other gene trees. Copyright © 2015. Published by Elsevier GmbH.

  1. A molecular phylogeny of nephilid spiders: evolutionary history of a model lineage.

    Science.gov (United States)

    Kuntner, Matjaž; Arnedo, Miquel A; Trontelj, Peter; Lokovšek, Tjaša; Agnarsson, Ingi

    2013-12-01

    we set the minimum bound for the stems of Nephilidae at 40 Ma and of Nephila at 16 Ma to accommodate Palaeonephila from Baltic amber and Dominican Nephila species, respectively. We also calibrated and dated the phylogeny under three different interpretations of the enigmatic 165 Ma fossil Nephila jurassica, which we suspected based on morphology to be misplaced. We found that by treating N. jurassica as stem Nephila or nephilid the inferred clade ages were vastly older, and the mitochondrial substitution rates much slower than expected from other empirical spider data. This suggests that N. jurassica is not a Nephila nor a nephilid, but possibly a stem orbicularian. The estimated nephilid ancestral age (40-60 Ma) rejects a Gondwanan origin of the family as most of the southern continents were already split at that time. The origin of the family is equally likely to be African, Asian, or Australasian, with a global biogeographic history dominated by dispersal events. A reinterpretation of web architecture evolution suggests that a partially arboricolous, asymmetric orb web with a retreat, as exemplified by both groups of "Nephilengys", is plesiomorphic in Nephilidae, that this architecture was modified into specialized arboricolous webs in Herennia and independently in Clitaetra, and that the web became aerial, gigantic, and golden independently in both "Nephila" groups. The new topology questions previously hypothesized gradual evolution of female size from small to large, and rather suggests a more mosaic evolutionary pattern with independent female size increases from medium to giant in both "Nephila" clades, and two reversals back to medium and small; combined with male size evolution, this pattern will help detect gross evolutionary events leading to extreme sexual size dimorphism, and its morphological and behavioral correlates. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.

    Science.gov (United States)

    Guindon, Stéphane; Dufayard, Jean-François; Lefort, Vincent; Anisimova, Maria; Hordijk, Wim; Gascuel, Olivier

    2010-05-01

    PhyML is a phylogeny software based on the maximum-likelihood principle. Early PhyML versions used a fast algorithm performing nearest neighbor interchanges to improve a reasonable starting tree topology. Since the original publication (Guindon S., Gascuel O. 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704), PhyML has been widely used (>2500 citations in ISI Web of Science) because of its simplicity and a fair compromise between accuracy and speed. In the meantime, research around PhyML has continued, and this article describes the new algorithms and methods implemented in the program. First, we introduce a new algorithm to search the tree space with user-defined intensity using subtree pruning and regrafting topological moves. The parsimony criterion is used here to filter out the least promising topology modifications with respect to the likelihood function. The analysis of a large collection of real nucleotide and amino acid data sets of various sizes demonstrates the good performance of this method. Second, we describe a new test to assess the support of the data for internal branches of a phylogeny. This approach extends the recently proposed approximate likelihood-ratio test and relies on a nonparametric, Shimodaira-Hasegawa-like procedure. A detailed analysis of real alignments sheds light on the links between this new approach and the more classical nonparametric bootstrap method. Overall, our tests show that the last version (3.0) of PhyML is fast, accurate, stable, and ready to use. A Web server and binary files are available from http://www.atgc-montpellier.fr/phyml/.

  3. Phylogeny of the Gondwanan beetle family Ulodidae (Tenebrionoidea).

    Science.gov (United States)

    Leschen, Richard A B; Escalona, Hermes E; Elgueta, Mario

    2016-07-18

    Ulodidae is a small family of saproxylic and fungus feeding beetles restricted to New Zealand, Australia, Chile and New Caledonia. The phylogeny of this family is presented for the first time, based on a cladistic analysis of 53 adult characters from 16 ulodid genera, rooted with Parahelops Waterhouse (Promecheilidae). The topology shows Arthopus Sharp at the base of the tree and confirms the placement of Meryx Latreille as a member of Ulodidae and closely related to the Chilean genus Trachyderas Philippi & Philippi. The extinct New Zealand genus Waitomophylax Leschen & Rhode was placed among a clade consisting of Brouniphylax Strand, Exohadrus Broun, and Pteroderes Germain. Two new genera and two new species are described: Ulobostrichus gen. n. (type species: Ulobostrichus monteithi sp. n.) and Ulocyphaleus gen. n. (type species: Cyphaleus valdivianus Philippi & Philippi, 1864, now U. valdivianus (Philippi & Philippi) n. comb.; U. laetus sp. n.). Dipsaconia pyritosa Pascoe is designated as the type species of Dipsaconia Pascoe and a lectotype was designated for C. valdivianus. A fully illustrated key to the genera and a checklist of the 16 genera and 42 species is included. Based on the phylogeny, the following characters are derived in the family: tuberculate body surface and the presence of scales and /or encrustations. The presence of pore-fields in the abdominal cuticle has evolved at least three times in Meryx Latreille (Australia), Syrphetodes Pascoe (New Zealand) and Trachyderastes Kaszab (New Caledonia).

  4. Phylogeny and Evolution of Bracts and Bracteoles in Tacca (Dioscoreaceae)

    Institute of Scientific and Technical Information of China (English)

    Ling Zhang; Hong-Tao Li; Lian-Ming Gao; Jun-Bo Yang; De-Zhu Li; Charles H. Cannon; Jin Chen; Qing-Jun Li

    2011-01-01

    Most species in the genus Tacca (Dioscoreaceae) feature green to black purple,conspicuous inflorescence involucral bracts with variable shapes,motile filiform appendages (bracteoles),and diverse types of inflorescence morphology.To infer the evolution of these inflorescence traits,we reconstructed the molecular phylogeny of the genus,using DNA sequences from one nuclear,one mitochondrial,and three plastid loci (Internal Transcribed Spacer (ITS),atpA,rbcL,trnL-F,and trnH-psbA).Involucres and bracteoles characters were mapped onto the phylogeny to analyze the sequence of inflorescence trait evolution.In all analyses,species with showy involucres and bracteoles formed the most derived clade,while ancestral Tacca had small and plain involucres and short bracteoles,namely less conspicuous inflorescence structures.Two of the species with the most elaborate inflorescence morphologies (T.chantrieri in southeast China and T.integrifolia in Tibet),are predominantly self-pollinated,indicating that these conspicuous floral displays have other functions rather than pollinator attraction.We hypothesize that the motile bracteoles and involucres may facilitate selfing; display photosynthesis in the dim understory,and protect flowers from herbivory.

  5. Molecular Phylogeny of the Bamboo Sharks (Chiloscyllium spp.

    Directory of Open Access Journals (Sweden)

    Noor Haslina Masstor

    2014-01-01

    Full Text Available Chiloscyllium, commonly called bamboo shark, can be found inhabiting the waters of the Indo-West Pacific around East Asian countries such as Malaysia, Myanmar, Thailand, Singapore, and Indonesia. The International Union for Conservation of Nature (IUCN Red List has categorized them as nearly threatened sharks out of their declining population status due to overexploitation. A molecular study was carried out to portray the systematic relationships within Chiloscyllium species using 12S rRNA and cytochrome b gene sequences. Maximum parsimony and Bayesian were used to reconstruct their phylogeny trees. A total of 381 bp sequences’ lengths were successfully aligned in the 12S rRNA region, with 41 bp sites being parsimony-informative. In the cytochrome b region, a total of 1120 bp sites were aligned, with 352 parsimony-informative characters. All analyses yield phylogeny trees on which C. indicum has close relationships with C. plagiosum. C. punctatum is sister taxon to both C. indicum and C. plagiosum while C. griseum and C. hasseltii formed their own clade as sister taxa. These Chiloscyllium classifications can be supported by some morphological characters (lateral dermal ridges on the body, coloring patterns, and appearance of hypobranchials and basibranchial plate that can clearly be used to differentiate each species.

  6. Mixed integer linear programming for maximum-parsimony phylogeny inference.

    Science.gov (United States)

    Sridhar, Srinath; Lam, Fumei; Blelloch, Guy E; Ravi, R; Schwartz, Russell

    2008-01-01

    Reconstruction of phylogenetic trees is a fundamental problem in computational biology. While excellent heuristic methods are available for many variants of this problem, new advances in phylogeny inference will be required if we are to be able to continue to make effective use of the rapidly growing stores of variation data now being gathered. In this paper, we present two integer linear programming (ILP) formulations to find the most parsimonious phylogenetic tree from a set of binary variation data. One method uses a flow-based formulation that can produce exponential numbers of variables and constraints in the worst case. The method has, however, proven extremely efficient in practice on datasets that are well beyond the reach of the available provably efficient methods, solving several large mtDNA and Y-chromosome instances within a few seconds and giving provably optimal results in times competitive with fast heuristics than cannot guarantee optimality. An alternative formulation establishes that the problem can be solved with a polynomial-sized ILP. We further present a web server developed based on the exponential-sized ILP that performs fast maximum parsimony inferences and serves as a front end to a database of precomputed phylogenies spanning the human genome.

  7. A synthetic phylogeny of freshwater crayfish: insights for conservation

    Science.gov (United States)

    Owen, Christopher L.; Bracken-Grissom, Heather; Stern, David; Crandall, Keith A.

    2015-01-01

    Phylogenetic systematics is heading for a renaissance where we shift from considering our phylogenetic estimates as a static image in a published paper and taxonomies as a hardcopy checklist to treating both the phylogenetic estimate and dynamic taxonomies as metadata for further analyses. The Open Tree of Life project (opentreeoflife.org) is developing synthesis tools for harnessing the power of phylogenetic inference and robust taxonomy to develop a synthetic tree of life. We capitalize on this approach to estimate a synthesis tree for the freshwater crayfish. The crayfish make an exceptional group to demonstrate the utility of the synthesis approach, as there recently have been a number of phylogenetic studies on the crayfishes along with a robust underlying taxonomic framework. Importantly, the crayfish have also been extensively assessed by an IUCN Red List team and therefore have accurate and up-to-date area and conservation status data available for analysis within a phylogenetic context. Here, we develop a synthesis phylogeny for the world's freshwater crayfish and examine the phylogenetic distribution of threat. We also estimate a molecular phylogeny based on all available GenBank crayfish sequences and use this tree to estimate divergence times and test for divergence rate variation. Finally, we conduct EDGE and HEDGE analyses and identify a number of species of freshwater crayfish of highest priority in conservation efforts. PMID:25561670

  8. Phylogeny and temporal diversification of darters (Percidae: Etheostomatinae).

    Science.gov (United States)

    Near, Thomas J; Bossu, Christen M; Bradburd, Gideon S; Carlson, Rose L; Harrington, Richard C; Hollingsworth, Phillip R; Keck, Benjamin P; Etnier, David A

    2011-10-01

    Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of

  9. BPhyOG: An interactive server for genome-wide inference of bacterial phylogenies based on overlapping genes

    Directory of Open Access Journals (Sweden)

    Lin Kui

    2007-07-01

    Full Text Available Abstract Background Overlapping genes (OGs in bacterial genomes are pairs of adjacent genes of which the coding sequences overlap partly or entirely. With the rapid accumulation of sequence data, many OGs in bacterial genomes have now been identified. Indeed, these might prove a consistent feature across all microbial genomes. Our previous work suggests that OGs can be considered as robust markers at the whole genome level for the construction of phylogenies. An online, interactive web server for inferring phylogenies is needed for biologists to analyze phylogenetic relationships among a set of bacterial genomes of interest. Description BPhyOG is an online interactive server for reconstructing the phylogenies of completely sequenced bacterial genomes on the basis of their shared overlapping genes. It provides two tree-reconstruction methods: Neighbor Joining (NJ and Unweighted Pair-Group Method using Arithmetic averages (UPGMA. Users can apply the desired method to generate phylogenetic trees, which are based on an evolutionary distance matrix for the selected genomes. The distance between two genomes is defined by the normalized number of their shared OG pairs. BPhyOG also allows users to browse the OGs that were used to infer the phylogenetic relationships. It provides detailed annotation for each OG pair and the features of the component genes through hyperlinks. Users can also retrieve each of the homologous OG pairs that have been determined among 177 genomes. It is a useful tool for analyzing the tree of life and overlapping genes from a genomic standpoint. Conclusion BPhyOG is a useful interactive web server for genome-wide inference of any potential evolutionary relationship among the genomes selected by users. It currently includes 177 completely sequenced bacterial genomes containing 79,855 OG pairs, the annotation and homologous OG pairs of which are integrated comprehensively. The reliability of phylogenies complemented by

  10. Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts

    Science.gov (United States)

    Woese, C. R.; Achenbach, L.; Rouviere, P.; Mandelco, L.

    1991-01-01

    A major and too little recognized source of artifact in phylogenetic analysis of molecular sequence data is compositional difference among sequences. The problem becomes particularly acute when alignments contain ribosomal RNAs from both mesophilic and thermophilic species. Among prokaryotes the latter are considerably higher in G + C content than the former, which often results in artificial clustering of thermophilic lineages and their being placed artificially deep in phylogenetic trees. In this communication we review archaeal phylogeny in the light of this consideration, focusing in particular on the phylogenetic position of the sulfate reducing species Archaeoglobus fulgidus, using both 16S rRNA and 23S rRNA sequences. The analysis shows clearly that the previously reported deep branching of the A. fulgidus lineage (very near the base of the euryarchaeal side of the archaeal tree) is incorrect, and that the lineage actually groups with a previously recognized unit that comprises the Methanomicrobiales and extreme halophiles.

  11. Molecular phylogeny and phylogeography of genus Pseudois (Bovidae, Cetartiodactyla): New insights into the contrasting phylogeographic structure.

    Science.gov (United States)

    Tan, Shuai; Wang, Zhihong; Jiang, Lichun; Peng, Rui; Zhang, Tao; Peng, Quekun; Zou, Fangdong

    2017-09-01

    Blue sheep, Pseudois nayaur , is endemic to the Tibetan Plateau and the surrounding mountains, which are the highest-elevation areas in the world. Classical morphological taxonomy suggests that there are two subspecies in genus Pseudois (Bovidae, Artiodactyla), namely Pseudois nayaur nayaur and Pseudois nayaur szechuanensis . However, the validity and geographic characteristics of these subspecies have never been carefully discussed and analyzed. This may be partially because previous studies have mainly focused on the vague taxonomic status of Pseudois schaeferi (dwarf blue sheep). Thus, there is an urgent need to investigate the evolutionary relationship and taxonomy system of this genus. This study enriches a previous dataset by providing a large number of new samples, based on a total of 225 samples covering almost the entire distribution of blue sheep. Molecular data from cytochrome b and the mitochondrial control region sequences were used to reconstruct the phylogeny of this species. The phylogenetic inferences show that vicariance plays an important role in diversification within this genus. In terms of molecular dating results and biogeographic analyses, the striking biogeographic pattern coincides significantly with major geophysical events. Although the results raise doubt about the present recognized distribution range of blue sheep, they have corroborated the validity of the identified subspecies in genus Pseudois . Meanwhile, these results demonstrate that the two geographically distinct populations, the Helan Mountains and Pamir Plateau populations, have been significantly differentiated from the identified subspecies, a finding that challenges the conventional taxonomy of blue sheep.

  12. The Phylogeny of Rickettsia Using Different Evolutionary Signatures: How Tree-Like is Bacterial Evolution?

    Science.gov (United States)

    Murray, Gemma G. R.; Weinert, Lucy A.; Rhule, Emma L.; Welch, John J.

    2016-01-01

    Rickettsia is a genus of intracellular bacteria whose hosts and transmission strategies are both impressively diverse, and this is reflected in a highly dynamic genome. Some previous studies have described the evolutionary history of Rickettsia as non-tree-like, due to incongruity between phylogenetic reconstructions using different portions of the genome. Here, we reconstruct the Rickettsia phylogeny using whole-genome data, including two new genomes from previously unsampled host groups. We find that a single topology, which is supported by multiple sources of phylogenetic signal, well describes the evolutionary history of the core genome. We do observe extensive incongruence between individual gene trees, but analyses of simulations over a single topology and interspersed partitions of sites show that this is more plausibly attributed to systematic error than to horizontal gene transfer. Some conflicting placements also result from phylogenetic analyses of accessory genome content (i.e., gene presence/absence), but we argue that these are also due to systematic error, stemming from convergent genome reduction, which cannot be accommodated by existing phylogenetic methods. Our results show that, even within a single genus, tests for gene exchange based on phylogenetic incongruence may be susceptible to false positives. PMID:26559010

  13. A comprehensive molecular phylogeny of dalytyphloplanida (platyhelminthes: rhabdocoela reveals multiple escapes from the marine environment and origins of symbiotic relationships.

    Directory of Open Access Journals (Sweden)

    Niels Van Steenkiste

    Full Text Available In this study we elaborate the phylogeny of Dalytyphloplanida based on complete 18S rDNA (156 sequences and partial 28S rDNA (125 sequences, using a Maximum Likelihood and a Bayesian Inference approach, in order to investigate the origin of a limnic or limnoterrestrial and of a symbiotic lifestyle in this large group of rhabditophoran flatworms. The results of our phylogenetic analyses and ancestral state reconstructions indicate that dalytyphloplanids have their origin in the marine environment and that there was one highly successful invasion of the freshwater environment, leading to a large radiation of limnic and limnoterrestrial dalytyphloplanids. This monophyletic freshwater clade, Limnotyphloplanida, comprises the taxa Dalyelliidae, Temnocephalida, and most Typhloplanidae. Temnocephalida can be considered ectosymbiotic Dalyelliidae as they are embedded within this group. Secondary returns to brackish water and marine environments occurred relatively frequently in several dalyeliid and typhloplanid taxa. Our phylogenies also show that, apart from the Limnotyphloplanida, there have been only few independent invasions of the limnic environment, and apparently these were not followed by spectacular speciation events. The distinct phylogenetic positions of the symbiotic taxa also suggest multiple origins of commensal and parasitic life strategies within Dalytyphloplanida. The previously established higher-level dalytyphloplanid clades are confirmed in our topologies, but many of the traditional families are not monophyletic. Alternative hypothesis testing constraining the monophyly of these families in the topologies and using the approximately unbiased test, also statistically rejects their monophyly.

  14. Evaluating fossil calibrations for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches.

    Science.gov (United States)

    Lukoschek, Vimoksalehi; Scott Keogh, J; Avise, John C

    2012-01-01

    Evolutionary and biogeographic studies increasingly rely on calibrated molecular clocks to date key events. Although there has been significant recent progress in development of the techniques used for molecular dating, many issues remain. In particular, controversies abound over the appropriate use and placement of fossils for calibrating molecular clocks. Several methods have been proposed for evaluating candidate fossils; however, few studies have compared the results obtained by different approaches. Moreover, no previous study has incorporated the effects of nucleotide saturation from different data types in the evaluation of candidate fossils. In order to address these issues, we compared three approaches for evaluating fossil calibrations: the single-fossil cross-validation method of Near, Meylan, and Shaffer (2005. Assessing concordance of fossil calibration points in molecular clock studies: an example using turtles. Am. Nat. 165:137-146), the empirical fossil coverage method of Marshall (2008. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. Am. Nat. 171:726-742), and the Bayesian multicalibration method of Sanders and Lee (2007. Evaluating molecular clock calibrations using Bayesian analyses with soft and hard bounds. Biol. Lett. 3:275-279) and explicitly incorporate the effects of data type (nuclear vs. mitochondrial DNA) for identifying the most reliable or congruent fossil calibrations. We used advanced (Caenophidian) snakes as a case study; however, our results are applicable to any taxonomic group with multiple candidate fossils, provided appropriate taxon sampling and sufficient molecular sequence data are available. We found that data type strongly influenced which fossil calibrations were identified as outliers, regardless of which method was used. Despite the use of complex partitioned models of sequence evolution and multiple calibrations throughout the tree, saturation

  15. Evolution and phylogeny of the mud shrimps (Crustacea: Decapoda) revealed from complete mitochondrial genomes.

    Science.gov (United States)

    Lin, Feng-Jiau; Liu, Yuan; Sha, Zhongli; Tsang, Ling Ming; Chu, Ka Hou; Chan, Tin-Yam; Liu, Ruiyu; Cui, Zhaoxia

    2012-11-16

    The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea) are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt) genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea), Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea). All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major) and two Axiidea species (N. glyptocercus and N. thermophiles) share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. Phylogenetic analyses on the mt genome sequences and the distinct gene orders provide further

  16. Morphology, ultrastructure, molecular phylogeny, and autecology of Euplotes elegans Kahl, 1932 (Hypotrichida; Euplotidae) isolated from the anoxic Mariager Fjord, Denmark.

    Science.gov (United States)

    Julian Schwarz, M V; Zuendorf, Alexandra; Stoeck, Thorsten

    2007-01-01

    The morphology, autecology, and molecular phylogeny of an euryhaline Euplotes isolate collected from the anoxic water column of the Mariager Fjord in Denmark were investigated. The isolate matches the original description of Euplotes elegans Kahl, 1932 very well. However, its dorsal silverline system is clearly distinct from the redescription of this species by Tuffrau. Thus, a neotypification is proposed for E. elegans Kahl, 1932. The oval-shaped cell has a mean size of 107 x 51 microm and is characterized by 9.4 dorsolateral kineties, seven prominent dorsal ridges, large elongated ampullae, which encircle the dorsal kinetids, 18 kinetids in the middorsal row, nine frontoventral cirri, five transversal cirri, and three caudal cirri (two right caudal cirri and one left marginal cirrus). The dorsal silverline system is of the double type with the narrow polygons located on the right side of the dorsal kinetids. The ecological tolerances of this species to pH, salinity, temperature, and oxygen match the ambient environmental conditions of the sampling site. Molecular phylogeny was studied using small subunit rRNA (SSU rRNA) gene sequences. The molecular data cluster E. elegans with Euplotes raikovi, a member of the Euplotopsis group. The data suggest that the E. elegans-E. raikovi clade represents an isolated and deep branch at the base of the Euplotes tree.

  17. Mitochondrial phylogeny and biogeographic history of the Greek endemic land-snail genus Codringtonia Kobelt 1898 (Gastropoda, Pulmonata, Helicidae).

    Science.gov (United States)

    Kotsakiozi, Panayiota; Parmakelis, Aristeidis; Giokas, Sinos; Papanikolaou, Irene; Valakos, Efstratios D

    2012-02-01

    The aim of this work was to infer the phylogeny of the Greek endemic land-snail genus Codringtonia Kobelt 1898, estimate the time frame of the radiation of the genus, and propose a biogeographic scenario that could explain the contemporary distribution of Codringtonia lineages. The study took place in the districts of Peloponnese, Central Greece and Epirus of mainland Greece. Sequence data originating from three mtDNA genes (COI, COII, and 16S rDNA) were used to infer the phylogeny of the eight nominal Codringtonia species. Furthermore, the radiation time-frame of extant Codringtonia species was estimated using a relaxed molecular clock analysis and mtDNA substitution rates of land snails. The phylogenetic analysis supported the existence of six Codringtonia lineages in Greece and indicated that one nominal species (Codringtonia neocrassa) might belong to a separate genus distantly related to Codringtonia. The time frame of differentiation of Codringtonia species was placed in the Late Miocene-Pleistocene epoch. The dispersal-vicariance analysis performed indicated that most probably Codringtonia exhibited a north-to-south spread with the ancestral area being that of central Greek mainland, accompanied with duplication (speciation) and vicariance events. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Chromosome phylogenies of man, great apes, and Old World monkeys.

    Science.gov (United States)

    De Grouchy, J

    1987-08-31

    The karyotypes of man and of the closely related Pongidae--chimpanzee, gorilla, and orangutan--differ by a small number of well known rearrangements, mainly pericentric inversions and one fusion which reduced the chromosome number from 48 in the Pongidae to 46 in man. Dutrillaux et al. (1973, 1975, 1979) reconstructed the chromosomal phylogeny of the entire primate order. More and more distantly related species were compared thus moving backward in evolution to the common ancestors of the Pongidae, of the Cercopithecoidae, the Catarrhini, the Platyrrhini, the Prosimians, and finally the common ancestor of all primates. Descending the pyramid it becomes possible to assign the rearrangements that occurred in each phylum, and the one that led to man in particular. The main conclusions are that this phylogeny is compatible with the occurrence during evolution of simple chromosome rearrangements--inversions, fusions, reciprocal translocation, acquisition or loss of heterochromatin--and that it is entirely consistent with the known primate phylogeny based on physical morphology and molecular evolution. If heterochromatin is not taken into account, man has in common with the other primates practically all of his chromosomal material as determined by chromosome banding. However, it is arranged differently, according to species, on account of chromosome rearrangements. This interpretation has been confirmed by comparative gene mapping, which established that the same chromosome segments, identified by banding, carry the same genes (Finaz et al., 1973; Human Gene Mapping 8, 1985). A remarkable observation made by Dutrillaux is that different primate phyla seem to have adopted different chromosome rearrangements in the course of evolution: inversions for the Pongidae, Robertsonian fusions for the lemurs, etc. This observation may raise many questions, among which is that of an organized evolution. Also, the breakpoints of chromosomal rearrangements observed during evolution

  19. Evolutionary Relationship of the Scale-Bearing Kraken (incertae sedis, Monadofilosa, Cercozoa, Rhizaria): Combining Ultrastructure Data and a Two-Gene Phylogeny.

    Science.gov (United States)

    Dumack, Kenneth; Mylnikov, Alexander P; Bonkowski, Michael

    2017-07-01

    The genus Kraken represents a distinct lineage of filose amoebae within the Cercozoa. Currently a single species, Kraken carinae, has been described. SSU rDNA phylogeny showed an affiliation to the Cercomonadida, branching with weak support at its base, close to Paracercomonas, Metabolomonas, and Brevimastigomonas. Light microscopical analyses showed several unique features of the genus Kraken, but ultrastructure data were lacking. In this study, K. carinae has been studied by electron microscopy, these data conjoined with a two-gene phylogeny were used to give more insight into the evolutionary relationship of the genus Kraken within Cercozoa. The data confirmed the absence of flagella, but also showed novel characteristics, such as the presence of extrusomes, osmiophilic bodies, and mitochondria with flat cristae. Surprising was the presence of single-tier scales which are carried by cell outgrowths, much of what is expected of the last common ancestor of the class Imbricatea. The phylogenetic analyses however confirmed previous results, indicating Kraken as a sister group to Paracercomonas in Sarcomonadea with an increased but still low support of 0.98 PP/63 BP. Based on the unique features of Kraken we establish the Krakenidae fam. nov. that we, due to contradictory results in morphology and phylogeny, assign incertae sedis, Monadofilosa. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Preoperative screening: value of previous tests.

    Science.gov (United States)

    Macpherson, D S; Snow, R; Lofgren, R P

    1990-12-15

    To determine the frequency of tests done in the year before elective surgery that might substitute for preoperative screening tests and to determine the frequency of test results that change from a normal value to a value likely to alter perioperative management. Retrospective cohort analysis of computerized laboratory data (complete blood count, sodium, potassium, and creatinine levels, prothrombin time, and partial thromboplastin time). Urban tertiary care Veterans Affairs Hospital. Consecutive sample of 1109 patients who had elective surgery in 1988. At admission, 7549 preoperative tests were done, 47% of which duplicated tests performed in the previous year. Of 3096 previous results that were normal as defined by hospital reference range and done closest to the time of but before admission (median interval, 2 months), 13 (0.4%; 95% CI, 0.2% to 0.7%), repeat values were outside a range considered acceptable for surgery. Most of the abnormalities were predictable from the patient's history, and most were not noted in the medical record. Of 461 previous tests that were abnormal, 78 (17%; CI, 13% to 20%) repeat values at admission were outside a range considered acceptable for surgery (P less than 0.001, frequency of clinically important abnormalities of patients with normal previous results with those with abnormal previous results). Physicians evaluating patients preoperatively could safely substitute the previous test results analyzed in this study for preoperative screening tests if the previous tests are normal and no obvious indication for retesting is present.

  1. Phylogeny mandalas of birds using the lithographs of John Gould's folio bird books.

    Science.gov (United States)

    Hasegawa, Masami; Kuroda, Sayako

    2017-12-01

    The phylogeny mandala, which is a circular phylogeny with photos or drawings of species, is a suitable way to show visually how the biodiversity has developed in the course of evolution as clarified by the molecular phylogenetics. In this article, in order to demonstrate the recent progress of avian molecular phylogenetics, six phylogeny mandalas of various taxonomic groups of birds are presented with the lithographs of John Gould's folio bird books; i.e., (1) whole Aves, (2) Passeriformes, (3) Paradisaeidae in Corvoidea (Passeriformes), (4) Meliphagoidea (Passeriformes), (5) Trochili in Apodiformes, and (6) Galliformes. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Entire plastid phylogeny of the carrot genus (Daucus, Apiaceae): Concordance with nuclear data and mitochondrial and nuclear DNA insertions to the plastid.

    Science.gov (United States)

    Spooner, David M; Ruess, Holly; Iorizzo, Massimo; Senalik, Douglas; Simon, Philipp

    2017-02-01

    We explored the phylogenetic utility of entire plastid DNA sequences in Daucus and compared the results with prior phylogenetic results using plastid and nuclear DNA sequences. We used Illumina sequencing to obtain full plastid sequences of 37 accessions of 20 Daucus taxa and outgroups, analyzed the data with phylogenetic methods, and examined evidence for mitochondrial DNA transfer to the plastid ( Dc MP). Our phylogenetic trees of the entire data set were highly resolved, with 100% bootstrap support for most of the external and many of the internal clades, except for the clade of D. carota and its most closely related species D. syrticus . Subsets of the data, including regions traditionally used as phylogenetically informative regions, provide various degrees of soft congruence with the entire data set. There are areas of hard incongruence, however, with phylogenies using nuclear data. We extended knowledge of a mitochondrial to plastid DNA insertion sequence previously named Dc MP and identified the first instance in flowering plants of a sequence of potential nuclear genome origin inserted into the plastid genome. There is a relationship of inverted repeat junction classes and repeat DNA to phylogeny, but no such relationship with nonsynonymous mutations. Our data have allowed us to (1) produce a well-resolved plastid phylogeny of Daucus , (2) evaluate subsets of the entire plastid data for phylogeny, (3) examine evidence for plastid and nuclear DNA phylogenetic incongruence, and (4) examine mitochondrial and nuclear DNA insertion into the plastid. © 2017 Spooner et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons public domain license (CC0 1.0).

  3. Linguistic Phylogenies Support Back-Migration from Beringia to Asia

    Science.gov (United States)

    Sicoli, Mark A.; Holton, Gary

    2014-01-01

    Recent arguments connecting Na-Dene languages of North America with Yeniseian languages of Siberia have been used to assert proof for the origin of Native Americans in central or western Asia. We apply phylogenetic methods to test support for this hypothesis against an alternative hypothesis that Yeniseian represents a back-migration to Asia from a Beringian ancestral population. We coded a linguistic dataset of typological features and used neighbor-joining network algorithms and Bayesian model comparison based on Bayes factors to test the fit between the data and the linguistic phylogenies modeling two dispersal hypotheses. Our results support that a Dene-Yeniseian connection more likely represents radiation out of Beringia with back-migration into central Asia than a migration from central or western Asia to North America. PMID:24621925

  4. Inference of Tumor Phylogenies with Improved Somatic Mutation Discovery

    KAUST Repository

    Salari, Raheleh

    2013-01-01

    Next-generation sequencing technologies provide a powerful tool for studying genome evolution during progression of advanced diseases such as cancer. Although many recent studies have employed new sequencing technologies to detect mutations across multiple, genetically related tumors, current methods do not exploit available phylogenetic information to improve the accuracy of their variant calls. Here, we present a novel algorithm that uses somatic single nucleotide variations (SNVs) in multiple, related tissue samples as lineage markers for phylogenetic tree reconstruction. Our method then leverages the inferred phylogeny to improve the accuracy of SNV discovery. Experimental analyses demonstrate that our method achieves up to 32% improvement for somatic SNV calling of multiple related samples over the accuracy of GATK\\'s Unified Genotyper, the state of the art multisample SNV caller. © 2013 Springer-Verlag.

  5. Future trypanosomatid phylogenies: refined homologies, supertrees and networks

    Directory of Open Access Journals (Sweden)

    Stothard JR

    2000-01-01

    Full Text Available There has been good progress in inferring the evolutionary relationships within trypanosomes from DNA data as until relatively recently, many relationships have remained rather speculative. Ongoing molecular studies have provided data that have adequately shown Trypanosoma to be monophyletic and, rather surprisingly, that there are sharply contrasting levels of genetic variation within and between the major trypanosomatid groups. There are still, however, areas of research that could benefit from further development and resolution that broadly fall upon three questions. Are the current statements of evolutionary homology within ribosomal small sub-unit genes in need of refinement? Can the published phylograms be expanded upon to form `supertrees' depicting further relationships? Does a bifurcating tree structure impose an untenable dogma upon trypanosomatid phylogeny where hybridisation or reticulate evolutionary steps have played a part? This article briefly addresses these three questions and, in so doing, hopes to stimulate further interest in the molecular evolution of the group.

  6. Pyvolve: A Flexible Python Module for Simulating Sequences along Phylogenies.

    Science.gov (United States)

    Spielman, Stephanie J; Wilke, Claus O

    2015-01-01

    We introduce Pyvolve, a flexible Python module for simulating genetic data along a phylogeny using continuous-time Markov models of sequence evolution. Easily incorporated into Python bioinformatics pipelines, Pyvolve can simulate sequences according to most standard models of nucleotide, amino-acid, and codon sequence evolution. All model parameters are fully customizable. Users can additionally specify custom evolutionary models, with custom rate matrices and/or states to evolve. This flexibility makes Pyvolve a convenient framework not only for simulating sequences under a wide variety of conditions, but also for developing and testing new evolutionary models. Pyvolve is an open-source project under a FreeBSD license, and it is available for download, along with a detailed user-manual and example scripts, from http://github.com/sjspielman/pyvolve.

  7. Pyvolve: A Flexible Python Module for Simulating Sequences along Phylogenies.

    Directory of Open Access Journals (Sweden)

    Stephanie J Spielman

    Full Text Available We introduce Pyvolve, a flexible Python module for simulating genetic data along a phylogeny using continuous-time Markov models of sequence evolution. Easily incorporated into Python bioinformatics pipelines, Pyvolve can simulate sequences according to most standard models of nucleotide, amino-acid, and codon sequence evolution. All model parameters are fully customizable. Users can additionally specify custom evolutionary models, with custom rate matrices and/or states to evolve. This flexibility makes Pyvolve a convenient framework not only for simulating sequences under a wide variety of conditions, but also for developing and testing new evolutionary models. Pyvolve is an open-source project under a FreeBSD license, and it is available for download, along with a detailed user-manual and example scripts, from http://github.com/sjspielman/pyvolve.

  8. Clostridium difficile infection: Evolution, phylogeny and molecular epidemiology.

    Science.gov (United States)

    Elliott, Briony; Androga, Grace O; Knight, Daniel R; Riley, Thomas V

    2017-04-01

    Over the recent decades, Clostridium difficile infection (CDI) has emerged as a global public health threat. Despite growing attention, C. difficile remains a poorly understood pathogen, however, the exquisite sensitivity offered by next generation sequencing (NGS) technology has enabled analysis of the genome of C. difficile, giving us access to massive genomic data on factors such as virulence, evolution, and genetic relatedness within C. difficile groups. NGS has also demonstrated excellence in investigations of outbreaks and disease transmission, in both small and large-scale applications. This review summarizes the molecular epidemiology, evolution, and phylogeny of C. difficile, one of the most important pathogens worldwide in the current antibiotic resistance era. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Automatic electromagnetic valve for previous vacuum

    International Nuclear Information System (INIS)

    Granados, C. E.; Martin, F.

    1959-01-01

    A valve which permits the maintenance of an installation vacuum when electric current fails is described. It also lets the air in the previous vacuum bomb to prevent the oil ascending in the vacuum tubes. (Author)

  10. An alu-based phylogeny of lemurs (infraorder: Lemuriformes.

    Directory of Open Access Journals (Sweden)

    Adam T McLain

    Full Text Available LEMURS (INFRAORDER: Lemuriformes are a radiation of strepsirrhine primates endemic to the island of Madagascar. As of 2012, 101 lemur species, divided among five families, have been described. Genetic and morphological evidence indicates all species are descended from a common ancestor that arrived in Madagascar ∼55-60 million years ago (mya. Phylogenetic relationships in this species-rich infraorder have been the subject of debate. Here we use Alu elements, a family of primate-specific Short INterspersed Elements (SINEs, to construct a phylogeny of infraorder Lemuriformes. Alu elements are particularly useful SINEs for the purpose of phylogeny reconstruction because they are identical by descent and confounding events between loci are easily resolved by sequencing. The genome of the grey mouse lemur (Microcebus murinus was computationally assayed for synapomorphic Alu elements. Those that were identified as Lemuriformes-specific were analyzed against other available primate genomes for orthologous sequence in which to design primers for PCR (polymerase chain reaction verification. A primate phylogenetic panel of 24 species, including 22 lemur species from all five families, was examined for the presence/absence of 138 Alu elements via PCR to establish relationships among species. Of these, 111 were phylogenetically informative. A phylogenetic tree was generated based on the results of this analysis. We demonstrate strong support for the monophyly of Lemuriformes to the exclusion of other primates, with Daubentoniidae, the aye-aye, as the basal lineage within the infraorder. Our results also suggest Lepilemuridae as a sister lineage to Cheirogaleidae, and Indriidae as sister to Lemuridae. Among the Cheirogaleidae, we show strong support for Microcebus and Mirza as sister genera, with Cheirogaleus the sister lineage to both. Our results also support the monophyly of the Lemuridae. Within Lemuridae we place Lemur and Hapalemur together to the

  11. Nuclear and original DNA application in Oryza taxonomy and phylogeny

    International Nuclear Information System (INIS)

    Romero, Gabriel O.

    1998-01-01

    Conventional taxonomy and phylogeny of germplasm are based on the tedious characterization of morphological variation. The ability to assay DNA variation that underlies morphological variation offers great promise as a convenient alternative for the genetic characterization of germplasm. Restriction fragment length polymorphism (RFLP) was used to survey DNA variation in 22 species of the genus Oryza. At the ribosomal DNA (rDNA) multigene family, 15 rDNA spacer length (sl) variants were identified using restriction enzyme Sst1 and wheatrDNA unit as probe. Particular sl variants predominated in certain isozyme groups of O. sativa, indicating a potential of sl ploymorphism in varietal classification. The distribution of sl variants supports the origin of O. sativa and O. nivara from O. rufipogon, and that O. spontanea arose from introgressions among O. sativa, O. nivara, and O. rufipogon. The distribution also suggests that the CCgenome, of all the genomes in the Officinalis complex, may be closest to the Sativa complex genomes, and it affirms the genetic position of the Officinalis complex intermediate between the Sativa and Ridleyi complexes. Variation at the Oryza organelle genomes was probed with a maize mitochondrial gene, atpA, a wheat chloroplast inverted repeat segment, p6. Results indicated that the complexes can be differentiated by their mitochondrial genome, but not their chloroplast genome when digested by Sst1 or BamH1. Therefore, the natural DNA variation in the nuclear and mitochondrial genomes has demonstrated great potential in complementing the conventional basis of taxa classification and phylogeny in the genus Oryza. (Author)

  12. Evolutionary history of tree squirrels (Rodentia, Sciurini) based on multilocus phylogeny reconstruction

    Czech Academy of Sciences Publication Activity Database

    Pečnerová, P.; Martínková, Natália

    2012-01-01

    Roč. 41, č. 3 (2012), s. 211-219 ISSN 0300-3256 Institutional research plan: CEZ:AV0Z60930519 Keywords : phylogeny * Sciurus * biogeography * colonisation Subject RIV: EG - Zoology Impact factor: 2.793, year: 2012

  13. Congruence between molecular phylogeny and cuticular design in Echiniscoidea (Tardigrada, Heterotardigrada)

    DEFF Research Database (Denmark)

    Guil, Noemi; Jørgensen, Aslak; Giribet, Gonzalo

    2013-01-01

    Although morphological characters distinguishing echiniscid genera and species are well understood, the phylogenetic relationships of these taxa are not well established. We thus investigated the phylogeny of Echiniscidae, assessed the monophyly of Echiniscus, and explored the value of cuticular ...

  14. Antifungal susceptibility and phylogeny of opportunistic members of the order mucorales.

    NARCIS (Netherlands)

    Vitale, R.G.; Hoog, G.S. de; Schwarz, P.; Dannaoui, E.; Deng, S.; Machouart, M.; Voigt, K.; Sande, W.W. van de; Dolatabadi, S.; Meis, J.F.G.M.; Walther, G.

    2012-01-01

    The in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the nuclear

  15. Antifungal susceptibility and phylogeny of opportunistic members of the order Mucorales

    NARCIS (Netherlands)

    R.G. Vitale (Roxana); G.S. de Hoog; P. Schwarz (Peter); E. Dannaoui (Eric); S. Deng (Shuwen); M. Machouart (Marie); K. Voigt (Kerstin); W.W.J. van de Sande (Wendy); S. Dolatabadi (Somayeh); J.F. Meis; G. Walther

    2012-01-01

    textabstractThe in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the

  16. Antifungal Susceptibility and Phylogeny of Opportunistic Members of the Order Mucorales

    NARCIS (Netherlands)

    Vitale, R.G.; de Hoog, G.S.; Schwarz, P.; Dannaoui, E.; Deng, S.; Machouart, M.; Voigt, K.; de Sande, W.W.J.v.; Dolatabadi, S.; Meis, J.F.; Walther, G.

    2012-01-01

    The in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the nuclear

  17. Taxonomy and phylogeny of the brown-rot fungi: Fomitopsis and its related genera

    Czech Academy of Sciences Publication Activity Database

    Han, M.L.; Chen, Y.-Y.; Shen, L.-L.; Song, J.; Vlasák, Josef; Dai, Y.-C.; Cui, B.-K.

    2016-01-01

    Roč. 80, č. 1 (2016), s. 343-373 ISSN 1560-2745 Institutional support: RVO:60077344 Keywords : Fomitopsidaceae * Multi-marker analysis * Phylogeny Subject RIV: EF - Botanics Impact factor: 13.465, year: 2016

  18. Effects of methodology and analysis strategy on robustness of pestivirus phylogeny.

    Science.gov (United States)

    Liu, Lihong; Xia, Hongyan; Baule, Claudia; Belák, Sándor; Wahlberg, Niklas

    2010-01-01

    Phylogenetic analysis of pestiviruses is a useful tool for classifying novel pestiviruses and for revealing their phylogenetic relationships. In this study, robustness of pestivirus phylogenies has been compared by analyses of the 5'UTR, and complete N(pro) and E2 gene regions separately and combined, performed by four methods: neighbour-joining (NJ), maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference (BI). The strategy of analysing the combined sequence dataset by BI, ML, and MP methods resulted in a single, well-supported tree topology, indicating a reliable and robust pestivirus phylogeny. By contrast, the single-gene analysis strategy resulted in 12 trees of different topologies, revealing different relationships among pestiviruses. These results indicate that the strategies and methodologies are two vital aspects affecting the robustness of the pestivirus phylogeny. The strategy and methodologies outlined in this paper may have a broader application in inferring phylogeny of other RNA viruses.

  19. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach

    Science.gov (United States)

    Erickson, David L.; Jones, Frank A.; Swenson, Nathan G.; Pei, Nancai; Bourg, Norman A.; Chen, Wenna; Davies, Stuart J.; Ge, Xue-jun; Hao, Zhanqing; Howe, Robert W.; Huang, Chun-Lin; Larson, Andrew J.; Lum, Shawn K. Y.; Lutz, James A.; Ma, Keping; Meegaskumbura, Madhava; Mi, Xiangcheng; Parker, John D.; Fang-Sun, I.; Wright, S. Joseph; Wolf, Amy T.; Ye, W.; Xing, Dingliang; Zimmerman, Jess K.; Kress, W. John

    2014-01-01

    Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK, and psbA-trnH) and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance (PD) metrics that are commonly used to infer assembly processes were estimated for each plot [PD, Mean Phylogenetic Distance (MPD), and Mean Nearest Taxon Distance (MNTD)]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for individual plots, estimates of

  20. The phylogeny of Heliconia (Heliconiaceae) and the evolution of floral presentation.

    Science.gov (United States)

    Iles, William J D; Sass, Chodon; Lagomarsino, Laura; Benson-Martin, Gracie; Driscoll, Heather; Specht, Chelsea D

    2017-12-01

    Heliconia (Heliconiaceae, order Zingiberales) is among the showiest plants of the Neotropical rainforest and represent a spectacular co-evolutionary radiation with hummingbirds. Despite the attractiveness and ecological importance of many Heliconia, the genus has been the subject of limited molecular phylogenetic studies. We sample seven markers from the plastid and nuclear genomes for 202 samples of Heliconia. This represents ca. 75% of accepted species and includes coverage of all taxonomic subgenera and sections. We date this phylogeny using fossils associated with other families in the Zingiberales; in particular we review and evaluate the Eocene fossil Ensete oregonense. We use this dated phylogenetic framework to evaluate the evolution of two components of flower orientation that are hypothesized to be important for modulating pollinator discrimination and pollen placement: resupination and erect versus pendant inflorescence habit. Our phylogenetic results suggest that the monophyletic Melanesian subgenus Heliconiopsis and a small clade of Ecuadorian species are together the sister group to the rest of Heliconia. Extant diversity of Heliconia originated in the Late Eocene (39Ma) with rapid diversification through the Early Miocene, making it the oldest known clade of hummingbird-pollinated plants. Most described subgenera and sections are not monophyletic, though closely related groups of species, often defined by shared geography, mirror earlier morphological cladistic analyses. Evaluation of changes in resupination and inflorescence habit suggests that these characters are more homoplasious than expected, and this largely explains the non-monophyly of previously circumscribed subgenera, which were based on these characters. We also find strong evidence for the correlated evolution of resupination and inflorescence habit. The correlated model suggests that the most recent common ancestor of all extant Heliconia had resupinate flowers and erect inflorescences

  1. Conflict amongst chloroplast DNA sequences obscures the phylogeny of a group of Asplenium ferns.

    Science.gov (United States)

    Shepherd, Lara D; Holland, Barbara R; Perrie, Leon R

    2008-07-01

    A previous study of the relationships amongst three subgroups of the Austral Asplenium ferns found conflicting signal between the two chloroplast loci investigated. Because organelle genomes like those of chloroplasts and mitochondria are thought to be non-recombining, with a single evolutionary history, we sequenced four additional chloroplast loci with the expectation that this would resolve these relationships. Instead, the conflict was only magnified. Although tree-building analyses favoured one of the three possible trees, one of the alternative trees actually had one more supporting site (six versus five) and received greater support in spectral and neighbor-net analyses. Simulations suggested that chance alone was unlikely to produce strong support for two of the possible trees and none for the third. Likelihood permutation tests indicated that the concatenated chloroplast sequence data appeared to have experienced recombination. However, recombination between the chloroplast genomes of different species would be highly atypical, and corollary supporting observations, like chloroplast heteroplasmy, are lacking. Wider taxon sampling clarified the composition of the Austral group, but the conflicting signal meant analyses (e.g., morphological evolution, biogeographic) conditional on a well-supported phylogeny could not be performed.

  2. Sporulation and ultrastructure in a late Proterozoic cyanophyte - Some implications for taxonomy and plant phylogeny

    Science.gov (United States)

    Cloud, P.; Moorman, M.; Pierce, D.

    1975-01-01

    Electron microscopical studies of a morphologically diverse, coccoid, presumably late Proterozoic blue-green alga are here reported. They show, together with light microscopy, that the form studied is widespread in the Cordilleran geosyncline, extend the record of well-defined endosporangia perhaps 700 million years into the past, and reveal previously unrecorded ultrastructural details. Coming from northeastern Utah, southwestern Alberta, and east central Alaska, these minute fossils belong to the recently described, morphologically diverse taxon Sphaerocongregus variabilis Moorman, are related to living entophysalidaceans, and have affinities with both the chroococcalean and chamaesiphonalean cyanophytes. Included in the morphological modes displayed by this alga are individual unicells, coenobial clusters of unicells, and a range of endosporangia comparable to those described for living entophysalidaceans. Scanning and transmission electron microscopy reveal that the endospores are commonly embedded in a vesicular matrix, that some of them show what appears to be a bilaminate or perhaps locally multilaminate wall structure, and that some remain together to mature as coenobial clones or 'colonies'. Taxonomic classification and phylogeny are discussed.

  3. Molecular phylogeny and larval morphological diversity of the lanternfish genus Hygophum (Teleostei: Myctophidae).

    Science.gov (United States)

    Yamaguchi, M; Miya, M; Okiyama, M; Nishida, M

    2000-04-01

    Larvae of the deep-sea lanternfish genus Hygophum (Myctophidae) exhibit a remarkable morphological diversity that is quite unexpected, considering their homogeneous adult morphology. In an attempt to elucidate the evolutionary patterns of such larval morphological diversity, nucleotide sequences of a portion of the mitochondrially encoded 16S ribosomal RNA gene were determined for seven Hygophum species and three outgroup taxa. Secondary structure-based alignment resulted in a character matrix consisting of 1172 bp of unambiguously aligned sequences, which were subjected to phylogenetic analyses using maximum-parsimony, maximum-likelihood, and neighbor-joining methods. The resultant tree topologies from the three methods were congruent, with most nodes, including that of the genus Hygophum, being strongly supported by various tree statistics. The most parsimonious reconstruction of the three previously recognized, distinct larval morphs onto the molecular phylogeny revealed that one of the morphs had originated as the common ancestor of the genus, the other two having diversified separately in two subsequent major clades. The patterns of such diversification are discussed in terms of the unusual larval eye morphology and geographic distribution. Copyright 2000 Academic Press.

  4. On the Origin of Pantepui montane biotas: A Perspective Based on the Phylogeny of Aulacorhynchus toucanets.

    Directory of Open Access Journals (Sweden)

    Elisa Bonaccorso

    Full Text Available To understand the origin of Pantepui montane biotas, we studied the biogeography of toucanets in the genus Aulacorhynchus. These birds are ideal for analyzing historical relationships among Neotropical montane regions, given their geographic distribution from Mexico south to Bolivia, including northern Venezuela (Cordillera de la Costa, and the Pantepui. Analyses were based on molecular phylogenies using mitochondrial and nuclear DNA sequences. Topology tests were applied to compare alternative hypotheses that may explain the current distribution of Aulacorhynchus toucanets, in the context of previous hypotheses of the origin of Pantepui montane biotas. Biogeographic reconstructions in RASP and Lagrange were used to estimate the ancestral area of the genus, and an analysis in BEAST was used to estimate a time framework for its diversification. A sister relationship between the Pantepui and Andes+Cordillera de la Costa was significantly more likely than topologies indicating other hypothesis for the origin of Pantepui populations. The Andes was inferred as the ancestral area for Aulacorhynchus, and the group has diversified since the late Miocene. The biogeographic patterns found herein, in which the Andes are the source for biotas of other regions, are consistent with those found for flowerpiercers and tanagers, and do not support the hypothesis of the geologically old Pantepui as a source of Neotropical montain diversity. Based on the high potential for cryptic speciation and isolation of Pantepui populations, we consider that phylogenetic studies of additional taxa are important from a conservation perspective.

  5. Evolution in the Amphi-Atlantic tropical genus Guibourtia (Fabaceae, Detarioideae), combining NGS phylogeny and morphology.

    Science.gov (United States)

    Tosso, Félicien; Hardy, Olivier J; Doucet, Jean-Louis; Daïnou, Kasso; Kaymak, Esra; Migliore, Jérémy

    2018-03-01

    Tropical rain forests support a remarkable diversity of tree species, questioning how and when this diversity arose. The genus Guibourtia (Fabaceae, Detarioideae), characterized by two South American and 13 African tree species growing in various tropical biomes, is an interesting model to address the role of biogeographic processes and adaptation to contrasted environments on species diversification. Combining whole plastid genome sequencing and morphological characters analysis, we studied the timing of speciation and diversification processes in Guibourtia through molecular dating and ancestral habitats reconstruction. All species except G. demeusei and G. copallifera appear monophyletic. Dispersal from Africa to America across the Atlantic Ocean is the most plausible hypothesis to explain the occurrence of Neotropical Guibourtia species, which diverged ca. 11.8 Ma from their closest African relatives. The diversification of the three main clades of African Guibourtia is concomitant to Miocene global climate changes, highlighting pre-Quaternary speciation events. These clades differ by their reproductive characters, which validates the three subgenera previously described: Pseudocopaiva, Guibourtia and Gorskia. Within most monophyletic species, plastid lineages start diverging from each other during the Pliocene or early Pleistocene, suggesting that these species already arose during this period. The multiple transitions between rain forests and dry forests/savannahs inferred here through the plastid phylogeny in each Guibourtia subgenus address thus new questions about the role of phylogenetic relationships in shaping ecological niche and morphological similarity among taxa. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Complete Mitochondrial Genome of Suwallia teleckojensis (Plecoptera: Chloroperlidae) and Implications for the Higher Phylogeny of Stoneflies.

    Science.gov (United States)

    Wang, Ying; Cao, Jin-Jun; Li, Wei-Hai

    2018-02-28

    Stoneflies comprise an ancient group of insects, but the phylogenetic position of Plecoptera and phylogenetic relations within Plecoptera have long been controversial, and more molecular data is required to reconstruct precise phylogeny. Herein, we present the complete mitogenome of a stonefly, Suwallia teleckojensis , which is 16146 bp in length and consists of 13 protein-coding genes (PCGs), 2 ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs) and a control region (CR). Most PCGs initiate with the standard start codon ATN. However, ND5 and ND1 started with GTG and TTG. Typical termination codons TAA and TAG were found in eleven PCGs, and the remaining two PCGs ( COII and ND5 ) have incomplete termination codons. All transfer RNA genes (tRNAs) have the classic cloverleaf secondary structures, with the exception of tRNA Ser(AGN) , which lacks the dihydrouridine (DHU) arm. Secondary structures of the two ribosomal RNAs were shown referring to previous models. A large tandem repeat region, two potential stem-loop (SL) structures, Poly N structure (2 poly-A, 1 poly-T and 1 poly-C), and four conserved sequence blocks (CSBs) were detected in the control region. Finally, both maximum likelihood (ML) and Bayesian inference (BI) analyses suggested that the Capniidae was monophyletic, and the other five stonefly families form a monophyletic group. In this study, S. teleckojensis was closely related to Sweltsa longistyla , and Chloroperlidae and Perlidae were herein supported to be a sister group.

  7. Phylogeny of kemenyan (Styrax sp.) from North Sumatra based on morphological characters

    Science.gov (United States)

    Susilowati, A.; Kholibrina, C. R.; Rachmat, H. H.; Munthe, M. A.

    2018-02-01

    Kemenyan is the most famous local tree species from North Sumatra. Kemenyan is known as rosin producer that very valuable for pharmacheutical, cosmetic, food preservatives and vernis. Based on its history, there were only two species of kemenyan those were kemenyan durame and toba, but in its the natural distribution we also found others species showing different characteristics with previously known ones. The objectives of this research were:The objectives of this research were: (1). To determine the morphological diversity of kemenyan in North Sumatra and (2). To determine phylogeny clustering based on the morphological characters. Data was collected from direct observation and morphological characterization, based on purposive sampling technique to those samples trees atPakpak Bharat, North Sumatra. Morphological characters were examined using descriptive analysis, phenotypic variability using standard deviation, and cluster analysis. The result showed that there was a difference between 4 species kemenyen (batak, minyak, durame and toba) according to 75 observed characters including flower, fruits, leaf, stem, bark, crown type, wood and the resin. Analysis and both quantitative and qualitative characters kemenyan clustered into two groups. In which, kemenyan toba separated with other clusters.

  8. Molecular phylogeny of Neotropical bioluminescent beetles (Coleoptera: Elateroidea) in southern and central Brazil.

    Science.gov (United States)

    Amaral, D T; Arnoldi, F G C; Rosa, S P; Viviani, V R

    2014-08-01

    Bioluminescence in beetles is found mainly in the Elateroidea superfamily (Elateridae, Lampyridae and Phengodidae). The Neotropical region accounts for the richest diversity of bioluminescent species in the world with about 500 described species, most occurring in the Amazon, Atlantic rainforest and Cerrado (savanna) ecosystems in Brazil. The origin and evolution of bioluminescence, as well as the taxonomic status of several Neotropical taxa in these families remains unclear. In order to contribute to a better understanding of the phylogeny and evolution of bioluminescent Elateroidea we sequenced and analyzed sequences of mitochondrial NADH2 and the nuclear 28S genes and of the cloned luciferase sequences of Brazilian species belonging to the following genera: (Lampyridae) Macrolampis, Photuris, Amydetes, Bicellonycha, Aspisoma, Lucidota, Cratomorphus; (Elateridae) Conoderus, Pyrophorus, Hapsodrilus, Pyrearinus, Fulgeochlizus; and (Phengodidae) Pseudophengodes, Phrixothrix, Euryopa and Brasilocerus. Our study supports a closer phylogenetic relationship between Elateridae and Phengodidae as other molecular studies, in contrast with previous morphologic and molecular studies that clustered Lampyridae/Phengodidae. Molecular data also supported division of the Phengodinae subfamily into the tribes Phengodini and Mastinocerini. The position of the genus Amydetes supports the status of the Amydetinae as a subfamily. The genus Euryopa is included in the Mastinocerini tribe within the Phengodinae/Phengodidae. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Taxonomy and phylogeny of the genus citrus based on the nuclear ribosomal dna its region sequence

    International Nuclear Information System (INIS)

    Sun, Y.L.

    2015-01-01

    The genus Citrus (Aurantioideae, Rutaceae) is the sole source of the citrus fruits of commerce showing high economic values. In this study, the taxonomy and phylogeny of Citrus species is evaluated using sequence analysis of the ITS region of nrDNA. This study is based on 26 plants materials belonging to 22 Citrus species having wild, domesticated, and cultivated species. Through DNA alignment of the ITS sequence, ITS1 and ITS2 regions showed relatively high variations of sequence length and nucleotide among these Citrus species. According to previous six-tribe discrimination theory by Swingle and Reece, the grouping in our ITS phylogenetic tree reconstructed by ITS sequences was not related to tribe discrimination but species discrimination. However, the molecular analysis could provide more information on citrus taxonomy. Combined with ITS sequences of other subgenera in then true citrus fruit tree group, the ITS phylogenetic tree indicated subgenera Citrus was monophyletic and nearer to Fortunella, Poncirus, and Clymenia compared to Microcitrus and Eremocitrus. Abundant sequence variations of the ITS region shown in this study would help species identification and tribe differentiation of the genus Citrus. (author)

  10. Molecular phylogeny of the spoonbills (Aves: Threskiornithidae) based on mitochondrial DNA

    Science.gov (United States)

    Chesser, R. Terry; Yeung, Carol K.L.; Yao, Cheng-Te; Tian, Xiu-Hua; Li, Shou-Hsien

    2010-01-01

    Spoonbills (genus Platalea) are a small group of wading birds, generally considered to constitute the subfamily Plataleinae (Aves: Threskiornithidae). We reconstructed phylogenetic relationships among the six species of spoonbills using variation in sequences of the mitochondrial genes ND2 and cytochrome b (total 1796 bp). Topologies of phylogenetic trees reconstructed using maximum likelihood, maximum parsimony, and Bayesian analyses were virtually identical and supported monophyly of the spoonbills. Most relationships within Platalea received strong support: P. minor and P. regia were closely related sister species, P. leucorodia was sister to the minor-regia clade, and P. alba was sister to the minor-regia-leucorodia clade. Relationships of P. flavipes and P. ajaja were less well resolved: these species either formed a clade that was sister to the four-species clade, or were successive sisters to this clade. This phylogeny is consistent with ideas of relatedness derived from spoonbill morphology. Our limited sampling of the Threskiornithinae (ibises), the putative sister group to the spoonbills, indicated that this group is paraphyletic, in agreement with previous molecular data; this suggests that separation of the Threskiornithidae into subfamilies Plataleinae and Threskiornithinae may not be warranted.

  11. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach

    Directory of Open Access Journals (Sweden)

    David Lee Erickson

    2014-11-01

    Full Text Available Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1,347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK and psbA-trnH and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance metrics that are commonly used to infer assembly processes were estimated for each plot (Phylogenetic Distance [PD], Mean Phylogenetic Distance [MPD], and Mean Nearest Taxon Distance [MNTD]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for

  12. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches

    OpenAIRE

    Smith, Stephen A; Beaulieu, Jeremy M; Donoghue, Michael J

    2009-01-01

    Abstract Background Biology has increasingly recognized the necessity to build and utilize larger phylogenies to address broad evolutionary questions. Large phylogenies have facilitated the discovery of differential rates of molecular evolution between trees and herbs. They have helped us understand the diversification patterns of mammals as well as the patterns of seed evolution. In addition to these broad evolutionary questions there is increasing awareness of the importance of large phylog...

  13. A molecular phylogeny of the Australian huntsman spiders (Sparassidae, Deleninae): implications for taxonomy and social behaviour.

    Science.gov (United States)

    Agnarsson, Ingi; Rayor, Linda S

    2013-12-01

    Huntsman spiders (Sparassidae) are a diverse group with a worldwide distribution, yet are poorly known both taxonomically and phylogenetically. They are particularly diverse in Australia where an endemic lineage, Deleninae, has diversified to form nearly 100 species. One unusual species, Delena cancerides, has been believed to be the sole group-living sparassid. Unlike all of the other subsocial and social spiders which are capture-web based or live in silken tunnels, D. cancerides are non-web building spiders that live in large matrilineal colonies of a single adult female and her offspring from multiple clutches of under the bark of dead trees. Here we report the discovery of two additional prolonged subsocial sparassid species, currently in Eodelena but here formally proposed as a synonomy of Delena (new synonoymy), Delena (Eodelena) lapidicola and D. (E.) melanochelis. We briefly describe their social demographics, behavior, and habitat use. In order to understand the evolutionary relationships among these species, and thus origin of sociality and other traits in this group, we also offer the first molecular phylogeny of Deleninae and relatives. We employ model based phylogenetic analyses on two mtDNA and three nuDNA loci using maximum likelihood and Bayesian methods, including both 'classical' concatenation approach as well as coalescent-based analysis of species trees from gene trees. Our results support the hypothesis that the delenine huntsman spiders are a monophyletic Australian radiation, approximately 23 million year old, and indicate that the current ten genera should be merged to six genera in four clades. Our findings are inconsistent with some relatively recent changes in the taxonomy of Deleninae. The three known group-living delenine species are related and likely represent a single origin of sociality with a single reversal to solitary life-styles. Our results provide strong support for the classical Isopeda, but not for the recent splitting of

  14. Prokaryotic Phylogenies Inferred from Whole-Genome Sequence and Annotation Data

    Directory of Open Access Journals (Sweden)

    Wei Du

    2013-01-01

    Full Text Available Phylogenetic trees are used to represent the evolutionary relationship among various groups of species. In this paper, a novel method for inferring prokaryotic phylogenies using multiple genomic information is proposed. The method is called CGCPhy and based on the distance matrix of orthologous gene clusters between whole-genome pairs. CGCPhy comprises four main steps. First, orthologous genes are determined by sequence similarity, genomic function, and genomic structure information. Second, genes involving potential HGT events are eliminated, since such genes are considered to be the highly conserved genes across different species and the genes located on fragments with abnormal genome barcode. Third, we calculate the distance of the orthologous gene clusters between each genome pair in terms of the number of orthologous genes in conserved clusters. Finally, the neighbor-joining method is employed to construct phylogenetic trees across different species. CGCPhy has been examined on different datasets from 617 complete single-chromosome prokaryotic genomes and achieved applicative accuracies on different species sets in agreement with Bergey's taxonomy in quartet topologies. Simulation results show that CGCPhy achieves high average accuracy and has a low standard deviation on different datasets, so it has an applicative potential for phylogenetic analysis.

  15. A human genome-wide library of local phylogeny predictions for whole-genome inference problems

    Directory of Open Access Journals (Sweden)

    Schwartz Russell

    2008-08-01

    Full Text Available Abstract Background Many common inference problems in computational genetics depend on inferring aspects of the evolutionary history of a data set given a set of observed modern sequences. Detailed predictions of the full phylogenies are therefore of value in improving our ability to make further inferences about population history and sources of genetic variation. Making phylogenetic predictions on the scale needed for whole-genome analysis is, however, extremely computationally demanding. Results In order to facilitate phylogeny-based predictions on a genomic scale, we develop a library of maximum parsimony phylogenies within local regions spanning all autosomal human chromosomes based on Haplotype Map variation data. We demonstrate the utility of this library for population genetic inferences by examining a tree statistic we call 'imperfection,' which measures the reuse of variant sites within a phylogeny. This statistic is significantly predictive of recombination rate, shows additional regional and population-specific conservation, and allows us to identify outlier genes likely to have experienced unusual amounts of variation in recent human history. Conclusion Recent theoretical advances in algorithms for phylogenetic tree reconstruction have made it possible to perform large-scale inferences of local maximum parsimony phylogenies from single nucleotide polymorphism (SNP data. As results from the imperfection statistic demonstrate, phylogeny predictions encode substantial information useful for detecting genomic features and population history. This data set should serve as a platform for many kinds of inferences one may wish to make about human population history and genetic variation.

  16. 77 FR 70176 - Previous Participation Certification

    Science.gov (United States)

    2012-11-23

    ... participants' previous participation in government programs and ensure that the past record is acceptable prior... information is designed to be 100 percent automated and digital submission of all data and certifications is... government programs and ensure that the past record is acceptable prior to granting approval to participate...

  17. On the Tengiz petroleum deposit previous study

    International Nuclear Information System (INIS)

    Nysangaliev, A.N.; Kuspangaliev, T.K.

    1997-01-01

    Tengiz petroleum deposit previous study is described. Some consideration about structure of productive formation, specific characteristic properties of petroleum-bearing collectors are presented. Recommendation on their detail study and using of experience on exploration and development of petroleum deposit which have analogy on most important geological and industrial parameters are given. (author)

  18. Subsequent pregnancy outcome after previous foetal death

    NARCIS (Netherlands)

    Nijkamp, J. W.; Korteweg, F. J.; Holm, J. P.; Timmer, A.; Erwich, J. J. H. M.; van Pampus, M. G.

    Objective: A history of foetal death is a risk factor for complications and foetal death in subsequent pregnancies as most previous risk factors remain present and an underlying cause of death may recur. The purpose of this study was to evaluate subsequent pregnancy outcome after foetal death and to

  19. Molecular phylogeny of Acer monspessulanum L. subspecies from Iran inferred using the ITS region of nuclear ribosomal DNA

    Directory of Open Access Journals (Sweden)

    HANIF KHADEMI

    2016-04-01

    Full Text Available Abstract. Khademi H, Mehregan I, Assadi M, Nejadsatari T, Zarre S. 2015. Molecular phylogeny of Acer monspessulanum L. subspecies from Iran inferred using the ITS region of nuclear ribosomal DNA. Biodiversitas 17: 16-23. This study was carried out on the Acer monspessulanum complex growing wild in Iran. Internal transcribed spacer (ITS sequences for 75 samples representing five different subspecies of Acer monspessulanum were analyzed. Beside this, 86 previously published ITS sequences from GenBank were used to test the monophyly of the complex worldwide. Phylogenetic analyses were conducted using Bayesian inference and maximum parsimony. The results indicate that most samples of A. monspessulanum species from Iran were part of a monophyletic clade with 8 samples of A. ibericum from Georgia, A. hyrcanum from Iran and one of A. sempervirens from Greece (PP= 1; BS= 79%. Our results indicate that use of morphological characteristics coupled with molecular data will be most effective.

  20. Geography shapes the phylogeny of frailejones (Espeletiinae Cuatrec., Asteraceae: a remarkable example of recent rapid radiation in sky islands

    Directory of Open Access Journals (Sweden)

    Mauricio Diazgranados

    2017-02-01

    Full Text Available Background The páramo ecosystem, located above the timberline in the tropical Andes, has been the setting for some of the most dramatic plant radiations, and it is one of the world’s fastest evolving and most diverse high-altitude ecosystems. Today 144+ species of frailejones (subtribe Espeletiinae Cuatrec., Asteraceae dominate the páramo. Frailejones have intrigued naturalists and botanists, not just for their appealing beauty and impressive morphological diversity, but also for their remarkable adaptations to the extremely harsh environmental conditions of the páramo. Previous attempts to reconstruct the evolutionary history of this group failed to resolve relationships among genera and species, and there is no agreement regarding the classification of the group. Thus, our goal was to reconstruct the phylogeny of the frailejones and to test the influence of the geography on it as a first step to understanding the patterns of radiation of these plants. Methods Field expeditions in 70 páramos of Colombia and Venezuela resulted in 555 collected samples from 110 species. Additional material was obtained from herbarium specimens. Sequence data included nrDNA (ITS and ETS and cpDNA (rpl16, for an aligned total of 2,954 bp. Fragment analysis was performed with AFLP data using 28 primer combinations and yielding 1,665 fragments. Phylogenies based on sequence data were reconstructed under maximum parsimony, maximum likelihood and Bayesian inference. The AFLP dataset employed minimum evolution analyses. A Monte Carlo permutation test was used to infer the influence of the geography on the phylogeny. Results Phylogenies reconstructed suggest that most genera are paraphyletic, but the phylogenetic signal may be misled by hybridization and incomplete lineage sorting. A tree with all the available molecular data shows two large clades: one of primarily Venezuelan species that includes a few neighboring Colombian species; and a second clade of only

  1. Subsequent childbirth after a previous traumatic birth.

    Science.gov (United States)

    Beck, Cheryl Tatano; Watson, Sue

    2010-01-01

    Nine percent of new mothers in the United States who participated in the Listening to Mothers II Postpartum Survey screened positive for meeting the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria for posttraumatic stress disorder after childbirth. Women who have had a traumatic birth experience report fewer subsequent children and a longer length of time before their second baby. Childbirth-related posttraumatic stress disorder impacts couples' physical relationship, communication, conflict, emotions, and bonding with their children. The purpose of this study was to describe the meaning of women's experiences of a subsequent childbirth after a previous traumatic birth. Phenomenology was the research design used. An international sample of 35 women participated in this Internet study. Women were asked, "Please describe in as much detail as you can remember your subsequent pregnancy, labor, and delivery following your previous traumatic birth." Colaizzi's phenomenological data analysis approach was used to analyze the stories of the 35 women. Data analysis yielded four themes: (a) riding the turbulent wave of panic during pregnancy; (b) strategizing: attempts to reclaim their body and complete the journey to motherhood; (c) bringing reverence to the birthing process and empowering women; and (d) still elusive: the longed-for healing birth experience. Subsequent childbirth after a previous birth trauma has the potential to either heal or retraumatize women. During pregnancy, women need permission and encouragement to grieve their prior traumatic births to help remove the burden of their invisible pain.

  2. Previous Experience a Model of Practice UNAE

    OpenAIRE

    Ormary Barberi Ruiz; María Dolores Pesántez Palacios

    2017-01-01

    The statements presented in this article represents a preliminary version of the proposed model of pre-professional practices (PPP) of the National University of Education (UNAE) of Ecuador, an urgent institutional necessity is revealed in the descriptive analyzes conducted from technical support - administrative (reports, interviews, testimonials), pedagogical foundations of UNAE (curricular directionality, transverse axes in practice, career plan, approach and diagnostic examination as subj...

  3. 77 FR 36286 - Notice of Proposed Information Collection: Comment Request; Previous Participation Certification

    Science.gov (United States)

    2012-06-18

    ... 7th Street SW., Washington, DC 20410, Room 9120 or the number for the Federal Information Relay...., permitting electronic submission of responses. This Notice also lists the following information: Title of... provide for both electronic and paper submissions until it publishes revised regulations. Agency form...

  4. Molecular phylogeny and systematics of the banana family (Musaceae) inferred from multiple nuclear and chloroplast DNA fragments, with a special reference to the genus Musa.

    Science.gov (United States)

    Li, Lin-Feng; Häkkinen, Markku; Yuan, Yong-Ming; Hao, Gang; Ge, Xue-Jun

    2010-10-01

    Musaceae is a small paleotropical family. Three genera have been recognised within this family although the generic delimitations remain controversial. Most species of the family (around 65 species) have been placed under the genus Musa and its infrageneric classification has long been disputed. In this study, we obtained nuclear ribosomal ITS and chloroplast (atpB-rbcL, rps16, and trnL-F) DNA sequences of 36 species (42 accessions of ingroups representing three genera) together with 10 accessions of ingroups retrieved from GenBank database and 4 accessions of outgroups, to construct the phylogeny of the family, with a special reference to the infrageneric classification of the genus Musa. Our phylogenetic analyses elaborated previous results in supporting the monophyly of the family and suggested that Musella and Ensete may be congeneric or at least closely related, but refuted the previous infrageneric classification of Musa. None of the five sections of Musa previously defined based on morphology was recovered as monophyletic group in the molecular phylogeny. Two infrageneric clades were identified, which corresponded well to the basic chromosome numbers of x=11 and 10/9/7, respectively: the former clade comprises species from the sections Musa and Rhodochlamys while the latter contains sections of Callimusa, Australimusa, and Ingentimusa. Copyright 2010 Elsevier Inc. All rights reserved.

  5. The current status of the New World monkey phylogeny

    Directory of Open Access Journals (Sweden)

    SCHNEIDER HORACIO

    2000-01-01

    Full Text Available Four DNA datasets were combined in tandem (6700 bp and Maximum parsimony and Neighbor-Joining analyses were performed. The results suggest three groups emerging almost at the same time: Atelidae, Pitheciidae and Cebidae. The total analysis strongly supports the monophyly of the Cebidae family, grouping Aotus, Cebus and Saimiri with the small callitrichines. In the callitrichines, the data link Cebuela to Callithrix, place Callimico as a sister group of Callithrix/Cebuella, and show Saguinus to be the earliest offshoot of the callitrichines. In the family Pithecidae, Callicebus is the basal genus. Finally, combined molecular data showed congruent branching in the atelid clade, setting up Alouatta as the basal lineage and Brachyteles-Lagothrix as a sister group and the most derived branch. Two major points remain to be clarified in the platyrrhine phylogeny: (i what is the exact branching pattern of Aotus, Cebus, Saimiri and the small callitrichines, and (ii, which two of these three lineages, pitheciines, atelines or cebids, are more closely related?

  6. The phylogeny and evolutionary history of tyrannosauroid dinosaurs

    Science.gov (United States)

    Brusatte, Stephen L.; Carr, Thomas D.

    2016-02-01

    Tyrannosauroids—the group of carnivores including Tyrannosaurs rex—are some of the most familiar dinosaurs of all. A surge of recent discoveries has helped clarify some aspects of their evolution, but competing phylogenetic hypotheses raise questions about their relationships, biogeography, and fossil record quality. We present a new phylogenetic dataset, which merges published datasets and incorporates recently discovered taxa. We analyze it with parsimony and, for the first time for a tyrannosauroid dataset, Bayesian techniques. The parsimony and Bayesian results are highly congruent, and provide a framework for interpreting the biogeography and evolutionary history of tyrannosauroids. Our phylogenies illustrate that the body plan of the colossal species evolved piecemeal, imply no clear division between northern and southern species in western North America as had been argued, and suggest that T. rex may have been an Asian migrant to North America. Over-reliance on cranial shape characters may explain why published parsimony studies have diverged and filling three major gaps in the fossil record holds the most promise for future work.

  7. The phylogeny and evolutionary history of tyrannosauroid dinosaurs.

    Science.gov (United States)

    Brusatte, Stephen L; Carr, Thomas D

    2016-02-02

    Tyrannosauroids--the group of carnivores including Tyrannosaurs rex--are some of the most familiar dinosaurs of all. A surge of recent discoveries has helped clarify some aspects of their evolution, but competing phylogenetic hypotheses raise questions about their relationships, biogeography, and fossil record quality. We present a new phylogenetic dataset, which merges published datasets and incorporates recently discovered taxa. We analyze it with parsimony and, for the first time for a tyrannosauroid dataset, Bayesian techniques. The parsimony and Bayesian results are highly congruent, and provide a framework for interpreting the biogeography and evolutionary history of tyrannosauroids. Our phylogenies illustrate that the body plan of the colossal species evolved piecemeal, imply no clear division between northern and southern species in western North America as had been argued, and suggest that T. rex may have been an Asian migrant to North America. Over-reliance on cranial shape characters may explain why published parsimony studies have diverged and filling three major gaps in the fossil record holds the most promise for future work.

  8. Phylogeny and photosynthetic pathway distribution in Anticharis Endl. (Scrophulariaceae).

    Science.gov (United States)

    Khoshravesh, Roxana; Hossein, Akhani; Sage, Tammy L; Nordenstam, Bertil; Sage, Rowan F

    2012-09-01

    C(4) photosynthesis independently evolved >62 times, with the majority of origins within 16 dicot families. One origin occurs in the poorly studied genus Anticharis Endl. (Scrophulariaceae), which consists of ~10 species from arid regions of Africa and southwest Asia. Here, the photosynthetic pathway of 10 Anticharis species and one species from each of the sister genera Aptosimum and Peliostomum was identified using carbon isotope ratios (δ(13)C). The photosynthetic pathway was then mapped onto an internal transcribed spacer (ITS) phylogeny of Anticharis and its sister genera. Leaf anatomy was examined for nine Anticharis species and plants from Aptosimum and Peliostomum. Leaf ultrastructure, gas exchange, and enzyme distributions were assessed in Anticharis glandulosa collected in SE Iran. The results demonstrate that C(3) photosynthesis is the ancestral condition, with C(4) photosynthesis occurring in one clade containing four species. C(4) Anticharis species exhibit the atriplicoid type of C(4) leaf anatomy and the NAD-malic enzyme biochemical subtype. Six Anticharis species had C(3) or C(3)-C(4) δ(13)C values and branched at phylogenetic nodes that were sister to the C(4) clade. The rest of Anticharis species had enlarged bundle sheath cells, close vein spacing, and clusters of chloroplasts along the centripetal (inner) bundle sheath walls. These traits indicate that basal-branching Anticharis species are evolutionary intermediates between the C(3) and C(4) conditions. Anticharis appears to be an important new group in which to study the dynamics of C(4) evolution.

  9. Genome rearrangements and phylogeny reconstruction in Yersinia pestis.

    Science.gov (United States)

    Bochkareva, Olga O; Dranenko, Natalia O; Ocheredko, Elena S; Kanevsky, German M; Lozinsky, Yaroslav N; Khalaycheva, Vera A; Artamonova, Irena I; Gelfand, Mikhail S

    2018-01-01

    Genome rearrangements have played an important role in the evolution of Yersinia pestis from its progenitor Yersinia pseudotuberculosis . Traditional phylogenetic trees for Y. pestis based on sequence comparison have short internal branches and low bootstrap supports as only a small number of nucleotide substitutions have occurred. On the other hand, even a small number of genome rearrangements may resolve topological ambiguities in a phylogenetic tree. We reconstructed phylogenetic trees based on genome rearrangements using several popular approaches such as Maximum likelihood for Gene Order and the Bayesian model of genome rearrangements by inversions. We also reconciled phylogenetic trees for each of the three CRISPR loci to obtain an integrated scenario of the CRISPR cassette evolution. Analysis of contradictions between the obtained evolutionary trees yielded numerous parallel inversions and gain/loss events. Our data indicate that an integrated analysis of sequence-based and inversion-based trees enhances the resolution of phylogenetic reconstruction. In contrast, reconstructions of strain relationships based on solely CRISPR loci may not be reliable, as the history is obscured by large deletions, obliterating the order of spacer gains. Similarly, numerous parallel gene losses preclude reconstruction of phylogeny based on gene content.

  10. Comparative mitogenomics, phylogeny and evolutionary history of Leptogorgia (Gorgoniidae).

    Science.gov (United States)

    Poliseno, Angelo; Feregrino, Christian; Sartoretto, Stéphane; Aurelle, Didier; Wörheide, Gert; McFadden, Catherine S; Vargas, Sergio

    2017-10-01

    Molecular analyses of the ecologically important gorgonian octocoral genus Leptogorgia are scant and mostly deal with few species from restricted geographical regions. Here we explore the phylogenetic relationships and the evolutionary history of Leptogorgia using the complete mitochondrial genomes of six Leptogorgia species from different localities in the Atlantic, Mediterranean and eastern Pacific as well as four other genera of Gorgoniidae and Plexauridae. Our mitogenomic analyses showed high inter-specific diversity, variable nucleotide substitution rates and, for some species, novel genomic features such as ORFs of unknown function. The phylogenetic analyses using complete mitogenomes and an extended mtMutS dataset recovered Leptogorgia as polyphyletic, and the species considered in the analyses were split into two defined groups corresponding to different geographic regions, namely the eastern Pacific and the Atlantic-Mediterranean. Our phylogenetic analysis based on mtMutS also showed a clear separation between the eastern Atlantic and South African Leptogorgia, suggesting the need of a taxonomic revision for these forms. A time-calibrated phylogeny showed that the separation of eastern Pacific and western Atlantic species started ca. 20Mya and suggested a recent divergence for eastern Pacific species and for L. sarmentosa-L. capverdensis. Our results also revealed high inter-specific diversity among eastern Atlantic and South African species, highlighting a potential role of the geographical diversification processes and geological events occurring during the last 30Ma in the Atlantic on the evolutionary history of these organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Ectocranial suture fusion in primates: pattern and phylogeny.

    Science.gov (United States)

    Cray, James; Cooper, Gregory M; Mooney, Mark P; Siegel, Michael I

    2014-03-01

    Patterns of ectocranial suture fusion among Primates are subject to species-specific variation. In this study, we used Guttman Scaling to compare modal progression of ectocranial suture fusion among Hominidae (Homo, Pan, Gorilla, and Pongo), Hylobates, and Cercopithecidae (Macaca and Papio) groups. Our hypothesis is that suture fusion patterns should reflect their evolutionary relationship. For the lateral-anterior suture sites there appear to be three major patterns of fusion, one shared by Homo-Pan-Gorilla, anterior to posterior; one shared by Pongo and Hylobates, superior to inferior; and one shared by Cercopithecidae, posterior to anterior. For the vault suture pattern, the Hominidae groups reflect the known phylogeny. The data for Hylobates and Cercopithecidae groups is less clear. The vault suture site termination pattern of Papio is similar to that reported for Gorilla and Pongo. Thus, it may be that some suture sites are under larger genetic influence for patterns of fusion, while others are influenced by environmental/biomechanic influences. Copyright © 2013 Wiley Periodicals, Inc.

  12. Mitochondrial DNA phylogeny of camel spiders (Arachnida: Solifugae) from Iran.

    Science.gov (United States)

    Maddahi, Hassan; Khazanehdari, Mahsa; Aliabadian, Mansour; Kami, Haji Gholi; Mirshamsi, Amin; Mirshamsi, Omid

    2017-11-01

    In the present study, the mitochondrial DNA phylogeny of five solifuge families of Iran is presented using phylogenetic analysis of mitochondrial cytochrome c oxidase, subunit 1 (COI) sequence data. Moreover, we included available representatives from seven families from GenBank to examine the genetic distance between Old and New World taxa and test the phylogenetic relationships among more solifuge families. Phylogenetic relationships were reconstructed based on the two most probabilistic methods, Maximum Likelihood (ML) and Bayesian inference (BI) approaches. Resulting topologies demonstrated the monophyly of the families Daesiidae, Eremobatidae, Galeodidae, Karschiidae and Rhagodidae, whereas the monophyly of the families Ammotrechidae and Gylippidae was not supported. Also, within the family Eremobatidae, the subfamilies Eremobatinae and Therobatinae and the genus Hemerotrecha were paraphyletic or polyphyletic. According to the resulted topologies, the taxonomic placements of Trichotoma michaelseni (Gylippidae) and Nothopuga sp. 1 (Ammotrechidae) are still remain under question and their revision might be appropriate. According to the results of this study, within the family Galeodidae, the validity of the genus Galeodopsis is supported, while the validity of the genus Paragaleodes still remains uncertain. Moreover, our results revealed that the species Galeodes bacillatus, and Rhagodes melanochaetus are junior synonyms of G. caspius, and R. eylandti, respectively.

  13. Molecular phylogeny of elasmobranchs inferred from mitochondrial and nuclear markers.

    Science.gov (United States)

    Pavan-Kumar, A; Gireesh-Babu, P; Babu, P P Suresh; Jaiswar, A K; Hari Krishna, V; Prasasd, K Pani; Chaudhari, Aparna; Raje, S G; Chakraborty, S K; Krishna, Gopal; Lakra, W S

    2014-01-01

    The elasmobranchs (sharks, rays and skates) being the extant survivors of one of the earliest offshoots of the vertebrate evolutionary tree are good model organisms to study the primitive vertebrate conditions. They play a significant role in maintaining the ecological balance and have high economic value. Due to over-exploitation and illegal fishing worldwide, the elasmobranch stocks are being decimated at an alarming rate. Appropriate management measures are necessary for restoring depleted elasmobranch stocks. One approach for restoring stocks is implementation of conservation measures and these measures can be formulated effectively by knowing the evolutionary relationship among the elasmobranchs. In this study, a total of 30 species were chosen for molecular phylogeny studies using mitochondrial cytochrome c oxidase subunit I, 12S ribosomal RNA gene and nuclear Internal Transcribed Spacer 2. Among different genes, the combined dataset of COI and 12S rRNA resulted in a well resolved tree topology with significant bootstrap/posterior probabilities values. The results supported the reciprocal monophyly of sharks and batoids. Within Galeomorphii, Heterodontiformes (bullhead sharks) formed as a sister group to Lamniformes (mackerel sharks): Orectolobiformes (carpet sharks) and to Carcharhiniformes (ground sharks). Within batoids, the Myliobatiformes formed a monophyly group while Pristiformes (sawfishes) and Rhinobatiformes (guitar fishes) formed a sister group to all other batoids.

  14. Phylogeny of marine Bacillus isolates from the Gulf of Mexico

    Science.gov (United States)

    Siefert, J. L.; Larios-Sanz, M.; Nakamura, L. K.; Slepecky, R. A.; Paul, J. H.; Moore, E. R.; Fox, G. E.; Jurtshuk, P. Jr

    2000-01-01

    The phylogeny of 11 pigmented, aerobic, spore-forming isolates from marine sources was studied. Forty-two biochemical characteristics were examined, and a 16S rDNA sequence was obtained for each isolate. In a phylogenetic tree based on 16S sequencing, four isolates (NRRL B-14850, NRRL B-14904, NRRL B-14907, and NRRL B-14908) clustered with B. subtilis and related organisms; NRRL B-14907 was closely related to B. amyloliquefaciens. NRRL B-14907 and NRRL B-14908 were phenotypically similar to B. amyloliquefaciens and B. pumilus, respectively. Three strains (NRRL B-14906, NRRL B-14910, and NRRL B-14911) clustered in a clade that included B. firmus, B. lentus, and B. megaterium. NRRL B-14910 was closely related phenotypically and phylogenetically to B. megaterium. NRRL B-14905 clustered with the mesophilic round spore-producing species, B. fusiformis and B. sphaericus; the isolate was more closely related to B. fusiformis. NRRL B-14905 displayed characteristics typical of the B. sphaericus-like organisms. NRRL B-14909 and NRRL B-14912 clustered with the Paenibacillus species and displayed characteristics typical of the genus. Only NRRL B-14851, an unusually thin rod that forms very small spores, may represent a new Bacillus species.

  15. Phylogeny, evolution and classification of gall wasps: the plot thickens.

    Directory of Open Access Journals (Sweden)

    Fredrik Ronquist

    Full Text Available Gall wasps (Cynipidae represent the most spectacular radiation of gall-inducing insects. In addition to true gall formers, gall wasps also include phytophagous inquilines, which live inside the galls induced by gall wasps or other insects. Here we present the first comprehensive molecular and total-evidence analyses of higher-level gall wasp relationships. We studied more than 100 taxa representing a rich selection of outgroups and the majority of described cynipid genera outside the diverse oak gall wasps (Cynipini, which were more sparsely sampled. About 5 kb of nucleotide data from one mitochondrial (COI and four nuclear (28S, LWRh, EF1alpha F1, and EF1alpha F2 markers were analyzed separately and in combination with morphological and life-history data. According to previous morphology-based studies, gall wasps evolved in the Northern Hemisphere and were initially herb gallers. Inquilines originated once from gall inducers that lost the ability to initiate galls. Our results, albeit not conclusive, suggest a different scenario. The first gall wasps were more likely associated with woody host plants, and there must have been multiple origins of gall inducers, inquilines or both. One possibility is that gall inducers arose independently from inquilines in several lineages. Except for these surprising results, our analyses are largely consistent with previous studies. They confirm that gall wasps are conservative in their host-plant preferences, and that herb-galling lineages have radiated repeatedly onto the same set of unrelated host plants. We propose a revised classification of the family into twelve tribes, which are strongly supported as monophyletic across independent datasets. Four are new: Aulacideini, Phanacidini, Diastrophini and Ceroptresini. We present a key to the tribes and discuss their morphological and biological diversity. Until the relationships among the tribes are resolved, the origin and early evolution of gall wasps will

  16. Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria.

    Science.gov (United States)

    Paster, B J; Dewhirst, F E; Olsen, I; Fraser, G J

    1994-01-01

    The phylogenetic structure of the bacteroides subgroup of the cytophaga-flavobacter-bacteroides (CFB) phylum was examined by 16S rRNA sequence comparative analysis. Approximately 95% of the 16S rRNA sequence was determined for 36 representative strains of species of Prevotella, Bacteroides, and Porphyromonas and related species by a modified Sanger sequencing method. A phylogenetic tree was constructed from a corrected distance matrix by the neighbor-joining method, and the reliability of tree branching was established by bootstrap analysis. The bacteroides subgroup was divided primarily into three major phylogenetic clusters which contained most of the species examined. The first cluster, termed the prevotella cluster, was composed of 16 species of Prevotella, including P. melaninogenica, P. intermedia, P. nigrescens, and the ruminal species P. ruminicola. Two oral species, P. zoogleoformans and P. heparinolytica, which had been recently placed in the genus Prevotella, did not fall within the prevotella cluster. These two species and six species of Bacteroides, including the type species B. fragilis, formed the second cluster, termed the bacteroides cluster. The third cluster, termed the porphyromonas cluster, was divided into two subclusters. The first contained Porphyromonas gingivalis, P. endodontalis, P. asaccharolytica, P. circumdentaria, P. salivosa, [Bacteroides] levii (the brackets around genus are used to indicate that the species does not belong to the genus by the sensu stricto definition), and [Bacteroides] macacae, and the second subcluster contained [Bacteroides] forsythus and [Bacteroides] distasonis. [Bacteroides] splanchnicus fell just outside the three major clusters but still belonged within the bacteroides subgroup. With few exceptions, the 16 S rRNA data were in overall agreement with previously proposed reclassifications of species of Bacteroides, Prevotella, and Porphyromonas. Suggestions are made to accommodate those species which do not

  17. Resurrecting a subgenus to genus: molecular phylogeny of Euphyllia and Fimbriaphyllia (order Scleractinia; family Euphyllidae; clade V

    Directory of Open Access Journals (Sweden)

    Katrina S. Luzon

    2017-12-01

    dichotomy better. Species in a genus are distinguished by combining polyp morphology and colony form. The cluster of E. glabrescens of the Euphyllia group is a hermaphroditic brooder with long, tubular tentacles with knob-like tips, and a phaceloid colony structure. The Fimbriaphyllia group, with F. paraancora, F. paradivisa, F. ancora, F. divisa, and F. yaeyamaensis, are gonochoric broadcast spawners with short polyps, mixed types of tentacle shapes, and a phaceloid or flabello-meandroid skeleton. Soft-tissue morphology of G. fascicularis and Ctenella chagius were found to be consistent with the dichotomy. Conclusions The paraphyly of the original members of the previous subgenera justify recognizing Fimbriaphyllia as a genus. The integrated approach demonstrates that combining polyp features, reproductive traits, and skeletal morphology is of high systematic value not just to Euphyllia and Fimbriaphyllia but also to clade V; thus, laying the groundwork for resolving the phylogeny of clade V.

  18. Books average previous decade of economic misery.

    Science.gov (United States)

    Bentley, R Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios

    2014-01-01

    For the 20(th) century since the Depression, we find a strong correlation between a 'literary misery index' derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade.

  19. Books Average Previous Decade of Economic Misery

    Science.gov (United States)

    Bentley, R. Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios

    2014-01-01

    For the 20th century since the Depression, we find a strong correlation between a ‘literary misery index’ derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade. PMID:24416159

  20. Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of amaryllidaceae

    Directory of Open Access Journals (Sweden)

    Rønsted Nina

    2012-09-01

    Full Text Available Abstract Background During evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer a predictive approach enabling more efficient selection of plants for the development of traditional medicine and lead discovery. However, this relationship has rarely been rigorously tested and the potential predictive power is consequently unknown. Results We produced a phylogenetic hypothesis for the medicinally important plant subfamily Amaryllidoideae (Amaryllidaceae based on parsimony and Bayesian analysis of nuclear, plastid, and mitochondrial DNA sequences of over 100 species. We tested if alkaloid diversity and activity in bioassays related to the central nervous system are significantly correlated with phylogeny and found evidence for a significant phylogenetic signal in these traits, although the effect is not strong. Conclusions Several genera are non-monophyletic emphasizing the importance of using phylogeny for interpretation of character distribution. Alkaloid diversity and in vitro inhibition of acetylcholinesterase (AChE and binding to the serotonin reuptake transporter (SERT are significantly correlated with phylogeny. This has implications for the use of phylogenies to interpret chemical evolution and biosynthetic pathways, to select candidate taxa for lead discovery, and to make recommendations for policies regarding traditional use and conservation priorities.

  1. A Bayesian approach to the evolution of metabolic networks on a phylogeny.

    Directory of Open Access Journals (Sweden)

    Aziz Mithani

    2010-08-01

    Full Text Available The availability of genomes of many closely related bacteria with diverse metabolic capabilities offers the possibility of tracing metabolic evolution on a phylogeny relating the genomes to understand the evolutionary processes and constraints that affect the evolution of metabolic networks. Using simple (independent loss/gain of reactions or complex (incorporating dependencies among reactions stochastic models of metabolic evolution, it is possible to study how metabolic networks evolve over time. Here, we describe a model that takes the reaction neighborhood into account when modeling metabolic evolution. The model also allows estimation of the strength of the neighborhood effect during the course of evolution. We present Gibbs samplers for sampling networks at the internal node of a phylogeny and for estimating the parameters of evolution over a phylogeny without exploring the whole search space by iteratively sampling from the conditional distributions of the internal networks and parameters. The samplers are used to estimate the parameters of evolution of metabolic networks of bacteria in the genus Pseudomonas and to infer the metabolic networks of the ancestral pseudomonads. The results suggest that pathway maps that are conserved across the Pseudomonas phylogeny have a stronger neighborhood structure than those which have a variable distribution of reactions across the phylogeny, and that some Pseudomonas lineages are going through genome reduction resulting in the loss of a number of reactions from their metabolic networks.

  2. Codiversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence.

    Science.gov (United States)

    Kropáčková, Lucie; Těšický, Martin; Albrecht, Tomáš; Kubovčiak, Jan; Čížková, Dagmar; Tomášek, Oldřich; Martin, Jean-François; Bobek, Lukáš; Králová, Tereza; Procházka, Petr; Kreisinger, Jakub

    2017-10-01

    Vertebrate gut microbiota (GM) is comprised of a taxonomically diverse consortium of symbiotic and commensal microorganisms that have a pronounced effect on host physiology, immune system function and health status. Despite much research on interactions between hosts and their GM, the factors affecting inter- and intraspecific GM variation in wild populations are still poorly known. We analysed data on faecal microbiota composition in 51 passerine species (319 individuals) using Illumina MiSeq sequencing of bacterial 16S rRNA (V3-V4 variable region). Despite pronounced interindividual variation, GM composition exhibited significant differences at the interspecific level, accounting for approximately 20%-30% of total GM variation. We also observed a significant correlation between GM composition divergence and host's phylogenetic divergence, with strength of correlation higher than that of GM vs. ecological or life history traits and geographic variation. The effect of host's phylogeny on GM composition was significant, even after statistical control for these confounding factors. Hence, our data do not support codiversification of GM and passerine phylogeny solely as a by-product of their ecological divergence. Furthermore, our findings do not support that GM vs. host's phylogeny codiversification is driven primarily through trans-generational GM transfer as the GM vs. phylogeny correlation does not increase with higher sequence similarity used when delimiting operational taxonomic units. Instead, we hypothesize that the GM vs. phylogeny correlation may arise as a consequence of interspecific divergence of genes that directly or indirectly modulate composition of GM. © 2017 John Wiley & Sons Ltd.

  3. [Electronic cigarettes - effects on health. Previous reports].

    Science.gov (United States)

    Napierała, Marta; Kulza, Maksymilian; Wachowiak, Anna; Jabłecka, Katarzyna; Florek, Ewa

    2014-01-01

    Currently very popular in the market of tobacco products have gained electronic cigarettes (ang. E-cigarettes). These products are considered to be potentially less harmful in compared to traditional tobacco products. However, current reports indicate that the statements of the producers regarding to the composition of the e- liquids not always are sufficient, and consumers often do not have reliable information on the quality of the product used by them. This paper contain a review of previous reports on the composition of e-cigarettes and their impact on health. Most of the observed health effects was related to symptoms of the respiratory tract, mouth, throat, neurological complications and sensory organs. Particularly hazardous effects of the e-cigarettes were: pneumonia, congestive heart failure, confusion, convulsions, hypotension, aspiration pneumonia, face second-degree burns, blindness, chest pain and rapid heartbeat. In the literature there is no information relating to passive exposure by the aerosols released during e-cigarette smoking. Furthermore, the information regarding to the use of these products in the long term are not also available.

  4. Thesis Proposal

    DEFF Research Database (Denmark)

    Sloth, Erik

    2010-01-01

    Strukturen i Thesis proposal er følgende: Først præsenteres mine konkrete empiriske forskningsprojekter som skal munde ud i afhandlingens artikler. Jeg præsenterer herefter de teoretiske overvejelser omkring oplevelsesbegrebet og forbrugerkulturteori som danner baggrund for at jeg er nået frem til...

  5. Previous Experience a Model of Practice UNAE

    Directory of Open Access Journals (Sweden)

    Ormary Barberi Ruiz

    2017-02-01

    Full Text Available The statements presented in this article represents a preliminary version of the proposed model of pre-professional practices (PPP of the National University of Education (UNAE of Ecuador, an urgent institutional necessity is revealed in the descriptive analyzes conducted from technical support - administrative (reports, interviews, testimonials, pedagogical foundations of UNAE (curricular directionality, transverse axes in practice, career plan, approach and diagnostic examination as subject nature of the pre professional practice and the demand of socio educational contexts where the practices have been emerging to resize them. By relating these elements allowed conceiving the modeling of the processes of the pre-professional practices for the development of professional skills of future teachers through four components: contextual projective, implementation (tutoring, accompaniment (teaching couple and monitoring (meetings at the beginning, during and end of practice. The initial training of teachers is inherent to teaching (academic and professional training, research and links with the community, these are fundamental pillars of Ecuadorian higher education.

  6. Skipper genome sheds light on unique phenotypic traits and phylogeny.

    Science.gov (United States)

    Cong, Qian; Borek, Dominika; Otwinowski, Zbyszek; Grishin, Nick V

    2015-08-27

    Butterflies and moths are emerging as model organisms in genetics and evolutionary studies. The family Hesperiidae (skippers) was traditionally viewed as a sister to other butterflies based on its moth-like morphology and darting flight habits with fast wing beats. However, DNA studies suggest that the family Papilionidae (swallowtails) may be the sister to other butterflies including skippers. The moth-like features and the controversial position of skippers in Lepidoptera phylogeny make them valuable targets for comparative genomics. We obtained the 310 Mb draft genome of the Clouded Skipper (Lerema accius) from a wild-caught specimen using a cost-effective strategy that overcomes the high (1.6 %) heterozygosity problem. Comparative analysis of Lerema accius and the highly heterozygous genome of Papilio glaucus revealed differences in patterns of SNP distribution, but similarities in functions of genes that are enriched in non-synonymous SNPs. Comparison of Lepidoptera genomes revealed possible molecular bases for unique traits of skippers: a duplication of electron transport chain components could result in efficient energy supply for their rapid flight; a diversified family of predicted cellulases might allow them to feed on cellulose-enriched grasses; an expansion of pheromone-binding proteins and enzymes for pheromone synthesis implies a more efficient mate-recognition system, which compensates for the lack of clear visual cues due to the similarities in wing colors and patterns of many species of skippers. Phylogenetic analysis of several Lepidoptera genomes suggested that the position of Hesperiidae remains uncertain as the tree topology varied depending on the evolutionary model. Completion of the first genome from the family Hesperiidae allowed comparative analyses with other Lepidoptera that revealed potential genetic bases for the unique phenotypic traits of skippers. This work lays the foundation for future experimental studies of skippers and

  7. Do orthologous gene phylogenies really support tree-thinking?

    Directory of Open Access Journals (Sweden)

    Leigh J

    2005-05-01

    Full Text Available Abstract Background Since Darwin's Origin of Species, reconstructing the Tree of Life has been a goal of evolutionists, and tree-thinking has become a major concept of evolutionary biology. Practically, building the Tree of Life has proven to be tedious. Too few morphological characters are useful for conducting conclusive phylogenetic analyses at the highest taxonomic level. Consequently, molecular sequences (genes, proteins, and genomes likely constitute the only useful characters for constructing a phylogeny of all life. For this reason, tree-makers expect a lot from gene comparisons. The simultaneous study of the largest number of molecular markers possible is sometimes considered to be one of the best solutions in reconstructing the genealogy of organisms. This conclusion is a direct consequence of tree-thinking: if gene inheritance conforms to a tree-like model of evolution, sampling more of these molecules will provide enough phylogenetic signal to build the Tree of Life. The selection of congruent markers is thus a fundamental step in simultaneous analysis of many genes. Results Heat map analyses were used to investigate the congruence of orthologues in four datasets (archaeal, bacterial, eukaryotic and alpha-proteobacterial. We conclude that we simply cannot determine if a large portion of the genes have a common history. In addition, none of these datasets can be considered free of lateral gene transfer. Conclusion Our phylogenetic analyses do not support tree-thinking. These results have important conceptual and practical implications. We argue that representations other than a tree should be investigated in this case because a non-critical concatenation of markers could be highly misleading.

  8. [Phylogeny and divergence time estimation of Schizothoracinae fishes in Xinjiang].

    Science.gov (United States)

    Ayelhan, Haysa; Guo, Yan; Meng, Wei; Yang, Tianyan; Ma, Yanwu

    2014-10-01

    Based on combined data of mitochondrial COI, ND4 and 16S RNA genes, molecular phylogeny of 4 genera, 10 species or subspecies of Schizothoracinae fishes distributed in Xinjiang were analyzed. The molecular clock was calibrated by divergence time of Cyprininae and geological segregation event between the upper Yellow River and Qinghai Lake. Divergence time of Schizothoracinae fishes was calculated, and its relationship with the major geological events and the climate changes in surrounding areas of Tarim Basin was discussed. The results showed that genus Aspiorhynchus did not form an independent clade, but clustered with Schizothorax biddulphi and S. irregularis. Kimura 2-parameter model was used to calculate the genetic distance of COI gene, the genetic distance between genus Aspiorhynchus and Schizothorax did not reach genus level, and Aspiorhynchus laticeps might be a specialized species of genus Schizothorax. Cluster analysis showed a different result with morphological classification method, and it did not support the subgenus division of Schizothorax fishes. Divergence of two groups of primitive Schizothoracinae (8.18Ma) and divergence of Gymnodiptychus dybowskii and Diptychus maculates (7.67Ma) occurred in late Miocene, which might be related with the separation of Kunlun Mountain and north Tianshan Mountain River system that was caused by the uplift of Qinghai-Tibet Plateau and Tianshan Mountain, and the aridification of Tarim Basin. The terrain of Tarim Basin that was affected by Quaternary Himalayan movement was high in west but low in east, as a result, Lop Nor became the center of surrounding mountain rivers in Tarim Basin, which shaped the distribution pattern of genus Schizothorax.

  9. Global diversity and phylogeny of the Asteroidea (Echinodermata.

    Directory of Open Access Journals (Sweden)

    Christopher L Mah

    Full Text Available Members of the Asteroidea (phylum Echinodermata, popularly known as starfish or sea stars, are ecologically important and diverse members of marine ecosystems in all of the world's oceans. We present a comprehensive overview of diversity and phylogeny as they have figured into the evolution of the Asteroidea from Paleozoic to the living fauna. Living post-Paleozoic asteroids, the Neoasteroidea, are morphologically separate from those in the Paleozoic. Early Paleozoic asteroid faunas were diverse and displayed morphology that foreshadowed later living taxa. Preservation presents significant difficulties, but fossil occurrence and current accounts suggests a diverse Paleozoic fauna, which underwent extinction around the Permian-Triassic interval was followed by re-diversification of at least one surviving lineage. Ongoing phylogenetic classification debates include the status of the Paxillosida and the Concentricycloidea. Fossil and molecular evidence has been and continues to be part of the ongoing evolution of asteroid phylogenetic research. The modern lineages of asteroids include the Valvatacea, the Forcipulatacea, the Spinlosida, and the Velatida. We present an overview of diversity in these taxa, as well as brief notes on broader significance, ecology, and functional morphology of each. Although much asteroid taxonomy is stable, many new taxa remain to be discovered with many new species currently awaiting description. The Goniasteridae is currently one of the most diverse families within the Asteroidea. New data from molecular phylogenetics and the advent of global biodiversity databases, such as the World Asteroidea Database (http://www.marinespecies.org/Asteroidea/ present important new springboards for understanding the global biodiversity and evolution of asteroids.

  10. Mitogenomic phylogeny of cone snails endemic to Senegal.

    Science.gov (United States)

    Abalde, Samuel; Tenorio, Manuel J; Afonso, Carlos M L; Zardoya, Rafael

    2017-07-01

    Cone snails attain in Senegal one of their highest peaks of species diversity throughout the continental coast of Western Africa. A total of 15 endemic species have been described, all placed in the genus Lautoconus. While there is ample data regarding the morphology of the shell and the radular tooth of these species, virtually nothing is known regarding the genetic diversity and phylogenetic relationships of one of the most endangered groups of cones. In this work, we determined the complete or near-complete (only lacking the control region) mitochondrial (mt) genomes of 17 specimens representing 11 endemic species (Lautoconus belairensis, Lautoconus bruguieresi, Lautoconus cacao, Lautoconus cloveri, Lautoconus cf. echinophilus, Lautoconus guinaicus, Lautoconus hybridus, Lautoconus senegalensis, Lautoconus mercator, Lautoconus taslei, and Lautoconus unifasciatus). We also sequenced the complete mt genome of Lautoconus guanche from the Canary Islands, which has been related to the cones endemic to Senegal. All mt genomes share the same gene arrangement, which conforms to the consensus reported for Conidae, Neogastropoda and Caenogastropoda. Phylogenetic analyses using probabilistic methods recovered three major lineages, whose divergence coincided in time with sea level and ocean current changes as well as temperature fluctuations during the Messinian salinity crisis and the Plio-Pleistocene transition. Furthermore, the three lineages corresponded to distinct types of radular tooth (robust, small, and elongated), suggesting that dietary specialization could be an additional evolutionary driver in the diversification of the cones endemic to Senegal. The reconstructed phylogeny showed several cases of phenotypic convergence (cryptic species) and questions the validity of some species (ecotypes or phenotypic plasticity), both results having important taxonomic and conservation consequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The discovery of Halictivirus resolves the Sinaivirus phylogeny.

    Science.gov (United States)

    Bigot, Diane; Dalmon, Anne; Roy, Bronwen; Hou, Chunsheng; Germain, Michèle; Romary, Manon; Deng, Shuai; Diao, Qingyun; Weinert, Lucy A; Cook, James M; Herniou, Elisabeth A; Gayral, Philippe

    2017-11-01

    By providing pollination services, bees are among the most important insects, both in ecological and economical terms. Combined next-generation and classical sequencing approaches were applied to discover and study new insect viruses potentially harmful to bees. A bioinformatics virus discovery pipeline was used on individual Illumina transcriptomes of 13 wild bees from three species from the genus Halictus and 30 ants from six species of the genera Messor and Aphaenogaster. This allowed the discovery and description of three sequences of a new virus termed Halictus scabiosae Adlikon virus (HsAV). Phylogenetic analyses of ORF1, RNA-dependent RNA-polymerase (RdRp) and capsid genes showed that HsAV is closely related to (+)ssRNA viruses of the unassigned Sinaivirus genus but distant enough to belong to a different new genus we called Halictivirus. In addition, our study of ant transcriptomes revealed the first four sinaivirus sequences from ants (Messor barbarus, M. capitatus and M. concolor). Maximum likelihood phylogenetic analyses were performed on a 594 nt fragment of the ORF1/RdRp region from 84 sinaivirus sequences, including 31 new Lake Sinai viruses (LSVs) from honey bees collected in five countries across the globe and the four ant viral sequences. The phylogeny revealed four main clades potentially representing different viral species infecting honey bees. Moreover, the ant viruses belonged to the LSV4 clade, suggesting a possible cross-species transmission between bees and ants. Lastly, wide honey bee screening showed that all four LSV clades have worldwide distributions with no obvious geographical segregation.

  12. Forelimb-hindlimb developmental timing changes across tetrapod phylogeny

    Directory of Open Access Journals (Sweden)

    Selwood Lynne

    2007-10-01

    Full Text Available Abstract Background Tetrapods exhibit great diversity in limb structures among species and also between forelimbs and hindlimbs within species, diversity which frequently correlates with locomotor modes and life history. We aim to examine the potential relation of changes in developmental timing (heterochrony to the origin of limb morphological diversity in an explicit comparative and quantitative framework. In particular, we studied the relative time sequence of development of the forelimbs versus the hindlimbs in 138 embryos of 14 tetrapod species spanning a diverse taxonomic, ecomorphological and life-history breadth. Whole-mounts and histological sections were used to code the appearance of 10 developmental events comprising landmarks of development from the early bud stage to late chondrogenesis in the forelimb and the corresponding serial homologues in the hindlimb. Results An overall pattern of change across tetrapods can be discerned and appears to be relatively clade-specific. In the primitive condition, as seen in Chondrichthyes and Osteichthyes, the forelimb/pectoral fin develops earlier than the hindlimb/pelvic fin. This pattern is either retained or re-evolved in eulipotyphlan insectivores (= shrews, moles, hedgehogs, and solenodons and taken to its extreme in marsupials. Although exceptions are known, the two anurans we examined reversed the pattern and displayed a significant advance in hindlimb development. All other species examined, including a bat with its greatly enlarged forelimbs modified as wings in the adult, showed near synchrony in the development of the fore and hindlimbs. Conclusion Major heterochronic changes in early limb development and chondrogenesis were absent within major clades except Lissamphibia, and their presence across vertebrate phylogeny are not easily correlated with adaptive phenomena related to morphological differences in the adult fore- and hindlimbs. The apparently conservative nature of this

  13. Mutational, Phylogeny and Evolution Analyses of Salvia Copalyl Diphosphate Synthase

    International Nuclear Information System (INIS)

    Hao, D. C.; Thimmappa, R. B.; Xiao, P. G.

    2016-01-01

    The cyclization of geranylgeranyl diphosphate (GGPP) is catalyzed by copalyl diphosphate synthase (CPS), a class II diterpene synthase (diTPS), to form copalyl diphosphate (CPP), which is an essential substrate of a variety of diterpenes in secondary metabolism of angiosperm including Salvia medicinal plants. The protein environment of the N-terminal class II active site stabilizes the carbocation intermediates and maintains the catalytic activity of angiosperm class II diTPS. The virtual modeling and mutagenesis of the class II diTPS of Salvia miltiorrhiza (SmCPS) were accomplished to illuminate the catalytic activity of SmCPS. Terminal truncations and point mutations established the role of the Beta-Gamma domain and Alpha domain, i.e., they facilitate the flexible conformational change of the class II active site after substrate binding. E203 and K238 in the N-ter Gamma domain of SmCPS1 are functional in the substrate binding and conformational transition and might be essential in catalysis. Similar to other CPSs, the ensuing protonation of the GGPP substrate and coordination of the diphosphate group are governed by highly conserved residues in the DxDD motif of SmCPS, e.g., D372 of CPS1. Moreover, F256 and Y505 stabilize the carbocation and control the enzymatic activity during CPP formation. The amino acids of the predicted active sites, despite under purifying selection, vary greatly, corresponding to the functional flexibility of angiosperm CPSs. Molecular phylogeny and evolution analyses suggest early and ongoing evolution of labdane-related diterpenoid metabolism in angiosperm. (author)

  14. 77 FR 32069 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Science.gov (United States)

    2012-05-31

    ... Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Airplanes AGENCY... previously held by Israel Aircraft Industries, Ltd.) Model Galaxy and Gulfstream 200 airplanes. This proposed... receive about this proposed AD. Discussion The Civil Aviation Authority of Israel (CAAI), which is the...

  15. Karyotypic evolution in the Galliformes: an examination of the process of karyotypic evolution by comparison of the molecular cytogenetic findings with the molecular phylogeny.

    Science.gov (United States)

    Shibusawa, M; Nishibori, M; Nishida-Umehara, C; Tsudzuki, M; Masabanda, J; Griffin, D K; Matsuda, Y

    2004-01-01

    To define the process of karyotypic evolution in the Galliformes on a molecular basis, we conducted genome-wide comparative chromosome painting for eight species, i.e. silver pheasant (Lophura nycthemera), Lady Amherst's pheasant (Chrysolophus amherstiae), ring-necked pheasant (Phasianus colchicus), turkey (Meleagris gallopavo), Western capercaillie (Tetrao urogallus), Chinese bamboo-partridge (Bambusicola thoracica) and common peafowl (Pavo cristatus) of the Phasianidae, and plain chachalaca (Ortalis vetula) of the Cracidae, with chicken DNA probes of chromosomes 1-9 and Z. Including our previous data from five other species, chicken (Gallus gallus), Japanese quail (Coturnix japonica) and blue-breasted quail (Coturnix chinensis) of the Phasianidae, guinea fowl (Numida meleagris) of the Numididae and California quail (Callipepla californica) of the Odontophoridae, we represented the evolutionary changes of karyotypes in the 13 species of the Galliformes. In addition, we compared the cytogenetic data with the molecular phylogeny of the 13 species constructed with the nucleotide sequences of the mitochondrial cytochrome b gene, and discussed the process of karyotypic evolution in the Galliformes. Comparative chromosome painting confirmed the previous data on chromosome rearrangements obtained by G-banding analysis, and identified several novel chromosome rearrangements. The process of the evolutionary changes of macrochromosomes in the 13 species was in good accordance with the molecular phylogeny, and the ancestral karyotype of the Galliformes is represented. Copyright 2004 S. Karger AG, Basel

  16. A dated molecular phylogeny of manta and devil rays (Mobulidae) based on mitogenome and nuclear sequences.

    Science.gov (United States)

    Poortvliet, Marloes; Olsen, Jeanine L; Croll, Donald A; Bernardi, Giacomo; Newton, Kelly; Kollias, Spyros; O'Sullivan, John; Fernando, Daniel; Stevens, Guy; Galván Magaña, Felipe; Seret, Bernard; Wintner, Sabine; Hoarau, Galice

    2015-02-01

    Manta and devil rays are an iconic group of globally distributed pelagic filter feeders, yet their evolutionary history remains enigmatic. We employed next generation sequencing of mitogenomes for nine of the 11 recognized species and two outgroups; as well as additional Sanger sequencing of two mitochondrial and two nuclear genes in an extended taxon sampling set. Analysis of the mitogenome coding regions in a Maximum Likelihood and Bayesian framework provided a well-resolved phylogeny. The deepest divergences distinguished three clades with high support, one containing Manta birostris, Manta alfredi, Mobula tarapacana, Mobula japanica and Mobula mobular; one containing Mobula kuhlii, Mobula eregoodootenkee and Mobula thurstoni; and one containing Mobula munkiana, Mobula hypostoma and Mobula rochebrunei. Mobula remains paraphyletic with the inclusion of Manta, a result that is in agreement with previous studies based on molecular and morphological data. A fossil-calibrated Bayesian random local clock analysis suggests that mobulids diverged from Rhinoptera around 30 Mya. Subsequent divergences are characterized by long internodes followed by short bursts of speciation extending from an initial episode of divergence in the Early and Middle Miocene (19-17 Mya) to a second episode during the Pliocene and Pleistocene (3.6 Mya - recent). Estimates of divergence dates overlap significantly with periods of global warming, during which upwelling intensity - and related high primary productivity in upwelling regions - decreased markedly. These periods are hypothesized to have led to fragmentation and isolation of feeding regions leading to possible regional extinctions, as well as the promotion of allopatric speciation. The closely shared evolutionary history of mobulids in combination with ongoing threats from fisheries and climate change effects on upwelling and food supply, reinforces the case for greater protection of this charismatic family of pelagic filter feeders

  17. First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny.

    Science.gov (United States)

    Jeyaprakash, Ayyamperumal; Hoy, Marjorie A

    2009-01-01

    Spiders, scorpions, mites and ticks (chelicerates) form one of the most diverse groups of arthropods on land, but their origin and times of diversification are not yet established. We estimated, for the first time, the molecular divergence times for these chelicerates using complete mitochondrial sequences from 25 taxa. All mitochondrial genes were evaluated individually or after concatenation. Sequences belonging to three missing genes (ND3, 6, and tRNA-Asp) from three taxa, as well as the faster-evolving ribosomal RNAs (12S and 16S), tRNAs, and the third base of each codon from 11 protein-coding genes (PCGs) (COI-III, CYTB, ATP8, 6, ND1-2, 4L, and 4-5), were identified and removed. The remaining concatenated sequences from 11 PCGs produced a completely resolved phylogenetic tree and confirmed that all chelicerates are monophyletic. Removing the third base from each codon was essential to resolve the phylogeny, which allowed deep divergence times to be calculated using three nodes calibrated with upper and lower priors. Our estimates indicate that the orders and classes of spiders, scorpions, mites, and ticks diversified in the late Paleozoic, much earlier than previously reported from fossil date estimates. The divergence time estimated for ticks suggests that their first land hosts could have been amphibians rather than reptiles. Using molecular data, we separated the spider-scorpion clades and estimated their divergence times at 397 +/- 23 million years ago. Algae, fungi, plants, and animals, including insects, were well established on land when these chelicerates diversified. Future analyses, involving mitochondrial sequences from additional chelicerate taxa and the inclusion of nuclear genes (or entire genomes) will provide a more complete picture of the evolution of the Chelicerata, the second most abundant group of animals on earth.

  18. The IQD gene family in soybean: structure, phylogeny, evolution and expression.

    Directory of Open Access Journals (Sweden)

    Lin Feng

    Full Text Available Members of the plant-specific IQ67-domain (IQD protein family are involved in plant development and the basal defense response. Although systematic characterization of this family has been carried out in Arabidopsis, tomato (Solanum lycopersicum, Brachypodium distachyon and rice (Oryza sativa, systematic analysis and expression profiling of this gene family in soybean (Glycine max have not previously been reported. In this study, we identified and structurally characterized IQD genes in the soybean genome. A complete set of 67 soybean IQD genes (GmIQD1-67 was identified using Blast search tools, and the genes were clustered into four subfamilies (IQD I-IV based on phylogeny. These soybean IQD genes are distributed unevenly across all 20 chromosomes, with 30 segmental duplication events, suggesting that segmental duplication has played a major role in the expansion of the soybean IQD gene family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the GmIQD family primarily underwent purifying selection. Microsynteny was detected in most pairs: genes in clade 1-3 might be present in genome regions that were inverted, expanded or contracted after the divergence; most gene pairs in clade 4 showed high conservation with little rearrangement among these gene-residing regions. Of the soybean IQD genes examined, six were most highly expressed in young leaves, six in flowers, one in roots and two in nodules. Our qRT-PCR analysis of 24 soybean IQD III genes confirmed that these genes are regulated by MeJA stress. Our findings present a comprehensive overview of the soybean IQD gene family and provide insights into the evolution of this family. In addition, this work lays a solid foundation for further experiments aimed at determining the biological functions of soybean IQD genes in growth and development.

  19. Structure, function, and phylogeny of the mating locus in the Rhizopus oryzae complex.

    Directory of Open Access Journals (Sweden)

    Andrii P Gryganskyi

    2010-12-01

    Full Text Available The Rhizopus oryzae species complex is a group of zygomycete fungi that are common, cosmopolitan saprotrophs. Some strains are used beneficially for production of Asian fermented foods but they can also act as opportunistic human pathogens. Although R. oryzae reportedly has a heterothallic (+/- mating system, most strains have not been observed to undergo sexual reproduction and the genetic structure of its mating locus has not been characterized. Here we report on the mating behavior and genetic structure of the mating locus for 54 isolates of the R. oryzae complex. All 54 strains have a mating locus similar in overall organization to Phycomyces blakesleeanus and Mucor circinelloides (Mucoromycotina, Zygomycota. In all of these fungi, the minus (- allele features the SexM high mobility group (HMG gene flanked by an RNA helicase gene and a TP transporter gene (TPT. Within the R. oryzae complex, the plus (+ mating allele includes an inserted region that codes for a BTB/POZ domain gene and the SexP HMG gene. Phylogenetic analyses of multiple genes, including the mating loci (HMG, TPT, RNA helicase, ITS1-5.8S-ITS2 rDNA, RPB2, and LDH genes, identified two distinct groups of strains. These correspond to previously described sibling species R. oryzae sensu stricto and R. delemar. Within each species, discordant gene phylogenies among multiple loci suggest an outcrossing population structure. The hypothesis of random-mating is also supported by a 50:50 ratio of plus and minus mating types in both cryptic species. When crossed with tester strains of the opposite mating type, most isolates of R. delemar failed to produce zygospores, while isolates of R. oryzae produced sterile zygospores. In spite of the reluctance of most strains to mate in vitro, the conserved sex locus structure and evidence for outcrossing suggest that a normal sexual cycle occurs in both species.

  20. Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach.

    Science.gov (United States)

    Borner, Janus; Pick, Christian; Thiede, Jenny; Kolawole, Olatunji Matthew; Kingsley, Manchang Tanyi; Schulze, Jana; Cottontail, Veronika M; Wellinghausen, Nele; Schmidt-Chanasit, Jonas; Bruchhaus, Iris; Burmester, Thorsten

    2016-01-01

    The apicomplexan order Haemosporida is a clade of unicellular blood parasites that infect a variety of reptilian, avian and mammalian hosts. Among them are the agents of human malaria, parasites of the genus Plasmodium, which pose a major threat to human health. Illuminating the evolutionary history of Haemosporida may help us in understanding their enormous biological diversity, as well as tracing the multiple host switches and associated acquisitions of novel life-history traits. However, the deep-level phylogenetic relationships among major haemosporidian clades have remained enigmatic because the datasets employed in phylogenetic analyses were severely limited in either gene coverage or taxon sampling. Using a PCR-based approach that employs a novel set of primers, we sequenced fragments of 21 nuclear genes from seven haemosporidian parasites of the genera Leucocytozoon, Haemoproteus, Parahaemoproteus, Polychromophilus and Plasmodium. After addition of genomic data from 25 apicomplexan species, the unreduced alignment comprised 20,580 bp from 32 species. Phylogenetic analyses were performed based on nucleotide, codon and amino acid data employing Bayesian inference, maximum likelihood and maximum parsimony. All analyses resulted in highly congruent topologies. We found consistent support for a basal position of Leucocytozoon within Haemosporida. In contrast to all previous studies, we recovered a sister group relationship between the genera Polychromophilus and Plasmodium. Within Plasmodium, the sauropsid and mammal-infecting lineages were recovered as sister clades. Support for these relationships was high in nearly all trees, revealing a novel phylogeny of Haemosporida, which is robust to the choice of the outgroup and the method of tree inference. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. A molecular phylogeny of Dorylus army ants provides evidence for multiple evolutionary transitions in foraging niche

    Directory of Open Access Journals (Sweden)

    Vilhelmsen Lars B

    2007-04-01

    Full Text Available Abstract Background Army ants are the prime arthropod predators in tropical forests, with huge colonies and an evolutionary derived nomadic life style. Five of the six recognized subgenera of Old World Dorylus army ants forage in the soil, whereas some species of the sixth subgenus (Anomma forage in the leaf-litter and some as conspicuous swarm raiders on the forest floor and in the lower vegetation (the infamous driver ants. Here we use a combination of nuclear and mitochondrial DNA sequences to reconstruct the phylogeny of the Dorylus s.l. army ants and to infer the evolutionary transitions in foraging niche and associated morphological adaptations. Results Underground foraging is basal and gave rise to leaf-litter foraging. Leaf-litter foraging in turn gave rise to two derived conditions: true surface foraging (the driver ants and a reversal to subterranean foraging (a clade with most of the extant Dorylus s.s. species. This means that neither the subgenus Anomma nor Dorylus s.s. is monophyletic, and that one of the Dorylus s.s. lineages adopted subterranean foraging secondarily. We show that this latter group evolved a series of morphological adaptations to underground foraging that are remarkably convergent to the basal state. Conclusion The evolutionary transitions in foraging niche were more complex than previously thought, but our comparative analysis of worker morphology lends strong support to the contention that particular foraging niches have selected for very specific worker morphologies. The surprising reversal to underground foraging is therefore a striking example of convergent morphological evolution.

  2. Phylogeny of the pollinating yucca moths, with revision of Mexican species (Tegeticula and Parategeticula; Lepidoptera, Prodoxidae)

    Energy Technology Data Exchange (ETDEWEB)

    Pellmyr, Olof; Balcazar-Lara, Manuel; Segraves, Kari A.; Althoff, David M.; Littlefield, Rik J.

    2008-02-01

    ABSTRACT The yucca moths (Tegeticula and Parategeticula; Lepidoptera, Prodoxidae) are well-known for their obligate relationship as exclusive pollinators of yuccas. Revisionary work in recent years has revealed far higher species diversity than historically recognized, increasing the number of described species from four to 21. Based on field surveys in Mexico and examination of collections, we describe five additional species: T. californica Pellmyr sp. nov., T. tehuacana Pellmyr & Balcázar-Lara sp. nov., T. tambasi Pellmyr & Balcázar-Lara sp. nov., T. baja Pellmyr & Balcázar-Lara sp. nov., and P. californica Pellmyr & Balcázar-Lara sp. nov. Tegeticula treculeanella Pellmyr is identified as a junior synonym of T. mexicana Bastida. A diagnostic key to the adults of all species of the T. yuccasella complex is provided. A phylogeny based on a 2104-bp segment of mitochondrial DNA (mtDNA) in the cytochrome oxidase I and II region supported monophyly of the two pollinator genera, and strongly supported monophyly of the 17 recognized species of the T. yuccasella complex. Most relationships are well-supported, but some relationships within a recent and rapidly diversified group of 11 taxa are less robust, and in one case conflicts with a whole-genome data set (AFLP). The current mtDNA-based analyses, together with previously published AFLP data, provide a robust phylogenetic foundation for future studies of life history evolution and host interactions in one of the classical models of coevolution and obligate mutualism. ADDITIONAL KEY WORDS: mutualism, pollination, molecular phylogenetics, mitochondrial DNA

  3. Phylogeny of the non-monophyletic Cayratia Juss. (Vitaceae) and implications for character evolution and biogeography.

    Science.gov (United States)

    Lu, Limin; Wang, Wei; Chen, Zhiduan; Wen, Jun

    2013-09-01

    Cayratia consists of ca. 60 species primarily distributed in the tropical and subtropical regions of Asia, Australia, and Africa. It is an excellent candidate for exploring the evolution of intercontinental disjunct distributions in the Old World. Previous phylogenetic work of Vitaceae with a few species of Cayratia sampled showed that Cayratia was not monophyletic and was closely related to Cyphostemma and Tetrastigma. We herein expanded taxon sampling of Cayratia (25/60 species) with its allied genera Cyphostemma (39/150 species), Tetrastigma (27/95 species), and other related genera from Vitaceae represented, employing five plastid markers (atpB-rbcL, rps16, trnC-petN, trnH-psbA, and trnL-F), to investigate the phylogeny, character evolution and biogeography of Cayratia. The phylogenetic analyses have confirmed the monophyly of the Cayratia-Cyphostemma-Tetrastigma (CCT) clade and resolved Cayratia into three lineages: the African Cayratia clade, subg. Cayratia, and subg. Discypharia. The African Cayratia was supported as the first diverging lineage within the CCT clade and Tetrastigma is resolved as sister to subg. Discypharia. Character optimizations suggest that the presence/absence of a membrane enclosing the ventral infolds in seeds is an important character for the taxonomy of Cayratia. The presence of bracts on the lower part of the inflorescence axis is inferred to have arisen only once in Cayratia, but this character evolved several times in Tetrastigma. Both the branching pattern of tendrils and the leaf architecture are suggested as important infrageneric characters, but should be used cautiously because some states evolved multiple times. Ancestral area reconstruction and molecular dating suggest that the CCT clade originated from continental Africa in the late Cretaceous, and it then reached Asia twice independently in the late Cretaceous and late Oligocene, respectively. Several dispersals are inferred from Asia to Australia since the Eocene

  4. Revisiting the mitogenomic phylogeny of Salmoninae: new insights thanks to recent sequencing advances

    Directory of Open Access Journals (Sweden)

    Jose L. Horreo

    2017-09-01

    Full Text Available The phylogeny of the Salmonidae family, the only living one of the Order Salmoniformes, remains still unclear because of several reasons. Such reasons include insufficient taxon sampling and/or DNA information. The use of complete mitochondrial genomes (mitogenomics could provide some light on it, but despite the high number of mitogenomes of species belonging to this family published during last years, an integrative work containing all this information has not been done. In this work, the phylogeny of 46 Salmonidae species was inferred from their mitogenomic sequences. Results include a Bayesian molecular-dated phylogenetic tree with very high statistical support showing Coregoninae and Salmoninae as sister subfamilies, as well as several new phylogenetic relationships among species and genus of the family. All these findings contribute to improve our understanding of the Salmonidae systematics and could have consequences on related evolutionary studies, as well as highlight the importance of revisiting phylogenies with integrative studies.

  5. A molecular phylogeny of the orange subfamily(Rutaceae: Aurantioideae) using nine cpDNA sequences.

    Science.gov (United States)

    Bayer, Randall J; Mabberley, David J; Morton, Cynthia; Miller, Cathy H; Sharma, Ish K; Pfeil, Bernard E; Rich, Sarah; Hitchcock, Roberta; Sykes, Steve

    2009-03-01

    The breeding of new, high-quality citrus cultivars depends on dependable information about the relationships of taxa within the tribe Citreae; therefore, it is important to have a well-supported phylogeny of the relationships between species not only to advance breeding strategies, but also to advance conservation strategies for the wild taxa. The recent history of the systematics of Citrus (Rutaceae: Aurantioideae) and its allies, in the context of Rutaceae taxonomy as a whole, is reviewed. The most recent classification is tested using nine cpDNA sequence regions in representatives of all genera of the subfam. Aurantioideae (save Limnocitrus) and numerous species and hybrids referred to Citrus s.l. Aurantioideae are confirmed as monophyletic. Within Aurantioideae, tribe Clauseneae are not monophyletic unless Murraya s.s. and Merrillia are removed to Aurantieae. Within tribe Aurantieae, the three traditionally recognized subtribes are not monophyletic. Triphasiinae is not monophyletic unless Oxanthera is returned to Citrus (Citrinae). Balsamocitrinae is polyphyletic. Feroniella, traditionally considered allied closely to Limonia (=Feronia), is shown to be nested in Citrus. The proposed congenericity of Severinia and Atalantia is confirmed. The most recent circumscription of Citrus is strongly supported by this analysis, with hybrids appearing with their putative maternal parents. The genus was resolved into two clades, one comprising wild species from New Guinea, Australia, and New Caledonia (formerly Clymenia, Eremocitrus, Microcitrus, Oxanthera), but surprisingly also Citrus medica, traditionally believed to be native in India. The second clade is largely from the Asian mainland (including species formerly referred to Fortunella and Poncirus).

  6. Whale phylogeny and rapid radiation events revealed using novel retroposed elements and their flanking sequences

    Directory of Open Access Journals (Sweden)

    Zhou Kaiya

    2011-10-01

    Full Text Available Abstract Background A diversity of hypotheses have been proposed based on both morphological and molecular data to reveal phylogenetic relationships within the order Cetacea (dolphins, porpoises, and whales, and great progress has been made in the past two decades. However, there is still some controversy concerning relationships among certain cetacean taxa such as river dolphins and delphinoid species, which needs to be further addressed with more markers in an effort to address unresolved portions of the phylogeny. Results An analysis of additional SINE insertions and SINE-flanking sequences supported the monophyly of the order Cetacea as well as Odontocete, Delphinoidea (Delphinidae + Phocoenidae + Mondontidae, and Delphinidae. A sister relationship between Delphinidae and Phocoenidae + Mondontidae was supported, and members of classical river dolphins and the genera Tursiops and Stenella were found to be paraphyletic. Estimates of divergence times revealed rapid divergences of basal Odontocete lineages in the Oligocene and Early Miocene, and a recent rapid diversification of Delphinidae in the Middle-Late Miocene and Pliocene within a narrow time frame. Conclusions Several novel SINEs were found to differentiate Delphinidae from the other two families (Monodontidae and Phocoenidae, whereas the sister grouping of the latter two families with exclusion of Delphinidae was further revealed using the SINE-flanking sequences. Interestingly, some anomalous PCR amplification patterns of SINE insertions were detected, which can be explained as the result of potential ancestral SINE polymorphisms and incomplete lineage sorting. Although a few loci were potentially anomalous, this study demonstrated that the SINE-based approach is a powerful tool in phylogenetic studies. Identifying additional SINE elements that resolve the relationships in the superfamily Delphinoidea and family Delphinidae will be important steps forward in completely resolving

  7. Whale phylogeny and rapid radiation events revealed using novel retroposed elements and their flanking sequences.

    Science.gov (United States)

    Chen, Zhuo; Xu, Shixia; Zhou, Kaiya; Yang, Guang

    2011-10-27

    A diversity of hypotheses have been proposed based on both morphological and molecular data to reveal phylogenetic relationships within the order Cetacea (dolphins, porpoises, and whales), and great progress has been made in the past two decades. However, there is still some controversy concerning relationships among certain cetacean taxa such as river dolphins and delphinoid species, which needs to be further addressed with more markers in an effort to address unresolved portions of the phylogeny. An analysis of additional SINE insertions and SINE-flanking sequences supported the monophyly of the order Cetacea as well as Odontocete, Delphinoidea (Delphinidae + Phocoenidae + Mondontidae), and Delphinidae. A sister relationship between Delphinidae and Phocoenidae + Mondontidae was supported, and members of classical river dolphins and the genera Tursiops and Stenella were found to be paraphyletic. Estimates of divergence times revealed rapid divergences of basal Odontocete lineages in the Oligocene and Early Miocene, and a recent rapid diversification of Delphinidae in the Middle-Late Miocene and Pliocene within a narrow time frame. Several novel SINEs were found to differentiate Delphinidae from the other two families (Monodontidae and Phocoenidae), whereas the sister grouping of the latter two families with exclusion of Delphinidae was further revealed using the SINE-flanking sequences. Interestingly, some anomalous PCR amplification patterns of SINE insertions were detected, which can be explained as the result of potential ancestral SINE polymorphisms and incomplete lineage sorting. Although a few loci were potentially anomalous, this study demonstrated that the SINE-based approach is a powerful tool in phylogenetic studies. Identifying additional SINE elements that resolve the relationships in the superfamily Delphinoidea and family Delphinidae will be important steps forward in completely resolving cetacean phylogenetic relationships in the future.

  8. Fast and accurate phylogeny reconstruction using filtered spaced-word matches

    Science.gov (United States)

    Sohrabi-Jahromi, Salma; Morgenstern, Burkhard

    2017-01-01

    Abstract Motivation: Word-based or ‘alignment-free’ algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. Results: We propose Filtered Spaced Word Matches (FSWM), a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don’t-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don’t-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don’t-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. Availability and Implementation: The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/ Contact: chris.leimeister@stud.uni-goettingen.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28073754

  9. Phylogeny of Symbiotic Genes and the Symbiotic Properties of Rhizobia Specific to Astragalus glycyphyllos L.

    Science.gov (United States)

    Gnat, Sebastian; Małek, Wanda; Oleńska, Ewa; Wdowiak-Wróbel, Sylwia; Kalita, Michał; Łotocka, Barbara; Wójcik, Magdalena

    2015-01-01

    The phylogeny of symbiotic genes of Astragalus glycyphyllos L. (liquorice milkvetch) nodule isolates was studied by comparative sequence analysis of nodA, nodC, nodH and nifH loci. In all these genes phylograms, liquorice milkvetch rhizobia (closely related to bacteria of three species, i.e. Mesorhizobium amorphae, Mesorhizobium septentrionale and Mesorhizobium ciceri) formed one clearly separate cluster suggesting the horizontal transfer of symbiotic genes from a single ancestor to the bacteria being studied. The high sequence similarity of the symbiotic genes of A. glycyphyllos rhizobia (99-100% in the case of nodAC and nifH genes, and 98-99% in the case of nodH one) points to the relatively recent (in evolutionary scale) lateral transfer of these genes. In the nodACH and nifH phylograms, A. glycyphyllos nodule isolates were grouped together with the genus Mesorhizobium species in one monophyletic clade, close to M. ciceri, Mesorhizobium opportunistum and Mesorhizobium australicum symbiovar biserrulae bacteria, which correlates with the close relationship of these rhizobia host plants. Plant tests revealed the narrow host range of A. glycyphyllos rhizobia. They formed effective symbiotic interactions with their native host (A. glycyphyllos) and Amorpha fruticosa but not with 11 other fabacean species. The nodules induced on A. glycyphyllos roots were indeterminate with apical, persistent meristem, an age gradient of nodule tissues and cortical vascular bundles. To reflect the symbiosis-adaptive phenotype of rhizobia, specific for A. glycyphyllos, we propose for these bacteria the new symbiovar "glycyphyllae", based on nodA and nodC genes sequences.

  10. Do ampharetids take sedimented steps between vents and seeps? Phylogeny and habitat-use of Ampharetidae (Annelida, Terebelliformia) in chemosynthesis-based ecosystems.

    Science.gov (United States)

    Eilertsen, Mari H; Kongsrud, Jon A; Alvestad, Tom; Stiller, Josefin; Rouse, Greg W; Rapp, Hans T

    2017-10-31

    A range of higher animal taxa are shared across various chemosynthesis-based ecosystems (CBEs), which demonstrates the evolutionary link between these habitats, but on a global scale the number of species inhabiting multiple CBEs is low. The factors shaping the distributions and habitat specificity of animals within CBEs are poorly understood, but geographic proximity of habitats, depth and substratum have been suggested as important. Biogeographic studies have indicated that intermediate habitats such as sedimented vents play an important part in the diversification of taxa within CBEs, but this has not been assessed in a phylogenetic framework. Ampharetid annelids are one of the most commonly encountered animal groups in CBEs, making them a good model taxon to study the evolution of habitat use in heterotrophic animals. Here we present a review of the habitat use of ampharetid species in CBEs, and a multi-gene phylogeny of Ampharetidae, with increased taxon sampling compared to previous studies. The review of microhabitats showed that many ampharetid species have a wide niche in terms of temperature and substratum. Depth may be limiting some species to a certain habitat, and trophic ecology and/or competition are identified as other potentially relevant factors. The phylogeny revealed that ampharetids have adapted into CBEs at least four times independently, with subsequent diversification, and shifts between ecosystems have happened in each of these clades. Evolutionary transitions are found to occur both from seep to vent and vent to seep, and the results indicate a role of sedimented vents in the transition between bare-rock vents and seeps. The high number of ampharetid species recently described from CBEs, and the putative new species included in the present phylogeny, indicates that there is considerable diversity still to be discovered. This study provides a molecular framework for future studies to build upon and identifies some ecological and

  11. A new molecular phylogeny of the Laurencia complex (Rhodophyta, Rhodomelaceae) and a review of key morphological characters result in a new genus, Coronaphycus, and a description of C. novus.

    Science.gov (United States)

    Metti, Yola; Millar, Alan J K; Steinberg, Peter

    2015-10-01

    Within the Laurencia complex (Rhodophyta, Rhodomelaceae), six genera have been recognized based on both molecular analyses and morphology: Laurencia, Osmundea, Chondrophycus, Palisada, Yuzurua, and Laurenciella. Recently, new material from Australia has been collected and included in the current molecular phylogeny, resulting in a new clade. This study examined the generic delineations using a combination of morphological comparisons and phylogenetic analysis of chloroplast (rbcL) nucleotide sequence. The molecular phylogeny recovered eight (rather than six) clades; Yuzurua, Laurenciella, Palisada, and Chondrophycus showed as monophyletic clades each with strong support. However, the genera Osmundea and Laurencia were polyphyletic. Consequently, the new genus Coronaphycus is proposed, resulting in the new combination Coronaphycus elatus and a description of the new species C. novus. © 2015 Phycological Society of America.

  12. Baleen boom and bust: a synthesis of mysticete phylogeny, diversity and disparity

    OpenAIRE

    Marx, Felix G.; Fordyce, R. Ewan

    2015-01-01

    A new, fully dated total-evidence phylogeny of baleen whales (Mysticeti) shows that evolutionary phases correlate strongly with Caenozoic modernization of the oceans and climates, implying a major role for bottom-up physical drivers. The phylogeny of 90 modern and dated fossil species suggests three major phases in baleen whale history: an early adaptive radiation (36?30?Ma), a shift towards bulk filter-feeding (30?23?Ma) and a climate-driven diversity loss around 3?Ma. Evolutionary rates and...

  13. Phylogenies of symbiotic genes of Bradyrhizobium symbionts of legumes of economic and environmental importance in Brazil support the definition of the new symbiovars pachyrhizi and sojae.

    Science.gov (United States)

    Delamuta, Jakeline Renata Marçon; Menna, Pâmela; Ribeiro, Renan Augusto; Hungria, Mariangela

    2017-07-01

    Bradyrhizobium comprises most tropical symbiotic nitrogen-fixing strains, but the correlation between symbiotic and core genes with host specificity is still unclear. In this study, the phylogenies of the nodY/K and nifH genes of 45 Bradyrhizobium strains isolated from legumes of economic and environmental importance in Brazil (Arachis hypogaea, Acacia auriculiformis, Glycine max, Lespedeza striata, Lupinus albus, Stylosanthes sp. and Vigna unguiculata) were compared to 16S rRNA gene phylogeny and genetic diversity by rep-PCR. In the 16S rRNA tree, strains were distributed into two superclades-B. japonicum and B. elkanii-with several strains being very similar within each clade. The rep-PCR analysis also revealed high intra-species diversity. Clustering of strains in the nodY/K and nifH trees was identical: 39 strains isolated from soybean grouped with Bradyrhizobium type species symbionts of soybean, whereas five others occupied isolated positions. Only one strain isolated from Stylosanthes sp. showed similar nodY/K and nifH sequences to soybean strains, and it also nodulated soybean. Twenty-one representative strains of the 16S rRNA phylogram were selected and taxonomically classified using a concatenated glnII-recA phylogeny; nodC sequences were also compared and revealed the same clusters as observed in the nodY/K and nifH phylograms. The analyses of symbiotic genes indicated that a large group of strains from the B. elkanii superclade comprised the novel symbiovar sojae, whereas for another group, including B. pachyrhizi, the symbiovar pachyrhizi could be proposed. Other potential new symbiovars were also detected. The co-evolution hypotheses is discussed and it is suggested that nodY/K analysis would be useful for investigating the symbiotic diversity of the genus Bradyrhizobium. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Kidnapping Detection and Recognition in Previous Unknown Environment

    Directory of Open Access Journals (Sweden)

    Yang Tian

    2017-01-01

    Full Text Available An unaware event referred to as kidnapping makes the estimation result of localization incorrect. In a previous unknown environment, incorrect localization result causes incorrect mapping result in Simultaneous Localization and Mapping (SLAM by kidnapping. In this situation, the explored area and unexplored area are divided to make the kidnapping recovery difficult. To provide sufficient information on kidnapping, a framework to judge whether kidnapping has occurred and to identify the type of kidnapping with filter-based SLAM is proposed. The framework is called double kidnapping detection and recognition (DKDR by performing two checks before and after the “update” process with different metrics in real time. To explain one of the principles of DKDR, we describe a property of filter-based SLAM that corrects the mapping result of the environment using the current observations after the “update” process. Two classical filter-based SLAM algorithms, Extend Kalman Filter (EKF SLAM and Particle Filter (PF SLAM, are modified to show that DKDR can be simply and widely applied in existing filter-based SLAM algorithms. Furthermore, a technique to determine the adapted thresholds of metrics in real time without previous data is presented. Both simulated and experimental results demonstrate the validity and accuracy of the proposed method.

  15. Phylogeny, biogeography and ecological diversification of Sarcocornia (Salicornioideae, Amaranthaceae)

    Science.gov (United States)

    Steffen, Simone; Ball, Peter; Mucina, Ladislav; Kadereit, Gudrun

    2015-01-01

    Background and Aims Sarcocornia comprises about 28 species of perennial succulent halophytes distributed worldwide, mainly in saline environments of warm-temperate and subtropical regions. The genus is characterized by strongly reduced leaves and flowers, which cause taxonomic difficulties; however, species in the genus show high diversity in growth form, with a mat-forming habit found in coastal salt marshes of all continents. Sarcocornia forms a monophyletic lineage with Salicornia whose species are all annual, yet the relationship between the two genera is poorly understood. This study is aimed at clarifying the phylogenetic relationship between Sarcocornia and Salicornia, interpreting biogeographical and ecological patterns in Sarcocornia, and gaining insights into putative parallel evolution of habit as an adaptation to environmental factors. Methods A comprehensively sampled and dated phylogeny of Sarcocornia is presented based on nuclear ribosomal DNA (external transcribed spacer) and chloroplast DNA (atpB-rbcL, rpl32-trnL) sequences; representative samples of Salicornia were also included in the analyses. To infer biogeographical patterns, an ancestral area reconstruction was conducted. Key Results The Sarcocornia/Salicornia lineage arose during the Mid-Miocene from Eurasian ancestors and diversified into four subclades: the Salicornia clade, the American Sarcocornia clade, the Eurasian Sarcocornia clade and the South African/Australian Sarcocornia clade. Sarcocornia is supported as paraphyletic, with Salicornia nested within Sarcocornia being sister to the American/Eurasian Sarcocornia clade. The American and the South African/Australian Sarcocornia clade as well as the Salicornia clade were reconstructed to be of Eurasian origin. The prostrate, mat-forming habit arose multiple times in Sarcocornia. Conclusions Sarcocornia diversified in salt-laden environments worldwide, repeatedly evolving superficially similar prostrate, mat-forming habits that seem

  16. Differentiation in a geographical mosaic of plants coevolving with ants: phylogeny of the Leonardoxa africana complex (Fabaceae: Caesalpinioideae) using amplified fragment length polymorphism markers.

    Science.gov (United States)

    Brouat, C; McKey, D; Douzery, E J P

    2004-05-01

    Comprising four allopatric subspecies that exhibit various grades of ant-plant interactions, from diffuse to obligate and symbiotic associations, the Leonardoxa africana complex (Fabaceae, Caesalpinioideae) provides a good opportunity to investigate the evolutionary history of ant-plant mutualisms. A previous study of the L. africana complex based on chloroplast DNA noncoding sequences revealed a lack of congruence between clades suggested by morphological and plastid characters. In this study, we analysed phylogenetic relationships within the L. africana complex using a Bayesian probability approach on amplified fragment length polymorphism markers. The results reported permit partial validation of the four subspecies of L. africana previously defined by morphological and ecological markers. Incongruences between phylogenies based on chloroplast DNA and amplified fragment length polymorphism markers are discussed in the light of morphological and ecological data, and confronted with hypotheses of convergence, lineage sorting and introgression.

  17. Application of RNA-seq for mitogenome reconstruction, and reconsideration of long-branch artifacts in Hemiptera phylogeny

    Science.gov (United States)

    Song, Nan; An, Shiheng; Yin, Xinming; Cai, Wanzhi; Li, Hu

    2016-01-01

    Hemiptera make up the largest nonholometabolan insect assemblage. Despite previous efforts to elucidate phylogeny within this group, relationships among the major sub-lineages remain uncertain. In particular, mitochondrial genome (mitogenome) data are still sparse for many important hemipteran insect groups. Recent mitogenomic analyses of Hemiptera have usually included no more than 50 species, with conflicting hypotheses presented. Here, we determined the nearly complete nucleotide sequence of the mitogenome for the aphid species of Rhopalosiphum padi using RNA-seq plus gap filling. The 15,205 bp mitogenome included all mitochondrial genes except for trnF. The mitogenome organization and size for R. padi are similar to previously reported aphid species. In addition, the phylogenetic relationships for Hemiptera were examined using a mitogenomic dataset which included sequences from 103 ingroup species and 19 outgroup species. Our results showed that the seven species representing the Aleyrodidae exhibit extremely long branches, and always cluster with long-branched outgroups. This lead to the failure of recovering a monophyletic Hemiptera in most analyses. The data treatment of Degen-coding for protein-coding genes and the site-heterogeneous CAT model show improved suppression of the long-branch effect. Under these conditions, the Sternorrhyncha was often recovered as the most basal clade in Hemiptera. PMID:27633117

  18. New Eocene Coleoid (Cephalopoda Diversity from Statolith Remains: Taxonomic Assignation, Fossil Record Analysis, and New Data for Calibrating Molecular Phylogenies.

    Directory of Open Access Journals (Sweden)

    Pascal Neige

    Full Text Available New coleoid cephalopods are described from statolith remains from the Middle Eocene (Middle Lutetian of the Paris Basin. Fifteen fossil statoliths are identified and assigned to the Sepiidae (Sepia boletzkyi sp. nov.,? Sepia pira sp. nov., Loliginidae (Loligo clarkei sp. nov., and Ommastrephidae (genus indet. families. The sediments containing these fossils indicate permanent aquatic settings in the infralittoral domain. These sediments range in age from 46 Mya to 43 Mya. Analysis of the fossil record of statoliths (from findings described here, together with a review of previously published data indicates marked biases in our knowledge. Fossil statoliths are known from as far back as the Early Jurassic (199.3 to 190.8 Mya but surprisingly, to the best of our knowledge, no record occurs in the Cretaceous. This is a "knowledge bias" and clearly calls for further studies. Finally, we attempt to compare findings described here with fossils previously used to constrain divergence and/or diversification ages of some coleoid subclades in molecular phylogenies. This comparison clearly indicates that the new records detailed here will challenge some estimated divergence times of coleoid cephalopod subclades.

  19. New Eocene Coleoid (Cephalopoda) Diversity from Statolith Remains: Taxonomic Assignation, Fossil Record Analysis, and New Data for Calibrating Molecular Phylogenies.

    Science.gov (United States)

    Neige, Pascal; Lapierre, Hervé; Merle, Didier

    2016-01-01

    New coleoid cephalopods are described from statolith remains from the Middle Eocene (Middle Lutetian) of the Paris Basin. Fifteen fossil statoliths are identified and assigned to the Sepiidae (Sepia boletzkyi sp. nov.,? Sepia pira sp. nov.), Loliginidae (Loligo clarkei sp. nov.), and Ommastrephidae (genus indet.) families. The sediments containing these fossils indicate permanent aquatic settings in the infralittoral domain. These sediments range in age from 46 Mya to 43 Mya. Analysis of the fossil record of statoliths (from findings described here, together with a review of previously published data) indicates marked biases in our knowledge. Fossil statoliths are known from as far back as the Early Jurassic (199.3 to 190.8 Mya) but surprisingly, to the best of our knowledge, no record occurs in the Cretaceous. This is a "knowledge bias" and clearly calls for further studies. Finally, we attempt to compare findings described here with fossils previously used to constrain divergence and/or diversification ages of some coleoid subclades in molecular phylogenies. This comparison clearly indicates that the new records detailed here will challenge some estimated divergence times of coleoid cephalopod subclades.

  20. Dinoflagellate phylogeny as inferred from heat shock protein 90 and ribosomal gene sequences.

    Directory of Open Access Journals (Sweden)

    Mona Hoppenrath

    2010-10-01

    Full Text Available Interrelationships among dinoflagellates in molecular phylogenies are largely unresolved, especially in the deepest branches. Ribosomal DNA (rDNA sequences provide phylogenetic signals only at the tips of the dinoflagellate tree. Two reasons for the poor resolution of deep dinoflagellate relationships using rDNA sequences are (1 most sites are relatively conserved and (2 there are different evolutionary rates among sites in different lineages. Therefore, alternative molecular markers are required to address the deeper phylogenetic relationships among dinoflagellates. Preliminary evidence indicates that the heat shock protein 90 gene (Hsp90 will provide an informative marker, mainly because this gene is relatively long and appears to have relatively uniform rates of evolution in different lineages.We more than doubled the previous dataset of Hsp90 sequences from dinoflagellates by generating additional sequences from 17 different species, representing seven different orders. In order to concatenate the Hsp90 data with rDNA sequences, we supplemented the Hsp90 sequences with three new SSU rDNA sequences and five new LSU rDNA sequences. The new Hsp90 sequences were generated, in part, from four additional heterotrophic dinoflagellates and the type species for six different genera. Molecular phylogenetic analyses resulted in a paraphyletic assemblage near the base of the dinoflagellate tree consisting of only athecate species. However, Noctiluca was never part of this assemblage and branched in a position that was nested within other lineages of dinokaryotes. The phylogenetic trees inferred from Hsp90 sequences were consistent with trees inferred from rDNA sequences in that the backbone of the dinoflagellate clade was largely unresolved.The sequence conservation in both Hsp90 and rDNA sequences and the poor resolution of the deepest nodes suggests that dinoflagellates reflect an explosive radiation in morphological diversity in their recent

  1. Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom.

    Science.gov (United States)

    Bourlat, Sarah J; Nielsen, Claus; Economou, Andrew D; Telford, Maximilian J

    2008-10-01

    The new animal phylogeny inferred from ribosomal genes some years ago has prompted a number of radical rearrangements of the traditional, morphology based metazoan tree. The two main bilaterian clades, Deuterostomia and Protostomia, find strong support, but the protostomes consist of two sister groups, Ecdysozoa and Lophotrochozoa, not seen in morphology based trees. Although widely accepted, not all recent molecular phylogenetic analyses have supported the tripartite structure of the new animal phylogeny. Furthermore, even if the small ribosomal subunit (SSU) based phylogeny is correct, there is a frustrating lack of resolution of relationships between the phyla that make up the three clades of this tree. To address this issue, we have assembled a dataset including a large number of aligned sequence positions as well as a broad sampling of metazoan phyla. Our dataset consists of sequence data from ribosomal and mitochondrial genes combined with new data from protein coding genes (5139 amino acid and 3524 nucleotide positions in total) from 37 representative taxa sampled across the Metazoa. Our data show strong support for the basic structure of the new animal phylogeny as well as for the Mandibulata including Myriapoda. We also provide some resolution within the Lophotrochozoa, where we confirm support for a monophyletic clade of Echiura, Sipuncula and Annelida and surprising evidence of a close relationship between Brachiopoda and Nemertea.

  2. Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns

    Science.gov (United States)

    Shen, Hui; Jin, Dongmei; Shu, Jiang-Ping; Zhou, Xi-Le; Lei, Ming; Wei, Ran; Shang, Hui; Wei, Hong-Jin; Zhang, Rui; Liu, Li; Gu, Yu-Feng; Zhang, Xian-Chun; Yan, Yue-Hong

    2018-01-01

    Abstract Background Ferns, originated about 360 million years ago, are the sister group of seed plants. Despite the remarkable progress in our understanding of fern phylogeny, with conflicting molecular evidence and different morphological interpretations, relationships among major fern lineages remain controversial. Results With the aim to obtain a robust fern phylogeny, we carried out a large-scale phylogenomic analysis using high-quality transcriptome sequencing data, which covered 69 fern species from 38 families and 11 orders. Both coalescent-based and concatenation-based methods were applied to both nucleotide and amino acid sequences in species tree estimation. The resulting topologies are largely congruent with each other, except for the placement of Angiopteris fokiensis, Cheiropleuria bicuspis, Diplaziopsis brunoniana, Matteuccia struthiopteris, Elaphoglossum mcclurei, and Tectaria subpedata. Conclusions Our result confirmed that Equisetales is sister to the rest of ferns, and Dennstaedtiaceae is sister to eupolypods. Moreover, our result strongly supported some relationships different from the current view of fern phylogeny, including that Marattiaceae may be sister to the monophyletic clade of Psilotaceae and Ophioglossaceae; that Gleicheniaceae and Hymenophyllaceae form a monophyletic clade sister to Dipteridaceae; and that Aspleniaceae is sister to the rest of the groups in eupolypods II. These results were interpreted with morphological traits, especially sporangia characters, and a new evolutionary route of sporangial annulus in ferns was suggested. This backbone phylogeny in ferns sets a foundation for further studies in biology and evolution in ferns, and therefore in plants. PMID:29186447

  3. Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns.

    Science.gov (United States)

    Shen, Hui; Jin, Dongmei; Shu, Jiang-Ping; Zhou, Xi-Le; Lei, Ming; Wei, Ran; Shang, Hui; Wei, Hong-Jin; Zhang, Rui; Liu, Li; Gu, Yu-Feng; Zhang, Xian-Chun; Yan, Yue-Hong

    2018-02-01

    Ferns, originated about 360 million years ago, are the sister group of seed plants. Despite the remarkable progress in our understanding of fern phylogeny, with conflicting molecular evidence and different morphological interpretations, relationships among major fern lineages remain controversial. With the aim to obtain a robust fern phylogeny, we carried out a large-scale phylogenomic analysis using high-quality transcriptome sequencing data, which covered 69 fern species from 38 families and 11 orders. Both coalescent-based and concatenation-based methods were applied to both nucleotide and amino acid sequences in species tree estimation. The resulting topologies are largely congruent with each other, except for the placement of Angiopteris fokiensis, Cheiropleuria bicuspis, Diplaziopsis brunoniana, Matteuccia struthiopteris, Elaphoglossum mcclurei, and Tectaria subpedata. Our result confirmed that Equisetales is sister to the rest of ferns, and Dennstaedtiaceae is sister to eupolypods. Moreover, our result strongly supported some relationships different from the current view of fern phylogeny, including that Marattiaceae may be sister to the monophyletic clade of Psilotaceae and Ophioglossaceae; that Gleicheniaceae and Hymenophyllaceae form a monophyletic clade sister to Dipteridaceae; and that Aspleniaceae is sister to the rest of the groups in eupolypods II. These results were interpreted with morphological traits, especially sporangia characters, and a new evolutionary route of sporangial annulus in ferns was suggested. This backbone phylogeny in ferns sets a foundation for further studies in biology and evolution in ferns, and therefore in plants. © The Authors 2017. Published by Oxford University Press.

  4. Artificial neural networks can learn to estimate extinction rates from molecular phylogenies

    NARCIS (Netherlands)

    Bokma, Folmer

    2006-01-01

    Molecular phylogenies typically consist of only extant species, yet they allow inference of past rates of extinction, because. recently originated species are less likely to be extinct than ancient species. Despite the simple structure of the assumed underlying speciation-extinction process,

  5. Phylogeny and biogeography of North-American wild rice (Zizania L.Poaceae)

    Science.gov (United States)

    The wild-rice genus Zizania includes four species disjunctly distributed in eastern Asia and North America, with three species (Z. aquatica, Z. palustris, and Z. texana) in North America and one (Z. latifolia) in eastern Asia. The phylogeny and biogeography of Zizania were explored using sequences o...

  6. Resolution of ray-finned fish phylogeny and timing of diversification.

    Science.gov (United States)

    Near, Thomas J; Eytan, Ron I; Dornburg, Alex; Kuhn, Kristen L; Moore, Jon A; Davis, Matthew P; Wainwright, Peter C; Friedman, Matt; Smith, W Leo

    2012-08-21

    Ray-finned fishes make up half of all living vertebrate species. Nearly all ray-finned fishes are teleosts, which include most commercially important fish species, several model organisms for genomics and developmental biology, and the dominant component of marine and freshwater vertebrate faunas. Despite the economic and scientific importance of ray-finned fishes, the lack of a single comprehensive phylogeny with corresponding divergence-time estimates has limited our understanding of the evolution and diversification of this radiation. Our analyses, which use multiple nuclear gene sequences in conjunction with 36 fossil age constraints, result in a well-supported phylogeny of all major ray-finned fish lineages and molecular age estimates that are generally consistent with the fossil record. This phylogeny informs three long-standing problems: specifically identifying elopomorphs (eels and tarpons) as the sister lineage of all other teleosts, providing a unique hypothesis on the radiation of early euteleosts, and offering a promising strategy for resolution of the "bush at the top of the tree" that includes percomorphs and other spiny-finned teleosts. Contrasting our divergence time estimates with studies using a single nuclear gene or whole mitochondrial genomes, we find that the former underestimates ages of the oldest ray-finned fish divergences, but the latter dramatically overestimates ages for derived teleost lineages. Our time-calibrated phylogeny reveals that much of the diversification leading to extant groups of teleosts occurred between the late Mesozoic and early Cenozoic, identifying this period as the "Second Age of Fishes."

  7. A set of 100 chloroplast DNA primer pairs to study population genetics and phylogeny in monocotylenons

    DEFF Research Database (Denmark)

    Scarcelli, Nora; Bernaud, Adeline; Eiserhardt, Wolf L.

    2011-01-01

    Chloroplast DNA sequences are of great interest for population genetics and phylogenetic studies. However, only a small set of markers are commonly used. Most of them have been designed for amplification in a large range of Angiosperms and are located in the Large Single Copy (LSC). Here we...... anticipate that it will also be useful for phylogeny and bar-coding studies....

  8. What do we know about the phylogeny of the semi-aquatic bugs (Hemiptera: Heteroptera: Gerromorpha)?

    DEFF Research Database (Denmark)

    Damgaard, Jakob

    2012-01-01

    The present study summarizes knowledge about phylogenetic relationships of the heteropteran infraorder Gerromorpha. A phylogeny for all families and subfamilies, and for all genera but those assigned to the two most diverse families, Veliidae and Gerridae, is compiled from the many studies by the...

  9. A multi gene sequence-based phylogeny of the Musaceae (banana) family

    Czech Academy of Sciences Publication Activity Database

    Christelová, Pavla; Valárik, Miroslav; Hřibová, Eva; De Langhe, E.; Doležel, Jaroslav

    2011-01-01

    Roč. 11, č. 103 (2011), s. 1-13 ISSN 1471-2148 R&D Projects: GA AV ČR IAA600380703 Institutional research plan: CEZ:AV0Z50380511 Keywords : MOLECULAR PHYLOGENY * FLOWERING PLANTS * RIBOSOMAL DNA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.521, year: 2011

  10. New insights in Russula subsect. Rubrinae: phylogeny and the quest for synapomorphic characters

    Czech Academy of Sciences Publication Activity Database

    Caboň, M.; Eberhardt, U.; Looney, B.; Hampe, F.; Kolařík, Miroslav; Jančovičová, S.; Verbeken, A.; Adamčík, S.

    2017-01-01

    Roč. 16, č. 9 (2017), s. 877-892 ISSN 1617-416X Grant - others:AV ČR(CZ) SAV-16-06 Program:Bilaterální spolupráce Institutional support: RVO:61388971 Keywords : Sulphovanillin * Incrustations * Multi-locus phylogeny Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.616, year: 2016

  11. The phylogeny of the mammalian heme peroxidases and the evolution of their diverse functions

    Directory of Open Access Journals (Sweden)

    Ó'Fágáin Ciarán

    2008-03-01

    Full Text Available Abstract Background The mammalian heme peroxidases (MHPs are a medically important group of enzymes. Included in this group are myeloperoxidase, eosinophil peroxidase, lactoperoxidase, and thyroid peroxidase. These enzymes are associated with such diverse diseases as asthma, Alzheimer's disease and inflammatory vascular disease. Despite much effort to elucidate a clearer understanding of the function of the 4 major groups of this multigene family, we still do not have a clear understanding of their relationships to each other. Results Sufficient signal exists for the resolution of the evolutionary relationships of this family of enzymes. We demonstrate, using a root mean squared deviation statistic, how the removal of the fastest evolving sites aids in the minimisation of the effect of long branch attraction and the generation of a highly supported phylogeny. Based on this phylogeny we have pinpointed the amino acid positions that have most likely contributed to the diverse functions of these enzymes. Many of these residues are in close proximity to sites implicated in protein misfolding, loss of function or disease. Conclusion Our analysis of all available genomic sequence data for the MHPs from all available completed mammalian genomes, involved sophisticated methods of phylogeny reconstruction and data treatment. Our study has (i fully resolved the phylogeny of the MHPs and the subsequent pattern of gene duplication, and (ii, we have detected amino acids under positive selection that have most likely contributed to the observed functional shifts in each type of MHP.

  12. Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea)

    Czech Academy of Sciences Publication Activity Database

    Tkach, V.V.; Kudlai, Olena; Kostadinova, Aneta

    2016-01-01

    Roč. 46, č. 3 (2016), s. 171-185 ISSN 0020-7519 R&D Projects: GA ČR(CZ) GBP505/12/G112 Institutional support: RVO:60077344 Keywords : Echinostomatoidea * Molecular phylogeny * Systematics * Echinostomatidae (sensu stricto) * Caballerotrematidae n. fam. * Himasthlidae * Echinochasmidae * Host associations Subject RIV: EG - Zoology Impact factor: 3.730, year: 2016

  13. Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding

    NARCIS (Netherlands)

    Ros, V.I.D.; Breeuwer, J.A.J.

    2007-01-01

    The past 15 years have witnessed a number of molecular studies that aimed to resolve issues of species delineation and phylogeny of mites in the family Tetranychidae. The central part of the mitochondrial COI region has frequently been used for investigating intra- and interspecific variation. All

  14. Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae)

    Czech Academy of Sciences Publication Activity Database

    Fehrer, Judith; Gemeinholzer, B.; Chrtek, Jindřich; Bräutigam, S.

    2007-01-01

    Roč. 42, - (2007), s. 347-361 ISSN 1055-7903 R&D Projects: GA MŽP SE/610/3/00 Institutional research plan: CEZ:AV0Z60050516 Keywords : molecular phylogeny * Hieracium * chloroplast capture Subject RIV: EF - Botanics Impact factor: 3.994, year: 2007

  15. Phylogeny, Morphology, and Metabolic and Invasive Capabilities of Epicellular Fish Coccidium Goussia janae

    Czech Academy of Sciences Publication Activity Database

    Dogga, S.K.; Bartošová-Sojková, Pavla; Lukeš, Julius; Soldati-Favre, D.

    2015-01-01

    Roč. 166, č. 6 (2015), s. 659-676 ISSN 1434-4610 R&D Projects: GA ČR GBP505/12/G112 Institutional support: RVO:60077344 Keywords : Apicomplexa * Coccidia * Goussia janae * phylogeny * ultrastructure * invasion * central carbon metabolism. Subject RIV: EG - Zoology Impact factor: 2.898, year: 2015

  16. Towards a new paradigm in mayfly phylogeny (Ephemeroptera): combined analysis of morphological and molecular data

    Czech Academy of Sciences Publication Activity Database

    Ogden, T. H.; Gattolliat, J. L.; Sartori, M.; Staniczek, A. H.; Soldán, Tomáš; Whiting, M. F.

    2009-01-01

    Roč. 34, č. 4 (2009), s. 616-634 ISSN 0307-6970 R&D Projects: GA AV ČR 1QS500070505 Institutional research plan: CEZ:AV0Z50070508 Keywords : Ephemeroptera * phylogeny * morfological a molecular data Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.467, year: 2009

  17. A mitochondrial DNA phylogeny of the endangered vipers of the Vipera ursinii complex

    Czech Academy of Sciences Publication Activity Database

    Gvoždík, Václav; Jandzik, D.; Cordos, B.; Řehák, I.; Kotlík, Petr

    2012-01-01

    Roč. 62, č. 3 (2012), s. 1019-1024 ISSN 1055-7903 R&D Projects: GA MŠk LC06073 Institutional research plan: CEZ:AV0Z50450515 Keywords : Conservation * Meadow viper * Phylogeny * Steppe viper * Systematics * Vipera ursinii complex Subject RIV: EH - Ecology, Behaviour Impact factor: 4.066, year: 2012

  18. Molecular phylogeny of the Oriental butterfly genus Arhopala (Lycaenidae, Theclinae) inferred from mitochondrial and nuclear genes

    NARCIS (Netherlands)

    Megens, H.J.W.C.; Nes, Van W.J.; Moorsel, van C.H.M.; Pierce, N.E.; Jong, de R.

    2004-01-01

    We present a phylogeny for a selection of species of the butterfly genus Arhopala Boisduval, 1832 based on molecular characters. We sequenced 1778 bases of the mitochondrial genes Cytochrome Oxidase 1 and 2 including tRNALeu, and a 393-bp fragment of the nuclear wingless gene for a total of 42

  19. Phylogeny of European bat Lyssavirus 1 in Eptesicus isabellinus bats, Spain.

    Science.gov (United States)

    Vázquez-Moron, Sonia; Juste, Javier; Ibáñez, Carlos; Berciano, José M; Echevarria, Juan E

    2011-03-01

    To better understand the epidemiology of European bat lyssavirus 1 (EBLV-1) in Europe, we phylogenetically characterized Lyssavirus from Eptesicus isabellinus bats in Spain. An independent cluster of EBLV-1 possibly resulted from geographic isolation and association with a different reservoir from other European strains. EBLV-1 phylogeny is complex and probably associated with host evolutionary history.

  20. Phylogeny of European Bat Lyssavirus 1 in Eptesicus isabellinus Bats, Spain

    OpenAIRE

    Vázquez-Morón, Sonia; Juste, Javier; Ibáñez, Carlos; Berciano, José M.; Echevarría, Juan E.

    2011-01-01

    To better understand the epidemiology of European bat lyssavirus 1 (EBLV-1) in Europe, we phylogenetically characterized Lyssavirus from Eptesicus isabellinus bats in Spain. An independent cluster of EBLV-1 possibly resulted from geographic isolation and association with a different reservoir from other European strains. EBLV-1 phylogeny is complex and probably associated with host evolutionary history.

  1. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed

    Czech Academy of Sciences Publication Activity Database

    Maslov, D. A.; Votýpka, Jan; Yurchenko, V.; Lukeš, Julius

    2013-01-01

    Roč. 29, č. 1 (2013), s. 43-52 ISSN 1471-4922 R&D Projects: GA ČR GA204/09/1667 Institutional support: RVO:60077344 Keywords : biodiversity * Kinetoplastea * insect trypanosomatids * monoxenous parasites * phylogeny * taxonomy * Trypanosomatidae Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.217, year: 2013

  2. Relationships of Reproductive Traits with the Phylogeny of the African Noctuid Stem Borers

    Directory of Open Access Journals (Sweden)

    Paul-André Calatayud

    2016-01-01

    Full Text Available The display of the reproductive behavior in most noctuid Lepidoptera follows a diel periodicity and is limited to a precise period of either the day or the night. These behavioral traits and the sex pheromone chemistry can be species specific and thus might be linked to the phylogeny. The objective of this study was to test the relationship of these reproductive traits with phylogeny. The study was undertaken using eight closely related species of noctuid stem borers, which are easy to rear under artificial conditions, namely, Busseola fusca, B. nairobica, B . sp. nr. segeta, Manga melanodonta, M . sp. nr. nubifera, Pirateolea piscator, Sesamia calamistis , and S. nonagrioides . For each species, the adult emergence period, the mating time, and the oviposition period were estimated, referred as biological traits. The components of the sex pheromones emitted by the females of each species were also analyzed by gas chromatography–mass spectrometry. Among the biological traits measured, only those linked to the oviposition pattern (timing and egg loads per night were significantly correlated with the phylogeny of these species. For the sex pheromone components, among the 13 components identified in all species, only four, namely, Z9-tetradecenyl acetate (Z9-TDA, Z11-TDA, E11-TDA, and Z11-hexadecenyl acetate (Z11-HDA, showed the highest significant correlations with the phylogeny. These results suggest that among the different reproductive traits evaluated, only few are phylogenetically constrained. Their involvement in the reinforcement of ecological speciation in noctuid stem borers is discussed.

  3. Genetic diversity and phylogeny of the Christmas Island flying fox (Pteropus melanotus natalis)

    Czech Academy of Sciences Publication Activity Database

    Phalen, D. N.; Hall, J.; Ganesh, G.; Hartigan, Ashlie; Smith, C.; De Jong, C.; Field, H.; Rose, K.

    2017-01-01

    Roč. 98, č. 2 (2017), s. 428-437 ISSN 0022-2372 Institutional support: RVO:60077344 Keywords : diversity * flying fox * mitochondrial DNA * phylogeny * Pteropus melanotus natalis Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 1.630, year: 2016

  4. Anchored hybrid enrichment provides new insights into the phylogeny and evolution of longhorned beetles (Cerambycidae)

    Czech Academy of Sciences Publication Activity Database

    Haddad, S.; Shin, S.; Lemmon, A. R.; Lemmon, E. M.; Švácha, Petr; Farrell, B.; Ślipiński, A.; Windsor, D.; McKenna, D. D.

    2018-01-01

    Roč. 43, č. 1 (2018), s. 68-89 ISSN 0307-6970 Institutional support: RVO:60077344 Keywords : Chrysomeloidea * Cerambycidae * molecular phylogeny Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 4.474, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/syen.12257/abstract

  5. High-resolution phylogeny providing insights towards the epidemiology, zoonotic aspects and taxonomy of sapoviruses

    NARCIS (Netherlands)

    Barry, A.F.; Durães-Carvalho, R.; Oliveira-Filho, Edmilson F.; Alfieri, A.; Poel, Van der W.H.M.

    2017-01-01

    The evolution, epidemiology and zoonotic aspects of Sapoviruses (SaV) are still not well explored. In this study, we applied high-resolution phylogeny to investigate the epidemiological and zoonotic origins as well as taxonomic classification of animal and human SaV. Bayesian framework analyses

  6. Molecular phylogeny of anoplocephalid tapeworms (Cestoda: Anoplocephalidae) infecting humans and non-human primates

    Czech Academy of Sciences Publication Activity Database

    Doležalová, J.; Vallo, Peter; Petrželková, Klára Judita; Foitová, I.; Nurcahyo, W.; Mudakikwa, A.; Hashimoto, C.; Jirků, M.; Lukeš, J.; Scholz, T.; Modrý, D.

    2015-01-01

    Roč. 142, č. 10 (2015), s. 1278-1289 ISSN 0031-1820 R&D Projects: GA ČR GA524/06/0264; GA ČR GA206/09/0927 Institutional support: RVO:68081766 Keywords : Bertiella * Anoplocephala * phylogeny * primates * zoonotic potential Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 3.031, year: 2015

  7. Phylogeny and resistance profiles of HIV-1 POL sequences from rectal biopsies and blood

    DEFF Research Database (Denmark)

    Katzenstein, Terese Lea; Petersen, A B; Storgaard, M

    2010-01-01

    The phylogeny and resistance profiles of human immunodeficiency virus type 1 (HIV-1) protease (PR) and reverse transcriptase (RT) sequences were compared among six patients with HIV-1 who had received numerous treatments. RNA and DNA fractions were obtained from concurrent blood and rectal biopsy...

  8. Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola

    Czech Academy of Sciences Publication Activity Database

    Nováková, Eva; Hypša, Václav; Klein, J.; Foottit, R. G.; von Dohlen, C.D.; Moran, N. A.

    2013-01-01

    Roč. 68, č. 1 (2013), s. 42-54 ISSN 1055-7903 R&D Projects: GA ČR GD206/09/H026 Institutional support: RVO:60077344 Keywords : Aphid * Evolution * Buchnera * Phylogeny * Informative markers Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.018, year: 2013

  9. Revisiting the phylogeny of Zoanthidea (Cnidaria: Anthozoa): Staggered alignment of hypervariable sequences improves species tree inference.

    Science.gov (United States)

    Swain, Timothy D

    2018-01-01

    The recent rapid proliferation of novel taxon identification in the Zoanthidea has been accompanied by a parallel propagation of gene trees as a tool of species discovery, but not a corresponding increase in our understanding of phylogeny. This disparity is caused by the trade-off between the capabilities of automated DNA sequence alignment and data content of genes applied to phylogenetic inference in this group. Conserved genes or segments are easily aligned across the order, but produce poorly resolved trees; hypervariable genes or segments contain the evolutionary signal necessary for resolution and robust support, but sequence alignment is daunting. Staggered alignments are a form of phylogeny-informed sequence alignment composed of a mosaic of local and universal regions that allow phylogenetic inference to be applied to all nucleotides from both hypervariable and conserved gene segments. Comparisons between species tree phylogenies inferred from all data (staggered alignment) and hypervariable-excluded data (standard alignment) demonstrate improved confidence and greater topological agreement with other sources of data for the complete-data tree. This novel phylogeny is the most comprehensive to date (in terms of taxa and data) and can serve as an expandable tool for evolutionary hypothesis testing in the Zoanthidea. Spanish language abstract available in Text S1. Translation by L. O. Swain, DePaul University, Chicago, Illinois, 60604, USA. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Molecular phylogeny of Acerentomidae (Protura), with description of Acerentuloides bernardi sp. nov. from North America

    Czech Academy of Sciences Publication Activity Database

    Shrubovych, J.; Starý, Josef; D'Haese, C.A.

    2017-01-01

    Roč. 100, č. 2 (2017), s. 433-443 ISSN 0015-4040 R&D Projects: GA MŠk ME08019 Institutional support: RVO:60077344 Keywords : Acerentulus * DNA barcoding * Indiana * phylogeny * Podolinella * USA Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 0.964, year: 2016

  11. Revisiting the phylogeny of Ocellularieae, the second largest tribe within Graphidaceae (lichenized Ascomycota: Ostropales)

    Science.gov (United States)

    Ekaphan Kraichak; Sittiporn Parnmen; Robert Lücking; Eimy Rivas Plata; Andre Aptroot; Marcela E.S. Caceres; Damien Ertz; Armin Mangold; Joel A. Mercado-Diaz; Khwanruan Papong; Dries Van der Broeck; Gothamie Weerakoon; H. Thorsten. Lumbsch; NO-VALUE

    2014-01-01

    We present an updated 3-locus molecular phylogeny of tribe Ocellularieae, the second largest tribe within subfamily Graphidoideae in the Graphidaceae. Adding 165 newly generated sequences from the mitochondrial small subunit rDNA (mtSSU), the nuclear large subunit rDNA (nuLSU), and the second largest subunit of the DNA-directed RNA polymerase II (RPB2), we currently...

  12. A novel molecular marker for the study of Neotropical cichlid phylogeny.

    Science.gov (United States)

    Fabrin, T M C; Gasques, L S; Prioli, S M A P; Prioli, A J

    2015-12-22

    The use of molecular markers has contributed to phylogeny and to the reconstruction of species' evolutionary history. Each region of the genome has different evolution rates, which may or may not identify phylogenetic signal at different levels. Therefore, it is important to assess new molecular markers that can be used for phylogenetic reconstruction. Regions that may be associated with species characteristics and are subject to selective pressure, such as opsin genes, which encode proteins related to the visual system and are widely expressed by Cichlidae family members, are interesting. Our aim was to identify a new nuclear molecular marker that could establish the phylogeny of Neotropical cichlids and is potentially correlated with the visual system. We used Bayesian inference and maximum likelihood analysis to support the use of the nuclear opsin LWS gene in the phylogeny of eight Neotropical cichlid species. Their use concatenated to the mitochondrial gene COI was also tested. The LWS gene fragment comprised the exon 2-4 region, including the introns. The LWS gene provided good support for both analyses up to the genus level, distinguishing the studied species, and when concatenated to the COI gene, there was a good support up to the species level. Another benefit of utilizing this region, is that some polymorphisms are associated with changes in spectral properties of the LWS opsin protein, which constitutes the visual pigment that absorbs red light. Thus, utilization of this gene as a molecular marker to study the phylogeny of Neotropical cichlids is promising.

  13. Phantoms of Gondwana?-phylogeny of the spider subfamily Mynogleninae (Araneae: Linyphiidae)

    DEFF Research Database (Denmark)

    Frick, Holger; Scharff, Nikolaj

    2014-01-01

    This is the first genus-level phylogeny of the subfamily Mynogleninae. It is based on 190 morphological characters scored for 44 taxa: 37 mynoglenine taxa (ingroup) representing 15 of the 17 known genera and seven outgroup taxa representing the subfamilies Stemonyphantinae, Linyphiinae (Linyphiin...

  14. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis

    Directory of Open Access Journals (Sweden)

    Stajich Jason E

    2006-11-01

    Full Text Available Abstract Background To date, most fungal phylogenies have been derived from single gene comparisons, or from concatenated alignments of a small number of genes. The increase in fungal genome sequencing presents an opportunity to reconstruct evolutionary events using entire genomes. As a tool for future comparative, phylogenomic and phylogenetic studies, we used both supertrees and concatenated alignments to infer relationships between 42 species of fungi for which complete genome sequences are available. Results A dataset of 345,829 genes was extracted from 42 publicly available fungal genomes. Supertree methods were employed to derive phylogenies from 4,805 single gene families. We found that the average consensus supertree method may suffer from long-branch attraction artifacts, while matrix representation with parsimony (MRP appears to be immune from these. A genome phylogeny was also reconstructed from a concatenated alignment of 153 universally distributed orthologs. Our MRP supertree and concatenated phylogeny are highly congruent. Within the Ascomycota, the sub-phyla Pezizomycotina and Saccharomycotina were resolved. Both phylogenies infer that the Leotiomycetes are the closest sister group to the Sordariomycetes. There is some ambiguity regarding the placement of Stagonospora nodurum, the sole member of the class Dothideomycetes present in the dataset. Within the Saccharomycotina, a monophyletic clade containing organisms that translate CTG as serine instead of leucine is evident. There is also strong support for two groups within the CTG clade, one containing the fully sexual species Candida lusitaniae, Candida guilliermondii and Debaryomyces hansenii, and the second group containing Candida albicans, Candida dubliniensis, Candida tropicalis, Candida parapsilosis and Lodderomyces elongisporus. The second major clade within the Saccharomycotina contains species whose genomes have undergone a whole genome duplication (WGD, and their close

  15. A novel phylogeny of the Gelidiales (Rhodophyta) based on five genes including the nuclear CesA, with descriptions of Orthogonacladia gen. nov. and Orthogonacladiaceae fam. nov.

    Science.gov (United States)

    Boo, Ga Hun; Le Gall, Line; Miller, Kathy Ann; Freshwater, D Wilson; Wernberg, Thomas; Terada, Ryuta; Yoon, Kyung Ju; Boo, Sung Min

    2016-08-01

    Although the Gelidiales are economically important marine red algae producing agar and agarose, the phylogeny of this order remains poorly resolved. The present study provides a molecular phylogeny based on a novel marker, nuclear-encoded CesA, plus plastid-encoded psaA, psbA, rbcL, and mitochondria-encoded cox1 from subsets of 107 species from all ten genera within the Gelidiales. Analyses of individual and combined datasets support the monophyly of three currently recognized families, and reveal a new clade. On the basis of these results, the new family Orthogonacladiaceae is described to accommodate Aphanta and a new genus Orthogonacladia that includes species previously classified as Gelidium madagascariense and Pterocladia rectangularis. Acanthopeltis is merged with Gelidium, which has nomenclatural priority. Nuclear-encoded CesA was found to be useful for improving the resolution of phylogenetic relationships within the Gelidiales and is likely to be valuable for the inference of phylogenetic relationship among other red algal taxa. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Phylogeny reconstruction and hybrid analysis of populus (Salicaceae) based on nucleotide sequences of multiple single-copy nuclear genes and plastid fragments.

    Science.gov (United States)

    Wang, Zhaoshan; Du, Shuhui; Dayanandan, Selvadurai; Wang, Dongsheng; Zeng, Yanfei; Zhang, Jianguo

    2014-01-01

    Populus (Salicaceae) is one of the most economically and ecologically important genera of forest trees. The complex reticulate evolution and lack of highly variable orthologous single-copy DNA markers have posed difficulties in resolving the phylogeny of this genus. Based on a large data set of nuclear and plastid DNA sequences, we reconstructed robust phylogeny of Populus using parsimony, maximum likelihood and Bayesian inference methods. The resulting phylogenetic trees showed better resolution at both inter- and intra-sectional level than previous studies. The results revealed that (1) the plastid-based phylogenetic tree resulted in two main clades, suggesting an early divergence of the maternal progenitors of Populus; (2) three advanced sections (Populus, Aigeiros and Tacamahaca) are of hybrid origin; (3) species of the section Tacamahaca could be divided into two major groups based on plastid and nuclear DNA data, suggesting a polyphyletic nature of the section; and (4) many species proved to be of hybrid origin based on the incongruence between plastid and nuclear DNA trees. Reticulate evolution may have played a significant role in the evolution history of Populus by facilitating rapid adaptive radiations into different environments.

  17. Phylogeny reconstruction and hybrid analysis of populus (Salicaceae based on nucleotide sequences of multiple single-copy nuclear genes and plastid fragments.

    Directory of Open Access Journals (Sweden)

    Zhaoshan Wang

    Full Text Available Populus (Salicaceae is one of the most economically and ecologically important genera of forest trees. The complex reticulate evolution and lack of highly variable orthologous single-copy DNA markers have posed difficulties in resolving the phylogeny of this genus. Based on a large data set of nuclear and plastid DNA sequences, we reconstructed robust phylogeny of Populus using parsimony, maximum likelihood and Bayesian inference methods. The resulting phylogenetic trees showed better resolution at both inter- and intra-sectional level than previous studies. The results revealed that (1 the plastid-based phylogenetic tree resulted in two main clades, suggesting an early divergence of the maternal progenitors of Populus; (2 three advanced sections (Populus, Aigeiros and Tacamahaca are of hybrid origin; (3 species of the section Tacamahaca could be divided into two major groups based on plastid and nuclear DNA data, suggesting a polyphyletic nature of the section; and (4 many species proved to be of hybrid origin based on the incongruence between plastid and nuclear DNA trees. Reticulate evolution may have played a significant role in the evolution history of Populus by facilitating rapid adaptive radiations into different environments.

  18. A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics.

    Science.gov (United States)

    Bibi, Faysal

    2013-08-08

    Molecular phylogenetics has provided unprecedented resolution in the ruminant evolutionary tree. However, molecular age estimates using only one or a few (often misapplied) fossil calibration points have produced a diversity of conflicting ages for important evolutionary events within this clade. I here identify 16 fossil calibration points of relevance to the phylogeny of Bovidae and Ruminantia and use these, individually and together, to construct a dated molecular phylogeny through a reanalysis of the full mitochondrial genome of over 100 ruminant species. The new multi-calibrated tree provides ages that are younger overall than found in previous studies. Among these are young ages for the origin of crown Ruminantia (39.3-28.8 Ma), and crown Bovidae (17.3-15.1 Ma). These are argued to be reasonable hypotheses given that many basal fossils assigned to these taxa may in fact lie on the stem groups leading to the crown clades, thus inflating previous age estimates. Areas of conflict between molecular and fossil dates do persist, however, especially with regard to the base of the rapid Pecoran radiation and the sister relationship of Moschidae to Bovidae. Results of the single-calibrated analyses also show that a very wide range of molecular age estimates are obtainable using different calibration points, and that the choice of calibration point can influence the topology of the resulting tree. Compared to the single-calibrated trees, the multi-calibrated tree exhibits smaller variance in estimated ages and better reflects the fossil record. The use of a large number of vetted fossil calibration points with soft bounds is promoted as a better approach than using just one or a few calibrations, or relying on internal-congruency metrics to discard good fossil data. This study also highlights the importance of considering morphological and ecological characteristics of clades when delimiting higher taxa. I also illustrate how phylogeographic and paleoenvironmental

  19. A well-resolved phylogeny of the trees of Puerto Rico based on DNA barcode sequence data.

    Science.gov (United States)

    Muscarella, Robert; Uriarte, María; Erickson, David L; Swenson, Nathan G; Zimmerman, Jess K; Kress, W John

    2014-01-01

    The use of phylogenetic information in community ecology and conservation has grown in recent years. Two key issues for community phylogenetics studies, however, are (i) low terminal phylogenetic resolution and (ii) arbitrarily defined species pools. We used three DNA barcodes (plastid DNA regions rbcL, matK, and trnH-psbA) to infer a phylogeny for 527 native and naturalized trees of Puerto Rico, representing the vast majority of the entire tree flora of the island (89%). We used a maximum likelihood (ML) approach with and without a constraint tree that enforced monophyly of recognized plant orders. Based on 50% consensus trees, the ML analyses improved phylogenetic resolution relative to a comparable phylogeny generated with Phylomatic (proportion of internal nodes resolved: constrained ML = 74%, unconstrained ML = 68%, Phylomatic = 52%). We quantified the phylogenetic composition of 15 protected forests in Puerto Rico using the constrained ML and Phylomatic phylogenies. We found some evidence that tree communities in areas of high water stress were relatively phylogenetically clustered. Reducing the scale at which the species pool was defined (from island to soil types) changed some of our results depending on which phylogeny (ML vs. Phylomatic) was used. Overall, the increased terminal resolution provided by the ML phylogeny revealed additional patterns that were not observed with a less-resolved phylogeny. With the DNA barcode phylogeny presented here (based on an island-wide species pool), we show that a more fully resolved phylogeny increases power to detect nonrandom patterns of community composition in several Puerto Rican tree communities. Especially if combined with additional information on species functional traits and geographic distributions, this phylogeny will (i) facilitate stronger inferences about the role of historical processes in governing the assembly and composition of Puerto Rican forests, (ii) provide insight into Caribbean

  20. Molecular Infectious Disease Epidemiology: Survival Analysis and Algorithms Linking Phylogenies to Transmission Trees

    Science.gov (United States)

    Kenah, Eben; Britton, Tom; Halloran, M. Elizabeth; Longini, Ira M.

    2016-01-01

    Recent work has attempted to use whole-genome sequence data from pathogens to reconstruct the transmission trees linking infectors and infectees in outbreaks. However, transmission trees from one outbreak do not generalize to future outbreaks. Reconstruction of transmission trees is most useful to public health if it leads to generalizable scientific insights about disease transmission. In a survival analysis framework, estimation of transmission parameters is based on sums or averages over the possible transmission trees. A phylogeny can increase the precision of these estimates by providing partial information about who infected whom. The leaves of the phylogeny represent sampled pathogens, which have known hosts. The interior nodes represent common ancestors of sampled pathogens, which have unknown hosts. Starting from assumptions about disease biology and epidemiologic study design, we prove that there is a one-to-one correspondence between the possible assignments of interior node hosts and the transmission trees simultaneously consistent with the phylogeny and the epidemiologic data on person, place, and time. We develop algorithms to enumerate these transmission trees and show these can be used to calculate likelihoods that incorporate both epidemiologic data and a phylogeny. A simulation study confirms that this leads to more efficient estimates of hazard ratios for infectiousness and baseline hazards of infectious contact, and we use these methods to analyze data from a foot-and-mouth disease virus outbreak in the United Kingdom in 2001. These results demonstrate the importance of data on individuals who escape infection, which is often overlooked. The combination of survival analysis and algorithms linking phylogenies to transmission trees is a rigorous but flexible statistical foundation for molecular infectious disease epidemiology. PMID:27070316

  1. Proposal of Xanthomonas translucens pv. pistaciae pv. nov., pathogenic to pistachio (Pistacia vera).

    Science.gov (United States)

    Giblot-Ducray, Danièle; Marefat, Alireza; Gillings, Michael R; Parkinson, Neil M; Bowman, John P; Ophel-Keller, Kathy; Taylor, Cathy; Facelli, Evelina; Scott, Eileen S

    2009-12-01

    Strains of Xanthomonas translucens have caused dieback in the Australian pistachio industry for the last 15 years. Such pathogenicity to a dicotyledonous woody host contrasts with that of other pathovars of X. translucens, which are characterized by their pathogenicity to monocotyledonous plant families. Further investigations, using DNA-DNA hybridization, gyrB gene sequencing and integron screening, were conducted to confirm the taxonomic status of the X. translucens pathogenic to pistachio. DNA-DNA hybridization provided a clear classification, at the species level, of the pistachio pathogen as a X. translucens. In the gyrB-based phylogeny, strains of the pistachio pathogen clustered among the X. translucens pathovars as two distinct lineages. Integron screening revealed that the cassette arrays of strains of the pistachio pathogen were different from those of other Xanthomonas species, and again distinguished two groups. Together with previously reported pathogenicity data, these results confirm that the pistachio pathogen is a new pathovar of X. translucens and allow hypotheses about its origin. The proposed name is Xanthomonas translucens pv. pistaciae pv. nov.

  2. Multispecies Coevolution Particle Swarm Optimization Based on Previous Search History

    Directory of Open Access Journals (Sweden)

    Danping Wang

    2017-01-01

    Full Text Available A hybrid coevolution particle swarm optimization algorithm with dynamic multispecies strategy based on K-means clustering and nonrevisit strategy based on Binary Space Partitioning fitness tree (called MCPSO-PSH is proposed. Previous search history memorized into the Binary Space Partitioning fitness tree can effectively restrain the individuals’ revisit phenomenon. The whole population is partitioned into several subspecies and cooperative coevolution is realized by an information communication mechanism between subspecies, which can enhance the global search ability of particles and avoid premature convergence to local optimum. To demonstrate the power of the method, comparisons between the proposed algorithm and state-of-the-art algorithms are grouped into two categories: 10 basic benchmark functions (10-dimensional and 30-dimensional, 10 CEC2005 benchmark functions (30-dimensional, and a real-world problem (multilevel image segmentation problems. Experimental results show that MCPSO-PSH displays a competitive performance compared to the other swarm-based or evolutionary algorithms in terms of solution accuracy and statistical tests.

  3. The bee tree of life: a supermatrix approach to apoid phylogeny and biogeography.

    Science.gov (United States)

    Hedtke, Shannon M; Patiny, Sébastien; Danforth, Bryan N

    2013-07-03

    Bees are the primary pollinators of angiosperms throughout the world. There are more than 16,000 described species, with broad variation in life history traits such as nesting habitat, diet, and social behavior. Despite their importance as pollinators, the evolution of bee biodiversity is understudied: relationships among the seven families of bees remain controversial, and no empirical global-level reconstruction of historical biogeography has been attempted. Morphological studies have generally suggested that the phylogeny of bees is rooted near the family Colletidae, whereas many molecular studies have suggested a root node near (or within) Melittidae. Previous molecular studies have focused on a relatively small sample of taxa (~150 species) and genes (seven at most). Public databases contain an enormous amount of DNA sequence data that has not been comprehensively analysed in the context of bee evolution. We downloaded, aligned, concatenated, and analysed all available protein-coding nuclear gene DNA sequence data in GenBank as of October, 2011. Our matrix consists of 20 genes, with over 17,000 aligned nucleotide sites, for over 1,300 bee and apoid wasp species, representing over two-thirds of bee genera. Whereas the matrix is large in terms of number of genes and taxa, there is a significant amount of missing data: only ~15% of the matrix is populated with data. The placement of the root as well as relationships between Andrenidae and other bee families remain ambiguous, as several alternative maximum-likelihood estimates fall within the statistically credible set. However, we recover strong bootstrap support for relationships among many families and for their monophyly. Ancestral geographic range reconstruction suggests a likely origin of bees in the southern hemisphere, with Melittidae ancestrally located within Africa, and Halictidae, Colletidae, and Apidae within the New World. Our study affirms the monophyly of each bee family, sister-taxa relationships

  4. Y-chromosome phylogeny in the evolutionary net of chamois (genus Rupicapra

    Directory of Open Access Journals (Sweden)

    Domínguez Ana

    2011-09-01

    Full Text Available Abstract Background The chamois, distributed over most of the medium to high altitude mountain ranges of southern Eurasia, provides an excellent model for exploring the effects of historical and evolutionary events on diversification. Populations have been grouped into two species, Rupicapra pyrenaica from southwestern Europe and R. rupicapra from eastern Europe. The study of matrilineal mitochondrial DNA (mtDNA and biparentally inherited microsatellites showed that the two species are paraphyletic and indicated alternate events of population contraction and dispersal-hybridization in the diversification of chamois. Here we investigate the pattern of variation of the Y-chromosome to obtain information on the patrilineal phylogenetic position of the genus Rupicapra and on the male-specific dispersal of chamois across Europe. Results We analyzed the Y-chromosome of 87 males covering the distribution range of the Rupicapra genus. We sequenced a fragment of the SRY gene promoter and characterized the male specific microsatellites UMN2303 and SRYM18. The SRY promoter sequences of two samples of Barbary sheep (Ammotragus lervia were also determined and compared with the sequences of Bovidae available in the GenBank. Phylogenetic analysis of the alignment showed the clustering of Rupicapra with Capra and the Ammotragus sequence obtained in this study, different from the previously reported sequence of Ammotragus which groups with Ovis. Within Rupicapra, the combined data define 10 Y-chromosome haplotypes forming two haplogroups, which concur with taxonomic classification, instead of the three clades formed for mtDNA and nuclear microsatellites. The variation shows a west-to-east geographical cline of ancestral to derived alleles. Conclusions The phylogeny of the SRY-promoter shows an association between Rupicapra and Capra. The position of Ammotragus needs a reinvestigation. The study of ancestral and derived characters in the Y-chromosome suggests

  5. Phylogeny of species and cytotypes of mole rats (Spalacidae) in Turkey inferred from mitochondrial cytochrome b gene sequencees

    Czech Academy of Sciences Publication Activity Database

    Kandemir, I.; Sozen, M.; Matur, F.; Kankilic, T.; Martínková, Natália; Colak, F.; Ozkurt, S. O.; Colak, E.

    2012-01-01

    Roč. 61, č. 1 (2012), s. 25-33 ISSN 0139-7893 Institutional support: RVO:68081766 Keywords : Nannospalax * molecular phylogeny * chromosomal form * Anatolia * Thrace Subject RIV: EG - Zoology Impact factor: 0.494, year: 2012

  6. 77 FR 58323 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Science.gov (United States)

    2012-09-20

    ... Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Airplanes AGENCY... Previously Held by Israel Aircraft Industries, Ltd.) Model Gulfstream G150 airplanes. This proposed AD was.... Discussion The Civil Aviation Authority of Israel (CAAI), which is the aviation authority for Israel, has...

  7. Phylogeny and character evolution of the fern genus Tectaria (Tectariaceae) in the Old World inferred from chloroplast DNA sequences.

    Science.gov (United States)

    Ding, Hui-Hui; Chao, Yi-Shan; Callado, John Rey; Dong, Shi-Yong

    2014-11-01

    In this study we provide a phylogeny for the pantropical fern genus Tectaria, with emphasis on the Old World species, based on sequences of five plastid regions (atpB, ndhF plus ndhF-trnL, rbcL, rps16-matK plus matK, and trnL-F). Maximum parsimony, maximum likelihood, and Bayesian inference are used to analyze 115 individuals, representing ca. 56 species of Tectaria s.l. and 36 species of ten related genera. The results strongly support the monophyly of Tectaria in a broad sense, in which Ctenitopsis, Hemigramma, Heterogonium, Psomiocarpa, Quercifilix, Stenosemia, and Tectaridium should be submerged. Such broadly circumscribed Tectaria is supported by the arising pattern of veinlets and the base chromosome number (x=40). Four primary clades are well resolved within Tectaria, one from the Neotropic (T. trifoliata clade) and three from the Old World (T. subtriphylla clade, Ctenitopsis clade, and T. crenata clade). Tectaria crenata clade is the largest one including six subclades. Of the genera previously recognized as tectarioid ferns, Ctenitis, Lastreopsis, and Pleocnemia, are confirmed to be members in Dryopteridaceae; while Pteridrys and Triplophyllum are supported in Tectariaceae. To infer morphological evolution, 13 commonly used characters are optimized on the resulting phylogenetic trees and in result, are all homoplastic in Tectaria. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Mitochondrial phylogeny of Chinese barred species of the cyprinid genus Acrossocheilus Oshima, 1919 (Teleostei: Cypriniformes) and its taxonomic implications.

    Science.gov (United States)

    Yuan, Le-Yang; Liu, Xiao-Xiang; Zhang, E

    2015-12-21

    Sequences from the mitochondrial control region of 14 putative species of Acrossocheilus (Cyprinidae) were examined to elucidate phylogenetic relationships within species of the barred group in that genus. Phylogenetic reconstructions were generated using three tree-building methods: maximum parsimony, maximum likelihood, and Bayesian inference. The resultant phylogenies were consistent with monophyly of the majority of the morphologically recognized species. However, mitochondrial DNA sequence evidence is incongruent with monophyly of A. fasciatus, as currently conceived. This species occurs only in the upper Qiantang-Jiang basin in Zhejiang and Anhui provinces, and coastal rivers in the Zhejiang Province. The species formerly recognized as A. paradoxus from Zhejiang Province is A. fasciatus. The specimens previously reported as A. fasciatus from river basins in Fujian Province are misidentified A. wuyiensis. The barred group of Acrossocheilus is shown to be polyphyletic. Acrossocheilus is restricted to the barred species here placed in "Clade II," containing A. paradoxus and relatives. Separate generic status is recommended for A. monticola and for A. longipinnis and their closest relatives, although more information on phylogenetic relationships based on multiple genes is required to develop robust phylogenetic hypotheses and diagnoses. Masticbarbus Tang, 1942 is available for A. longipinnis and three allied species (A. iridescens, A. microstomus and A. lamus).

  9. Galatheoidea are not monophyletic - molecular and morphological phylogeny of the squat lobsters (Decapoda: Anomura) with recognition of a new superfamily.

    Science.gov (United States)

    Schnabel, K E; Ahyong, S T; Maas, E W

    2011-02-01

    The monophyletic status of the squat lobster superfamily Galatheoidea has come under increasing doubt by studies using evidence as diverse as larval and adult somatic morphology, sperm ultrastructure, and molecular data. Here we synthesize phylogenetic data from these diverse strands, with the addition of new molecular and morphological data to examine the phylogeny of the squat lobsters and assess the status of the Galatheoidea. A total of 64 species from 16 of the 17 currently recognised anomuran families are included. Results support previous work pointing towards polyphyly in the superfamily Galatheoidea and Paguroidea, specifically, suggesting independent origins of the Galatheidae+Porcellanidae and the Chirostylidae+Kiwaidae. Morphological characters are selected that support clades resolved in the combined analysis and the taxonomic status of Galatheoidea sensu lato is revised. Results indicate that Chirostylidae are more closely related to an assemblage including Aegloidea, Lomisoidea and Paguroidea than to the remaining Galatheoidea and are referred to the superfamily Chirostyloidea to include the Chirostylidae and Kiwaidae. A considerable amount of research highlighting morphological differences supporting this split is discussed. The Galatheoidea sensu stricto is restricted to the families Galatheidae and Porcellanidae, and diagnoses for both Chirostyloidea and Galatheoidea are provided. Present results highlight the need for a detailed revision of a number of taxa, challenge some currently used morphological synapomorphies, and emphasise the need for integrated studies with wide taxon sampling and multiple data sources to resolve complex phylogenetic questions. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Molecular insights into species phylogeny, biogeography, and morphological stasis in the ancient spider genus Hypochilus (Araneae: Hypochilidae).

    Science.gov (United States)

    Hedin, M C

    2001-02-01

    The spider genus Hypochilus is currently restricted to cool, moist microhabitats in three widely separated montane regions of North America, providing an opportunity to study both deep (i.e., continental level) and shallow (within montane region) biogeographic history. Members of the genus also retain many plesiomorphic morphological characteristics, inviting the study of comparative rates of morphological evolution. In this paper, Hypochilus phylogeny and associated evolutionary problems are addressed using both new molecular (28S nDNA and CO1 mtDNA) and previously published (K. M. Catley, 1994, Am. Mus. Nov. 3088, 1-27) morphological data. Although the molecular data provide limited resolution of root placement within Hypochilus, most analyses are at least consistent with morphology-supported montane relationships of (Rockies (California, Appalachian)). The monophyly of Hypochilus species distributed in the California mountains is ambiguous, with several analyses indicating that this fauna may be paraphyletic with respect to a monophyletic Appalachian lineage. The montane regions differ in consistent ways in depths of both mitochondrial and nuclear phylogenetic divergence. Molecular clock analyses, in combination with arthropod-based mtDNA rate calibrations, suggest that the regional faunas are of different ages and that speciation in all faunas likely occurred prior to the Pleistocene. Limited intraspecific sampling reveals extraordinarily high levels of mtDNA cytochrome oxidase sequence divergence. These extreme divergences are most consistent with morphological stasis at the species level, despite preliminary evidence that Hypochilus taxa are characterized by fragmented population structures. Copyright 2001 Academic Press.

  11. Reconstruction of molecular phylogeny of closely related Amorphophallus species of India using plastid DNA marker and fingerprinting approaches.

    Science.gov (United States)

    Gholave, Avinash R; Pawar, Kiran D; Yadav, Shrirang R; Bapat, Vishwas A; Jadhav, Jyoti P

    2017-01-01

    Plastid DNA markers sequencing and DNA fingerprinting approaches were used and compared for resolving molecular phylogeny of closely related, previously unexplored Amorphophallus species of India. The utility of individual plastid markers namely rbcL , matK , trnH - psbA , trnLC - trnLD , their combined dataset and two fingerprinting techniques viz. RAPD and ISSR were tested for their efficacy to resolves Amorphophallus species into three sections specific clades namely Rhaphiophallus , Conophallus and Amorphophallus . In the present study, sequences of these four plastid DNA regions as well as RAPD and ISSR profiles of 16 Amorphophallus species together with six varieties of two species were generated and analyzed. Maximum likelihood and Bayesian Inference based construction of phylogenetic trees indicated that among the four plastid DNA regions tested individually and their combined dataset, rbcL was found best suited for resolving closely related Amorphophallus species into section specific clades. When analyzed individually, rbcL exhibited better discrimination ability than matK , trnH - psbA , trnLC - trnLD and combination of all four tested plastid markers. Among two fingerprinting techniques used, the resolution of Amorphophallus species using RAPD was better than ISSR and combination of RAPD +ISSR and in congruence with resolution based on rbcL .

  12. A molecular phylogeny of the bladed Bangiales (Rhodophyta) in China provides insights into biodiversity and biogeography of the genus Pyropia.

    Science.gov (United States)

    Yang, Li-En; Zhou, Wei; Hu, Chuan-Ming; Deng, Yin-Yin; Xu, Guang-Ping; Zhang, Tao; Russell, Stephen; Zhu, Jian-Yi; Lu, Qin-Qin; Brodie, Juliet

    2018-03-01

    A molecular taxonomic study was undertaken for the first time of the bladed Bangiales of the mainland coast of China (Northwest Pacific) based on sequence data of 201 plastid rbcL and 148 nuclear 18S sequences of historical and contemporary specimens. The results revealed that only one genus of bladed Bangiales, Pyropia, was present along Chinese coast. Species delimitation was determined using two empirical methods: the Automatic Barcode Gap Discovery (ABGD) and General Mixed Yule Coalescence (GMYC) coupled with detection of monophyly in tree reconstruction. At least fourteen species of Pyropia were recovered. Six species were confirmed that had been recorded previously based on morphology (Py. suborbiculata, Py. yezoensis, Py. haitanensis, Py. katadae, Py. tenera and Py. acanthophora), three species were recorded from China for the first time (Py. kinositae, Py. pseudolinearis and Py. tanegashimensis), and five cryptic species that did not match any molecular sequences were also discovered. The phylogeny of the concatenated rbcL and 18S dataset resolved three singletons and four clades. Each clades has a strong trend towards occupying a biogeographic region, but they are not confined to them. A transoceanic and antitropical pattern of distribution was found for Pyropia at both the subgeneric and species level. This together with high biodiversity (ca. 30% of all known Pyropia species) indicates that the Northwest Pacific might act as a centre of origin for modern distribution of Pyropia since the early Cenozoic. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Variations of leaf N and P concentrations in shrubland biomes across northern China: phylogeny, climate, and soil

    Science.gov (United States)

    Yang, Xian; Chi, Xiulian; Ji, Chengjun; Liu, Hongyan; Ma, Wenhong; Mohhammat, Anwar; Shi, Zhaoyong; Wang, Xiangping; Yu, Shunli; Yue, Ming; Tang, Zhiyao

    2016-08-01

    Concentrations of leaf nitrogen (N) and phosphorus (P) are two key traits of plants for ecosystem functioning and dynamics. Foliar stoichiometry varies remarkably among life forms. However, previous studies have focused on the stoichiometric patterns of trees and grasses, leaving a significant knowledge gap for shrubs. In this study, we explored the intraspecific and interspecific variations of leaf N and P concentrations in response to the changes in climate, soil property, and evolutionary history. We analysed 1486 samples composed of 163 shrub species from 361 shrubland sites in northern China encompassing 46.1° (86.7-132.8° E) in longitude and 19.8° (32.6-52.4° N) in latitude. Leaf N concentrations decreased with precipitation, while leaf P concentrations decreased with temperature and increased with precipitation and soil total P concentrations. Both leaf N and P concentrations were phylogenetically conserved, but leaf P concentrations were less conserved than leaf N concentrations. At the community level, climate explained more interspecific variation of leaf nutrient concentrations, while soil nutrients explained most of the intraspecific variation. These results suggested that leaf N and P concentrations responded to climate, soil, and phylogeny in different ways. Climate influenced the community chemical traits through the shift in species composition, whereas soil directly influenced the community chemical traits. New patterns were discovered using our observations on specific regions and vegetation types, which improved our knowledge of broad biogeographic patterns of leaf chemical traits.

  14. Lymphocryptovirus phylogeny and the origins of Epstein-Barr virus

    DEFF Research Database (Denmark)

    Ehlers, Bernhard; Spiess, Katja; Leendertz, Fabian

    2010-01-01

    Specimens from wild and captive primates were collected and novel members of the genus Lymphocryptovirus (subfamily Gammaherpesvirinae) were searched for utilizing PCR for the DNA polymerase gene. Twenty-one novel viruses were detected. Together with previous findings, more than 50 distinct lymph...

  15. The first mitochondrial genome for the fishfly subfamily Chauliodinae and implications for the higher phylogeny of Megaloptera.

    Directory of Open Access Journals (Sweden)

    Yuyu Wang

    Full Text Available Megaloptera are a basal holometabolous insect order with larvae exclusively predacious and aquatic. The evolutionary history of Megaloptera attracts great interest because of its antiquity and important systematic status in Holometabola. However, due to the difficulties identifying morphological apomorphies for the group, controversial hypotheses on the monophyly and higher phylogeny of Megaloptera have been proposed. Herein, we describe the complete mitochondrial (mt genome of a fishfly species, Neochauliodes punctatolosus Liu & Yang, 2006, representing the first mt genome of the subfamily Chauliodinae. A phylogenomic analysis was carried out based on the mt genomic sequences of 13 mt protein-coding genes (PCGs and two rRNA genes of nine Neuropterida species, comprising all three orders of Neuropterida and all families and subfamilies of Megaloptera. Both maximum likelihood and Bayesian inference analyses highly support the monophyly of Megaloptera, which was recovered as the sister of Neuroptera. Within Megaloptera, the sister relationship between Corydalinae and Chauliodinae was corroborated. The divergence time estimation suggests that stem lineage of Neuropterida and Coleoptera separated in the Early Permian. The interordinal divergence within Neuropterida might have occurred in the Late Permian.

  16. Molecular phylogeny of Atractus (Serpentes, Dipsadidae), with emphasis on Ecuadorian species and the description of three new taxa

    Science.gov (United States)

    Arteaga, Alejandro; Mebert, Konrad; Valencia, Jorge H.; Cisneros-Heredia, Diego F.; Peñafiel, Nicolás; Reyes-Puig, Carolina; Vieira-Fernandes, José L.; Guayasamin, Juan M.

    2017-01-01

    Abstract We present a molecular phylogeny of snake genus Atractus, with an improved taxon sampling that includes 30 of the 140 species currently recognized. The phylogenetic tree supports the existence of at least three new species in the Pacific lowlands and adjacent Andean slopes of the Ecuadorian Andes, which we describe here. A unique combination of molecular, meristic and color pattern characters support the validity of the new species. With the newly acquired data, we propose and define the Atractus iridescens species group, as well as redefine the Atractus roulei species group. The species Atractus iridescens is reported for the first time in Ecuador, whereas Atractus bocourti and Atractus medusa are removed from the herpetofauna of this country. We provide the first photographic vouchers of live specimens for Atractus multicinctus, Atractus paucidens and Atractus touzeti, along with photographs of 19 other Ecuadorian Atractus species. The current status of Atractus occidentalis and Atractus paucidens is maintained based on the discovery of new material referable to these species. With these changes, the species number reported in Ecuador increases to 27, a number that is likely to increase as material not examined in this work becomes available and included in systematic studies. PMID:28769604

  17. New avian paramyxoviruses type I strains identified in Africa provide new outcomes for phylogeny reconstruction and genotype classification.

    Directory of Open Access Journals (Sweden)

    Renata Servan de Almeida

    Full Text Available Newcastle disease (ND is one of the most lethal diseases of poultry worldwide. It is caused by an avian paramyxovirus 1 that has high genomic diversity. In the framework of an international surveillance program launched in 2007, several thousand samples from domestic and wild birds in Africa were collected and analyzed. ND viruses (NDV were detected and isolated in apparently healthy fowls and wild birds. However, two thirds of the isolates collected in this study were classified as virulent strains of NDV based on the molecular analysis of the fusion protein and experimental in vivo challenges with two representative isolates. Phylogenetic analysis based on the F and HN genes showed that isolates recovered from poultry in Mali and Ethiopia form new groups, herein proposed as genotypes XIV and sub-genotype VIf with reference to the new nomenclature described by Diel's group. In Madagascar, the circulation of NDV strains of genotype XI, originally reported elsewhere, is also confirmed. Full genome sequencing of five African isolates was generated and an extensive phylogeny reconstruction was carried out based on the nucleotide sequences. The evolutionary distances between groups and the specific amino acid signatures of each cluster allowed us to refine the genotype nomenclature.

  18. Phylogeny and palaeoecology of Polyommatus blue butterflies show Beringia was a climate-regulated gateway to the New World.

    Science.gov (United States)

    Vila, Roger; Bell, Charles D; Macniven, Richard; Goldman-Huertas, Benjamin; Ree, Richard H; Marshall, Charles R; Bálint, Zsolt; Johnson, Kurt; Benyamini, Dubi; Pierce, Naomi E

    2011-09-22

    Transcontinental dispersals by organisms usually represent improbable events that constitute a major challenge for biogeographers. By integrating molecular phylogeny, historical biogeography and palaeoecology, we test a bold hypothesis proposed by Vladimir Nabokov regarding the origin of Neotropical Polyommatus blue butterflies, and show that Beringia has served as a biological corridor for the dispersal of these insects from Asia into the New World. We present a novel method to estimate ancestral temperature tolerances using distribution range limits of extant organisms, and find that climatic conditions in Beringia acted as a decisive filter in determining which taxa crossed into the New World during five separate invasions over the past 11 Myr. Our results reveal a marked effect of the Miocene-Pleistocene global cooling, and demonstrate that palaeoclimatic conditions left a strong signal on the ecology of present-day taxa in the New World. The phylogenetic conservatism in thermal tolerances that we have identified may permit the reconstruction of the palaeoecology of ancestral organisms, especially mobile taxa that can easily escape from hostile environments rather than adapt to them. This journal is © 2011 The Royal Society

  19. PHY∙FI: fast and easy online creation and manipulation of phylogeny color figures

    DEFF Research Database (Denmark)

    Fredslund, Jakob

    2006-01-01

    the phylogeny figure in some other general-purpose graphics program. PHY·FI is versatile, easy-to-use and fast, and supports comprehensive graphical control, several download image formats, and the possibility of dynamically collapsing groups of nodes into named subtrees (e.g. "Primates"). The user can create...... types of analysis, and hence they are available only for download and installing. Some online tools exist, too. Results This paper presents an online tool, PHY·FI, which encompasses all the qualities of existing online programs and adds functionality to hopefully eliminate the need for post-processing...... a color figure from any phylogeny, or other kind of tree, represented in the widely used parenthesized Newick format. Conclusion PHY·FI is fast and easy to use, yet still offers full color control, tree manipulation, and several image formats. It does not require any downloading and installing, and thus...

  20. Molecular phylogeny analysis and species identification of Dendrobium (Orchidaceae) in China.

    Science.gov (United States)

    Feng, Shang-Guo; Lu, Jiang-Jie; Gao, Ling; Liu, Jun-Jun; Wang, Hui-Zhong

    2014-04-01

    Dendrobium plants are important commercial herbs in China, widely used in traditional medicine and ornamental horticulture. In this study, sequence-related amplified polymorphism (SRAP) markers were applied to molecular phylogeny analysis and species identification of 31 Chinese Dendrobium species. Fourteen SRAP primer pairs produced 727 loci, 97% of which (706) showed polymorphism. Average polymorphism information content of the SRAP pairs was 0.987 (0.982-0.991), showing that plenty of genetic diversity exists at the interspecies level of Chinese Dendrobium. The molecular phylogeny analysis (UPGMA) grouped the 31 Dendrobium species into six clusters. We obtained 18 species-specific markers, which can be used to identify 10 of the 31 species. Our results indicate the SRAP marker system is informative and would facilitate further application in germplasm appraisal, evolution, and genetic diversity studies in the genus Dendrobium.

  1. KGCAK: a K-mer based database for genome-wide phylogeny and complexity evaluation.

    Science.gov (United States)

    Wang, Dapeng; Xu, Jiayue; Yu, Jun

    2015-09-16

    The K-mer approach, treating genomic sequences as simple characters and counting the relative abundance of each string upon a fixed K, has been extensively applied to phylogeny inference for genome assembly, annotation, and comparison. To meet increasing demands for comparing large genome sequences and to promote the use of the K-mer approach, we develop a versatile database, KGCAK ( http://kgcak.big.ac.cn/KGCAK/ ), containing ~8,000 genomes that include genome sequences of diverse life forms (viruses, prokaryotes, protists, animals, and plants) and cellular organelles of eukaryotic lineages. It builds phylogeny based on genomic elements in an alignment-free fashion and provides in-depth data processing enabling users to compare the complexity of genome sequences based on K-mer distribution. We hope that KGCAK becomes a powerful tool for exploring relationship within and among groups of species in a tree of life based on genomic data.

  2. Phylogeny of the owlet-nightjars (Aves: Aegothelidae) based on mitochondrial DNA sequence

    Science.gov (United States)

    Dumbacher, J.P.; Pratt, T.K.; Fleischer, R.C.

    2003-01-01

    The avian family Aegothelidae (Owlet-nightjars) comprises nine extant species and one extinct species, all of which are currently classified in a single genus, Aegotheles. Owlet-nightjars are secretive nocturnal birds of the South Pacific. They are relatively poorly studied and some species are known from only a few specimens. Furthermore, their confusing morphological variation has made it difficult to cluster existing specimens unambiguously into hierarchical taxonomic units. Here we sample all extant owlet-nightjar species and all but three currently recognized subspecies. We use DNA extracted primarily from museum specimens to obtain mitochondrial gene sequences and construct a molecular phylogeny. Our phylogeny suggests that most species are reciprocally monophyletic, however A. albertisi appears paraphyletic. Our data also suggest splitting A. bennettii into two species and splitting A. insignis and A. tatei as suggested in another recent paper. ?? 2003 Elsevier Science (USA). All rights reserved.

  3. Unique phylogenetic position of the African truffle-like fungus, Octaviania ivoryana (Boletaceae, Boletales), and the proposal of a new genus, Afrocastellanoa.

    Science.gov (United States)

    Orihara, Takamichi; Smith, Matthew E

    2017-01-01

    The sequestrate (truffle-like) basidiomycete Octaviania ivoryana was originally described based on collections from Zimbabwe, Kenya, Guinea, and Senegal. This species has basidiomes that stain blue-green and basidiospores with crowded spines that are characteristic of the genus Octaviania. However, O. ivoryana is the only Octaviania species described from sub-Saharan Africa, and the phylogenetic relationship of the species to other species of Octaviania sensu stricto has not been previously investigated. We examined the phylogenetic position of the isotype and paratype specimens of O. ivoryana based on two nuc rDNA loci-ITS1-5.8S-ITS2 (internal transcribed spacer [ITS]) and partial 28S-and the translation elongation factor 1-α gene. The resultant phylogenies indicate that O. ivoryana does not belong to Octaviania s. s. but instead forms a clade with the epigeous bolete genus, Porphyrellus sensu stricto (i.e., P. porphyrosporus and allies). The internal transcribed spacer phylogeny also recovers a monophyletic clade that includes sequences from O. ivoryana basidiomes as well as sequences from ectomycorrhizal root tips of Uapaca, Anthonotha, and assorted ectomycorrhizal Fabaceae species, suggesting that there is likely additional undescribed diversity within the lineage. We accordingly propose a new genus, Afrocastellanoa M.E. Sm. & Orihara, to accommodate the species O. ivoryana. Afrocastellanoa is morphologically distinct from Octaviania in the combination of a solid gleba, multilayered peridium, and the lack of distinct hymenium within the gleba. Our data suggest that the genus Afrocastellanoa is a unique sequestrate lineage with one described species and several undescribed species, all of which likely form ectomycorrhizas with African trees.

  4. Molecular phylogeny and biogeography of the Neotropical cichlid fish tribe Cichlasomatini (Teleostei: Cichlidae: Cichlasomatinae)

    Czech Academy of Sciences Publication Activity Database

    Musilová, Zuzana; Říčan, Oldřich; Janko, Karel; Novák, J.

    2008-01-01

    Roč. 46, - (2008), s. 659-672 ISSN 1055-7903 R&D Projects: GA MŠk LC06073 Grant - others:GA UK(CZ) 182/2004/B-BIO; GA UK(CZ) 139407 Institutional research plan: CEZ:AV0Z50450515 Keywords : molecular phylogeny * Cichlids * south America Subject RIV: EG - Zoology Impact factor: 3.871, year: 2008

  5. The phylogeny of Goussia and Choleoeimeria (Apicomplexa; Eimeriorina) and the evolution of excystation structures in coccidia

    Czech Academy of Sciences Publication Activity Database

    Jirků, Milan; Modrý, David; Šlapeta, Jan Roger; Koudela, Břetislav; Lukeš, Julius

    2002-01-01

    Roč. 153, č. 4 (2002), s. 379-390 ISSN 1434-4610 R&D Projects: GA AV ČR KSK6005114; GA ČR GA524/00/P015 Institutional research plan: CEZ:AV0Z6022909 Keywords : SSU rDNA * coccidia * phylogeny Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.617, year: 2002

  6. Morphology, ecology and phylogeny of cyanobacteria belonging to genera Nostoc and Desmonostoc in Lithuania

    OpenAIRE

    Špakaitė, Ina

    2014-01-01

    The aim of the study was to investigate the morphology, ecology and phylogeny of cyanobacteria belonging to genera Nostoc and Desmonostoc in Lithuania. The detailed research of freshwater and terrestrial Nostoc and Desmonostoc species provided new data on taxonomy, biology and ecology of these cyanobacteria and the overall diversity of algae in Lithuania. 20 Nostoc species and two intraspecific taxa, and 18 taxa to the Nostoc genus level were identified. Twelve Nostoc species and intraspecifi...

  7. The phylogeny of Myxosporea (Myxozoa) based on small subunit ribosomal RNA gene analysis

    Czech Academy of Sciences Publication Activity Database

    Fiala, Ivan

    2006-01-01

    Roč. 36, č. 14 (2006), s. 1521-1534 ISSN 0020-7519 R&D Projects: GA MŠk LC522 Grant - others:Grantová agentura Jihočeské univerzity(CZ) 58/2002//P-BF Institutional research plan: CEZ:AV0Z60220518 Keywords : Myxosporea * SSU rDNA * phylogeny Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.337, year: 2006

  8. Phylogeny and sequence variability of the Sarcocystis singaporensis Zaman and Colley, (1975) 1976 ssrDNA

    Czech Academy of Sciences Publication Activity Database

    Šlapeta, Jan Roger; Kyselová, Iveta; Richardson, A. O.; Modrý, David; Lukeš, Julius

    2002-01-01

    Roč. 88, č. 9 (2002), s. 810-815 ISSN 0932-0113 R&D Projects: GA ČR GA524/00/P015; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6022909 Keywords : Sarcocystis * phylogeny * ssrDNA Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 1.046, year: 2002

  9. Bayesian, Maximum Parsimony and UPGMA Models for Inferring the Phylogenies of Antelopes Using Mitochondrial Markers

    OpenAIRE

    Khan, Haseeb A.; Arif, Ibrahim A.; Bahkali, Ali H.; Al Farhan, Ahmad H.; Al Homaidan, Ali A.

    2008-01-01

    This investigation was aimed to compare the inference of antelope phylogenies resulting from the 16S rRNA, cytochrome-b (cyt-b) and d-loop segments of mitochondrial DNA using three different computational models including Bayesian (BA), maximum parsimony (MP) and unweighted pair group method with arithmetic mean (UPGMA). The respective nucleotide sequences of three Oryx species (Oryx leucoryx, Oryx dammah and Oryx gazella) and an out-group (Addax nasomaculatus) were aligned and subjected to B...

  10. PHY·FI: fast and easy online creation and manipulation of phylogeny color figures

    Directory of Open Access Journals (Sweden)

    Fredslund Jakob

    2006-06-01

    Full Text Available Abstract Background The need to depict a phylogeny, or some other kind of abstract tree, is very frequently experienced by researchers from a broad range of biological and computational disciplines. Thousands of papers and talks include phylogeny figures, and often during everyday work, one would like to quickly get a graphical display of, e.g., the phylogenetic relationship between a set of sequences as calculated by an alignment program such as ClustalW or the phylogenetic package Phylip. A wealth of software tools capable of tree drawing exists; most are comprehensive packages that also perform various types of analysis, and hence they are available only for download and installing. Some online tools exist, too. Results This paper presents an online tool, PHY·FI, which encompasses all the qualities of existing online programs and adds functionality to hopefully eliminate the need for post-processing the phylogeny figure in some other general-purpose graphics program. PHY·FI is versatile, easy-to-use and fast, and supports comprehensive graphical control, several download image formats, and the possibility of dynamically collapsing groups of nodes into named subtrees (e.g. "Primates". The user can create a color figure from any phylogeny, or other kind of tree, represented in the widely used parenthesized Newick format. Conclusion PHY·FI is fast and easy to use, yet still offers full color control, tree manipulation, and several image formats. It does not require any downloading and installing, and thus any internet user regardless of computer skills, and computer platform, can benefit from it. PHY·FI is free for all and is available from this web address: http://cgi-www.daimi.au.dk/cgi-chili/phyfi/go

  11. Evidence of host specificity and congruence between phylogenies of bitterling and freshwater mussels

    Czech Academy of Sciences Publication Activity Database

    Liu, H.-Z.; Zhu, Y.-R.; Smith, C.; Reichard, Martin

    2006-01-01

    Roč. 45, č. 3 (2006), s. 428-434 ISSN 1021-5506 Grant - others:NSFC(CN) 30470237; NSFC(CN) 40432003; Innovation Program of the Chinese Academy of Sciences(CN) KZCX3-SW-126 Institutional research plan: CEZ:AV0Z60930519 Keywords : bitterling * host specificity * coevolution * phylogeny Subject RIV: EG - Zoology Impact factor: 0.943, year: 2006 http://zoolstud.sinica.edu.tw/Journals/45.3/428.pdf

  12. Molecular phylogeny of anoplocephalid tapeworms (Cestoda: Anoplocephalidae) infecting humans and non-human primates

    Czech Academy of Sciences Publication Activity Database

    Doležalová, J.; Vallo, P.; Petrželková, Klára Judita; Foitová, I.; Nurcahyo, W.; Mudakikwa, A.; Hashimoto, C.; Jirků, Milan; Lukeš, Julius; Scholz, Tomáš; Modrý, David

    2015-01-01

    Roč. 142, č. 10 (2015), s. 1278-1289 ISSN 0031-1820 R&D Projects: GA MŠk(CZ) EE2.3.30.0032; GA ČR GA206/09/0927 Institutional support: RVO:60077344 Keywords : Bertiella * Anoplocephala * phylogeny * primates * zoonotic potential Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 3.031, year: 2015

  13. Phylogeny of the Southeast Asian freshwater fish genus Pangio (Cypriniformes, Cobitidae)

    Czech Academy of Sciences Publication Activity Database

    Bohlen, Jörg; Šlechtová, Vendula; Tan, H. H.; Britz, R.

    2011-01-01

    Roč. 61, č. 3 (2011), s. 854-865 ISSN 1055-7903 R&D Projects: GA ČR GA206/05/2556; GA ČR GA206/08/0637; GA AV ČR IAA600450508; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z50450515 Keywords : pangio * eel loaches * phylogeny Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.609, year: 2011

  14. Identification and phylogeny of the tomato receptor-like proteins family

    OpenAIRE

    Ermis Yanes-Paz; Gioser María Ramos-Echazábal; Glay Chinea; Yanelis Capdesuñer Ruiz; Ramón Santos Bermúdez

    2017-01-01

    The receptor-like proteins (RLPs) play multiple roles in development and defense. In the current work 75 RLPs were identified in tomato (Solanum lycopersicum L.) using iterative BLAST searches and domain prediction. A phylogenetic tree including all the identified RLPs from tomato and some functionally characterized RLPs from other species was built to identify their putative homologues in tomato. We first tested whether C3-F-based phylogeny was a good indicator of functional relation between...

  15. Phylogeny and Taxonomy of Archaea: A Comparison of the Whole-Genome-Based CVTree Approach with 16S rRNA Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Guanghong Zuo

    2015-03-01

    Full Text Available A tripartite comparison of Archaea phylogeny and taxonomy at and above the rank order is reported: (1 the whole-genome-based and alignment-free CVTree using 179 genomes; (2 the 16S rRNA analysis exemplified by the All-Species Living Tree with 366 archaeal sequences; and (3 the Second Edition of Bergey’s Manual of Systematic Bacteriology complemented by some current literature. A high degree of agreement is reached at these ranks. From the newly proposed archaeal phyla, Korarchaeota, Thaumarchaeota, Nanoarchaeota and Aigarchaeota, to the recent suggestion to divide the class Halobacteria into three orders, all gain substantial support from CVTree. In addition, the CVTree helped to determine the taxonomic position of some newly sequenced genomes without proper lineage information. A few discrepancies between the CVTree and the 16S rRNA approaches call for further investigation.

  16. A preliminary molecular phylogeny of shield-bearer moths (Lepidoptera: Adeloidea: Heliozelidae) highlights rich undescribed diversity.

    Science.gov (United States)

    Milla, Liz; van Nieukerken, Erik J; Vijverberg, Ruben; Doorenweerd, Camiel; Wilcox, Stephen A; Halsey, Mike; Young, David A; Jones, Therésa M; Kallies, Axel; Hilton, Douglas J

    2018-03-01

    Heliozelidae are a widespread, evolutionarily early diverging family of small, day-flying monotrysian moths, for which a comprehensive phylogeny is lacking. We generated the first molecular phylogeny of the family using DNA sequences of two mitochondrial genes (COI and COII) and two nuclear genes (H3 and 28S) from 130 Heliozelidae specimens, including eight of the twelve known genera: Antispila, Antispilina, Coptodisca, Heliozela, Holocacista, Hoplophanes, Pseliastis, and Tyriozela. Our results provide strong support for five major Heliozelidae clades: (i) a large widespread clade containing the leaf-mining genera Antispilina, Coptodisca and Holocacista and some species of Antispila, (ii) a clade containing most of the described Antispila, (iii) a clade containing the leaf-mining genus Heliozela and the monotypic genus Tyriozela, (iv) an Australian clade containing Pseliastis and (v) an Australian clade containing Hoplophanes. Each clade includes several new species and potentially new genera. Collectively, our data uncover a rich and undescribed diversity that appears to be especially prevalent in Australia. Our work highlights the need for a major taxonomic revision of the family and for generating a robust molecular phylogeny using multi-gene approaches in order to resolve the relationships among clades. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Synthesis of phylogeny and taxonomy into a comprehensive tree of life

    Science.gov (United States)

    Hinchliff, Cody E.; Smith, Stephen A.; Allman, James F.; Burleigh, J. Gordon; Chaudhary, Ruchi; Coghill, Lyndon M.; Crandall, Keith A.; Deng, Jiabin; Drew, Bryan T.; Gazis, Romina; Gude, Karl; Hibbett, David S.; Katz, Laura A.; Laughinghouse, H. Dail; McTavish, Emily Jane; Midford, Peter E.; Owen, Christopher L.; Ree, Richard H.; Rees, Jonathan A.; Soltis, Douglas E.; Williams, Tiffani; Cranston, Karen A.

    2015-01-01

    Reconstructing the phylogenetic relationships that unite all lineages (the tree of life) is a grand challenge. The paucity of homologous character data across disparately related lineages currently renders direct phylogenetic inference untenable. To reconstruct a comprehensive tree of life, we therefore synthesized published phylogenies, together with taxonomic classifications for taxa never incorporated into a phylogeny. We present a draft tree containing 2.3 million tips—the Open Tree of Life. Realization of this tree required the assembly of two additional community resources: (i) a comprehensive global reference taxonomy and (ii) a database of published phylogenetic trees mapped to this taxonomy. Our open source framework facilitates community comment and contribution, enabling the tree to be continuously updated when new phylogenetic and taxonomic data become digitally available. Although data coverage and phylogenetic conflict across the Open Tree of Life illuminate gaps in both the underlying data available for phylogenetic reconstruction and the publication of trees as digital objects, the tree provides a compelling starting point for community contribution. This comprehensive tree will fuel fundamental research on the nature of biological diversity, ultimately providing up-to-date phylogenies for downstream applications in comparative biology, ecology, conservation biology, climate change, agriculture, and genomics. PMID:26385966

  18. Molecular phylogeny of Toxoplasmatinae: comparison between inferences based on mitochondrial and apicoplast genetic sequences

    Directory of Open Access Journals (Sweden)

    Michelle Klein Sercundes

    2016-03-01

    Full Text Available Abstract Phylogenies within Toxoplasmatinae have been widely investigated with different molecular markers. Here, we studied molecular phylogenies of the Toxoplasmatinae subfamily based on apicoplast and mitochondrial genes. Partial sequences of apicoplast genes coding for caseinolytic protease (clpC and beta subunit of RNA polymerase (rpoB, and mitochondrial gene coding for cytochrome B (cytB were analyzed. Laboratory-adapted strains of the closely related parasites Sarcocystis falcatula and Sarcocystis neurona were investigated, along with Neospora caninum, Neospora hughesi, Toxoplasma gondii (strains RH, CTG and PTG, Besnoitia akodoni, Hammondia hammondiand two genetically divergent lineages of Hammondia heydorni. The molecular analysis based on organellar genes did not clearly differentiate between N. caninum and N. hughesi, but the two lineages of H. heydorni were confirmed. Slight differences between the strains of S. falcatula and S. neurona were encountered in all markers. In conclusion, congruent phylogenies were inferred from the three different genes and they might be used for screening undescribed sarcocystid parasites in order to ascertain their phylogenetic relationships with organisms of the family Sarcocystidae. The evolutionary studies based on organelar genes confirm that the genusHammondia is paraphyletic. The primers used for amplification of clpC and rpoB were able to amplify genetic sequences of organisms of the genus Sarcocystisand organisms of the subfamily Toxoplasmatinae as well.

  19. Using genomic data to unravel the root of the placental mammal phylogeny.

    Science.gov (United States)

    Murphy, William J; Pringle, Thomas H; Crider, Tess A; Springer, Mark S; Miller, Webb

    2007-04-01

    The phylogeny of placental mammals is a critical framework for choosing future genome sequencing targets and for resolving the ancestral mammalian genome at the nucleotide level. Despite considerable recent progress defining superordinal relationships, several branches remain poorly resolved, including the root of the placental tree. Here we analyzed the genome sequence assemblies of human, armadillo, elephant, and opossum to identify informative coding indels that would serve as rare genomic changes to infer early events in placental mammal phylogeny. We also expanded our species sampling by including sequence data from >30 ongoing genome projects, followed by PCR and sequencing validation of each indel in additional taxa. Our data provide support for a sister-group relationship between Afrotheria and Xenarthra (the Atlantogenata hypothesis), which is in turn the sister-taxon to Boreoeutheria. We failed to recover any indels in support of a basal position for Xenarthra (Epitheria), which is suggested by morphology and a recent retroposon analysis, or a hypothesis with Afrotheria basal (Exafricoplacentalia), which is favored by phylogenetic analysis of large nuclear gene data sets. In addition, we identified two retroposon insertions that also support Atlantogenata and none for the alternative hypotheses. A revised molecular timescale based on these phylogenetic inferences suggests Afrotheria and Xenarthra diverged from other placental mammals approximately 103 (95-114) million years ago. We discuss the impacts of this topology on earlier phylogenetic reconstructions and repeat-based inferences of phylogeny.

  20. Host and parasite morphology influence congruence between host and parasite phylogenies.

    Science.gov (United States)

    Sweet, Andrew D; Bush, Sarah E; Gustafsson, Daniel R; Allen, Julie M; DiBlasi, Emily; Skeen, Heather R; Weckstein, Jason D; Johnson, Kevin P

    2018-03-23

    Comparisons of host and parasite phylogenies often show varying degrees of phylogenetic congruence. However, few studies have rigorously explored the factors driving this variation. Multiple factors such as host or parasite morphology may govern the degree of phylogenetic congruence. An ideal analysis for understanding the factors correlated with congruence would focus on a diverse host-parasite system for increased variation and statistical power. In this study, we focused on the Brueelia-complex, a diverse and widespread group of feather lice that primarily parasitise songbirds. We generated a molecular phylogeny of the lice and compared this tree with a phylogeny of their avian hosts. We also tested for the contribution of each host-parasite association to the overall congruence. The two trees overall were significantly congruent, but the contribution of individual associations to this congruence varied. To understand this variation, we developed a novel approach to test whether host, parasite or biogeographic factors were statistically associated with patterns of congruence. Both host plumage dimorphism and parasite ecomorphology were associated with patterns of congruence, whereas host body size, other plumage traits and biogeography were not. Our results lay the framework for future studies to further elucidate how these factors influence the process of host-parasite coevolution. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  1. Diet Versus Phylogeny: a Comparison of Gut Microbiota in Captive Colobine Monkey Species.

    Science.gov (United States)

    Hale, Vanessa L; Tan, Chia L; Niu, Kefeng; Yang, Yeqin; Knight, Rob; Zhang, Qikun; Cui, Duoying; Amato, Katherine R

    2018-02-01

    Both diet and host phylogeny shape the gut microbial community, and separating out the effects of these variables can be challenging. In this study, high-throughput sequencing was used to evaluate the impact of diet and phylogeny on the gut microbiota of nine colobine monkey species (N = 64 individuals). Colobines are leaf-eating monkeys that fare poorly in captivity-often exhibiting gastrointestinal (GI) problems. This study included eight Asian colobines (Rhinopithecus brelichi, Rhinopithecus roxellana, Rhinopithecus bieti, Pygathrix nemaeus, Nasalis larvatus, Trachypithecus francoisi, Trachypithecus auratus, and Trachypithecus vetulus) and one African colobine (Colobus guereza). Monkeys were housed at five different captive institutes: Panxi Wildlife Rescue Center (Guizhou, China), Beijing Zoo, Beijing Zoo Breeding Center, Singapore Zoo, and Singapore Zoo Primate Conservation Breeding Center. Captive diets varied widely between institutions, but within an institution, all colobine monkey species were fed nearly identical or identical diets. In addition, four monkey species were present at multiple captive institutes. This allowed us to parse the effects of diet and phylogeny in these captive colobines. Gut microbial communities clustered weakly by host species and strongly by diet, and overall, colobine phylogenetic relationships were not reflected in gut microbiota analyses. Core microbiota analyses also identified several key taxa-including microbes within the Ruminococcaceae and Lachnospiraceae families-that were shared by over 90% of the monkeys in this study. Microbial species within these families include many butyrate producers that are important for GI health. These results highlight the importance of diet in captive colobines.

  2. Phylogeny of economically important insect pests that infesting several crops species in Malaysia

    Science.gov (United States)

    Ghazali, Siti Zafirah; Zain, Badrul Munir Md.; Yaakop, Salmah

    2014-09-01

    This paper reported molecular data on insect pests of commercial crops in Peninsular Malaysia. Fifteen insect pests (Metisa plana, Calliteara horsefeldii, Cotesia vestalis, Bactrocera papayae, Bactrocera carambolae, Bactrocera latifrons, Conopomorpha cramella, Sesamia inferens, Chilo polychrysa, Rhynchophorus vulneratus, and Rhynchophorus ferrugineus) of nine crops were sampled (oil palm, coconut, paddy, cocoa, starfruit, angled loofah, guava, chili and mustard) and also four species that belong to the fern's pest (Herpetogramma platycapna) and storage and rice pests (Tribolium castaneum, Oryzaephilus surinamensis and Cadra cautella). The presented phylogeny summarized the initial phylogenetic hypothesis, which concerning by implementation of the economically important insect pests. In this paper, phylogenetic relationships among 39 individuals of 15 species that belonging to three orders under 12 genera were inferred from DNA sequences of mitochondrial marker, cytochrome oxidase subunit I (COI) and nuclear marker, ribosomal DNA 28S D2 region. The phylogenies resulted from the phylogenetic analyses of both genes are relatively similar, but differ in the sequence of evolution. Interestingly, this most recent molecular data of COI sequences data by using Bayesian Inference analysis resulted a more-resolved phylogeny that corroborated with traditional hypotheses of holometabolan relationships based on traditional hypotheses of holometabolan relationships and most of recently molecular study compared to 28S sequences. This finding provides the information on relationships of pests species, which infested several crops in Malaysia and also estimation on Holometabola's order relationships. The identification of the larval stages of insect pests could be done accurately, without waiting the emergence of adults and supported by the phylogenetic tree.

  3. Shark tales: a molecular species-level phylogeny of sharks (Selachimorpha, Chondrichthyes).

    Science.gov (United States)

    Vélez-Zuazo, Ximena; Agnarsson, Ingi

    2011-02-01

    Sharks are a diverse and ecologically important group, including some of the ocean's largest predatory animals. Sharks are also commercially important, with many species suffering overexploitation and facing extinction. However, despite a long evolutionary history, commercial, and conservation importance, phylogenetic relationships within the sharks are poorly understood. To date, most studies have either focused on smaller clades within sharks, or sampled taxa sparsely across the group. A more detailed species-level phylogeny will offer further insights into shark taxonomy, provide a tool for comparative analyses, as well as facilitating phylogenetic estimates of conservation priorities. We used four mitochondrial and one nuclear gene to investigate the phylogenetic relationships of 229 species (all eight Orders and 31 families) of sharks, more than quadrupling the number of taxon sampled in any prior study. The resulting Bayesian phylogenetic hypothesis agrees with prior studies on the major relationships of the sharks phylogeny; however, on those relationships that have proven more controversial, it differs in several aspects from the most recent molecular studies. The phylogeny supports the division of sharks into two major groups, the Galeomorphii and Squalimorphii, rejecting the hypnosqualean hypothesis that places batoids within sharks. Within the squalimorphs the orders Hexanchiformes, Squatiniformes, Squaliformes, and Pristiophoriformes are broadly monophyletic, with minor exceptions apparently due to missing data. Similarly, within Galeomorphs, the orders Heterodontiformes, Lamniformes, Carcharhiniformes, and Orectolobiformes are broadly monophyletic, with a couple of species 'misplaced'. In contrast, many of the currently recognized shark families are not monophyletic according to our results. Our phylogeny offers some of the first clarification of the relationships among families of the order Squaliformes, a group that has thus far received relatively

  4. Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences

    Directory of Open Access Journals (Sweden)

    Holland Barbara R

    2006-07-01

    Full Text Available Abstract Background Phylogenetic methods which do not rely on multiple sequence alignments are important tools in inferring trees directly from completely sequenced genomes. Here, we extend the recently described Genome BLAST Distance Phylogeny (GBDP strategy to compute phylogenetic trees from all completely sequenced plastid genomes currently available and from a selection of mitochondrial genomes representing the major eukaryotic lineages. BLASTN, TBLASTX, or combinations of both are used to locate high-scoring segment pairs (HSPs between two sequences from which pairwise similarities and distances are computed in different ways resulting in a total of 96 GBDP variants. The suitability of these distance formulae for phylogeny reconstruction is directly estimated by computing a recently described measure of "treelikeness", the so-called δ value, from the respective distance matrices. Additionally, we compare the trees inferred from these matrices using UPGMA, NJ, BIONJ, FastME, or STC, respectively, with the NCBI taxonomy tree of the taxa under study. Results Our results indicate that, at this taxonomic level, plastid genomes are much more valuable for inferring phylogenies than are mitochondrial genomes, and that distances based on breakpoints are of little use. Distances based on the proportion of "matched" HSP length to average genome length were best for tree estimation. Additionally we found that using TBLASTX instead of BLASTN and, particularly, combining TBLASTX and BLASTN leads to a small but significant increase in accuracy. Other factors do not significantly affect the phylogenetic outcome. The BIONJ algorithm results in phylogenies most in accordance with the current NCBI taxonomy, with NJ and FastME performing insignificantly worse, and STC performing as well if applied to high quality distance matrices. δ values are found to be a reliable predictor of phylogenetic accuracy. Conclusion Using the most treelike distance matrices, as

  5. A tale of two phylogenies: comparative analyses of ecological interactions.

    Science.gov (United States)

    Hadfield, Jarrod D; Krasnov, Boris R; Poulin, Robert; Nakagawa, Shinichi

    2014-02-01

    The evolution of traits involved in ecological interactions such as predator-prey, host-parasite, and plant-pollinator interactions, are likely to be shaped by the phylogenetic history of both parties. We develop generalized linear mixed-effects models (GLMM) that estimate the effect of both parties' phylogenetic history on trait evolution, both in isolation but also in terms of how the two histories interact. Using data on the incidence and abundance of 206 flea species on 121 mammal species, we illustrate our method and compare it to previously used methods for detecting host-parasite coevolution. At large spatial scales we find that the phylogenetic interaction effect was substantial, indicating that related parasite species were more likely to be found on related host species. At smaller spatial scales, and when sampling effort was not controlled for, phylogenetic effects on the number and types of parasite species harbored by hosts were found to dominate. We go on to show that in situations where these additional phylogenetic effects exist, then previous methods have very high Type I error rates when testing for the phylogenetic interaction. Our GLMM method represents a robust and reliable approach to quantify the phylogenetic effects of traits determined by, or defined by, ecological interactions and has the advantage that it can easily be extended and interpreted in a broader context than existing permutation tests.

  6. The phylogeny of the four pan-American MtDNA haplogroups: implications for evolutionary and disease studies.

    Directory of Open Access Journals (Sweden)

    Alessandro Achilli

    Full Text Available Only a limited number of complete mitochondrial genome sequences belonging to Native American haplogroups were available until recently, which left America as the continent with the least amount of information about sequence variation of entire mitochondrial DNAs. In this study, a comprehensive overview of all available complete mitochondrial DNA (mtDNA genomes of the four pan-American haplogroups A2, B2, C1, and D1 is provided by revising the information scattered throughout GenBank and the literature, and adding 14 novel mtDNA sequences. The phylogenies of haplogroups A2, B2, C1, and D1 reveal a large number of sub-haplogroups but suggest that the ancestral Beringian population(s contributed only six (successful founder haplotypes to these haplogroups. The derived clades are overall starlike with coalescence times ranging from 18,000 to 21,000 years (with one exception using the conventional calibration. The average of about 19,000 years somewhat contrasts with the corresponding lower age of about 13,500 years that was recently proposed by employing a different calibration and estimation approach. Our estimate indicates a human entry and spread of the pan-American haplogroups into the Americas right after the peak of the Last Glacial Maximum and comfortably agrees with the undisputed ages of the earliest Paleoindians in South America. In addition, the phylogenetic approach also indicates that the pathogenic status proposed for various mtDNA mutations, which actually define branches of Native American haplogroups, was based on insufficient grounds.

  7. Molecular Phylogeny and Revision of Copepod Orders (Crustacea: Copepoda).

    Science.gov (United States)

    Khodami, Sahar; McArthur, J Vaun; Blanco-Bercial, Leocadio; Martinez Arbizu, Pedro

    2017-08-22

    For the first time, the phylogenetic relationships between representatives of all 10 copepod orders have been investigated using 28S and 18S rRNA, Histone H3 protein and COI mtDNA. The monophyly of Copepoda (including Platycopioida Fosshagen, 1985) is demonstrated for the first time using molecular data. Maxillopoda is rejected, as it is a polyphyletic group. The monophyly of the major subgroups of Copepoda, including Progymnoplea Lang, 1948 (=Platycopioida); Neocopepoda Huys and Boxshall, 1991; Gymnoplea Giesbrecht, 1892 (=Calanoida Sars, 1903); and Podoplea Giesbrecht, 1892, are supported in this study. Seven copepod orders are monophyletic, including Platycopioida, Calanoida, Misophrioida Gurney, 1933; Monstrilloida Sars, 1901; Siphonostomatoida Burmeister, 1834; Gelyelloida Huys, 1988; and Mormonilloida Boxshall, 1979. Misophrioida (=Propodoplea Lang, 1948) is the most basal Podoplean order. The order Cyclopoida Burmeister, 1835, is paraphyletic and now encompasses Poecilostomatoida Thorell, 1859, as a sister to the family Schminkepinellidae Martinez Arbizu, 2006. Within Harpacticoida Sars, 1903, both sections, Polyarthra Lang, 1948, and Oligoarthra Lang, 1948, are monophyletic, but not sister groups. The order Canuelloida is proposed while maintaining the order Harpacticoida s. str. (Oligoarthra). Cyclopoida, Harpacticoida and Cyclopinidae are redefined, while Canuelloida ordo. nov., Smirnovipinidae fam. nov. and Cyclopicinidae fam. nov are proposed as new taxa.

  8. A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies

    Directory of Open Access Journals (Sweden)

    Turmel Monique

    2007-01-01

    Full Text Available Abstract Background The Viridiplantae comprise two major phyla: the Streptophyta, containing the charophycean green algae and all land plants, and the Chlorophyta, containing the remaining green algae. Despite recent progress in unravelling phylogenetic relationships among major green plant lineages, problematic nodes still remain in the green tree of life. One of the major issues concerns the scaly biflagellate Mesostigma viride, which is either regarded as representing the earliest divergence of the Streptophyta or a separate lineage that diverged before the Chlorophyta and Streptophyta. Phylogenies based on chloroplast and mitochondrial genomes support the latter view. Because some green plant lineages are not represented in these phylogenies, sparse taxon sampling has been suspected to yield misleading topologies. Here, we describe the complete chloroplast DNA (cpDNA sequence of the early-diverging charophycean alga Chlorokybus atmophyticus and present chloroplast genome-based phylogenies with an expanded taxon sampling. Results The 152,254 bp Chlorokybus cpDNA closely resembles its Mesostigma homologue at the gene content and gene order levels. Using various methods of phylogenetic inference, we analyzed amino acid and nucleotide data sets that were derived from 45 protein-coding genes common to the cpDNAs of 37 green algal/land plant taxa and eight non-green algae. Unexpectedly, all best trees recovered a robust clade uniting Chlorokybus and Mesostigma. In protein trees, this clade was sister to all streptophytes and chlorophytes and this placement received moderate support. In contrast, gene trees provided unequivocal support to the notion that the Mesostigma + Chlorokybus clade represents the earliest-diverging branch of the Streptophyta. Independent analyses of structural data (gene content and/or gene order and of subsets of amino acid data progressively enriched in slow-evolving sites led us to conclude that the latter topology

  9. Molecular phylogeny of the Drusinae (Trichoptera: Limnephilidae): preliminary results

    Science.gov (United States)

    Pauls, S.; Lumbsch, T.; Haase, P.

    2005-05-01

    We examine the phylogenetic relationships within the subfamily of the Drusinae using molecular markers. Sequence data from two mitochondrial loci (mitochondrial cytochrome oxidase I, mitochondrial ribosomal large subunit) are used to infer the relationships within and among the genera of the Drusinae. Sequence data were generated for 21 taxa from five genera from the subfamily. The molecular data were analyzed using a Bayesian Markov Chain Monte Carlo and a Maximum Parsimony approach for both single gene and combined data sets. Several hypotheses of relationships previously inferred based on morphological characters were tested. The study revealed a very close relationship between Drusus discolor and D. romanicus suggesting that divergence between these two species occurred recently. The relationships inferred by molecular data suggest that larval morphology may be an important taxonomic character, which has often been neglected. The data also indicate that the genera Ecclisopteryx and Drusus are polyphyletic with respect to one another.

  10. Algorithms for MDC-Based Multi-locus Phylogeny Inference

    Science.gov (United States)

    Yu, Yun; Warnow, Tandy; Nakhleh, Luay

    One of the criteria for inferring a species tree from a collection of gene trees, when gene tree incongruence is assumed to be due to incomplete lineage sorting (ILS), is minimize deep coalescence, or MDC. Exact algorithms for inferring the species tree from rooted, binary trees under MDC were recently introduced. Nevertheless, in phylogenetic analyses of biological data sets, estimated gene trees may differ from true gene trees, be incompletely resolved, and not necessarily rooted. In this paper, we propose new MDC formulations for the cases where the gene trees are unrooted/binary, rooted/non-binary, and unrooted/non-binary. Further, we prove structural theorems that allow us to extend the algorithms for the rooted/binary gene tree case to these cases in a straightforward manner. Finally, we study the performance of these methods in coalescent-based computer simulations.

  11. Impact of previously disadvantaged land-users on sustainable ...

    African Journals Online (AJOL)

    Impact of previously disadvantaged land-users on sustainable agricultural ... about previously disadvantaged land users involved in communal farming systems ... of input, capital, marketing, information and land use planning, with effect on ...

  12. A core phylogeny of Dictyostelia inferred from genomes representative of the eight major and minor taxonomic divisions of the group.

    Science.gov (United States)

    Singh, Reema; Schilde, Christina; Schaap, Pauline

    2016-11-17

    Dictyostelia are a well-studied group of organisms with colonial multicellularity, which are members of the mostly unicellular Amoebozoa. A phylogeny based on SSU rDNA data subdivided all Dictyostelia into four major groups, but left the position of the root and of six group-intermediate taxa unresolved. Recent phylogenies inferred from 30 or 213 proteins from sequenced genomes, positioned the root between two branches, each containing two major groups, but lacked data to position the group-intermediate taxa. Since the positions of these early diverging taxa are crucial for understanding the evolution of phenotypic complexity in Dictyostelia, we sequenced six representative genomes of early diverging taxa. We retrieved orthologs of 47 housekeeping proteins with an average size of 890 amino acids from six newly sequenced and eight published genomes of Dictyostelia and unicellular Amoebozoa and inferred phylogenies from single and concatenated protein sequence alignments. Concatenated alignments of all 47 proteins, and four out of five subsets of nine concatenated proteins all produced the same consensus phylogeny with 100% statistical support. Trees inferred from just two out of the 47 proteins, individually reproduced the consensus phylogeny, highlighting that single gene phylogenies will rarely reflect correct species relationships. However, sets of two or three concatenated proteins again reproduced the consensus phylogeny, indicating that a small selection of genes suffices for low cost classification of as yet unincorporated or newly discovered dictyostelid and amoebozoan taxa by gene amplification. The multi-locus consensus phylogeny shows that groups 1 and 2 are sister clades in branch I, with the group-intermediate taxon D. polycarpum positioned as outgroup to group 2. Branch II consists of groups 3 and 4, with the group-intermediate taxon Polysphondylium violaceum positioned as sister to group 4, and the group-intermediate taxon Dictyostelium polycephalum

  13. 22 CFR 40.91 - Certain aliens previously removed.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Certain aliens previously removed. 40.91... IMMIGRANTS UNDER THE IMMIGRATION AND NATIONALITY ACT, AS AMENDED Aliens Previously Removed § 40.91 Certain aliens previously removed. (a) 5-year bar. An alien who has been found inadmissible, whether as a result...

  14. A molecular phylogeny of scaly tree ferns (Cyatheaceae).

    Science.gov (United States)

    Korall, Petra; Conant, David S; Metzgar, Jordan S; Schneider, Harald; Pryer, Kathleen M

    2007-05-01

    Tree ferns recently were identified as the closest sister group to the hyperdiverse clade of ferns, the polypods. Although most of the 600 species of tree ferns are arborescent, the group encompasses a wide range of morphological variability, from diminutive members to the giant scaly tree ferns, Cyatheaceae. This well-known family comprises most of the tree fern diversity (∼500 species) and is widespread in tropical, subtropical, and south temperate regions of the world. Here we investigate the phylogenetic relationships of scaly tree ferns based on DNA sequence data from five plastid regions (rbcL, rbcL-accD IGS, rbcL-atpB IGS, trnG-trnR, and trnL-trnF). A basal dichotomy resolves Sphaeropteris as sister to all other taxa and scale features support these two clades: Sphaeropteris has conform scales, whereas all other taxa have marginate scales. The marginate-scaled clade consists of a basal trichotomy, with the three groups here termed (1) Cyathea (including Cnemidaria, Hymenophyllopsis, Trichipteris), (2) Alsophila sensu stricto, and (3) Gymnosphaera (previously recognized as a section within Alsophila) + A. capensis. Scaly tree ferns display a wide range of indusial structures, and although indusium shape is homoplastic it does contain useful phylogenetic information that supports some of the larger clades recognised.

  15. The prion protein and New World primate phylogeny

    Directory of Open Access Journals (Sweden)

    Igor Schneider

    2004-01-01

    Full Text Available The PrP C prion protein contains 250 amino acids with some variation among species and is expressed in several cell types. PrP C is converted to PrP Sc by a post-translational process in which it acquires amino acid sequences of three-dimensional conformation of beta-sheets. Variations in the prion protein gene were observed among 16 genera of New World primates (Platyrrhini, and resulted in amino acid substitutions when compared with the human sequence. Seven substitutions not yet described in the literature were found: W -> R at position 31 in Cebuella, T -> A at position 95 in Cacajao and Chiropotes, N-> S at position 100 in Brachyteles, L -> Q at position 130 in Leontopithecus (in the sequence responsible for generating the beta-sheet 1, D -> E at position 144 in Lagothrix (in the sequence responsible for the alpha-helix 1, D-> G at position 147 in Saguinus (also located in the alpha-helix 1 region, and M -> I at position 232 in Alouatta. The phylogenetic trees generated by parsimony, neighbor-joining and Bayesian analyses strongly support the monophyletic status of the platyrrhines, but did not resolve relationships among families. However, the results do corroborate previous findings, which indicate that the three platyrrhine families radiated rapidly from an ancient split.

  16. Taxonomy, morphology, masticatory function and phylogeny of heterodontosaurid dinosaurs

    Directory of Open Access Journals (Sweden)

    Paul Sereno

    2012-10-01

    Full Text Available Heterodontosaurids comprise an important early radiation of small-bodied herbivores that persisted for approximately 100 My from Late Triassic to Early Cretaceous time. Review of available fossils unequivocally establishes Echinodon as a very small-bodied, late-surviving northern heterodontosaurid similar to the other northern genera Fruitadens and Tianyulong. Tianyulong from northern China has unusual skeletal proportions, including a relatively large skull, short forelimb, and long manual digit II. The southern African heterodontosaurid genus Lycorhinus is established as valid, and a new taxon from the same formation is named Pegomastax africanus gen. n., sp. n. Tooth replacement and tooth-to-tooth wear is more common than previously thought among heterodontosaurids, and in Heterodontosaurus the angle of tooth-to-tooth shear is shown to increase markedly during maturation. Long-axis rotation of the lower jaw during occlusion is identified here as the most likely functional mechanism underlying marked tooth wear in mature specimens of Heterodontosaurus. Extensive tooth wear and other evidence suggests that all heterodontosaurids were predominantly or exclusively herbivores. Basal genera such as Echinodon, Fruitadens and Tianyulong with primitive, subtriangular crowns currently are known only from northern landmasses. All other genera except the enigmatic Pisanosaurus have deeper crown proportions and currently are known only from southern landmasses.

  17. Combined analysis of fourteen nuclear genes refines the Ursidae phylogeny.

    Science.gov (United States)

    Pagès, Marie; Calvignac, Sébastien; Klein, Catherine; Paris, Mathilde; Hughes, Sandrine; Hänni, Catherine

    2008-04-01

    Despite numerous studies, questions remain about the evolutionary history of Ursidae and additional independent genetic markers were needed to elucidate these ambiguities. For this purpose, we sequenced ten nuclear genes for all the eight extant bear species. By combining these new sequences with those of four other recently published nuclear markers, we provide new insights into the phylogenetic relationships of the Ursidae family members. The hypothesis that the giant panda was the first species to diverge among ursids is definitively confirmed and the precise branching order within the Ursus genus is clarified for the first time. Moreover, our analyses indicate that the American and the Asiatic black bears do not cluster as sister taxa, as had been previously hypothesised. Sun and sloth bears clearly appear as the most basal ursine species but uncertainties about their exact relationships remain. Since our larger dataset did not enable us to clarify this last question, identifying rare genomic changes in bear genomes could be a promising solution for further studies.

  18. Determining root correspondence between previously and newly detected objects

    Science.gov (United States)

    Paglieroni, David W.; Beer, N Reginald

    2014-06-17

    A system that applies attribute and topology based change detection to networks of objects that were detected on previous scans of a structure, roadway, or area of interest. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, size, elongation, orientation, etc. The topology of the network of previously detected objects is maintained in a constellation database that stores attributes of previously detected objects and implicitly captures the geometrical structure of the network. A change detection system detects change by comparing the attributes and topology of new objects detected on the latest scan to the constellation database of previously detected objects.

  19. Allotetraploid origin and divergence in Eleusine (Chloridoideae, Poaceae): evidence from low-copy nuclear gene phylogenies and a plastid gene chronogram.

    Science.gov (United States)

    Liu, Qing; Triplett, Jimmy K; Wen, Jun; Peterson, Paul M

    2011-11-01

    Eleusine (Poaceae) is a small genus of the subfamily Chloridoideae exhibiting considerable morphological and ecological diversity in East Africa and the Americas. The interspecific phylogenetic relationships of Eleusine are investigated in order to identify its allotetraploid origin, and a chronogram is estimated to infer temporal relationships between palaeoenvironment changes and divergence of Eleusine in East Africa. Two low-copy nuclear (LCN) markers, Pepc4 and EF-1α, were analysed using parsimony, likelihood and Bayesian approaches. A chronogram of Eleusine was inferred from a combined data set of six plastid DNA markers (ndhA intron, ndhF, rps16-trnK, rps16 intron, rps3, and rpl32-trnL) using the Bayesian dating method. The monophyly of Eleusine is strongly supported by sequence data from two LCN markers. In the cpDNA phylogeny, three tetraploid species (E. africana, E. coracana and E. kigeziensis) share a common ancestor with the E. indica-E. tristachya clade, which is considered a source of maternal parents for allotetraploids. Two homoeologous loci are isolated from three tetraploid species in the Pepc4 phylogeny, and the maternal parents receive further support. The A-type EF-1α sequences possess three characters, i.e. a large number of variations of intron 2; clade E-A distantly diverged from clade E-B and other diploid species; and seven deletions in intron 2, implying a possible derivation through a gene duplication event. The crown age of Eleusine and the allotetraploid lineage are 3·89 million years ago (mya) and 1·40 mya, respectively. The molecular data support independent allotetraploid origins for E. kigeziensis and the E. africana-E. coracana clade. Both events may have involved diploids E. indica and E. tristachya as the maternal parents, but the paternal parents remain unidentified. The habitat-specific hypothesis is proposed to explain the divergence of Eleusine and its allotetraploid lineage.

  20. Inferring kangaroo phylogeny from incongruent nuclear and mitochondrial genes.

    Directory of Open Access Journals (Sweden)

    Matthew J Phillips

    Full Text Available The marsupial genus Macropus includes three subgenera, the familiar large grazing kangaroos and wallaroos of M. (Macropus and M. (Osphranter, as well as the smaller mixed grazing/browsing wallabies of M. (Notamacropus. A recent study of five concatenated nuclear genes recommended subsuming the predominantly browsing Wallabia bicolor (swamp wallaby into Macropus. To further examine this proposal we sequenced partial mitochondrial genomes for kangaroos and wallabies. These sequences strongly favour the morphological placement of W. bicolor as sister to Macropus, although place M. irma (black-gloved wallaby within M. (Osphranter rather than as expected, with M. (Notamacropus. Species tree estimation from separately analysed mitochondrial and nuclear genes favours retaining Macropus and Wallabia as separate genera. A simulation study finds that incomplete lineage sorting among nuclear genes is a plausible explanation for incongruence with the mitochondrial placement of W. bicolor, while mitochondrial introgression from a wallaroo into M. irma is the deepest such event identified in marsupials. Similar such coalescent simulations for interpreting gene tree conflicts will increase in both relevance and statistical power as species-level phylogenetics enters the genomic age. Ecological considerations in turn, hint at a role for selection in accelerating the fixation of introgressed or incompletely sorted loci. More generally the inclusion of the mitochondrial sequences substantially enhanced phylogenetic resolution. However, we caution that the evolutionary dynamics that enhance mitochondria as speciation indicators in the presence of incomplete lineage sorting may also render them especially susceptible to introgression.

  1. Phylogeny of holoparasitic Orobanche (Orobanchaceae) inferred from nuclear ITS sequences.

    Science.gov (United States)

    Schneeweiss, Gerald M; Colwell, Alison; Park, Jeong-Mi; Jang, Chang-Gee; Stuessy, Tod F

    2004-02-01

    Orobanche is the largest genus among the holoparasitic members of Orobanchaceae. We present the first molecular phylogenetic analysis (using nuclear ITS sequences) that includes members of all sections of Orobanche, Gymnocaulis, Myzorrhiza, Trionychon, and Orobanche. Orobanche is not monophyletic, but falls into two lineages: (1) the Orobanche group comprises Orobanche sect. Orobanche and the small Near Asian genus Diphelypaea and is characterized by a chromosome base number of x=19 and (2) the Phelipanche group contains Orobanche sects. Gymnocaulis, Myzorrhiza, and Trionychon and possesses a chromosome base number of x=12. The relationships between these two groups and to other genera such as Boschniakia or Cistanche remain unresolved. Within the Orobanche group, Orobanche macrolepis and Orobanche anatolica (including Orobanche colorata) constitute two phylogenetically distinct lineages. Intrasectional structurings proposed by some authors for O. sect. Orobanche are not confirmed by the molecular data. In most cases, intraspecific sequence divergence between accessions, if present, is negligible and not correlated with morphological or ecological traits. In a few cases, however, there is evidence for the presence of cryptic taxa.

  2. Phylogeny, identification and nomenclature of the genus Aspergillus

    Science.gov (United States)

    Samson, R.A.; Visagie, C.M.; Houbraken, J.; Hong, S.-B.; Hubka, V.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Susca, A.; Tanney, J.B.; Varga, J.; Kocsubé, S.; Szigeti, G.; Yaguchi, T.; Frisvad, J.C.

    2014-01-01

    Aspergillus comprises a diverse group of species based on morphological, physiological and phylogenetic characters, which significantly impact biotechnology, food production, indoor environments and human health. Aspergillus was traditionally associated with nine teleomorph genera, but phylogenetic data suggest that together with genera such as Polypaecilum, Phialosimplex, Dichotomomyces and Cristaspora, Aspergillus forms a monophyletic clade closely related to Penicillium. Changes in the International Code of Nomenclature for algae, fungi and plants resulted in the move to one name per species, meaning that a decision had to be made whether to keep Aspergillus as one big genus or to split it into several smaller genera. The International Commission of Penicillium and Aspergillus decided to keep Aspergillus instead of using smaller genera. In this paper, we present the arguments for this decision. We introduce new combinations for accepted species presently lacking an Aspergillus name and provide an updated accepted species list for the genus, now containing 339 species. To add to the scientific value of the list, we include information about living ex-type culture collection numbers and GenBank accession numbers for available representative ITS, calmodulin, β-tubulin and RPB2 sequences. In addition, we recommend a standard working technique for Aspergillus and propose calmodulin as a secondary identification marker. PMID:25492982

  3. Phylogeny of holoparasitic Orobanche (Orobanchaceae) inferred from nuclear ITS sequences

    Science.gov (United States)

    Schneeweiss, G.M.; Colwell, A.; Park, J.-M.; Jang, C.-G.; Stuessy, Tod F.

    2004-01-01

    Orobanche is the largest genus among the holoparasitic members of Orobanchaceae. We present the first molecular phylogenetic analysis (using nuclear ITS sequences) that includes members of all sections of Orobanche, Gymnocaulis, Myzorrhiza, Trionychon, and Orobanche. Orobanche is not monophyletic, but falls into two lineages: (1) the Orobanche group comprises Orobanche sect. Orobanche and the small Near Asian genus Diphelypaea and is characterized by a chromosome base number of x = 19 and (2) the Phelipanche group contains Orobanche sects. Gymnocaulis, Myzorrhiza, and Trionychon and possesses a chromosome base number of x = 12. The relationships between these two groups and to other genera such as Boschniakia or Cistanche remain unresolved. Within the Orobanche group, Orobanche macrolepis and Orobanche anatolica (including Orobanche colorata) constitute two phylogenetically distinct lineages. Intrasectional structurings proposed by some authors for O. sect. Orobanche are not confirmed by the molecular data. In most cases, intraspecific sequence divergence between accessions, if present, is negligible and not correlated with morphological or ecological traits. In a few cases, however, there is evidence for the presence of cryptic taxa. ?? 2003 Elsevier Science (USA). All rights reserved.

  4. Environment, migratory tendency, phylogeny and basal metabolic rate in birds.

    Directory of Open Access Journals (Sweden)

    Walter Jetz

    Full Text Available Basal metabolic rate (BMR represents the minimum maintenance energy requirement of an endotherm and has far-reaching consequences for interactions between animals and their environments. Avian BMR exhibits considerable variation that is independent of body mass. Some long-distance migrants have been found to exhibit particularly high BMR, traditionally interpreted as being related to the energetic demands of long-distance migration. Here we use a global dataset to evaluate differences in BMR between migrants and non-migrants, and to examine the effects of environmental variables. The BMR of migrant species is significantly higher than that of non-migrants. Intriguingly, while the elevated BMR of migrants on their breeding grounds may reflect the metabolic machinery required for long-distance movements, an alternative (and statistically stronger explanation is their occupation of predominantly cold high-latitude breeding areas. Among several environmental predictors, average annual temperature has the strongest effect on BMR, with a 50% reduction associated with a 20 degrees C gradient. The negative effects of temperature variables on BMR hold separately for migrants and non-migrants and are not due their different climatic associations. BMR in migrants shows a much lower degree of phylogenetic inertia. Our findings indicate that migratory tendency need not necessarily be invoked to explain the higher BMR of migrants. A weaker phylogenetic signal observed in migrants supports the notion of strong phenotypic flexibility in this group which facilitates migration-related BMR adjustments that occur above and beyond environmental conditions. In contrast to the findings of previous analyses of mammalian BMR, primary productivity, aridity or precipitation variability do not appear to be important environmental correlates of avian BMR. The strong effects of temperature-related variables and varying phylogenetic effects reiterate the importance of

  5. Phylogeny of the Serrasalmidae (Characiformes based on mitochondrial DNA sequences

    Directory of Open Access Journals (Sweden)

    Guillermo Ortí

    2008-01-01

    Full Text Available Previous studies based on DNA sequences of mitochondrial (mt rRNA genes showed three main groups within the subfamily Serrasalminae: (1 a "pacu" clade of herbivores (Colossoma, Mylossoma, Piaractus; (2 the "Myleus" clade (Myleus, Mylesinus, Tometes, Ossubtus; and (3 the "piranha" clade (Serrasalmus, Pygocentrus, Pygopristis, Pristobrycon, Catoprion, Metynnis. The genus Acnodon was placed as the sister taxon of clade (2+3. However, poor resolution within each clade was obtained due to low levels of variation among rRNA gene sequences. Complete sequences of the hypervariable mtDNA control region for a total of 45 taxa, and additional sequences of 12S and 16S rRNA from a total of 74 taxa representing all genera in the family are now presented to address intragroup relationships. Control region sequences of several serrasalmid species exhibit tandem repeats of short motifs (12 to 33 bp in the 3' end of this region, accounting for substantial length variation. Bayesian inference and maximum parsimony analyses of these sequences identify the same groupings as before and provide further evidence to support the following observations: (a Serrasalmus gouldingi and species of Pristobrycon (non-striolatus form a monophyletic group that is the sister group to other species of Serrasalmus and Pygocentrus; (b Catoprion, Pygopristis, and Pristobrycon striolatus form a well supported clade, sister to the group described above; (c some taxa assigned to the genus Myloplus (M. asterias, M tiete, M ternetzi, and M rubripinnis form a well supported group whereas other Myloplus species remain with uncertain affinities (d Mylesinus, Tometes and Myleus setiger form a monophyletic group.

  6. Signatures of seaway closures and founder dispersal in the phylogeny of a circumglobally distributed seahorse lineage.

    Science.gov (United States)

    Teske, Peter R; Hamilton, Healy; Matthee, Conrad A; Barker, Nigel P

    2007-08-15

    The importance of vicariance events on the establishment of phylogeographic patterns in the marine environment is well documented, and generally accepted as an important cause of cladogenesis. Founder dispersal (i.e. long-distance dispersal followed by founder effect speciation) is also frequently invoked as a cause of genetic divergence among lineages, but its role has long been challenged by vicariance biogeographers. Founder dispersal is likely to be common in species that colonize remote habitats by means of rafting (e.g. seahorses), as long-distance dispersal events are likely to be rare and subsequent additional recruitment from the source habitat is unlikely. In the present study, the relative importance of vicariance and founder dispersal as causes of cladogenesis in a circumglobally distributed seahorse lineage was investigated using molecular dating. A phylogeny was reconstructed using sequence data from mitochondrial and nuclear markers, and the well-documented closure of the Central American seaway was used as a primary calibration point to test whether other bifurcations in the phylogeny could also have been the result of vicariance events. The feasibility of three other vicariance events was explored: a) the closure of the Indonesian Seaway, resulting in sister lineages associated with the Indian Ocean and West Pacific, respectively; b) the closure of the Tethyan Seaway, resulting in sister lineages associated with the Indo-Pacific and Atlantic Ocean, respectively, and c) continental break-up during the Mesozoic followed by spreading of the Atlantic Ocean, resulting in pairs of lineages with amphi-Atlantic distribution patterns. Comparisons of pairwise genetic distances among the seahorse species hypothesized to have diverged as a result of the closure of the Central American Seaway with those of published teleost sequences having the same distribution patterns show that the seahorses were among the last to diverge. This suggests that their

  7. Signatures of seaway closures and founder dispersal in the phylogeny of a circumglobally distributed seahorse lineage

    Directory of Open Access Journals (Sweden)

    Matthee Conrad A

    2007-08-01

    Full Text Available Abstract Background The importance of vicariance events on the establishment of phylogeographic patterns in the marine environment is well documented, and generally accepted as an important cause of cladogenesis. Founder dispersal (i.e. long-distance dispersal followed by founder effect speciation is also frequently invoked as a cause of genetic divergence among lineages, but its role has long been challenged by vicariance biogeographers. Founder dispersal is likely to be common in species that colonize remote habitats by means of rafting (e.g. seahorses, as long-distance dispersal events are likely to be rare and subsequent additional recruitment from the source habitat is unlikely. In the present study, the relative importance of vicariance and founder dispersal as causes of cladogenesis in a circumglobally distributed seahorse lineage was investigated using molecular dating. A phylogeny was reconstructed using sequence data from mitochondrial and nuclear markers, and the well-documented closure of the Central American seaway was used as a primary calibration point to test whether other bifurcations in the phylogeny could also have been the result of vicariance events. The feasibility of three other vicariance events was explored: a the closure of the Indonesian Seaway, resulting in sister lineages associated with the Indian Ocean and West Pacific, respectively; b the closure of the Tethyan Seaway, resulting in sister lineages associated with the Indo-Pacific and Atlantic Ocean, respectively, and c continental break-up during the Mesozoic followed by spreading of the Atlantic Ocean, resulting in pairs of lineages with amphi-Atlantic distribution patterns. Results Comparisons of pairwise genetic distances among the seahorse species hypothesized to have diverged as a result of the closure of the Central American Seaway with those of published teleost sequences having the same distribution patterns show that the seahorses were among the last to

  8. Alignment-free phylogeny of whole genomes using underlying subwords

    Directory of Open Access Journals (Sweden)

    Comin Matteo

    2012-12-01

    Full Text Available Abstract Background With the progress of modern sequencing technologies a large number of complete genomes are now available. Traditionally the comparison of two related genomes is carried out by sequence alignment. There are cases where these techniques cannot be applied, for example if two genomes do not share the same set of genes, or if they are not alignable to each other due to low sequence similarity, rearrangements and inversions, or more specifically to their lengths when the organisms belong to different species. For these cases the comparison of complete genomes can be carried out only with ad hoc methods that are usually called alignment-free methods. Methods In this paper we propose a distance function based on subword compositions called Underlying Approach (UA. We prove that the matching statistics, a popular concept in the field of string algorithms able to capture the statistics of common words between two sequences, can be derived from a small set of “independent” subwords, namely the irredundant common subwords. We define a distance-like measure based on these subwords, such that each region of genomes contributes only once, thus avoiding to count shared subwords a multiple number of times. In a nutshell, this filter discards subwords occurring in regions covered by other more significant subwords. Results The Underlying Approach (UA builds a scoring function based on this set of patterns, called underlying. We prove that this set is by construction linear in the size of input, without overlaps, and can be efficiently constructed. Results show the validity of our method in the reconstruction of phylogenetic trees, where the Underlying Approach outperforms the current state of the art methods. Moreover, we show that the accuracy of UA is achieved with a very small number of subwords, which in some cases carry meaningful biological information. Availability http://www.dei.unipd.it/∼ciompin/main/underlying.html

  9. Spiralian phylogeny informs the evolution of microscopic lineages.

    Science.gov (United States)

    Laumer, Christopher E; Bekkouche, Nicolas; Kerbl, Alexandra; Goetz, Freya; Neves, Ricardo C; Sørensen, Martin V; Kristensen, Reinhardt M; Hejnol, Andreas; Dunn, Casey W; Giribet, Gonzalo; Worsaae, Katrine

    2015-08-03

    Despite rapid advances in the study of metazoan evolutionary history [1], phylogenomic analyses have so far neglected a number of microscopic lineages that possess a unique combination of characters and are thus informative for our understanding of morphological evolution. Chief among these lineages are the recently described animal groups Micrognathozoa and Loricifera, as well as the two interstitial "Problematica" Diurodrilus and Lobatocerebrum [2]. These genera show a certain resemblance to Annelida in their cuticle and gut [3, 4]; however, both lack primary annelid characters such as segmentation and chaetae [5]. Moreover, they show unique features such as an inverted body-wall musculature or a novel pharyngeal organ. This and their ciliated epidermis have led some to propose relationships with other microscopic spiralians, namely Platyhelminthes, Gastrotricha, and in the case of Diurodrilus, with Micrognathozoa [6, 7]-lineages that are grouped by some analyses into "Platyzoa," a clade whose status remains uncertain [1, 8-11]. Here, we assess the interrelationships among the meiofaunal and macrofaunal members of Spiralia using 402 orthologs mined from genome and transcriptome assemblies of 90 taxa. Lobatocerebrum and Diurodrilus are found to be deeply nested members of Annelida, and unequivocal support is found for Micrognathozoa as the sister group of Rotifera. Analyses using site-heterogeneous substitution models further recover a lophophorate clade and position Loricifera + Priapulida as sister group to the remaining Ecdysozoa. Finally, with several meiofaunal lineages branching off early in the diversification of Spiralia, the emerging concept of a microscopic, acoelomate, direct-developing ancestor of Spiralia is reviewed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. DISTRIBUTION, MORPHOLOGY, AND PHYLOGENY OF KLEBSORMIDIUM (KLEBSORMIDIALES, CHAROPHYCEAE) IN URBAN ENVIRONMENTS IN EUROPE(1).

    Science.gov (United States)

    Rindi, Fabio; Guiry, Michael D; López-Bautista, Juan M

    2008-12-01

    Klebsormidium is a cosmopolitan genus of green algae, widespread in terrestrial and freshwater habitats. The classification of Klebsormidium is entirely based on morphological characters, and very little is understood about its phylogeny at the species level. We investigated the diversity and phylogenetic relationships of Klebsormidium in urban habitats in Europe by a combination of approaches including examination of field-collected material, culture experiments conducted in many different combinations of factors, and phylogenetic analyses of the rbcL gene. Klebsormidium in European cities mainly occurs at the base of old walls, where it may produce green belts up to several meters in extent. Specimens from different cities showed a great morphological uniformity, consisting of long filaments 6-9 μm in width, with thin-walled cylindrical cells and smooth wall, devoid of false branches, H-shaped pieces, and biseriate parts. Conversely, the rbcL phylogeny showed a higher genetic diversity than expected from morphology. The strains were separated in four different clades supported by high bootstrap values and posterior probabilities. In culture, these clades differed in several characters, such as production of a superficial hydro-repellent layer, tendency to break into short fragments, and inducibility of zoosporulation. On the basis of the taxonomic information available in the literature, most strains could not be identified unambiguously at the species level. The rbcL phylogeny showed no correspondence with classification based on morphology and suggested that the identity of many species, in particular the type species K. flaccidum (kütz.) P.C. Silva, Mattox et W. H. Blackw., needs critical reassessment. © 2008 Phycological Society of America.

  11. Prey preference follows phylogeny: evolutionary dietary patterns within the marine gastropod group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia).

    Science.gov (United States)

    Goodheart, Jessica A; Bazinet, Adam L; Valdés, Ángel; Collins, Allen G; Cummings, Michael P

    2017-10-26

    The impact of predator-prey interactions on the evolution of many marine invertebrates is poorly understood. Since barriers to genetic exchange are less obvious in the marine realm than in terrestrial or freshwater systems, non-allopatric divergence may play a fundamental role in the generation of biodiversity. In this context, shifts between major prey types could constitute important factors explaining the biodiversity of marine taxa, particularly in groups with highly specialized diets. However, the scarcity of marine specialized consumers for which reliable phylogenies exist hampers attempts to test the role of trophic specialization in evolution. In this study, RNA-Seq data is used to produce a phylogeny of Cladobranchia, a group of marine invertebrates that feed on a diverse array of prey taxa but mostly specialize on cnidarians. The broad range of prey type preferences allegedly present in two major groups within Cladobranchia suggest that prey type shifts are relatively common over evolutionary timescales. In the present study, we generated a well-supported phylogeny of the major lineages within Cladobranchia using RNA-Seq data, and used ancestral state reconstruction analyses to better understand the evolution of prey preference. These analyses answered several fundamental questions regarding the evolutionary relationships within Cladobranchia, including support for a clade of species from Arminidae as sister to Tritoniidae (which both preferentially prey on Octocorallia). Ancestral state reconstruction analyses supported a cladobranchian ancestor with a preference for Hydrozoa and show that the few transitions identified only occur from lineages that prey on Hydrozoa to those that feed on other types of prey. There is strong phylogenetic correlation with prey preference within Cladobranchia, suggesting that prey type specialization within this group has inertia. Shifts between different types of prey have occurred rarely throughout the evolution of

  12. Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea).

    Science.gov (United States)

    Tkach, Vasyl V; Kudlai, Olena; Kostadinova, Aneta

    2016-03-01

    The Echinostomatoidea is a large, cosmopolitan group of digeneans currently including nine families and 105 genera, the vast majority parasitic, as adults, in birds with relatively few taxa parasitising mammals, reptiles and, exceptionally, fish. Despite the complex structure, diverse content and substantial species richness of the group, almost no attempt has been made to elucidate its phylogenetic relationships at the suprageneric level based on molecules due to the lack of data. Herein, we evaluate the consistency of the present morphology-based classification system of the Echinostomatoidea with the phylogenetic relationships of its members based on partial sequences of the nuclear lsrRNA gene for a broad diversity of taxa (80 species, representing eight families and 40 genera), including representatives of five subfamilies of the Echinostomatidae, which currently exhibits the most complex taxonomic structure within the superfamily. This first comprehensive phylogeny for the Echinostomatoidea challenged the current systematic framework based on comparative morphology. A morphology-based evaluation of this new molecular framework resulted in a number of systematic and nomenclatural changes consistent with the phylogenetic estimates of the generic and suprageneric boundaries and a new phylogeny-based classification of the Echinostomatoidea. In the current systematic treatment: (i) the rank of two family level lineages, the former Himasthlinae and Echinochasminae, is elevated to full family status; (ii) Caballerotrema is distinguished at the family level; (iii) the content and diagnosis of the Echinostomatidae (sensu stricto) (s. str.) are revised to reflect its phylogeny, resulting in the abolition of the Nephrostominae and Chaunocephalinae as synonyms of the Echinostomatidae (s. str.); (iv) Artyfechinostomum, Cathaemasia, Rhopalias and Ribeiroia are re-allocated within the Echinostomatidae (s. str.), resulting in the abolition of the Cathaemasiidae, Rhopaliidae

  13. Freud e a filogenia anímica Freud and the animic phylogeny

    Directory of Open Access Journals (Sweden)

    Monah Winograd

    2007-01-01

    Full Text Available Este ensaio investiga a presença, na obra de Freud, da idéia de uma filogenia anímica paralela, concomitante e dependente da filogenia somática descrita pelos teóricos da evolução. Objetivamos mostrar como se forma esta vizinhança da psicanálise com a biologia evolutiva, sublinhando que na filogenia esboçada por Freud, formas psíquicas típicas se sucedem na história da espécie humana, sendo repetidas por cada indivíduo em sua ontogenia singular. Tal como ocorre no plano somático, tempo e forma se associam intimamente na espécie e nos indivíduos. A presença desta idéia no pensamento freudiano abriu um debate sobre sua filiação lamarckista ou darwinista.This essay investigates the presence, in Freud´s work, of the idea of an animic phylogeny parallel, concomitant and dependent of the somatic phylogeny that the theoreticians of evolution describe. Our objective is to show how this neighborhood between psychoanalysis and evolutionary theory is formed. To do so, we stress that, in the phylogeny theory that Freud sketches, typical psychic forms occurs in the history of the human kind in a way that each individual repeats it in its singular ontogeny. As it happens in the somatic level, time and form are intimately associated in the species and in the individuals. The presence of that idea in Freud´s work has opened a debate about his Darwinist or Lamarckist inspiration.

  14. Apical groove type and molecular phylogeny suggests reclassification of Cochlodinium geminatum as Polykrikos geminatum.

    Science.gov (United States)

    Qiu, Dajun; Huang, Liangmin; Liu, Sheng; Zhang, Huan; Lin, Senjie

    2013-01-01

    Traditionally Cocholodinium and Gymnodinium sensu lato clade are distinguished based on the cingulum turn number, which has been increasingly recognized to be inadequate for Gymnodiniales genus classification. This has been improved by the combination of the apical groove characteristics and molecular phylogeny, which has led to the erection of several new genera (Takayama, Akashiwo, Karenia, and Karlodinium). Taking the apical groove characteristics and molecular phylogeny combined approach, we reexamined the historically taxonomically uncertain species Cochlodinium geminatum that formed massive blooms in Pearl River Estuary, China, in recent years. Samples were collected from a bloom in 2011 for morphological, characteristic pigment, and molecular analyses. We found that the cingulum in this species wraps around the cell body about 1.2 turns on average but can appear under the light microscopy to be >1.5 turns after the cells have been preserved. The shape of its apical groove, however, was stably an open-ended anticlockwise loop of kidney bean shape, similar to that of Polykrikos. Furthermore, the molecular phylogenetic analysis using 18S rRNA-ITS-28S rRNA gene cistron we obtained in this study also consistently placed this species closest to Polykrikos within the Gymnodinium sensu stricto clade and set it far separated from the clade of Cochlodinium. These results suggest that this species should be transferred to Polykrikos as Polykrikos geminatum. Our results reiterate the need to use the combination of apical groove morphology and molecular phylogeny for the classification of species within the genus of Cochlodinium and other Gymnodiniales lineages.

  15. Apical groove type and molecular phylogeny suggests reclassification of Cochlodinium geminatum as Polykrikos geminatum.

    Directory of Open Access Journals (Sweden)

    Dajun Qiu

    Full Text Available Traditionally Cocholodinium and Gymnodinium sensu lato clade are distinguished based on the cingulum turn number, which has been increasingly recognized to be inadequate for Gymnodiniales genus classification. This has been improved by the combination of the apical groove characteristics and molecular phylogeny, which has led to the erection of several new genera (Takayama, Akashiwo, Karenia, and Karlodinium. Taking the apical groove characteristics and molecular phylogeny combined approach, we reexamined the historically taxonomically uncertain species Cochlodinium geminatum that formed massive blooms in Pearl River Estuary, China, in recent years. Samples were collected from a bloom in 2011 for morphological, characteristic pigment, and molecular analyses. We found that the cingulum in this species wraps around the cell body about 1.2 turns on average but can appear under the light microscopy to be >1.5 turns after the cells have been preserved. The shape of its apical groove, however, was stably an open-ended anticlockwise loop of kidney bean shape, similar to that of Polykrikos. Furthermore, the molecular phylogenetic analysis using 18S rRNA-ITS-28S rRNA gene cistron we obtained in this study also consistently placed this species closest to Polykrikos within the Gymnodinium sensu stricto clade and set it far separated from the clade of Cochlodinium. These results suggest that this species should be transferred to Polykrikos as Polykrikos geminatum. Our results reiterate the need to use the combination of apical groove morphology and molecular phylogeny for the classification of species within the genus of Cochlodinium and other Gymnodiniales lineages.

  16. Whole-genome phylogeny of Escherichia coli/Shigella group by feature frequency profiles (FFPs)

    Science.gov (United States)

    Sims, Gregory E.; Kim, Sung-Hou

    2011-01-01

    A whole-genome phylogeny of the Escherichia coli/Shigella group was constructed by using the feature frequency profile (FFP) method. This alignment-free approach uses the frequencies of l-mer features of whole genomes to infer phylogenic distances. We present two phylogenies that accentuate different aspects of E. coli/Shigella genomic evolution: (i) one based on the compositions of all possible features of length l = 24 (∼8.4 million features), which are likely to reveal the phenetic grouping and relationship among the organisms and (ii) the other based on the compositions of core features with low frequency and low variability (∼0.56 million features), which account for ∼69% of all commonly shared features among 38 taxa examined and are likely to have genome-wide lineal evolutionary signal. Shigella appears as a single clade when all possible features are used without filtering of noncore features. However, results using core features show that Shigella consists of at least two distantly related subclades, implying that the subclades evolved into a single clade because of a high degree of convergence influenced by mobile genetic elements and niche adaptation. In both FFP trees, the basal group of the E. coli/Shigella phylogeny is the B2 phylogroup, which contains primarily uropathogenic strains, suggesting that the E. coli/Shigella ancestor was likely a facultative or opportunistic pathogen. The extant commensal strains diverged relatively late and appear to be the result of reductive evolution of genomes. We also identify clade distinguishing features and their associated genomic regions within each phylogroup. Such features may provide useful information for understanding evolution of the groups and for quick diagnostic identification of each phylogroup. PMID:21536867

  17. Taxonomy, phylogeny and molecular epidemiology of Echinococcus multilocularis: From fundamental knowledge to health ecology.

    Science.gov (United States)

    Knapp, Jenny; Gottstein, Bruno; Saarma, Urmas; Millon, Laurence

    2015-10-30

    Alveolar echinococcosis, caused by the tapeworm Echinococcus multilocularis, is one of the most severe parasitic diseases in humans and represents one of the 17 neglected diseases prioritised by the World Health Organisation (WHO) in 2012. Considering the major medical and veterinary importance of this parasite, the phylogeny of the genus Echinococcus is of considerable importance; yet, despite numerous efforts with both mitochondrial and nuclear data, it has remained unresolved. The genus is clearly complex, and this is one of the reasons for the incomplete understanding of its taxonomy. Although taxonomic studies have recognised E. multilocularis as a separate entity from the Echinococcus granulosus complex and other members of the genus, it would be premature to draw firm conclusions about the taxonomy of the genus before the phylogeny of the whole genus is fully resolved. The recent sequencing of E. multilocularis and E. granulosus genomes opens new possibilities for performing in-depth phylogenetic analyses. In addition, whole genome data provide the possibility of inferring phylogenies based on a large number of functional genes, i.e. genes that trace the evolutionary history of adaptation in E. multilocularis and other members of the genus. Moreover, genomic data open new avenues for studying the molecular epidemiology of E. multilocularis: genotyping studies with larger panels of genetic markers allow the genetic diversity and spatial dynamics of parasites to be evaluated with greater precision. There is an urgent need for international coordination of genotyping of E. multilocularis isolates from animals and human patients. This could be fundamental for a better understanding of the transmission of alveolar echinococcosis and for designing efficient healthcare strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Critical analysis of eukaryotic phylogeny: a case study based on the HSP70 family.

    Science.gov (United States)

    Germot, A; Philippe, H

    1999-01-01

    Trichomonads, together with diplomonads and microsporidia, emerge at the base of the eukaryotic tree, on the basis of the small subunit rRNA phylogeny. However, phylogenies based on protein sequences such as tubulin are markedly different with these protists emerging much later. We have investigated 70 kDa heat-shock protein (HSP70), which could be a reliable phylogenetic marker. In eukaryotes, HSP70s are found in cytosol, endoplasmic reticulum, and organelles (mitochondria and chloroplasts). In Trichomonas vaginalis we identified nine different HSP70-encoding genes and sequenced three nearly complete cDNAs corresponding to cytosolic, endoplasmic reticulum, and mitochondrial-type HSP70. Phylogenies of eukaryotes were reconstructed using the classical methods while varying the number of species and characters considered. Almost all the undoubtedly monophyletic groups, defined by ultrastructural characters, were recovered. However, due to the long branch attraction phenomenon, the evolutionary rates were the main factor determining the position of species, even with the use of a close outgroup, which is an important advantage of HSP70 with respect to many other markers. Numerous variable sites are peculiar to Trichomonas and probably generated the artefactual placement of this species at the base of the eukaryotes or as the sister group of fast-evolving species. The inter-phyla relationships were not well supported and were sensitive to the reconstruction method, the number of species; and the quantity of information used. This lack of resolution could be explained by the very rapid diversification of eukaryotes, likely after the mitochondrial endosymbiosis.

  19. Proposal of 'Modular Heliotron'

    International Nuclear Information System (INIS)

    Yamazaki, Kozo

    1994-01-01

    A new modular helical system named 'Modular Heliotron' with clean and efficient helical magnetic divertor is proposed as an extension of the present conventional design of the continuous helical coil system. The sectored helical coils on one plane of the torus and the sectored returning vertical field coils on the other plane are combined. This coil system produces magnetic surfaces nearly equivalent to those of the l=2 helical system with one-pair poloidal coils, and overcomes the defects of construction and maintenance difficulties of the continuous coil systems. This concept satisfies the compatibility between the coil modularity and the sufficient divertor-space utilization, different from previous modular coil designs. The allowable length of the gap between each modular coil is clarified to keep good magnetic surfaces. Typical examples of the reactor coil configuration are described as an extension of the LHD (Large Helical Device) configuration. (author)

  20. Proposal of 'modular heliotron'

    International Nuclear Information System (INIS)

    Yamazaki, Kozo.

    1993-11-01

    A new modular helical configuration named 'Modular Heliotron' with clean and efficient helical magnetic divertor is proposed as an extension of the present conventional design of the continuous helical coil system. The sectored helical coils on one plane of the torus and the sectored returning vertical field coils on the other plane are combined. This coil system produces magnetic surfaces nearly equivalent to those of the l=2 helical system with one-pair poloidal coils, and overcomes the defects of construction and maintenance difficulties of the continuous coil systems. This concept satisfies the compatibility between the coil modularity and the sufficient divertor-space utilization, different from previous modular coil designs. The allowable length of the gap between each modular coil is clarified to keep good magnetic surfaces. Typical examples of the reactor coil configuration are described as an extension of the LHD (Large Helical Device) configuration. (author)

  1. Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes.

    Science.gov (United States)

    Wang, Yijun; Deng, Dexiang; Shi, Yating; Miao, Nan; Bian, Yunlong; Yin, Zhitong

    2012-03-01

    Auxin response factors (ARFs), member of the plant-specific B3 DNA binding superfamily, target specifically to auxin response elements (AuxREs) in promoters of primary auxin-responsive genes and heterodimerize with Aux/IAA proteins in auxin signaling transduction cascade. In previous research, we have isolated and characterized maize Aux/IAA genes in whole-genome scale. Here, we report the comprehensive analysis of ARF genes in maize. A total of 36 ARF genes were identified and validated from the B73 maize genome through an iterative strategy. Thirty-six maize ARF genes are distributed in all maize chromosomes except chromosome 7. Maize ARF genes expansion is mainly due to recent segmental duplications. Maize ARF proteins share one B3 DNA binding domain which consists of seven-stranded β sheets and two short α helixes. Twelve maize ARFs with glutamine-rich middle regions could be as activators in modulating expression of auxin-responsive genes. Eleven maize ARF proteins are lack of homo- and heterodimerization domains. Putative cis-elements involved in phytohormones and light signaling responses, biotic and abiotic stress adaption locate in promoters of maize ARF genes. Expression patterns vary greatly between clades and sister pairs of maize ARF genes. The B3 DNA binding and auxin response factor domains of maize ARF proteins are primarily subjected to negative selection during selective sweep. The mixed selective forces drive the diversification and evolution of genomic regions outside of B3 and ARF domains. Additionally, the dicot-specific proliferation of ARF genes was detected. Comparative genomics analysis indicated that maize, sorghum and rice duplicate chromosomal blocks containing ARF homologs are highly syntenic. This study provides insights into the distribution, phylogeny and evolution of ARF gene family.

  2. Updating phylogeny of mitochondrial DNA macrohaplogroup m in India: dispersal of modern human in South Asian corridor.

    Directory of Open Access Journals (Sweden)

    Adimoolam Chandrasekar

    2009-10-01

    Full Text Available To construct maternal phylogeny and prehistoric dispersals of modern human being in the Indian sub continent, a diverse subset of 641 complete mitochondrial DNA (mtDNA genomes belonging to macrohaplogroup M was chosen from a total collection of 2,783 control-region sequences, sampled from 26 selected tribal populations of India. On the basis of complete mtDNA sequencing, we identified 12 new haplogroups--M53 to M64; redefined/ascertained and characterized haplogroups M2, M3, M4, M5, M6, M8'C'Z, M9, M10, M11, M12-G, D, M18, M30, M33, M35, M37, M38, M39, M40, M41, M43, M45 and M49, which were previously described by control and/or coding-region polymorphisms. Our results indicate that the mtDNA lineages reported in the present study (except East Asian lineages M8'C'Z, M9, M10, M11, M12-G, D are restricted to Indian region.The deep rooted lineages of macrohaplogroup 'M' suggest in-situ origin of these haplogroups in India. Most of these deep rooting lineages are represented by multiple ethnic/linguist groups of India. Hierarchical analysis of molecular variation (AMOVA shows substantial subdivisions among the tribes of India (Fst = 0.16164. The current Indian mtDNA gene pool was shaped by the initial settlers and was galvanized by minor events of gene flow from the east and west to the restricted zones. Northeast Indian mtDNA pool harbors region specific lineages, other Indian lineages and East Asian lineages. We also suggest the establishment of an East Asian gene in North East India through admixture rather than replacement.

  3. A New Morphological Phylogeny of the Ophiuroidea (Echinodermata Accords with Molecular Evidence and Renders Microfossils Accessible for Cladistics.

    Directory of Open Access Journals (Sweden)

    Ben Thuy

    Full Text Available Ophiuroid systematics is currently in a state of upheaval, with recent molecular estimates fundamentally clashing with traditional, morphology-based classifications. Here, we attempt a long overdue recast of a morphological phylogeny estimate of the Ophiuroidea taking into account latest insights on microstructural features of the arm skeleton. Our final estimate is based on a total of 45 ingroup taxa, including 41 recent species covering the full range of extant ophiuroid higher taxon diversity and 4 fossil species known from exceptionally preserved material, and the Lower Carboniferous Aganaster gregarius as the outgroup. A total of 130 characters were scored directly on specimens. The tree resulting from the Bayesian inference analysis of the full data matrix is reasonably well resolved and well supported, and refutes all previous classifications, with most traditional families discredited as poly- or paraphyletic. In contrast, our tree agrees remarkably well with the latest molecular estimate, thus paving the way towards an integrated new classification of the Ophiuroidea. Among the characters which were qualitatively found to accord best with our tree topology, we selected a list of potential synapomorphies for future formal clade definitions. Furthermore, an analysis with 13 of the ingroup taxa reduced to the lateral arm plate characters produced a tree which was essentially similar to the full dataset tree. This suggests that dissociated lateral arm plates can be analysed in combination with fully known taxa and thus effectively unlocks the extensive record of fossil lateral arm plates for phylogenetic estimates. Finally, the age and position within our tree implies that the ophiuroid crown-group had started to diversify by the Early Triassic.

  4. Phylogeny and patterns of diversity of goat mtDNA haplogroup A revealed by resequencing complete mitogenomes.

    Directory of Open Access Journals (Sweden)

    Maria Grazia Doro

    Full Text Available We sequenced to near completion the entire mtDNA of 28 Sardinian goats, selected to represent the widest possible diversity of the most widespread mitochondrial evolutionary lineage, haplogroup (Hg A. These specimens were reporters of the diversity in the island but also elsewhere, as inferred from their affiliation to each of 11 clades defined by D-loop variation. Two reference sequences completed the dataset. Overall, 206 variations were found in the full set of 30 sequences, of which 23 were protein-coding non-synonymous single nucleotide substitutions. Many polymorphic sites within Hg A were informative for the reconstruction of its internal phylogeny. Bayesian and network clustering revealed a general similarity over the entire molecule of sequences previously assigned to the same D-loop clade, indicating evolutionarily meaningful lineages. Two major sister groupings emerged within Hg A, which parallel distinct geographical distributions of D-loop clades in extant stocks. The pattern of variation in protein-coding genes revealed an overwhelming role of purifying selection, with the quota of surviving variants approaching neutrality. However, a simple model of relaxation of selection for the bulk of variants here reported should be rejected. Non-synonymous diversity of Hg's A, B and C denoted that a proportion of variants not greater than that allowed in the wild was given the opportunity to spread into domesticated stocks. Our results also confirmed that a remarkable proportion of pre-existing Hg A diversity became incorporated into domestic stocks. Our results confirm clade A11 as a well differentiated and ancient lineage peculiar of Sardinia.

  5. Reversal to air-driven sound production revealed by a molecular phylogeny of tongueless frogs, family Pipidae

    Directory of Open Access Journals (Sweden)

    Glaw Frank

    2011-04-01

    Full Text Available Abstract Background Evolutionary novelties often appear by conferring completely new functions to pre-existing structures or by innovating the mechanism through which a particular function is performed. Sound production plays a central role in the behavior of frogs, which use their calls to delimit territories and attract mates. Therefore, frogs have evolved complex vocal structures capable of producing a wide variety of advertising sounds. It is generally acknowledged that most frogs call by moving an air column from the lungs through the glottis with the remarkable exception of the family Pipidae, whose members share a highly specialized sound production mechanism independent of air movement. Results Here, we performed behavioral observations in the poorly known African pipid genus Pseudhymenochirus and document that the sound production in this aquatic frog is almost certainly air-driven. However, morphological comparisons revealed an indisputable pipid nature of Pseudhymenochirus larynx. To place this paradoxical pattern into an evolutionary framework, we reconstructed robust molecular phylogenies of pipids based on complete mitochondrial genomes and nine nuclear protein-coding genes that coincided in placing Pseudhymenochirus nested among other pipids. Conclusions We conclude that although Pseudhymenochirus probably has evolved a reversal to the ancestral non-pipid condition of air-driven sound production, the mechanism through which it occurs is an evolutionary innovation based on the derived larynx of pipids. This strengthens the idea that evolutionary solutions to functional problems often emerge based on previous structures, and for this reason, innovations largely depend on possibilities and constraints predefined by the particular history of each lineage.

  6. New molecular data shed light on the global phylogeny and species limits of the Rhipicephalus sanguineus complex.

    Science.gov (United States)

    Hekimoğlu, Olcay; Sağlam, İsmail K; Özer, Nurdan; Estrada-Peña, Agustin

    2016-07-01

    The Rhipicephalus sanguineus complex is a group of closely related tick species distributed all around the world. In this study, using mitochondrial 16S ribosomal DNA, new specimens of R sanguineus sensu lato from Turkey and Rhipicephalus camicasi from Kenya, were evaluated together with available sequences of this complex in GenBank. Our objectives were to delimit the complex, re-evaluate its global phylogeny and develop a reconstruction of its biogeographic history. Given Turkey's geographical location and its neighboring status within Africa, Asia and Europe, molecular information of R. sanguineus s.l. species from this region could have important implications both on a regional and global scale. Phylogenetic trees obtained with three methods (Bayesian, Maximum Likelihood and Maximum Parsimony) were highly similar and consensus trees gave the same branching patterns and similar node support values. A total of four different clades with up to 9 Operational Taxonomic Units formed strong monophyletic groups. Biogeographic reconstructions demonstrated the importance of populations in Middle East (Turkey) in the spread of the group from Europe to Africa and Asia. Data supported previous conclusions on the existence of two species of R. sanguineus s.l. in South America and the strong molecular similarity between R. camicasi and the so-called tropical lineage of R. sanguineus s.l. These results point to the need of a re-evaluation of most specimens designated as R. sanguineus s.l. in East Europe, Middle East, Africa and Asia after an adequate re-description of this taxon. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Phylogeny-guided (meta)genome mining approach for the targeted discovery of new microbial natural products.

    Science.gov (United States)

    Kang, Hahk-Soo

    2017-02-01

    Genomics-based methods are now commonplace in natural products research. A phylogeny-guided mining approach provides a means to quickly screen a large number of microbial genomes or metagenomes in search of new biosynthetic gene clusters of interest. In this approach, biosynthetic genes serve as molecular markers, and phylogenetic trees built with known and unknown marker gene sequences are used to quickly prioritize biosynthetic gene clusters for their metabolites characterization. An increase in the use of this approach has been observed for the last couple of years along with the emergence of low cost sequencing technologies. The aim of this review is to discuss the basic concept of a phylogeny-guided mining approach, and also to provide examples in which this approach was successfully applied to discover new natural products from microbial genomes and metagenomes. I believe that the phylogeny-guided mining approach will continue to play an important role in genomics-based natural products research.

  8. Canine distemper virus infection in a lesser grison (Galictis cuja: first report and virus phylogeny

    Directory of Open Access Journals (Sweden)

    Jane Megid

    2013-02-01

    Full Text Available Infectious diseases in wild animals have been increasing as a result of their habitat alterations and closer contact with domestic animals. Canine distemper virus (CDV has been reported in several species of wild carnivores, presenting a threat to wildlife conservation. We described the first case of canine distemper virus infection in lesser grison (Galictis cuja. A free-ranging individual, with no visible clinical sigs, presented sudden death after one day in captivity. Molecular diagnosis for CDV infection was performed using whole blood collected by postmortem intracardiac puncture, which resulted positive. The virus phylogeny indicated that domestic dogs were the probable source of infection.

  9. DNA variation within Juncaceae: Comparison of impact of organelle regions on phylogeny

    Czech Academy of Sciences Publication Activity Database

    Záveská Drábková, Lenka; Vlček, Čestmír

    2009-01-01

    Roč. 278, č. 3 (2009), s. 169-186 ISSN 0378-2697 R&D Projects: GA ČR GP206/07/P147; GA MŠk(CZ) 1M0520 Grant - others:EU(XE) SYNTHESYS DK-TAF 1295; EU(XE) SYNTHESYS GB-TAF 2052 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z50520514 Keywords : molecular phylogeny * Juncaceae * mtDNA Subject RIV: EF - Botanics Impact factor: 1.410, year: 2009

  10. Biogeography and Phylogeny of Wood-feeding Cockroaches in the Genus Cryptocercus

    Directory of Open Access Journals (Sweden)

    Kiyoto Maekawa

    2011-07-01

    Full Text Available Subsocial, xylophagous cockroaches of the genus Cryptocercus exhibit a disjunct distribution, with representatives in mature montane forests of North America, China, Korea and the Russian Far East. All described species are wingless and dependent on rotting wood for food and shelter at all stages of their life cycle; consequently, their distribution is tied to that of forests and strongly influenced by palaeogeographical events. Asian and American lineages form distinct monophyletic groups, comprised of populations with complex geographic substructuring. We review the phylogeny and distribution of Cryptocercus, and discuss splitting events inferred from molecular data.

  11. Evolution of Rosaceae Fruit Types Based on Nuclear Phylogeny in the Context of Geological Times and Genome Duplication.

    Science.gov (United States)

    Xiang, Yezi; Huang, Chien-Hsun; Hu, Yi; Wen, Jun; Li, Shisheng; Yi, Tingshuang; Chen, Hongyi; Xiang, Jun; Ma, Hong

    2017-02-01

    Fruits are the defining feature of angiosperms, likely have contributed to angiosperm successes by protecting and dispersing seeds, and provide foods to humans and other animals, with many morphological types and important ecological and agricultural implications. Rosaceae is a family with ∼3000 species and an extraordinary spectrum of distinct fruits, including fleshy peach, apple, and strawberry prized by their consumers, as well as dry achenetum and follicetum with features facilitating seed dispersal, excellent for studying fruit evolution. To address Rosaceae fruit evolution and other questions, we generated 125 new transcriptomic and genomic datasets and identified hundreds of nuclear genes to reconstruct a well-resolved Rosaceae phylogeny with highly supported monophyly of all subfamilies and tribes. Molecular clock analysis revealed an estimated age of ∼101.6 Ma for crown Rosaceae and divergence times of tribes and genera, providing a geological and climate context for fruit evolution. Phylogenomic analysis yielded strong evidence for numerous whole genome duplications (WGDs), supporting the hypothesis that the apple tribe had a WGD and revealing another one shared by fleshy fruit-bearing members of this tribe, with moderate support for WGDs in the peach tribe and other groups. Ancestral character reconstruction for fruit types supports independent origins of fleshy fruits from dry-fruit ancestors, including the evolution of drupes (e.g., peach) and pomes (e.g., apple) from follicetum, and drupetum (raspberry and blackberry) from achenetum. We propose that WGDs and environmental factors, including animals, contributed to the evolution of the many fruits in Rosaceae, which provide a foundation for understanding fruit evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. The complete mitochondrial genomes of three parasitic nematodes of birds: a unique gene order and insights into nematode phylogeny

    Science.gov (United States)

    2013-01-01

    Background Analyses of mitochondrial (mt) genome sequences in recent years challenge the current working hypothesis of Nematoda phylogeny proposed from morphology, ecology and nuclear small subunit rRNA gene sequences, and raise the need to sequence additional mt genomes for a broad range of nematode lineages. Results We sequenced the complete mt genomes of three Ascaridia species (family Ascaridiidae) that infest chickens, pigeons and parrots, respectively. These three Ascaridia species have an identical arrangement of mt genes to each other but differ substantially from other nematodes. Phylogenetic analyses of the mt genome sequences of the Ascaridia species, together with 62 other nematode species, support the monophylies of seven high-level taxa of the phylum Nematoda: 1) the subclass Dorylaimia; 2) the orders Rhabditida, Trichinellida and Mermithida; 3) the suborder Rhabditina; and 4) the infraorders Spiruromorpha and Oxyuridomorpha. Analyses of mt genome sequences, however, reject the monophylies of the suborders Spirurina and Tylenchina, and the infraorders Rhabditomorpha, Panagrolaimomorpha and Tylenchomorpha. Monophyly of the infraorder Ascaridomorpha varies depending on the methods of phylogenetic analysis. The Ascaridomorpha was more closely related to the infraorders Rhabditomorpha and Diplogasteromorpha (suborder Rhabditina) than they were to the other two infraorders of the Spirurina: Oxyuridorpha and Spiruromorpha. The closer relationship among Ascaridomorpha, Rhabditomorpha and Diplogasteromorpha was also supported by a shared common pattern of mitochondrial gene arrangement. Conclusions Analyses of mitochondrial genome sequences and gene arrangement has provided novel insights into the phylogenetic relationships among several major lineages of nematodes. Many lineages of nematodes, however, are underrepresented or not represented in these analyses. Expanding taxon sampling is necessary for future phylogenetic studies of nematodes with mt genome

  13. The Distribution of Coumarins and Furanocoumarins in Citrus Species Closely Matches Citrus Phylogeny and Reflects the Organization of Biosynthetic Pathways.

    Directory of Open Access Journals (Sweden)

    Audray Dugrand-Judek

    Full Text Available Citrus plants are able to produce defense compounds such as coumarins and furanocoumarins to cope with herbivorous insects and pathogens. In humans, these chemical compounds are strong photosensitizers and can interact with medications, leading to the "grapefruit juice effect". Removing coumarins and furanocoumarins from food and cosmetics imply additional costs and might alter product quality. Thus, the selection of Citrus cultivars displaying low coumarin and furanocoumarin contents constitutes a valuable alternative. In this study, we performed ultra-performance liquid chromatography coupled with mass spectrometry analyses to determine the contents of these compounds within the peel and the pulp of 61 Citrus species representative of the genetic diversity all Citrus. Generally, Citrus peel contains larger diversity and higher concentrations of coumarin/furanocoumarin than the pulp of the same fruits. According to the chemotypes found in the peel, Citrus species can be separated into 4 groups that correspond to the 4 ancestral taxa (pummelos, mandarins, citrons and papedas and extended with their respective secondary species descendants. Three of the 4 ancestral taxa (pummelos, citrons and papedas synthesize high amounts of these compounds, whereas mandarins appear practically devoid of them. Additionally, all ancestral taxa and their hybrids are logically organized according to the coumarin and furanocoumarin pathways described in the literature. This organization allows hypotheses to be drawn regarding the biosynthetic origin of compounds for which the biogenesis remains unresolved. Determining coumarin and furanocoumarin contents is also helpful for hypothesizing the origin of Citrus species for which the phylogeny is presently not firmly established. Finally, this work also notes favorable hybridization schemes that will lead to low coumarin and furanocoumarin contents, and we propose to select mandarins and Ichang papeda as Citrus

  14. Voyaging around nacre with the X-ray shuttle: From bio-mineralisation to prosthetics via mollusc phylogeny

    International Nuclear Information System (INIS)

    Chateigner, D.; Ouhenia, S.; Krauss, C.; Hedegaard, C.; Gil, O.; Morales, M.; Lutterotti, L.; Rousseau, M.; Lopez, E.

    2010-01-01

    Research highlights: → Nacre could be a non ancestral form of calcium carbonate in molluscs. → Texture terms as useful links to ancestors in classification. → X-ray diffraction useful for biomineralisation, phylogeny, cladistic and implantology. → Farming conditions do not influence much shell growth. → Electrodeposition of aragonite as future technique for implant coating. - Abstract: Strong textures of mollusc shell layers are utilised to provide phylogenetic information. Aragonitic and calcitic layers are the targets here, inside which nacre layers, but not only, play a specific role. At the light of the texture patterns and a parcimonious approach, nacre appears not as an ancestral form of calcium carbonate in mollusc layers. Also, from texture terms we can propose some links to ancestral fossilised species. The aragonite unit-cell distortions due to macromolecule complex insertions in the microstructures are measured on raw specimens for several aragonite layers of gastropods and bivalves. The textural information is used to provide precise structural determination of the biogenic aragonite. Such information might provide useful lights on the biomineralisation processes in the future, in cladistic approaches. Farming conditions are shown not to influence much shell textures of Helix aspersa aspersa. Closely related species exhibit globally close textures, among which three are good candidates for bone neogeneration and which textures are identical. Electrodeposition of aragonite, with inclusion of molecular extract from shell species, results in nacre-like layers exhibiting structural distortions similar to known inductive layers. X-ray diffraction experiments are shown to provide invaluable insights in testing biomineralisation and phylogenetic hypotheses.

  15. 49 CFR 173.23 - Previously authorized packaging.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Previously authorized packaging. 173.23 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for Transportation § 173.23 Previously authorized packaging. (a) When the regulations specify a packaging with a specification marking...

  16. 28 CFR 10.5 - Incorporation of papers previously filed.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Incorporation of papers previously filed... CARRYING ON ACTIVITIES WITHIN THE UNITED STATES Registration Statement § 10.5 Incorporation of papers previously filed. Papers and documents already filed with the Attorney General pursuant to the said act and...

  17. 75 FR 76056 - FEDERAL REGISTER CITATION OF PREVIOUS ANNOUNCEMENT:

    Science.gov (United States)

    2010-12-07

    ... SECURITIES AND EXCHANGE COMMISSION Sunshine Act Meeting FEDERAL REGISTER CITATION OF PREVIOUS ANNOUNCEMENT: STATUS: Closed meeting. PLACE: 100 F Street, NE., Washington, DC. DATE AND TIME OF PREVIOUSLY ANNOUNCED MEETING: Thursday, December 9, 2010 at 2 p.m. CHANGE IN THE MEETING: Time change. The closed...

  18. No discrimination against previous mates in a sexually cannibalistic spider

    Science.gov (United States)

    Fromhage, Lutz; Schneider, Jutta M.

    2005-09-01

    In several animal species, females discriminate against previous mates in subsequent mating decisions, increasing the potential for multiple paternity. In spiders, female choice may take the form of selective sexual cannibalism, which has been shown to bias paternity in favor of particular males. If cannibalistic attacks function to restrict a male's paternity, females may have little interest to remate with males having survived such an attack. We therefore studied the possibility of female discrimination against previous mates in sexually cannibalistic Argiope bruennichi, where females almost always attack their mate at the onset of copulation. We compared mating latency and copulation duration of males having experienced a previous copulation either with the same or with a different female, but found no evidence for discrimination against previous mates. However, males copulated significantly shorter when inserting into a used, compared to a previously unused, genital pore of the female.

  19. Implant breast reconstruction after salvage mastectomy in previously irradiated patients.

    Science.gov (United States)

    Persichetti, Paolo; Cagli, Barbara; Simone, Pierfranco; Cogliandro, Annalisa; Fortunato, Lucio; Altomare, Vittorio; Trodella, Lucio

    2009-04-01

    The most common surgical approach in case of local tumor recurrence after quadrantectomy and radiotherapy is salvage mastectomy. Breast reconstruction is the subsequent phase of the treatment and the plastic surgeon has to operate on previously irradiated and manipulated tissues. The medical literature highlights that breast reconstruction with tissue expanders is not a pursuable option, considering previous radiotherapy a contraindication. The purpose of this retrospective study is to evaluate the influence of previous radiotherapy on 2-stage breast reconstruction (tissue expander/implant). Only patients with analogous timing of radiation therapy and the same demolitive and reconstructive procedures were recruited. The results of this study prove that, after salvage mastectomy in previously irradiated patients, implant reconstruction is still possible. Further comparative studies are, of course, advisable to draw any conclusion on the possibility to perform implant reconstruction in previously irradiated patients.

  20. 77 FR 15980 - Airworthiness Directives; Alpha Aviation Concept Limited (Type Certificate Previously Held by...

    Science.gov (United States)

    2012-03-19

    ... Concept Limited (Type Certificate Previously Held by Alpha Aviation Design Limited) Airplanes AGENCY... rulemaking (NPRM). SUMMARY: We propose to adopt a new airworthiness directive (AD) for Alpha Aviation Concept... condition on an aviation product. The MCAI describes the unsafe condition as oil lines fitted to affected...

  1. Predicting fruit consumption: the role of habits, previous behavior and mediation effects

    NARCIS (Netherlands)

    de Vries, H.; Eggers, S.M.; Lechner, L.; van Osch, L.; van Stralen, M.M.

    2014-01-01

    Background: This study assessed the role of habits and previous behavior in predicting fruit consumption as well as their additional predictive contribution besides socio-demographic and motivational factors. In the literature, habits are proposed as a stable construct that needs to be controlled

  2. 77 FR 5998 - Airworthiness Directives; EADS CASA (Type Certificate Previously Held by Construcciones...

    Science.gov (United States)

    2012-02-07

    ... Airworthiness Directives; EADS CASA (Type Certificate Previously Held by Construcciones Aeronauticas, S.A... proposed to correct an unsafe condition for the specified products. The MCAI states: EADS-CASA received... address this condition, EADS-CASA has developed an engine condition control cable P/N 35-56382-0005 with...

  3. 76 FR 41432 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Science.gov (United States)

    2011-07-14

    ... Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Model Galaxy, Gulfstream... proposed AD. Discussion The Civil Aviation Authority (CAA), which is the aviation authority for Israel, has... Held by Israel Aircraft Industries, Ltd.): Docket No. FAA-2011-0716; Directorate Identifier 2011-NM-013...

  4. 75 FR 36296 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Science.gov (United States)

    2010-06-25

    ... Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft... contact we receive about this proposed AD. Discussion The Civil Aviation Authority of Israel (CAAI), which is the aviation authority for Israel, has issued Israeli Airworthiness Directive 01-10-01-07R1, dated...

  5. A robust molecular phylogeny of the Tricladida (Platyhelminthes: Seriata) with a discussion on morphological synapomorphies.

    Science.gov (United States)

    Carranza, S; Littlewood, D T; Clough, K A; Ruiz-Trillo, I; Baguñà, J; Riutort, M

    1998-01-01

    The suborder Tricladida (Platyhelminthes: Turbellaria, Seriata) comprises most well-known species of free-living flatworms. Four infraorders are recognized: (i) the Maricola (marine planarians); (ii) the Cavernicola (a group of primarily cavernicolan planarians); (iii) the Paludicola (freshwater planarians); and (iv) the Terricola (land planarians). The phylogenetic relationships among these infraorders have been analysed using morphological characters, but they remain uncertain. Here we analyse the phylogeny and classification of the Tricladida, with additional, independent, molecular data from complete sequences of 18S rDNA and 18S rRNA. We use maximum parsimony and neighbour-joining methods and the characterization of a unique gene duplication event involving the Terricola and the dugesiids to reconstruct the phylogeny. The results show that the Maricola is monophyletic and is the primitive sister group to the rest of the Tricladida (the Paludicola plus the Terricola). The Paludicola are paraphyletic since the Terricola and one paludicolan family, the Dugesiidae, share a more recent common ancestor than the dugesiids with other paludicolans (dendrocoelids and planariids). A reassessment of morphological evidence may confirm the apparent redundancy of the existing infraorders Paludicola and Terricola. In the meantime, we suggest replacing the Paludicola and Terricola with a new clade, the Continenticola, which comprises the families Dugesiidae, Planariidae, Dendrocoelidae and the Terricola. PMID:9881470

  6. Total flavonoid concentrations of bryophytes from Tianmu Mountain, Zhejiang Province (China: Phylogeny and ecological factors.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available The flavonoids in bryophytes may have great significance in phylogeny and metabolism research. However, to date there has been little research on bryophyte metabolites, especially flavonoids. To redress this somewhat, we determined flavonoid concentrations of bryophytes from Tianmu Mountain through a colorimetric assay and considered the factors influencing the results. This is the first time that the flavonoid contents of bryophytes have been examined in detail. The results revealed a range of total flavonoid concentrations in 90 samples collected from Tianmu Mountain from 1.8 to 22.3 mg/g (w/w. The total flavonoid contents of liverworts were generally higher than those of mosses; acrocarpous mosses had generally higher values than that of pleurocarpous mosses. The total flavonoid contents of bryophytes growing at lower light levels were general higher than those growing in full-sun. The total flavonoid contents of epiphytic bryophytes were highest, while those of aquatic bryophytes were the lowest. Total flavonoid contents of species growing at low-latitudes were much higher than those at high-latitude individuals. In conclusion, total flavonoid contents of bryophytes have some connection with plant phylogeny; more flavonoids might be contained in relatively primitive bryophytes. Meanwhile, the effects of ecological factors on total flavonoid contents of bryophytes exist; light and habitat (especially tree habitat and river habitat might be representative factor.

  7. 18S rDNA phylogeny of lamproderma and allied genera (Stemonitales, Myxomycetes, Amoebozoa.

    Directory of Open Access Journals (Sweden)

    Anna Maria Fiore-Donno

    Full Text Available The phylogenetic position of the slime-mould genus Lamproderma (Myxomycetes, Amoebozoa challenges traditional taxonomy: although it displays the typical characters of the order Stemonitales, it appears to be sister to Physarales. This study provides a small subunit (18S or SSU ribosomal RNA gene-based phylogeny of Lamproderma and its allies, with new sequences from 49 specimens in 12 genera. We found that the order Stemonitales and Lamproderma were both ancestral to Physarales and that Lamproderma constitutes several clades intermingled with species of Diacheopsis, Colloderma and Elaeomyxa. We suggest that these genera may have evolved from Lamproderma by multiple losses of fruiting body stalks and that many taxonomic revisions are needed. We found such high genetic diversity within three Lamproderma species that they probably consist of clusters of sibling species. We discuss the contrasts between genetic and morphological divergence and implications for the morphospecies concept, highlighting the phylogenetically most reliable morphological characters and pointing to others that have been overestimated. In addition, we showed that the first part (~600 bases of the SSU rDNA gene is a valuable tool for phylogeny in Myxomycetes, since it displayed sufficient variability to distinguish closely related taxa and never failed to cluster together specimens considered of the same species.

  8. Rapid and recent diversification patterns in Anseriformes birds: Inferred from molecular phylogeny and diversification analyses.

    Directory of Open Access Journals (Sweden)

    Zhonglou Sun

    Full Text Available The Anseriformes is a well-known and widely distributed bird order, with more than 150 species in the world. This paper aims to revise the classification, determine the phylogenetic relationships and diversification patterns in Anseriformes by exploring the Cyt b, ND2, COI genes and the complete mitochondrial genomes (mito-genomes. Molecular phylogeny and genetic distance analyses suggest that the Dendrocygna species should be considered as an independent family, Dendrocygnidae, rather than a member of Anatidae. Molecular timescale analyses suggests that the ancestral diversification occurred during the Early Eocene Climatic Optimum (58 ~ 50 Ma. Furthermore, diversification analyses showed that, after a long period of constant diversification, the median initial speciation rate was accelerated three times, and finally increased to approximately 0.3 sp/My. In the present study, both molecular phylogeny and diversification analyses results support that Anseriformes birds underwent rapid and recent diversification in their evolutionary history, especially in modern ducks, which show extreme diversification during the Plio-Pleistocene (~ 5.3 Ma. Therefore, our study support that the Plio-Pleistocene climate fluctuations are likely to have played a significant role in promoting the recent diversification for Anseriformes.

  9. Molecular phylogeny of Systellognatha (Plecoptera: Arctoperlaria) inferred from mitochondrial genome sequences.

    Science.gov (United States)

    Chen, Zhi-Teng; Zhao, Meng-Yuan; Xu, Cheng; Du, Yu-Zhou

    2018-05-01

    The infraorder Systellognatha is the most species-rich clade in the insect order Plecoptera and includes six families in two superfamilies: Pteronarcyoidea (Pteronarcyidae, Peltoperlidae, and Styloperlidae) and Perloidea (Perlidae, Perlodidae, and Chloroperlidae). To resolve the debatable phylogeny of Systellognatha, we carried out the first mitochondrial phylogenetic analysis covering all the six families, including three newly sequenced mitogenomes from two families (Perlodidae and Peltoperlidae) and 15 published mitogenomes. The three newly reported mitogenomes share conserved mitogenomic features with other sequenced stoneflies. For phylogenetic analyses, we assembled five datasets with two inference methods to assess their influence on topology and nodal support within Systellognatha. The results indicated that inclusion of the third codon positions of PCGs, exclusion of rRNA genes, the use of nucleotide datasets and Bayesian inference could improve the phylogenetic reconstruction of Systellognatha. The monophyly of Perloidea was supported in the mitochondrial phylogeny, but Pteronarcyoidea was recovered as paraphyletic and remained controversial. In this mitochondrial phylogenetic study, the relationships within Systellognatha were recovered as (((Perlidae + (Perlodidae + Chloroperlidae)) + (Pteronarcyidae + Styloperlidae)) + Peltoperlidae). Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Identifying the true oysters (Bivalvia: Ostreidae) with mitochondrial phylogeny and distance-based DNA barcoding.

    Science.gov (United States)

    Liu, Jun; Li, Qi; Kong, Lingfeng; Yu, Hong; Zheng, Xiaodong

    2011-09-01

    Oysters (family Ostreidae), with high levels of phenotypic plasticity and wide geographic distribution, are a challenging group for taxonomists and phylogenetics. As a useful tool for molecular species identification, DNA barcoding might offer significant potential for oyster identification and taxonomy. This study used two mitochondrial fragments, cytochrome c oxidase I (COI) and the large ribosomal subunit (16S rDNA), to assess whether oyster species could be identified by phylogeny and distance-based DNA barcoding techniques. Relationships among species were estimated by the phylogenetic analyses of both genes, and then pairwise inter- and intraspecific genetic divergences were assessed. Species forming well-differentiated clades in the molecular phylogenies were identical for both genes even when the closely related species were included. Intraspecific variability of 16S rDNA overlapped with interspecific divergence. However, average intra- and interspecific genetic divergences for COI were 0-1.4% (maximum 2.2%) and 2.6-32.2% (minimum 2.2%), respectively, indicating the existence of a barcoding gap. These results confirm the efficacy of species identification in oysters via DNA barcodes and phylogenetic analysis. © 2011 Blackwell Publishing Ltd.

  11. Rapid and recent diversification patterns in Anseriformes birds: Inferred from molecular phylogeny and diversification analyses.

    Science.gov (United States)

    Sun, Zhonglou; Pan, Tao; Hu, Chaochao; Sun, Lu; Ding, He